blob: 7eaae9b36f1d991ab27e9393a3d62f4838454c3f [file] [log] [blame]
Chris Lattner8383a7b2008-04-20 20:35:01 +00001//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattner177480b2008-04-20 21:13:06 +000010// This file implements the Jump Threading pass.
Chris Lattner8383a7b2008-04-20 20:35:01 +000011//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
Chris Lattner177480b2008-04-20 21:13:06 +000016#include "llvm/IntrinsicInst.h"
Owen Anderson1ff50b32009-07-03 00:54:20 +000017#include "llvm/LLVMContext.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000018#include "llvm/Pass.h"
Chris Lattneref0c6742008-12-01 04:48:07 +000019#include "llvm/Analysis/ConstantFolding.h"
Chris Lattner9819ef72009-11-09 23:00:14 +000020#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner2cc67512008-04-21 02:57:57 +000021#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chris Lattnerbd3401f2008-04-20 22:39:42 +000022#include "llvm/Transforms/Utils/Local.h"
Chris Lattner433a0db2009-10-10 09:05:58 +000023#include "llvm/Transforms/Utils/SSAUpdater.h"
Chris Lattneref0c6742008-12-01 04:48:07 +000024#include "llvm/Target/TargetData.h"
Mike Stumpfe095f32009-05-04 18:40:41 +000025#include "llvm/ADT/DenseMap.h"
26#include "llvm/ADT/Statistic.h"
27#include "llvm/ADT/STLExtras.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/SmallSet.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000030#include "llvm/Support/CommandLine.h"
Chris Lattner177480b2008-04-20 21:13:06 +000031#include "llvm/Support/Debug.h"
Daniel Dunbar93b67e42009-07-26 07:49:05 +000032#include "llvm/Support/raw_ostream.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000033using namespace llvm;
34
Chris Lattnerbd3401f2008-04-20 22:39:42 +000035STATISTIC(NumThreads, "Number of jumps threaded");
36STATISTIC(NumFolds, "Number of terminators folded");
Chris Lattner78c552e2009-10-11 07:24:57 +000037STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
Chris Lattner8383a7b2008-04-20 20:35:01 +000038
Chris Lattner177480b2008-04-20 21:13:06 +000039static cl::opt<unsigned>
40Threshold("jump-threading-threshold",
41 cl::desc("Max block size to duplicate for jump threading"),
42 cl::init(6), cl::Hidden);
43
Chris Lattner8383a7b2008-04-20 20:35:01 +000044namespace {
Chris Lattner94019f82008-05-09 04:43:13 +000045 /// This pass performs 'jump threading', which looks at blocks that have
46 /// multiple predecessors and multiple successors. If one or more of the
47 /// predecessors of the block can be proven to always jump to one of the
48 /// successors, we forward the edge from the predecessor to the successor by
49 /// duplicating the contents of this block.
50 ///
51 /// An example of when this can occur is code like this:
52 ///
53 /// if () { ...
54 /// X = 4;
55 /// }
56 /// if (X < 3) {
57 ///
58 /// In this case, the unconditional branch at the end of the first if can be
59 /// revectored to the false side of the second if.
60 ///
Chris Lattner3e8b6632009-09-02 06:11:42 +000061 class JumpThreading : public FunctionPass {
Chris Lattneref0c6742008-12-01 04:48:07 +000062 TargetData *TD;
Mike Stumpfe095f32009-05-04 18:40:41 +000063#ifdef NDEBUG
64 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
65#else
66 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
67#endif
Chris Lattner8383a7b2008-04-20 20:35:01 +000068 public:
69 static char ID; // Pass identification
Dan Gohmanae73dc12008-09-04 17:05:41 +000070 JumpThreading() : FunctionPass(&ID) {}
Chris Lattner8383a7b2008-04-20 20:35:01 +000071
72 bool runOnFunction(Function &F);
Mike Stumpfe095f32009-05-04 18:40:41 +000073 void FindLoopHeaders(Function &F);
74
Chris Lattnerc7bcbf62008-11-27 07:20:04 +000075 bool ProcessBlock(BasicBlock *BB);
Chris Lattner5729d382009-11-07 08:05:03 +000076 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
77 BasicBlock *SuccBB);
Chris Lattner78c552e2009-10-11 07:24:57 +000078 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
79 BasicBlock *PredBB);
Chris Lattner5729d382009-11-07 08:05:03 +000080
81 typedef SmallVectorImpl<std::pair<ConstantInt*,
82 BasicBlock*> > PredValueInfo;
83
84 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
85 PredValueInfo &Result);
86 bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
87
88
Chris Lattner421fa9e2008-12-03 07:48:08 +000089 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner3cda3cd2008-12-04 06:31:07 +000090 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner6bf77502008-04-22 07:05:46 +000091
Chris Lattnerd38c14e2008-04-22 06:36:15 +000092 bool ProcessJumpOnPHI(PHINode *PN);
Chris Lattner69e067f2008-11-27 05:07:53 +000093
94 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
Chris Lattner8383a7b2008-04-20 20:35:01 +000095 };
Chris Lattner8383a7b2008-04-20 20:35:01 +000096}
97
Dan Gohman844731a2008-05-13 00:00:25 +000098char JumpThreading::ID = 0;
99static RegisterPass<JumpThreading>
100X("jump-threading", "Jump Threading");
101
Chris Lattner8383a7b2008-04-20 20:35:01 +0000102// Public interface to the Jump Threading pass
103FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
104
105/// runOnFunction - Top level algorithm.
106///
107bool JumpThreading::runOnFunction(Function &F) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000108 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
Dan Gohman02a436c2009-07-24 18:13:53 +0000109 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000110
Mike Stumpfe095f32009-05-04 18:40:41 +0000111 FindLoopHeaders(F);
112
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000113 bool AnotherIteration = true, EverChanged = false;
114 while (AnotherIteration) {
115 AnotherIteration = false;
116 bool Changed = false;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000117 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
118 BasicBlock *BB = I;
119 while (ProcessBlock(BB))
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000120 Changed = true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000121
122 ++I;
123
124 // If the block is trivially dead, zap it. This eliminates the successor
125 // edges which simplifies the CFG.
126 if (pred_begin(BB) == pred_end(BB) &&
Chris Lattner20fa76e2008-12-08 22:44:07 +0000127 BB != &BB->getParent()->getEntryBlock()) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000128 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000129 << "' with terminator: " << *BB->getTerminator() << '\n');
Mike Stumpfe095f32009-05-04 18:40:41 +0000130 LoopHeaders.erase(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000131 DeleteDeadBlock(BB);
132 Changed = true;
133 }
134 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000135 AnotherIteration = Changed;
136 EverChanged |= Changed;
137 }
Mike Stumpfe095f32009-05-04 18:40:41 +0000138
139 LoopHeaders.clear();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000140 return EverChanged;
Chris Lattner8383a7b2008-04-20 20:35:01 +0000141}
Chris Lattner177480b2008-04-20 21:13:06 +0000142
Chris Lattner78c552e2009-10-11 07:24:57 +0000143/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
144/// thread across it.
