blob: 4c487e0a345dc9f5047b230e5345d1ede65640c1 [file] [log] [blame]
Owen Andersona723d1e2008-04-09 08:23:16 +00001//===- MemCpyOptimizer.cpp - Optimize use of memcpy and friends -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This pass performs various transformations related to eliminating memcpy
11// calls, or transforming sets of stores into memset's.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "memcpyopt"
16#include "llvm/Transforms/Scalar.h"
Owen Andersona723d1e2008-04-09 08:23:16 +000017#include "llvm/IntrinsicInst.h"
18#include "llvm/Instructions.h"
Owen Andersona723d1e2008-04-09 08:23:16 +000019#include "llvm/ADT/SmallVector.h"
20#include "llvm/ADT/Statistic.h"
21#include "llvm/Analysis/Dominators.h"
22#include "llvm/Analysis/AliasAnalysis.h"
23#include "llvm/Analysis/MemoryDependenceAnalysis.h"
Owen Andersona723d1e2008-04-09 08:23:16 +000024#include "llvm/Support/Debug.h"
25#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000026#include "llvm/Support/raw_ostream.h"
Owen Andersona723d1e2008-04-09 08:23:16 +000027#include "llvm/Target/TargetData.h"
28#include <list>
29using namespace llvm;
30
31STATISTIC(NumMemCpyInstr, "Number of memcpy instructions deleted");
32STATISTIC(NumMemSetInfer, "Number of memsets inferred");
Duncan Sands05cd03b2009-09-03 13:37:16 +000033STATISTIC(NumMoveToCpy, "Number of memmoves converted to memcpy");
Owen Andersona723d1e2008-04-09 08:23:16 +000034
Owen Andersona723d1e2008-04-09 08:23:16 +000035/// isBytewiseValue - If the specified value can be set by repeating the same
36/// byte in memory, return the i8 value that it is represented with. This is
37/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
38/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
39/// byte store (e.g. i16 0x1234), return null.
Chris Lattnercf0fe8d2009-10-05 05:54:46 +000040static Value *isBytewiseValue(Value *V) {
Owen Andersona723d1e2008-04-09 08:23:16 +000041 // All byte-wide stores are splatable, even of arbitrary variables.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +000042 if (V->getType()->isIntegerTy(8)) return V;
Owen Andersona723d1e2008-04-09 08:23:16 +000043
44 // Constant float and double values can be handled as integer values if the
45 // corresponding integer value is "byteable". An important case is 0.0.
46 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
Chris Lattnercf0fe8d2009-10-05 05:54:46 +000047 if (CFP->getType()->isFloatTy())
Chris Lattner7a0b4fd2010-11-29 23:35:33 +000048 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
Chris Lattnercf0fe8d2009-10-05 05:54:46 +000049 if (CFP->getType()->isDoubleTy())
Chris Lattner7a0b4fd2010-11-29 23:35:33 +000050 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
Owen Andersona723d1e2008-04-09 08:23:16 +000051 // Don't handle long double formats, which have strange constraints.
52 }
53
54 // We can handle constant integers that are power of two in size and a
55 // multiple of 8 bits.
56 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
57 unsigned Width = CI->getBitWidth();
58 if (isPowerOf2_32(Width) && Width > 8) {
59 // We can handle this value if the recursive binary decomposition is the
60 // same at all levels.
61 APInt Val = CI->getValue();
62 APInt Val2;
63 while (Val.getBitWidth() != 8) {
64 unsigned NextWidth = Val.getBitWidth()/2;
65 Val2 = Val.lshr(NextWidth);
Jay Foad40f8f622010-12-07 08:25:19 +000066 Val2 = Val2.trunc(Val.getBitWidth()/2);
67 Val = Val.trunc(Val.getBitWidth()/2);
Owen Andersona723d1e2008-04-09 08:23:16 +000068
69 // If the top/bottom halves aren't the same, reject it.
70 if (Val != Val2)
71 return 0;
72 }
Chris Lattner7a0b4fd2010-11-29 23:35:33 +000073 return ConstantInt::get(V->getContext(), Val);
Owen Andersona723d1e2008-04-09 08:23:16 +000074 }
75 }
76
77 // Conceptually, we could handle things like:
78 // %a = zext i8 %X to i16
79 // %b = shl i16 %a, 8
80 // %c = or i16 %a, %b
81 // but until there is an example that actually needs this, it doesn't seem
82 // worth worrying about.
83 return 0;
84}
85
86static int64_t GetOffsetFromIndex(const GetElementPtrInst *GEP, unsigned Idx,
87 bool &VariableIdxFound, TargetData &TD) {
88 // Skip over the first indices.
89 gep_type_iterator GTI = gep_type_begin(GEP);
90 for (unsigned i = 1; i != Idx; ++i, ++GTI)
91 /*skip along*/;
92
93 // Compute the offset implied by the rest of the indices.
94 int64_t Offset = 0;
95 for (unsigned i = Idx, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
96 ConstantInt *OpC = dyn_cast<ConstantInt>(GEP->getOperand(i));
97 if (OpC == 0)
98 return VariableIdxFound = true;
99 if (OpC->isZero()) continue; // No offset.
100
101 // Handle struct indices, which add their field offset to the pointer.
102 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
103 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
104 continue;
105 }
106
107 // Otherwise, we have a sequential type like an array or vector. Multiply
108 // the index by the ElementSize.
Duncan Sands777d2302009-05-09 07:06:46 +0000109 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
Owen Andersona723d1e2008-04-09 08:23:16 +0000110 Offset += Size*OpC->getSExtValue();
111 }
112
113 return Offset;
114}
115
116/// IsPointerOffset - Return true if Ptr1 is provably equal to Ptr2 plus a
117/// constant offset, and return that constant offset. For example, Ptr1 might
118/// be &A[42], and Ptr2 might be &A[40]. In this case offset would be -8.
119static bool IsPointerOffset(Value *Ptr1, Value *Ptr2, int64_t &Offset,
120 TargetData &TD) {
121 // Right now we handle the case when Ptr1/Ptr2 are both GEPs with an identical
122 // base. After that base, they may have some number of common (and
123 // potentially variable) indices. After that they handle some constant
124 // offset, which determines their offset from each other. At this point, we
125 // handle no other case.
126 GetElementPtrInst *GEP1 = dyn_cast<GetElementPtrInst>(Ptr1);
127 GetElementPtrInst *GEP2 = dyn_cast<GetElementPtrInst>(Ptr2);
128 if (!GEP1 || !GEP2 || GEP1->getOperand(0) != GEP2->getOperand(0))
129 return false;
130
131 // Skip any common indices and track the GEP types.
