blob: e352b630ce46bfd7fb63d481371646229b657dc9 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- APInt.cpp - Implement APInt class ---------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a class to represent arbitrary precision integer
11// constant values and provide a variety of arithmetic operations on them.
12//
13//===----------------------------------------------------------------------===//
14
15#define DEBUG_TYPE "apint"
16#include "llvm/ADT/APInt.h"
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +000017#include "llvm/ADT/StringRef.h"
Ted Kremenek109de0d2008-01-19 04:23:33 +000018#include "llvm/ADT/FoldingSet.h"
Chris Lattner89b36582008-08-17 07:19:36 +000019#include "llvm/ADT/SmallString.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000020#include "llvm/Support/Debug.h"
Edwin Török675d5622009-07-11 20:10:48 +000021#include "llvm/Support/ErrorHandling.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000022#include "llvm/Support/MathExtras.h"
Chris Lattner1fefaac2008-08-23 22:23:09 +000023#include "llvm/Support/raw_ostream.h"
Chris Lattner89b36582008-08-17 07:19:36 +000024#include <cmath>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000025#include <limits>
26#include <cstring>
27#include <cstdlib>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000028using namespace llvm;
29
30/// A utility function for allocating memory, checking for allocation failures,
31/// and ensuring the contents are zeroed.
Chris Lattneree5417c2009-01-21 18:09:24 +000032inline static uint64_t* getClearedMemory(unsigned numWords) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000033 uint64_t * result = new uint64_t[numWords];
34 assert(result && "APInt memory allocation fails!");
35 memset(result, 0, numWords * sizeof(uint64_t));
36 return result;
37}
38
39/// A utility function for allocating memory and checking for allocation
40/// failure. The content is not zeroed.
Chris Lattneree5417c2009-01-21 18:09:24 +000041inline static uint64_t* getMemory(unsigned numWords) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000042 uint64_t * result = new uint64_t[numWords];
43 assert(result && "APInt memory allocation fails!");
44 return result;
45}
46
Chris Lattneree5417c2009-01-21 18:09:24 +000047void APInt::initSlowCase(unsigned numBits, uint64_t val, bool isSigned) {
Chris Lattner84886852008-08-20 17:02:31 +000048 pVal = getClearedMemory(getNumWords());
49 pVal[0] = val;
50 if (isSigned && int64_t(val) < 0)
51 for (unsigned i = 1; i < getNumWords(); ++i)
52 pVal[i] = -1ULL;
Dan Gohmanf17a25c2007-07-18 16:29:46 +000053}
54
Chris Lattnera1f63bb2008-10-11 22:07:19 +000055void APInt::initSlowCase(const APInt& that) {
56 pVal = getMemory(getNumWords());
57 memcpy(pVal, that.pVal, getNumWords() * APINT_WORD_SIZE);
58}
59
60
Chris Lattneree5417c2009-01-21 18:09:24 +000061APInt::APInt(unsigned numBits, unsigned numWords, const uint64_t bigVal[])
Chris Lattner1fefaac2008-08-23 22:23:09 +000062 : BitWidth(numBits), VAL(0) {
Chris Lattner84886852008-08-20 17:02:31 +000063 assert(BitWidth && "bitwidth too small");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000064 assert(bigVal && "Null pointer detected!");
65 if (isSingleWord())
66 VAL = bigVal[0];
67 else {
68 // Get memory, cleared to 0
69 pVal = getClearedMemory(getNumWords());
70 // Calculate the number of words to copy
Chris Lattneree5417c2009-01-21 18:09:24 +000071 unsigned words = std::min<unsigned>(numWords, getNumWords());
Dan Gohmanf17a25c2007-07-18 16:29:46 +000072 // Copy the words from bigVal to pVal
73 memcpy(pVal, bigVal, words * APINT_WORD_SIZE);
74 }
75 // Make sure unused high bits are cleared
76 clearUnusedBits();
77}
78
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +000079APInt::APInt(unsigned numbits, const StringRef& Str, uint8_t radix)
Dan Gohmanf17a25c2007-07-18 16:29:46 +000080 : BitWidth(numbits), VAL(0) {
Chris Lattner84886852008-08-20 17:02:31 +000081 assert(BitWidth && "bitwidth too small");
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +000082 fromString(numbits, Str, radix);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000083}
84
Chris Lattner84886852008-08-20 17:02:31 +000085APInt& APInt::AssignSlowCase(const APInt& RHS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000086 // Don't do anything for X = X
87 if (this == &RHS)
88 return *this;
89
Dan Gohmanf17a25c2007-07-18 16:29:46 +000090 if (BitWidth == RHS.getBitWidth()) {
Chris Lattner84886852008-08-20 17:02:31 +000091 // assume same bit-width single-word case is already handled
92 assert(!isSingleWord());
93 memcpy(pVal, RHS.pVal, getNumWords() * APINT_WORD_SIZE);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000094 return *this;
95 }
96
Chris Lattner84886852008-08-20 17:02:31 +000097 if (isSingleWord()) {
98 // assume case where both are single words is already handled
99 assert(!RHS.isSingleWord());
100 VAL = 0;
101 pVal = getMemory(RHS.getNumWords());
102 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
103 } else if (getNumWords() == RHS.getNumWords())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
105 else if (RHS.isSingleWord()) {
106 delete [] pVal;
107 VAL = RHS.VAL;
108 } else {
109 delete [] pVal;
110 pVal = getMemory(RHS.getNumWords());
111 memcpy(pVal, RHS.pVal, RHS.getNumWords() * APINT_WORD_SIZE);
112 }
113 BitWidth = RHS.BitWidth;
114 return clearUnusedBits();
115}
116
117APInt& APInt::operator=(uint64_t RHS) {
118 if (isSingleWord())
119 VAL = RHS;
120 else {
121 pVal[0] = RHS;
122 memset(pVal+1, 0, (getNumWords() - 1) * APINT_WORD_SIZE);
123 }
124 return clearUnusedBits();
125}
126
Ted Kremenek109de0d2008-01-19 04:23:33 +0000127/// Profile - This method 'profiles' an APInt for use with FoldingSet.
128void APInt::Profile(FoldingSetNodeID& ID) const {
Ted Kremenek79f65912008-02-19 20:50:41 +0000129 ID.AddInteger(BitWidth);
130
Ted Kremenek109de0d2008-01-19 04:23:33 +0000131 if (isSingleWord()) {
132 ID.AddInteger(VAL);
133 return;
134 }
135
Chris Lattneree5417c2009-01-21 18:09:24 +0000136 unsigned NumWords = getNumWords();
Ted Kremenek109de0d2008-01-19 04:23:33 +0000137 for (unsigned i = 0; i < NumWords; ++i)
138 ID.AddInteger(pVal[i]);
139}
140
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000141/// add_1 - This function adds a single "digit" integer, y, to the multiple
142/// "digit" integer array, x[]. x[] is modified to reflect the addition and
143/// 1 is returned if there is a carry out, otherwise 0 is returned.
144/// @returns the carry of the addition.
Chris Lattneree5417c2009-01-21 18:09:24 +0000145static bool add_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
146 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000147 dest[i] = y + x[i];
148 if (dest[i] < y)
149 y = 1; // Carry one to next digit.
150 else {
151 y = 0; // No need to carry so exit early
152 break;
153 }
154 }
155 return y;
156}
157
158/// @brief Prefix increment operator. Increments the APInt by one.
159APInt& APInt::operator++() {
160 if (isSingleWord())
161 ++VAL;
162 else
163 add_1(pVal, pVal, getNumWords(), 1);
164 return clearUnusedBits();
165}
166
167/// sub_1 - This function subtracts a single "digit" (64-bit word), y, from
168/// the multi-digit integer array, x[], propagating the borrowed 1 value until
169/// no further borrowing is neeeded or it runs out of "digits" in x. The result
170/// is 1 if "borrowing" exhausted the digits in x, or 0 if x was not exhausted.
171/// In other words, if y > x then this function returns 1, otherwise 0.
172/// @returns the borrow out of the subtraction
Chris Lattneree5417c2009-01-21 18:09:24 +0000173static bool sub_1(uint64_t x[], unsigned len, uint64_t y) {
174 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000175 uint64_t X = x[i];
176 x[i] -= y;
177 if (y > X)
178 y = 1; // We have to "borrow 1" from next "digit"
179 else {
180 y = 0; // No need to borrow
181 break; // Remaining digits are unchanged so exit early
182 }
183 }
184 return bool(y);
185}
186
187/// @brief Prefix decrement operator. Decrements the APInt by one.
188APInt& APInt::operator--() {
189 if (isSingleWord())
190 --VAL;
191 else
192 sub_1(pVal, getNumWords(), 1);
193 return clearUnusedBits();
194}
195
196/// add - This function adds the integer array x to the integer array Y and
197/// places the result in dest.
198/// @returns the carry out from the addition
199/// @brief General addition of 64-bit integer arrays
200static bool add(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattneree5417c2009-01-21 18:09:24 +0000201 unsigned len) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000202 bool carry = false;
Chris Lattneree5417c2009-01-21 18:09:24 +0000203 for (unsigned i = 0; i< len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000204 uint64_t limit = std::min(x[i],y[i]); // must come first in case dest == x
205 dest[i] = x[i] + y[i] + carry;
206 carry = dest[i] < limit || (carry && dest[i] == limit);
207 }
208 return carry;
209}
210
211/// Adds the RHS APint to this APInt.
212/// @returns this, after addition of RHS.
213/// @brief Addition assignment operator.
214APInt& APInt::operator+=(const APInt& RHS) {
215 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
216 if (isSingleWord())
217 VAL += RHS.VAL;
218 else {
219 add(pVal, pVal, RHS.pVal, getNumWords());
220 }
221 return clearUnusedBits();
222}
223
224/// Subtracts the integer array y from the integer array x
225/// @returns returns the borrow out.
226/// @brief Generalized subtraction of 64-bit integer arrays.
227static bool sub(uint64_t *dest, const uint64_t *x, const uint64_t *y,
Chris Lattneree5417c2009-01-21 18:09:24 +0000228 unsigned len) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000229 bool borrow = false;
Chris Lattneree5417c2009-01-21 18:09:24 +0000230 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000231 uint64_t x_tmp = borrow ? x[i] - 1 : x[i];
232 borrow = y[i] > x_tmp || (borrow && x[i] == 0);
233 dest[i] = x_tmp - y[i];
234 }
235 return borrow;
236}
237
238/// Subtracts the RHS APInt from this APInt
239/// @returns this, after subtraction
240/// @brief Subtraction assignment operator.
241APInt& APInt::operator-=(const APInt& RHS) {
242 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
243 if (isSingleWord())
244 VAL -= RHS.VAL;
245 else
246 sub(pVal, pVal, RHS.pVal, getNumWords());
247 return clearUnusedBits();
248}
249
250/// Multiplies an integer array, x by a a uint64_t integer and places the result
251/// into dest.
252/// @returns the carry out of the multiplication.
253/// @brief Multiply a multi-digit APInt by a single digit (64-bit) integer.
Chris Lattneree5417c2009-01-21 18:09:24 +0000254static uint64_t mul_1(uint64_t dest[], uint64_t x[], unsigned len, uint64_t y) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000255 // Split y into high 32-bit part (hy) and low 32-bit part (ly)
256 uint64_t ly = y & 0xffffffffULL, hy = y >> 32;
257 uint64_t carry = 0;
258
259 // For each digit of x.
Chris Lattneree5417c2009-01-21 18:09:24 +0000260 for (unsigned i = 0; i < len; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000261 // Split x into high and low words
262 uint64_t lx = x[i] & 0xffffffffULL;
263 uint64_t hx = x[i] >> 32;
264 // hasCarry - A flag to indicate if there is a carry to the next digit.
265 // hasCarry == 0, no carry
266 // hasCarry == 1, has carry
267 // hasCarry == 2, no carry and the calculation result == 0.
268 uint8_t hasCarry = 0;
269 dest[i] = carry + lx * ly;
270 // Determine if the add above introduces carry.
271 hasCarry = (dest[i] < carry) ? 1 : 0;
272 carry = hx * ly + (dest[i] >> 32) + (hasCarry ? (1ULL << 32) : 0);
273 // The upper limit of carry can be (2^32 - 1)(2^32 - 1) +
274 // (2^32 - 1) + 2^32 = 2^64.
275 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
276
277 carry += (lx * hy) & 0xffffffffULL;
278 dest[i] = (carry << 32) | (dest[i] & 0xffffffffULL);
279 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0) +
280 (carry >> 32) + ((lx * hy) >> 32) + hx * hy;
281 }
282 return carry;
283}
284
285/// Multiplies integer array x by integer array y and stores the result into
286/// the integer array dest. Note that dest's size must be >= xlen + ylen.
287/// @brief Generalized multiplicate of integer arrays.
Chris Lattneree5417c2009-01-21 18:09:24 +0000288static void mul(uint64_t dest[], uint64_t x[], unsigned xlen, uint64_t y[],
289 unsigned ylen) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000290 dest[xlen] = mul_1(dest, x, xlen, y[0]);
Chris Lattneree5417c2009-01-21 18:09:24 +0000291 for (unsigned i = 1; i < ylen; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000292 uint64_t ly = y[i] & 0xffffffffULL, hy = y[i] >> 32;
293 uint64_t carry = 0, lx = 0, hx = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +0000294 for (unsigned j = 0; j < xlen; ++j) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000295 lx = x[j] & 0xffffffffULL;
296 hx = x[j] >> 32;
297 // hasCarry - A flag to indicate if has carry.
298 // hasCarry == 0, no carry
299 // hasCarry == 1, has carry
300 // hasCarry == 2, no carry and the calculation result == 0.