145static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
146 /// Ignore PHI nodes, these will be flattened when duplication happens.
147 BasicBlock::const_iterator I = BB->getFirstNonPHI();
148
149 // Sum up the cost of each instruction until we get to the terminator. Don't
150 // include the terminator because the copy won't include it.
151 unsigned Size = 0;
152 for (; !isa<TerminatorInst>(I); ++I) {
153 // Debugger intrinsics don't incur code size.
154 if (isa<DbgInfoIntrinsic>(I)) continue;
155
156 // If this is a pointer->pointer bitcast, it is free.
157 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
158 continue;
159
160 // All other instructions count for at least one unit.
161 ++Size;
162
163 // Calls are more expensive. If they are non-intrinsic calls, we model them
164 // as having cost of 4. If they are a non-vector intrinsic, we model them
165 // as having cost of 2 total, and if they are a vector intrinsic, we model
166 // them as having cost 1.
167 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
168 if (!isa<IntrinsicInst>(CI))
169 Size += 3;
170 else if (!isa<VectorType>(CI->getType()))
171 Size += 1;
172 }
173 }
174
175 // Threading through a switch statement is particularly profitable. If this
176 // block ends in a switch, decrease its cost to make it more likely to happen.
177 if (isa<SwitchInst>(I))
178 Size = Size > 6 ? Size-6 : 0;
179
180 return Size;
181}
182
183
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000184//===----------------------------------------------------------------------===//
185
186
187/// RemovePredecessorAndSimplify - Like BasicBlock::removePredecessor, this
188/// method is called when we're about to delete Pred as a predecessor of BB. If
189/// BB contains any PHI nodes, this drops the entries in the PHI nodes for Pred.
190///
191/// Unlike the removePredecessor method, this attempts to simplify uses of PHI
192/// nodes that collapse into identity values. For example, if we have:
193/// x = phi(1, 0, 0, 0)
194/// y = and x, z
195///
196/// .. and delete the predecessor corresponding to the '1', this will attempt to
197/// recursively fold the and to 0.
198static void RemovePredecessorAndSimplify(BasicBlock *BB, BasicBlock *Pred,
199 TargetData *TD) {
200 // This only adjusts blocks with PHI nodes.
201 if (!isa<PHINode>(BB->begin()))
202 return;
203
204 // Remove the entries for Pred from the PHI nodes in BB, but do not simplify
205 // them down. This will leave us with single entry phi nodes and other phis
206 // that can be removed.
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000207 BB->removePredecessor(Pred, true);
208
209 WeakVH PhiIt = &BB->front();
210 while (PHINode *PN = dyn_cast<PHINode>(PhiIt)) {
211 PhiIt = &*++BasicBlock::iterator(cast<Instruction>(PhiIt));
212
213 Value *PNV = PN->hasConstantValue();
214 if (PNV == 0) continue;
215
216 assert(PNV != PN && "hasConstantValue broken");
217
218 // If we're able to simplify the phi to a constant, simplify it into its
219 // uses.
220 while (!PN->use_empty()) {
221 // Update the instruction to use the new value.
222 Use &U = PN->use_begin().getUse();
223 Instruction *User = cast<Instruction>(U.getUser());
224 U = PNV;
225
226 // See if we can simplify it (constant folding).
227 if (Constant *C = ConstantFoldInstruction(User, TD)) {
228 User->replaceAllUsesWith(C);
229 User->eraseFromParent();
230 }
231 }
232
233 PN->replaceAllUsesWith(PNV);
234 PN->eraseFromParent();
235
236 // If recursive simplification ended up deleting the next PHI node we would
237 // iterate to, then our iterator is invalid, restart scanning from the top
238 // of the block.
239 if (PhiIt == 0) PhiIt = &BB->front();
240 }
241}
242
243//===----------------------------------------------------------------------===//
244
Chris Lattner78c552e2009-10-11 07:24:57 +0000245
Mike Stumpfe095f32009-05-04 18:40:41 +0000246/// FindLoopHeaders - We do not want jump threading to turn proper loop
247/// structures into irreducible loops. Doing this breaks up the loop nesting
248/// hierarchy and pessimizes later transformations. To prevent this from
249/// happening, we first have to find the loop headers. Here we approximate this
250/// by finding targets of backedges in the CFG.
251///
252/// Note that there definitely are cases when we want to allow threading of
253/// edges across a loop header. For example, threading a jump from outside the
254/// loop (the preheader) to an exit block of the loop is definitely profitable.
255/// It is also almost always profitable to thread backedges from within the loop
256/// to exit blocks, and is often profitable to thread backedges to other blocks
257/// within the loop (forming a nested loop). This simple analysis is not rich
258/// enough to track all of these properties and keep it up-to-date as the CFG
259/// mutates, so we don't allow any of these transformations.
260///
261void JumpThreading::FindLoopHeaders(Function &F) {
262 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
263 FindFunctionBackedges(F, Edges);
264
265 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
266 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
267}
268
Chris Lattner5729d382009-11-07 08:05:03 +0000269/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
270/// if we can infer that the value is a known ConstantInt in any of our
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000271/// predecessors. If so, return the known list of value and pred BB in the
Chris Lattner5729d382009-11-07 08:05:03 +0000272/// result vector. If a value is known to be undef, it is returned as null.
273///
274/// The BB basic block is known to start with a PHI node.
275///
276/// This returns true if there were any known values.
277///
278///
279/// TODO: Per PR2563, we could infer value range information about a predecessor
280/// based on its terminator.
281bool JumpThreading::
282ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
283 PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
Chris Lattner78567252009-11-06 18:15:14 +0000284
Chris Lattner5729d382009-11-07 08:05:03 +0000285 // If V is a constantint, then it is known in all predecessors.
286 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
287 ConstantInt *CI = dyn_cast<ConstantInt>(V);
288 Result.resize(TheFirstPHI->getNumIncomingValues());
289 for (unsigned i = 0, e = Result.size(); i != e; ++i)
290 Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
291 return true;
292 }
293
294 // If V is a non-instruction value, or an instruction in a different block,
295 // then it can't be derived from a PHI.
296 Instruction *I = dyn_cast<Instruction>(V);
297 if (I == 0 || I->getParent() != BB)
298 return false;
299
300 /// If I is a PHI node, then we know the incoming values for any constants.
