blob: 032e8bff3d64fc524c168e86058597da530cbd79 [file] [log] [blame]
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001//===-- SelectionDAGBuild.cpp - Selection-DAG building --------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This implements routines for translating from LLVM IR into SelectionDAG IR.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "isel"
15#include "SelectionDAGBuild.h"
16#include "llvm/ADT/BitVector.h"
Dan Gohman5b229802008-09-04 20:49:27 +000017#include "llvm/ADT/SmallSet.h"
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000018#include "llvm/Analysis/AliasAnalysis.h"
19#include "llvm/Constants.h"
20#include "llvm/CallingConv.h"
21#include "llvm/DerivedTypes.h"
22#include "llvm/Function.h"
23#include "llvm/GlobalVariable.h"
24#include "llvm/InlineAsm.h"
25#include "llvm/Instructions.h"
26#include "llvm/Intrinsics.h"
27#include "llvm/IntrinsicInst.h"
Bill Wendlingb2a42982008-11-06 02:29:10 +000028#include "llvm/Module.h"
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000029#include "llvm/CodeGen/FastISel.h"
30#include "llvm/CodeGen/GCStrategy.h"
31#include "llvm/CodeGen/GCMetadata.h"
32#include "llvm/CodeGen/MachineFunction.h"
33#include "llvm/CodeGen/MachineFrameInfo.h"
34#include "llvm/CodeGen/MachineInstrBuilder.h"
35#include "llvm/CodeGen/MachineJumpTableInfo.h"
36#include "llvm/CodeGen/MachineModuleInfo.h"
37#include "llvm/CodeGen/MachineRegisterInfo.h"
Bill Wendlingb2a42982008-11-06 02:29:10 +000038#include "llvm/CodeGen/PseudoSourceValue.h"
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000039#include "llvm/CodeGen/SelectionDAG.h"
40#include "llvm/Target/TargetRegisterInfo.h"
41#include "llvm/Target/TargetData.h"
42#include "llvm/Target/TargetFrameInfo.h"
43#include "llvm/Target/TargetInstrInfo.h"
44#include "llvm/Target/TargetLowering.h"
45#include "llvm/Target/TargetMachine.h"
46#include "llvm/Target/TargetOptions.h"
47#include "llvm/Support/Compiler.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/MathExtras.h"
50#include <algorithm>
51using namespace llvm;
52
Dale Johannesen601d3c02008-09-05 01:48:15 +000053/// LimitFloatPrecision - Generate low-precision inline sequences for
54/// some float libcalls (6, 8 or 12 bits).
55static unsigned LimitFloatPrecision;
56
57static cl::opt<unsigned, true>
58LimitFPPrecision("limit-float-precision",
59 cl::desc("Generate low-precision inline sequences "
60 "for some float libcalls"),
61 cl::location(LimitFloatPrecision),
62 cl::init(0));
63
Dan Gohmanf0cbcd42008-09-03 16:12:24 +000064/// ComputeLinearIndex - Given an LLVM IR aggregate type and a sequence
65/// insertvalue or extractvalue indices that identify a member, return
66/// the linearized index of the start of the member.
67///
68static unsigned ComputeLinearIndex(const TargetLowering &TLI, const Type *Ty,
69 const unsigned *Indices,
70 const unsigned *IndicesEnd,
71 unsigned CurIndex = 0) {
72 // Base case: We're done.
73 if (Indices && Indices == IndicesEnd)
74 return CurIndex;
75
76 // Given a struct type, recursively traverse the elements.
77 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
78 for (StructType::element_iterator EB = STy->element_begin(),
79 EI = EB,
80 EE = STy->element_end();
81 EI != EE; ++EI) {
82 if (Indices && *Indices == unsigned(EI - EB))
83 return ComputeLinearIndex(TLI, *EI, Indices+1, IndicesEnd, CurIndex);
84 CurIndex = ComputeLinearIndex(TLI, *EI, 0, 0, CurIndex);
85 }
86 }
87 // Given an array type, recursively traverse the elements.
88 else if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
89 const Type *EltTy = ATy->getElementType();
90 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i) {
91 if (Indices && *Indices == i)
92 return ComputeLinearIndex(TLI, EltTy, Indices+1, IndicesEnd, CurIndex);
93 CurIndex = ComputeLinearIndex(TLI, EltTy, 0, 0, CurIndex);
94 }
95 }
96 // We haven't found the type we're looking for, so keep searching.
97 return CurIndex + 1;
98}
99
100/// ComputeValueVTs - Given an LLVM IR type, compute a sequence of
101/// MVTs that represent all the individual underlying
102/// non-aggregate types that comprise it.
103///
104/// If Offsets is non-null, it points to a vector to be filled in
105/// with the in-memory offsets of each of the individual values.
106///
107static void ComputeValueVTs(const TargetLowering &TLI, const Type *Ty,
108 SmallVectorImpl<MVT> &ValueVTs,
109 SmallVectorImpl<uint64_t> *Offsets = 0,
110 uint64_t StartingOffset = 0) {
111 // Given a struct type, recursively traverse the elements.
112 if (const StructType *STy = dyn_cast<StructType>(Ty)) {
113 const StructLayout *SL = TLI.getTargetData()->getStructLayout(STy);
114 for (StructType::element_iterator EB = STy->element_begin(),
115 EI = EB,
116 EE = STy->element_end();
117 EI != EE; ++EI)
118 ComputeValueVTs(TLI, *EI, ValueVTs, Offsets,
119 StartingOffset + SL->getElementOffset(EI - EB));
120 return;
121 }
122 // Given an array type, recursively traverse the elements.
123 if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
124 const Type *EltTy = ATy->getElementType();
125 uint64_t EltSize = TLI.getTargetData()->getABITypeSize(EltTy);
126 for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
127 ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
128 StartingOffset + i * EltSize);
129 return;
130 }
131 // Base case: we can get an MVT for this LLVM IR type.
132 ValueVTs.push_back(TLI.getValueType(Ty));
133 if (Offsets)
134 Offsets->push_back(StartingOffset);
135}
136
Dan Gohman2a7c6712008-09-03 23:18:39 +0000137namespace llvm {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000138 /// RegsForValue - This struct represents the registers (physical or virtual)
139 /// that a particular set of values is assigned, and the type information about
140 /// the value. The most common situation is to represent one value at a time,
141 /// but struct or array values are handled element-wise as multiple values.
142 /// The splitting of aggregates is performed recursively, so that we never
143 /// have aggregate-typed registers. The values at this point do not necessarily
144 /// have legal types, so each value may require one or more registers of some
145 /// legal type.
146 ///
147 struct VISIBILITY_HIDDEN RegsForValue {
148 /// TLI - The TargetLowering object.
149 ///
150 const TargetLowering *TLI;
151
152 /// ValueVTs - The value types of the values, which may not be legal, and
153 /// may need be promoted or synthesized from one or more registers.
154 ///
155 SmallVector<MVT, 4> ValueVTs;
156
157 /// RegVTs - The value types of the registers. This is the same size as
158 /// ValueVTs and it records, for each value, what the type of the assigned
159 /// register or registers are. (Individual values are never synthesized
160 /// from more than one type of register.)
161 ///
162 /// With virtual registers, the contents of RegVTs is redundant with TLI's
163 /// getRegisterType member function, however when with physical registers
164 /// it is necessary to have a separate record of the types.
165 ///
166 SmallVector<MVT, 4> RegVTs;
167
168 /// Regs - This list holds the registers assigned to the values.
169 /// Each legal or promoted value requires one register, and each
170 /// expanded value requires multiple registers.