301 uint8_t hasCarry = 0;
302 uint64_t resul = carry + lx * ly;
303 hasCarry = (resul < carry) ? 1 : 0;
304 carry = (hasCarry ? (1ULL << 32) : 0) + hx * ly + (resul >> 32);
305 hasCarry = (!carry && hasCarry) ? 1 : (!carry ? 2 : 0);
306
307 carry += (lx * hy) & 0xffffffffULL;
308 resul = (carry << 32) | (resul & 0xffffffffULL);
309 dest[i+j] += resul;
310 carry = (((!carry && hasCarry != 2) || hasCarry == 1) ? (1ULL << 32) : 0)+
311 (carry >> 32) + (dest[i+j] < resul ? 1 : 0) +
312 ((lx * hy) >> 32) + hx * hy;
313 }
314 dest[i+xlen] = carry;
315 }
316}
317
318APInt& APInt::operator*=(const APInt& RHS) {
319 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
320 if (isSingleWord()) {
321 VAL *= RHS.VAL;
322 clearUnusedBits();
323 return *this;
324 }
325
326 // Get some bit facts about LHS and check for zero
Chris Lattneree5417c2009-01-21 18:09:24 +0000327 unsigned lhsBits = getActiveBits();
328 unsigned lhsWords = !lhsBits ? 0 : whichWord(lhsBits - 1) + 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000329 if (!lhsWords)
330 // 0 * X ===> 0
331 return *this;
332
333 // Get some bit facts about RHS and check for zero
Chris Lattneree5417c2009-01-21 18:09:24 +0000334 unsigned rhsBits = RHS.getActiveBits();
335 unsigned rhsWords = !rhsBits ? 0 : whichWord(rhsBits - 1) + 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000336 if (!rhsWords) {
337 // X * 0 ===> 0
338 clear();
339 return *this;
340 }
341
342 // Allocate space for the result
Chris Lattneree5417c2009-01-21 18:09:24 +0000343 unsigned destWords = rhsWords + lhsWords;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000344 uint64_t *dest = getMemory(destWords);
345
346 // Perform the long multiply
347 mul(dest, pVal, lhsWords, RHS.pVal, rhsWords);
348
349 // Copy result back into *this
350 clear();
Chris Lattneree5417c2009-01-21 18:09:24 +0000351 unsigned wordsToCopy = destWords >= getNumWords() ? getNumWords() : destWords;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000352 memcpy(pVal, dest, wordsToCopy * APINT_WORD_SIZE);
353
354 // delete dest array and return
355 delete[] dest;
356 return *this;
357}
358
359APInt& APInt::operator&=(const APInt& RHS) {
360 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
361 if (isSingleWord()) {
362 VAL &= RHS.VAL;
363 return *this;
364 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000365 unsigned numWords = getNumWords();
366 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000367 pVal[i] &= RHS.pVal[i];
368 return *this;
369}
370
371APInt& APInt::operator|=(const APInt& RHS) {
372 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
373 if (isSingleWord()) {
374 VAL |= RHS.VAL;
375 return *this;
376 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000377 unsigned numWords = getNumWords();
378 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000379 pVal[i] |= RHS.pVal[i];
380 return *this;
381}
382
383APInt& APInt::operator^=(const APInt& RHS) {
384 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
385 if (isSingleWord()) {
386 VAL ^= RHS.VAL;
387 this->clearUnusedBits();
388 return *this;
389 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000390 unsigned numWords = getNumWords();
391 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000392 pVal[i] ^= RHS.pVal[i];
393 return clearUnusedBits();
394}
395
Chris Lattner84886852008-08-20 17:02:31 +0000396APInt APInt::AndSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000397 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000398 uint64_t* val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000399 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000400 val[i] = pVal[i] & RHS.pVal[i];
401 return APInt(val, getBitWidth());
402}
403
Chris Lattner84886852008-08-20 17:02:31 +0000404APInt APInt::OrSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000405 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000406 uint64_t *val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000407 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000408 val[i] = pVal[i] | RHS.pVal[i];
409 return APInt(val, getBitWidth());
410}
411
Chris Lattner84886852008-08-20 17:02:31 +0000412APInt APInt::XorSlowCase(const APInt& RHS) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000413 unsigned numWords = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000414 uint64_t *val = getMemory(numWords);
Chris Lattneree5417c2009-01-21 18:09:24 +0000415 for (unsigned i = 0; i < numWords; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000416 val[i] = pVal[i] ^ RHS.pVal[i];
417
418 // 0^0==1 so clear the high bits in case they got set.
419 return APInt(val, getBitWidth()).clearUnusedBits();
420}
421
422bool APInt::operator !() const {
423 if (isSingleWord())
424 return !VAL;
425
Chris Lattneree5417c2009-01-21 18:09:24 +0000426 for (unsigned i = 0; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000427 if (pVal[i])
428 return false;
429 return true;
430}
431
432APInt APInt::operator*(const APInt& RHS) const {
433 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
434 if (isSingleWord())
435 return APInt(BitWidth, VAL * RHS.VAL);
436 APInt Result(*this);
437 Result *= RHS;
438 return Result.clearUnusedBits();
439}
440
441APInt APInt::operator+(const APInt& RHS) const {
442 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
443 if (isSingleWord())
444 return APInt(BitWidth, VAL + RHS.VAL);
445 APInt Result(BitWidth, 0);
446 add(Result.pVal, this->pVal, RHS.pVal, getNumWords());
447 return Result.clearUnusedBits();
448}
449
450APInt APInt::operator-(const APInt& RHS) const {
451 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
452 if (isSingleWord())
453 return APInt(BitWidth, VAL - RHS.VAL);
454 APInt Result(BitWidth, 0);
455 sub(Result.pVal, this->pVal, RHS.pVal, getNumWords());
456 return Result.clearUnusedBits();
457}
458
Chris Lattneree5417c2009-01-21 18:09:24 +0000459bool APInt::operator[](unsigned bitPosition) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000460 return (maskBit(bitPosition) &
461 (isSingleWord() ? VAL : pVal[whichWord(bitPosition)])) != 0;
462}
463
Chris Lattner84886852008-08-20 17:02:31 +0000464bool APInt::EqualSlowCase(const APInt& RHS) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000465 // Get some facts about the number of bits used in the two operands.
Chris Lattneree5417c2009-01-21 18:09:24 +0000466 unsigned n1 = getActiveBits();
467 unsigned n2 = RHS.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000468
469 // If the number of bits isn't the same, they aren't equal
470 if (n1 != n2)
471 return false;
472
473 // If the number of bits fits in a word, we only need to compare the low word.
474 if (n1 <= APINT_BITS_PER_WORD)
475 return pVal[0] == RHS.pVal[0];
476
477 // Otherwise, compare everything
478 for (int i = whichWord(n1 - 1); i >= 0; --i)
479 if (pVal[i] != RHS.pVal[i])
480 return false;
481 return true;
482}
483
Chris Lattner84886852008-08-20 17:02:31 +0000484bool APInt::EqualSlowCase(uint64_t Val) const {
Chris Lattneree5417c2009-01-21 18:09:24 +0000485 unsigned n = getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000486 if (n <= APINT_BITS_PER_WORD)
487 return pVal[0] == Val;
488 else
489 return false;
490}
491
492bool APInt::ult(const APInt& RHS) const {
493 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
494 if (isSingleWord())
495 return VAL < RHS.VAL;
496
497 // Get active bit length of both operands
Chris Lattneree5417c2009-01-21 18:09:24 +0000498 unsigned n1 = getActiveBits();
499 unsigned n2 = RHS.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000500
501 // If magnitude of LHS is less than RHS, return true.
502 if (n1 < n2)
503 return true;
504
505 // If magnitude of RHS is greather than LHS, return false.
506 if (n2 < n1)
507 return false;
508
509 // If they bot fit in a word, just compare the low order word
510 if (n1 <= APINT_BITS_PER_WORD && n2 <= APINT_BITS_PER_WORD)
511 return pVal[0] < RHS.pVal[0];
512
513 // Otherwise, compare all words
Chris Lattneree5417c2009-01-21 18:09:24 +0000514 unsigned topWord = whichWord(std::max(n1,n2)-1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000515 for (int i = topWord; i >= 0; --i) {
516 if (pVal[i] > RHS.pVal[i])
517 return false;
518 if (pVal[i] < RHS.pVal[i])
519 return true;
520 }
521 return false;
522}
523
524bool APInt::slt(const APInt& RHS) const {
525 assert(BitWidth == RHS.BitWidth && "Bit widths must be same for comparison");
526 if (isSingleWord()) {
527 int64_t lhsSext = (int64_t(VAL) << (64-BitWidth)) >> (64-BitWidth);
528 int64_t rhsSext = (int64_t(RHS.VAL) << (64-BitWidth)) >> (64-BitWidth);
529 return lhsSext < rhsSext;
530 }
531
532 APInt lhs(*this);
533 APInt rhs(RHS);
534 bool lhsNeg = isNegative();
535 bool rhsNeg = rhs.isNegative();
536 if (lhsNeg) {
537 // Sign bit is set so perform two's complement to make it positive
538 lhs.flip();
539 lhs++;
540 }
541 if (rhsNeg) {
542 // Sign bit is set so perform two's complement to make it positive
543 rhs.flip();
544 rhs++;
545 }
546
547 // Now we have unsigned values to compare so do the comparison if necessary
548 // based on the negativeness of the values.
549 if (lhsNeg)
550 if (rhsNeg)
551 return lhs.ugt(rhs);
552 else
553 return true;
554 else if (rhsNeg)
555 return false;
556 else
557 return lhs.ult(rhs);
558}
559
Chris Lattneree5417c2009-01-21 18:09:24 +0000560APInt& APInt::set(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000561 if (isSingleWord())
562 VAL |= maskBit(bitPosition);
563 else
564 pVal[whichWord(bitPosition)] |= maskBit(bitPosition);
565 return *this;
566}
567
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000568/// Set the given bit to 0 whose position is given as "bitPosition".
569/// @brief Set a given bit to 0.
Chris Lattneree5417c2009-01-21 18:09:24 +0000570APInt& APInt::clear(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000571 if (isSingleWord())
572 VAL &= ~maskBit(bitPosition);
573 else
574 pVal[whichWord(bitPosition)] &= ~maskBit(bitPosition);
575 return *this;
576}
577
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000578/// @brief Toggle every bit to its opposite value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000579
580/// Toggle a given bit to its opposite value whose position is given
581/// as "bitPosition".
582/// @brief Toggles a given bit to its opposite value.
Chris Lattneree5417c2009-01-21 18:09:24 +0000583APInt& APInt::flip(unsigned bitPosition) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000584 assert(bitPosition < BitWidth && "Out of the bit-width range!");
585 if ((*this)[bitPosition]) clear(bitPosition);
586 else set(bitPosition);
587 return *this;
588}
589
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +0000590unsigned APInt::getBitsNeeded(const StringRef& str, uint8_t radix) {
591 assert(!str.empty() && "Invalid string length");
592
593 size_t slen = str.size();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000594
595 // Each computation below needs to know if its negative
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +0000596 unsigned isNegative = str.front() == '-';
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000597 if (isNegative) {
598 slen--;
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +0000599 assert(slen && "string is only a minus!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000600 }
601 // For radixes of power-of-two values, the bits required is accurately and
602 // easily computed
603 if (radix == 2)
604 return slen + isNegative;
605 if (radix == 8)
606 return slen * 3 + isNegative;
607 if (radix == 16)
608 return slen * 4 + isNegative;
609
610 // Otherwise it must be radix == 10, the hard case
611 assert(radix == 10 && "Invalid radix");
612
613 // This is grossly inefficient but accurate. We could probably do something
614 // with a computation of roughly slen*64/20 and then adjust by the value of
615 // the first few digits. But, I'm not sure how accurate that could be.
616
617 // Compute a sufficient number of bits that is always large enough but might
618 // be too large. This avoids the assertion in the constructor.
Chris Lattneree5417c2009-01-21 18:09:24 +0000619 unsigned sufficient = slen*64/18;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000620
621 // Convert to the actual binary value.
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +0000622 APInt tmp(sufficient, str.substr(isNegative), radix);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000623
624 // Compute how many bits are required.
625 return isNegative + tmp.logBase2() + 1;
626}
627
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000628// From http://www.burtleburtle.net, byBob Jenkins.
629// When targeting x86, both GCC and LLVM seem to recognize this as a
630// rotate instruction.
631#define rot(x,k) (((x)<<(k)) | ((x)>>(32-(k))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000632
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000633// From http://www.burtleburtle.net, by Bob Jenkins.
634#define mix(a,b,c) \
635 { \
636 a -= c; a ^= rot(c, 4); c += b; \
637 b -= a; b ^= rot(a, 6); a += c; \
638 c -= b; c ^= rot(b, 8); b += a; \
639 a -= c; a ^= rot(c,16); c += b; \
640 b -= a; b ^= rot(a,19); a += c; \
641 c -= b; c ^= rot(b, 4); b += a; \
642 }
643
644// From http://www.burtleburtle.net, by Bob Jenkins.
645#define final(a,b,c) \
646 { \
647 c ^= b; c -= rot(b,14); \
648 a ^= c; a -= rot(c,11); \
649 b ^= a; b -= rot(a,25); \
650 c ^= b; c -= rot(b,16); \
651 a ^= c; a -= rot(c,4); \
652 b ^= a; b -= rot(a,14); \
653 c ^= b; c -= rot(b,24); \
654 }
655
656// hashword() was adapted from http://www.burtleburtle.net, by Bob
657// Jenkins. k is a pointer to an array of uint32_t values; length is
658// the length of the key, in 32-bit chunks. This version only handles
659// keys that are a multiple of 32 bits in size.
660static inline uint32_t hashword(const uint64_t *k64, size_t length)
661{
662 const uint32_t *k = reinterpret_cast<const uint32_t *>(k64);
663 uint32_t a,b,c;
664
665 /* Set up the internal state */
666 a = b = c = 0xdeadbeef + (((uint32_t)length)<<2);
667
668 /*------------------------------------------------- handle most of the key */
669 while (length > 3)
670 {
671 a += k[0];
672 b += k[1];
673 c += k[2];
674 mix(a,b,c);
675 length -= 3;
676 k += 3;
677 }
678
679 /*------------------------------------------- handle the last 3 uint32_t's */
Mike Stump7134bb52009-05-13 23:23:20 +0000680 switch (length) { /* all the case statements fall through */
681 case 3 : c+=k[2];
682 case 2 : b+=k[1];
683 case 1 : a+=k[0];
684 final(a,b,c);
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000685 case 0: /* case 0: nothing left to add */
686 break;
687 }
688 /*------------------------------------------------------ report the result */
689 return c;
690}
691
692// hashword8() was adapted from http://www.burtleburtle.net, by Bob
693// Jenkins. This computes a 32-bit hash from one 64-bit word. When
694// targeting x86 (32 or 64 bit), both LLVM and GCC compile this
695// function into about 35 instructions when inlined.
696static inline uint32_t hashword8(const uint64_t k64)
697{
698 uint32_t a,b,c;
699 a = b = c = 0xdeadbeef + 4;
700 b += k64 >> 32;
701 a += k64 & 0xffffffff;
702 final(a,b,c);
703 return c;
704}
705#undef final
706#undef mix
707#undef rot
708
709uint64_t APInt::getHashValue() const {
710 uint64_t hash;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000711 if (isSingleWord())
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000712 hash = hashword8(VAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000713 else
Stuart Hastings6698f2e2009-03-13 21:51:13 +0000714 hash = hashword(pVal, getNumWords()*2);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000715 return hash;
716}
717
718/// HiBits - This function returns the high "numBits" bits of this APInt.
Chris Lattneree5417c2009-01-21 18:09:24 +0000719APInt APInt::getHiBits(unsigned numBits) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000720 return APIntOps::lshr(*this, BitWidth - numBits);
721}
722
723/// LoBits - This function returns the low "numBits" bits of this APInt.