132 unsigned Idx = 1;
133 for (; Idx != GEP1->getNumOperands() && Idx != GEP2->getNumOperands(); ++Idx)
134 if (GEP1->getOperand(Idx) != GEP2->getOperand(Idx))
135 break;
136
137 bool VariableIdxFound = false;
138 int64_t Offset1 = GetOffsetFromIndex(GEP1, Idx, VariableIdxFound, TD);
139 int64_t Offset2 = GetOffsetFromIndex(GEP2, Idx, VariableIdxFound, TD);
140 if (VariableIdxFound) return false;
141
142 Offset = Offset2-Offset1;
143 return true;
144}
145
146
147/// MemsetRange - Represents a range of memset'd bytes with the ByteVal value.
148/// This allows us to analyze stores like:
149/// store 0 -> P+1
150/// store 0 -> P+0
151/// store 0 -> P+3
152/// store 0 -> P+2
153/// which sometimes happens with stores to arrays of structs etc. When we see
154/// the first store, we make a range [1, 2). The second store extends the range
155/// to [0, 2). The third makes a new range [2, 3). The fourth store joins the
156/// two ranges into [0, 3) which is memset'able.
157namespace {
158struct MemsetRange {
159 // Start/End - A semi range that describes the span that this range covers.
160 // The range is closed at the start and open at the end: [Start, End).
161 int64_t Start, End;
162
163 /// StartPtr - The getelementptr instruction that points to the start of the
164 /// range.
165 Value *StartPtr;
166
167 /// Alignment - The known alignment of the first store.
168 unsigned Alignment;
169
170 /// TheStores - The actual stores that make up this range.
171 SmallVector<StoreInst*, 16> TheStores;
172
173 bool isProfitableToUseMemset(const TargetData &TD) const;
174
175};
176} // end anon namespace
177
178bool MemsetRange::isProfitableToUseMemset(const TargetData &TD) const {
179 // If we found more than 8 stores to merge or 64 bytes, use memset.
180 if (TheStores.size() >= 8 || End-Start >= 64) return true;
181
182 // Assume that the code generator is capable of merging pairs of stores
183 // together if it wants to.
184 if (TheStores.size() <= 2) return false;
185
186 // If we have fewer than 8 stores, it can still be worthwhile to do this.
187 // For example, merging 4 i8 stores into an i32 store is useful almost always.
188 // However, merging 2 32-bit stores isn't useful on a 32-bit architecture (the
189 // memset will be split into 2 32-bit stores anyway) and doing so can
190 // pessimize the llvm optimizer.
191 //
192 // Since we don't have perfect knowledge here, make some assumptions: assume
193 // the maximum GPR width is the same size as the pointer size and assume that
194 // this width can be stored. If so, check to see whether we will end up
195 // actually reducing the number of stores used.
196 unsigned Bytes = unsigned(End-Start);
197 unsigned NumPointerStores = Bytes/TD.getPointerSize();
198
199 // Assume the remaining bytes if any are done a byte at a time.
200 unsigned NumByteStores = Bytes - NumPointerStores*TD.getPointerSize();
201
202 // If we will reduce the # stores (according to this heuristic), do the
203 // transformation. This encourages merging 4 x i8 -> i32 and 2 x i16 -> i32
204 // etc.
205 return TheStores.size() > NumPointerStores+NumByteStores;
206}
207
208
209namespace {
210class MemsetRanges {
211 /// Ranges - A sorted list of the memset ranges. We use std::list here
212 /// because each element is relatively large and expensive to copy.
213 std::list<MemsetRange> Ranges;
214 typedef std::list<MemsetRange>::iterator range_iterator;
215 TargetData &TD;
216public:
217 MemsetRanges(TargetData &td) : TD(td) {}
218
219 typedef std::list<MemsetRange>::const_iterator const_iterator;
220 const_iterator begin() const { return Ranges.begin(); }
221 const_iterator end() const { return Ranges.end(); }
222 bool empty() const { return Ranges.empty(); }
223
224 void addStore(int64_t OffsetFromFirst, StoreInst *SI);
225};
226
227} // end anon namespace
228
229
230/// addStore - Add a new store to the MemsetRanges data structure. This adds a
231/// new range for the specified store at the specified offset, merging into
232/// existing ranges as appropriate.
233void MemsetRanges::addStore(int64_t Start, StoreInst *SI) {
234 int64_t End = Start+TD.getTypeStoreSize(SI->getOperand(0)->getType());
235
236 // Do a linear search of the ranges to see if this can be joined and/or to
237 // find the insertion point in the list. We keep the ranges sorted for
238 // simplicity here. This is a linear search of a linked list, which is ugly,
239 // however the number of ranges is limited, so this won't get crazy slow.
240 range_iterator I = Ranges.begin(), E = Ranges.end();
241
242 while (I != E && Start > I->End)
243 ++I;
244
245 // We now know that I == E, in which case we didn't find anything to merge
246 // with, or that Start <= I->End. If End < I->Start or I == E, then we need
247 // to insert a new range. Handle this now.
248 if (I == E || End < I->Start) {
249 MemsetRange &R = *Ranges.insert(I, MemsetRange());
250 R.Start = Start;
251 R.End = End;
252 R.StartPtr = SI->getPointerOperand();
253 R.Alignment = SI->getAlignment();
254 R.TheStores.push_back(SI);
255 return;
256 }
257
258 // This store overlaps with I, add it.
259 I->TheStores.push_back(SI);
260
261 // At this point, we may have an interval that completely contains our store.
262 // If so, just add it to the interval and return.
263 if (I->Start <= Start && I->End >= End)
264 return;
265
266 // Now we know that Start <= I->End and End >= I->Start so the range overlaps
267 // but is not entirely contained within the range.
268
269 // See if the range extends the start of the range. In this case, it couldn't
270 // possibly cause it to join the prior range, because otherwise we would have
271 // stopped on *it*.
272 if (Start < I->Start) {
273 I->Start = Start;
274 I->StartPtr = SI->getPointerOperand();
Dan Gohman264d2452009-09-14 23:39:10 +0000275 I->Alignment = SI->getAlignment();
Owen Andersona723d1e2008-04-09 08:23:16 +0000276 }
277
278 // Now we know that Start <= I->End and Start >= I->Start (so the startpoint
279 // is in or right at the end of I), and that End >= I->Start. Extend I out to
280 // End.