301 if (PHINode *PN = dyn_cast<PHINode>(I)) {
302 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
303 Value *InVal = PN->getIncomingValue(i);
304 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
305 ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
306 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
307 }
308 }
309 return !Result.empty();
310 }
311
312 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
313
314 // Handle some boolean conditions.
315 if (I->getType()->getPrimitiveSizeInBits() == 1) {
316 // X | true -> true
317 // X & false -> false
318 if (I->getOpcode() == Instruction::Or ||
319 I->getOpcode() == Instruction::And) {
320 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
321 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
322
323 if (LHSVals.empty() && RHSVals.empty())
324 return false;
325
326 ConstantInt *InterestingVal;
327 if (I->getOpcode() == Instruction::Or)
328 InterestingVal = ConstantInt::getTrue(I->getContext());
329 else
330 InterestingVal = ConstantInt::getFalse(I->getContext());
331
332 // Scan for the sentinel.
333 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
334 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
335 Result.push_back(LHSVals[i]);
336 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
337 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
338 Result.push_back(RHSVals[i]);
339 return !Result.empty();
340 }
341
342 // TODO: Should handle the NOT form of XOR.
343
344 }
345
346 // Handle compare with phi operand, where the PHI is defined in this block.
347 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
348 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
349 if (PN && PN->getParent() == BB) {
350 // We can do this simplification if any comparisons fold to true or false.
351 // See if any do.
352 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
353 BasicBlock *PredBB = PN->getIncomingBlock(i);
354 Value *LHS = PN->getIncomingValue(i);
355 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
356
Chris Lattner9dbb4292009-11-09 23:28:39 +0000357 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS);
Chris Lattner5729d382009-11-07 08:05:03 +0000358 if (Res == 0) continue;
359
360 if (isa<UndefValue>(Res))
361 Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
362 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
363 Result.push_back(std::make_pair(CI, PredBB));
364 }
365
366 return !Result.empty();
367 }
368
369 // TODO: We could also recurse to see if we can determine constants another
370 // way.
371 }
372 return false;
373}
374
375
Chris Lattner6bf77502008-04-22 07:05:46 +0000376
Chris Lattnere33583b2009-10-11 04:18:15 +0000377/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
378/// in an undefined jump, decide which block is best to revector to.
379///
380/// Since we can pick an arbitrary destination, we pick the successor with the
381/// fewest predecessors. This should reduce the in-degree of the others.
382///
383static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
384 TerminatorInst *BBTerm = BB->getTerminator();
385 unsigned MinSucc = 0;
386 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
387 // Compute the successor with the minimum number of predecessors.
388 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
389 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
390 TestBB = BBTerm->getSuccessor(i);
391 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
392 if (NumPreds < MinNumPreds)
393 MinSucc = i;
394 }
395
396 return MinSucc;
397}
398
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000399/// ProcessBlock - If there are any predecessors whose control can be threaded
Chris Lattner177480b2008-04-20 21:13:06 +0000400/// through to a successor, transform them now.
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000401bool JumpThreading::ProcessBlock(BasicBlock *BB) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000402 // If this block has a single predecessor, and if that pred has a single
403 // successor, merge the blocks. This encourages recursive jump threading
404 // because now the condition in this block can be threaded through
405 // predecessors of our predecessor block.
Chris Lattner5729d382009-11-07 08:05:03 +0000406 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
Chris Lattnerf5102a02008-11-28 19:54:49 +0000407 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
408 SinglePred != BB) {
Mike Stumpfe095f32009-05-04 18:40:41 +0000409 // If SinglePred was a loop header, BB becomes one.
410 if (LoopHeaders.erase(SinglePred))
411 LoopHeaders.insert(BB);
412
Chris Lattner3d86d242008-11-27 19:25:19 +0000413 // Remember if SinglePred was the entry block of the function. If so, we
414 // will need to move BB back to the entry position.
415 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
Chris Lattner69e067f2008-11-27 05:07:53 +0000416 MergeBasicBlockIntoOnlyPred(BB);
Chris Lattner3d86d242008-11-27 19:25:19 +0000417
418 if (isEntry && BB != &BB->getParent()->getEntryBlock())
419 BB->moveBefore(&BB->getParent()->getEntryBlock());
Chris Lattner69e067f2008-11-27 05:07:53 +0000420 return true;
421 }
Chris Lattner5729d382009-11-07 08:05:03 +0000422 }
423
424 // Look to see if the terminator is a branch of switch, if not we can't thread
425 // it.
Chris Lattner177480b2008-04-20 21:13:06 +0000426 Value *Condition;
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000427 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
428 // Can't thread an unconditional jump.
429 if (BI->isUnconditional()) return false;
Chris Lattner177480b2008-04-20 21:13:06 +0000430 Condition = BI->getCondition();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000431 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
Chris Lattner177480b2008-04-20 21:13:06 +0000432 Condition = SI->getCondition();
433 else
434 return false; // Must be an invoke.
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000435
436 // If the terminator of this block is branching on a constant, simplify the
Chris Lattner037c7812008-04-21 18:25:01 +0000437 // terminator to an unconditional branch. This can occur due to threading in
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000438 // other blocks.
439 if (isa<ConstantInt>(Condition)) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000440 DEBUG(errs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000441 << "' folding terminator: " << *BB->getTerminator() << '\n');
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000442 ++NumFolds;
443 ConstantFoldTerminator(BB);
444 return true;
445 }
446
Chris Lattner421fa9e2008-12-03 07:48:08 +0000447 // If the terminator is branching on an undef, we can pick any of the
Chris Lattnere33583b2009-10-11 04:18:15 +0000448 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000449 if (isa<UndefValue>(Condition)) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000450 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000451
452 // Fold the branch/switch.
Chris Lattnere33583b2009-10-11 04:18:15 +0000453 TerminatorInst *BBTerm = BB->getTerminator();
Chris Lattner421fa9e2008-12-03 07:48:08 +0000454 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000455 if (i == BestSucc) continue;
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000456 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000457 }
458
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000459 DEBUG(errs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000460 << "' folding undef terminator: " << *BBTerm << '\n');
Chris Lattnere33583b2009-10-11 04:18:15 +0000461 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000462 BBTerm->eraseFromParent();
463 return true;
464 }
465
466 Instruction *CondInst = dyn_cast<Instruction>(Condition);
467
468 // If the condition is an instruction defined in another block, see if a
469 // predecessor has the same condition:
470 // br COND, BBX, BBY
471 // BBX:
472 // br COND, BBZ, BBW
473 if (!Condition->hasOneUse() && // Multiple uses.