Chris Lattneree5417c2009-01-21 18:09:24 +0000724APInt APInt::getLoBits(unsigned numBits) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000725 return APIntOps::lshr(APIntOps::shl(*this, BitWidth - numBits),
726 BitWidth - numBits);
727}
728
729bool APInt::isPowerOf2() const {
730 return (!!*this) && !(*this & (*this - APInt(BitWidth,1)));
731}
732
Chris Lattneree5417c2009-01-21 18:09:24 +0000733unsigned APInt::countLeadingZerosSlowCase() const {
734 unsigned Count = 0;
735 for (unsigned i = getNumWords(); i > 0u; --i) {
Chris Lattner84886852008-08-20 17:02:31 +0000736 if (pVal[i-1] == 0)
737 Count += APINT_BITS_PER_WORD;
738 else {
739 Count += CountLeadingZeros_64(pVal[i-1]);
740 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000741 }
742 }
Chris Lattneree5417c2009-01-21 18:09:24 +0000743 unsigned remainder = BitWidth % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000744 if (remainder)
745 Count -= APINT_BITS_PER_WORD - remainder;
Chris Lattner00b08ce2007-11-23 22:42:31 +0000746 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000747}
748
Chris Lattneree5417c2009-01-21 18:09:24 +0000749static unsigned countLeadingOnes_64(uint64_t V, unsigned skip) {
750 unsigned Count = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000751 if (skip)
752 V <<= skip;
753 while (V && (V & (1ULL << 63))) {
754 Count++;
755 V <<= 1;
756 }
757 return Count;
758}
759
Chris Lattneree5417c2009-01-21 18:09:24 +0000760unsigned APInt::countLeadingOnes() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000761 if (isSingleWord())
762 return countLeadingOnes_64(VAL, APINT_BITS_PER_WORD - BitWidth);
763
Chris Lattneree5417c2009-01-21 18:09:24 +0000764 unsigned highWordBits = BitWidth % APINT_BITS_PER_WORD;
edwinb95462a2009-01-27 18:06:03 +0000765 unsigned shift;
766 if (!highWordBits) {
767 highWordBits = APINT_BITS_PER_WORD;
768 shift = 0;
769 } else {
770 shift = APINT_BITS_PER_WORD - highWordBits;
771 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000772 int i = getNumWords() - 1;
Chris Lattneree5417c2009-01-21 18:09:24 +0000773 unsigned Count = countLeadingOnes_64(pVal[i], shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000774 if (Count == highWordBits) {
775 for (i--; i >= 0; --i) {
776 if (pVal[i] == -1ULL)
777 Count += APINT_BITS_PER_WORD;
778 else {
779 Count += countLeadingOnes_64(pVal[i], 0);
780 break;
781 }
782 }
783 }
784 return Count;
785}
786
Chris Lattneree5417c2009-01-21 18:09:24 +0000787unsigned APInt::countTrailingZeros() const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000788 if (isSingleWord())
Chris Lattneree5417c2009-01-21 18:09:24 +0000789 return std::min(unsigned(CountTrailingZeros_64(VAL)), BitWidth);
790 unsigned Count = 0;
791 unsigned i = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000792 for (; i < getNumWords() && pVal[i] == 0; ++i)
793 Count += APINT_BITS_PER_WORD;
794 if (i < getNumWords())
795 Count += CountTrailingZeros_64(pVal[i]);
Chris Lattner9ee26cf2007-11-23 22:36:25 +0000796 return std::min(Count, BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000797}
798
Chris Lattneree5417c2009-01-21 18:09:24 +0000799unsigned APInt::countTrailingOnesSlowCase() const {
800 unsigned Count = 0;
801 unsigned i = 0;
Dan Gohmane4428412008-02-14 22:38:45 +0000802 for (; i < getNumWords() && pVal[i] == -1ULL; ++i)
Dan Gohmanf550d412008-02-13 21:11:05 +0000803 Count += APINT_BITS_PER_WORD;
804 if (i < getNumWords())
805 Count += CountTrailingOnes_64(pVal[i]);
806 return std::min(Count, BitWidth);
807}
808
Chris Lattneree5417c2009-01-21 18:09:24 +0000809unsigned APInt::countPopulationSlowCase() const {
810 unsigned Count = 0;
811 for (unsigned i = 0; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000812 Count += CountPopulation_64(pVal[i]);
813 return Count;
814}
815
816APInt APInt::byteSwap() const {
817 assert(BitWidth >= 16 && BitWidth % 16 == 0 && "Cannot byteswap!");
818 if (BitWidth == 16)
819 return APInt(BitWidth, ByteSwap_16(uint16_t(VAL)));
820 else if (BitWidth == 32)
Chris Lattneree5417c2009-01-21 18:09:24 +0000821 return APInt(BitWidth, ByteSwap_32(unsigned(VAL)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000822 else if (BitWidth == 48) {
Chris Lattneree5417c2009-01-21 18:09:24 +0000823 unsigned Tmp1 = unsigned(VAL >> 16);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000824 Tmp1 = ByteSwap_32(Tmp1);
825 uint16_t Tmp2 = uint16_t(VAL);
826 Tmp2 = ByteSwap_16(Tmp2);
827 return APInt(BitWidth, (uint64_t(Tmp2) << 32) | Tmp1);
828 } else if (BitWidth == 64)
829 return APInt(BitWidth, ByteSwap_64(VAL));
830 else {
831 APInt Result(BitWidth, 0);
832 char *pByte = (char*)Result.pVal;
Chris Lattneree5417c2009-01-21 18:09:24 +0000833 for (unsigned i = 0; i < BitWidth / APINT_WORD_SIZE / 2; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000834 char Tmp = pByte[i];
835 pByte[i] = pByte[BitWidth / APINT_WORD_SIZE - 1 - i];
836 pByte[BitWidth / APINT_WORD_SIZE - i - 1] = Tmp;
837 }
838 return Result;
839 }
840}
841
842APInt llvm::APIntOps::GreatestCommonDivisor(const APInt& API1,
843 const APInt& API2) {
844 APInt A = API1, B = API2;
845 while (!!B) {
846 APInt T = B;
847 B = APIntOps::urem(A, B);
848 A = T;
849 }
850 return A;
851}
852
Chris Lattneree5417c2009-01-21 18:09:24 +0000853APInt llvm::APIntOps::RoundDoubleToAPInt(double Double, unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000854 union {
855 double D;
856 uint64_t I;
857 } T;
858 T.D = Double;
859
860 // Get the sign bit from the highest order bit
861 bool isNeg = T.I >> 63;
862
863 // Get the 11-bit exponent and adjust for the 1023 bit bias
864 int64_t exp = ((T.I >> 52) & 0x7ff) - 1023;
865
866 // If the exponent is negative, the value is < 0 so just return 0.
867 if (exp < 0)
868 return APInt(width, 0u);
869
870 // Extract the mantissa by clearing the top 12 bits (sign + exponent).
871 uint64_t mantissa = (T.I & (~0ULL >> 12)) | 1ULL << 52;
872
873 // If the exponent doesn't shift all bits out of the mantissa
874 if (exp < 52)
875 return isNeg ? -APInt(width, mantissa >> (52 - exp)) :
876 APInt(width, mantissa >> (52 - exp));
877
878 // If the client didn't provide enough bits for us to shift the mantissa into
879 // then the result is undefined, just return 0
880 if (width <= exp - 52)
881 return APInt(width, 0);
882
883 // Otherwise, we have to shift the mantissa bits up to the right location
884 APInt Tmp(width, mantissa);
Chris Lattneree5417c2009-01-21 18:09:24 +0000885 Tmp = Tmp.shl((unsigned)exp - 52);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000886 return isNeg ? -Tmp : Tmp;
887}
888
Dale Johannesene326f252009-08-12 18:04:11 +0000889/// RoundToDouble - This function converts this APInt to a double.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000890/// The layout for double is as following (IEEE Standard 754):
891/// --------------------------------------
892/// | Sign Exponent Fraction Bias |
893/// |-------------------------------------- |
894/// | 1[63] 11[62-52] 52[51-00] 1023 |
895/// --------------------------------------
896double APInt::roundToDouble(bool isSigned) const {
897
898 // Handle the simple case where the value is contained in one uint64_t.
Dale Johannesene326f252009-08-12 18:04:11 +0000899 // It is wrong to optimize getWord(0) to VAL; there might be more than one word.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000900 if (isSingleWord() || getActiveBits() <= APINT_BITS_PER_WORD) {
901 if (isSigned) {
Dale Johannesen25210cd2009-08-12 17:42:34 +0000902 int64_t sext = (int64_t(getWord(0)) << (64-BitWidth)) >> (64-BitWidth);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000903 return double(sext);
904 } else
Dale Johannesen25210cd2009-08-12 17:42:34 +0000905 return double(getWord(0));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000906 }
907
908 // Determine if the value is negative.
909 bool isNeg = isSigned ? (*this)[BitWidth-1] : false;
910
911 // Construct the absolute value if we're negative.
912 APInt Tmp(isNeg ? -(*this) : (*this));
913
914 // Figure out how many bits we're using.
Chris Lattneree5417c2009-01-21 18:09:24 +0000915 unsigned n = Tmp.getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000916
917 // The exponent (without bias normalization) is just the number of bits
918 // we are using. Note that the sign bit is gone since we constructed the
919 // absolute value.
920 uint64_t exp = n;
921
922 // Return infinity for exponent overflow
923 if (exp > 1023) {
924 if (!isSigned || !isNeg)
925 return std::numeric_limits<double>::infinity();
926 else
927 return -std::numeric_limits<double>::infinity();
928 }
929 exp += 1023; // Increment for 1023 bias
930
931 // Number of bits in mantissa is 52. To obtain the mantissa value, we must
932 // extract the high 52 bits from the correct words in pVal.
933 uint64_t mantissa;
934 unsigned hiWord = whichWord(n-1);
935 if (hiWord == 0) {
936 mantissa = Tmp.pVal[0];
937 if (n > 52)
938 mantissa >>= n - 52; // shift down, we want the top 52 bits.
939 } else {
940 assert(hiWord > 0 && "huh?");
941 uint64_t hibits = Tmp.pVal[hiWord] << (52 - n % APINT_BITS_PER_WORD);
942 uint64_t lobits = Tmp.pVal[hiWord-1] >> (11 + n % APINT_BITS_PER_WORD);
943 mantissa = hibits | lobits;
944 }
945
946 // The leading bit of mantissa is implicit, so get rid of it.
947 uint64_t sign = isNeg ? (1ULL << (APINT_BITS_PER_WORD - 1)) : 0;
948 union {
949 double D;
950 uint64_t I;
951 } T;
952 T.I = sign | (exp << 52) | mantissa;
953 return T.D;
954}
955
956// Truncate to new width.
Chris Lattneree5417c2009-01-21 18:09:24 +0000957APInt &APInt::trunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000958 assert(width < BitWidth && "Invalid APInt Truncate request");
Chris Lattner84886852008-08-20 17:02:31 +0000959 assert(width && "Can't truncate to 0 bits");
Chris Lattneree5417c2009-01-21 18:09:24 +0000960 unsigned wordsBefore = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000961 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +0000962 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000963 if (wordsBefore != wordsAfter) {
964 if (wordsAfter == 1) {
965 uint64_t *tmp = pVal;
966 VAL = pVal[0];
967 delete [] tmp;
968 } else {
969 uint64_t *newVal = getClearedMemory(wordsAfter);
Chris Lattneree5417c2009-01-21 18:09:24 +0000970 for (unsigned i = 0; i < wordsAfter; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000971 newVal[i] = pVal[i];
972 delete [] pVal;
973 pVal = newVal;
974 }
975 }
976 return clearUnusedBits();
977}
978
979// Sign extend to a new width.
Chris Lattneree5417c2009-01-21 18:09:24 +0000980APInt &APInt::sext(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000981 assert(width > BitWidth && "Invalid APInt SignExtend request");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000982 // If the sign bit isn't set, this is the same as zext.
983 if (!isNegative()) {
984 zext(width);
985 return *this;
986 }
987
988 // The sign bit is set. First, get some facts
Chris Lattneree5417c2009-01-21 18:09:24 +0000989 unsigned wordsBefore = getNumWords();
990 unsigned wordBits = BitWidth % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000991 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +0000992 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000993
994 // Mask the high order word appropriately
995 if (wordsBefore == wordsAfter) {
Chris Lattneree5417c2009-01-21 18:09:24 +0000996 unsigned newWordBits = width % APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000997 // The extension is contained to the wordsBefore-1th word.
998 uint64_t mask = ~0ULL;
999 if (newWordBits)
1000 mask >>= APINT_BITS_PER_WORD - newWordBits;
1001 mask <<= wordBits;
1002 if (wordsBefore == 1)
1003 VAL |= mask;
1004 else
1005 pVal[wordsBefore-1] |= mask;
1006 return clearUnusedBits();
1007 }
1008
1009 uint64_t mask = wordBits == 0 ? 0 : ~0ULL << wordBits;
1010 uint64_t *newVal = getMemory(wordsAfter);
1011 if (wordsBefore == 1)
1012 newVal[0] = VAL | mask;
1013 else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001014 for (unsigned i = 0; i < wordsBefore; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001015 newVal[i] = pVal[i];
1016 newVal[wordsBefore-1] |= mask;
1017 }
Chris Lattneree5417c2009-01-21 18:09:24 +00001018 for (unsigned i = wordsBefore; i < wordsAfter; i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001019 newVal[i] = -1ULL;
1020 if (wordsBefore != 1)
1021 delete [] pVal;
1022 pVal = newVal;
1023 return clearUnusedBits();
1024}
1025
1026// Zero extend to a new width.
Chris Lattneree5417c2009-01-21 18:09:24 +00001027APInt &APInt::zext(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001028 assert(width > BitWidth && "Invalid APInt ZeroExtend request");
Chris Lattneree5417c2009-01-21 18:09:24 +00001029 unsigned wordsBefore = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001030 BitWidth = width;
Chris Lattneree5417c2009-01-21 18:09:24 +00001031 unsigned wordsAfter = getNumWords();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001032 if (wordsBefore != wordsAfter) {
1033 uint64_t *newVal = getClearedMemory(wordsAfter);
1034 if (wordsBefore == 1)
1035 newVal[0] = VAL;
1036 else
Chris Lattneree5417c2009-01-21 18:09:24 +00001037 for (unsigned i = 0; i < wordsBefore; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001038 newVal[i] = pVal[i];
1039 if (wordsBefore != 1)
1040 delete [] pVal;
1041 pVal = newVal;
1042 }
1043 return *this;
1044}
1045
Chris Lattneree5417c2009-01-21 18:09:24 +00001046APInt &APInt::zextOrTrunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001047 if (BitWidth < width)
1048 return zext(width);
1049 if (BitWidth > width)
1050 return trunc(width);
1051 return *this;
1052}
1053
Chris Lattneree5417c2009-01-21 18:09:24 +00001054APInt &APInt::sextOrTrunc(unsigned width) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001055 if (BitWidth < width)
1056 return sext(width);
1057 if (BitWidth > width)
1058 return trunc(width);
1059 return *this;
1060}
1061
1062/// Arithmetic right-shift this APInt by shiftAmt.
1063/// @brief Arithmetic right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001064APInt APInt::ashr(const APInt &shiftAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001065 return ashr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001066}
1067
1068/// Arithmetic right-shift this APInt by shiftAmt.
1069/// @brief Arithmetic right-shift function.
Chris Lattneree5417c2009-01-21 18:09:24 +00001070APInt APInt::ashr(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001071 assert(shiftAmt <= BitWidth && "Invalid shift amount");
1072 // Handle a degenerate case
1073 if (shiftAmt == 0)
1074 return *this;
1075
1076 // Handle single word shifts with built-in ashr
1077 if (isSingleWord()) {
1078 if (shiftAmt == BitWidth)
1079 return APInt(BitWidth, 0); // undefined
1080 else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001081 unsigned SignBit = APINT_BITS_PER_WORD - BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001082 return APInt(BitWidth,
1083 (((int64_t(VAL) << SignBit) >> SignBit) >> shiftAmt));
1084 }
1085 }
1086
1087 // If all the bits were shifted out, the result is, technically, undefined.
1088 // We return -1 if it was negative, 0 otherwise. We check this early to avoid
1089 // issues in the algorithm below.
1090 if (shiftAmt == BitWidth) {
1091 if (isNegative())
Zhou Sheng3f7ab5c2008-06-05 13:27:38 +00001092 return APInt(BitWidth, -1ULL, true);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001093 else
1094 return APInt(BitWidth, 0);
1095 }
1096
1097 // Create some space for the result.
1098 uint64_t * val = new uint64_t[getNumWords()];
1099
1100 // Compute some values needed by the following shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001101 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD; // bits to shift per word
1102 unsigned offset = shiftAmt / APINT_BITS_PER_WORD; // word offset for shift
1103 unsigned breakWord = getNumWords() - 1 - offset; // last word affected
1104 unsigned bitsInWord = whichBit(BitWidth); // how many bits in last word?