281 if (End > I->End) {
282 I->End = End;
Nick Lewycky9c0f1462009-03-19 05:51:39 +0000283 range_iterator NextI = I;
Owen Andersona723d1e2008-04-09 08:23:16 +0000284 while (++NextI != E && End >= NextI->Start) {
285 // Merge the range in.
286 I->TheStores.append(NextI->TheStores.begin(), NextI->TheStores.end());
287 if (NextI->End > I->End)
288 I->End = NextI->End;
289 Ranges.erase(NextI);
290 NextI = I;
291 }
292 }
293}
294
295//===----------------------------------------------------------------------===//
296// MemCpyOpt Pass
297//===----------------------------------------------------------------------===//
298
299namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +0000300 class MemCpyOpt : public FunctionPass {
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000301 MemoryDependenceAnalysis *MD;
Owen Andersona723d1e2008-04-09 08:23:16 +0000302 bool runOnFunction(Function &F);
303 public:
304 static char ID; // Pass identification, replacement for typeid
Owen Anderson081c34b2010-10-19 17:21:58 +0000305 MemCpyOpt() : FunctionPass(ID) {
306 initializeMemCpyOptPass(*PassRegistry::getPassRegistry());
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000307 MD = 0;
Owen Anderson081c34b2010-10-19 17:21:58 +0000308 }
Owen Andersona723d1e2008-04-09 08:23:16 +0000309
310 private:
311 // This transformation requires dominator postdominator info
312 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
313 AU.setPreservesCFG();
314 AU.addRequired<DominatorTree>();
315 AU.addRequired<MemoryDependenceAnalysis>();
316 AU.addRequired<AliasAnalysis>();
Owen Andersona723d1e2008-04-09 08:23:16 +0000317 AU.addPreserved<AliasAnalysis>();
318 AU.addPreserved<MemoryDependenceAnalysis>();
Owen Andersona723d1e2008-04-09 08:23:16 +0000319 }
320
321 // Helper fuctions
Chris Lattner61c6ba82009-09-01 17:09:55 +0000322 bool processStore(StoreInst *SI, BasicBlock::iterator &BBI);
323 bool processMemCpy(MemCpyInst *M);
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000324 bool processMemMove(MemMoveInst *M);
Owen Anderson65491212010-10-15 22:52:12 +0000325 bool performCallSlotOptzn(Instruction *cpy, Value *cpyDst, Value *cpySrc,
326 uint64_t cpyLen, CallInst *C);
Chris Lattner43f8e432010-11-18 07:02:37 +0000327 bool processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
328 uint64_t MSize);
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000329 bool processByValArgument(CallSite CS, unsigned ArgNo);
Owen Andersona723d1e2008-04-09 08:23:16 +0000330 bool iterateOnFunction(Function &F);
331 };
332
333 char MemCpyOpt::ID = 0;
334}
335
336// createMemCpyOptPass - The public interface to this file...
337FunctionPass *llvm::createMemCpyOptPass() { return new MemCpyOpt(); }
338
Owen Anderson2ab36d32010-10-12 19:48:12 +0000339INITIALIZE_PASS_BEGIN(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
340 false, false)
341INITIALIZE_PASS_DEPENDENCY(DominatorTree)
342INITIALIZE_PASS_DEPENDENCY(MemoryDependenceAnalysis)
343INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
344INITIALIZE_PASS_END(MemCpyOpt, "memcpyopt", "MemCpy Optimization",
345 false, false)
Owen Andersona723d1e2008-04-09 08:23:16 +0000346
Owen Andersona723d1e2008-04-09 08:23:16 +0000347/// processStore - When GVN is scanning forward over instructions, we look for
348/// some other patterns to fold away. In particular, this looks for stores to
349/// neighboring locations of memory. If it sees enough consequtive ones
350/// (currently 4) it attempts to merge them together into a memcpy/memset.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000351bool MemCpyOpt::processStore(StoreInst *SI, BasicBlock::iterator &BBI) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000352 if (SI->isVolatile()) return false;
353
Owen Anderson65491212010-10-15 22:52:12 +0000354 TargetData *TD = getAnalysisIfAvailable<TargetData>();
355 if (!TD) return false;
356
357 // Detect cases where we're performing call slot forwarding, but
358 // happen to be using a load-store pair to implement it, rather than
359 // a memcpy.
360 if (LoadInst *LI = dyn_cast<LoadInst>(SI->getOperand(0))) {
361 if (!LI->isVolatile() && LI->hasOneUse()) {
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000362 MemDepResult dep = MD->getDependency(LI);
Owen Anderson65491212010-10-15 22:52:12 +0000363 CallInst *C = 0;
364 if (dep.isClobber() && !isa<MemCpyInst>(dep.getInst()))
365 C = dyn_cast<CallInst>(dep.getInst());
366
367 if (C) {
368 bool changed = performCallSlotOptzn(LI,
369 SI->getPointerOperand()->stripPointerCasts(),
370 LI->getPointerOperand()->stripPointerCasts(),
371 TD->getTypeStoreSize(SI->getOperand(0)->getType()), C);
372 if (changed) {
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000373 MD->removeInstruction(SI);
Owen Anderson65491212010-10-15 22:52:12 +0000374 SI->eraseFromParent();
375 LI->eraseFromParent();
376 ++NumMemCpyInstr;
377 return true;
378 }
379 }
380 }
381 }
382
Chris Lattnerff1e98c2009-09-08 00:27:14 +0000383 LLVMContext &Context = SI->getContext();
384
Owen Andersona723d1e2008-04-09 08:23:16 +0000385 // There are two cases that are interesting for this code to handle: memcpy
386 // and memset. Right now we only handle memset.
387
388 // Ensure that the value being stored is something that can be memset'able a
389 // byte at a time like "0" or "-1" or any width, as well as things like
390 // 0xA0A0A0A0 and 0.0.
Chris Lattnercf0fe8d2009-10-05 05:54:46 +0000391 Value *ByteVal = isBytewiseValue(SI->getOperand(0));
Owen Andersona723d1e2008-04-09 08:23:16 +0000392 if (!ByteVal)
393 return false;
394
Owen Andersona723d1e2008-04-09 08:23:16 +0000395 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
Dan Gohmana195b7f2009-07-28 00:37:06 +0000396 Module *M = SI->getParent()->getParent()->getParent();
Owen Andersona723d1e2008-04-09 08:23:16 +0000397
398 // Okay, so we now have a single store that can be splatable. Scan to find
399 // all subsequent stores of the same value to offset from the same pointer.