171 ///
172 SmallVector<unsigned, 4> Regs;
173
174 RegsForValue() : TLI(0) {}
175
176 RegsForValue(const TargetLowering &tli,
177 const SmallVector<unsigned, 4> &regs,
178 MVT regvt, MVT valuevt)
179 : TLI(&tli), ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
180 RegsForValue(const TargetLowering &tli,
181 const SmallVector<unsigned, 4> &regs,
182 const SmallVector<MVT, 4> &regvts,
183 const SmallVector<MVT, 4> &valuevts)
184 : TLI(&tli), ValueVTs(valuevts), RegVTs(regvts), Regs(regs) {}
185 RegsForValue(const TargetLowering &tli,
186 unsigned Reg, const Type *Ty) : TLI(&tli) {
187 ComputeValueVTs(tli, Ty, ValueVTs);
188
189 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
190 MVT ValueVT = ValueVTs[Value];
191 unsigned NumRegs = TLI->getNumRegisters(ValueVT);
192 MVT RegisterVT = TLI->getRegisterType(ValueVT);
193 for (unsigned i = 0; i != NumRegs; ++i)
194 Regs.push_back(Reg + i);
195 RegVTs.push_back(RegisterVT);
196 Reg += NumRegs;
197 }
198 }
199
200 /// append - Add the specified values to this one.
201 void append(const RegsForValue &RHS) {
202 TLI = RHS.TLI;
203 ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
204 RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
205 Regs.append(RHS.Regs.begin(), RHS.Regs.end());
206 }
207
208
209 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
210 /// this value and returns the result as a ValueVTs value. This uses
211 /// Chain/Flag as the input and updates them for the output Chain/Flag.
212 /// If the Flag pointer is NULL, no flag is used.
213 SDValue getCopyFromRegs(SelectionDAG &DAG,
214 SDValue &Chain, SDValue *Flag) const;
215
216 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
217 /// specified value into the registers specified by this object. This uses
218 /// Chain/Flag as the input and updates them for the output Chain/Flag.
219 /// If the Flag pointer is NULL, no flag is used.
220 void getCopyToRegs(SDValue Val, SelectionDAG &DAG,
221 SDValue &Chain, SDValue *Flag) const;
222
223 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
224 /// operand list. This adds the code marker and includes the number of
225 /// values added into it.
226 void AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
227 std::vector<SDValue> &Ops) const;
228 };
229}
230
231/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
232/// PHI nodes or outside of the basic block that defines it, or used by a
233/// switch or atomic instruction, which may expand to multiple basic blocks.
234static bool isUsedOutsideOfDefiningBlock(Instruction *I) {
235 if (isa<PHINode>(I)) return true;
236 BasicBlock *BB = I->getParent();
237 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; ++UI)
238 if (cast<Instruction>(*UI)->getParent() != BB || isa<PHINode>(*UI) ||
239 // FIXME: Remove switchinst special case.
240 isa<SwitchInst>(*UI))
241 return true;
242 return false;
243}
244
245/// isOnlyUsedInEntryBlock - If the specified argument is only used in the
246/// entry block, return true. This includes arguments used by switches, since
247/// the switch may expand into multiple basic blocks.
248static bool isOnlyUsedInEntryBlock(Argument *A, bool EnableFastISel) {
249 // With FastISel active, we may be splitting blocks, so force creation
250 // of virtual registers for all non-dead arguments.
Dan Gohman33134c42008-09-25 17:05:24 +0000251 // Don't force virtual registers for byval arguments though, because
252 // fast-isel can't handle those in all cases.
253 if (EnableFastISel && !A->hasByValAttr())
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000254 return A->use_empty();
255
256 BasicBlock *Entry = A->getParent()->begin();
257 for (Value::use_iterator UI = A->use_begin(), E = A->use_end(); UI != E; ++UI)
258 if (cast<Instruction>(*UI)->getParent() != Entry || isa<SwitchInst>(*UI))
259 return false; // Use not in entry block.
260 return true;
261}
262
263FunctionLoweringInfo::FunctionLoweringInfo(TargetLowering &tli)
264 : TLI(tli) {
265}
266
267void FunctionLoweringInfo::set(Function &fn, MachineFunction &mf,
268 bool EnableFastISel) {
269 Fn = &fn;
270 MF = &mf;
271 RegInfo = &MF->getRegInfo();
272
273 // Create a vreg for each argument register that is not dead and is used
274 // outside of the entry block for the function.
275 for (Function::arg_iterator AI = Fn->arg_begin(), E = Fn->arg_end();
276 AI != E; ++AI)
277 if (!isOnlyUsedInEntryBlock(AI, EnableFastISel))
278 InitializeRegForValue(AI);
279
280 // Initialize the mapping of values to registers. This is only set up for
281 // instruction values that are used outside of the block that defines
282 // them.
283 Function::iterator BB = Fn->begin(), EB = Fn->end();
284 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
285 if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
286 if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
287 const Type *Ty = AI->getAllocatedType();
288 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
289 unsigned Align =
290 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
291 AI->getAlignment());
292
293 TySize *= CUI->getZExtValue(); // Get total allocated size.
294 if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
295 StaticAllocaMap[AI] =
296 MF->getFrameInfo()->CreateStackObject(TySize, Align);
297 }
298
299 for (; BB != EB; ++BB)
300 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
301 if (!I->use_empty() && isUsedOutsideOfDefiningBlock(I))
302 if (!isa<AllocaInst>(I) ||
303 !StaticAllocaMap.count(cast<AllocaInst>(I)))
304 InitializeRegForValue(I);
305
306 // Create an initial MachineBasicBlock for each LLVM BasicBlock in F. This
307 // also creates the initial PHI MachineInstrs, though none of the input
308 // operands are populated.
309 for (BB = Fn->begin(), EB = Fn->end(); BB != EB; ++BB) {
310 MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
311 MBBMap[BB] = MBB;
312 MF->push_back(MBB);
313
314 // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
315 // appropriate.
316 PHINode *PN;
317 for (BasicBlock::iterator I = BB->begin();(PN = dyn_cast<PHINode>(I)); ++I){
318 if (PN->use_empty()) continue;
319
320 unsigned PHIReg = ValueMap[PN];
321 assert(PHIReg && "PHI node does not have an assigned virtual register!");
322
323 SmallVector<MVT, 4> ValueVTs;
324 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
325 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
326 MVT VT = ValueVTs[vti];
327 unsigned NumRegisters = TLI.getNumRegisters(VT);
Dan Gohman6448d912008-09-04 15:39:15 +0000328 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000329 for (unsigned i = 0; i != NumRegisters; ++i)
330 BuildMI(MBB, TII->get(TargetInstrInfo::PHI), PHIReg+i);
331 PHIReg += NumRegisters;
332 }
333 }
334 }
335}
336
337unsigned FunctionLoweringInfo::MakeReg(MVT VT) {
338 return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
339}
340
341/// CreateRegForValue - Allocate the appropriate number of virtual registers of
342/// the correctly promoted or expanded types. Assign these registers
343/// consecutive vreg numbers and return the first assigned number.
344///
345/// In the case that the given value has struct or array type, this function
346/// will assign registers for each member or element.
347///
348unsigned FunctionLoweringInfo::CreateRegForValue(const Value *V) {
349 SmallVector<MVT, 4> ValueVTs;
350 ComputeValueVTs(TLI, V->getType(), ValueVTs);
351
352 unsigned FirstReg = 0;
353 for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
354 MVT ValueVT = ValueVTs[Value];
355 MVT RegisterVT = TLI.getRegisterType(ValueVT);
356
357 unsigned NumRegs = TLI.getNumRegisters(ValueVT);
358 for (unsigned i = 0; i != NumRegs; ++i) {
359 unsigned R = MakeReg(RegisterVT);
360 if (!FirstReg) FirstReg = R;
361 }
362 }
363 return FirstReg;
364}
365
366/// getCopyFromParts - Create a value that contains the specified legal parts
367/// combined into the value they represent. If the parts combine to a type
368/// larger then ValueVT then AssertOp can be used to specify whether the extra
369/// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
370/// (ISD::AssertSext).
