blob: 4b29824082fb8e54dca15e33a845a09ab2525291 [file] [log] [blame]
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
Duncan Sands4cd2ad12010-11-23 10:50:08 +000011// that do not require creating new instructions. This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
Duncan Sandsee9a2e32010-12-20 14:47:04 +000014// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
Chris Lattner9f3c25a2009-11-09 22:57:59 +000017//
18//===----------------------------------------------------------------------===//
19
Duncan Sandsa3c44a52010-12-22 09:40:51 +000020#define DEBUG_TYPE "instsimplify"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000021#include "llvm/Analysis/InstructionSimplify.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000022#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/Statistic.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000024#include "llvm/Analysis/ConstantFolding.h"
Duncan Sands18450092010-11-16 12:16:38 +000025#include "llvm/Analysis/Dominators.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000026#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +000027#include "llvm/Analysis/MemoryBuiltins.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000028#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/GlobalAlias.h"
30#include "llvm/IR/Operator.h"
Nick Lewycky3a73e342011-03-04 07:00:57 +000031#include "llvm/Support/ConstantRange.h"
Chandler Carruthfc72ae62012-03-12 11:19:31 +000032#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerd06094f2009-11-10 00:55:12 +000033#include "llvm/Support/PatternMatch.h"
Duncan Sands18450092010-11-16 12:16:38 +000034#include "llvm/Support/ValueHandle.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000035using namespace llvm;
Chris Lattnerd06094f2009-11-10 00:55:12 +000036using namespace llvm::PatternMatch;
Chris Lattner9f3c25a2009-11-09 22:57:59 +000037
Chris Lattner81a0dc92011-02-09 17:15:04 +000038enum { RecursionLimit = 3 };
Duncan Sandsa74a58c2010-11-10 18:23:01 +000039
Duncan Sandsa3c44a52010-12-22 09:40:51 +000040STATISTIC(NumExpand, "Number of expansions");
41STATISTIC(NumFactor , "Number of factorizations");
42STATISTIC(NumReassoc, "Number of reassociations");
43
Duncan Sands0aa85eb2012-03-13 11:42:19 +000044struct Query {
Micah Villmow3574eca2012-10-08 16:38:25 +000045 const DataLayout *TD;
Duncan Sands0aa85eb2012-03-13 11:42:19 +000046 const TargetLibraryInfo *TLI;
47 const DominatorTree *DT;
48
Micah Villmow3574eca2012-10-08 16:38:25 +000049 Query(const DataLayout *td, const TargetLibraryInfo *tli,
Bill Wendling91337832012-05-17 20:27:58 +000050 const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {}
Duncan Sands0aa85eb2012-03-13 11:42:19 +000051};
52
53static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
54static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +000055 unsigned);
Duncan Sands0aa85eb2012-03-13 11:42:19 +000056static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +000057 unsigned);
Duncan Sands0aa85eb2012-03-13 11:42:19 +000058static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
59static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
Duncan Sandsbd0fe562012-03-13 14:07:05 +000060static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
Duncan Sands18450092010-11-16 12:16:38 +000061
Duncan Sandsf56138d2011-07-26 15:03:53 +000062/// getFalse - For a boolean type, or a vector of boolean type, return false, or
63/// a vector with every element false, as appropriate for the type.
64static Constant *getFalse(Type *Ty) {
Nick Lewycky66d004e2011-12-01 02:39:36 +000065 assert(Ty->getScalarType()->isIntegerTy(1) &&
Duncan Sandsf56138d2011-07-26 15:03:53 +000066 "Expected i1 type or a vector of i1!");
67 return Constant::getNullValue(Ty);
68}
69
70/// getTrue - For a boolean type, or a vector of boolean type, return true, or
71/// a vector with every element true, as appropriate for the type.
72static Constant *getTrue(Type *Ty) {
Nick Lewycky66d004e2011-12-01 02:39:36 +000073 assert(Ty->getScalarType()->isIntegerTy(1) &&
Duncan Sandsf56138d2011-07-26 15:03:53 +000074 "Expected i1 type or a vector of i1!");
75 return Constant::getAllOnesValue(Ty);
76}
77
Duncan Sands6dc9e2b2011-10-30 19:56:36 +000078/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
79static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
80 Value *RHS) {
81 CmpInst *Cmp = dyn_cast<CmpInst>(V);
82 if (!Cmp)
83 return false;
84 CmpInst::Predicate CPred = Cmp->getPredicate();
85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
86 if (CPred == Pred && CLHS == LHS && CRHS == RHS)
87 return true;
88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
89 CRHS == LHS;
90}
91
Duncan Sands18450092010-11-16 12:16:38 +000092/// ValueDominatesPHI - Does the given value dominate the specified phi node?
93static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
94 Instruction *I = dyn_cast<Instruction>(V);
95 if (!I)
96 // Arguments and constants dominate all instructions.
97 return true;
98
Chandler Carruthff739c12012-03-21 10:58:47 +000099 // If we are processing instructions (and/or basic blocks) that have not been
100 // fully added to a function, the parent nodes may still be null. Simply
101 // return the conservative answer in these cases.
102 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
103 return false;
104
Duncan Sands18450092010-11-16 12:16:38 +0000105 // If we have a DominatorTree then do a precise test.
Eli Friedman5b8f0dd2012-03-13 01:06:07 +0000106 if (DT) {
107 if (!DT->isReachableFromEntry(P->getParent()))
108 return true;
109 if (!DT->isReachableFromEntry(I->getParent()))
110 return false;
111 return DT->dominates(I, P);
112 }
Duncan Sands18450092010-11-16 12:16:38 +0000113
114 // Otherwise, if the instruction is in the entry block, and is not an invoke,
115 // then it obviously dominates all phi nodes.
116 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
117 !isa<InvokeInst>(I))
118 return true;
119
120 return false;
121}
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000122
Duncan Sands3421d902010-12-21 13:32:22 +0000123/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
124/// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
125/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
126/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
127/// Returns the simplified value, or null if no simplification was performed.
128static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000129 unsigned OpcToExpand, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +0000130 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000131 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000132 // Recursion is always used, so bail out at once if we already hit the limit.
133 if (!MaxRecurse--)
134 return 0;
135
136 // Check whether the expression has the form "(A op' B) op C".
137 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
138 if (Op0->getOpcode() == OpcodeToExpand) {
139 // It does! Try turning it into "(A op C) op' (B op C)".
140 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
141 // Do "A op C" and "B op C" both simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000142 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
143 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000144 // They do! Return "L op' R" if it simplifies or is already available.
145 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000146 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
147 && L == B && R == A)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000148 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000149 return LHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000150 }
Duncan Sands3421d902010-12-21 13:32:22 +0000151 // Otherwise return "L op' R" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000152 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000153 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000154 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000155 }
Duncan Sands3421d902010-12-21 13:32:22 +0000156 }
157 }
158
159 // Check whether the expression has the form "A op (B op' C)".
160 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
161 if (Op1->getOpcode() == OpcodeToExpand) {
162 // It does! Try turning it into "(A op B) op' (A op C)".
163 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
164 // Do "A op B" and "A op C" both simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000165 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
166 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000167 // They do! Return "L op' R" if it simplifies or is already available.
168 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000169 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
170 && L == C && R == B)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000171 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000172 return RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000173 }
Duncan Sands3421d902010-12-21 13:32:22 +0000174 // Otherwise return "L op' R" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000175 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000176 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000177 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000178 }
Duncan Sands3421d902010-12-21 13:32:22 +0000179 }
180 }
181
182 return 0;
183}
184
185/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
186/// using the operation OpCodeToExtract. For example, when Opcode is Add and
187/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
188/// Returns the simplified value, or null if no simplification was performed.
189static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000190 unsigned OpcToExtract, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +0000191 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000192 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
Duncan Sands3421d902010-12-21 13:32:22 +0000193 // Recursion is always used, so bail out at once if we already hit the limit.
194 if (!MaxRecurse--)
195 return 0;
196
197 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
198 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
199
200 if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
201 !Op1 || Op1->getOpcode() != OpcodeToExtract)
202 return 0;
203
204 // The expression has the form "(A op' B) op (C op' D)".
Duncan Sands82fdab32010-12-21 14:00:22 +0000205 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
206 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
Duncan Sands3421d902010-12-21 13:32:22 +0000207
208 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
209 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
210 // commutative case, "(A op' B) op (C op' A)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000211 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
212 Value *DD = A == C ? D : C;
Duncan Sands3421d902010-12-21 13:32:22 +0000213 // Form "A op' (B op DD)" if it simplifies completely.
214 // Does "B op DD" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000215 if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000216 // It does! Return "A op' V" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000217 // If V equals B then "A op' V" is just the LHS. If V equals DD then
218 // "A op' V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000219 if (V == B || V == DD) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000220 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000221 return V == B ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000222 }
Duncan Sands3421d902010-12-21 13:32:22 +0000223 // Otherwise return "A op' V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000224 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000225 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000226 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000227 }
Duncan Sands3421d902010-12-21 13:32:22 +0000228 }
229 }
230
231 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
232 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
233 // commutative case, "(A op' B) op (B op' D)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000234 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
235 Value *CC = B == D ? C : D;
Duncan Sands3421d902010-12-21 13:32:22 +0000236 // Form "(A op CC) op' B" if it simplifies completely..
237 // Does "A op CC" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000238 if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000239 // It does! Return "V op' B" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000240 // If V equals A then "V op' B" is just the LHS. If V equals CC then
241 // "V op' B" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000242 if (V == A || V == CC) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000243 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000244 return V == A ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000245 }
Duncan Sands3421d902010-12-21 13:32:22 +0000246 // Otherwise return "V op' B" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000247 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000248 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000249 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000250 }
Duncan Sands3421d902010-12-21 13:32:22 +0000251 }
252 }
253
254 return 0;
255}
256
257/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
258/// operations. Returns the simpler value, or null if none was found.
Benjamin Kramere21083a2010-12-28 13:52:52 +0000259static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000260 const Query &Q, unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000261 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
Duncan Sands566edb02010-12-21 08:49:00 +0000262 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
263
264 // Recursion is always used, so bail out at once if we already hit the limit.
265 if (!MaxRecurse--)
266 return 0;
267
268 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
269 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
270
271 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
272 if (Op0 && Op0->getOpcode() == Opcode) {
273 Value *A = Op0->getOperand(0);
274 Value *B = Op0->getOperand(1);
275 Value *C = RHS;
276
277 // Does "B op C" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000278 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000279 // It does! Return "A op V" if it simplifies or is already available.
280 // If V equals B then "A op V" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000281 if (V == B) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000282 // Otherwise return "A op V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000283 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000284 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000285 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000286 }
Duncan Sands566edb02010-12-21 08:49:00 +0000287 }
288 }
289
290 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
291 if (Op1 && Op1->getOpcode() == Opcode) {
292 Value *A = LHS;
293 Value *B = Op1->getOperand(0);
294 Value *C = Op1->getOperand(1);
295
296 // Does "A op B" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000297 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000298 // It does! Return "V op C" if it simplifies or is already available.
299 // If V equals B then "V op C" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000300 if (V == B) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000301 // Otherwise return "V op C" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000302 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000303 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000304 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000305 }
Duncan Sands566edb02010-12-21 08:49:00 +0000306 }
307 }
308
309 // The remaining transforms require commutativity as well as associativity.
310 if (!Instruction::isCommutative(Opcode))
311 return 0;
312
313 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
314 if (Op0 && Op0->getOpcode() == Opcode) {
315 Value *A = Op0->getOperand(0);
316 Value *B = Op0->getOperand(1);
317 Value *C = RHS;
318
319 // Does "C op A" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000320 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000321 // It does! Return "V op B" if it simplifies or is already available.
322 // If V equals A then "V op B" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000323 if (V == A) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000324 // Otherwise return "V op B" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000325 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000326 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000327 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000328 }
Duncan Sands566edb02010-12-21 08:49:00 +0000329 }
330 }
331
332 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
333 if (Op1 && Op1->getOpcode() == Opcode) {
334 Value *A = LHS;
335 Value *B = Op1->getOperand(0);
336 Value *C = Op1->getOperand(1);
337
338 // Does "C op A" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000339 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000340 // It does! Return "B op V" if it simplifies or is already available.
341 // If V equals C then "B op V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000342 if (V == C) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000343 // Otherwise return "B op V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000344 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000345 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000346 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000347 }
Duncan Sands566edb02010-12-21 08:49:00 +0000348 }
349 }
350
351 return 0;
352}
353
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000354/// ThreadBinOpOverSelect - In the case of a binary operation with a select
355/// instruction as an operand, try to simplify the binop by seeing whether
356/// evaluating it on both branches of the select results in the same value.
357/// Returns the common value if so, otherwise returns null.
358static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000359 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000360 // Recursion is always used, so bail out at once if we already hit the limit.
361 if (!MaxRecurse--)
362 return 0;
363
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000364 SelectInst *SI;
365 if (isa<SelectInst>(LHS)) {
366 SI = cast<SelectInst>(LHS);
367 } else {
368 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
369 SI = cast<SelectInst>(RHS);
370 }
371
372 // Evaluate the BinOp on the true and false branches of the select.
373 Value *TV;
374 Value *FV;
375 if (SI == LHS) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000376 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
377 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000378 } else {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000379 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
380 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000381 }
382
Duncan Sands7cf85e72011-01-01 16:12:09 +0000383 // If they simplified to the same value, then return the common value.
Duncan Sands124708d2011-01-01 20:08:02 +0000384 // If they both failed to simplify then return null.
385 if (TV == FV)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000386 return TV;
387
388 // If one branch simplified to undef, return the other one.
389 if (TV && isa<UndefValue>(TV))
390 return FV;
391 if (FV && isa<UndefValue>(FV))
392 return TV;
393
394 // If applying the operation did not change the true and false select values,
395 // then the result of the binop is the select itself.
Duncan Sands124708d2011-01-01 20:08:02 +0000396 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000397 return SI;
398
399 // If one branch simplified and the other did not, and the simplified
400 // value is equal to the unsimplified one, return the simplified value.
401 // For example, select (cond, X, X & Z) & Z -> X & Z.
402 if ((FV && !TV) || (TV && !FV)) {
403 // Check that the simplified value has the form "X op Y" where "op" is the
404 // same as the original operation.
405 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
406 if (Simplified && Simplified->getOpcode() == Opcode) {
407 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
408 // We already know that "op" is the same as for the simplified value. See
409 // if the operands match too. If so, return the simplified value.
410 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
411 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
412 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
Duncan Sands124708d2011-01-01 20:08:02 +0000413 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
414 Simplified->getOperand(1) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000415 return Simplified;
416 if (Simplified->isCommutative() &&
Duncan Sands124708d2011-01-01 20:08:02 +0000417 Simplified->getOperand(1) == UnsimplifiedLHS &&
418 Simplified->getOperand(0) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000419 return Simplified;
420 }
421 }
422
423 return 0;
424}
425
426/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
427/// try to simplify the comparison by seeing whether both branches of the select
428/// result in the same value. Returns the common value if so, otherwise returns
429/// null.