400 // Join these together into ranges, so we can decide whether contiguous blocks
401 // are stored.
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000402 MemsetRanges Ranges(*TD);
Owen Andersona723d1e2008-04-09 08:23:16 +0000403
404 Value *StartPtr = SI->getPointerOperand();
405
406 BasicBlock::iterator BI = SI;
407 for (++BI; !isa<TerminatorInst>(BI); ++BI) {
408 if (isa<CallInst>(BI) || isa<InvokeInst>(BI)) {
409 // If the call is readnone, ignore it, otherwise bail out. We don't even
410 // allow readonly here because we don't want something like:
411 // A[1] = 2; strlen(A); A[2] = 2; -> memcpy(A, ...); strlen(A).
Gabor Greifa292b2f2010-07-27 16:44:23 +0000412 if (AA.getModRefBehavior(CallSite(BI)) ==
Owen Andersona723d1e2008-04-09 08:23:16 +0000413 AliasAnalysis::DoesNotAccessMemory)
414 continue;
415
416 // TODO: If this is a memset, try to join it in.
417
418 break;
419 } else if (isa<VAArgInst>(BI) || isa<LoadInst>(BI))
420 break;
421
422 // If this is a non-store instruction it is fine, ignore it.
423 StoreInst *NextStore = dyn_cast<StoreInst>(BI);
424 if (NextStore == 0) continue;
425
426 // If this is a store, see if we can merge it in.
427 if (NextStore->isVolatile()) break;
428
429 // Check to see if this stored value is of the same byte-splattable value.
Chris Lattnercf0fe8d2009-10-05 05:54:46 +0000430 if (ByteVal != isBytewiseValue(NextStore->getOperand(0)))
Owen Andersona723d1e2008-04-09 08:23:16 +0000431 break;
432
433 // Check to see if this store is to a constant offset from the start ptr.
434 int64_t Offset;
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000435 if (!IsPointerOffset(StartPtr, NextStore->getPointerOperand(), Offset, *TD))
Owen Andersona723d1e2008-04-09 08:23:16 +0000436 break;
437
438 Ranges.addStore(Offset, NextStore);
439 }
440
441 // If we have no ranges, then we just had a single store with nothing that
442 // could be merged in. This is a very common case of course.
443 if (Ranges.empty())
444 return false;
445
446 // If we had at least one store that could be merged in, add the starting
447 // store as well. We try to avoid this unless there is at least something
448 // interesting as a small compile-time optimization.
449 Ranges.addStore(0, SI);
Owen Andersona723d1e2008-04-09 08:23:16 +0000450
Owen Andersona723d1e2008-04-09 08:23:16 +0000451
452 // Now that we have full information about ranges, loop over the ranges and
453 // emit memset's for anything big enough to be worthwhile.
454 bool MadeChange = false;
455 for (MemsetRanges::const_iterator I = Ranges.begin(), E = Ranges.end();
456 I != E; ++I) {
457 const MemsetRange &Range = *I;
458
459 if (Range.TheStores.size() == 1) continue;
460
461 // If it is profitable to lower this range to memset, do so now.
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000462 if (!Range.isProfitableToUseMemset(*TD))
Owen Andersona723d1e2008-04-09 08:23:16 +0000463 continue;
464
465 // Otherwise, we do want to transform this! Create a new memset. We put
466 // the memset right before the first instruction that isn't part of this
467 // memset block. This ensure that the memset is dominated by any addressing
468 // instruction needed by the start of the block.
469 BasicBlock::iterator InsertPt = BI;
Mon P Wang20adc9d2010-04-04 03:10:48 +0000470
Owen Andersona723d1e2008-04-09 08:23:16 +0000471 // Get the starting pointer of the block.
472 StartPtr = Range.StartPtr;
Mon P Wang20adc9d2010-04-04 03:10:48 +0000473
474 // Determine alignment
475 unsigned Alignment = Range.Alignment;
476 if (Alignment == 0) {
477 const Type *EltType =
478 cast<PointerType>(StartPtr->getType())->getElementType();
479 Alignment = TD->getABITypeAlignment(EltType);
480 }
481
Owen Andersona723d1e2008-04-09 08:23:16 +0000482 // Cast the start ptr to be i8* as memset requires.
Mon P Wang20adc9d2010-04-04 03:10:48 +0000483 const PointerType* StartPTy = cast<PointerType>(StartPtr->getType());
484 const PointerType *i8Ptr = Type::getInt8PtrTy(Context,
485 StartPTy->getAddressSpace());
486 if (StartPTy!= i8Ptr)
Daniel Dunbar460f6562009-07-26 09:48:23 +0000487 StartPtr = new BitCastInst(StartPtr, i8Ptr, StartPtr->getName(),
Owen Andersona723d1e2008-04-09 08:23:16 +0000488 InsertPt);
Mon P Wang20adc9d2010-04-04 03:10:48 +0000489
Owen Andersona723d1e2008-04-09 08:23:16 +0000490 Value *Ops[] = {
491 StartPtr, ByteVal, // Start, value
Owen Andersone922c022009-07-22 00:24:57 +0000492 // size
Chris Lattnerff1e98c2009-09-08 00:27:14 +0000493 ConstantInt::get(Type::getInt64Ty(Context), Range.End-Range.Start),
Owen Andersone922c022009-07-22 00:24:57 +0000494 // align
Mon P Wang20adc9d2010-04-04 03:10:48 +0000495 ConstantInt::get(Type::getInt32Ty(Context), Alignment),
496 // volatile
Benjamin Kramerf601d6d2010-11-20 18:43:35 +0000497 ConstantInt::getFalse(Context),
Owen Andersona723d1e2008-04-09 08:23:16 +0000498 };
Mon P Wang20adc9d2010-04-04 03:10:48 +0000499 const Type *Tys[] = { Ops[0]->getType(), Ops[2]->getType() };
500
501 Function *MemSetF = Intrinsic::getDeclaration(M, Intrinsic::memset, Tys, 2);
502
503 Value *C = CallInst::Create(MemSetF, Ops, Ops+5, "", InsertPt);
David Greenecb33fd12010-01-05 01:27:47 +0000504 DEBUG(dbgs() << "Replace stores:\n";
Owen Andersona723d1e2008-04-09 08:23:16 +0000505 for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000506 dbgs() << *Range.TheStores[i] << '\n';
507 dbgs() << "With: " << *C << '\n'); C=C;
Owen Andersona723d1e2008-04-09 08:23:16 +0000508
Owen Andersona8bd6582008-04-21 07:45:10 +0000509 // Don't invalidate the iterator
510 BBI = BI;
511
Owen Andersona723d1e2008-04-09 08:23:16 +0000512 // Zap all the stores.