371static SDValue getCopyFromParts(SelectionDAG &DAG,
372 const SDValue *Parts,
373 unsigned NumParts,
374 MVT PartVT,
375 MVT ValueVT,
376 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
377 assert(NumParts > 0 && "No parts to assemble!");
378 TargetLowering &TLI = DAG.getTargetLoweringInfo();
379 SDValue Val = Parts[0];
380
381 if (NumParts > 1) {
382 // Assemble the value from multiple parts.
383 if (!ValueVT.isVector()) {
384 unsigned PartBits = PartVT.getSizeInBits();
385 unsigned ValueBits = ValueVT.getSizeInBits();
386
387 // Assemble the power of 2 part.
388 unsigned RoundParts = NumParts & (NumParts - 1) ?
389 1 << Log2_32(NumParts) : NumParts;
390 unsigned RoundBits = PartBits * RoundParts;
391 MVT RoundVT = RoundBits == ValueBits ?
392 ValueVT : MVT::getIntegerVT(RoundBits);
393 SDValue Lo, Hi;
394
Duncan Sandsd22ec5f2008-10-29 14:22:20 +0000395 MVT HalfVT = ValueVT.isInteger() ?
396 MVT::getIntegerVT(RoundBits/2) :
397 MVT::getFloatingPointVT(RoundBits/2);
398
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000399 if (RoundParts > 2) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000400 Lo = getCopyFromParts(DAG, Parts, RoundParts/2, PartVT, HalfVT);
401 Hi = getCopyFromParts(DAG, Parts+RoundParts/2, RoundParts/2,
402 PartVT, HalfVT);
403 } else {
Duncan Sandsd22ec5f2008-10-29 14:22:20 +0000404 Lo = DAG.getNode(ISD::BIT_CONVERT, HalfVT, Parts[0]);
405 Hi = DAG.getNode(ISD::BIT_CONVERT, HalfVT, Parts[1]);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000406 }
407 if (TLI.isBigEndian())
408 std::swap(Lo, Hi);
409 Val = DAG.getNode(ISD::BUILD_PAIR, RoundVT, Lo, Hi);
410
411 if (RoundParts < NumParts) {
412 // Assemble the trailing non-power-of-2 part.
413 unsigned OddParts = NumParts - RoundParts;
414 MVT OddVT = MVT::getIntegerVT(OddParts * PartBits);
415 Hi = getCopyFromParts(DAG, Parts+RoundParts, OddParts, PartVT, OddVT);
416
417 // Combine the round and odd parts.
418 Lo = Val;
419 if (TLI.isBigEndian())
420 std::swap(Lo, Hi);
421 MVT TotalVT = MVT::getIntegerVT(NumParts * PartBits);
422 Hi = DAG.getNode(ISD::ANY_EXTEND, TotalVT, Hi);
423 Hi = DAG.getNode(ISD::SHL, TotalVT, Hi,
424 DAG.getConstant(Lo.getValueType().getSizeInBits(),
425 TLI.getShiftAmountTy()));
426 Lo = DAG.getNode(ISD::ZERO_EXTEND, TotalVT, Lo);
427 Val = DAG.getNode(ISD::OR, TotalVT, Lo, Hi);
428 }
429 } else {
430 // Handle a multi-element vector.
431 MVT IntermediateVT, RegisterVT;
432 unsigned NumIntermediates;
433 unsigned NumRegs =
434 TLI.getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
435 RegisterVT);
436 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
437 NumParts = NumRegs; // Silence a compiler warning.
438 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
439 assert(RegisterVT == Parts[0].getValueType() &&
440 "Part type doesn't match part!");
441
442 // Assemble the parts into intermediate operands.
443 SmallVector<SDValue, 8> Ops(NumIntermediates);
444 if (NumIntermediates == NumParts) {
445 // If the register was not expanded, truncate or copy the value,
446 // as appropriate.
447 for (unsigned i = 0; i != NumParts; ++i)
448 Ops[i] = getCopyFromParts(DAG, &Parts[i], 1,
449 PartVT, IntermediateVT);
450 } else if (NumParts > 0) {
451 // If the intermediate type was expanded, build the intermediate operands
452 // from the parts.
453 assert(NumParts % NumIntermediates == 0 &&
454 "Must expand into a divisible number of parts!");
455 unsigned Factor = NumParts / NumIntermediates;
456 for (unsigned i = 0; i != NumIntermediates; ++i)
457 Ops[i] = getCopyFromParts(DAG, &Parts[i * Factor], Factor,
458 PartVT, IntermediateVT);
459 }
460
461 // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the intermediate
462 // operands.
463 Val = DAG.getNode(IntermediateVT.isVector() ?
464 ISD::CONCAT_VECTORS : ISD::BUILD_VECTOR,
465 ValueVT, &Ops[0], NumIntermediates);
466 }
467 }
468
469 // There is now one part, held in Val. Correct it to match ValueVT.
470 PartVT = Val.getValueType();
471
472 if (PartVT == ValueVT)
473 return Val;
474
475 if (PartVT.isVector()) {
476 assert(ValueVT.isVector() && "Unknown vector conversion!");
477 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
478 }
479
480 if (ValueVT.isVector()) {
481 assert(ValueVT.getVectorElementType() == PartVT &&
482 ValueVT.getVectorNumElements() == 1 &&
483 "Only trivial scalar-to-vector conversions should get here!");
484 return DAG.getNode(ISD::BUILD_VECTOR, ValueVT, Val);
485 }
486
487 if (PartVT.isInteger() &&
488 ValueVT.isInteger()) {
489 if (ValueVT.bitsLT(PartVT)) {
490 // For a truncate, see if we have any information to
491 // indicate whether the truncated bits will always be
492 // zero or sign-extension.
493 if (AssertOp != ISD::DELETED_NODE)
494 Val = DAG.getNode(AssertOp, PartVT, Val,
495 DAG.getValueType(ValueVT));
496 return DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
497 } else {
498 return DAG.getNode(ISD::ANY_EXTEND, ValueVT, Val);
499 }
500 }
501
502 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
503 if (ValueVT.bitsLT(Val.getValueType()))
504 // FP_ROUND's are always exact here.
505 return DAG.getNode(ISD::FP_ROUND, ValueVT, Val,
506 DAG.getIntPtrConstant(1));
507 return DAG.getNode(ISD::FP_EXTEND, ValueVT, Val);
508 }
509
510 if (PartVT.getSizeInBits() == ValueVT.getSizeInBits())
511 return DAG.getNode(ISD::BIT_CONVERT, ValueVT, Val);
512
513 assert(0 && "Unknown mismatch!");
514 return SDValue();
515}
516
517/// getCopyToParts - Create a series of nodes that contain the specified value
518/// split into legal parts. If the parts contain more bits than Val, then, for
519/// integers, ExtendKind can be used to specify how to generate the extra bits.
Chris Lattner01426e12008-10-21 00:45:36 +0000520static void getCopyToParts(SelectionDAG &DAG, SDValue Val,
521 SDValue *Parts, unsigned NumParts, MVT PartVT,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000522 ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
523 TargetLowering &TLI = DAG.getTargetLoweringInfo();
524 MVT PtrVT = TLI.getPointerTy();
525 MVT ValueVT = Val.getValueType();
526 unsigned PartBits = PartVT.getSizeInBits();
527 assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
528
529 if (!NumParts)
530 return;
531
532 if (!ValueVT.isVector()) {
533 if (PartVT == ValueVT) {
534 assert(NumParts == 1 && "No-op copy with multiple parts!");
535 Parts[0] = Val;
536 return;
537 }
538
539 if (NumParts * PartBits > ValueVT.getSizeInBits()) {
540 // If the parts cover more bits than the value has, promote the value.