430static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000431 Value *RHS, const Query &Q,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000432 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000433 // Recursion is always used, so bail out at once if we already hit the limit.
434 if (!MaxRecurse--)
435 return 0;
436
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000437 // Make sure the select is on the LHS.
438 if (!isa<SelectInst>(LHS)) {
439 std::swap(LHS, RHS);
440 Pred = CmpInst::getSwappedPredicate(Pred);
441 }
442 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
443 SelectInst *SI = cast<SelectInst>(LHS);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000444 Value *Cond = SI->getCondition();
445 Value *TV = SI->getTrueValue();
446 Value *FV = SI->getFalseValue();
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000447
Duncan Sands50ca4d32011-02-03 09:37:39 +0000448 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000449 // Does "cmp TV, RHS" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000450 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000451 if (TCmp == Cond) {
452 // It not only simplified, it simplified to the select condition. Replace
453 // it with 'true'.
454 TCmp = getTrue(Cond->getType());
455 } else if (!TCmp) {
456 // It didn't simplify. However if "cmp TV, RHS" is equal to the select
457 // condition then we can replace it with 'true'. Otherwise give up.
458 if (!isSameCompare(Cond, Pred, TV, RHS))
459 return 0;
460 TCmp = getTrue(Cond->getType());
Duncan Sands50ca4d32011-02-03 09:37:39 +0000461 }
462
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000463 // Does "cmp FV, RHS" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000464 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000465 if (FCmp == Cond) {
466 // It not only simplified, it simplified to the select condition. Replace
467 // it with 'false'.
468 FCmp = getFalse(Cond->getType());
469 } else if (!FCmp) {
470 // It didn't simplify. However if "cmp FV, RHS" is equal to the select
471 // condition then we can replace it with 'false'. Otherwise give up.
472 if (!isSameCompare(Cond, Pred, FV, RHS))
473 return 0;
474 FCmp = getFalse(Cond->getType());
475 }
476
477 // If both sides simplified to the same value, then use it as the result of
478 // the original comparison.
479 if (TCmp == FCmp)
480 return TCmp;
Duncan Sandsaa97bb52012-02-10 14:31:24 +0000481
482 // The remaining cases only make sense if the select condition has the same
483 // type as the result of the comparison, so bail out if this is not so.
484 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
485 return 0;
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000486 // If the false value simplified to false, then the result of the compare
487 // is equal to "Cond && TCmp". This also catches the case when the false
488 // value simplified to false and the true value to true, returning "Cond".
489 if (match(FCmp, m_Zero()))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000490 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000491 return V;
492 // If the true value simplified to true, then the result of the compare
493 // is equal to "Cond || FCmp".
494 if (match(TCmp, m_One()))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000495 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000496 return V;
497 // Finally, if the false value simplified to true and the true value to
498 // false, then the result of the compare is equal to "!Cond".
499 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
500 if (Value *V =
501 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000502 Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000503 return V;
504
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000505 return 0;
506}
507
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000508/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
509/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
510/// it on the incoming phi values yields the same result for every value. If so
511/// returns the common value, otherwise returns null.
512static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000513 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000514 // Recursion is always used, so bail out at once if we already hit the limit.
515 if (!MaxRecurse--)
516 return 0;
517
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000518 PHINode *PI;
519 if (isa<PHINode>(LHS)) {
520 PI = cast<PHINode>(LHS);
Duncan Sands18450092010-11-16 12:16:38 +0000521 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000522 if (!ValueDominatesPHI(RHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000523 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000524 } else {
525 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
526 PI = cast<PHINode>(RHS);
Duncan Sands18450092010-11-16 12:16:38 +0000527 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000528 if (!ValueDominatesPHI(LHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000529 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000530 }
531
532 // Evaluate the BinOp on the incoming phi values.
533 Value *CommonValue = 0;
534 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000535 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000536 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000537 if (Incoming == PI) continue;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000538 Value *V = PI == LHS ?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000539 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
540 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000541 // If the operation failed to simplify, or simplified to a different value
542 // to previously, then give up.
543 if (!V || (CommonValue && V != CommonValue))
544 return 0;
545 CommonValue = V;
546 }
547
548 return CommonValue;
549}
550
551/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
552/// try to simplify the comparison by seeing whether comparing with all of the
553/// incoming phi values yields the same result every time. If so returns the
554/// common result, otherwise returns null.
555static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000556 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000557 // Recursion is always used, so bail out at once if we already hit the limit.
558 if (!MaxRecurse--)
559 return 0;
560
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000561 // Make sure the phi is on the LHS.
562 if (!isa<PHINode>(LHS)) {
563 std::swap(LHS, RHS);
564 Pred = CmpInst::getSwappedPredicate(Pred);
565 }
566 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
567 PHINode *PI = cast<PHINode>(LHS);
568
Duncan Sands18450092010-11-16 12:16:38 +0000569 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000570 if (!ValueDominatesPHI(RHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000571 return 0;
572
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000573 // Evaluate the BinOp on the incoming phi values.
574 Value *CommonValue = 0;
575 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000576 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000577 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000578 if (Incoming == PI) continue;
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000579 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000580 // If the operation failed to simplify, or simplified to a different value
581 // to previously, then give up.
582 if (!V || (CommonValue && V != CommonValue))
583 return 0;
584 CommonValue = V;
585 }
586
587 return CommonValue;
588}
589
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000590/// SimplifyAddInst - Given operands for an Add, see if we can
591/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000592static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000593 const Query &Q, unsigned MaxRecurse) {
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000594 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
595 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
596 Constant *Ops[] = { CLHS, CRHS };
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000597 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
598 Q.TD, Q.TLI);
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000599 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000600
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000601 // Canonicalize the constant to the RHS.
602 std::swap(Op0, Op1);
603 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000604
Duncan Sandsfea3b212010-12-15 14:07:39 +0000605 // X + undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000606 if (match(Op1, m_Undef()))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000607 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000608
Duncan Sandsfea3b212010-12-15 14:07:39 +0000609 // X + 0 -> X
610 if (match(Op1, m_Zero()))
611 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000612
Duncan Sandsfea3b212010-12-15 14:07:39 +0000613 // X + (Y - X) -> Y
614 // (Y - X) + X -> Y
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000615 // Eg: X + -X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000616 Value *Y = 0;
617 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
618 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000619 return Y;
620
621 // X + ~X -> -1 since ~X = -X-1
Duncan Sands124708d2011-01-01 20:08:02 +0000622 if (match(Op0, m_Not(m_Specific(Op1))) ||
623 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000624 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands87689cf2010-11-19 09:20:39 +0000625
Duncan Sands82fdab32010-12-21 14:00:22 +0000626 /// i1 add -> xor.
Duncan Sands75d289e2010-12-21 14:48:48 +0000627 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000628 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000629 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000630
Duncan Sands566edb02010-12-21 08:49:00 +0000631 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000632 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
Duncan Sands566edb02010-12-21 08:49:00 +0000633 MaxRecurse))
634 return V;
635
Duncan Sands3421d902010-12-21 13:32:22 +0000636 // Mul distributes over Add. Try some generic simplifications based on this.
637 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000638 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +0000639 return V;
640
Duncan Sands87689cf2010-11-19 09:20:39 +0000641 // Threading Add over selects and phi nodes is pointless, so don't bother.
642 // Threading over the select in "A + select(cond, B, C)" means evaluating
643 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
644 // only if B and C are equal. If B and C are equal then (since we assume
645 // that operands have already been simplified) "select(cond, B, C)" should
646 // have been simplified to the common value of B and C already. Analysing
647 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
648 // for threading over phi nodes.
649
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000650 return 0;
651}
652
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000653Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Micah Villmow3574eca2012-10-08 16:38:25 +0000654 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +0000655 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000656 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
657 RecursionLimit);
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000658}
659
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000660/// \brief Compute the base pointer and cumulative constant offsets for V.
661///
662/// This strips all constant offsets off of V, leaving it the base pointer, and
663/// accumulates the total constant offset applied in the returned constant. It
664/// returns 0 if V is not a pointer, and returns the constant '0' if there are
665/// no constant offsets applied.
Dan Gohman819f9d62013-01-31 02:45:26 +0000666///
667/// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
668/// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
669/// folding.
Benjamin Kramerd9f32c22013-02-01 15:21:10 +0000670static Constant *stripAndComputeConstantOffsets(const DataLayout *TD,
671 Value *&V) {
672 assert(V->getType()->getScalarType()->isPointerTy());
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000673
Dan Gohman3e3de562013-01-31 02:50:36 +0000674 // Without DataLayout, just be conservative for now. Theoretically, more could
675 // be done in this case.
676 if (!TD)
677 return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0);
678
Matt Arsenault6b4dde72013-08-03 01:03:12 +0000679 Type *IntPtrTy = TD->getIntPtrType(V->getType())->getScalarType();
680 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000681
682 // Even though we don't look through PHI nodes, we could be called on an
683 // instruction in an unreachable block, which may be on a cycle.
684 SmallPtrSet<Value *, 4> Visited;
685 Visited.insert(V);
686 do {
687 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Dan Gohman3e3de562013-01-31 02:50:36 +0000688 if (!GEP->isInBounds() || !GEP->accumulateConstantOffset(*TD, Offset))
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000689 break;
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000690 V = GEP->getPointerOperand();
691 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
Matt Arsenault6b4dde72013-08-03 01:03:12 +0000692 V = cast<Operator>(V)->getOperand(0);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000693 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
694 if (GA->mayBeOverridden())
695 break;
696 V = GA->getAliasee();
697 } else {
698 break;
699 }
Benjamin Kramerd9f32c22013-02-01 15:21:10 +0000700 assert(V->getType()->getScalarType()->isPointerTy() &&
701 "Unexpected operand type!");
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000702 } while (Visited.insert(V));
703
Benjamin Kramerd9f32c22013-02-01 15:21:10 +0000704 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
705 if (V->getType()->isVectorTy())
706 return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
707 OffsetIntPtr);
708 return OffsetIntPtr;
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000709}
710
711/// \brief Compute the constant difference between two pointer values.
712/// If the difference is not a constant, returns zero.
Dan Gohman3e3de562013-01-31 02:50:36 +0000713static Constant *computePointerDifference(const DataLayout *TD,
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000714 Value *LHS, Value *RHS) {
715 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000716 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000717
718 // If LHS and RHS are not related via constant offsets to the same base
719 // value, there is nothing we can do here.
720 if (LHS != RHS)
721 return 0;
722
723 // Otherwise, the difference of LHS - RHS can be computed as:
724 // LHS - RHS
725 // = (LHSOffset + Base) - (RHSOffset + Base)
726 // = LHSOffset - RHSOffset
727 return ConstantExpr::getSub(LHSOffset, RHSOffset);
728}
729
Duncan Sandsfea3b212010-12-15 14:07:39 +0000730/// SimplifySubInst - Given operands for a Sub, see if we can
731/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000732static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000733 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsfea3b212010-12-15 14:07:39 +0000734 if (Constant *CLHS = dyn_cast<Constant>(Op0))
735 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
736 Constant *Ops[] = { CLHS, CRHS };
737 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000738 Ops, Q.TD, Q.TLI);
Duncan Sandsfea3b212010-12-15 14:07:39 +0000739 }
740
741 // X - undef -> undef
742 // undef - X -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000743 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000744 return UndefValue::get(Op0->getType());
745
746 // X - 0 -> X
747 if (match(Op1, m_Zero()))
748 return Op0;
749
750 // X - X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000751 if (Op0 == Op1)
Duncan Sandsfea3b212010-12-15 14:07:39 +0000752 return Constant::getNullValue(Op0->getType());
753
Duncan Sandsfe02c692011-01-18 09:24:58 +0000754 // (X*2) - X -> X
755 // (X<<1) - X -> X
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000756 Value *X = 0;
Duncan Sandsfe02c692011-01-18 09:24:58 +0000757 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
758 match(Op0, m_Shl(m_Specific(Op1), m_One())))
759 return Op1;
760
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000761 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
762 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
763 Value *Y = 0, *Z = Op1;
764 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
765 // See if "V === Y - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000766 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000767 // It does! Now see if "X + V" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000768 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000769 // It does, we successfully reassociated!
770 ++NumReassoc;
771 return W;
772 }
773 // See if "V === X - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000774 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000775 // It does! Now see if "Y + V" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000776 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000777 // It does, we successfully reassociated!
778 ++NumReassoc;
779 return W;
780 }
781 }
Duncan Sands82fdab32010-12-21 14:00:22 +0000782
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000783 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
784 // For example, X - (X + 1) -> -1
785 X = Op0;
786 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
787 // See if "V === X - Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000788 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000789 // It does! Now see if "V - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000790 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000791 // It does, we successfully reassociated!
792 ++NumReassoc;
793 return W;
794 }
795 // See if "V === X - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000796 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000797 // It does! Now see if "V - Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000798 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000799 // It does, we successfully reassociated!
800 ++NumReassoc;
801 return W;
802 }
803 }
804
805 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
806 // For example, X - (X - Y) -> Y.
807 Z = Op0;
Duncan Sandsc087e202011-01-14 15:26:10 +0000808 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
809 // See if "V === Z - X" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000810 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000811 // It does! Now see if "V + Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000812 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
Duncan Sandsc087e202011-01-14 15:26:10 +0000813 // It does, we successfully reassociated!
814 ++NumReassoc;
815 return W;
816 }
817
Duncan Sandsbd0fe562012-03-13 14:07:05 +0000818 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
819 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
820 match(Op1, m_Trunc(m_Value(Y))))
821 if (X->getType() == Y->getType())
822 // See if "V === X - Y" simplifies.
823 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
824 // It does! Now see if "trunc V" simplifies.
825 if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
826 // It does, return the simplified "trunc V".
827 return W;
828
829 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
Dan Gohman3e3de562013-01-31 02:50:36 +0000830 if (match(Op0, m_PtrToInt(m_Value(X))) &&
Duncan Sandsbd0fe562012-03-13 14:07:05 +0000831 match(Op1, m_PtrToInt(m_Value(Y))))
Dan Gohman3e3de562013-01-31 02:50:36 +0000832 if (Constant *Result = computePointerDifference(Q.TD, X, Y))
Duncan Sandsbd0fe562012-03-13 14:07:05 +0000833 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
834
Duncan Sands3421d902010-12-21 13:32:22 +0000835 // Mul distributes over Sub. Try some generic simplifications based on this.
836 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000837 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +0000838 return V;
839
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000840 // i1 sub -> xor.
841 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000842 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000843 return V;
844
Duncan Sandsfea3b212010-12-15 14:07:39 +0000845 // Threading Sub over selects and phi nodes is pointless, so don't bother.
846 // Threading over the select in "A - select(cond, B, C)" means evaluating
847 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
848 // only if B and C are equal. If B and C are equal then (since we assume
849 // that operands have already been simplified) "select(cond, B, C)" should
850 // have been simplified to the common value of B and C already. Analysing
851 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
852 // for threading over phi nodes.