Chris Lattnerff1e98c2009-09-08 00:27:14 +0000513 for (SmallVector<StoreInst*, 16>::const_iterator
514 SI = Range.TheStores.begin(),
Owen Andersona8bd6582008-04-21 07:45:10 +0000515 SE = Range.TheStores.end(); SI != SE; ++SI)
516 (*SI)->eraseFromParent();
Owen Andersona723d1e2008-04-09 08:23:16 +0000517 ++NumMemSetInfer;
518 MadeChange = true;
519 }
520
521 return MadeChange;
522}
523
524
525/// performCallSlotOptzn - takes a memcpy and a call that it depends on,
526/// and checks for the possibility of a call slot optimization by having
527/// the call write its result directly into the destination of the memcpy.
Owen Anderson65491212010-10-15 22:52:12 +0000528bool MemCpyOpt::performCallSlotOptzn(Instruction *cpy,
529 Value *cpyDest, Value *cpySrc,
530 uint64_t cpyLen, CallInst *C) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000531 // The general transformation to keep in mind is
532 //
533 // call @func(..., src, ...)
534 // memcpy(dest, src, ...)
535 //
536 // ->
537 //
538 // memcpy(dest, src, ...)
539 // call @func(..., dest, ...)
540 //
541 // Since moving the memcpy is technically awkward, we additionally check that
542 // src only holds uninitialized values at the moment of the call, meaning that
543 // the memcpy can be discarded rather than moved.
544
545 // Deliberately get the source and destination with bitcasts stripped away,
546 // because we'll need to do type comparisons based on the underlying type.
Gabor Greif7d3056b2010-07-28 22:50:26 +0000547 CallSite CS(C);
Owen Andersona723d1e2008-04-09 08:23:16 +0000548
Owen Andersona723d1e2008-04-09 08:23:16 +0000549 // Require that src be an alloca. This simplifies the reasoning considerably.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000550 AllocaInst *srcAlloca = dyn_cast<AllocaInst>(cpySrc);
Owen Andersona723d1e2008-04-09 08:23:16 +0000551 if (!srcAlloca)
552 return false;
553
554 // Check that all of src is copied to dest.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000555 TargetData *TD = getAnalysisIfAvailable<TargetData>();
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000556 if (!TD) return false;
Owen Andersona723d1e2008-04-09 08:23:16 +0000557
Chris Lattner61c6ba82009-09-01 17:09:55 +0000558 ConstantInt *srcArraySize = dyn_cast<ConstantInt>(srcAlloca->getArraySize());
Owen Andersona723d1e2008-04-09 08:23:16 +0000559 if (!srcArraySize)
560 return false;
561
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000562 uint64_t srcSize = TD->getTypeAllocSize(srcAlloca->getAllocatedType()) *
Owen Andersona723d1e2008-04-09 08:23:16 +0000563 srcArraySize->getZExtValue();
564
Owen Anderson65491212010-10-15 22:52:12 +0000565 if (cpyLen < srcSize)
Owen Andersona723d1e2008-04-09 08:23:16 +0000566 return false;
567
568 // Check that accessing the first srcSize bytes of dest will not cause a
569 // trap. Otherwise the transform is invalid since it might cause a trap
570 // to occur earlier than it otherwise would.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000571 if (AllocaInst *A = dyn_cast<AllocaInst>(cpyDest)) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000572 // The destination is an alloca. Check it is larger than srcSize.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000573 ConstantInt *destArraySize = dyn_cast<ConstantInt>(A->getArraySize());
Owen Andersona723d1e2008-04-09 08:23:16 +0000574 if (!destArraySize)
575 return false;
576
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000577 uint64_t destSize = TD->getTypeAllocSize(A->getAllocatedType()) *
Owen Andersona723d1e2008-04-09 08:23:16 +0000578 destArraySize->getZExtValue();
579
580 if (destSize < srcSize)
581 return false;
Chris Lattner61c6ba82009-09-01 17:09:55 +0000582 } else if (Argument *A = dyn_cast<Argument>(cpyDest)) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000583 // If the destination is an sret parameter then only accesses that are
584 // outside of the returned struct type can trap.
585 if (!A->hasStructRetAttr())
586 return false;
587
Chris Lattner61c6ba82009-09-01 17:09:55 +0000588 const Type *StructTy = cast<PointerType>(A->getType())->getElementType();
Dan Gohman8942f9bb2009-08-18 01:17:52 +0000589 uint64_t destSize = TD->getTypeAllocSize(StructTy);
Owen Andersona723d1e2008-04-09 08:23:16 +0000590
591 if (destSize < srcSize)
592 return false;
593 } else {
594 return false;
595 }
596
597 // Check that src is not accessed except via the call and the memcpy. This
598 // guarantees that it holds only undefined values when passed in (so the final
599 // memcpy can be dropped), that it is not read or written between the call and
600 // the memcpy, and that writing beyond the end of it is undefined.
601 SmallVector<User*, 8> srcUseList(srcAlloca->use_begin(),
602 srcAlloca->use_end());
603 while (!srcUseList.empty()) {
Dan Gohman321a8132010-01-05 16:27:25 +0000604 User *UI = srcUseList.pop_back_val();
Owen Andersona723d1e2008-04-09 08:23:16 +0000605
Owen Anderson009e4f72008-06-01 22:26:26 +0000606 if (isa<BitCastInst>(UI)) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000607 for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
608 I != E; ++I)
609 srcUseList.push_back(*I);
Chris Lattner61c6ba82009-09-01 17:09:55 +0000610 } else if (GetElementPtrInst *G = dyn_cast<GetElementPtrInst>(UI)) {
Owen Anderson009e4f72008-06-01 22:26:26 +0000611 if (G->hasAllZeroIndices())
612 for (User::use_iterator I = UI->use_begin(), E = UI->use_end();
613 I != E; ++I)
614 srcUseList.push_back(*I);
615 else
616 return false;
Owen Andersona723d1e2008-04-09 08:23:16 +0000617 } else if (UI != C && UI != cpy) {
618 return false;
619 }
620 }
621
622 // Since we're changing the parameter to the callsite, we need to make sure
623 // that what would be the new parameter dominates the callsite.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000624 DominatorTree &DT = getAnalysis<DominatorTree>();
625 if (Instruction *cpyDestInst = dyn_cast<Instruction>(cpyDest))
Owen Andersona723d1e2008-04-09 08:23:16 +0000626 if (!DT.dominates(cpyDestInst, C))
627 return false;
628
629 // In addition to knowing that the call does not access src in some
630 // unexpected manner, for example via a global, which we deduce from
631 // the use analysis, we also need to know that it does not sneakily
632 // access dest. We rely on AA to figure this out for us.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000633 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
Owen Anderson65491212010-10-15 22:52:12 +0000634 if (AA.getModRefInfo(C, cpyDest, srcSize) !=
Owen Andersona723d1e2008-04-09 08:23:16 +0000635 AliasAnalysis::NoModRef)
636 return false;
637
638 // All the checks have passed, so do the transformation.