541 if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
542 assert(NumParts == 1 && "Do not know what to promote to!");
543 Val = DAG.getNode(ISD::FP_EXTEND, PartVT, Val);
544 } else if (PartVT.isInteger() && ValueVT.isInteger()) {
545 ValueVT = MVT::getIntegerVT(NumParts * PartBits);
546 Val = DAG.getNode(ExtendKind, ValueVT, Val);
547 } else {
548 assert(0 && "Unknown mismatch!");
549 }
550 } else if (PartBits == ValueVT.getSizeInBits()) {
551 // Different types of the same size.
552 assert(NumParts == 1 && PartVT != ValueVT);
553 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
554 } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
555 // If the parts cover less bits than value has, truncate the value.
556 if (PartVT.isInteger() && ValueVT.isInteger()) {
557 ValueVT = MVT::getIntegerVT(NumParts * PartBits);
558 Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
559 } else {
560 assert(0 && "Unknown mismatch!");
561 }
562 }
563
564 // The value may have changed - recompute ValueVT.
565 ValueVT = Val.getValueType();
566 assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
567 "Failed to tile the value with PartVT!");
568
569 if (NumParts == 1) {
570 assert(PartVT == ValueVT && "Type conversion failed!");
571 Parts[0] = Val;
572 return;
573 }
574
575 // Expand the value into multiple parts.
576 if (NumParts & (NumParts - 1)) {
577 // The number of parts is not a power of 2. Split off and copy the tail.
578 assert(PartVT.isInteger() && ValueVT.isInteger() &&
579 "Do not know what to expand to!");
580 unsigned RoundParts = 1 << Log2_32(NumParts);
581 unsigned RoundBits = RoundParts * PartBits;
582 unsigned OddParts = NumParts - RoundParts;
583 SDValue OddVal = DAG.getNode(ISD::SRL, ValueVT, Val,
584 DAG.getConstant(RoundBits,
585 TLI.getShiftAmountTy()));
586 getCopyToParts(DAG, OddVal, Parts + RoundParts, OddParts, PartVT);
587 if (TLI.isBigEndian())
588 // The odd parts were reversed by getCopyToParts - unreverse them.
589 std::reverse(Parts + RoundParts, Parts + NumParts);
590 NumParts = RoundParts;
591 ValueVT = MVT::getIntegerVT(NumParts * PartBits);
592 Val = DAG.getNode(ISD::TRUNCATE, ValueVT, Val);
593 }
594
595 // The number of parts is a power of 2. Repeatedly bisect the value using
596 // EXTRACT_ELEMENT.
597 Parts[0] = DAG.getNode(ISD::BIT_CONVERT,
598 MVT::getIntegerVT(ValueVT.getSizeInBits()),
599 Val);
600 for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
601 for (unsigned i = 0; i < NumParts; i += StepSize) {
602 unsigned ThisBits = StepSize * PartBits / 2;
603 MVT ThisVT = MVT::getIntegerVT (ThisBits);
604 SDValue &Part0 = Parts[i];
605 SDValue &Part1 = Parts[i+StepSize/2];
606
607 Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
608 DAG.getConstant(1, PtrVT));
609 Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, ThisVT, Part0,
610 DAG.getConstant(0, PtrVT));
611
612 if (ThisBits == PartBits && ThisVT != PartVT) {
613 Part0 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part0);
614 Part1 = DAG.getNode(ISD::BIT_CONVERT, PartVT, Part1);
615 }
616 }
617 }
618
619 if (TLI.isBigEndian())
620 std::reverse(Parts, Parts + NumParts);
621
622 return;
623 }
624
625 // Vector ValueVT.
626 if (NumParts == 1) {
627 if (PartVT != ValueVT) {
628 if (PartVT.isVector()) {
629 Val = DAG.getNode(ISD::BIT_CONVERT, PartVT, Val);
630 } else {
631 assert(ValueVT.getVectorElementType() == PartVT &&
632 ValueVT.getVectorNumElements() == 1 &&
633 "Only trivial vector-to-scalar conversions should get here!");
634 Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, PartVT, Val,
635 DAG.getConstant(0, PtrVT));
636 }
637 }
638
639 Parts[0] = Val;
640 return;
641 }
642
643 // Handle a multi-element vector.
644 MVT IntermediateVT, RegisterVT;
645 unsigned NumIntermediates;
646 unsigned NumRegs =
647 DAG.getTargetLoweringInfo()
648 .getVectorTypeBreakdown(ValueVT, IntermediateVT, NumIntermediates,
649 RegisterVT);
650 unsigned NumElements = ValueVT.getVectorNumElements();
651
652 assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
653 NumParts = NumRegs; // Silence a compiler warning.
654 assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
655
656 // Split the vector into intermediate operands.
657 SmallVector<SDValue, 8> Ops(NumIntermediates);
658 for (unsigned i = 0; i != NumIntermediates; ++i)
659 if (IntermediateVT.isVector())
660 Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR,
661 IntermediateVT, Val,
662 DAG.getConstant(i * (NumElements / NumIntermediates),
663 PtrVT));
664 else
665 Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
666 IntermediateVT, Val,
667 DAG.getConstant(i, PtrVT));
668
669 // Split the intermediate operands into legal parts.
670 if (NumParts == NumIntermediates) {
671 // If the register was not expanded, promote or copy the value,
672 // as appropriate.
673 for (unsigned i = 0; i != NumParts; ++i)
674 getCopyToParts(DAG, Ops[i], &Parts[i], 1, PartVT);
675 } else if (NumParts > 0) {
676 // If the intermediate type was expanded, split each the value into
677 // legal parts.
678 assert(NumParts % NumIntermediates == 0 &&
679 "Must expand into a divisible number of parts!");
680 unsigned Factor = NumParts / NumIntermediates;
681 for (unsigned i = 0; i != NumIntermediates; ++i)
682 getCopyToParts(DAG, Ops[i], &Parts[i * Factor], Factor, PartVT);
683 }
684}
685
686
687void SelectionDAGLowering::init(GCFunctionInfo *gfi, AliasAnalysis &aa) {
688 AA = &aa;
689 GFI = gfi;
690 TD = DAG.getTarget().getTargetData();
691}
692
693/// clear - Clear out the curret SelectionDAG and the associated
694/// state and prepare this SelectionDAGLowering object to be used
695/// for a new block. This doesn't clear out information about
696/// additional blocks that are needed to complete switch lowering
697/// or PHI node updating; that information is cleared out as it is
698/// consumed.
699void SelectionDAGLowering::clear() {
700 NodeMap.clear();
701 PendingLoads.clear();
702 PendingExports.clear();
703 DAG.clear();
704}
705
706/// getRoot - Return the current virtual root of the Selection DAG,
707/// flushing any PendingLoad items. This must be done before emitting
708/// a store or any other node that may need to be ordered after any
709/// prior load instructions.
710///
711SDValue SelectionDAGLowering::getRoot() {
712 if (PendingLoads.empty())
713 return DAG.getRoot();
714
715 if (PendingLoads.size() == 1) {
716 SDValue Root = PendingLoads[0];
717 DAG.setRoot(Root);
718 PendingLoads.clear();
719 return Root;
720 }
721
722 // Otherwise, we have to make a token factor node.
723 SDValue Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
724 &PendingLoads[0], PendingLoads.size());
725 PendingLoads.clear();
726 DAG.setRoot(Root);
727 return Root;
728}
729
730/// getControlRoot - Similar to getRoot, but instead of flushing all the
731/// PendingLoad items, flush all the PendingExports items. It is necessary
732/// to do this before emitting a terminator instruction.