853
854 return 0;
855}
856
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000857Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Micah Villmow3574eca2012-10-08 16:38:25 +0000858 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +0000859 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000860 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
861 RecursionLimit);
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000862}
863
Michael Ilseman09ee2502012-12-12 00:27:46 +0000864/// Given operands for an FAdd, see if we can fold the result. If not, this
865/// returns null.
866static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
867 const Query &Q, unsigned MaxRecurse) {
868 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
869 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
870 Constant *Ops[] = { CLHS, CRHS };
871 return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
872 Ops, Q.TD, Q.TLI);
873 }
874
875 // Canonicalize the constant to the RHS.
876 std::swap(Op0, Op1);
877 }
878
879 // fadd X, -0 ==> X
880 if (match(Op1, m_NegZero()))
881 return Op0;
882
883 // fadd X, 0 ==> X, when we know X is not -0
884 if (match(Op1, m_Zero()) &&
885 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
886 return Op0;
887
888 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
889 // where nnan and ninf have to occur at least once somewhere in this
890 // expression
891 Value *SubOp = 0;
892 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
893 SubOp = Op1;
894 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
895 SubOp = Op0;
896 if (SubOp) {
897 Instruction *FSub = cast<Instruction>(SubOp);
898 if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
899 (FMF.noInfs() || FSub->hasNoInfs()))
900 return Constant::getNullValue(Op0->getType());
901 }
902
903 return 0;
904}
905
906/// Given operands for an FSub, see if we can fold the result. If not, this
907/// returns null.
908static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
909 const Query &Q, unsigned MaxRecurse) {
910 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
911 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
912 Constant *Ops[] = { CLHS, CRHS };
913 return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
914 Ops, Q.TD, Q.TLI);
915 }
916 }
917
918 // fsub X, 0 ==> X
919 if (match(Op1, m_Zero()))
920 return Op0;
921
922 // fsub X, -0 ==> X, when we know X is not -0
923 if (match(Op1, m_NegZero()) &&
924 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
925 return Op0;
926
927 // fsub 0, (fsub -0.0, X) ==> X
928 Value *X;
929 if (match(Op0, m_AnyZero())) {
930 if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
931 return X;
932 if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
933 return X;
934 }
935
936 // fsub nnan ninf x, x ==> 0.0
937 if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1)
938 return Constant::getNullValue(Op0->getType());
939
940 return 0;
941}
942
Michael Ilsemaneb61c922012-11-27 00:46:26 +0000943/// Given the operands for an FMul, see if we can fold the result
944static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
945 FastMathFlags FMF,
946 const Query &Q,
947 unsigned MaxRecurse) {
948 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
949 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
950 Constant *Ops[] = { CLHS, CRHS };
951 return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
952 Ops, Q.TD, Q.TLI);
953 }
Michael Ilseman09ee2502012-12-12 00:27:46 +0000954
955 // Canonicalize the constant to the RHS.
956 std::swap(Op0, Op1);
Michael Ilsemaneb61c922012-11-27 00:46:26 +0000957 }
958
Michael Ilseman09ee2502012-12-12 00:27:46 +0000959 // fmul X, 1.0 ==> X
960 if (match(Op1, m_FPOne()))
961 return Op0;
962
963 // fmul nnan nsz X, 0 ==> 0
964 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
965 return Op1;
Michael Ilsemaneb61c922012-11-27 00:46:26 +0000966
967 return 0;
968}
969
Duncan Sands82fdab32010-12-21 14:00:22 +0000970/// SimplifyMulInst - Given operands for a Mul, see if we can
971/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000972static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
973 unsigned MaxRecurse) {
Duncan Sands82fdab32010-12-21 14:00:22 +0000974 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
975 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
976 Constant *Ops[] = { CLHS, CRHS };
977 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000978 Ops, Q.TD, Q.TLI);
Duncan Sands82fdab32010-12-21 14:00:22 +0000979 }
980
981 // Canonicalize the constant to the RHS.
982 std::swap(Op0, Op1);
983 }
984
985 // X * undef -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000986 if (match(Op1, m_Undef()))
Duncan Sands82fdab32010-12-21 14:00:22 +0000987 return Constant::getNullValue(Op0->getType());
988
989 // X * 0 -> 0
990 if (match(Op1, m_Zero()))
991 return Op1;
992
993 // X * 1 -> X
994 if (match(Op1, m_One()))
995 return Op0;
996
Duncan Sands1895e982011-01-30 18:03:50 +0000997 // (X / Y) * Y -> X if the division is exact.
Benjamin Kramer55c6d572012-01-01 17:55:30 +0000998 Value *X = 0;
999 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
1000 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y)
1001 return X;
Duncan Sands1895e982011-01-30 18:03:50 +00001002
Nick Lewycky54138802011-01-29 19:55:23 +00001003 // i1 mul -> and.
Duncan Sands75d289e2010-12-21 14:48:48 +00001004 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001005 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sands07f30fb2010-12-21 15:03:43 +00001006 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +00001007
1008 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001009 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +00001010 MaxRecurse))
1011 return V;
1012
1013 // Mul distributes over Add. Try some generic simplifications based on this.
1014 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001015 Q, MaxRecurse))
Duncan Sands82fdab32010-12-21 14:00:22 +00001016 return V;
1017
1018 // If the operation is with the result of a select instruction, check whether
1019 // operating on either branch of the select always yields the same value.
1020 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001021 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +00001022 MaxRecurse))
1023 return V;
1024
1025 // If the operation is with the result of a phi instruction, check whether
1026 // operating on all incoming values of the phi always yields the same value.
1027 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001028 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +00001029 MaxRecurse))
1030 return V;
1031
1032 return 0;
1033}
1034
Michael Ilseman09ee2502012-12-12 00:27:46 +00001035Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1036 const DataLayout *TD, const TargetLibraryInfo *TLI,
1037 const DominatorTree *DT) {
1038 return ::SimplifyFAddInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1039}
1040
1041Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1042 const DataLayout *TD, const TargetLibraryInfo *TLI,
1043 const DominatorTree *DT) {
1044 return ::SimplifyFSubInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1045}
1046
Michael Ilsemaneb61c922012-11-27 00:46:26 +00001047Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
1048 FastMathFlags FMF,
1049 const DataLayout *TD,
1050 const TargetLibraryInfo *TLI,
1051 const DominatorTree *DT) {
1052 return ::SimplifyFMulInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1053}
1054
Micah Villmow3574eca2012-10-08 16:38:25 +00001055Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001056 const TargetLibraryInfo *TLI,
Duncan Sands82fdab32010-12-21 14:00:22 +00001057 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001058 return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands82fdab32010-12-21 14:00:22 +00001059}
1060
Duncan Sands593faa52011-01-28 16:51:11 +00001061/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
1062/// fold the result. If not, this returns null.
Anders Carlsson479b4b92011-02-05 18:33:43 +00001063static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001064 const Query &Q, unsigned MaxRecurse) {
Duncan Sands593faa52011-01-28 16:51:11 +00001065 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1066 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1067 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001068 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sands593faa52011-01-28 16:51:11 +00001069 }
1070 }
1071
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001072 bool isSigned = Opcode == Instruction::SDiv;
1073
Duncan Sands593faa52011-01-28 16:51:11 +00001074 // X / undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001075 if (match(Op1, m_Undef()))
Duncan Sands593faa52011-01-28 16:51:11 +00001076 return Op1;
1077
1078 // undef / X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001079 if (match(Op0, m_Undef()))
Duncan Sands593faa52011-01-28 16:51:11 +00001080 return Constant::getNullValue(Op0->getType());
1081
1082 // 0 / X -> 0, we don't need to preserve faults!
1083 if (match(Op0, m_Zero()))
1084 return Op0;
1085
1086 // X / 1 -> X
1087 if (match(Op1, m_One()))
1088 return Op0;
Duncan Sands593faa52011-01-28 16:51:11 +00001089
1090 if (Op0->getType()->isIntegerTy(1))
1091 // It can't be division by zero, hence it must be division by one.
1092 return Op0;
1093
1094 // X / X -> 1
1095 if (Op0 == Op1)
1096 return ConstantInt::get(Op0->getType(), 1);
1097
1098 // (X * Y) / Y -> X if the multiplication does not overflow.
1099 Value *X = 0, *Y = 0;
1100 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1101 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
Duncan Sands32a43cc2011-10-27 19:16:21 +00001102 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
Duncan Sands4b720712011-02-02 20:52:00 +00001103 // If the Mul knows it does not overflow, then we are good to go.
1104 if ((isSigned && Mul->hasNoSignedWrap()) ||
1105 (!isSigned && Mul->hasNoUnsignedWrap()))
1106 return X;
Duncan Sands593faa52011-01-28 16:51:11 +00001107 // If X has the form X = A / Y then X * Y cannot overflow.
1108 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1109 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1110 return X;
1111 }
1112
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001113 // (X rem Y) / Y -> 0
1114 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1115 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1116 return Constant::getNullValue(Op0->getType());
1117
1118 // If the operation is with the result of a select instruction, check whether
1119 // operating on either branch of the select always yields the same value.
1120 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001121 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001122 return V;
1123
1124 // If the operation is with the result of a phi instruction, check whether
1125 // operating on all incoming values of the phi always yields the same value.
1126 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001127 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001128 return V;
1129
Duncan Sands593faa52011-01-28 16:51:11 +00001130 return 0;
1131}
1132
1133/// SimplifySDivInst - Given operands for an SDiv, see if we can
1134/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001135static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1136 unsigned MaxRecurse) {
1137 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
Duncan Sands593faa52011-01-28 16:51:11 +00001138 return V;
1139
Duncan Sands593faa52011-01-28 16:51:11 +00001140 return 0;
1141}
1142
Micah Villmow3574eca2012-10-08 16:38:25 +00001143Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001144 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001145 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001146 return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands593faa52011-01-28 16:51:11 +00001147}
1148
1149/// SimplifyUDivInst - Given operands for a UDiv, see if we can
1150/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001151static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1152 unsigned MaxRecurse) {
1153 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
Duncan Sands593faa52011-01-28 16:51:11 +00001154 return V;
1155
Duncan Sands593faa52011-01-28 16:51:11 +00001156 return 0;
1157}
1158
Micah Villmow3574eca2012-10-08 16:38:25 +00001159Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001160 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001161 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001162 return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands593faa52011-01-28 16:51:11 +00001163}
1164
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001165static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
1166 unsigned) {
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001167 // undef / X -> undef (the undef could be a snan).
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001168 if (match(Op0, m_Undef()))
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001169 return Op0;
1170
1171 // X / undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001172 if (match(Op1, m_Undef()))
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001173 return Op1;
1174
1175 return 0;
1176}
1177
Micah Villmow3574eca2012-10-08 16:38:25 +00001178Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001179 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001180 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001181 return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001182}
1183
Duncan Sandsf24ed772011-05-02 16:27:02 +00001184/// SimplifyRem - Given operands for an SRem or URem, see if we can
1185/// fold the result. If not, this returns null.
1186static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001187 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsf24ed772011-05-02 16:27:02 +00001188 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1189 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1190 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001191 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001192 }
1193 }
1194
Duncan Sandsf24ed772011-05-02 16:27:02 +00001195 // X % undef -> undef
1196 if (match(Op1, m_Undef()))
1197 return Op1;
1198
1199 // undef % X -> 0
1200 if (match(Op0, m_Undef()))
1201 return Constant::getNullValue(Op0->getType());
1202
1203 // 0 % X -> 0, we don't need to preserve faults!
1204 if (match(Op0, m_Zero()))
1205 return Op0;
1206
1207 // X % 0 -> undef, we don't need to preserve faults!
1208 if (match(Op1, m_Zero()))
1209 return UndefValue::get(Op0->getType());
1210
1211 // X % 1 -> 0
1212 if (match(Op1, m_One()))
1213 return Constant::getNullValue(Op0->getType());
1214
1215 if (Op0->getType()->isIntegerTy(1))
1216 // It can't be remainder by zero, hence it must be remainder by one.
1217 return Constant::getNullValue(Op0->getType());
1218
1219 // X % X -> 0
1220 if (Op0 == Op1)
1221 return Constant::getNullValue(Op0->getType());
1222
1223 // If the operation is with the result of a select instruction, check whether
1224 // operating on either branch of the select always yields the same value.
1225 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001226 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001227 return V;
1228
1229 // If the operation is with the result of a phi instruction, check whether
1230 // operating on all incoming values of the phi always yields the same value.
1231 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001232 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001233 return V;
1234
1235 return 0;
1236}
1237
1238/// SimplifySRemInst - Given operands for an SRem, see if we can
1239/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001240static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1241 unsigned MaxRecurse) {
1242 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001243 return V;
1244
1245 return 0;
1246}
1247
Micah Villmow3574eca2012-10-08 16:38:25 +00001248Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001249 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001250 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001251 return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001252}
1253
1254/// SimplifyURemInst - Given operands for a URem, see if we can
1255/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001256static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +00001257 unsigned MaxRecurse) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001258 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001259 return V;
1260
1261 return 0;
1262}
1263
Micah Villmow3574eca2012-10-08 16:38:25 +00001264Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001265 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001266 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001267 return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001268}
1269
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001270static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +00001271 unsigned) {
Duncan Sandsf24ed772011-05-02 16:27:02 +00001272 // undef % X -> undef (the undef could be a snan).
1273 if (match(Op0, m_Undef()))
1274 return Op0;
1275
1276 // X % undef -> undef
1277 if (match(Op1, m_Undef()))
1278 return Op1;
1279
1280 return 0;
1281}
1282
Micah Villmow3574eca2012-10-08 16:38:25 +00001283Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001284 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001285 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001286 return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001287}
1288
Duncan Sandscf80bc12011-01-14 14:44:12 +00001289/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
Duncan Sandsc43cee32011-01-14 00:37:45 +00001290/// fold the result. If not, this returns null.
Duncan Sandscf80bc12011-01-14 14:44:12 +00001291static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001292 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsc43cee32011-01-14 00:37:45 +00001293 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1294 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1295 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001296 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001297 }
1298 }
1299
Duncan Sandscf80bc12011-01-14 14:44:12 +00001300 // 0 shift by X -> 0
Duncan Sandsc43cee32011-01-14 00:37:45 +00001301 if (match(Op0, m_Zero()))
1302 return Op0;
1303
Duncan Sandscf80bc12011-01-14 14:44:12 +00001304 // X shift by 0 -> X
Duncan Sandsc43cee32011-01-14 00:37:45 +00001305 if (match(Op1, m_Zero()))
1306 return Op0;
1307
Duncan Sandscf80bc12011-01-14 14:44:12 +00001308 // X shift by undef -> undef because it may shift by the bitwidth.
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001309 if (match(Op1, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001310 return Op1;
1311
1312 // Shifting by the bitwidth or more is undefined.
1313 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1314 if (CI->getValue().getLimitedValue() >=
1315 Op0->getType()->getScalarSizeInBits())
1316 return UndefValue::get(Op0->getType());
1317
Duncan Sandscf80bc12011-01-14 14:44:12 +00001318 // If the operation is with the result of a select instruction, check whether
1319 // operating on either branch of the select always yields the same value.