Owen Anderson12cb36c2008-06-01 21:52:16 +0000639 bool changedArgument = false;
Owen Andersona723d1e2008-04-09 08:23:16 +0000640 for (unsigned i = 0; i < CS.arg_size(); ++i)
Owen Anderson009e4f72008-06-01 22:26:26 +0000641 if (CS.getArgument(i)->stripPointerCasts() == cpySrc) {
Owen Andersona723d1e2008-04-09 08:23:16 +0000642 if (cpySrc->getType() != cpyDest->getType())
Gabor Greif7cbd8a32008-05-16 19:29:10 +0000643 cpyDest = CastInst::CreatePointerCast(cpyDest, cpySrc->getType(),
Owen Andersona723d1e2008-04-09 08:23:16 +0000644 cpyDest->getName(), C);
Owen Anderson12cb36c2008-06-01 21:52:16 +0000645 changedArgument = true;
Chris Lattner61c6ba82009-09-01 17:09:55 +0000646 if (CS.getArgument(i)->getType() == cpyDest->getType())
Owen Anderson009e4f72008-06-01 22:26:26 +0000647 CS.setArgument(i, cpyDest);
Chris Lattner61c6ba82009-09-01 17:09:55 +0000648 else
649 CS.setArgument(i, CastInst::CreatePointerCast(cpyDest,
650 CS.getArgument(i)->getType(), cpyDest->getName(), C));
Owen Andersona723d1e2008-04-09 08:23:16 +0000651 }
652
Owen Anderson12cb36c2008-06-01 21:52:16 +0000653 if (!changedArgument)
654 return false;
655
Owen Andersona723d1e2008-04-09 08:23:16 +0000656 // Drop any cached information about the call, because we may have changed
657 // its dependence information by changing its parameter.
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000658 MD->removeInstruction(C);
Owen Andersona723d1e2008-04-09 08:23:16 +0000659
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000660 // Remove the memcpy.
661 MD->removeInstruction(cpy);
Dan Gohmanfe601042010-06-22 15:08:57 +0000662 ++NumMemCpyInstr;
Owen Andersona723d1e2008-04-09 08:23:16 +0000663
664 return true;
665}
666
Chris Lattner43f8e432010-11-18 07:02:37 +0000667/// processMemCpyMemCpyDependence - We've found that the (upward scanning)
668/// memory dependence of memcpy 'M' is the memcpy 'MDep'. Try to simplify M to
669/// copy from MDep's input if we can. MSize is the size of M's copy.
670///
671bool MemCpyOpt::processMemCpyMemCpyDependence(MemCpyInst *M, MemCpyInst *MDep,
672 uint64_t MSize) {
673 // We can only transforms memcpy's where the dest of one is the source of the
674 // other.
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000675 if (M->getSource() != MDep->getDest() || MDep->isVolatile())
Chris Lattner43f8e432010-11-18 07:02:37 +0000676 return false;
677
Chris Lattnerf7f35462010-12-09 07:39:50 +0000678 // If dep instruction is reading from our current input, then it is a noop
679 // transfer and substituting the input won't change this instruction. Just
680 // ignore the input and let someone else zap MDep. This handles cases like:
681 // memcpy(a <- a)
682 // memcpy(b <- a)
683 if (M->getSource() == MDep->getSource())
684 return false;
685
Chris Lattner43f8e432010-11-18 07:02:37 +0000686 // Second, the length of the memcpy's must be the same, or the preceeding one
687 // must be larger than the following one.
688 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
689 if (!C1) return false;
690
691 uint64_t DepSize = C1->getValue().getZExtValue();
Chris Lattner43f8e432010-11-18 07:02:37 +0000692 if (DepSize < MSize)
693 return false;
694
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000695 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
Chris Lattner604f6fe2010-11-21 08:06:10 +0000696
697 // Verify that the copied-from memory doesn't change in between the two
698 // transfers. For example, in:
699 // memcpy(a <- b)
700 // *b = 42;
701 // memcpy(c <- a)
702 // It would be invalid to transform the second memcpy into memcpy(c <- b).
703 //
704 // TODO: If the code between M and MDep is transparent to the destination "c",
705 // then we could still perform the xform by moving M up to the first memcpy.
706 //
707 // NOTE: This is conservative, it will stop on any read from the source loc,
708 // not just the defining memcpy.
709 MemDepResult SourceDep =
710 MD->getPointerDependencyFrom(AA.getLocationForSource(MDep),
711 false, M, M->getParent());
712 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
713 return false;
Chris Lattner5a7aeaa2010-11-18 08:00:57 +0000714
715 // If the dest of the second might alias the source of the first, then the
716 // source and dest might overlap. We still want to eliminate the intermediate
717 // value, but we have to generate a memmove instead of memcpy.
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000718 Intrinsic::ID ResultFn = Intrinsic::memcpy;
Chris Lattner12f70852010-11-18 07:39:57 +0000719 if (!AA.isNoAlias(M->getRawDest(), MSize, MDep->getRawSource(), DepSize))
Chris Lattner5a7aeaa2010-11-18 08:00:57 +0000720 ResultFn = Intrinsic::memmove;
Chris Lattner43f8e432010-11-18 07:02:37 +0000721
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000722 // If all checks passed, then we can transform M.