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001105 if (bitsInWord == 0)
1106 bitsInWord = APINT_BITS_PER_WORD;
1107
1108 // If we are shifting whole words, just move whole words
1109 if (wordShift == 0) {
1110 // Move the words containing significant bits
Chris Lattneree5417c2009-01-21 18:09:24 +00001111 for (unsigned i = 0; i <= breakWord; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001112 val[i] = pVal[i+offset]; // move whole word
1113
1114 // Adjust the top significant word for sign bit fill, if negative
1115 if (isNegative())
1116 if (bitsInWord < APINT_BITS_PER_WORD)
1117 val[breakWord] |= ~0ULL << bitsInWord; // set high bits
1118 } else {
1119 // Shift the low order words
Chris Lattneree5417c2009-01-21 18:09:24 +00001120 for (unsigned i = 0; i < breakWord; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001121 // This combines the shifted corresponding word with the low bits from
1122 // the next word (shifted into this word's high bits).
1123 val[i] = (pVal[i+offset] >> wordShift) |
1124 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1125 }
1126
1127 // Shift the break word. In this case there are no bits from the next word
1128 // to include in this word.
1129 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1130
1131 // Deal with sign extenstion in the break word, and possibly the word before
1132 // it.
1133 if (isNegative()) {
1134 if (wordShift > bitsInWord) {
1135 if (breakWord > 0)
1136 val[breakWord-1] |=
1137 ~0ULL << (APINT_BITS_PER_WORD - (wordShift - bitsInWord));
1138 val[breakWord] |= ~0ULL;
1139 } else
1140 val[breakWord] |= (~0ULL << (bitsInWord - wordShift));
1141 }
1142 }
1143
1144 // Remaining words are 0 or -1, just assign them.
1145 uint64_t fillValue = (isNegative() ? -1ULL : 0);
Chris Lattneree5417c2009-01-21 18:09:24 +00001146 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001147 val[i] = fillValue;
1148 return APInt(val, BitWidth).clearUnusedBits();
1149}
1150
1151/// Logical right-shift this APInt by shiftAmt.
1152/// @brief Logical right-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001153APInt APInt::lshr(const APInt &shiftAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001154 return lshr((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001155}
1156
1157/// Logical right-shift this APInt by shiftAmt.
1158/// @brief Logical right-shift function.
Chris Lattneree5417c2009-01-21 18:09:24 +00001159APInt APInt::lshr(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001160 if (isSingleWord()) {
1161 if (shiftAmt == BitWidth)
1162 return APInt(BitWidth, 0);
1163 else
1164 return APInt(BitWidth, this->VAL >> shiftAmt);
1165 }
1166
1167 // If all the bits were shifted out, the result is 0. This avoids issues
1168 // with shifting by the size of the integer type, which produces undefined
1169 // results. We define these "undefined results" to always be 0.
1170 if (shiftAmt == BitWidth)
1171 return APInt(BitWidth, 0);
1172
1173 // If none of the bits are shifted out, the result is *this. This avoids
Nick Lewycky11df0fc2009-01-19 17:42:33 +00001174 // issues with shifting by the size of the integer type, which produces
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001175 // undefined results in the code below. This is also an optimization.
1176 if (shiftAmt == 0)
1177 return *this;
1178
1179 // Create some space for the result.
1180 uint64_t * val = new uint64_t[getNumWords()];
1181
1182 // If we are shifting less than a word, compute the shift with a simple carry
1183 if (shiftAmt < APINT_BITS_PER_WORD) {
1184 uint64_t carry = 0;
1185 for (int i = getNumWords()-1; i >= 0; --i) {
1186 val[i] = (pVal[i] >> shiftAmt) | carry;
1187 carry = pVal[i] << (APINT_BITS_PER_WORD - shiftAmt);
1188 }
1189 return APInt(val, BitWidth).clearUnusedBits();
1190 }
1191
1192 // Compute some values needed by the remaining shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001193 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1194 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001195
1196 // If we are shifting whole words, just move whole words
1197 if (wordShift == 0) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001198 for (unsigned i = 0; i < getNumWords() - offset; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001199 val[i] = pVal[i+offset];
Chris Lattneree5417c2009-01-21 18:09:24 +00001200 for (unsigned i = getNumWords()-offset; i < getNumWords(); i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001201 val[i] = 0;
1202 return APInt(val,BitWidth).clearUnusedBits();
1203 }
1204
1205 // Shift the low order words
Chris Lattneree5417c2009-01-21 18:09:24 +00001206 unsigned breakWord = getNumWords() - offset -1;
1207 for (unsigned i = 0; i < breakWord; ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001208 val[i] = (pVal[i+offset] >> wordShift) |
1209 (pVal[i+offset+1] << (APINT_BITS_PER_WORD - wordShift));
1210 // Shift the break word.
1211 val[breakWord] = pVal[breakWord+offset] >> wordShift;
1212
1213 // Remaining words are 0
Chris Lattneree5417c2009-01-21 18:09:24 +00001214 for (unsigned i = breakWord+1; i < getNumWords(); ++i)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001215 val[i] = 0;
1216 return APInt(val, BitWidth).clearUnusedBits();
1217}
1218
1219/// Left-shift this APInt by shiftAmt.
1220/// @brief Left-shift function.
Dan Gohman625ff8d2008-02-29 01:40:47 +00001221APInt APInt::shl(const APInt &shiftAmt) const {
Nick Lewycky11df0fc2009-01-19 17:42:33 +00001222 // It's undefined behavior in C to shift by BitWidth or greater.
Chris Lattneree5417c2009-01-21 18:09:24 +00001223 return shl((unsigned)shiftAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001224}
1225
Chris Lattneree5417c2009-01-21 18:09:24 +00001226APInt APInt::shlSlowCase(unsigned shiftAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001227 // If all the bits were shifted out, the result is 0. This avoids issues
1228 // with shifting by the size of the integer type, which produces undefined
1229 // results. We define these "undefined results" to always be 0.
1230 if (shiftAmt == BitWidth)
1231 return APInt(BitWidth, 0);
1232
1233 // If none of the bits are shifted out, the result is *this. This avoids a
1234 // lshr by the words size in the loop below which can produce incorrect
1235 // results. It also avoids the expensive computation below for a common case.
1236 if (shiftAmt == 0)
1237 return *this;
1238
1239 // Create some space for the result.
1240 uint64_t * val = new uint64_t[getNumWords()];
1241
1242 // If we are shifting less than a word, do it the easy way
1243 if (shiftAmt < APINT_BITS_PER_WORD) {
1244 uint64_t carry = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001245 for (unsigned i = 0; i < getNumWords(); i++) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001246 val[i] = pVal[i] << shiftAmt | carry;
1247 carry = pVal[i] >> (APINT_BITS_PER_WORD - shiftAmt);
1248 }
1249 return APInt(val, BitWidth).clearUnusedBits();
1250 }
1251
1252 // Compute some values needed by the remaining shift algorithms
Chris Lattneree5417c2009-01-21 18:09:24 +00001253 unsigned wordShift = shiftAmt % APINT_BITS_PER_WORD;
1254 unsigned offset = shiftAmt / APINT_BITS_PER_WORD;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001255
1256 // If we are shifting whole words, just move whole words
1257 if (wordShift == 0) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001258 for (unsigned i = 0; i < offset; i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001259 val[i] = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001260 for (unsigned i = offset; i < getNumWords(); i++)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001261 val[i] = pVal[i-offset];
1262 return APInt(val,BitWidth).clearUnusedBits();
1263 }
1264
1265 // Copy whole words from this to Result.
Chris Lattneree5417c2009-01-21 18:09:24 +00001266 unsigned i = getNumWords() - 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001267 for (; i > offset; --i)
1268 val[i] = pVal[i-offset] << wordShift |
1269 pVal[i-offset-1] >> (APINT_BITS_PER_WORD - wordShift);
1270 val[offset] = pVal[0] << wordShift;
1271 for (i = 0; i < offset; ++i)
1272 val[i] = 0;
1273 return APInt(val, BitWidth).clearUnusedBits();
1274}
1275
Dan Gohman625ff8d2008-02-29 01:40:47 +00001276APInt APInt::rotl(const APInt &rotateAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001277 return rotl((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001278}
1279
Chris Lattneree5417c2009-01-21 18:09:24 +00001280APInt APInt::rotl(unsigned rotateAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001281 if (rotateAmt == 0)
1282 return *this;
1283 // Don't get too fancy, just use existing shift/or facilities
1284 APInt hi(*this);
1285 APInt lo(*this);
1286 hi.shl(rotateAmt);
1287 lo.lshr(BitWidth - rotateAmt);
1288 return hi | lo;
1289}
1290
Dan Gohman625ff8d2008-02-29 01:40:47 +00001291APInt APInt::rotr(const APInt &rotateAmt) const {
Chris Lattneree5417c2009-01-21 18:09:24 +00001292 return rotr((unsigned)rotateAmt.getLimitedValue(BitWidth));
Dan Gohman625ff8d2008-02-29 01:40:47 +00001293}
1294
Chris Lattneree5417c2009-01-21 18:09:24 +00001295APInt APInt::rotr(unsigned rotateAmt) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001296 if (rotateAmt == 0)
1297 return *this;
1298 // Don't get too fancy, just use existing shift/or facilities
1299 APInt hi(*this);
1300 APInt lo(*this);
1301 lo.lshr(rotateAmt);
1302 hi.shl(BitWidth - rotateAmt);
1303 return hi | lo;
1304}
1305
1306// Square Root - this method computes and returns the square root of "this".
1307// Three mechanisms are used for computation. For small values (<= 5 bits),
1308// a table lookup is done. This gets some performance for common cases. For
1309// values using less than 52 bits, the value is converted to double and then
1310// the libc sqrt function is called. The result is rounded and then converted
1311// back to a uint64_t which is then used to construct the result. Finally,
1312// the Babylonian method for computing square roots is used.
1313APInt APInt::sqrt() const {
1314
1315 // Determine the magnitude of the value.
Chris Lattneree5417c2009-01-21 18:09:24 +00001316 unsigned magnitude = getActiveBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001317
1318 // Use a fast table for some small values. This also gets rid of some
1319 // rounding errors in libc sqrt for small values.
1320 if (magnitude <= 5) {
1321 static const uint8_t results[32] = {
1322 /* 0 */ 0,
1323 /* 1- 2 */ 1, 1,
1324 /* 3- 6 */ 2, 2, 2, 2,
1325 /* 7-12 */ 3, 3, 3, 3, 3, 3,
1326 /* 13-20 */ 4, 4, 4, 4, 4, 4, 4, 4,
1327 /* 21-30 */ 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,
1328 /* 31 */ 6
1329 };
1330 return APInt(BitWidth, results[ (isSingleWord() ? VAL : pVal[0]) ]);
1331 }
1332
1333 // If the magnitude of the value fits in less than 52 bits (the precision of
1334 // an IEEE double precision floating point value), then we can use the
1335 // libc sqrt function which will probably use a hardware sqrt computation.
1336 // This should be faster than the algorithm below.
1337 if (magnitude < 52) {
1338#ifdef _MSC_VER
1339 // Amazingly, VC++ doesn't have round().
1340 return APInt(BitWidth,
1341 uint64_t(::sqrt(double(isSingleWord()?VAL:pVal[0]))) + 0.5);
1342#else
1343 return APInt(BitWidth,
1344 uint64_t(::round(::sqrt(double(isSingleWord()?VAL:pVal[0])))));
1345#endif
1346 }
1347
1348 // Okay, all the short cuts are exhausted. We must compute it. The following
1349 // is a classical Babylonian method for computing the square root. This code
1350 // was adapted to APINt from a wikipedia article on such computations.
1351 // See http://www.wikipedia.org/ and go to the page named
1352 // Calculate_an_integer_square_root.
Chris Lattneree5417c2009-01-21 18:09:24 +00001353 unsigned nbits = BitWidth, i = 4;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001354 APInt testy(BitWidth, 16);
1355 APInt x_old(BitWidth, 1);
1356 APInt x_new(BitWidth, 0);
1357 APInt two(BitWidth, 2);
1358
1359 // Select a good starting value using binary logarithms.
1360 for (;; i += 2, testy = testy.shl(2))
1361 if (i >= nbits || this->ule(testy)) {
1362 x_old = x_old.shl(i / 2);
1363 break;
1364 }
1365
1366 // Use the Babylonian method to arrive at the integer square root:
1367 for (;;) {
1368 x_new = (this->udiv(x_old) + x_old).udiv(two);
1369 if (x_old.ule(x_new))
1370 break;
1371 x_old = x_new;
1372 }
1373
1374 // Make sure we return the closest approximation
1375 // NOTE: The rounding calculation below is correct. It will produce an
1376 // off-by-one discrepancy with results from pari/gp. That discrepancy has been
1377 // determined to be a rounding issue with pari/gp as it begins to use a
1378 // floating point representation after 192 bits. There are no discrepancies
1379 // between this algorithm and pari/gp for bit widths < 192 bits.
1380 APInt square(x_old * x_old);
1381 APInt nextSquare((x_old + 1) * (x_old +1));
1382 if (this->ult(square))
1383 return x_old;
1384 else if (this->ule(nextSquare)) {
1385 APInt midpoint((nextSquare - square).udiv(two));
1386 APInt offset(*this - square);
1387 if (offset.ult(midpoint))
1388 return x_old;
1389 else
1390 return x_old + 1;
1391 } else
Edwin Törökbd448e32009-07-14 16:55:14 +00001392 llvm_unreachable("Error in APInt::sqrt computation");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001393 return x_old + 1;
1394}
1395
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001396/// Computes the multiplicative inverse of this APInt for a given modulo. The
1397/// iterative extended Euclidean algorithm is used to solve for this value,
1398/// however we simplify it to speed up calculating only the inverse, and take
1399/// advantage of div+rem calculations. We also use some tricks to avoid copying
1400/// (potentially large) APInts around.
1401APInt APInt::multiplicativeInverse(const APInt& modulo) const {
1402 assert(ult(modulo) && "This APInt must be smaller than the modulo");
1403
1404 // Using the properties listed at the following web page (accessed 06/21/08):
1405 // http://www.numbertheory.org/php/euclid.html
1406 // (especially the properties numbered 3, 4 and 9) it can be proved that
1407 // BitWidth bits suffice for all the computations in the algorithm implemented
1408 // below. More precisely, this number of bits suffice if the multiplicative
1409 // inverse exists, but may not suffice for the general extended Euclidean
1410 // algorithm.
1411
1412 APInt r[2] = { modulo, *this };
1413 APInt t[2] = { APInt(BitWidth, 0), APInt(BitWidth, 1) };
1414 APInt q(BitWidth, 0);
1415
1416 unsigned i;
1417 for (i = 0; r[i^1] != 0; i ^= 1) {
1418 // An overview of the math without the confusing bit-flipping:
1419 // q = r[i-2] / r[i-1]
1420 // r[i] = r[i-2] % r[i-1]
1421 // t[i] = t[i-2] - t[i-1] * q
1422 udivrem(r[i], r[i^1], q, r[i]);
1423 t[i] -= t[i^1] * q;
1424 }
1425
1426 // If this APInt and the modulo are not coprime, there is no multiplicative
1427 // inverse, so return 0. We check this by looking at the next-to-last
1428 // remainder, which is the gcd(*this,modulo) as calculated by the Euclidean
1429 // algorithm.