1320 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001321 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001322 return V;
1323
1324 // If the operation is with the result of a phi instruction, check whether
1325 // operating on all incoming values of the phi always yields the same value.
1326 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001327 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001328 return V;
1329
1330 return 0;
1331}
1332
1333/// SimplifyShlInst - Given operands for an Shl, see if we can
1334/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001335static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001336 const Query &Q, unsigned MaxRecurse) {
1337 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001338 return V;
1339
1340 // undef << X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001341 if (match(Op0, m_Undef()))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001342 return Constant::getNullValue(Op0->getType());
1343
Chris Lattner81a0dc92011-02-09 17:15:04 +00001344 // (X >> A) << A -> X
1345 Value *X;
Benjamin Kramer55c6d572012-01-01 17:55:30 +00001346 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
Chris Lattner81a0dc92011-02-09 17:15:04 +00001347 return X;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001348 return 0;
1349}
1350
Chris Lattner81a0dc92011-02-09 17:15:04 +00001351Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Micah Villmow3574eca2012-10-08 16:38:25 +00001352 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +00001353 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001354 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
1355 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001356}
1357
1358/// SimplifyLShrInst - Given operands for an LShr, see if we can
1359/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001360static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001361 const Query &Q, unsigned MaxRecurse) {
1362 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001363 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001364
David Majnemer8c5c6f02013-07-09 22:01:22 +00001365 // X >> X -> 0
1366 if (Op0 == Op1)
1367 return Constant::getNullValue(Op0->getType());
1368
Duncan Sandsc43cee32011-01-14 00:37:45 +00001369 // undef >>l X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001370 if (match(Op0, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001371 return Constant::getNullValue(Op0->getType());
1372
Chris Lattner81a0dc92011-02-09 17:15:04 +00001373 // (X << A) >> A -> X
1374 Value *X;
1375 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1376 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1377 return X;
Duncan Sands52fb8462011-02-13 17:15:40 +00001378
Duncan Sandsc43cee32011-01-14 00:37:45 +00001379 return 0;
1380}
1381
Chris Lattner81a0dc92011-02-09 17:15:04 +00001382Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
Micah Villmow3574eca2012-10-08 16:38:25 +00001383 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001384 const TargetLibraryInfo *TLI,
1385 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001386 return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1387 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001388}
1389
1390/// SimplifyAShrInst - Given operands for an AShr, see if we can
1391/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001392static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001393 const Query &Q, unsigned MaxRecurse) {
1394 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001395 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001396
David Majnemer8c5c6f02013-07-09 22:01:22 +00001397 // X >> X -> 0
1398 if (Op0 == Op1)
1399 return Constant::getNullValue(Op0->getType());
1400
Duncan Sandsc43cee32011-01-14 00:37:45 +00001401 // all ones >>a X -> all ones
1402 if (match(Op0, m_AllOnes()))
1403 return Op0;
1404
1405 // undef >>a X -> all ones
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001406 if (match(Op0, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001407 return Constant::getAllOnesValue(Op0->getType());
1408
Chris Lattner81a0dc92011-02-09 17:15:04 +00001409 // (X << A) >> A -> X
1410 Value *X;
1411 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1412 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1413 return X;
Duncan Sands52fb8462011-02-13 17:15:40 +00001414
Duncan Sandsc43cee32011-01-14 00:37:45 +00001415 return 0;
1416}
1417
Chris Lattner81a0dc92011-02-09 17:15:04 +00001418Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
Micah Villmow3574eca2012-10-08 16:38:25 +00001419 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001420 const TargetLibraryInfo *TLI,
1421 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001422 return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1423 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001424}
1425
Chris Lattnerd06094f2009-11-10 00:55:12 +00001426/// SimplifyAndInst - Given operands for an And, see if we can
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001427/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001428static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +00001429 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001430 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1431 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1432 Constant *Ops[] = { CLHS, CRHS };
1433 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001434 Ops, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001435 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001436
Chris Lattnerd06094f2009-11-10 00:55:12 +00001437 // Canonicalize the constant to the RHS.
1438 std::swap(Op0, Op1);
1439 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001440
Chris Lattnerd06094f2009-11-10 00:55:12 +00001441 // X & undef -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001442 if (match(Op1, m_Undef()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001443 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001444
Chris Lattnerd06094f2009-11-10 00:55:12 +00001445 // X & X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001446 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001447 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001448
Duncan Sands2b749872010-11-17 18:52:15 +00001449 // X & 0 = 0
1450 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001451 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001452
Duncan Sands2b749872010-11-17 18:52:15 +00001453 // X & -1 = X
1454 if (match(Op1, m_AllOnes()))
1455 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001456
Chris Lattnerd06094f2009-11-10 00:55:12 +00001457 // A & ~A = ~A & A = 0
Chris Lattner81a0dc92011-02-09 17:15:04 +00001458 if (match(Op0, m_Not(m_Specific(Op1))) ||
1459 match(Op1, m_Not(m_Specific(Op0))))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001460 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001461
Chris Lattnerd06094f2009-11-10 00:55:12 +00001462 // (A | ?) & A = A
Chris Lattner81a0dc92011-02-09 17:15:04 +00001463 Value *A = 0, *B = 0;
Chris Lattnerd06094f2009-11-10 00:55:12 +00001464 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001465 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001466 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001467
Chris Lattnerd06094f2009-11-10 00:55:12 +00001468 // A & (A | ?) = A
1469 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001470 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001471 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001472
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001473 // A & (-A) = A if A is a power of two or zero.
1474 if (match(Op0, m_Neg(m_Specific(Op1))) ||
1475 match(Op1, m_Neg(m_Specific(Op0)))) {
Rafael Espindoladbaa2372012-12-13 03:37:24 +00001476 if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true))
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001477 return Op0;
Rafael Espindoladbaa2372012-12-13 03:37:24 +00001478 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true))
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001479 return Op1;
1480 }
1481
Duncan Sands566edb02010-12-21 08:49:00 +00001482 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001483 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1484 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001485 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001486
Duncan Sands3421d902010-12-21 13:32:22 +00001487 // And distributes over Or. Try some generic simplifications based on this.
1488 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001489 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001490 return V;
1491
1492 // And distributes over Xor. Try some generic simplifications based on this.
1493 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001494 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001495 return V;
1496
1497 // Or distributes over And. Try some generic simplifications based on this.
1498 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001499 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001500 return V;
1501
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001502 // If the operation is with the result of a select instruction, check whether
1503 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001504 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001505 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1506 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001507 return V;
1508
1509 // If the operation is with the result of a phi instruction, check whether
1510 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001511 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001512 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
Duncan Sands0312a932010-12-21 09:09:15 +00001513 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001514 return V;
1515
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001516 return 0;
1517}
1518
Micah Villmow3574eca2012-10-08 16:38:25 +00001519Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001520 const TargetLibraryInfo *TLI,
Duncan Sands18450092010-11-16 12:16:38 +00001521 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001522 return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001523}
1524
Chris Lattnerd06094f2009-11-10 00:55:12 +00001525/// SimplifyOrInst - Given operands for an Or, see if we can
1526/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001527static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1528 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001529 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1530 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1531 Constant *Ops[] = { CLHS, CRHS };
1532 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001533 Ops, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001534 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001535
Chris Lattnerd06094f2009-11-10 00:55:12 +00001536 // Canonicalize the constant to the RHS.
1537 std::swap(Op0, Op1);
1538 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001539
Chris Lattnerd06094f2009-11-10 00:55:12 +00001540 // X | undef -> -1
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001541 if (match(Op1, m_Undef()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001542 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001543
Chris Lattnerd06094f2009-11-10 00:55:12 +00001544 // X | X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001545 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001546 return Op0;
1547
Duncan Sands2b749872010-11-17 18:52:15 +00001548 // X | 0 = X
1549 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001550 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001551
Duncan Sands2b749872010-11-17 18:52:15 +00001552 // X | -1 = -1
1553 if (match(Op1, m_AllOnes()))
1554 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001555
Chris Lattnerd06094f2009-11-10 00:55:12 +00001556 // A | ~A = ~A | A = -1
Chris Lattner81a0dc92011-02-09 17:15:04 +00001557 if (match(Op0, m_Not(m_Specific(Op1))) ||
1558 match(Op1, m_Not(m_Specific(Op0))))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001559 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001560
Chris Lattnerd06094f2009-11-10 00:55:12 +00001561 // (A & ?) | A = A
Chris Lattner81a0dc92011-02-09 17:15:04 +00001562 Value *A = 0, *B = 0;
Chris Lattnerd06094f2009-11-10 00:55:12 +00001563 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001564 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001565 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001566
Chris Lattnerd06094f2009-11-10 00:55:12 +00001567 // A | (A & ?) = A
1568 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001569 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001570 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001571
Benjamin Kramer38f7f662011-02-20 15:20:01 +00001572 // ~(A & ?) | A = -1
1573 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1574 (A == Op1 || B == Op1))
1575 return Constant::getAllOnesValue(Op1->getType());
1576
1577 // A | ~(A & ?) = -1
1578 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1579 (A == Op0 || B == Op0))
1580 return Constant::getAllOnesValue(Op0->getType());
1581
Duncan Sands566edb02010-12-21 08:49:00 +00001582 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001583 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1584 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001585 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001586
Duncan Sands3421d902010-12-21 13:32:22 +00001587 // Or distributes over And. Try some generic simplifications based on this.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001588 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1589 MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001590 return V;
1591
1592 // And distributes over Or. Try some generic simplifications based on this.
1593 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001594 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001595 return V;
1596
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001597 // If the operation is with the result of a select instruction, check whether
1598 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001599 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001600 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
Duncan Sands0312a932010-12-21 09:09:15 +00001601 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001602 return V;
1603
1604 // If the operation is with the result of a phi instruction, check whether
1605 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001606 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001607 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001608 return V;
1609
Chris Lattnerd06094f2009-11-10 00:55:12 +00001610 return 0;
1611}
1612
Micah Villmow3574eca2012-10-08 16:38:25 +00001613Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001614 const TargetLibraryInfo *TLI,
Duncan Sands18450092010-11-16 12:16:38 +00001615 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001616 return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001617}
Chris Lattnerd06094f2009-11-10 00:55:12 +00001618
Duncan Sands2b749872010-11-17 18:52:15 +00001619/// SimplifyXorInst - Given operands for a Xor, see if we can
1620/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001621static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1622 unsigned MaxRecurse) {
Duncan Sands2b749872010-11-17 18:52:15 +00001623 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1624 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1625 Constant *Ops[] = { CLHS, CRHS };
1626 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001627 Ops, Q.TD, Q.TLI);
Duncan Sands2b749872010-11-17 18:52:15 +00001628 }
1629
1630 // Canonicalize the constant to the RHS.
1631 std::swap(Op0, Op1);
1632 }
1633
1634 // A ^ undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001635 if (match(Op1, m_Undef()))
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00001636 return Op1;
Duncan Sands2b749872010-11-17 18:52:15 +00001637
1638 // A ^ 0 = A
1639 if (match(Op1, m_Zero()))
1640 return Op0;
1641
Eli Friedmanf23d4ad2011-08-17 19:31:49 +00001642 // A ^ A = 0
1643 if (Op0 == Op1)
1644 return Constant::getNullValue(Op0->getType());
1645
Duncan Sands2b749872010-11-17 18:52:15 +00001646 // A ^ ~A = ~A ^ A = -1
Chris Lattner81a0dc92011-02-09 17:15:04 +00001647 if (match(Op0, m_Not(m_Specific(Op1))) ||
1648 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sands2b749872010-11-17 18:52:15 +00001649 return Constant::getAllOnesValue(Op0->getType());
1650
Duncan Sands566edb02010-12-21 08:49:00 +00001651 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001652 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1653 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001654 return V;
Duncan Sands2b749872010-11-17 18:52:15 +00001655
Duncan Sands3421d902010-12-21 13:32:22 +00001656 // And distributes over Xor. Try some generic simplifications based on this.
1657 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001658 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001659 return V;
1660
Duncan Sands87689cf2010-11-19 09:20:39 +00001661 // Threading Xor over selects and phi nodes is pointless, so don't bother.
1662 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1663 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1664 // only if B and C are equal. If B and C are equal then (since we assume
1665 // that operands have already been simplified) "select(cond, B, C)" should
1666 // have been simplified to the common value of B and C already. Analysing
1667 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
1668 // for threading over phi nodes.
Duncan Sands2b749872010-11-17 18:52:15 +00001669
1670 return 0;
1671}
1672
Micah Villmow3574eca2012-10-08 16:38:25 +00001673Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001674 const TargetLibraryInfo *TLI,
Duncan Sands2b749872010-11-17 18:52:15 +00001675 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001676 return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands2b749872010-11-17 18:52:15 +00001677}
1678
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001679static Type *GetCompareTy(Value *Op) {
Chris Lattner210c5d42009-11-09 23:55:12 +00001680 return CmpInst::makeCmpResultType(Op->getType());
1681}
1682
Duncan Sandse864b5b2011-05-07 16:56:49 +00001683/// ExtractEquivalentCondition - Rummage around inside V looking for something
1684/// equivalent to the comparison "LHS Pred RHS". Return such a value if found,
1685/// otherwise return null. Helper function for analyzing max/min idioms.
1686static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1687 Value *LHS, Value *RHS) {
1688 SelectInst *SI = dyn_cast<SelectInst>(V);
1689 if (!SI)
1690 return 0;
1691 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1692 if (!Cmp)
1693 return 0;
1694 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1695 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1696 return Cmp;
1697 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1698 LHS == CmpRHS && RHS == CmpLHS)
1699 return Cmp;
1700 return 0;
1701}
1702
Dan Gohman901261d2013-02-01 00:49:06 +00001703// A significant optimization not implemented here is assuming that alloca
1704// addresses are not equal to incoming argument values. They don't *alias*,
1705// as we say, but that doesn't mean they aren't equal, so we take a
1706// conservative approach.
1707//
1708// This is inspired in part by C++11 5.10p1:
1709// "Two pointers of the same type compare equal if and only if they are both
1710// null, both point to the same function, or both represent the same
1711// address."
1712//
1713// This is pretty permissive.
1714//
1715// It's also partly due to C11 6.5.9p6:
1716// "Two pointers compare equal if and only if both are null pointers, both are
1717// pointers to the same object (including a pointer to an object and a
1718// subobject at its beginning) or function, both are pointers to one past the
1719// last element of the same array object, or one is a pointer to one past the
1720// end of one array object and the other is a pointer to the start of a
NAKAMURA Takumi92c37422013-04-08 23:05:21 +00001721// different array object that happens to immediately follow the first array
Dan Gohman901261d2013-02-01 00:49:06 +00001722// object in the address space.)
1723//
1724// C11's version is more restrictive, however there's no reason why an argument
1725// couldn't be a one-past-the-end value for a stack object in the caller and be
1726// equal to the beginning of a stack object in the callee.
1727//
1728// If the C and C++ standards are ever made sufficiently restrictive in this
1729// area, it may be possible to update LLVM's semantics accordingly and reinstate
1730// this optimization.