Chris Lattner245b7f62010-11-18 07:38:43 +0000723 const Type *ArgTys[3] = {
724 M->getRawDest()->getType(),
Chris Lattner43f8e432010-11-18 07:02:37 +0000725 MDep->getRawSource()->getType(),
Chris Lattner245b7f62010-11-18 07:38:43 +0000726 M->getLength()->getType()
727 };
Chris Lattner43f8e432010-11-18 07:02:37 +0000728 Function *MemCpyFun =
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000729 Intrinsic::getDeclaration(MDep->getParent()->getParent()->getParent(),
Chris Lattner5a7aeaa2010-11-18 08:00:57 +0000730 ResultFn, ArgTys, 3);
Chris Lattner43f8e432010-11-18 07:02:37 +0000731
732 // Make sure to use the lesser of the alignment of the source and the dest
733 // since we're changing where we're reading from, but don't want to increase
734 // the alignment past what can be read from or written to.
735 // TODO: Is this worth it if we're creating a less aligned memcpy? For
736 // example we could be moving from movaps -> movq on x86.
Chris Lattnerd528be62010-11-18 08:07:09 +0000737 unsigned Align = std::min(MDep->getAlignment(), M->getAlignment());
Chris Lattner43f8e432010-11-18 07:02:37 +0000738 Value *Args[5] = {
Chris Lattnerd528be62010-11-18 08:07:09 +0000739 M->getRawDest(),
740 MDep->getRawSource(),
741 M->getLength(),
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000742 ConstantInt::get(Type::getInt32Ty(MemCpyFun->getContext()), Align),
Chris Lattnerd528be62010-11-18 08:07:09 +0000743 M->getVolatileCst()
Chris Lattner43f8e432010-11-18 07:02:37 +0000744 };
Chris Lattner604f6fe2010-11-21 08:06:10 +0000745 CallInst::Create(MemCpyFun, Args, Args+5, "", M);
Chris Lattnerd528be62010-11-18 08:07:09 +0000746
Chris Lattner604f6fe2010-11-21 08:06:10 +0000747 // Remove the instruction we're replacing.
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000748 MD->removeInstruction(M);
Chris Lattnerd528be62010-11-18 08:07:09 +0000749 M->eraseFromParent();
750 ++NumMemCpyInstr;
751 return true;
Chris Lattner43f8e432010-11-18 07:02:37 +0000752}
753
754
Gabor Greif7d3056b2010-07-28 22:50:26 +0000755/// processMemCpy - perform simplification of memcpy's. If we have memcpy A
756/// which copies X to Y, and memcpy B which copies Y to Z, then we can rewrite
757/// B to be a memcpy from X to Z (or potentially a memmove, depending on
758/// circumstances). This allows later passes to remove the first memcpy
759/// altogether.
Chris Lattner61c6ba82009-09-01 17:09:55 +0000760bool MemCpyOpt::processMemCpy(MemCpyInst *M) {
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000761 // We can only optimize statically-sized memcpy's that are non-volatile.
762 ConstantInt *CopySize = dyn_cast<ConstantInt>(M->getLength());
763 if (CopySize == 0 || M->isVolatile()) return false;
Owen Anderson65491212010-10-15 22:52:12 +0000764
Chris Lattner8fdca6a2010-12-09 07:45:45 +0000765 // If the source and destination of the memcpy are the same, then zap it.
766 if (M->getSource() == M->getDest()) {
767 MD->removeInstruction(M);
768 M->eraseFromParent();
769 return false;
770 }
771
772
Owen Andersona8bd6582008-04-21 07:45:10 +0000773 // The are two possible optimizations we can do for memcpy:
Chris Lattner61c6ba82009-09-01 17:09:55 +0000774 // a) memcpy-memcpy xform which exposes redundance for DSE.
775 // b) call-memcpy xform for return slot optimization.
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000776 MemDepResult DepInfo = MD->getDependency(M);
777 if (!DepInfo.isClobber())
Owen Andersona8bd6582008-04-21 07:45:10 +0000778 return false;
Owen Andersona8bd6582008-04-21 07:45:10 +0000779
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000780 if (MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst()))
781 return processMemCpyMemCpyDependence(M, MDep, CopySize->getZExtValue());
Owen Andersona723d1e2008-04-09 08:23:16 +0000782
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000783 if (CallInst *C = dyn_cast<CallInst>(DepInfo.getInst())) {
Chris Lattner8fdca6a2010-12-09 07:45:45 +0000784 if (performCallSlotOptzn(M, M->getDest(), M->getSource(),
785 CopySize->getZExtValue(), C)) {
786 M->eraseFromParent();
787 return true;
788 }
Owen Andersona723d1e2008-04-09 08:23:16 +0000789 }
Owen Anderson02e99882008-04-29 21:51:00 +0000790 return false;
Owen Andersona723d1e2008-04-09 08:23:16 +0000791}
792
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000793/// processMemMove - Transforms memmove calls to memcpy calls when the src/dst
794/// are guaranteed not to alias.
795bool MemCpyOpt::processMemMove(MemMoveInst *M) {
796 AliasAnalysis &AA = getAnalysis<AliasAnalysis>();
797
798 // If the memmove is a constant size, use it for the alias query, this allows
799 // us to optimize things like: memmove(P, P+64, 64);
Dan Gohman3da848b2010-10-19 22:54:46 +0000800 uint64_t MemMoveSize = AliasAnalysis::UnknownSize;
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000801 if (ConstantInt *Len = dyn_cast<ConstantInt>(M->getLength()))
802 MemMoveSize = Len->getZExtValue();
803
804 // See if the pointers alias.
805 if (AA.alias(M->getRawDest(), MemMoveSize, M->getRawSource(), MemMoveSize) !=
806 AliasAnalysis::NoAlias)
807 return false;
808
David Greenecb33fd12010-01-05 01:27:47 +0000809 DEBUG(dbgs() << "MemCpyOpt: Optimizing memmove -> memcpy: " << *M << "\n");
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000810
811 // If not, then we know we can transform this.
812 Module *Mod = M->getParent()->getParent()->getParent();
Mon P Wang20adc9d2010-04-04 03:10:48 +0000813 const Type *ArgTys[3] = { M->getRawDest()->getType(),
814 M->getRawSource()->getType(),
815 M->getLength()->getType() };
Gabor Greifa3997812010-07-22 10:37:47 +0000816 M->setCalledFunction(Intrinsic::getDeclaration(Mod, Intrinsic::memcpy,
817 ArgTys, 3));
Duncan Sands05cd03b2009-09-03 13:37:16 +0000818
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000819 // MemDep may have over conservative information about this instruction, just
820 // conservatively flush it from the cache.
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000821 MD->removeInstruction(M);
Duncan Sands05cd03b2009-09-03 13:37:16 +0000822
823 ++NumMoveToCpy;
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000824 return true;
825}
826
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000827/// processByValArgument - This is called on every byval argument in call sites.