733///
734SDValue SelectionDAGLowering::getControlRoot() {
735 SDValue Root = DAG.getRoot();
736
737 if (PendingExports.empty())
738 return Root;
739
740 // Turn all of the CopyToReg chains into one factored node.
741 if (Root.getOpcode() != ISD::EntryToken) {
742 unsigned i = 0, e = PendingExports.size();
743 for (; i != e; ++i) {
744 assert(PendingExports[i].getNode()->getNumOperands() > 1);
745 if (PendingExports[i].getNode()->getOperand(0) == Root)
746 break; // Don't add the root if we already indirectly depend on it.
747 }
748
749 if (i == e)
750 PendingExports.push_back(Root);
751 }
752
753 Root = DAG.getNode(ISD::TokenFactor, MVT::Other,
754 &PendingExports[0],
755 PendingExports.size());
756 PendingExports.clear();
757 DAG.setRoot(Root);
758 return Root;
759}
760
761void SelectionDAGLowering::visit(Instruction &I) {
762 visit(I.getOpcode(), I);
763}
764
765void SelectionDAGLowering::visit(unsigned Opcode, User &I) {
766 // Note: this doesn't use InstVisitor, because it has to work with
767 // ConstantExpr's in addition to instructions.
768 switch (Opcode) {
769 default: assert(0 && "Unknown instruction type encountered!");
770 abort();
771 // Build the switch statement using the Instruction.def file.
772#define HANDLE_INST(NUM, OPCODE, CLASS) \
773 case Instruction::OPCODE:return visit##OPCODE((CLASS&)I);
774#include "llvm/Instruction.def"
775 }
776}
777
778void SelectionDAGLowering::visitAdd(User &I) {
779 if (I.getType()->isFPOrFPVector())
780 visitBinary(I, ISD::FADD);
781 else
782 visitBinary(I, ISD::ADD);
783}
784
785void SelectionDAGLowering::visitMul(User &I) {
786 if (I.getType()->isFPOrFPVector())
787 visitBinary(I, ISD::FMUL);
788 else
789 visitBinary(I, ISD::MUL);
790}
791
792SDValue SelectionDAGLowering::getValue(const Value *V) {
793 SDValue &N = NodeMap[V];
794 if (N.getNode()) return N;
795
796 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(V))) {
797 MVT VT = TLI.getValueType(V->getType(), true);
798
799 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
Dan Gohman4fbd7962008-09-12 18:08:03 +0000800 return N = DAG.getConstant(*CI, VT);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000801
802 if (GlobalValue *GV = dyn_cast<GlobalValue>(C))
803 return N = DAG.getGlobalAddress(GV, VT);
804
805 if (isa<ConstantPointerNull>(C))
806 return N = DAG.getConstant(0, TLI.getPointerTy());
807
808 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C))
Dan Gohman4fbd7962008-09-12 18:08:03 +0000809 return N = DAG.getConstantFP(*CFP, VT);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000810
811 if (isa<UndefValue>(C) && !isa<VectorType>(V->getType()) &&
812 !V->getType()->isAggregateType())
813 return N = DAG.getNode(ISD::UNDEF, VT);
814
815 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
816 visit(CE->getOpcode(), *CE);
817 SDValue N1 = NodeMap[V];
818 assert(N1.getNode() && "visit didn't populate the ValueMap!");
819 return N1;
820 }
821
822 if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
823 SmallVector<SDValue, 4> Constants;
824 for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
825 OI != OE; ++OI) {
826 SDNode *Val = getValue(*OI).getNode();
827 for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
828 Constants.push_back(SDValue(Val, i));
829 }
830 return DAG.getMergeValues(&Constants[0], Constants.size());
831 }
832
833 if (isa<StructType>(C->getType()) || isa<ArrayType>(C->getType())) {
834 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
835 "Unknown struct or array constant!");
836
837 SmallVector<MVT, 4> ValueVTs;
838 ComputeValueVTs(TLI, C->getType(), ValueVTs);
839 unsigned NumElts = ValueVTs.size();
840 if (NumElts == 0)
841 return SDValue(); // empty struct
842 SmallVector<SDValue, 4> Constants(NumElts);
843 for (unsigned i = 0; i != NumElts; ++i) {
844 MVT EltVT = ValueVTs[i];
845 if (isa<UndefValue>(C))
846 Constants[i] = DAG.getNode(ISD::UNDEF, EltVT);
847 else if (EltVT.isFloatingPoint())
848 Constants[i] = DAG.getConstantFP(0, EltVT);
849 else
850 Constants[i] = DAG.getConstant(0, EltVT);
851 }
852 return DAG.getMergeValues(&Constants[0], NumElts);
853 }
854
855 const VectorType *VecTy = cast<VectorType>(V->getType());
856 unsigned NumElements = VecTy->getNumElements();
857
858 // Now that we know the number and type of the elements, get that number of
859 // elements into the Ops array based on what kind of constant it is.
860 SmallVector<SDValue, 16> Ops;
861 if (ConstantVector *CP = dyn_cast<ConstantVector>(C)) {
862 for (unsigned i = 0; i != NumElements; ++i)
863 Ops.push_back(getValue(CP->getOperand(i)));
864 } else {
865 assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
866 "Unknown vector constant!");
867 MVT EltVT = TLI.getValueType(VecTy->getElementType());
868
869 SDValue Op;
870 if (isa<UndefValue>(C))
871 Op = DAG.getNode(ISD::UNDEF, EltVT);
872 else if (EltVT.isFloatingPoint())
873 Op = DAG.getConstantFP(0, EltVT);
874 else
875 Op = DAG.getConstant(0, EltVT);
876 Ops.assign(NumElements, Op);
877 }
878
879 // Create a BUILD_VECTOR node.
880 return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size());
881 }
882
883 // If this is a static alloca, generate it as the frameindex instead of
884 // computation.
885 if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
886 DenseMap<const AllocaInst*, int>::iterator SI =
887 FuncInfo.StaticAllocaMap.find(AI);
888 if (SI != FuncInfo.StaticAllocaMap.end())
889 return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
890 }
891
892 unsigned InReg = FuncInfo.ValueMap[V];
893 assert(InReg && "Value not in map!");
894
895 RegsForValue RFV(TLI, InReg, V->getType());
896 SDValue Chain = DAG.getEntryNode();
897 return RFV.getCopyFromRegs(DAG, Chain, NULL);
898}
899
900
901void SelectionDAGLowering::visitRet(ReturnInst &I) {
902 if (I.getNumOperands() == 0) {
903 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other, getControlRoot()));
904 return;
905 }
906
907 SmallVector<SDValue, 8> NewValues;
908 NewValues.push_back(getControlRoot());
909 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000910 SmallVector<MVT, 4> ValueVTs;
911 ComputeValueVTs(TLI, I.getOperand(i)->getType(), ValueVTs);
Dan Gohman7ea1ca62008-10-21 20:00:42 +0000912 unsigned NumValues = ValueVTs.size();
913 if (NumValues == 0) continue;
914
915 SDValue RetOp = getValue(I.getOperand(i));
916 for (unsigned j = 0, f = NumValues; j != f; ++j) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000917 MVT VT = ValueVTs[j];
918
919 // FIXME: C calling convention requires the return type to be promoted to
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000920 // at least 32-bit. But this is not necessary for non-C calling
921 // conventions.