Dan Gohman3e3de562013-01-31 02:50:36 +00001731static Constant *computePointerICmp(const DataLayout *TD,
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001732 const TargetLibraryInfo *TLI,
Chandler Carruth58725a62012-03-25 21:28:14 +00001733 CmpInst::Predicate Pred,
1734 Value *LHS, Value *RHS) {
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001735 // First, skip past any trivial no-ops.
1736 LHS = LHS->stripPointerCasts();
1737 RHS = RHS->stripPointerCasts();
1738
1739 // A non-null pointer is not equal to a null pointer.
1740 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
1741 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
1742 return ConstantInt::get(GetCompareTy(LHS),
1743 !CmpInst::isTrueWhenEqual(Pred));
1744
Chandler Carruth58725a62012-03-25 21:28:14 +00001745 // We can only fold certain predicates on pointer comparisons.
1746 switch (Pred) {
1747 default:
1748 return 0;
1749
1750 // Equality comaprisons are easy to fold.
1751 case CmpInst::ICMP_EQ:
1752 case CmpInst::ICMP_NE:
1753 break;
1754
1755 // We can only handle unsigned relational comparisons because 'inbounds' on
1756 // a GEP only protects against unsigned wrapping.
1757 case CmpInst::ICMP_UGT:
1758 case CmpInst::ICMP_UGE:
1759 case CmpInst::ICMP_ULT:
1760 case CmpInst::ICMP_ULE:
1761 // However, we have to switch them to their signed variants to handle
1762 // negative indices from the base pointer.
1763 Pred = ICmpInst::getSignedPredicate(Pred);
1764 break;
1765 }
1766
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001767 // Strip off any constant offsets so that we can reason about them.
1768 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
1769 // here and compare base addresses like AliasAnalysis does, however there are
1770 // numerous hazards. AliasAnalysis and its utilities rely on special rules
1771 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
1772 // doesn't need to guarantee pointer inequality when it says NoAlias.
Benjamin Kramerd9f32c22013-02-01 15:21:10 +00001773 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
1774 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
Chandler Carruth58725a62012-03-25 21:28:14 +00001775
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001776 // If LHS and RHS are related via constant offsets to the same base
1777 // value, we can replace it with an icmp which just compares the offsets.
1778 if (LHS == RHS)
1779 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
Chandler Carruth58725a62012-03-25 21:28:14 +00001780
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001781 // Various optimizations for (in)equality comparisons.
1782 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1783 // Different non-empty allocations that exist at the same time have
1784 // different addresses (if the program can tell). Global variables always
1785 // exist, so they always exist during the lifetime of each other and all
1786 // allocas. Two different allocas usually have different addresses...
1787 //
1788 // However, if there's an @llvm.stackrestore dynamically in between two
1789 // allocas, they may have the same address. It's tempting to reduce the
1790 // scope of the problem by only looking at *static* allocas here. That would
1791 // cover the majority of allocas while significantly reducing the likelihood
1792 // of having an @llvm.stackrestore pop up in the middle. However, it's not
1793 // actually impossible for an @llvm.stackrestore to pop up in the middle of
1794 // an entry block. Also, if we have a block that's not attached to a
1795 // function, we can't tell if it's "static" under the current definition.
1796 // Theoretically, this problem could be fixed by creating a new kind of
1797 // instruction kind specifically for static allocas. Such a new instruction
1798 // could be required to be at the top of the entry block, thus preventing it
1799 // from being subject to a @llvm.stackrestore. Instcombine could even
1800 // convert regular allocas into these special allocas. It'd be nifty.
1801 // However, until then, this problem remains open.
1802 //
1803 // So, we'll assume that two non-empty allocas have different addresses
1804 // for now.
1805 //
1806 // With all that, if the offsets are within the bounds of their allocations
1807 // (and not one-past-the-end! so we can't use inbounds!), and their
1808 // allocations aren't the same, the pointers are not equal.
1809 //
1810 // Note that it's not necessary to check for LHS being a global variable
1811 // address, due to canonicalization and constant folding.
1812 if (isa<AllocaInst>(LHS) &&
1813 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
Benjamin Kramerd9f32c22013-02-01 15:21:10 +00001814 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
1815 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001816 uint64_t LHSSize, RHSSize;
Benjamin Kramerd9f32c22013-02-01 15:21:10 +00001817 if (LHSOffsetCI && RHSOffsetCI &&
1818 getObjectSize(LHS, LHSSize, TD, TLI) &&
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001819 getObjectSize(RHS, RHSSize, TD, TLI)) {
Benjamin Kramerd9f32c22013-02-01 15:21:10 +00001820 const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
1821 const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001822 if (!LHSOffsetValue.isNegative() &&
1823 !RHSOffsetValue.isNegative() &&
1824 LHSOffsetValue.ult(LHSSize) &&
1825 RHSOffsetValue.ult(RHSSize)) {
1826 return ConstantInt::get(GetCompareTy(LHS),
1827 !CmpInst::isTrueWhenEqual(Pred));
1828 }
1829 }
1830
1831 // Repeat the above check but this time without depending on DataLayout
1832 // or being able to compute a precise size.
1833 if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
1834 !cast<PointerType>(RHS->getType())->isEmptyTy() &&
1835 LHSOffset->isNullValue() &&
1836 RHSOffset->isNullValue())
1837 return ConstantInt::get(GetCompareTy(LHS),
1838 !CmpInst::isTrueWhenEqual(Pred));
1839 }
1840 }
1841
1842 // Otherwise, fail.
1843 return 0;
Chandler Carruth58725a62012-03-25 21:28:14 +00001844}
Chris Lattner009e2652012-02-24 19:01:58 +00001845
Chris Lattner9dbb4292009-11-09 23:28:39 +00001846/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1847/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001848static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001849 const Query &Q, unsigned MaxRecurse) {
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001850 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
Chris Lattner9dbb4292009-11-09 23:28:39 +00001851 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
Duncan Sands12a86f52010-11-14 11:23:23 +00001852
Chris Lattnerd06094f2009-11-10 00:55:12 +00001853 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner8f73dea2009-11-09 23:06:58 +00001854 if (Constant *CRHS = dyn_cast<Constant>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001855 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001856
1857 // If we have a constant, make sure it is on the RHS.
1858 std::swap(LHS, RHS);
1859 Pred = CmpInst::getSwappedPredicate(Pred);
1860 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001861
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001862 Type *ITy = GetCompareTy(LHS); // The return type.
1863 Type *OpTy = LHS->getType(); // The operand type.
Duncan Sands12a86f52010-11-14 11:23:23 +00001864
Chris Lattner210c5d42009-11-09 23:55:12 +00001865 // icmp X, X -> true/false
Chris Lattnerc8e14b32010-03-03 19:46:03 +00001866 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
1867 // because X could be 0.
Duncan Sands124708d2011-01-01 20:08:02 +00001868 if (LHS == RHS || isa<UndefValue>(RHS))
Chris Lattner210c5d42009-11-09 23:55:12 +00001869 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
Duncan Sands12a86f52010-11-14 11:23:23 +00001870
Duncan Sands6dc91252011-01-13 08:56:29 +00001871 // Special case logic when the operands have i1 type.
Nick Lewycky66d004e2011-12-01 02:39:36 +00001872 if (OpTy->getScalarType()->isIntegerTy(1)) {
Duncan Sands6dc91252011-01-13 08:56:29 +00001873 switch (Pred) {
1874 default: break;
1875 case ICmpInst::ICMP_EQ:
1876 // X == 1 -> X
1877 if (match(RHS, m_One()))
1878 return LHS;
1879 break;
1880 case ICmpInst::ICMP_NE:
1881 // X != 0 -> X
1882 if (match(RHS, m_Zero()))
1883 return LHS;
1884 break;
1885 case ICmpInst::ICMP_UGT:
1886 // X >u 0 -> X
1887 if (match(RHS, m_Zero()))
1888 return LHS;
1889 break;
1890 case ICmpInst::ICMP_UGE:
1891 // X >=u 1 -> X
1892 if (match(RHS, m_One()))
1893 return LHS;
1894 break;
1895 case ICmpInst::ICMP_SLT:
1896 // X <s 0 -> X
1897 if (match(RHS, m_Zero()))
1898 return LHS;
1899 break;
1900 case ICmpInst::ICMP_SLE:
1901 // X <=s -1 -> X
1902 if (match(RHS, m_One()))
1903 return LHS;
1904 break;
1905 }
1906 }
1907
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001908 // If we are comparing with zero then try hard since this is a common case.
1909 if (match(RHS, m_Zero())) {
1910 bool LHSKnownNonNegative, LHSKnownNegative;
1911 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00001912 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001913 case ICmpInst::ICMP_ULT:
Duncan Sandsf56138d2011-07-26 15:03:53 +00001914 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001915 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00001916 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001917 case ICmpInst::ICMP_EQ:
1918 case ICmpInst::ICMP_ULE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001919 if (isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001920 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001921 break;
1922 case ICmpInst::ICMP_NE:
1923 case ICmpInst::ICMP_UGT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001924 if (isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001925 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001926 break;
1927 case ICmpInst::ICMP_SLT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001928 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001929 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001930 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001931 if (LHSKnownNonNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001932 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001933 break;
1934 case ICmpInst::ICMP_SLE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001935 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001936 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001937 return getTrue(ITy);
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001938 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001939 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001940 break;
1941 case ICmpInst::ICMP_SGE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001942 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001943 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001944 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001945 if (LHSKnownNonNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001946 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001947 break;
1948 case ICmpInst::ICMP_SGT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001949 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001950 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001951 return getFalse(ITy);
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001952 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001953 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001954 break;
1955 }
1956 }
1957
1958 // See if we are doing a comparison with a constant integer.
Duncan Sands6dc91252011-01-13 08:56:29 +00001959 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
Nick Lewycky3a73e342011-03-04 07:00:57 +00001960 // Rule out tautological comparisons (eg., ult 0 or uge 0).
1961 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1962 if (RHS_CR.isEmptySet())
1963 return ConstantInt::getFalse(CI->getContext());
1964 if (RHS_CR.isFullSet())
1965 return ConstantInt::getTrue(CI->getContext());
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00001966
Nick Lewycky3a73e342011-03-04 07:00:57 +00001967 // Many binary operators with constant RHS have easy to compute constant
1968 // range. Use them to check whether the comparison is a tautology.
1969 uint32_t Width = CI->getBitWidth();
1970 APInt Lower = APInt(Width, 0);
1971 APInt Upper = APInt(Width, 0);
1972 ConstantInt *CI2;
1973 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1974 // 'urem x, CI2' produces [0, CI2).
1975 Upper = CI2->getValue();
1976 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1977 // 'srem x, CI2' produces (-|CI2|, |CI2|).
1978 Upper = CI2->getValue().abs();
1979 Lower = (-Upper) + 1;
Duncan Sandsc65c7472011-10-28 18:17:44 +00001980 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1981 // 'udiv CI2, x' produces [0, CI2].
Eli Friedman7781ae52011-11-08 21:08:02 +00001982 Upper = CI2->getValue() + 1;
Nick Lewycky3a73e342011-03-04 07:00:57 +00001983 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1984 // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1985 APInt NegOne = APInt::getAllOnesValue(Width);
1986 if (!CI2->isZero())
1987 Upper = NegOne.udiv(CI2->getValue()) + 1;
1988 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1989 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1990 APInt IntMin = APInt::getSignedMinValue(Width);
1991 APInt IntMax = APInt::getSignedMaxValue(Width);
1992 APInt Val = CI2->getValue().abs();
1993 if (!Val.isMinValue()) {
1994 Lower = IntMin.sdiv(Val);
1995 Upper = IntMax.sdiv(Val) + 1;
1996 }
1997 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
1998 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
1999 APInt NegOne = APInt::getAllOnesValue(Width);
2000 if (CI2->getValue().ult(Width))
2001 Upper = NegOne.lshr(CI2->getValue()) + 1;
2002 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
2003 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
2004 APInt IntMin = APInt::getSignedMinValue(Width);
2005 APInt IntMax = APInt::getSignedMaxValue(Width);
2006 if (CI2->getValue().ult(Width)) {
2007 Lower = IntMin.ashr(CI2->getValue());
2008 Upper = IntMax.ashr(CI2->getValue()) + 1;
2009 }
2010 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
2011 // 'or x, CI2' produces [CI2, UINT_MAX].
2012 Lower = CI2->getValue();
2013 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
2014 // 'and x, CI2' produces [0, CI2].
2015 Upper = CI2->getValue() + 1;
2016 }
2017 if (Lower != Upper) {
2018 ConstantRange LHS_CR = ConstantRange(Lower, Upper);
2019 if (RHS_CR.contains(LHS_CR))
2020 return ConstantInt::getTrue(RHS->getContext());
2021 if (RHS_CR.inverse().contains(LHS_CR))
2022 return ConstantInt::getFalse(RHS->getContext());
2023 }
Duncan Sands6dc91252011-01-13 08:56:29 +00002024 }
2025
Duncan Sands9d32f602011-01-20 13:21:55 +00002026 // Compare of cast, for example (zext X) != 0 -> X != 0
2027 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
2028 Instruction *LI = cast<CastInst>(LHS);
2029 Value *SrcOp = LI->getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002030 Type *SrcTy = SrcOp->getType();
2031 Type *DstTy = LI->getType();
Duncan Sands9d32f602011-01-20 13:21:55 +00002032
2033 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
2034 // if the integer type is the same size as the pointer type.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002035 if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
Matt Arsenault7eef3bd2013-08-02 00:10:44 +00002036 Q.TD->getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
Duncan Sands9d32f602011-01-20 13:21:55 +00002037 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2038 // Transfer the cast to the constant.
2039 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
2040 ConstantExpr::getIntToPtr(RHSC, SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002041 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002042 return V;
2043 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
2044 if (RI->getOperand(0)->getType() == SrcTy)
2045 // Compare without the cast.
2046 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002047 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002048 return V;
2049 }
2050 }
2051
2052 if (isa<ZExtInst>(LHS)) {
2053 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
2054 // same type.
2055 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
2056 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2057 // Compare X and Y. Note that signed predicates become unsigned.
2058 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002059 SrcOp, RI->getOperand(0), Q,
Duncan Sands9d32f602011-01-20 13:21:55 +00002060 MaxRecurse-1))
2061 return V;
2062 }
2063 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
2064 // too. If not, then try to deduce the result of the comparison.
2065 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2066 // Compute the constant that would happen if we truncated to SrcTy then
2067 // reextended to DstTy.
2068 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2069 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
2070
2071 // If the re-extended constant didn't change then this is effectively
2072 // also a case of comparing two zero-extended values.
2073 if (RExt == CI && MaxRecurse)
2074 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002075 SrcOp, Trunc, Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002076 return V;
2077
2078 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
2079 // there. Use this to work out the result of the comparison.
2080 if (RExt != CI) {
2081 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00002082 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sands9d32f602011-01-20 13:21:55 +00002083 // LHS <u RHS.