828bool MemCpyOpt::processByValArgument(CallSite CS, unsigned ArgNo) {
829 TargetData *TD = getAnalysisIfAvailable<TargetData>();
830 if (!TD) return false;
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000831
Chris Lattner604f6fe2010-11-21 08:06:10 +0000832 // Find out what feeds this byval argument.
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000833 Value *ByValArg = CS.getArgument(ArgNo);
Chris Lattnerb5a31962010-12-01 01:24:55 +0000834 const Type *ByValTy =cast<PointerType>(ByValArg->getType())->getElementType();
835 uint64_t ByValSize = TD->getTypeAllocSize(ByValTy);
Chris Lattner604f6fe2010-11-21 08:06:10 +0000836 MemDepResult DepInfo =
837 MD->getPointerDependencyFrom(AliasAnalysis::Location(ByValArg, ByValSize),
838 true, CS.getInstruction(),
839 CS.getInstruction()->getParent());
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000840 if (!DepInfo.isClobber())
841 return false;
842
843 // If the byval argument isn't fed by a memcpy, ignore it. If it is fed by
844 // a memcpy, see if we can byval from the source of the memcpy instead of the
845 // result.
846 MemCpyInst *MDep = dyn_cast<MemCpyInst>(DepInfo.getInst());
847 if (MDep == 0 || MDep->isVolatile() ||
848 ByValArg->stripPointerCasts() != MDep->getDest())
849 return false;
850
851 // The length of the memcpy must be larger or equal to the size of the byval.
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000852 ConstantInt *C1 = dyn_cast<ConstantInt>(MDep->getLength());
Chris Lattner604f6fe2010-11-21 08:06:10 +0000853 if (C1 == 0 || C1->getValue().getZExtValue() < ByValSize)
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000854 return false;
855
856 // Get the alignment of the byval. If it is greater than the memcpy, then we
857 // can't do the substitution. If the call doesn't specify the alignment, then
858 // it is some target specific value that we can't know.
859 unsigned ByValAlign = CS.getParamAlignment(ArgNo+1);
860 if (ByValAlign == 0 || MDep->getAlignment() < ByValAlign)
861 return false;
862
863 // Verify that the copied-from memory doesn't change in between the memcpy and
864 // the byval call.
865 // memcpy(a <- b)
866 // *b = 42;
867 // foo(*a)
868 // It would be invalid to transform the second memcpy into foo(*b).
Chris Lattner604f6fe2010-11-21 08:06:10 +0000869 //
870 // NOTE: This is conservative, it will stop on any read from the source loc,
871 // not just the defining memcpy.
872 MemDepResult SourceDep =
873 MD->getPointerDependencyFrom(AliasAnalysis::getLocationForSource(MDep),
874 false, CS.getInstruction(), MDep->getParent());
875 if (!SourceDep.isClobber() || SourceDep.getInst() != MDep)
876 return false;
877
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000878 Value *TmpCast = MDep->getSource();
879 if (MDep->getSource()->getType() != ByValArg->getType())
880 TmpCast = new BitCastInst(MDep->getSource(), ByValArg->getType(),
881 "tmpcast", CS.getInstruction());
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000882
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000883 DEBUG(dbgs() << "MemCpyOpt: Forwarding memcpy to byval:\n"
884 << " " << *MDep << "\n"
885 << " " << *CS.getInstruction() << "\n");
886
887 // Otherwise we're good! Update the byval argument.
888 CS.setArgument(ArgNo, TmpCast);
889 ++NumMemCpyInstr;
890 return true;
891}
892
893/// iterateOnFunction - Executes one iteration of MemCpyOpt.
Owen Andersona723d1e2008-04-09 08:23:16 +0000894bool MemCpyOpt::iterateOnFunction(Function &F) {
Chris Lattner61c6ba82009-09-01 17:09:55 +0000895 bool MadeChange = false;
Owen Andersona723d1e2008-04-09 08:23:16 +0000896
Chris Lattner61c6ba82009-09-01 17:09:55 +0000897 // Walk all instruction in the function.
Owen Andersona8bd6582008-04-21 07:45:10 +0000898 for (Function::iterator BB = F.begin(), BBE = F.end(); BB != BBE; ++BB) {
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000899 for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
Chris Lattner61c6ba82009-09-01 17:09:55 +0000900 // Avoid invalidating the iterator.
901 Instruction *I = BI++;
Owen Andersona8bd6582008-04-21 07:45:10 +0000902
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000903 bool RepeatInstruction = false;
904
Owen Andersona8bd6582008-04-21 07:45:10 +0000905 if (StoreInst *SI = dyn_cast<StoreInst>(I))
Chris Lattner61c6ba82009-09-01 17:09:55 +0000906 MadeChange |= processStore(SI, BI);
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000907 else if (MemCpyInst *M = dyn_cast<MemCpyInst>(I)) {
908 RepeatInstruction = processMemCpy(M);
909 } else if (MemMoveInst *M = dyn_cast<MemMoveInst>(I)) {
910 RepeatInstruction = processMemMove(M);
911 } else if (CallSite CS = (Value*)I) {
912 for (unsigned i = 0, e = CS.arg_size(); i != e; ++i)
913 if (CS.paramHasAttr(i+1, Attribute::ByVal))
914 MadeChange |= processByValArgument(CS, i);
915 }
916
917 // Reprocess the instruction if desired.
918 if (RepeatInstruction) {
919 --BI;
920 MadeChange = true;
Chris Lattnerf41eaac2009-09-01 17:56:32 +0000921 }
Owen Andersona723d1e2008-04-09 08:23:16 +0000922 }
923 }
924
Chris Lattner61c6ba82009-09-01 17:09:55 +0000925 return MadeChange;
Owen Andersona723d1e2008-04-09 08:23:16 +0000926}
Chris Lattner61c6ba82009-09-01 17:09:55 +0000927
928// MemCpyOpt::runOnFunction - This is the main transformation entry point for a
929// function.
930//
931bool MemCpyOpt::runOnFunction(Function &F) {
932 bool MadeChange = false;
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000933 MD = &getAnalysis<MemoryDependenceAnalysis>();
Chris Lattner61c6ba82009-09-01 17:09:55 +0000934 while (1) {
935 if (!iterateOnFunction(F))
936 break;
937 MadeChange = true;
938 }
939
Chris Lattner2f5f90a2010-11-21 00:28:59 +0000940 MD = 0;
Chris Lattner61c6ba82009-09-01 17:09:55 +0000941 return MadeChange;
942}
943
944
945