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000922 if (VT.isInteger()) {
923 MVT MinVT = TLI.getRegisterType(MVT::i32);
924 if (VT.bitsLT(MinVT))
925 VT = MinVT;
926 }
927
928 unsigned NumParts = TLI.getNumRegisters(VT);
929 MVT PartVT = TLI.getRegisterType(VT);
930 SmallVector<SDValue, 4> Parts(NumParts);
931 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
932
933 const Function *F = I.getParent()->getParent();
Devang Patel05988662008-09-25 21:00:45 +0000934 if (F->paramHasAttr(0, Attribute::SExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000935 ExtendKind = ISD::SIGN_EXTEND;
Devang Patel05988662008-09-25 21:00:45 +0000936 else if (F->paramHasAttr(0, Attribute::ZExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000937 ExtendKind = ISD::ZERO_EXTEND;
938
939 getCopyToParts(DAG, SDValue(RetOp.getNode(), RetOp.getResNo() + j),
940 &Parts[0], NumParts, PartVT, ExtendKind);
941
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000942 // 'inreg' on function refers to return value
943 ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
Devang Patel05988662008-09-25 21:00:45 +0000944 if (F->paramHasAttr(0, Attribute::InReg))
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000945 Flags.setInReg();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000946 for (unsigned i = 0; i < NumParts; ++i) {
947 NewValues.push_back(Parts[i]);
Dale Johannesenc9c6da62008-09-25 20:47:45 +0000948 NewValues.push_back(DAG.getArgFlags(Flags));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +0000949 }
950 }
951 }
952 DAG.setRoot(DAG.getNode(ISD::RET, MVT::Other,
953 &NewValues[0], NewValues.size()));
954}
955
956/// ExportFromCurrentBlock - If this condition isn't known to be exported from
957/// the current basic block, add it to ValueMap now so that we'll get a
958/// CopyTo/FromReg.
959void SelectionDAGLowering::ExportFromCurrentBlock(Value *V) {
960 // No need to export constants.
961 if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
962
963 // Already exported?
964 if (FuncInfo.isExportedInst(V)) return;
965
966 unsigned Reg = FuncInfo.InitializeRegForValue(V);
967 CopyValueToVirtualRegister(V, Reg);
968}
969
970bool SelectionDAGLowering::isExportableFromCurrentBlock(Value *V,
971 const BasicBlock *FromBB) {
972 // The operands of the setcc have to be in this block. We don't know
973 // how to export them from some other block.
974 if (Instruction *VI = dyn_cast<Instruction>(V)) {
975 // Can export from current BB.
976 if (VI->getParent() == FromBB)
977 return true;
978
979 // Is already exported, noop.
980 return FuncInfo.isExportedInst(V);
981 }
982
983 // If this is an argument, we can export it if the BB is the entry block or
984 // if it is already exported.
985 if (isa<Argument>(V)) {
986 if (FromBB == &FromBB->getParent()->getEntryBlock())
987 return true;
988
989 // Otherwise, can only export this if it is already exported.
990 return FuncInfo.isExportedInst(V);
991 }
992
993 // Otherwise, constants can always be exported.
994 return true;
995}
996
997static bool InBlock(const Value *V, const BasicBlock *BB) {
998 if (const Instruction *I = dyn_cast<Instruction>(V))
999 return I->getParent() == BB;
1000 return true;
1001}
1002
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00001003/// getFCmpCondCode - Return the ISD condition code corresponding to
1004/// the given LLVM IR floating-point condition code. This includes
1005/// consideration of global floating-point math flags.
1006///
1007static ISD::CondCode getFCmpCondCode(FCmpInst::Predicate Pred) {
1008 ISD::CondCode FPC, FOC;
1009 switch (Pred) {
1010 case FCmpInst::FCMP_FALSE: FOC = FPC = ISD::SETFALSE; break;
1011 case FCmpInst::FCMP_OEQ: FOC = ISD::SETEQ; FPC = ISD::SETOEQ; break;
1012 case FCmpInst::FCMP_OGT: FOC = ISD::SETGT; FPC = ISD::SETOGT; break;
1013 case FCmpInst::FCMP_OGE: FOC = ISD::SETGE; FPC = ISD::SETOGE; break;
1014 case FCmpInst::FCMP_OLT: FOC = ISD::SETLT; FPC = ISD::SETOLT; break;
1015 case FCmpInst::FCMP_OLE: FOC = ISD::SETLE; FPC = ISD::SETOLE; break;
1016 case FCmpInst::FCMP_ONE: FOC = ISD::SETNE; FPC = ISD::SETONE; break;
1017 case FCmpInst::FCMP_ORD: FOC = FPC = ISD::SETO; break;
1018 case FCmpInst::FCMP_UNO: FOC = FPC = ISD::SETUO; break;
1019 case FCmpInst::FCMP_UEQ: FOC = ISD::SETEQ; FPC = ISD::SETUEQ; break;
1020 case FCmpInst::FCMP_UGT: FOC = ISD::SETGT; FPC = ISD::SETUGT; break;
1021 case FCmpInst::FCMP_UGE: FOC = ISD::SETGE; FPC = ISD::SETUGE; break;
1022 case FCmpInst::FCMP_ULT: FOC = ISD::SETLT; FPC = ISD::SETULT; break;
1023 case FCmpInst::FCMP_ULE: FOC = ISD::SETLE; FPC = ISD::SETULE; break;
1024 case FCmpInst::FCMP_UNE: FOC = ISD::SETNE; FPC = ISD::SETUNE; break;
1025 case FCmpInst::FCMP_TRUE: FOC = FPC = ISD::SETTRUE; break;
1026 default:
1027 assert(0 && "Invalid FCmp predicate opcode!");
1028 FOC = FPC = ISD::SETFALSE;
1029 break;
1030 }
1031 if (FiniteOnlyFPMath())
1032 return FOC;
1033 else
1034 return FPC;
1035}
1036
1037/// getICmpCondCode - Return the ISD condition code corresponding to
1038/// the given LLVM IR integer condition code.
1039///
1040static ISD::CondCode getICmpCondCode(ICmpInst::Predicate Pred) {
1041 switch (Pred) {
1042 case ICmpInst::ICMP_EQ: return ISD::SETEQ;
1043 case ICmpInst::ICMP_NE: return ISD::SETNE;
1044 case ICmpInst::ICMP_SLE: return ISD::SETLE;
1045 case ICmpInst::ICMP_ULE: return ISD::SETULE;
1046 case ICmpInst::ICMP_SGE: return ISD::SETGE;
1047 case ICmpInst::ICMP_UGE: return ISD::SETUGE;
1048 case ICmpInst::ICMP_SLT: return ISD::SETLT;
1049 case ICmpInst::ICMP_ULT: return ISD::SETULT;
1050 case ICmpInst::ICMP_SGT: return ISD::SETGT;
1051 case ICmpInst::ICMP_UGT: return ISD::SETUGT;
1052 default:
1053 assert(0 && "Invalid ICmp predicate opcode!");
1054 return ISD::SETNE;
1055 }
1056}
1057
Dan Gohmanc2277342008-10-17 21:16:08 +00001058/// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1059/// This function emits a branch and is used at the leaves of an OR or an
1060/// AND operator tree.
1061///
1062void
1063SelectionDAGLowering::EmitBranchForMergedCondition(Value *Cond,
1064 MachineBasicBlock *TBB,
1065 MachineBasicBlock *FBB,
1066 MachineBasicBlock *CurBB) {
1067 const BasicBlock *BB = CurBB->getBasicBlock();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001068
Dan Gohmanc2277342008-10-17 21:16:08 +00001069 // If the leaf of the tree is a comparison, merge the condition into
1070 // the caseblock.
1071 if (CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1072 // The operands of the cmp have to be in this block. We don't know
1073 // how to export them from some other block. If this is the first block
1074 // of the sequence, no exporting is needed.