474 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
475 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
476 if (isa<BranchInst>(BB->getTerminator())) {
477 for (; PI != E; ++PI)
478 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
479 if (PBI->isConditional() && PBI->getCondition() == Condition &&
480 ProcessBranchOnDuplicateCond(*PI, BB))
481 return true;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000482 } else {
483 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
484 for (; PI != E; ++PI)
485 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
486 if (PSI->getCondition() == Condition &&
487 ProcessSwitchOnDuplicateCond(*PI, BB))
488 return true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000489 }
490 }
491
Chris Lattner421fa9e2008-12-03 07:48:08 +0000492 // All the rest of our checks depend on the condition being an instruction.
493 if (CondInst == 0)
494 return false;
495
Chris Lattner177480b2008-04-20 21:13:06 +0000496 // See if this is a phi node in the current block.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000497 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
498 if (PN->getParent() == BB)
499 return ProcessJumpOnPHI(PN);
Chris Lattner177480b2008-04-20 21:13:06 +0000500
Nick Lewycky9683f182009-06-19 04:56:29 +0000501 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
Chris Lattner5729d382009-11-07 08:05:03 +0000502 if (!isa<PHINode>(CondCmp->getOperand(0)) ||
503 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
504 // If we have a comparison, loop over the predecessors to see if there is
505 // a condition with a lexically identical value.
506 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
507 for (; PI != E; ++PI)
508 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
509 if (PBI->isConditional() && *PI != BB) {
510 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
511 if (CI->getOperand(0) == CondCmp->getOperand(0) &&
512 CI->getOperand(1) == CondCmp->getOperand(1) &&
513 CI->getPredicate() == CondCmp->getPredicate()) {
514 // TODO: Could handle things like (x != 4) --> (x == 17)
515 if (ProcessBranchOnDuplicateCond(*PI, BB))
516 return true;
517 }
Chris Lattner79c740f2009-06-19 16:27:56 +0000518 }
519 }
Chris Lattner5729d382009-11-07 08:05:03 +0000520 }
Nick Lewycky9683f182009-06-19 04:56:29 +0000521 }
Chris Lattner69e067f2008-11-27 05:07:53 +0000522
523 // Check for some cases that are worth simplifying. Right now we want to look
524 // for loads that are used by a switch or by the condition for the branch. If
525 // we see one, check to see if it's partially redundant. If so, insert a PHI
526 // which can then be used to thread the values.
527 //
528 // This is particularly important because reg2mem inserts loads and stores all
529 // over the place, and this blocks jump threading if we don't zap them.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000530 Value *SimplifyValue = CondInst;
Chris Lattner69e067f2008-11-27 05:07:53 +0000531 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
532 if (isa<Constant>(CondCmp->getOperand(1)))
533 SimplifyValue = CondCmp->getOperand(0);
534
535 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
536 if (SimplifyPartiallyRedundantLoad(LI))
537 return true;
538
Chris Lattner5729d382009-11-07 08:05:03 +0000539
540 // Handle a variety of cases where we are branching on something derived from
541 // a PHI node in the current block. If we can prove that any predecessors
542 // compute a predictable value based on a PHI node, thread those predecessors.
543 //
544 // We only bother doing this if the current block has a PHI node and if the
545 // conditional instruction lives in the current block. If either condition
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000546 // fails, this won't be a computable value anyway.
Chris Lattner5729d382009-11-07 08:05:03 +0000547 if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
548 if (ProcessThreadableEdges(CondInst, BB))
549 return true;
550
551
Chris Lattner69e067f2008-11-27 05:07:53 +0000552 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
553 // "(X == 4)" thread through this block.
Chris Lattnera5ddb592008-04-22 21:40:39 +0000554
Chris Lattnerd38c14e2008-04-22 06:36:15 +0000555 return false;
556}
557
Chris Lattner421fa9e2008-12-03 07:48:08 +0000558/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
559/// block that jump on exactly the same condition. This means that we almost
560/// always know the direction of the edge in the DESTBB:
561/// PREDBB:
562/// br COND, DESTBB, BBY
563/// DESTBB:
564/// br COND, BBZ, BBW
565///
566/// If DESTBB has multiple predecessors, we can't just constant fold the branch
567/// in DESTBB, we have to thread over it.
568bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
569 BasicBlock *BB) {
570 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
571
572 // If both successors of PredBB go to DESTBB, we don't know anything. We can
573 // fold the branch to an unconditional one, which allows other recursive
574 // simplifications.
575 bool BranchDir;
576 if (PredBI->getSuccessor(1) != BB)
577 BranchDir = true;
578 else if (PredBI->getSuccessor(0) != BB)
579 BranchDir = false;
580 else {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000581 DEBUG(errs() << " In block '" << PredBB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000582 << "' folding terminator: " << *PredBB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000583 ++NumFolds;
584 ConstantFoldTerminator(PredBB);
585 return true;
586 }
587
588 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
589
590 // If the dest block has one predecessor, just fix the branch condition to a
591 // constant and fold it.
592 if (BB->getSinglePredecessor()) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000593 DEBUG(errs() << " In block '" << BB->getName()
594 << "' folding condition to '" << BranchDir << "': "
Chris Lattner78c552e2009-10-11 07:24:57 +0000595 << *BB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000596 ++NumFolds;
Chris Lattner5a06cf62009-10-11 18:39:58 +0000597 Value *OldCond = DestBI->getCondition();
Owen Anderson1d0be152009-08-13 21:58:54 +0000598 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
599 BranchDir));
Chris Lattner421fa9e2008-12-03 07:48:08 +0000600 ConstantFoldTerminator(BB);
Chris Lattner5a06cf62009-10-11 18:39:58 +0000601 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000602 return true;
603 }
Chris Lattnerbdbf1a12009-10-11 04:33:43 +0000604
Chris Lattner421fa9e2008-12-03 07:48:08 +0000605
606 // Next, figure out which successor we are threading to.
607 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
608
Chris Lattner5729d382009-11-07 08:05:03 +0000609 SmallVector<BasicBlock*, 2> Preds;
610 Preds.push_back(PredBB);
611
Mike Stumpfe095f32009-05-04 18:40:41 +0000612 // Ok, try to thread it!
Chris Lattner5729d382009-11-07 08:05:03 +0000613 return ThreadEdge(BB, Preds, SuccBB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000614}
615
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000616/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
617/// block that switch on exactly the same condition. This means that we almost
618/// always know the direction of the edge in the DESTBB:
619/// PREDBB:
620/// switch COND [... DESTBB, BBY ... ]
621/// DESTBB:
622/// switch COND [... BBZ, BBW ]
623///
624/// Optimizing switches like this is very important, because simplifycfg builds
625/// switches out of repeated 'if' conditions.
626bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
627 BasicBlock *DestBB) {
Chris Lattner2c7ed112009-01-19 21:20:34 +0000628 // Can't thread edge to self.
629 if (PredBB == DestBB)
630 return false;
631
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000632 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
633 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
634
635 // There are a variety of optimizations that we can potentially do on these
636 // blocks: we order them from most to least preferable.
637
638 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
639 // directly to their destination. This does not introduce *any* code size
Dale Johannesen6b233392009-03-17 00:38:24 +0000640 // growth. Skip debug info first.
641 BasicBlock::iterator BBI = DestBB->begin();
642 while (isa<DbgInfoIntrinsic>(BBI))
643 BBI++;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000644
645 // FIXME: Thread if it just contains a PHI.
Dale Johannesen6b233392009-03-17 00:38:24 +0000646 if (isa<SwitchInst>(BBI)) {
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000647 bool MadeChange = false;
648 // Ignore the default edge for now.
649 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
650 ConstantInt *DestVal = DestSI->getCaseValue(i);
651 BasicBlock *DestSucc = DestSI->getSuccessor(i);
652
653 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
654 // PredSI has an explicit case for it. If so, forward. If it is covered
655 // by the default case, we can't update PredSI.
656 unsigned PredCase = PredSI->findCaseValue(DestVal);
657 if (PredCase == 0) continue;
658
659 // If PredSI doesn't go to DestBB on this value, then it won't reach the
660 // case on this condition.
661 if (PredSI->getSuccessor(PredCase) != DestBB &&
662 DestSI->getSuccessor(i) != DestBB)
663 continue;
664
665 // Otherwise, we're safe to make the change. Make sure that the edge from
666 // DestSI to DestSucc is not critical and has no PHI nodes.
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000667 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
668 DEBUG(errs() << "THROUGH: " << *DestSI);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000669
670 // If the destination has PHI nodes, just split the edge for updating
671 // simplicity.
672 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
673 SplitCriticalEdge(DestSI, i, this);
674 DestSucc = DestSI->getSuccessor(i);
675 }
676 FoldSingleEntryPHINodes(DestSucc);
677 PredSI->setSuccessor(PredCase, DestSucc);
678 MadeChange = true;
679 }
680
681 if (MadeChange)
682 return true;
683 }
684
685 return false;
686}
687
688
Chris Lattner69e067f2008-11-27 05:07:53 +0000689/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
690/// load instruction, eliminate it by replacing it with a PHI node. This is an
691/// important optimization that encourages jump threading, and needs to be run
692/// interlaced with other jump threading tasks.
693bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
694 // Don't hack volatile loads.
695 if (LI->isVolatile()) return false;
696
697 // If the load is defined in a block with exactly one predecessor, it can't be
698 // partially redundant.
699 BasicBlock *LoadBB = LI->getParent();
700 if (LoadBB->getSinglePredecessor())
701 return false;
702
703 Value *LoadedPtr = LI->getOperand(0);
704
705 // If the loaded operand is defined in the LoadBB, it can't be available.
706 // FIXME: Could do PHI translation, that would be fun :)
707 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
708 if (PtrOp->getParent() == LoadBB)
709 return false;
710
711 // Scan a few instructions up from the load, to see if it is obviously live at
712 // the entry to its block.
713 BasicBlock::iterator BBIt = LI;
714
Chris Lattner52c95852008-11-27 08:10:05 +0000715 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
716 BBIt, 6)) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000717 // If the value if the load is locally available within the block, just use
718 // it. This frequently occurs for reg2mem'd allocas.
719 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
Chris Lattner2a99b482009-01-09 06:08:12 +0000720
721 // If the returned value is the load itself, replace with an undef. This can
722 // only happen in dead loops.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000723 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
Chris Lattner69e067f2008-11-27 05:07:53 +0000724 LI->replaceAllUsesWith(AvailableVal);
725 LI->eraseFromParent();
726 return true;
727 }
728
729 // Otherwise, if we scanned the whole block and got to the top of the block,
730 // we know the block is locally transparent to the load. If not, something
731 // might clobber its value.
732 if (BBIt != LoadBB->begin())
733 return false;
734
735
736 SmallPtrSet<BasicBlock*, 8> PredsScanned;
737 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
738 AvailablePredsTy AvailablePreds;
739 BasicBlock *OneUnavailablePred = 0;
740
741 // If we got here, the loaded value is transparent through to the start of the
742 // block. Check to see if it is available in any of the predecessor blocks.
743 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
744 PI != PE; ++PI) {
745 BasicBlock *PredBB = *PI;
746
747 // If we already scanned this predecessor, skip it.
748 if (!PredsScanned.insert(PredBB))
749 continue;
750
751 // Scan the predecessor to see if the value is available in the pred.
752 BBIt = PredBB->end();
Chris Lattner52c95852008-11-27 08:10:05 +0000753 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
Chris Lattner69e067f2008-11-27 05:07:53 +0000754 if (!PredAvailable) {
755 OneUnavailablePred = PredBB;
756 continue;
757 }
758
759 // If so, this load is partially redundant. Remember this info so that we
760 // can create a PHI node.
761 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
762 }
763
764 // If the loaded value isn't available in any predecessor, it isn't partially
765 // redundant.
766 if (AvailablePreds.empty()) return false;
767
768 // Okay, the loaded value is available in at least one (and maybe all!)
769 // predecessors. If the value is unavailable in more than one unique
770 // predecessor, we want to insert a merge block for those common predecessors.
771 // This ensures that we only have to insert one reload, thus not increasing
772 // code size.
773 BasicBlock *UnavailablePred = 0;
774
775 // If there is exactly one predecessor where the value is unavailable, the
776 // already computed 'OneUnavailablePred' block is it. If it ends in an
777 // unconditional branch, we know that it isn't a critical edge.
778 if (PredsScanned.size() == AvailablePreds.size()+1 &&
779 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
780 UnavailablePred = OneUnavailablePred;
781 } else if (PredsScanned.size() != AvailablePreds.size()) {
782 // Otherwise, we had multiple unavailable predecessors or we had a critical
783 // edge from the one.
784 SmallVector<BasicBlock*, 8> PredsToSplit;
785 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
786
787 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
788 AvailablePredSet.insert(AvailablePreds[i].first);
789
790 // Add all the unavailable predecessors to the PredsToSplit list.
791 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
792 PI != PE; ++PI)
793 if (!AvailablePredSet.count(*PI))
794 PredsToSplit.push_back(*PI);
795
796 // Split them out to their own block.
797 UnavailablePred =
798 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
799 "thread-split", this);
800 }
801
802 // If the value isn't available in all predecessors, then there will be
803 // exactly one where it isn't available. Insert a load on that edge and add
804 // it to the AvailablePreds list.