1430 if (r[i] != 1)
1431 return APInt(BitWidth, 0);
1432
1433 // The next-to-last t is the multiplicative inverse. However, we are
1434 // interested in a positive inverse. Calcuate a positive one from a negative
1435 // one if necessary. A simple addition of the modulo suffices because
Wojciech Matyjewicz961b34c2008-07-20 15:55:14 +00001436 // abs(t[i]) is known to be less than *this/2 (see the link above).
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001437 return t[i].isNegative() ? t[i] + modulo : t[i];
1438}
1439
Jay Foad56b11f92009-04-30 10:15:35 +00001440/// Calculate the magic numbers required to implement a signed integer division
1441/// by a constant as a sequence of multiplies, adds and shifts. Requires that
1442/// the divisor not be 0, 1, or -1. Taken from "Hacker's Delight", Henry S.
1443/// Warren, Jr., chapter 10.
1444APInt::ms APInt::magic() const {
1445 const APInt& d = *this;
1446 unsigned p;
1447 APInt ad, anc, delta, q1, r1, q2, r2, t;
1448 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1449 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1450 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1451 struct ms mag;
1452
1453 ad = d.abs();
1454 t = signedMin + (d.lshr(d.getBitWidth() - 1));
1455 anc = t - 1 - t.urem(ad); // absolute value of nc
1456 p = d.getBitWidth() - 1; // initialize p
1457 q1 = signedMin.udiv(anc); // initialize q1 = 2p/abs(nc)
1458 r1 = signedMin - q1*anc; // initialize r1 = rem(2p,abs(nc))
1459 q2 = signedMin.udiv(ad); // initialize q2 = 2p/abs(d)
1460 r2 = signedMin - q2*ad; // initialize r2 = rem(2p,abs(d))
1461 do {
1462 p = p + 1;
1463 q1 = q1<<1; // update q1 = 2p/abs(nc)
1464 r1 = r1<<1; // update r1 = rem(2p/abs(nc))
1465 if (r1.uge(anc)) { // must be unsigned comparison
1466 q1 = q1 + 1;
1467 r1 = r1 - anc;
1468 }
1469 q2 = q2<<1; // update q2 = 2p/abs(d)
1470 r2 = r2<<1; // update r2 = rem(2p/abs(d))
1471 if (r2.uge(ad)) { // must be unsigned comparison
1472 q2 = q2 + 1;
1473 r2 = r2 - ad;
1474 }
1475 delta = ad - r2;
1476 } while (q1.ule(delta) || (q1 == delta && r1 == 0));
1477
1478 mag.m = q2 + 1;
1479 if (d.isNegative()) mag.m = -mag.m; // resulting magic number
1480 mag.s = p - d.getBitWidth(); // resulting shift
1481 return mag;
1482}
1483
1484/// Calculate the magic numbers required to implement an unsigned integer
1485/// division by a constant as a sequence of multiplies, adds and shifts.
1486/// Requires that the divisor not be 0. Taken from "Hacker's Delight", Henry
1487/// S. Warren, Jr., chapter 10.
1488APInt::mu APInt::magicu() const {
1489 const APInt& d = *this;
1490 unsigned p;
1491 APInt nc, delta, q1, r1, q2, r2;
1492 struct mu magu;
1493 magu.a = 0; // initialize "add" indicator
1494 APInt allOnes = APInt::getAllOnesValue(d.getBitWidth());
1495 APInt signedMin = APInt::getSignedMinValue(d.getBitWidth());
1496 APInt signedMax = APInt::getSignedMaxValue(d.getBitWidth());
1497
1498 nc = allOnes - (-d).urem(d);
1499 p = d.getBitWidth() - 1; // initialize p
1500 q1 = signedMin.udiv(nc); // initialize q1 = 2p/nc
1501 r1 = signedMin - q1*nc; // initialize r1 = rem(2p,nc)
1502 q2 = signedMax.udiv(d); // initialize q2 = (2p-1)/d
1503 r2 = signedMax - q2*d; // initialize r2 = rem((2p-1),d)
1504 do {
1505 p = p + 1;
1506 if (r1.uge(nc - r1)) {
1507 q1 = q1 + q1 + 1; // update q1
1508 r1 = r1 + r1 - nc; // update r1
1509 }
1510 else {
1511 q1 = q1+q1; // update q1
1512 r1 = r1+r1; // update r1
1513 }
1514 if ((r2 + 1).uge(d - r2)) {
1515 if (q2.uge(signedMax)) magu.a = 1;
1516 q2 = q2+q2 + 1; // update q2
1517 r2 = r2+r2 + 1 - d; // update r2
1518 }
1519 else {
1520 if (q2.uge(signedMin)) magu.a = 1;
1521 q2 = q2+q2; // update q2
1522 r2 = r2+r2 + 1; // update r2
1523 }
1524 delta = d - 1 - r2;
1525 } while (p < d.getBitWidth()*2 &&
1526 (q1.ult(delta) || (q1 == delta && r1 == 0)));
1527 magu.m = q2 + 1; // resulting magic number
1528 magu.s = p - d.getBitWidth(); // resulting shift
1529 return magu;
1530}
1531
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001532/// Implementation of Knuth's Algorithm D (Division of nonnegative integers)
1533/// from "Art of Computer Programming, Volume 2", section 4.3.1, p. 272. The
1534/// variables here have the same names as in the algorithm. Comments explain
1535/// the algorithm and any deviation from it.
Chris Lattneree5417c2009-01-21 18:09:24 +00001536static void KnuthDiv(unsigned *u, unsigned *v, unsigned *q, unsigned* r,
1537 unsigned m, unsigned n) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001538 assert(u && "Must provide dividend");
1539 assert(v && "Must provide divisor");
1540 assert(q && "Must provide quotient");
1541 assert(u != v && u != q && v != q && "Must us different memory");
1542 assert(n>1 && "n must be > 1");
1543
1544 // Knuth uses the value b as the base of the number system. In our case b
1545 // is 2^31 so we just set it to -1u.
1546 uint64_t b = uint64_t(1) << 32;
1547
Chris Lattner89b36582008-08-17 07:19:36 +00001548#if 0
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001549 DEBUG(errs() << "KnuthDiv: m=" << m << " n=" << n << '\n');
1550 DEBUG(errs() << "KnuthDiv: original:");
1551 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1552 DEBUG(errs() << " by");
1553 DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
1554 DEBUG(errs() << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001555#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001556 // D1. [Normalize.] Set d = b / (v[n-1] + 1) and multiply all the digits of
1557 // u and v by d. Note that we have taken Knuth's advice here to use a power
1558 // of 2 value for d such that d * v[n-1] >= b/2 (b is the base). A power of
1559 // 2 allows us to shift instead of multiply and it is easy to determine the
1560 // shift amount from the leading zeros. We are basically normalizing the u
1561 // and v so that its high bits are shifted to the top of v's range without
1562 // overflow. Note that this can require an extra word in u so that u must
1563 // be of length m+n+1.
Chris Lattneree5417c2009-01-21 18:09:24 +00001564 unsigned shift = CountLeadingZeros_32(v[n-1]);
1565 unsigned v_carry = 0;
1566 unsigned u_carry = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001567 if (shift) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001568 for (unsigned i = 0; i < m+n; ++i) {
1569 unsigned u_tmp = u[i] >> (32 - shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001570 u[i] = (u[i] << shift) | u_carry;
1571 u_carry = u_tmp;
1572 }
Chris Lattneree5417c2009-01-21 18:09:24 +00001573 for (unsigned i = 0; i < n; ++i) {
1574 unsigned v_tmp = v[i] >> (32 - shift);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001575 v[i] = (v[i] << shift) | v_carry;
1576 v_carry = v_tmp;
1577 }
1578 }
1579 u[m+n] = u_carry;
Chris Lattner89b36582008-08-17 07:19:36 +00001580#if 0
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001581 DEBUG(errs() << "KnuthDiv: normal:");
1582 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1583 DEBUG(errs() << " by");
1584 DEBUG(for (int i = n; i >0; i--) errs() << " " << v[i-1]);
1585 DEBUG(errs() << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001586#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001587
1588 // D2. [Initialize j.] Set j to m. This is the loop counter over the places.
1589 int j = m;
1590 do {
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001591 DEBUG(errs() << "KnuthDiv: quotient digit #" << j << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001592 // D3. [Calculate q'.].
1593 // Set qp = (u[j+n]*b + u[j+n-1]) / v[n-1]. (qp=qprime=q')
1594 // Set rp = (u[j+n]*b + u[j+n-1]) % v[n-1]. (rp=rprime=r')
1595 // Now test if qp == b or qp*v[n-2] > b*rp + u[j+n-2]; if so, decrease
1596 // qp by 1, inrease rp by v[n-1], and repeat this test if rp < b. The test
1597 // on v[n-2] determines at high speed most of the cases in which the trial
1598 // value qp is one too large, and it eliminates all cases where qp is two
1599 // too large.
1600 uint64_t dividend = ((uint64_t(u[j+n]) << 32) + u[j+n-1]);
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001601 DEBUG(errs() << "KnuthDiv: dividend == " << dividend << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001602 uint64_t qp = dividend / v[n-1];
1603 uint64_t rp = dividend % v[n-1];
1604 if (qp == b || qp*v[n-2] > b*rp + u[j+n-2]) {
1605 qp--;
1606 rp += v[n-1];
1607 if (rp < b && (qp == b || qp*v[n-2] > b*rp + u[j+n-2]))
1608 qp--;
1609 }
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001610 DEBUG(errs() << "KnuthDiv: qp == " << qp << ", rp == " << rp << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001611
1612 // D4. [Multiply and subtract.] Replace (u[j+n]u[j+n-1]...u[j]) with
1613 // (u[j+n]u[j+n-1]..u[j]) - qp * (v[n-1]...v[1]v[0]). This computation
1614 // consists of a simple multiplication by a one-place number, combined with
1615 // a subtraction.
1616 bool isNeg = false;
Chris Lattneree5417c2009-01-21 18:09:24 +00001617 for (unsigned i = 0; i < n; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001618 uint64_t u_tmp = uint64_t(u[j+i]) | (uint64_t(u[j+i+1]) << 32);
1619 uint64_t subtrahend = uint64_t(qp) * uint64_t(v[i]);
1620 bool borrow = subtrahend > u_tmp;
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001621 DEBUG(errs() << "KnuthDiv: u_tmp == " << u_tmp
1622 << ", subtrahend == " << subtrahend
1623 << ", borrow = " << borrow << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001624
1625 uint64_t result = u_tmp - subtrahend;
Chris Lattneree5417c2009-01-21 18:09:24 +00001626 unsigned k = j + i;
1627 u[k++] = (unsigned)(result & (b-1)); // subtract low word
1628 u[k++] = (unsigned)(result >> 32); // subtract high word
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001629 while (borrow && k <= m+n) { // deal with borrow to the left
1630 borrow = u[k] == 0;
1631 u[k]--;
1632 k++;
1633 }
1634 isNeg |= borrow;
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001635 DEBUG(errs() << "KnuthDiv: u[j+i] == " << u[j+i] << ", u[j+i+1] == " <<
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001636 u[j+i+1] << '\n');
1637 }
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001638 DEBUG(errs() << "KnuthDiv: after subtraction:");
1639 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1640 DEBUG(errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001641 // The digits (u[j+n]...u[j]) should be kept positive; if the result of
1642 // this step is actually negative, (u[j+n]...u[j]) should be left as the
1643 // true value plus b**(n+1), namely as the b's complement of
1644 // the true value, and a "borrow" to the left should be remembered.
1645 //
1646 if (isNeg) {
1647 bool carry = true; // true because b's complement is "complement + 1"
Chris Lattneree5417c2009-01-21 18:09:24 +00001648 for (unsigned i = 0; i <= m+n; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001649 u[i] = ~u[i] + carry; // b's complement
1650 carry = carry && u[i] == 0;
1651 }
1652 }
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001653 DEBUG(errs() << "KnuthDiv: after complement:");
1654 DEBUG(for (int i = m+n; i >=0; i--) errs() << " " << u[i]);
1655 DEBUG(errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001656
1657 // D5. [Test remainder.] Set q[j] = qp. If the result of step D4 was
1658 // negative, go to step D6; otherwise go on to step D7.
Chris Lattneree5417c2009-01-21 18:09:24 +00001659 q[j] = (unsigned)qp;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001660 if (isNeg) {
1661 // D6. [Add back]. The probability that this step is necessary is very
1662 // small, on the order of only 2/b. Make sure that test data accounts for
1663 // this possibility. Decrease q[j] by 1
1664 q[j]--;
1665 // and add (0v[n-1]...v[1]v[0]) to (u[j+n]u[j+n-1]...u[j+1]u[j]).
1666 // A carry will occur to the left of u[j+n], and it should be ignored
1667 // since it cancels with the borrow that occurred in D4.
1668 bool carry = false;
Chris Lattneree5417c2009-01-21 18:09:24 +00001669 for (unsigned i = 0; i < n; i++) {
1670 unsigned limit = std::min(u[j+i],v[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001671 u[j+i] += v[i] + carry;
1672 carry = u[j+i] < limit || (carry && u[j+i] == limit);
1673 }
1674 u[j+n] += carry;
1675 }
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001676 DEBUG(errs() << "KnuthDiv: after correction:");
1677 DEBUG(for (int i = m+n; i >=0; i--) errs() <<" " << u[i]);
1678 DEBUG(errs() << "\nKnuthDiv: digit result = " << q[j] << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001679
1680 // D7. [Loop on j.] Decrease j by one. Now if j >= 0, go back to D3.
1681 } while (--j >= 0);
1682
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001683 DEBUG(errs() << "KnuthDiv: quotient:");
1684 DEBUG(for (int i = m; i >=0; i--) errs() <<" " << q[i]);
1685 DEBUG(errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001686
1687 // D8. [Unnormalize]. Now q[...] is the desired quotient, and the desired
1688 // remainder may be obtained by dividing u[...] by d. If r is non-null we
1689 // compute the remainder (urem uses this).
1690 if (r) {
1691 // The value d is expressed by the "shift" value above since we avoided
1692 // multiplication by d by using a shift left. So, all we have to do is
1693 // shift right here. In order to mak
1694 if (shift) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001695 unsigned carry = 0;
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001696 DEBUG(errs() << "KnuthDiv: remainder:");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001697 for (int i = n-1; i >= 0; i--) {
1698 r[i] = (u[i] >> shift) | carry;
1699 carry = u[i] << (32 - shift);
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001700 DEBUG(errs() << " " << r[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001701 }
1702 } else {
1703 for (int i = n-1; i >= 0; i--) {
1704 r[i] = u[i];
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001705 DEBUG(errs() << " " << r[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001706 }
1707 }
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001708 DEBUG(errs() << '\n');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001709 }
Chris Lattner89b36582008-08-17 07:19:36 +00001710#if 0
Daniel Dunbard80d44a2009-07-13 05:27:30 +00001711 DEBUG(errs() << '\n');
Chris Lattner89b36582008-08-17 07:19:36 +00001712#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001713}
1714
Chris Lattneree5417c2009-01-21 18:09:24 +00001715void APInt::divide(const APInt LHS, unsigned lhsWords,
1716 const APInt &RHS, unsigned rhsWords,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001717 APInt *Quotient, APInt *Remainder)
1718{
1719 assert(lhsWords >= rhsWords && "Fractional result");
1720
1721 // First, compose the values into an array of 32-bit words instead of
1722 // 64-bit words. This is a necessity of both the "short division" algorithm
1723 // and the the Knuth "classical algorithm" which requires there to be native
1724 // operations for +, -, and * on an m bit value with an m*2 bit result. We
1725 // can't use 64-bit operands here because we don't have native results of
Duncan Sandsf3a74072009-03-19 11:37:15 +00001726 // 128-bits. Furthermore, casting the 64-bit values to 32-bit values won't
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001727 // work on large-endian machines.