1075 if (CurBB == CurMBB ||
1076 (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1077 isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001078 ISD::CondCode Condition;
1079 if (ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00001080 Condition = getICmpCondCode(IC->getPredicate());
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001081 } else if (FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00001082 Condition = getFCmpCondCode(FC->getPredicate());
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001083 } else {
1084 Condition = ISD::SETEQ; // silence warning.
1085 assert(0 && "Unknown compare instruction");
1086 }
Dan Gohmanc2277342008-10-17 21:16:08 +00001087
1088 CaseBlock CB(Condition, BOp->getOperand(0),
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001089 BOp->getOperand(1), NULL, TBB, FBB, CurBB);
1090 SwitchCases.push_back(CB);
1091 return;
1092 }
Dan Gohmanc2277342008-10-17 21:16:08 +00001093 }
1094
1095 // Create a CaseBlock record representing this branch.
1096 CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(),
1097 NULL, TBB, FBB, CurBB);
1098 SwitchCases.push_back(CB);
1099}
1100
1101/// FindMergedConditions - If Cond is an expression like
1102void SelectionDAGLowering::FindMergedConditions(Value *Cond,
1103 MachineBasicBlock *TBB,
1104 MachineBasicBlock *FBB,
1105 MachineBasicBlock *CurBB,
1106 unsigned Opc) {
1107 // If this node is not part of the or/and tree, emit it as a branch.
1108 Instruction *BOp = dyn_cast<Instruction>(Cond);
1109 if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1110 (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1111 BOp->getParent() != CurBB->getBasicBlock() ||
1112 !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1113 !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1114 EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001115 return;
1116 }
1117
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00001118 // Create TmpBB after CurBB.
1119 MachineFunction::iterator BBI = CurBB;
1120 MachineFunction &MF = DAG.getMachineFunction();
1121 MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1122 CurBB->getParent()->insert(++BBI, TmpBB);
1123
1124 if (Opc == Instruction::Or) {
1125 // Codegen X | Y as:
1126 // jmp_if_X TBB
1127 // jmp TmpBB
1128 // TmpBB:
1129 // jmp_if_Y TBB
1130 // jmp FBB
1131 //
1132
1133 // Emit the LHS condition.
1134 FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, Opc);
1135
1136 // Emit the RHS condition into TmpBB.
1137 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1138 } else {
1139 assert(Opc == Instruction::And && "Unknown merge op!");
1140 // Codegen X & Y as:
1141 // jmp_if_X TmpBB
1142 // jmp FBB
1143 // TmpBB:
1144 // jmp_if_Y TBB
1145 // jmp FBB
1146 //
1147 // This requires creation of TmpBB after CurBB.
1148
1149 // Emit the LHS condition.
1150 FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, Opc);
1151
1152 // Emit the RHS condition into TmpBB.
1153 FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, Opc);
1154 }
1155}
1156
1157/// If the set of cases should be emitted as a series of branches, return true.
1158/// If we should emit this as a bunch of and/or'd together conditions, return
1159/// false.
1160bool
1161SelectionDAGLowering::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases){
1162 if (Cases.size() != 2) return true;
1163
1164 // If this is two comparisons of the same values or'd or and'd together, they
1165 // will get folded into a single comparison, so don't emit two blocks.
1166 if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1167 Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1168 (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1169 Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1170 return false;
1171 }
1172
1173 return true;
1174}
1175
1176void SelectionDAGLowering::visitBr(BranchInst &I) {
1177 // Update machine-CFG edges.
1178 MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1179
1180 // Figure out which block is immediately after the current one.
1181 MachineBasicBlock *NextBlock = 0;
1182 MachineFunction::iterator BBI = CurMBB;
1183 if (++BBI != CurMBB->getParent()->end())
1184 NextBlock = BBI;
1185
1186 if (I.isUnconditional()) {
1187 // Update machine-CFG edges.
1188 CurMBB->addSuccessor(Succ0MBB);
1189
1190 // If this is not a fall-through branch, emit the branch.
1191 if (Succ0MBB != NextBlock)
1192 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1193 DAG.getBasicBlock(Succ0MBB)));
1194 return;
1195 }
1196
1197 // If this condition is one of the special cases we handle, do special stuff
1198 // now.
1199 Value *CondVal = I.getCondition();
1200 MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1201
1202 // If this is a series of conditions that are or'd or and'd together, emit
1203 // this as a sequence of branches instead of setcc's with and/or operations.
1204 // For example, instead of something like:
1205 // cmp A, B
1206 // C = seteq
1207 // cmp D, E
1208 // F = setle
1209 // or C, F
1210 // jnz foo
1211 // Emit:
1212 // cmp A, B
1213 // je foo
1214 // cmp D, E
1215 // jle foo
1216 //
1217 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1218 if (BOp->hasOneUse() &&
1219 (BOp->getOpcode() == Instruction::And ||
1220 BOp->getOpcode() == Instruction::Or)) {
1221 FindMergedConditions(BOp, Succ0MBB, Succ1MBB, CurMBB, BOp->getOpcode());
1222 // If the compares in later blocks need to use values not currently
1223 // exported from this block, export them now. This block should always
1224 // be the first entry.
1225 assert(SwitchCases[0].ThisBB == CurMBB && "Unexpected lowering!");
1226
1227 // Allow some cases to be rejected.
1228 if (ShouldEmitAsBranches(SwitchCases)) {
1229 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1230 ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1231 ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1232 }
1233
1234 // Emit the branch for this block.
1235 visitSwitchCase(SwitchCases[0]);
1236 SwitchCases.erase(SwitchCases.begin());
1237 return;
1238 }
1239
1240 // Okay, we decided not to do this, remove any inserted MBB's and clear
1241 // SwitchCases.
1242 for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1243 CurMBB->getParent()->erase(SwitchCases[i].ThisBB);
1244
1245 SwitchCases.clear();
1246 }
1247 }
1248
1249 // Create a CaseBlock record representing this branch.
1250 CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(),
1251 NULL, Succ0MBB, Succ1MBB, CurMBB);
1252 // Use visitSwitchCase to actually insert the fast branch sequence for this
1253 // cond branch.
1254 visitSwitchCase(CB);
1255}
1256
1257/// visitSwitchCase - Emits the necessary code to represent a single node in
1258/// the binary search tree resulting from lowering a switch instruction.
1259void SelectionDAGLowering::visitSwitchCase(CaseBlock &CB) {
1260 SDValue Cond;
1261 SDValue CondLHS = getValue(CB.CmpLHS);
1262
1263 // Build the setcc now.
1264 if (CB.CmpMHS == NULL) {
1265 // Fold "(X == true)" to X and "(X == false)" to !X to
1266 // handle common cases produced by branch lowering.
1267 if (CB.CmpRHS == ConstantInt::getTrue() && CB.CC == ISD::SETEQ)
1268 Cond = CondLHS;
1269 else if (CB.CmpRHS == ConstantInt::getFalse() && CB.CC == ISD::SETEQ) {
1270 SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1271 Cond = DAG.getNode(ISD::XOR, CondLHS.getValueType(), CondLHS, True);
1272 } else
1273 Cond = DAG.getSetCC(MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1274 } else {
1275 assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1276
1277 uint64_t Low = cast<ConstantInt>(CB.CmpLHS)->getSExtValue();
1278 uint64_t High = cast<ConstantInt>(CB.CmpRHS)->getSExtValue();
1279
1280 SDValue CmpOp = getValue(CB.CmpMHS);
1281 MVT VT = CmpOp.getValueType();
1282
1283 if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1284 Cond = DAG.getSetCC(MVT::i1, CmpOp, DAG.getConstant(High, VT), ISD::SETLE);
1285 } else {
1286 SDValue SUB = DAG.getNode(ISD::SUB, VT, CmpOp, DAG.getConstant(Low, VT));
1287 Cond = DAG.getSetCC(MVT::i1, SUB,
1288 DAG.getConstant(High-Low, VT), ISD::SETULE);
1289 }
1290 }
1291
1292 // Update successor info
1293 CurMBB->addSuccessor(CB.TrueBB);
1294 CurMBB->addSuccessor(CB.FalseBB);
1295
1296 // Set NextBlock to be the MBB immediately after the current one, if any.