805 if (UnavailablePred) {
806 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
807 "Can't handle critical edge here!");
808 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
809 UnavailablePred->getTerminator());
810 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
811 }
812
813 // Now we know that each predecessor of this block has a value in
814 // AvailablePreds, sort them for efficient access as we're walking the preds.
Chris Lattnera3522002008-12-01 06:52:57 +0000815 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
Chris Lattner69e067f2008-11-27 05:07:53 +0000816
817 // Create a PHI node at the start of the block for the PRE'd load value.
818 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
819 PN->takeName(LI);
820
821 // Insert new entries into the PHI for each predecessor. A single block may
822 // have multiple entries here.
823 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
824 ++PI) {
825 AvailablePredsTy::iterator I =
826 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
827 std::make_pair(*PI, (Value*)0));
828
829 assert(I != AvailablePreds.end() && I->first == *PI &&
830 "Didn't find entry for predecessor!");
831
832 PN->addIncoming(I->second, I->first);
833 }
834
835 //cerr << "PRE: " << *LI << *PN << "\n";
836
837 LI->replaceAllUsesWith(PN);
838 LI->eraseFromParent();
839
840 return true;
841}
842
Chris Lattner5729d382009-11-07 08:05:03 +0000843/// FindMostPopularDest - The specified list contains multiple possible
844/// threadable destinations. Pick the one that occurs the most frequently in
845/// the list.
846static BasicBlock *
847FindMostPopularDest(BasicBlock *BB,
848 const SmallVectorImpl<std::pair<BasicBlock*,
849 BasicBlock*> > &PredToDestList) {
850 assert(!PredToDestList.empty());
851
852 // Determine popularity. If there are multiple possible destinations, we
853 // explicitly choose to ignore 'undef' destinations. We prefer to thread
854 // blocks with known and real destinations to threading undef. We'll handle
855 // them later if interesting.
856 DenseMap<BasicBlock*, unsigned> DestPopularity;
857 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
858 if (PredToDestList[i].second)
859 DestPopularity[PredToDestList[i].second]++;
860
861 // Find the most popular dest.
862 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
863 BasicBlock *MostPopularDest = DPI->first;
864 unsigned Popularity = DPI->second;
865 SmallVector<BasicBlock*, 4> SamePopularity;
866
867 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
868 // If the popularity of this entry isn't higher than the popularity we've
869 // seen so far, ignore it.
870 if (DPI->second < Popularity)
871 ; // ignore.
872 else if (DPI->second == Popularity) {
873 // If it is the same as what we've seen so far, keep track of it.
874 SamePopularity.push_back(DPI->first);
875 } else {
876 // If it is more popular, remember it.
877 SamePopularity.clear();
878 MostPopularDest = DPI->first;
879 Popularity = DPI->second;
880 }
881 }
882
883 // Okay, now we know the most popular destination. If there is more than
884 // destination, we need to determine one. This is arbitrary, but we need
885 // to make a deterministic decision. Pick the first one that appears in the
886 // successor list.
887 if (!SamePopularity.empty()) {
888 SamePopularity.push_back(MostPopularDest);
889 TerminatorInst *TI = BB->getTerminator();
890 for (unsigned i = 0; ; ++i) {
891 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
892
893 if (std::find(SamePopularity.begin(), SamePopularity.end(),
894 TI->getSuccessor(i)) == SamePopularity.end())
895 continue;
896
897 MostPopularDest = TI->getSuccessor(i);
898 break;
899 }
900 }
901
902 // Okay, we have finally picked the most popular destination.
903 return MostPopularDest;
904}
905
906bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
907 BasicBlock *BB) {
908 // If threading this would thread across a loop header, don't even try to
909 // thread the edge.
910 if (LoopHeaders.count(BB))
911 return false;
912
Chris Lattner5729d382009-11-07 08:05:03 +0000913 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
914 if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
915 return false;
916 assert(!PredValues.empty() &&
917 "ComputeValueKnownInPredecessors returned true with no values");
918
919 DEBUG(errs() << "IN BB: " << *BB;
920 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
921 errs() << " BB '" << BB->getName() << "': FOUND condition = ";
922 if (PredValues[i].first)
923 errs() << *PredValues[i].first;
924 else
925 errs() << "UNDEF";
926 errs() << " for pred '" << PredValues[i].second->getName()
927 << "'.\n";
928 });
929
930 // Decide what we want to thread through. Convert our list of known values to
931 // a list of known destinations for each pred. This also discards duplicate
932 // predecessors and keeps track of the undefined inputs (which are represented
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000933 // as a null dest in the PredToDestList).
Chris Lattner5729d382009-11-07 08:05:03 +0000934 SmallPtrSet<BasicBlock*, 16> SeenPreds;
935 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
936
937 BasicBlock *OnlyDest = 0;
938 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
939
940 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
941 BasicBlock *Pred = PredValues[i].second;
942 if (!SeenPreds.insert(Pred))
943 continue; // Duplicate predecessor entry.
944
945 // If the predecessor ends with an indirect goto, we can't change its
946 // destination.
947 if (isa<IndirectBrInst>(Pred->getTerminator()))
948 continue;
949
950 ConstantInt *Val = PredValues[i].first;
951
952 BasicBlock *DestBB;
953 if (Val == 0) // Undef.
954 DestBB = 0;
955 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
956 DestBB = BI->getSuccessor(Val->isZero());
957 else {
958 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
959 DestBB = SI->getSuccessor(SI->findCaseValue(Val));
960 }
961
962 // If we have exactly one destination, remember it for efficiency below.
963 if (i == 0)
964 OnlyDest = DestBB;
965 else if (OnlyDest != DestBB)
966 OnlyDest = MultipleDestSentinel;
967
968 PredToDestList.push_back(std::make_pair(Pred, DestBB));
969 }
970
971 // If all edges were unthreadable, we fail.
972 if (PredToDestList.empty())
973 return false;
974
975 // Determine which is the most common successor. If we have many inputs and
976 // this block is a switch, we want to start by threading the batch that goes
977 // to the most popular destination first. If we only know about one
978 // threadable destination (the common case) we can avoid this.
979 BasicBlock *MostPopularDest = OnlyDest;
980
981 if (MostPopularDest == MultipleDestSentinel)
982 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
983
984 // Now that we know what the most popular destination is, factor all
985 // predecessors that will jump to it into a single predecessor.
986 SmallVector<BasicBlock*, 16> PredsToFactor;
987 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
988 if (PredToDestList[i].second == MostPopularDest) {
989 BasicBlock *Pred = PredToDestList[i].first;
990
991 // This predecessor may be a switch or something else that has multiple
992 // edges to the block. Factor each of these edges by listing them
993 // according to # occurrences in PredsToFactor.