Dan Gohmand06cad62009-04-01 18:45:54 +00001728 uint64_t mask = ~0ull >> (sizeof(unsigned)*CHAR_BIT);
Chris Lattneree5417c2009-01-21 18:09:24 +00001729 unsigned n = rhsWords * 2;
1730 unsigned m = (lhsWords * 2) - n;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001731
1732 // Allocate space for the temporary values we need either on the stack, if
1733 // it will fit, or on the heap if it won't.
Chris Lattneree5417c2009-01-21 18:09:24 +00001734 unsigned SPACE[128];
1735 unsigned *U = 0;
1736 unsigned *V = 0;
1737 unsigned *Q = 0;
1738 unsigned *R = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001739 if ((Remainder?4:3)*n+2*m+1 <= 128) {
1740 U = &SPACE[0];
1741 V = &SPACE[m+n+1];
1742 Q = &SPACE[(m+n+1) + n];
1743 if (Remainder)
1744 R = &SPACE[(m+n+1) + n + (m+n)];
1745 } else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001746 U = new unsigned[m + n + 1];
1747 V = new unsigned[n];
1748 Q = new unsigned[m+n];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001749 if (Remainder)
Chris Lattneree5417c2009-01-21 18:09:24 +00001750 R = new unsigned[n];
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001751 }
1752
1753 // Initialize the dividend
Chris Lattneree5417c2009-01-21 18:09:24 +00001754 memset(U, 0, (m+n+1)*sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001755 for (unsigned i = 0; i < lhsWords; ++i) {
1756 uint64_t tmp = (LHS.getNumWords() == 1 ? LHS.VAL : LHS.pVal[i]);
Chris Lattneree5417c2009-01-21 18:09:24 +00001757 U[i * 2] = (unsigned)(tmp & mask);
Dan Gohmand06cad62009-04-01 18:45:54 +00001758 U[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001759 }
1760 U[m+n] = 0; // this extra word is for "spill" in the Knuth algorithm.
1761
1762 // Initialize the divisor
Chris Lattneree5417c2009-01-21 18:09:24 +00001763 memset(V, 0, (n)*sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001764 for (unsigned i = 0; i < rhsWords; ++i) {
1765 uint64_t tmp = (RHS.getNumWords() == 1 ? RHS.VAL : RHS.pVal[i]);
Chris Lattneree5417c2009-01-21 18:09:24 +00001766 V[i * 2] = (unsigned)(tmp & mask);
Dan Gohmand06cad62009-04-01 18:45:54 +00001767 V[i * 2 + 1] = (unsigned)(tmp >> (sizeof(unsigned)*CHAR_BIT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001768 }
1769
1770 // initialize the quotient and remainder
Chris Lattneree5417c2009-01-21 18:09:24 +00001771 memset(Q, 0, (m+n) * sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001772 if (Remainder)
Chris Lattneree5417c2009-01-21 18:09:24 +00001773 memset(R, 0, n * sizeof(unsigned));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001774
1775 // Now, adjust m and n for the Knuth division. n is the number of words in
1776 // the divisor. m is the number of words by which the dividend exceeds the
1777 // divisor (i.e. m+n is the length of the dividend). These sizes must not
1778 // contain any zero words or the Knuth algorithm fails.
1779 for (unsigned i = n; i > 0 && V[i-1] == 0; i--) {
1780 n--;
1781 m++;
1782 }
1783 for (unsigned i = m+n; i > 0 && U[i-1] == 0; i--)
1784 m--;
1785
1786 // If we're left with only a single word for the divisor, Knuth doesn't work
1787 // so we implement the short division algorithm here. This is much simpler
1788 // and faster because we are certain that we can divide a 64-bit quantity
1789 // by a 32-bit quantity at hardware speed and short division is simply a
1790 // series of such operations. This is just like doing short division but we
1791 // are using base 2^32 instead of base 10.
1792 assert(n != 0 && "Divide by zero?");
1793 if (n == 1) {
Chris Lattneree5417c2009-01-21 18:09:24 +00001794 unsigned divisor = V[0];
1795 unsigned remainder = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001796 for (int i = m+n-1; i >= 0; i--) {
1797 uint64_t partial_dividend = uint64_t(remainder) << 32 | U[i];
1798 if (partial_dividend == 0) {
1799 Q[i] = 0;
1800 remainder = 0;
1801 } else if (partial_dividend < divisor) {
1802 Q[i] = 0;
Chris Lattneree5417c2009-01-21 18:09:24 +00001803 remainder = (unsigned)partial_dividend;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001804 } else if (partial_dividend == divisor) {
1805 Q[i] = 1;
1806 remainder = 0;
1807 } else {
Chris Lattneree5417c2009-01-21 18:09:24 +00001808 Q[i] = (unsigned)(partial_dividend / divisor);
1809 remainder = (unsigned)(partial_dividend - (Q[i] * divisor));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001810 }
1811 }
1812 if (R)
1813 R[0] = remainder;
1814 } else {
1815 // Now we're ready to invoke the Knuth classical divide algorithm. In this
1816 // case n > 1.
1817 KnuthDiv(U, V, Q, R, m, n);
1818 }
1819
1820 // If the caller wants the quotient
1821 if (Quotient) {
1822 // Set up the Quotient value's memory.
1823 if (Quotient->BitWidth != LHS.BitWidth) {
1824 if (Quotient->isSingleWord())
1825 Quotient->VAL = 0;
1826 else
1827 delete [] Quotient->pVal;
1828 Quotient->BitWidth = LHS.BitWidth;
1829 if (!Quotient->isSingleWord())
1830 Quotient->pVal = getClearedMemory(Quotient->getNumWords());
1831 } else
1832 Quotient->clear();
1833
1834 // The quotient is in Q. Reconstitute the quotient into Quotient's low
1835 // order words.
1836 if (lhsWords == 1) {
1837 uint64_t tmp =
1838 uint64_t(Q[0]) | (uint64_t(Q[1]) << (APINT_BITS_PER_WORD / 2));
1839 if (Quotient->isSingleWord())
1840 Quotient->VAL = tmp;
1841 else
1842 Quotient->pVal[0] = tmp;
1843 } else {
1844 assert(!Quotient->isSingleWord() && "Quotient APInt not large enough");
1845 for (unsigned i = 0; i < lhsWords; ++i)
1846 Quotient->pVal[i] =
1847 uint64_t(Q[i*2]) | (uint64_t(Q[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1848 }
1849 }
1850
1851 // If the caller wants the remainder
1852 if (Remainder) {
1853 // Set up the Remainder value's memory.
1854 if (Remainder->BitWidth != RHS.BitWidth) {
1855 if (Remainder->isSingleWord())
1856 Remainder->VAL = 0;
1857 else
1858 delete [] Remainder->pVal;
1859 Remainder->BitWidth = RHS.BitWidth;
1860 if (!Remainder->isSingleWord())
1861 Remainder->pVal = getClearedMemory(Remainder->getNumWords());
1862 } else
1863 Remainder->clear();
1864
1865 // The remainder is in R. Reconstitute the remainder into Remainder's low
1866 // order words.
1867 if (rhsWords == 1) {
1868 uint64_t tmp =
1869 uint64_t(R[0]) | (uint64_t(R[1]) << (APINT_BITS_PER_WORD / 2));
1870 if (Remainder->isSingleWord())
1871 Remainder->VAL = tmp;
1872 else
1873 Remainder->pVal[0] = tmp;
1874 } else {
1875 assert(!Remainder->isSingleWord() && "Remainder APInt not large enough");
1876 for (unsigned i = 0; i < rhsWords; ++i)
1877 Remainder->pVal[i] =
1878 uint64_t(R[i*2]) | (uint64_t(R[i*2+1]) << (APINT_BITS_PER_WORD / 2));
1879 }
1880 }
1881
1882 // Clean up the memory we allocated.
1883 if (U != &SPACE[0]) {
1884 delete [] U;
1885 delete [] V;
1886 delete [] Q;
1887 delete [] R;
1888 }
1889}
1890
1891APInt APInt::udiv(const APInt& RHS) const {
1892 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1893
1894 // First, deal with the easy case
1895 if (isSingleWord()) {
1896 assert(RHS.VAL != 0 && "Divide by zero?");
1897 return APInt(BitWidth, VAL / RHS.VAL);
1898 }
1899
1900 // Get some facts about the LHS and RHS number of bits and words
Chris Lattneree5417c2009-01-21 18:09:24 +00001901 unsigned rhsBits = RHS.getActiveBits();
1902 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001903 assert(rhsWords && "Divided by zero???");
Chris Lattneree5417c2009-01-21 18:09:24 +00001904 unsigned lhsBits = this->getActiveBits();
1905 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001906
1907 // Deal with some degenerate cases
1908 if (!lhsWords)
1909 // 0 / X ===> 0
1910 return APInt(BitWidth, 0);
1911 else if (lhsWords < rhsWords || this->ult(RHS)) {
1912 // X / Y ===> 0, iff X < Y
1913 return APInt(BitWidth, 0);
1914 } else if (*this == RHS) {
1915 // X / X ===> 1
1916 return APInt(BitWidth, 1);
1917 } else if (lhsWords == 1 && rhsWords == 1) {
1918 // All high words are zero, just use native divide
1919 return APInt(BitWidth, this->pVal[0] / RHS.pVal[0]);
1920 }
1921
1922 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1923 APInt Quotient(1,0); // to hold result.
1924 divide(*this, lhsWords, RHS, rhsWords, &Quotient, 0);
1925 return Quotient;
1926}
1927
1928APInt APInt::urem(const APInt& RHS) const {
1929 assert(BitWidth == RHS.BitWidth && "Bit widths must be the same");
1930 if (isSingleWord()) {
1931 assert(RHS.VAL != 0 && "Remainder by zero?");
1932 return APInt(BitWidth, VAL % RHS.VAL);
1933 }
1934
1935 // Get some facts about the LHS
Chris Lattneree5417c2009-01-21 18:09:24 +00001936 unsigned lhsBits = getActiveBits();
1937 unsigned lhsWords = !lhsBits ? 0 : (whichWord(lhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001938
1939 // Get some facts about the RHS
Chris Lattneree5417c2009-01-21 18:09:24 +00001940 unsigned rhsBits = RHS.getActiveBits();
1941 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001942 assert(rhsWords && "Performing remainder operation by zero ???");
1943
1944 // Check the degenerate cases
1945 if (lhsWords == 0) {
1946 // 0 % Y ===> 0
1947 return APInt(BitWidth, 0);
1948 } else if (lhsWords < rhsWords || this->ult(RHS)) {
1949 // X % Y ===> X, iff X < Y
1950 return *this;
1951 } else if (*this == RHS) {
1952 // X % X == 0;
1953 return APInt(BitWidth, 0);
1954 } else if (lhsWords == 1) {
1955 // All high words are zero, just use native remainder
1956 return APInt(BitWidth, pVal[0] % RHS.pVal[0]);
1957 }
1958
1959 // We have to compute it the hard way. Invoke the Knuth divide algorithm.
1960 APInt Remainder(1,0);
1961 divide(*this, lhsWords, RHS, rhsWords, 0, &Remainder);
1962 return Remainder;
1963}
1964
1965void APInt::udivrem(const APInt &LHS, const APInt &RHS,
1966 APInt &Quotient, APInt &Remainder) {
1967 // Get some size facts about the dividend and divisor
Chris Lattneree5417c2009-01-21 18:09:24 +00001968 unsigned lhsBits = LHS.getActiveBits();
1969 unsigned lhsWords = !lhsBits ? 0 : (APInt::whichWord(lhsBits - 1) + 1);
1970 unsigned rhsBits = RHS.getActiveBits();
1971 unsigned rhsWords = !rhsBits ? 0 : (APInt::whichWord(rhsBits - 1) + 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001972
1973 // Check the degenerate cases
1974 if (lhsWords == 0) {
1975 Quotient = 0; // 0 / Y ===> 0
1976 Remainder = 0; // 0 % Y ===> 0
1977 return;
1978 }
1979
1980 if (lhsWords < rhsWords || LHS.ult(RHS)) {
1981 Quotient = 0; // X / Y ===> 0, iff X < Y
1982 Remainder = LHS; // X % Y ===> X, iff X < Y
1983 return;
1984 }
1985
1986 if (LHS == RHS) {
1987 Quotient = 1; // X / X ===> 1
1988 Remainder = 0; // X % X ===> 0;
1989 return;
1990 }
1991
1992 if (lhsWords == 1 && rhsWords == 1) {
1993 // There is only one word to consider so use the native versions.
Wojciech Matyjewicz1f1e0882008-06-23 19:39:50 +00001994 uint64_t lhsValue = LHS.isSingleWord() ? LHS.VAL : LHS.pVal[0];
1995 uint64_t rhsValue = RHS.isSingleWord() ? RHS.VAL : RHS.pVal[0];
1996 Quotient = APInt(LHS.getBitWidth(), lhsValue / rhsValue);
1997 Remainder = APInt(LHS.getBitWidth(), lhsValue % rhsValue);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001998 return;
1999 }
2000
2001 // Okay, lets do it the long way
2002 divide(LHS, lhsWords, RHS, rhsWords, &Quotient, &Remainder);
2003}
2004
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002005void APInt::fromString(unsigned numbits, const StringRef& str, uint8_t radix) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002006 // Check our assumptions here
2007 assert((radix == 10 || radix == 8 || radix == 16 || radix == 2) &&
2008 "Radix should be 2, 8, 10, or 16!");
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002009 assert(!str.empty() && "Invalid string length");
2010 StringRef::iterator p = str.begin();
2011 size_t slen = str.size();
2012 bool isNeg = *p == '-';
2013 if (isNeg) {
2014 p++;
2015 slen--;
2016 assert(slen && "string is only a minus!");
2017 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002018 assert((slen <= numbits || radix != 2) && "Insufficient bit width");
Chris Lattner981440e2009-04-25 18:34:04 +00002019 assert(((slen-1)*3 <= numbits || radix != 8) && "Insufficient bit width");
2020 assert(((slen-1)*4 <= numbits || radix != 16) && "Insufficient bit width");
2021 assert((((slen-1)*64)/22 <= numbits || radix != 10) && "Insufficient bit width");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002022
2023 // Allocate memory
2024 if (!isSingleWord())
2025 pVal = getClearedMemory(getNumWords());
2026
2027 // Figure out if we can shift instead of multiply
Chris Lattneree5417c2009-01-21 18:09:24 +00002028 unsigned shift = (radix == 16 ? 4 : radix == 8 ? 3 : radix == 2 ? 1 : 0);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002029
2030 // Set up an APInt for the digit to add outside the loop so we don't
2031 // constantly construct/destruct it.