2084 case ICmpInst::ICMP_EQ:
2085 case ICmpInst::ICMP_UGT:
2086 case ICmpInst::ICMP_UGE:
2087 return ConstantInt::getFalse(CI->getContext());
2088
2089 case ICmpInst::ICMP_NE:
2090 case ICmpInst::ICMP_ULT:
2091 case ICmpInst::ICMP_ULE:
2092 return ConstantInt::getTrue(CI->getContext());
2093
2094 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
2095 // is non-negative then LHS <s RHS.
2096 case ICmpInst::ICMP_SGT:
2097 case ICmpInst::ICMP_SGE:
2098 return CI->getValue().isNegative() ?
2099 ConstantInt::getTrue(CI->getContext()) :
2100 ConstantInt::getFalse(CI->getContext());
2101
2102 case ICmpInst::ICMP_SLT:
2103 case ICmpInst::ICMP_SLE:
2104 return CI->getValue().isNegative() ?
2105 ConstantInt::getFalse(CI->getContext()) :
2106 ConstantInt::getTrue(CI->getContext());
2107 }
2108 }
2109 }
2110 }
2111
2112 if (isa<SExtInst>(LHS)) {
2113 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
2114 // same type.
2115 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
2116 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2117 // Compare X and Y. Note that the predicate does not change.
2118 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002119 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002120 return V;
2121 }
2122 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
2123 // too. If not, then try to deduce the result of the comparison.
2124 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2125 // Compute the constant that would happen if we truncated to SrcTy then
2126 // reextended to DstTy.
2127 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2128 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
2129
2130 // If the re-extended constant didn't change then this is effectively
2131 // also a case of comparing two sign-extended values.
2132 if (RExt == CI && MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002133 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002134 return V;
2135
2136 // Otherwise the upper bits of LHS are all equal, while RHS has varying
2137 // bits there. Use this to work out the result of the comparison.
2138 if (RExt != CI) {
2139 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00002140 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sands9d32f602011-01-20 13:21:55 +00002141 case ICmpInst::ICMP_EQ:
2142 return ConstantInt::getFalse(CI->getContext());
2143 case ICmpInst::ICMP_NE:
2144 return ConstantInt::getTrue(CI->getContext());
2145
2146 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
2147 // LHS >s RHS.
2148 case ICmpInst::ICMP_SGT:
2149 case ICmpInst::ICMP_SGE:
2150 return CI->getValue().isNegative() ?
2151 ConstantInt::getTrue(CI->getContext()) :
2152 ConstantInt::getFalse(CI->getContext());
2153 case ICmpInst::ICMP_SLT:
2154 case ICmpInst::ICMP_SLE:
2155 return CI->getValue().isNegative() ?
2156 ConstantInt::getFalse(CI->getContext()) :
2157 ConstantInt::getTrue(CI->getContext());
2158
2159 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
2160 // LHS >u RHS.
2161 case ICmpInst::ICMP_UGT:
2162 case ICmpInst::ICMP_UGE:
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002163 // Comparison is true iff the LHS <s 0.
Duncan Sands9d32f602011-01-20 13:21:55 +00002164 if (MaxRecurse)
2165 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2166 Constant::getNullValue(SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002167 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002168 return V;
2169 break;
2170 case ICmpInst::ICMP_ULT:
2171 case ICmpInst::ICMP_ULE:
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002172 // Comparison is true iff the LHS >=s 0.
Duncan Sands9d32f602011-01-20 13:21:55 +00002173 if (MaxRecurse)
2174 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2175 Constant::getNullValue(SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002176 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002177 return V;
2178 break;
2179 }
2180 }
2181 }
2182 }
2183 }
2184
Duncan Sands52fb8462011-02-13 17:15:40 +00002185 // Special logic for binary operators.
2186 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2187 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2188 if (MaxRecurse && (LBO || RBO)) {
Duncan Sands52fb8462011-02-13 17:15:40 +00002189 // Analyze the case when either LHS or RHS is an add instruction.
2190 Value *A = 0, *B = 0, *C = 0, *D = 0;
2191 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2192 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2193 if (LBO && LBO->getOpcode() == Instruction::Add) {
2194 A = LBO->getOperand(0); B = LBO->getOperand(1);
2195 NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2196 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2197 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2198 }
2199 if (RBO && RBO->getOpcode() == Instruction::Add) {
2200 C = RBO->getOperand(0); D = RBO->getOperand(1);
2201 NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2202 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2203 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2204 }
2205
2206 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2207 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2208 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2209 Constant::getNullValue(RHS->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002210 Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002211 return V;
2212
2213 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2214 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2215 if (Value *V = SimplifyICmpInst(Pred,
2216 Constant::getNullValue(LHS->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002217 C == LHS ? D : C, Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002218 return V;
2219
2220 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2221 if (A && C && (A == C || A == D || B == C || B == D) &&
2222 NoLHSWrapProblem && NoRHSWrapProblem) {
2223 // Determine Y and Z in the form icmp (X+Y), (X+Z).
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002224 Value *Y, *Z;
2225 if (A == C) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002226 // C + B == C + D -> B == D
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002227 Y = B;
2228 Z = D;
2229 } else if (A == D) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002230 // D + B == C + D -> B == C
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002231 Y = B;
2232 Z = C;
2233 } else if (B == C) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002234 // A + C == C + D -> A == D
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002235 Y = A;
2236 Z = D;
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002237 } else {
2238 assert(B == D);
2239 // A + D == C + D -> A == C
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002240 Y = A;
2241 Z = C;
2242 }
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002243 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002244 return V;
2245 }
2246 }
2247
Nick Lewycky8a232702013-07-12 23:42:57 +00002248 // icmp pred (urem X, Y), Y
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002249 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
Nick Lewycky78679272011-03-04 10:06:52 +00002250 bool KnownNonNegative, KnownNegative;
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002251 switch (Pred) {
2252 default:
2253 break;
Nick Lewycky78679272011-03-04 10:06:52 +00002254 case ICmpInst::ICMP_SGT:
2255 case ICmpInst::ICMP_SGE:
Nick Lewycky8a232702013-07-12 23:42:57 +00002256 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky78679272011-03-04 10:06:52 +00002257 if (!KnownNonNegative)
2258 break;
2259 // fall-through
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002260 case ICmpInst::ICMP_EQ:
2261 case ICmpInst::ICMP_UGT:
2262 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002263 return getFalse(ITy);
Nick Lewycky78679272011-03-04 10:06:52 +00002264 case ICmpInst::ICMP_SLT:
2265 case ICmpInst::ICMP_SLE:
Nick Lewycky8a232702013-07-12 23:42:57 +00002266 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky78679272011-03-04 10:06:52 +00002267 if (!KnownNonNegative)
2268 break;
2269 // fall-through
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002270 case ICmpInst::ICMP_NE:
2271 case ICmpInst::ICMP_ULT:
2272 case ICmpInst::ICMP_ULE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002273 return getTrue(ITy);
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002274 }
2275 }
Nick Lewycky8a232702013-07-12 23:42:57 +00002276
2277 // icmp pred X, (urem Y, X)
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002278 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2279 bool KnownNonNegative, KnownNegative;
2280 switch (Pred) {
2281 default:
2282 break;
2283 case ICmpInst::ICMP_SGT:
2284 case ICmpInst::ICMP_SGE:
Nick Lewycky8a232702013-07-12 23:42:57 +00002285 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002286 if (!KnownNonNegative)
2287 break;
2288 // fall-through
Nick Lewyckya0e2f382011-03-09 08:20:06 +00002289 case ICmpInst::ICMP_NE:
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002290 case ICmpInst::ICMP_UGT:
2291 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002292 return getTrue(ITy);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002293 case ICmpInst::ICMP_SLT:
2294 case ICmpInst::ICMP_SLE:
Nick Lewycky8a232702013-07-12 23:42:57 +00002295 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002296 if (!KnownNonNegative)
2297 break;
2298 // fall-through
Nick Lewyckya0e2f382011-03-09 08:20:06 +00002299 case ICmpInst::ICMP_EQ:
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002300 case ICmpInst::ICMP_ULT:
2301 case ICmpInst::ICMP_ULE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002302 return getFalse(ITy);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002303 }
2304 }
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002305
Duncan Sandsc65c7472011-10-28 18:17:44 +00002306 // x udiv y <=u x.
2307 if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2308 // icmp pred (X /u Y), X
2309 if (Pred == ICmpInst::ICMP_UGT)
2310 return getFalse(ITy);
2311 if (Pred == ICmpInst::ICMP_ULE)
2312 return getTrue(ITy);
2313 }
2314
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002315 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2316 LBO->getOperand(1) == RBO->getOperand(1)) {
2317 switch (LBO->getOpcode()) {
2318 default: break;
2319 case Instruction::UDiv:
2320 case Instruction::LShr:
2321 if (ICmpInst::isSigned(Pred))
2322 break;
2323 // fall-through
2324 case Instruction::SDiv:
2325 case Instruction::AShr:
Eli Friedmanb6e7cd62011-05-05 21:59:18 +00002326 if (!LBO->isExact() || !RBO->isExact())
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002327 break;
2328 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002329 RBO->getOperand(0), Q, MaxRecurse-1))
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002330 return V;
2331 break;
2332 case Instruction::Shl: {
Duncan Sandsc9d904e2011-08-04 10:02:21 +00002333 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002334 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2335 if (!NUW && !NSW)
2336 break;
2337 if (!NSW && ICmpInst::isSigned(Pred))
2338 break;
2339 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002340 RBO->getOperand(0), Q, MaxRecurse-1))
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002341 return V;
2342 break;
2343 }
2344 }
2345 }
2346
Duncan Sandsad206812011-05-03 19:53:10 +00002347 // Simplify comparisons involving max/min.
2348 Value *A, *B;
2349 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002350 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
Duncan Sandsad206812011-05-03 19:53:10 +00002351
Duncan Sands8140ad32011-05-04 16:05:05 +00002352 // Signed variants on "max(a,b)>=a -> true".
Duncan Sandsad206812011-05-03 19:53:10 +00002353 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2354 if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002355 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002356 // We analyze this as smax(A, B) pred A.
2357 P = Pred;
2358 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2359 (A == LHS || B == LHS)) {
2360 if (A != LHS) std::swap(A, B); // A pred smax(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002361 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002362 // We analyze this as smax(A, B) swapped-pred A.
2363 P = CmpInst::getSwappedPredicate(Pred);
2364 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2365 (A == RHS || B == RHS)) {
2366 if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002367 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
Duncan Sandsad206812011-05-03 19:53:10 +00002368 // We analyze this as smax(-A, -B) swapped-pred -A.
2369 // Note that we do not need to actually form -A or -B thanks to EqP.
2370 P = CmpInst::getSwappedPredicate(Pred);
2371 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2372 (A == LHS || B == LHS)) {
2373 if (A != LHS) std::swap(A, B); // A pred smin(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002374 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
Duncan Sandsad206812011-05-03 19:53:10 +00002375 // We analyze this as smax(-A, -B) pred -A.
2376 // Note that we do not need to actually form -A or -B thanks to EqP.
2377 P = Pred;
2378 }
2379 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2380 // Cases correspond to "max(A, B) p A".
2381 switch (P) {
2382 default:
2383 break;
2384 case CmpInst::ICMP_EQ:
2385 case CmpInst::ICMP_SLE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002386 // Equivalent to "A EqP B". This may be the same as the condition tested
2387 // in the max/min; if so, we can just return that.
2388 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2389 return V;
2390 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2391 return V;
2392 // Otherwise, see if "A EqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002393 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002394 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002395 return V;
2396 break;
2397 case CmpInst::ICMP_NE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002398 case CmpInst::ICMP_SGT: {
2399 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2400 // Equivalent to "A InvEqP B". This may be the same as the condition
2401 // tested in the max/min; if so, we can just return that.
2402 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2403 return V;
2404 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2405 return V;
2406 // Otherwise, see if "A InvEqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002407 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002408 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002409 return V;
2410 break;
Duncan Sandse864b5b2011-05-07 16:56:49 +00002411 }
Duncan Sandsad206812011-05-03 19:53:10 +00002412 case CmpInst::ICMP_SGE:
2413 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002414 return getTrue(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002415 case CmpInst::ICMP_SLT:
2416 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002417 return getFalse(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002418 }
2419 }
2420
Duncan Sands8140ad32011-05-04 16:05:05 +00002421 // Unsigned variants on "max(a,b)>=a -> true".
Duncan Sandsad206812011-05-03 19:53:10 +00002422 P = CmpInst::BAD_ICMP_PREDICATE;
2423 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2424 if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002425 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002426 // We analyze this as umax(A, B) pred A.
2427 P = Pred;
2428 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2429 (A == LHS || B == LHS)) {
2430 if (A != LHS) std::swap(A, B); // A pred umax(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002431 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002432 // We analyze this as umax(A, B) swapped-pred A.
2433 P = CmpInst::getSwappedPredicate(Pred);
2434 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2435 (A == RHS || B == RHS)) {
2436 if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002437 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
Duncan Sandsad206812011-05-03 19:53:10 +00002438 // We analyze this as umax(-A, -B) swapped-pred -A.
2439 // Note that we do not need to actually form -A or -B thanks to EqP.
2440 P = CmpInst::getSwappedPredicate(Pred);
2441 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2442 (A == LHS || B == LHS)) {
2443 if (A != LHS) std::swap(A, B); // A pred umin(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002444 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
Duncan Sandsad206812011-05-03 19:53:10 +00002445 // We analyze this as umax(-A, -B) pred -A.
2446 // Note that we do not need to actually form -A or -B thanks to EqP.
2447 P = Pred;
2448 }
2449 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2450 // Cases correspond to "max(A, B) p A".
2451 switch (P) {
2452 default:
2453 break;
2454 case CmpInst::ICMP_EQ:
2455 case CmpInst::ICMP_ULE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002456 // Equivalent to "A EqP B". This may be the same as the condition tested
2457 // in the max/min; if so, we can just return that.
2458 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2459 return V;
2460 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2461 return V;
2462 // Otherwise, see if "A EqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002463 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002464 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002465 return V;
2466 break;
2467 case CmpInst::ICMP_NE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002468 case CmpInst::ICMP_UGT: {
2469 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2470 // Equivalent to "A InvEqP B". This may be the same as the condition
2471 // tested in the max/min; if so, we can just return that.
2472 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2473 return V;
2474 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2475 return V;
2476 // Otherwise, see if "A InvEqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002477 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002478 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002479 return V;
2480 break;
Duncan Sandse864b5b2011-05-07 16:56:49 +00002481 }
Duncan Sandsad206812011-05-03 19:53:10 +00002482 case CmpInst::ICMP_UGE:
2483 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002484 return getTrue(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002485 case CmpInst::ICMP_ULT:
2486 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002487 return getFalse(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002488 }
2489 }
2490
Duncan Sands8140ad32011-05-04 16:05:05 +00002491 // Variants on "max(x,y) >= min(x,z)".
2492 Value *C, *D;
2493 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2494 match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2495 (A == C || A == D || B == C || B == D)) {
2496 // max(x, ?) pred min(x, ?).