994 TerminatorInst *PredTI = Pred->getTerminator();
995 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
996 if (PredTI->getSuccessor(i) == BB)
997 PredsToFactor.push_back(Pred);
998 }
999
1000 // If the threadable edges are branching on an undefined value, we get to pick
1001 // the destination that these predecessors should get to.
1002 if (MostPopularDest == 0)
1003 MostPopularDest = BB->getTerminator()->
1004 getSuccessor(GetBestDestForJumpOnUndef(BB));
1005
1006 // Ok, try to thread it!
1007 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
1008}
Chris Lattner69e067f2008-11-27 05:07:53 +00001009
Chris Lattnere33583b2009-10-11 04:18:15 +00001010/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
Chris Lattnerd38c14e2008-04-22 06:36:15 +00001011/// the current block. See if there are any simplifications we can do based on
1012/// inputs to the phi node.
1013///
1014bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
Chris Lattner6b65f472009-10-11 04:40:21 +00001015 BasicBlock *BB = PN->getParent();
1016
Chris Lattner5729d382009-11-07 08:05:03 +00001017 // If any of the predecessor blocks end in an unconditional branch, we can
1018 // *duplicate* the jump into that block in order to further encourage jump
1019 // threading and to eliminate cases where we have branch on a phi of an icmp
1020 // (branch on icmp is much better).
Chris Lattner78c552e2009-10-11 07:24:57 +00001021
1022 // We don't want to do this tranformation for switches, because we don't
1023 // really want to duplicate a switch.
1024 if (isa<SwitchInst>(BB->getTerminator()))
1025 return false;
1026
1027 // Look for unconditional branch predecessors.
1028 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1029 BasicBlock *PredBB = PN->getIncomingBlock(i);
1030 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1031 if (PredBr->isUnconditional() &&
1032 // Try to duplicate BB into PredBB.
1033 DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1034 return true;
1035 }
1036
Chris Lattner6b65f472009-10-11 04:40:21 +00001037 return false;
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001038}
1039
Chris Lattnera5ddb592008-04-22 21:40:39 +00001040
Chris Lattner78c552e2009-10-11 07:24:57 +00001041/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1042/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1043/// NewPred using the entries from OldPred (suitably mapped).
1044static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1045 BasicBlock *OldPred,
1046 BasicBlock *NewPred,
1047 DenseMap<Instruction*, Value*> &ValueMap) {
1048 for (BasicBlock::iterator PNI = PHIBB->begin();
1049 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1050 // Ok, we have a PHI node. Figure out what the incoming value was for the
1051 // DestBlock.
1052 Value *IV = PN->getIncomingValueForBlock(OldPred);
1053
1054 // Remap the value if necessary.
1055 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1056 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1057 if (I != ValueMap.end())
1058 IV = I->second;
1059 }
1060
1061 PN->addIncoming(IV, NewPred);
1062 }
1063}
Chris Lattner6bf77502008-04-22 07:05:46 +00001064
Chris Lattner5729d382009-11-07 08:05:03 +00001065/// ThreadEdge - We have decided that it is safe and profitable to factor the
1066/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1067/// across BB. Transform the IR to reflect this change.
1068bool JumpThreading::ThreadEdge(BasicBlock *BB,
1069 const SmallVectorImpl<BasicBlock*> &PredBBs,
Chris Lattnerbdbf1a12009-10-11 04:33:43 +00001070 BasicBlock *SuccBB) {
Mike Stumpfe095f32009-05-04 18:40:41 +00001071 // If threading to the same block as we come from, we would infinite loop.
1072 if (SuccBB == BB) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001073 DEBUG(errs() << " Not threading across BB '" << BB->getName()
1074 << "' - would thread to self!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001075 return false;
1076 }
1077
1078 // If threading this would thread across a loop header, don't thread the edge.
1079 // See the comments above FindLoopHeaders for justifications and caveats.
1080 if (LoopHeaders.count(BB)) {
Chris Lattner5729d382009-11-07 08:05:03 +00001081 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001082 << "' to dest BB '" << SuccBB->getName()
1083 << "' - it might create an irreducible loop!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001084 return false;
1085 }
1086
Chris Lattner78c552e2009-10-11 07:24:57 +00001087 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1088 if (JumpThreadCost > Threshold) {
1089 DEBUG(errs() << " Not threading BB '" << BB->getName()
1090 << "' - Cost is too high: " << JumpThreadCost << "\n");
1091 return false;
1092 }
1093
Chris Lattner5729d382009-11-07 08:05:03 +00001094 // And finally, do it! Start by factoring the predecessors is needed.
1095 BasicBlock *PredBB;
1096 if (PredBBs.size() == 1)
1097 PredBB = PredBBs[0];
1098 else {
1099 DEBUG(errs() << " Factoring out " << PredBBs.size()
1100 << " common predecessors.\n");
1101 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1102 ".thr_comm", this);
1103 }
1104
Mike Stumpfe095f32009-05-04 18:40:41 +00001105 // And finally, do it!
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001106 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '"
Daniel Dunbar460f6562009-07-26 09:48:23 +00001107 << SuccBB->getName() << "' with cost: " << JumpThreadCost
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001108 << ", across block:\n "
1109 << *BB << "\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001110
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001111 // We are going to have to map operands from the original BB block to the new
1112 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1113 // account for entry from PredBB.
1114 DenseMap<Instruction*, Value*> ValueMapping;
1115
Owen Anderson1d0be152009-08-13 21:58:54 +00001116 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1117 BB->getName()+".thread",
1118 BB->getParent(), BB);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001119 NewBB->moveAfter(PredBB);
1120
1121 BasicBlock::iterator BI = BB->begin();
1122 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1123 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1124
1125 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1126 // mapping and using it to remap operands in the cloned instructions.
1127 for (; !isa<TerminatorInst>(BI); ++BI) {
Nick Lewycky67760642009-09-27 07:38:41 +00001128 Instruction *New = BI->clone();
Daniel Dunbar460f6562009-07-26 09:48:23 +00001129 New->setName(BI->getName());
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001130 NewBB->getInstList().push_back(New);
1131 ValueMapping[BI] = New;
1132
1133 // Remap operands to patch up intra-block references.
1134 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
Dan Gohmanf530c922009-07-02 00:17:47 +00001135 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1136 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1137 if (I != ValueMapping.end())
1138 New->setOperand(i, I->second);
1139 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001140 }
1141
1142 // We didn't copy the terminator from BB over to NewBB, because there is now
1143 // an unconditional jump to SuccBB. Insert the unconditional jump.