2032 APInt apdigit(getBitWidth(), 0);
2033 APInt apradix(getBitWidth(), radix);
2034
2035 // Enter digit traversal loop
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002036 for (StringRef::iterator e = str.end(); p != e; ++p) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002037 // Get a digit
Chris Lattneree5417c2009-01-21 18:09:24 +00002038 unsigned digit = 0;
Daniel Dunbarfcdc8fe2009-08-13 02:33:34 +00002039 char cdigit = *p;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002040 if (radix == 16) {
2041 if (!isxdigit(cdigit))
Edwin Törökbd448e32009-07-14 16:55:14 +00002042 llvm_unreachable("Invalid hex digit in string");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002043 if (isdigit(cdigit))
2044 digit = cdigit - '0';
2045 else if (cdigit >= 'a')
2046 digit = cdigit - 'a' + 10;
2047 else if (cdigit >= 'A')
2048 digit = cdigit - 'A' + 10;
2049 else
Edwin Törökbd448e32009-07-14 16:55:14 +00002050 llvm_unreachable("huh? we shouldn't get here");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002051 } else if (isdigit(cdigit)) {
2052 digit = cdigit - '0';
Bill Wendling1dde5862008-03-16 20:05:52 +00002053 assert((radix == 10 ||
2054 (radix == 8 && digit != 8 && digit != 9) ||
2055 (radix == 2 && (digit == 0 || digit == 1))) &&
2056 "Invalid digit in string for given radix");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002057 } else {
Edwin Törökbd448e32009-07-14 16:55:14 +00002058 llvm_unreachable("Invalid character in digit string");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002059 }
2060
2061 // Shift or multiply the value by the radix
Chris Lattner981440e2009-04-25 18:34:04 +00002062 if (slen > 1) {
2063 if (shift)
2064 *this <<= shift;
2065 else
2066 *this *= apradix;
2067 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002068
2069 // Add in the digit we just interpreted
2070 if (apdigit.isSingleWord())
2071 apdigit.VAL = digit;
2072 else
2073 apdigit.pVal[0] = digit;
2074 *this += apdigit;
2075 }
2076 // If its negative, put it in two's complement form
2077 if (isNeg) {
2078 (*this)--;
2079 this->flip();
2080 }
2081}
2082
Chris Lattner89b36582008-08-17 07:19:36 +00002083void APInt::toString(SmallVectorImpl<char> &Str, unsigned Radix,
2084 bool Signed) const {
2085 assert((Radix == 10 || Radix == 8 || Radix == 16 || Radix == 2) &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002086 "Radix should be 2, 8, 10, or 16!");
Chris Lattner89b36582008-08-17 07:19:36 +00002087
2088 // First, check for a zero value and just short circuit the logic below.
2089 if (*this == 0) {
2090 Str.push_back('0');
2091 return;
2092 }
2093
2094 static const char Digits[] = "0123456789ABCDEF";
2095
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002096 if (isSingleWord()) {
Chris Lattner89b36582008-08-17 07:19:36 +00002097 char Buffer[65];
2098 char *BufPtr = Buffer+65;
2099
2100 uint64_t N;
2101 if (Signed) {
2102 int64_t I = getSExtValue();
2103 if (I < 0) {
2104 Str.push_back('-');
2105 I = -I;
2106 }
2107 N = I;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002108 } else {
Chris Lattner89b36582008-08-17 07:19:36 +00002109 N = getZExtValue();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002110 }
Chris Lattner89b36582008-08-17 07:19:36 +00002111
2112 while (N) {
2113 *--BufPtr = Digits[N % Radix];
2114 N /= Radix;
2115 }
2116 Str.append(BufPtr, Buffer+65);
2117 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002118 }
2119
Chris Lattner89b36582008-08-17 07:19:36 +00002120 APInt Tmp(*this);
2121
2122 if (Signed && isNegative()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002123 // They want to print the signed version and it is a negative value
2124 // Flip the bits and add one to turn it into the equivalent positive
2125 // value and put a '-' in the result.
Chris Lattner89b36582008-08-17 07:19:36 +00002126 Tmp.flip();
2127 Tmp++;
2128 Str.push_back('-');
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002129 }
Chris Lattner89b36582008-08-17 07:19:36 +00002130
2131 // We insert the digits backward, then reverse them to get the right order.
2132 unsigned StartDig = Str.size();
2133
2134 // For the 2, 8 and 16 bit cases, we can just shift instead of divide
2135 // because the number of bits per digit (1, 3 and 4 respectively) divides
2136 // equaly. We just shift until the value is zero.
2137 if (Radix != 10) {
2138 // Just shift tmp right for each digit width until it becomes zero
2139 unsigned ShiftAmt = (Radix == 16 ? 4 : (Radix == 8 ? 3 : 1));
2140 unsigned MaskAmt = Radix - 1;
2141
2142 while (Tmp != 0) {
2143 unsigned Digit = unsigned(Tmp.getRawData()[0]) & MaskAmt;
2144 Str.push_back(Digits[Digit]);
2145 Tmp = Tmp.lshr(ShiftAmt);
2146 }
2147 } else {
2148 APInt divisor(4, 10);
2149 while (Tmp != 0) {
2150 APInt APdigit(1, 0);
2151 APInt tmp2(Tmp.getBitWidth(), 0);
2152 divide(Tmp, Tmp.getNumWords(), divisor, divisor.getNumWords(), &tmp2,
2153 &APdigit);
Chris Lattneree5417c2009-01-21 18:09:24 +00002154 unsigned Digit = (unsigned)APdigit.getZExtValue();
Chris Lattner89b36582008-08-17 07:19:36 +00002155 assert(Digit < Radix && "divide failed");
2156 Str.push_back(Digits[Digit]);
2157 Tmp = tmp2;
2158 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002159 }
Chris Lattner89b36582008-08-17 07:19:36 +00002160
2161 // Reverse the digits before returning.
2162 std::reverse(Str.begin()+StartDig, Str.end());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002163}
2164
Chris Lattner89b36582008-08-17 07:19:36 +00002165/// toString - This returns the APInt as a std::string. Note that this is an
2166/// inefficient method. It is better to pass in a SmallVector/SmallString
2167/// to the methods above.
2168std::string APInt::toString(unsigned Radix = 10, bool Signed = true) const {
2169 SmallString<40> S;
2170 toString(S, Radix, Signed);
2171 return S.c_str();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002172}
Chris Lattner73cde982007-08-16 15:56:55 +00002173
Chris Lattner89b36582008-08-17 07:19:36 +00002174
2175void APInt::dump() const {
2176 SmallString<40> S, U;
2177 this->toStringUnsigned(U);
2178 this->toStringSigned(S);
2179 fprintf(stderr, "APInt(%db, %su %ss)", BitWidth, U.c_str(), S.c_str());
2180}
2181
Chris Lattner1fefaac2008-08-23 22:23:09 +00002182void APInt::print(raw_ostream &OS, bool isSigned) const {
Chris Lattner89b36582008-08-17 07:19:36 +00002183 SmallString<40> S;
2184 this->toString(S, 10, isSigned);
2185 OS << S.c_str();
2186}
2187
Dan Gohman5d84bee2009-06-30 20:10:56 +00002188std::ostream &llvm::operator<<(std::ostream &o, const APInt &I) {
2189 raw_os_ostream OS(o);
2190 OS << I;
2191 return o;
2192}
2193
Chris Lattner73cde982007-08-16 15:56:55 +00002194// This implements a variety of operations on a representation of
2195// arbitrary precision, two's-complement, bignum integer values.
2196
2197/* Assumed by lowHalf, highHalf, partMSB and partLSB. A fairly safe
2198 and unrestricting assumption. */
Chris Lattner12e44312008-08-17 04:58:58 +00002199#define COMPILE_TIME_ASSERT(cond) extern int CTAssert[(cond) ? 1 : -1]
Chris Lattnerdb80e212007-08-20 22:49:32 +00002200COMPILE_TIME_ASSERT(integerPartWidth % 2 == 0);
Chris Lattner73cde982007-08-16 15:56:55 +00002201
2202/* Some handy functions local to this file. */
2203namespace {
2204
Chris Lattnerdb80e212007-08-20 22:49:32 +00002205 /* Returns the integer part with the least significant BITS set.
2206 BITS cannot be zero. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002207 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002208 lowBitMask(unsigned int bits)
2209 {
2210 assert (bits != 0 && bits <= integerPartWidth);
2211
2212 return ~(integerPart) 0 >> (integerPartWidth - bits);
2213 }
2214
Neil Booth58ffb232007-10-06 00:43:45 +00002215 /* Returns the value of the lower half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002216 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002217 lowHalf(integerPart part)
2218 {
2219 return part & lowBitMask(integerPartWidth / 2);
2220 }
2221
Neil Booth58ffb232007-10-06 00:43:45 +00002222 /* Returns the value of the upper half of PART. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002223 static inline integerPart
Chris Lattnerdb80e212007-08-20 22:49:32 +00002224 highHalf(integerPart part)
2225 {
2226 return part >> (integerPartWidth / 2);
2227 }
2228
Neil Booth58ffb232007-10-06 00:43:45 +00002229 /* Returns the bit number of the most significant set bit of a part.
2230 If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002231 static unsigned int
Chris Lattnerdb80e212007-08-20 22:49:32 +00002232 partMSB(integerPart value)
Chris Lattner73cde982007-08-16 15:56:55 +00002233 {
2234 unsigned int n, msb;
2235
2236 if (value == 0)
2237 return -1U;
2238
2239 n = integerPartWidth / 2;
2240
2241 msb = 0;
2242 do {
2243 if (value >> n) {
2244 value >>= n;
2245 msb += n;
2246 }
2247
2248 n >>= 1;
2249 } while (n);
2250
2251 return msb;
2252 }
2253
Neil Booth58ffb232007-10-06 00:43:45 +00002254 /* Returns the bit number of the least significant set bit of a
2255 part. If the input number has no bits set -1U is returned. */
Dan Gohmanffc2f032008-04-10 21:11:47 +00002256 static unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002257 partLSB(integerPart value)
2258 {
2259 unsigned int n, lsb;
2260
2261 if (value == 0)
2262 return -1U;
2263
2264 lsb = integerPartWidth - 1;
2265 n = integerPartWidth / 2;
2266
2267 do {
2268 if (value << n) {
2269 value <<= n;
2270 lsb -= n;
2271 }
2272
2273 n >>= 1;
2274 } while (n);
2275
2276 return lsb;
2277 }
2278}
2279
2280/* Sets the least significant part of a bignum to the input value, and
2281 zeroes out higher parts. */
2282void
2283APInt::tcSet(integerPart *dst, integerPart part, unsigned int parts)
2284{
2285 unsigned int i;
2286
Neil Bootha0f524a2007-10-08 13:47:12 +00002287 assert (parts > 0);
2288
Chris Lattner73cde982007-08-16 15:56:55 +00002289 dst[0] = part;
2290 for(i = 1; i < parts; i++)
2291 dst[i] = 0;
2292}
2293
2294/* Assign one bignum to another. */
2295void
2296APInt::tcAssign(integerPart *dst, const integerPart *src, unsigned int parts)
2297{
2298 unsigned int i;
2299
2300 for(i = 0; i < parts; i++)
2301 dst[i] = src[i];
2302}
2303
2304/* Returns true if a bignum is zero, false otherwise. */
2305bool
2306APInt::tcIsZero(const integerPart *src, unsigned int parts)
2307{
2308 unsigned int i;
2309
2310 for(i = 0; i < parts; i++)
2311 if (src[i])
2312 return false;
2313
2314 return true;
2315}
2316
2317/* Extract the given bit of a bignum; returns 0 or 1. */
2318int
2319APInt::tcExtractBit(const integerPart *parts, unsigned int bit)
2320{
2321 return(parts[bit / integerPartWidth]
2322 & ((integerPart) 1 << bit % integerPartWidth)) != 0;
2323}
2324
2325/* Set the given bit of a bignum. */
2326void
2327APInt::tcSetBit(integerPart *parts, unsigned int bit)
2328{
2329 parts[bit / integerPartWidth] |= (integerPart) 1 << (bit % integerPartWidth);
2330}
2331
Neil Booth58ffb232007-10-06 00:43:45 +00002332/* Returns the bit number of the least significant set bit of a
2333 number. If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002334unsigned int
2335APInt::tcLSB(const integerPart *parts, unsigned int n)
2336{
2337 unsigned int i, lsb;
2338
2339 for(i = 0; i < n; i++) {
2340 if (parts[i] != 0) {
2341 lsb = partLSB(parts[i]);
2342
2343 return lsb + i * integerPartWidth;
2344 }
2345 }
2346
2347 return -1U;
2348}
2349
Neil Booth58ffb232007-10-06 00:43:45 +00002350/* Returns the bit number of the most significant set bit of a number.
2351 If the input number has no bits set -1U is returned. */
Chris Lattner73cde982007-08-16 15:56:55 +00002352unsigned int
2353APInt::tcMSB(const integerPart *parts, unsigned int n)
2354{
2355 unsigned int msb;
2356
2357 do {
2358 --n;
2359
2360 if (parts[n] != 0) {
Chris Lattnerdb80e212007-08-20 22:49:32 +00002361 msb = partMSB(parts[n]);
Chris Lattner73cde982007-08-16 15:56:55 +00002362
2363 return msb + n * integerPartWidth;
2364 }
2365 } while (n);
2366
2367 return -1U;
2368}
2369
Neil Bootha0f524a2007-10-08 13:47:12 +00002370/* Copy the bit vector of width srcBITS from SRC, starting at bit
2371 srcLSB, to DST, of dstCOUNT parts, such that the bit srcLSB becomes
2372 the least significant bit of DST. All high bits above srcBITS in
2373 DST are zero-filled. */
2374void
Evan Chengc257df32009-05-21 23:47:47 +00002375APInt::tcExtract(integerPart *dst, unsigned int dstCount,const integerPart *src,
Neil Bootha0f524a2007-10-08 13:47:12 +00002376 unsigned int srcBits, unsigned int srcLSB)
2377{
2378 unsigned int firstSrcPart, dstParts, shift, n;
2379
2380 dstParts = (srcBits + integerPartWidth - 1) / integerPartWidth;
2381 assert (dstParts <= dstCount);
2382
2383 firstSrcPart = srcLSB / integerPartWidth;
2384 tcAssign (dst, src + firstSrcPart, dstParts);
2385
2386 shift = srcLSB % integerPartWidth;
2387 tcShiftRight (dst, dstParts, shift);
2388
2389 /* We now have (dstParts * integerPartWidth - shift) bits from SRC
2390 in DST. If this is less that srcBits, append the rest, else
2391 clear the high bits. */
2392 n = dstParts * integerPartWidth - shift;
2393 if (n < srcBits) {
2394 integerPart mask = lowBitMask (srcBits - n);
2395 dst[dstParts - 1] |= ((src[firstSrcPart + dstParts] & mask)
2396 << n % integerPartWidth);
2397 } else if (n > srcBits) {
Neil Booth69731ff2007-10-12 15:31:31 +00002398 if (srcBits % integerPartWidth)
2399 dst[dstParts - 1] &= lowBitMask (srcBits % integerPartWidth);
Neil Bootha0f524a2007-10-08 13:47:12 +00002400 }
2401
2402 /* Clear high parts. */
2403 while (dstParts < dstCount)
2404 dst[dstParts++] = 0;
2405}
2406
Chris Lattner73cde982007-08-16 15:56:55 +00002407/* DST += RHS + C where C is zero or one. Returns the carry flag. */
2408integerPart
2409APInt::tcAdd(integerPart *dst, const integerPart *rhs,
2410 integerPart c, unsigned int parts)
2411{
2412 unsigned int i;
2413
2414 assert(c <= 1);
2415
2416 for(i = 0; i < parts; i++) {
2417 integerPart l;
2418
2419 l = dst[i];
2420 if (c) {
2421 dst[i] += rhs[i] + 1;
2422 c = (dst[i] <= l);
2423 } else {
2424 dst[i] += rhs[i];
2425 c = (dst[i] < l);
2426 }
2427 }
2428
2429 return c;
2430}
2431
2432/* DST -= RHS + C where C is zero or one. Returns the carry flag. */
2433integerPart
2434APInt::tcSubtract(integerPart *dst, const integerPart *rhs,
2435 integerPart c, unsigned int parts)
2436{
2437 unsigned int i;
2438
2439 assert(c <= 1);
2440
2441 for(i = 0; i < parts; i++) {
2442 integerPart l;
2443
2444 l = dst[i];
2445 if (c) {
2446 dst[i] -= rhs[i] + 1;
2447 c = (dst[i] >= l);
2448 } else {
2449 dst[i] -= rhs[i];
2450 c = (dst[i] > l);
2451 }
2452 }
2453
2454 return c;
2455}
2456
2457/* Negate a bignum in-place. */
2458void
2459APInt::tcNegate(integerPart *dst, unsigned int parts)
2460{
2461 tcComplement(dst, parts);
2462 tcIncrement(dst, parts);
2463}
2464
Neil Booth58ffb232007-10-06 00:43:45 +00002465/* DST += SRC * MULTIPLIER + CARRY if add is true
2466 DST = SRC * MULTIPLIER + CARRY if add is false
Chris Lattner73cde982007-08-16 15:56:55 +00002467
2468 Requires 0 <= DSTPARTS <= SRCPARTS + 1. If DST overlaps SRC
2469 they must start at the same point, i.e. DST == SRC.