2497 if (Pred == CmpInst::ICMP_SGE)
2498 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002499 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002500 if (Pred == CmpInst::ICMP_SLT)
2501 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002502 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002503 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2504 match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2505 (A == C || A == D || B == C || B == D)) {
2506 // min(x, ?) pred max(x, ?).
2507 if (Pred == CmpInst::ICMP_SLE)
2508 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002509 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002510 if (Pred == CmpInst::ICMP_SGT)
2511 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002512 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002513 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2514 match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2515 (A == C || A == D || B == C || B == D)) {
2516 // max(x, ?) pred min(x, ?).
2517 if (Pred == CmpInst::ICMP_UGE)
2518 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002519 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002520 if (Pred == CmpInst::ICMP_ULT)
2521 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002522 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002523 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2524 match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2525 (A == C || A == D || B == C || B == D)) {
2526 // min(x, ?) pred max(x, ?).
2527 if (Pred == CmpInst::ICMP_ULE)
2528 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002529 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002530 if (Pred == CmpInst::ICMP_UGT)
2531 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002532 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002533 }
2534
Chandler Carruth58725a62012-03-25 21:28:14 +00002535 // Simplify comparisons of related pointers using a powerful, recursive
2536 // GEP-walk when we have target data available..
Dan Gohman3e3de562013-01-31 02:50:36 +00002537 if (LHS->getType()->isPointerTy())
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00002538 if (Constant *C = computePointerICmp(Q.TD, Q.TLI, Pred, LHS, RHS))
Chandler Carruth58725a62012-03-25 21:28:14 +00002539 return C;
2540
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00002541 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
2542 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
2543 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
2544 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
2545 (ICmpInst::isEquality(Pred) ||
2546 (GLHS->isInBounds() && GRHS->isInBounds() &&
2547 Pred == ICmpInst::getSignedPredicate(Pred)))) {
2548 // The bases are equal and the indices are constant. Build a constant
2549 // expression GEP with the same indices and a null base pointer to see
2550 // what constant folding can make out of it.
2551 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
2552 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
2553 Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
2554
2555 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
2556 Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
2557 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
2558 }
2559 }
2560 }
2561
Duncan Sands1ac7c992010-11-07 16:12:23 +00002562 // If the comparison is with the result of a select instruction, check whether
2563 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002564 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002565 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002566 return V;
2567
2568 // If the comparison is with the result of a phi instruction, check whether
2569 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00002570 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002571 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00002572 return V;
Duncan Sands1ac7c992010-11-07 16:12:23 +00002573
Chris Lattner9f3c25a2009-11-09 22:57:59 +00002574 return 0;
2575}
2576
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002577Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002578 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00002579 const TargetLibraryInfo *TLI,
2580 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002581 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2582 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002583}
2584
Chris Lattner9dbb4292009-11-09 23:28:39 +00002585/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2586/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002587static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002588 const Query &Q, unsigned MaxRecurse) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00002589 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2590 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2591
Chris Lattnerd06094f2009-11-10 00:55:12 +00002592 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00002593 if (Constant *CRHS = dyn_cast<Constant>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002594 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
Duncan Sands12a86f52010-11-14 11:23:23 +00002595
Chris Lattnerd06094f2009-11-10 00:55:12 +00002596 // If we have a constant, make sure it is on the RHS.
2597 std::swap(LHS, RHS);
2598 Pred = CmpInst::getSwappedPredicate(Pred);
2599 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002600
Chris Lattner210c5d42009-11-09 23:55:12 +00002601 // Fold trivial predicates.
2602 if (Pred == FCmpInst::FCMP_FALSE)
2603 return ConstantInt::get(GetCompareTy(LHS), 0);
2604 if (Pred == FCmpInst::FCMP_TRUE)
2605 return ConstantInt::get(GetCompareTy(LHS), 1);
2606
Chris Lattner210c5d42009-11-09 23:55:12 +00002607 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
2608 return UndefValue::get(GetCompareTy(LHS));
2609
2610 // fcmp x,x -> true/false. Not all compares are foldable.
Duncan Sands124708d2011-01-01 20:08:02 +00002611 if (LHS == RHS) {
Chris Lattner210c5d42009-11-09 23:55:12 +00002612 if (CmpInst::isTrueWhenEqual(Pred))
2613 return ConstantInt::get(GetCompareTy(LHS), 1);
2614 if (CmpInst::isFalseWhenEqual(Pred))
2615 return ConstantInt::get(GetCompareTy(LHS), 0);
2616 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002617
Chris Lattner210c5d42009-11-09 23:55:12 +00002618 // Handle fcmp with constant RHS
2619 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2620 // If the constant is a nan, see if we can fold the comparison based on it.
2621 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2622 if (CFP->getValueAPF().isNaN()) {
2623 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
2624 return ConstantInt::getFalse(CFP->getContext());
2625 assert(FCmpInst::isUnordered(Pred) &&
2626 "Comparison must be either ordered or unordered!");
2627 // True if unordered.
2628 return ConstantInt::getTrue(CFP->getContext());
2629 }
Dan Gohman6b617a72010-02-22 04:06:03 +00002630 // Check whether the constant is an infinity.
2631 if (CFP->getValueAPF().isInfinity()) {
2632 if (CFP->getValueAPF().isNegative()) {
2633 switch (Pred) {
2634 case FCmpInst::FCMP_OLT:
2635 // No value is ordered and less than negative infinity.
2636 return ConstantInt::getFalse(CFP->getContext());
2637 case FCmpInst::FCMP_UGE:
2638 // All values are unordered with or at least negative infinity.
2639 return ConstantInt::getTrue(CFP->getContext());
2640 default:
2641 break;
2642 }
2643 } else {
2644 switch (Pred) {
2645 case FCmpInst::FCMP_OGT:
2646 // No value is ordered and greater than infinity.
2647 return ConstantInt::getFalse(CFP->getContext());
2648 case FCmpInst::FCMP_ULE:
2649 // All values are unordered with and at most infinity.
2650 return ConstantInt::getTrue(CFP->getContext());
2651 default:
2652 break;
2653 }
2654 }
2655 }
Chris Lattner210c5d42009-11-09 23:55:12 +00002656 }
2657 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002658
Duncan Sands92826de2010-11-07 16:46:25 +00002659 // If the comparison is with the result of a select instruction, check whether
2660 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002661 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002662 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002663 return V;
2664
2665 // If the comparison is with the result of a phi instruction, check whether
2666 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00002667 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002668 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00002669 return V;
Duncan Sands92826de2010-11-07 16:46:25 +00002670
Chris Lattner9dbb4292009-11-09 23:28:39 +00002671 return 0;
2672}
2673
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002674Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002675 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00002676 const TargetLibraryInfo *TLI,
2677 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002678 return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2679 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002680}
2681
Chris Lattner04754262010-04-20 05:32:14 +00002682/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2683/// the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002684static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
2685 Value *FalseVal, const Query &Q,
2686 unsigned MaxRecurse) {
Chris Lattner04754262010-04-20 05:32:14 +00002687 // select true, X, Y -> X
2688 // select false, X, Y -> Y
2689 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2690 return CB->getZExtValue() ? TrueVal : FalseVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002691
Chris Lattner04754262010-04-20 05:32:14 +00002692 // select C, X, X -> X
Duncan Sands124708d2011-01-01 20:08:02 +00002693 if (TrueVal == FalseVal)
Chris Lattner04754262010-04-20 05:32:14 +00002694 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002695
Chris Lattner04754262010-04-20 05:32:14 +00002696 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
2697 if (isa<Constant>(TrueVal))
2698 return TrueVal;
2699 return FalseVal;
2700 }
Dan Gohman68c0dbc2011-07-01 01:03:43 +00002701 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
2702 return FalseVal;
2703 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
2704 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002705
Chris Lattner04754262010-04-20 05:32:14 +00002706 return 0;
2707}
2708
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002709Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
Micah Villmow3574eca2012-10-08 16:38:25 +00002710 const DataLayout *TD,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002711 const TargetLibraryInfo *TLI,
2712 const DominatorTree *DT) {
2713 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
2714 RecursionLimit);
2715}
2716
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002717/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2718/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002719static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
Duncan Sands85bbff62010-11-22 13:42:49 +00002720 // The type of the GEP pointer operand.
Nadav Rotem16087692011-12-05 06:29:09 +00002721 PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
2722 // The GEP pointer operand is not a pointer, it's a vector of pointers.
2723 if (!PtrTy)
2724 return 0;
Duncan Sands85bbff62010-11-22 13:42:49 +00002725
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002726 // getelementptr P -> P.
Jay Foadb9b54eb2011-07-19 15:07:52 +00002727 if (Ops.size() == 1)
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002728 return Ops[0];
2729
Duncan Sands85bbff62010-11-22 13:42:49 +00002730 if (isa<UndefValue>(Ops[0])) {
2731 // Compute the (pointer) type returned by the GEP instruction.
Jay Foada9203102011-07-25 09:48:08 +00002732 Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002733 Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
Duncan Sands85bbff62010-11-22 13:42:49 +00002734 return UndefValue::get(GEPTy);
2735 }
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002736
Jay Foadb9b54eb2011-07-19 15:07:52 +00002737 if (Ops.size() == 2) {
Duncan Sandse60d79f2010-11-21 13:53:09 +00002738 // getelementptr P, 0 -> P.
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002739 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2740 if (C->isZero())
2741 return Ops[0];
Duncan Sandse60d79f2010-11-21 13:53:09 +00002742 // getelementptr P, N -> P if P points to a type of zero size.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002743 if (Q.TD) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002744 Type *Ty = PtrTy->getElementType();
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002745 if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
Duncan Sandse60d79f2010-11-21 13:53:09 +00002746 return Ops[0];
2747 }
2748 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002749
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002750 // Check to see if this is constant foldable.
Jay Foadb9b54eb2011-07-19 15:07:52 +00002751 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002752 if (!isa<Constant>(Ops[i]))
2753 return 0;
Duncan Sands12a86f52010-11-14 11:23:23 +00002754
Jay Foaddab3d292011-07-21 14:31:17 +00002755 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002756}
2757
Micah Villmow3574eca2012-10-08 16:38:25 +00002758Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *TD,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002759 const TargetLibraryInfo *TLI,
2760 const DominatorTree *DT) {
2761 return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
2762}
2763
Duncan Sandsdabc2802011-09-05 06:52:48 +00002764/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2765/// can fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002766static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
2767 ArrayRef<unsigned> Idxs, const Query &Q,
2768 unsigned) {
Duncan Sandsdabc2802011-09-05 06:52:48 +00002769 if (Constant *CAgg = dyn_cast<Constant>(Agg))
2770 if (Constant *CVal = dyn_cast<Constant>(Val))
2771 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2772
2773 // insertvalue x, undef, n -> x
2774 if (match(Val, m_Undef()))
2775 return Agg;
2776
2777 // insertvalue x, (extractvalue y, n), n
2778 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
Benjamin Kramerae707bd2011-09-05 18:16:19 +00002779 if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2780 EV->getIndices() == Idxs) {
Duncan Sandsdabc2802011-09-05 06:52:48 +00002781 // insertvalue undef, (extractvalue y, n), n -> y
2782 if (match(Agg, m_Undef()))
2783 return EV->getAggregateOperand();
2784
2785 // insertvalue y, (extractvalue y, n), n -> y
2786 if (Agg == EV->getAggregateOperand())
2787 return Agg;
2788 }
2789
2790 return 0;
2791}
2792
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002793Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2794 ArrayRef<unsigned> Idxs,
Micah Villmow3574eca2012-10-08 16:38:25 +00002795 const DataLayout *TD,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002796 const TargetLibraryInfo *TLI,
2797 const DominatorTree *DT) {
2798 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
2799 RecursionLimit);
2800}
2801
Duncan Sandsff103412010-11-17 04:30:22 +00002802/// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002803static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
Duncan Sandsff103412010-11-17 04:30:22 +00002804 // If all of the PHI's incoming values are the same then replace the PHI node
2805 // with the common value.
2806 Value *CommonValue = 0;
2807 bool HasUndefInput = false;
2808 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2809 Value *Incoming = PN->getIncomingValue(i);
2810 // If the incoming value is the phi node itself, it can safely be skipped.
2811 if (Incoming == PN) continue;
2812 if (isa<UndefValue>(Incoming)) {
2813 // Remember that we saw an undef value, but otherwise ignore them.
2814 HasUndefInput = true;
2815 continue;
2816 }
2817 if (CommonValue && Incoming != CommonValue)
2818 return 0; // Not the same, bail out.
2819 CommonValue = Incoming;
2820 }
2821
2822 // If CommonValue is null then all of the incoming values were either undef or
2823 // equal to the phi node itself.
2824 if (!CommonValue)
2825 return UndefValue::get(PN->getType());
2826
2827 // If we have a PHI node like phi(X, undef, X), where X is defined by some
2828 // instruction, we cannot return X as the result of the PHI node unless it
2829 // dominates the PHI block.
2830 if (HasUndefInput)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002831 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0;
Duncan Sandsff103412010-11-17 04:30:22 +00002832
2833 return CommonValue;
2834}
2835
Duncan Sandsbd0fe562012-03-13 14:07:05 +00002836static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
2837 if (Constant *C = dyn_cast<Constant>(Op))
2838 return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
2839
2840 return 0;
2841}
2842
Micah Villmow3574eca2012-10-08 16:38:25 +00002843Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *TD,
Duncan Sandsbd0fe562012-03-13 14:07:05 +00002844 const TargetLibraryInfo *TLI,
2845 const DominatorTree *DT) {
2846 return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
2847}
2848
Chris Lattnerd06094f2009-11-10 00:55:12 +00002849//=== Helper functions for higher up the class hierarchy.
Chris Lattner9dbb4292009-11-09 23:28:39 +00002850
Chris Lattnerd06094f2009-11-10 00:55:12 +00002851/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2852/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002853static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002854 const Query &Q, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00002855 switch (Opcode) {
Chris Lattner81a0dc92011-02-09 17:15:04 +00002856 case Instruction::Add:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002857 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002858 Q, MaxRecurse);
Michael Ilsemand0a0d222012-12-12 00:29:16 +00002859 case Instruction::FAdd:
2860 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2861
Chris Lattner81a0dc92011-02-09 17:15:04 +00002862 case Instruction::Sub:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002863 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002864 Q, MaxRecurse);
Michael Ilsemand0a0d222012-12-12 00:29:16 +00002865 case Instruction::FSub:
2866 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2867
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002868 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
Michael Ilsemand0a0d222012-12-12 00:29:16 +00002869 case Instruction::FMul:
2870 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002871 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
2872 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
2873 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
2874 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
2875 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
2876 case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002877 case Instruction::Shl:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002878 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002879 Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002880 case Instruction::LShr:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002881 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002882 case Instruction::AShr:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002883 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2884 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
2885 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
2886 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
Chris Lattnerd06094f2009-11-10 00:55:12 +00002887 default:
2888 if (Constant *CLHS = dyn_cast<Constant>(LHS))
2889 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2890 Constant *COps[] = {CLHS, CRHS};
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002891 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
2892 Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00002893 }
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002894
Duncan Sands566edb02010-12-21 08:49:00 +00002895 // If the operation is associative, try some generic simplifications.