1144 BranchInst::Create(SuccBB, NewBB);
1145
1146 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1147 // PHI nodes for NewBB now.
Chris Lattner78c552e2009-10-11 07:24:57 +00001148 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001149
Chris Lattner433a0db2009-10-10 09:05:58 +00001150 // If there were values defined in BB that are used outside the block, then we
1151 // now have to update all uses of the value to use either the original value,
1152 // the cloned value, or some PHI derived value. This can require arbitrary
1153 // PHI insertion, of which we are prepared to do, clean these up now.
1154 SSAUpdater SSAUpdate;
1155 SmallVector<Use*, 16> UsesToRename;
1156 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1157 // Scan all uses of this instruction to see if it is used outside of its
1158 // block, and if so, record them in UsesToRename.
1159 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1160 ++UI) {
1161 Instruction *User = cast<Instruction>(*UI);
1162 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1163 if (UserPN->getIncomingBlock(UI) == BB)
1164 continue;
1165 } else if (User->getParent() == BB)
1166 continue;
1167
1168 UsesToRename.push_back(&UI.getUse());
1169 }
1170
1171 // If there are no uses outside the block, we're done with this instruction.
1172 if (UsesToRename.empty())
1173 continue;
1174
1175 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1176
1177 // We found a use of I outside of BB. Rename all uses of I that are outside
1178 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1179 // with the two values we know.
1180 SSAUpdate.Initialize(I);
1181 SSAUpdate.AddAvailableValue(BB, I);
1182 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1183
1184 while (!UsesToRename.empty())
1185 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1186 DEBUG(errs() << "\n");
1187 }
1188
1189
Chris Lattneref0c6742008-12-01 04:48:07 +00001190 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001191 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1192 // us to simplify any PHI nodes in BB.
1193 TerminatorInst *PredTerm = PredBB->getTerminator();
1194 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1195 if (PredTerm->getSuccessor(i) == BB) {
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001196 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001197 PredTerm->setSuccessor(i, NewBB);
1198 }
Chris Lattneref0c6742008-12-01 04:48:07 +00001199
1200 // At this point, the IR is fully up to date and consistent. Do a quick scan
1201 // over the new instructions and zap any that are constants or dead. This
1202 // frequently happens because of phi translation.
1203 BI = NewBB->begin();
1204 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1205 Instruction *Inst = BI++;
Chris Lattner7b550cc2009-11-06 04:27:31 +00001206 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
Chris Lattneref0c6742008-12-01 04:48:07 +00001207 Inst->replaceAllUsesWith(C);
1208 Inst->eraseFromParent();
1209 continue;
1210 }
1211
1212 RecursivelyDeleteTriviallyDeadInstructions(Inst);
1213 }
Mike Stumpfe095f32009-05-04 18:40:41 +00001214
1215 // Threaded an edge!
1216 ++NumThreads;
1217 return true;
Chris Lattner177480b2008-04-20 21:13:06 +00001218}
Chris Lattner78c552e2009-10-11 07:24:57 +00001219
1220/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1221/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1222/// If we can duplicate the contents of BB up into PredBB do so now, this
1223/// improves the odds that the branch will be on an analyzable instruction like
1224/// a compare.
1225bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1226 BasicBlock *PredBB) {
1227 // If BB is a loop header, then duplicating this block outside the loop would
1228 // cause us to transform this into an irreducible loop, don't do this.
1229 // See the comments above FindLoopHeaders for justifications and caveats.
1230 if (LoopHeaders.count(BB)) {
1231 DEBUG(errs() << " Not duplicating loop header '" << BB->getName()
1232 << "' into predecessor block '" << PredBB->getName()
1233 << "' - it might create an irreducible loop!\n");
1234 return false;
1235 }
1236
1237 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1238 if (DuplicationCost > Threshold) {
1239 DEBUG(errs() << " Not duplicating BB '" << BB->getName()
1240 << "' - Cost is too high: " << DuplicationCost << "\n");
1241 return false;
1242 }
1243
1244 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1245 // of PredBB.
1246 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '"
1247 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1248 << DuplicationCost << " block is:" << *BB << "\n");
1249
1250 // We are going to have to map operands from the original BB block into the
1251 // PredBB block. Evaluate PHI nodes in BB.
1252 DenseMap<Instruction*, Value*> ValueMapping;
1253
1254 BasicBlock::iterator BI = BB->begin();
1255 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1256 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1257
1258 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1259
1260 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1261 // mapping and using it to remap operands in the cloned instructions.
1262 for (; BI != BB->end(); ++BI) {
1263 Instruction *New = BI->clone();
1264 New->setName(BI->getName());
1265 PredBB->getInstList().insert(OldPredBranch, New);
1266 ValueMapping[BI] = New;
1267
1268 // Remap operands to patch up intra-block references.
1269 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1270 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1271 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1272 if (I != ValueMapping.end())
1273 New->setOperand(i, I->second);
1274 }
1275 }
1276
1277 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1278 // add entries to the PHI nodes for branch from PredBB now.
1279 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1280 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1281 ValueMapping);
1282 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1283 ValueMapping);
1284
1285 // If there were values defined in BB that are used outside the block, then we
1286 // now have to update all uses of the value to use either the original value,
1287 // the cloned value, or some PHI derived value. This can require arbitrary
1288 // PHI insertion, of which we are prepared to do, clean these up now.
1289 SSAUpdater SSAUpdate;
1290 SmallVector<Use*, 16> UsesToRename;
1291 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1292 // Scan all uses of this instruction to see if it is used outside of its
1293 // block, and if so, record them in UsesToRename.
1294 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1295 ++UI) {
1296 Instruction *User = cast<Instruction>(*UI);
1297 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1298 if (UserPN->getIncomingBlock(UI) == BB)
1299 continue;
1300 } else if (User->getParent() == BB)
1301 continue;
1302
1303 UsesToRename.push_back(&UI.getUse());
1304 }
1305
1306 // If there are no uses outside the block, we're done with this instruction.
1307 if (UsesToRename.empty())
1308 continue;
1309
1310 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1311
1312 // We found a use of I outside of BB. Rename all uses of I that are outside
1313 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1314 // with the two values we know.
1315 SSAUpdate.Initialize(I);
1316 SSAUpdate.AddAvailableValue(BB, I);
1317 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1318
1319 while (!UsesToRename.empty())
1320 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1321 DEBUG(errs() << "\n");
1322 }
1323
1324 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1325 // that we nuked.
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001326 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattner78c552e2009-10-11 07:24:57 +00001327
1328 // Remove the unconditional branch at the end of the PredBB block.
1329 OldPredBranch->eraseFromParent();
1330
1331 ++NumDupes;
1332 return true;
1333}
1334
1335