2470
2471 If DSTPARTS == SRCPARTS + 1 no overflow occurs and zero is
2472 returned. Otherwise DST is filled with the least significant
2473 DSTPARTS parts of the result, and if all of the omitted higher
2474 parts were zero return zero, otherwise overflow occurred and
2475 return one. */
2476int
2477APInt::tcMultiplyPart(integerPart *dst, const integerPart *src,
2478 integerPart multiplier, integerPart carry,
2479 unsigned int srcParts, unsigned int dstParts,
2480 bool add)
2481{
2482 unsigned int i, n;
2483
2484 /* Otherwise our writes of DST kill our later reads of SRC. */
2485 assert(dst <= src || dst >= src + srcParts);
2486 assert(dstParts <= srcParts + 1);
2487
2488 /* N loops; minimum of dstParts and srcParts. */
2489 n = dstParts < srcParts ? dstParts: srcParts;
2490
2491 for(i = 0; i < n; i++) {
2492 integerPart low, mid, high, srcPart;
2493
2494 /* [ LOW, HIGH ] = MULTIPLIER * SRC[i] + DST[i] + CARRY.
2495
2496 This cannot overflow, because
2497
2498 (n - 1) * (n - 1) + 2 (n - 1) = (n - 1) * (n + 1)
2499
2500 which is less than n^2. */
2501
2502 srcPart = src[i];
2503
2504 if (multiplier == 0 || srcPart == 0) {
2505 low = carry;
2506 high = 0;
2507 } else {
2508 low = lowHalf(srcPart) * lowHalf(multiplier);
2509 high = highHalf(srcPart) * highHalf(multiplier);
2510
2511 mid = lowHalf(srcPart) * highHalf(multiplier);
2512 high += highHalf(mid);
2513 mid <<= integerPartWidth / 2;
2514 if (low + mid < low)
2515 high++;
2516 low += mid;
2517
2518 mid = highHalf(srcPart) * lowHalf(multiplier);
2519 high += highHalf(mid);
2520 mid <<= integerPartWidth / 2;
2521 if (low + mid < low)
2522 high++;
2523 low += mid;
2524
2525 /* Now add carry. */
2526 if (low + carry < low)
2527 high++;
2528 low += carry;
2529 }
2530
2531 if (add) {
2532 /* And now DST[i], and store the new low part there. */
2533 if (low + dst[i] < low)
2534 high++;
2535 dst[i] += low;
2536 } else
2537 dst[i] = low;
2538
2539 carry = high;
2540 }
2541
2542 if (i < dstParts) {
2543 /* Full multiplication, there is no overflow. */
2544 assert(i + 1 == dstParts);
2545 dst[i] = carry;
2546 return 0;
2547 } else {
2548 /* We overflowed if there is carry. */
2549 if (carry)
2550 return 1;
2551
2552 /* We would overflow if any significant unwritten parts would be
2553 non-zero. This is true if any remaining src parts are non-zero
2554 and the multiplier is non-zero. */
2555 if (multiplier)
2556 for(; i < srcParts; i++)
2557 if (src[i])
2558 return 1;
2559
2560 /* We fitted in the narrow destination. */
2561 return 0;
2562 }
2563}
2564
2565/* DST = LHS * RHS, where DST has the same width as the operands and
2566 is filled with the least significant parts of the result. Returns
2567 one if overflow occurred, otherwise zero. DST must be disjoint
2568 from both operands. */
2569int
2570APInt::tcMultiply(integerPart *dst, const integerPart *lhs,
2571 const integerPart *rhs, unsigned int parts)
2572{
2573 unsigned int i;
2574 int overflow;
2575
2576 assert(dst != lhs && dst != rhs);
2577
2578 overflow = 0;
2579 tcSet(dst, 0, parts);
2580
2581 for(i = 0; i < parts; i++)
2582 overflow |= tcMultiplyPart(&dst[i], lhs, rhs[i], 0, parts,
2583 parts - i, true);
2584
2585 return overflow;
2586}
2587
Neil Booth004e9f42007-10-06 00:24:48 +00002588/* DST = LHS * RHS, where DST has width the sum of the widths of the
2589 operands. No overflow occurs. DST must be disjoint from both
2590 operands. Returns the number of parts required to hold the
2591 result. */
2592unsigned int
Chris Lattner73cde982007-08-16 15:56:55 +00002593APInt::tcFullMultiply(integerPart *dst, const integerPart *lhs,
Neil Booth004e9f42007-10-06 00:24:48 +00002594 const integerPart *rhs, unsigned int lhsParts,
2595 unsigned int rhsParts)
Chris Lattner73cde982007-08-16 15:56:55 +00002596{
Neil Booth004e9f42007-10-06 00:24:48 +00002597 /* Put the narrower number on the LHS for less loops below. */
2598 if (lhsParts > rhsParts) {
2599 return tcFullMultiply (dst, rhs, lhs, rhsParts, lhsParts);
2600 } else {
2601 unsigned int n;
Chris Lattner73cde982007-08-16 15:56:55 +00002602
Neil Booth004e9f42007-10-06 00:24:48 +00002603 assert(dst != lhs && dst != rhs);
Chris Lattner73cde982007-08-16 15:56:55 +00002604
Neil Booth004e9f42007-10-06 00:24:48 +00002605 tcSet(dst, 0, rhsParts);
Chris Lattner73cde982007-08-16 15:56:55 +00002606
Neil Booth004e9f42007-10-06 00:24:48 +00002607 for(n = 0; n < lhsParts; n++)
2608 tcMultiplyPart(&dst[n], rhs, lhs[n], 0, rhsParts, rhsParts + 1, true);
Chris Lattner73cde982007-08-16 15:56:55 +00002609
Neil Booth004e9f42007-10-06 00:24:48 +00002610 n = lhsParts + rhsParts;
2611
2612 return n - (dst[n - 1] == 0);
2613 }
Chris Lattner73cde982007-08-16 15:56:55 +00002614}
2615
2616/* If RHS is zero LHS and REMAINDER are left unchanged, return one.
2617 Otherwise set LHS to LHS / RHS with the fractional part discarded,
2618 set REMAINDER to the remainder, return zero. i.e.
2619
2620 OLD_LHS = RHS * LHS + REMAINDER
2621
2622 SCRATCH is a bignum of the same size as the operands and result for
2623 use by the routine; its contents need not be initialized and are
2624 destroyed. LHS, REMAINDER and SCRATCH must be distinct.
2625*/
2626int
2627APInt::tcDivide(integerPart *lhs, const integerPart *rhs,
2628 integerPart *remainder, integerPart *srhs,
2629 unsigned int parts)
2630{
2631 unsigned int n, shiftCount;
2632 integerPart mask;
2633
2634 assert(lhs != remainder && lhs != srhs && remainder != srhs);
2635
Chris Lattnerdb80e212007-08-20 22:49:32 +00002636 shiftCount = tcMSB(rhs, parts) + 1;
2637 if (shiftCount == 0)
Chris Lattner73cde982007-08-16 15:56:55 +00002638 return true;
2639
Chris Lattnerdb80e212007-08-20 22:49:32 +00002640 shiftCount = parts * integerPartWidth - shiftCount;
Chris Lattner73cde982007-08-16 15:56:55 +00002641 n = shiftCount / integerPartWidth;
2642 mask = (integerPart) 1 << (shiftCount % integerPartWidth);
2643
2644 tcAssign(srhs, rhs, parts);
2645 tcShiftLeft(srhs, parts, shiftCount);
2646 tcAssign(remainder, lhs, parts);
2647 tcSet(lhs, 0, parts);
2648
2649 /* Loop, subtracting SRHS if REMAINDER is greater and adding that to
2650 the total. */
2651 for(;;) {
2652 int compare;
2653
2654 compare = tcCompare(remainder, srhs, parts);
2655 if (compare >= 0) {
2656 tcSubtract(remainder, srhs, 0, parts);
2657 lhs[n] |= mask;
2658 }
2659
2660 if (shiftCount == 0)
2661 break;
2662 shiftCount--;
2663 tcShiftRight(srhs, parts, 1);
2664 if ((mask >>= 1) == 0)
2665 mask = (integerPart) 1 << (integerPartWidth - 1), n--;
2666 }
2667
2668 return false;
2669}
2670
2671/* Shift a bignum left COUNT bits in-place. Shifted in bits are zero.
2672 There are no restrictions on COUNT. */
2673void
2674APInt::tcShiftLeft(integerPart *dst, unsigned int parts, unsigned int count)
2675{
Neil Bootha0f524a2007-10-08 13:47:12 +00002676 if (count) {
2677 unsigned int jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002678
Neil Bootha0f524a2007-10-08 13:47:12 +00002679 /* Jump is the inter-part jump; shift is is intra-part shift. */
2680 jump = count / integerPartWidth;
2681 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002682
Neil Bootha0f524a2007-10-08 13:47:12 +00002683 while (parts > jump) {
2684 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002685
Neil Bootha0f524a2007-10-08 13:47:12 +00002686 parts--;
Chris Lattner73cde982007-08-16 15:56:55 +00002687
Neil Bootha0f524a2007-10-08 13:47:12 +00002688 /* dst[i] comes from the two parts src[i - jump] and, if we have
2689 an intra-part shift, src[i - jump - 1]. */
2690 part = dst[parts - jump];
2691 if (shift) {
2692 part <<= shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002693 if (parts >= jump + 1)
2694 part |= dst[parts - jump - 1] >> (integerPartWidth - shift);
2695 }
2696
Neil Bootha0f524a2007-10-08 13:47:12 +00002697 dst[parts] = part;
2698 }
Chris Lattner73cde982007-08-16 15:56:55 +00002699
Neil Bootha0f524a2007-10-08 13:47:12 +00002700 while (parts > 0)
2701 dst[--parts] = 0;
2702 }
Chris Lattner73cde982007-08-16 15:56:55 +00002703}
2704
2705/* Shift a bignum right COUNT bits in-place. Shifted in bits are
2706 zero. There are no restrictions on COUNT. */
2707void
2708APInt::tcShiftRight(integerPart *dst, unsigned int parts, unsigned int count)
2709{
Neil Bootha0f524a2007-10-08 13:47:12 +00002710 if (count) {
2711 unsigned int i, jump, shift;
Chris Lattner73cde982007-08-16 15:56:55 +00002712
Neil Bootha0f524a2007-10-08 13:47:12 +00002713 /* Jump is the inter-part jump; shift is is intra-part shift. */
2714 jump = count / integerPartWidth;
2715 shift = count % integerPartWidth;
Chris Lattner73cde982007-08-16 15:56:55 +00002716
Neil Bootha0f524a2007-10-08 13:47:12 +00002717 /* Perform the shift. This leaves the most significant COUNT bits
2718 of the result at zero. */
2719 for(i = 0; i < parts; i++) {
2720 integerPart part;
Chris Lattner73cde982007-08-16 15:56:55 +00002721
Neil Bootha0f524a2007-10-08 13:47:12 +00002722 if (i + jump >= parts) {
2723 part = 0;
2724 } else {
2725 part = dst[i + jump];
2726 if (shift) {
2727 part >>= shift;
2728 if (i + jump + 1 < parts)
2729 part |= dst[i + jump + 1] << (integerPartWidth - shift);
2730 }
Chris Lattner73cde982007-08-16 15:56:55 +00002731 }
Chris Lattner73cde982007-08-16 15:56:55 +00002732
Neil Bootha0f524a2007-10-08 13:47:12 +00002733 dst[i] = part;
2734 }
Chris Lattner73cde982007-08-16 15:56:55 +00002735 }
2736}
2737
2738/* Bitwise and of two bignums. */
2739void
2740APInt::tcAnd(integerPart *dst, const integerPart *rhs, unsigned int parts)
2741{
2742 unsigned int i;
2743
2744 for(i = 0; i < parts; i++)
2745 dst[i] &= rhs[i];
2746}
2747
2748/* Bitwise inclusive or of two bignums. */
2749void
2750APInt::tcOr(integerPart *dst, const integerPart *rhs, unsigned int parts)
2751{
2752 unsigned int i;
2753
2754 for(i = 0; i < parts; i++)
2755 dst[i] |= rhs[i];
2756}
2757
2758/* Bitwise exclusive or of two bignums. */
2759void
2760APInt::tcXor(integerPart *dst, const integerPart *rhs, unsigned int parts)
2761{
2762 unsigned int i;
2763
2764 for(i = 0; i < parts; i++)
2765 dst[i] ^= rhs[i];
2766}
2767
2768/* Complement a bignum in-place. */
2769void
2770APInt::tcComplement(integerPart *dst, unsigned int parts)
2771{
2772 unsigned int i;
2773
2774 for(i = 0; i < parts; i++)
2775 dst[i] = ~dst[i];
2776}
2777
2778/* Comparison (unsigned) of two bignums. */
2779int
2780APInt::tcCompare(const integerPart *lhs, const integerPart *rhs,
2781 unsigned int parts)
2782{
2783 while (parts) {
2784 parts--;
2785 if (lhs[parts] == rhs[parts])
2786 continue;
2787
2788 if (lhs[parts] > rhs[parts])
2789 return 1;
2790 else
2791 return -1;
2792 }
2793
2794 return 0;
2795}
2796
2797/* Increment a bignum in-place, return the carry flag. */
2798integerPart
2799APInt::tcIncrement(integerPart *dst, unsigned int parts)
2800{
2801 unsigned int i;
2802
2803 for(i = 0; i < parts; i++)
2804 if (++dst[i] != 0)
2805 break;
2806
2807 return i == parts;
2808}
2809
2810/* Set the least significant BITS bits of a bignum, clear the
2811 rest. */
2812void
2813APInt::tcSetLeastSignificantBits(integerPart *dst, unsigned int parts,
2814 unsigned int bits)
2815{
2816 unsigned int i;
2817
2818 i = 0;
2819 while (bits > integerPartWidth) {
2820 dst[i++] = ~(integerPart) 0;
2821 bits -= integerPartWidth;
2822 }
2823
2824 if (bits)
2825 dst[i++] = ~(integerPart) 0 >> (integerPartWidth - bits);
2826
2827 while (i < parts)
2828 dst[i++] = 0;
2829}