2896 if (Instruction::isAssociative(Opcode))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002897 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00002898 return V;
2899
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002900 // If the operation is with the result of a select instruction check whether
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002901 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002902 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002903 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002904 return V;
2905
2906 // If the operation is with the result of a phi instruction, check whether
2907 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002908 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002909 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002910 return V;
2911
Chris Lattnerd06094f2009-11-10 00:55:12 +00002912 return 0;
2913 }
2914}
Chris Lattner9dbb4292009-11-09 23:28:39 +00002915
Duncan Sands12a86f52010-11-14 11:23:23 +00002916Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002917 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +00002918 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002919 return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
Chris Lattner9dbb4292009-11-09 23:28:39 +00002920}
2921
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002922/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2923/// fold the result.
2924static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002925 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002926 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002927 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2928 return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002929}
2930
2931Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002932 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +00002933 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002934 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2935 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002936}
Chris Lattnere3453782009-11-10 01:08:51 +00002937
Michael Ilsemanf89de812013-02-07 19:26:05 +00002938static bool IsIdempotent(Intrinsic::ID ID) {
2939 switch (ID) {
2940 default: return false;
2941
2942 // Unary idempotent: f(f(x)) = f(x)
2943 case Intrinsic::fabs:
2944 case Intrinsic::floor:
2945 case Intrinsic::ceil:
2946 case Intrinsic::trunc:
2947 case Intrinsic::rint:
2948 case Intrinsic::nearbyint:
Hal Finkel41418d12013-08-07 22:49:12 +00002949 case Intrinsic::round:
Michael Ilsemanf89de812013-02-07 19:26:05 +00002950 return true;
2951 }
2952}
2953
2954template <typename IterTy>
2955static Value *SimplifyIntrinsic(Intrinsic::ID IID, IterTy ArgBegin, IterTy ArgEnd,
2956 const Query &Q, unsigned MaxRecurse) {
2957 // Perform idempotent optimizations
2958 if (!IsIdempotent(IID))
2959 return 0;
2960
2961 // Unary Ops
2962 if (std::distance(ArgBegin, ArgEnd) == 1)
2963 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
2964 if (II->getIntrinsicID() == IID)
2965 return II;
2966
2967 return 0;
2968}
2969
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002970template <typename IterTy>
Chandler Carruthe949aa12012-12-28 14:23:29 +00002971static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002972 const Query &Q, unsigned MaxRecurse) {
Chandler Carruthe949aa12012-12-28 14:23:29 +00002973 Type *Ty = V->getType();
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002974 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
2975 Ty = PTy->getElementType();
2976 FunctionType *FTy = cast<FunctionType>(Ty);
2977
Dan Gohman71d05032011-11-04 18:32:42 +00002978 // call undef -> undef
Chandler Carruthe949aa12012-12-28 14:23:29 +00002979 if (isa<UndefValue>(V))
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002980 return UndefValue::get(FTy->getReturnType());
Dan Gohman71d05032011-11-04 18:32:42 +00002981
Chandler Carruthe949aa12012-12-28 14:23:29 +00002982 Function *F = dyn_cast<Function>(V);
2983 if (!F)
2984 return 0;
2985
Michael Ilsemanf89de812013-02-07 19:26:05 +00002986 if (unsigned IID = F->getIntrinsicID())
2987 if (Value *Ret =
2988 SimplifyIntrinsic((Intrinsic::ID) IID, ArgBegin, ArgEnd, Q, MaxRecurse))
2989 return Ret;
2990
Chandler Carruthe949aa12012-12-28 14:23:29 +00002991 if (!canConstantFoldCallTo(F))
2992 return 0;
2993
2994 SmallVector<Constant *, 4> ConstantArgs;
2995 ConstantArgs.reserve(ArgEnd - ArgBegin);
2996 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
2997 Constant *C = dyn_cast<Constant>(*I);
2998 if (!C)
2999 return 0;
3000 ConstantArgs.push_back(C);
3001 }
3002
3003 return ConstantFoldCall(F, ConstantArgs, Q.TLI);
Dan Gohman71d05032011-11-04 18:32:42 +00003004}
3005
Chandler Carruthe949aa12012-12-28 14:23:29 +00003006Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003007 User::op_iterator ArgEnd, const DataLayout *TD,
3008 const TargetLibraryInfo *TLI,
3009 const DominatorTree *DT) {
Chandler Carruthe949aa12012-12-28 14:23:29 +00003010 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(TD, TLI, DT),
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003011 RecursionLimit);
3012}
3013
Chandler Carruthe949aa12012-12-28 14:23:29 +00003014Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003015 const DataLayout *TD, const TargetLibraryInfo *TLI,
3016 const DominatorTree *DT) {
Chandler Carruthe949aa12012-12-28 14:23:29 +00003017 return ::SimplifyCall(V, Args.begin(), Args.end(), Query(TD, TLI, DT),
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003018 RecursionLimit);
3019}
3020
Chris Lattnere3453782009-11-10 01:08:51 +00003021/// SimplifyInstruction - See if we can compute a simplified version of this
3022/// instruction. If not, this returns null.
Micah Villmow3574eca2012-10-08 16:38:25 +00003023Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00003024 const TargetLibraryInfo *TLI,
Duncan Sandseff05812010-11-14 18:36:10 +00003025 const DominatorTree *DT) {
Duncan Sandsd261dc62010-11-17 08:35:29 +00003026 Value *Result;
3027
Chris Lattnere3453782009-11-10 01:08:51 +00003028 switch (I->getOpcode()) {
3029 default:
Chad Rosier618c1db2011-12-01 03:08:23 +00003030 Result = ConstantFoldInstruction(I, TD, TLI);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003031 break;
Michael Ilseman09ee2502012-12-12 00:27:46 +00003032 case Instruction::FAdd:
3033 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
3034 I->getFastMathFlags(), TD, TLI, DT);
3035 break;
Chris Lattner8aee8ef2009-11-27 17:42:22 +00003036 case Instruction::Add:
Duncan Sandsd261dc62010-11-17 08:35:29 +00003037 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
3038 cast<BinaryOperator>(I)->hasNoSignedWrap(),
3039 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003040 TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003041 break;
Michael Ilseman09ee2502012-12-12 00:27:46 +00003042 case Instruction::FSub:
3043 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
3044 I->getFastMathFlags(), TD, TLI, DT);
3045 break;
Duncan Sandsfea3b212010-12-15 14:07:39 +00003046 case Instruction::Sub:
3047 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
3048 cast<BinaryOperator>(I)->hasNoSignedWrap(),
3049 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003050 TD, TLI, DT);
Duncan Sandsfea3b212010-12-15 14:07:39 +00003051 break;
Michael Ilsemaneb61c922012-11-27 00:46:26 +00003052 case Instruction::FMul:
3053 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
3054 I->getFastMathFlags(), TD, TLI, DT);
3055 break;
Duncan Sands82fdab32010-12-21 14:00:22 +00003056 case Instruction::Mul:
Chad Rosier618c1db2011-12-01 03:08:23 +00003057 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands82fdab32010-12-21 14:00:22 +00003058 break;
Duncan Sands593faa52011-01-28 16:51:11 +00003059 case Instruction::SDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00003060 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands593faa52011-01-28 16:51:11 +00003061 break;
3062 case Instruction::UDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00003063 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands593faa52011-01-28 16:51:11 +00003064 break;
Frits van Bommel1fca2c32011-01-29 15:26:31 +00003065 case Instruction::FDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00003066 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Frits van Bommel1fca2c32011-01-29 15:26:31 +00003067 break;
Duncan Sandsf24ed772011-05-02 16:27:02 +00003068 case Instruction::SRem:
Chad Rosier618c1db2011-12-01 03:08:23 +00003069 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00003070 break;
3071 case Instruction::URem:
Chad Rosier618c1db2011-12-01 03:08:23 +00003072 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00003073 break;
3074 case Instruction::FRem:
Chad Rosier618c1db2011-12-01 03:08:23 +00003075 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00003076 break;
Duncan Sandsc43cee32011-01-14 00:37:45 +00003077 case Instruction::Shl:
Chris Lattner81a0dc92011-02-09 17:15:04 +00003078 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
3079 cast<BinaryOperator>(I)->hasNoSignedWrap(),
3080 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003081 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00003082 break;
3083 case Instruction::LShr:
Chris Lattner81a0dc92011-02-09 17:15:04 +00003084 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
3085 cast<BinaryOperator>(I)->isExact(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003086 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00003087 break;
3088 case Instruction::AShr:
Chris Lattner81a0dc92011-02-09 17:15:04 +00003089 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
3090 cast<BinaryOperator>(I)->isExact(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003091 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00003092 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003093 case Instruction::And:
Chad Rosier618c1db2011-12-01 03:08:23 +00003094 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003095 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003096 case Instruction::Or:
Chad Rosier618c1db2011-12-01 03:08:23 +00003097 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003098 break;
Duncan Sands2b749872010-11-17 18:52:15 +00003099 case Instruction::Xor:
Chad Rosier618c1db2011-12-01 03:08:23 +00003100 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands2b749872010-11-17 18:52:15 +00003101 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003102 case Instruction::ICmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00003103 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003104 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003105 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003106 case Instruction::FCmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00003107 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003108 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003109 break;
Chris Lattner04754262010-04-20 05:32:14 +00003110 case Instruction::Select:
Duncan Sandsd261dc62010-11-17 08:35:29 +00003111 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00003112 I->getOperand(2), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003113 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00003114 case Instruction::GetElementPtr: {
3115 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
Duncan Sands0aa85eb2012-03-13 11:42:19 +00003116 Result = SimplifyGEPInst(Ops, TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003117 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00003118 }
Duncan Sandsdabc2802011-09-05 06:52:48 +00003119 case Instruction::InsertValue: {
3120 InsertValueInst *IV = cast<InsertValueInst>(I);
3121 Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
3122 IV->getInsertedValueOperand(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00003123 IV->getIndices(), TD, TLI, DT);
Duncan Sandsdabc2802011-09-05 06:52:48 +00003124 break;
3125 }
Duncan Sandscd6636c2010-11-14 13:30:18 +00003126 case Instruction::PHI:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00003127 Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
Duncan Sandsd261dc62010-11-17 08:35:29 +00003128 break;
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003129 case Instruction::Call: {
3130 CallSite CS(cast<CallInst>(I));
3131 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
3132 TD, TLI, DT);
Dan Gohman71d05032011-11-04 18:32:42 +00003133 break;
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003134 }
Duncan Sandsbd0fe562012-03-13 14:07:05 +00003135 case Instruction::Trunc:
3136 Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
3137 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003138 }
Duncan Sandsd261dc62010-11-17 08:35:29 +00003139
3140 /// If called on unreachable code, the above logic may report that the
3141 /// instruction simplified to itself. Make life easier for users by
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00003142 /// detecting that case here, returning a safe value instead.
3143 return Result == I ? UndefValue::get(I->getType()) : Result;
Chris Lattnere3453782009-11-10 01:08:51 +00003144}
3145
Chandler Carruth6b980542012-03-24 21:11:24 +00003146/// \brief Implementation of recursive simplification through an instructions
3147/// uses.
Chris Lattner40d8c282009-11-10 22:26:15 +00003148///
Chandler Carruth6b980542012-03-24 21:11:24 +00003149/// This is the common implementation of the recursive simplification routines.
3150/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
3151/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
3152/// instructions to process and attempt to simplify it using
3153/// InstructionSimplify.
3154///
3155/// This routine returns 'true' only when *it* simplifies something. The passed
3156/// in simplified value does not count toward this.
3157static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
Micah Villmow3574eca2012-10-08 16:38:25 +00003158 const DataLayout *TD,
Chandler Carruth6b980542012-03-24 21:11:24 +00003159 const TargetLibraryInfo *TLI,
3160 const DominatorTree *DT) {
3161 bool Simplified = false;
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003162 SmallSetVector<Instruction *, 8> Worklist;
Duncan Sands12a86f52010-11-14 11:23:23 +00003163
Chandler Carruth6b980542012-03-24 21:11:24 +00003164 // If we have an explicit value to collapse to, do that round of the
3165 // simplification loop by hand initially.
3166 if (SimpleV) {
3167 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
3168 ++UI)
Chandler Carruthc5b785b2012-03-24 22:34:23 +00003169 if (*UI != I)
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003170 Worklist.insert(cast<Instruction>(*UI));
Duncan Sands12a86f52010-11-14 11:23:23 +00003171
Chandler Carruth6b980542012-03-24 21:11:24 +00003172 // Replace the instruction with its simplified value.
3173 I->replaceAllUsesWith(SimpleV);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00003174
Chandler Carruth6b980542012-03-24 21:11:24 +00003175 // Gracefully handle edge cases where the instruction is not wired into any
3176 // parent block.
3177 if (I->getParent())
3178 I->eraseFromParent();
3179 } else {
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003180 Worklist.insert(I);
Chris Lattner40d8c282009-11-10 22:26:15 +00003181 }
Duncan Sands12a86f52010-11-14 11:23:23 +00003182
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003183 // Note that we must test the size on each iteration, the worklist can grow.
3184 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
3185 I = Worklist[Idx];
Duncan Sands12a86f52010-11-14 11:23:23 +00003186
Chandler Carruth6b980542012-03-24 21:11:24 +00003187 // See if this instruction simplifies.
3188 SimpleV = SimplifyInstruction(I, TD, TLI, DT);
3189 if (!SimpleV)
3190 continue;
3191
3192 Simplified = true;
3193
3194 // Stash away all the uses of the old instruction so we can check them for
3195 // recursive simplifications after a RAUW. This is cheaper than checking all
3196 // uses of To on the recursive step in most cases.
3197 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
3198 ++UI)
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003199 Worklist.insert(cast<Instruction>(*UI));
Chandler Carruth6b980542012-03-24 21:11:24 +00003200
3201 // Replace the instruction with its simplified value.
3202 I->replaceAllUsesWith(SimpleV);
3203
3204 // Gracefully handle edge cases where the instruction is not wired into any
3205 // parent block.
3206 if (I->getParent())
3207 I->eraseFromParent();
3208 }
3209 return Simplified;
3210}
3211
3212bool llvm::recursivelySimplifyInstruction(Instruction *I,
Micah Villmow3574eca2012-10-08 16:38:25 +00003213 const DataLayout *TD,
Chandler Carruth6b980542012-03-24 21:11:24 +00003214 const TargetLibraryInfo *TLI,
3215 const DominatorTree *DT) {
3216 return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT);
3217}
3218
3219bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
Micah Villmow3574eca2012-10-08 16:38:25 +00003220 const DataLayout *TD,
Chandler Carruth6b980542012-03-24 21:11:24 +00003221 const TargetLibraryInfo *TLI,
3222 const DominatorTree *DT) {
3223 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
3224 assert(SimpleV && "Must provide a simplified value.");
3225 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT);
Chris Lattner40d8c282009-11-10 22:26:15 +00003226}