1297 // This is used to avoid emitting unnecessary branches to the next block.
1298 MachineBasicBlock *NextBlock = 0;
1299 MachineFunction::iterator BBI = CurMBB;
1300 if (++BBI != CurMBB->getParent()->end())
1301 NextBlock = BBI;
1302
1303 // If the lhs block is the next block, invert the condition so that we can
1304 // fall through to the lhs instead of the rhs block.
1305 if (CB.TrueBB == NextBlock) {
1306 std::swap(CB.TrueBB, CB.FalseBB);
1307 SDValue True = DAG.getConstant(1, Cond.getValueType());
1308 Cond = DAG.getNode(ISD::XOR, Cond.getValueType(), Cond, True);
1309 }
1310 SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(), Cond,
1311 DAG.getBasicBlock(CB.TrueBB));
1312
1313 // If the branch was constant folded, fix up the CFG.
1314 if (BrCond.getOpcode() == ISD::BR) {
1315 CurMBB->removeSuccessor(CB.FalseBB);
1316 DAG.setRoot(BrCond);
1317 } else {
1318 // Otherwise, go ahead and insert the false branch.
1319 if (BrCond == getControlRoot())
1320 CurMBB->removeSuccessor(CB.TrueBB);
1321
1322 if (CB.FalseBB == NextBlock)
1323 DAG.setRoot(BrCond);
1324 else
1325 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1326 DAG.getBasicBlock(CB.FalseBB)));
1327 }
1328}
1329
1330/// visitJumpTable - Emit JumpTable node in the current MBB
1331void SelectionDAGLowering::visitJumpTable(JumpTable &JT) {
1332 // Emit the code for the jump table
1333 assert(JT.Reg != -1U && "Should lower JT Header first!");
1334 MVT PTy = TLI.getPointerTy();
1335 SDValue Index = DAG.getCopyFromReg(getControlRoot(), JT.Reg, PTy);
1336 SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1337 DAG.setRoot(DAG.getNode(ISD::BR_JT, MVT::Other, Index.getValue(1),
1338 Table, Index));
1339 return;
1340}
1341
1342/// visitJumpTableHeader - This function emits necessary code to produce index
1343/// in the JumpTable from switch case.
1344void SelectionDAGLowering::visitJumpTableHeader(JumpTable &JT,
1345 JumpTableHeader &JTH) {
1346 // Subtract the lowest switch case value from the value being switched on
1347 // and conditional branch to default mbb if the result is greater than the
1348 // difference between smallest and largest cases.
1349 SDValue SwitchOp = getValue(JTH.SValue);
1350 MVT VT = SwitchOp.getValueType();
1351 SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1352 DAG.getConstant(JTH.First, VT));
1353
1354 // The SDNode we just created, which holds the value being switched on
1355 // minus the the smallest case value, needs to be copied to a virtual
1356 // register so it can be used as an index into the jump table in a
1357 // subsequent basic block. This value may be smaller or larger than the
1358 // target's pointer type, and therefore require extension or truncating.
1359 if (VT.bitsGT(TLI.getPointerTy()))
1360 SwitchOp = DAG.getNode(ISD::TRUNCATE, TLI.getPointerTy(), SUB);
1361 else
1362 SwitchOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(), SUB);
1363
1364 unsigned JumpTableReg = FuncInfo.MakeReg(TLI.getPointerTy());
1365 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), JumpTableReg, SwitchOp);
1366 JT.Reg = JumpTableReg;
1367
1368 // Emit the range check for the jump table, and branch to the default
1369 // block for the switch statement if the value being switched on exceeds
1370 // the largest case in the switch.
1371 SDValue CMP = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1372 DAG.getConstant(JTH.Last-JTH.First,VT),
1373 ISD::SETUGT);
1374
1375 // Set NextBlock to be the MBB immediately after the current one, if any.
1376 // This is used to avoid emitting unnecessary branches to the next block.
1377 MachineBasicBlock *NextBlock = 0;
1378 MachineFunction::iterator BBI = CurMBB;
1379 if (++BBI != CurMBB->getParent()->end())
1380 NextBlock = BBI;
1381
1382 SDValue BrCond = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, CMP,
1383 DAG.getBasicBlock(JT.Default));
1384
1385 if (JT.MBB == NextBlock)
1386 DAG.setRoot(BrCond);
1387 else
1388 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrCond,
1389 DAG.getBasicBlock(JT.MBB)));
1390
1391 return;
1392}
1393
1394/// visitBitTestHeader - This function emits necessary code to produce value
1395/// suitable for "bit tests"
1396void SelectionDAGLowering::visitBitTestHeader(BitTestBlock &B) {
1397 // Subtract the minimum value
1398 SDValue SwitchOp = getValue(B.SValue);
1399 MVT VT = SwitchOp.getValueType();
1400 SDValue SUB = DAG.getNode(ISD::SUB, VT, SwitchOp,
1401 DAG.getConstant(B.First, VT));
1402
1403 // Check range
1404 SDValue RangeCmp = DAG.getSetCC(TLI.getSetCCResultType(SUB), SUB,
1405 DAG.getConstant(B.Range, VT),
1406 ISD::SETUGT);
1407
1408 SDValue ShiftOp;
1409 if (VT.bitsGT(TLI.getShiftAmountTy()))
1410 ShiftOp = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), SUB);
1411 else
1412 ShiftOp = DAG.getNode(ISD::ZERO_EXTEND, TLI.getShiftAmountTy(), SUB);
1413
1414 // Make desired shift
1415 SDValue SwitchVal = DAG.getNode(ISD::SHL, TLI.getPointerTy(),
1416 DAG.getConstant(1, TLI.getPointerTy()),
1417 ShiftOp);
1418
1419 unsigned SwitchReg = FuncInfo.MakeReg(TLI.getPointerTy());
1420 SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), SwitchReg, SwitchVal);
1421 B.Reg = SwitchReg;
1422
1423 // Set NextBlock to be the MBB immediately after the current one, if any.
1424 // This is used to avoid emitting unnecessary branches to the next block.
1425 MachineBasicBlock *NextBlock = 0;
1426 MachineFunction::iterator BBI = CurMBB;
1427 if (++BBI != CurMBB->getParent()->end())
1428 NextBlock = BBI;
1429
1430 MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1431
1432 CurMBB->addSuccessor(B.Default);
1433 CurMBB->addSuccessor(MBB);
1434
1435 SDValue BrRange = DAG.getNode(ISD::BRCOND, MVT::Other, CopyTo, RangeCmp,
1436 DAG.getBasicBlock(B.Default));
1437
1438 if (MBB == NextBlock)
1439 DAG.setRoot(BrRange);
1440 else
1441 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, CopyTo,
1442 DAG.getBasicBlock(MBB)));
1443
1444 return;
1445}
1446
1447/// visitBitTestCase - this function produces one "bit test"
1448void SelectionDAGLowering::visitBitTestCase(MachineBasicBlock* NextMBB,
1449 unsigned Reg,
1450 BitTestCase &B) {
1451 // Emit bit tests and jumps
1452 SDValue SwitchVal = DAG.getCopyFromReg(getControlRoot(), Reg,
1453 TLI.getPointerTy());
1454
1455 SDValue AndOp = DAG.getNode(ISD::AND, TLI.getPointerTy(), SwitchVal,
1456 DAG.getConstant(B.Mask, TLI.getPointerTy()));
1457 SDValue AndCmp = DAG.getSetCC(TLI.getSetCCResultType(AndOp), AndOp,
1458 DAG.getConstant(0, TLI.getPointerTy()),
1459 ISD::SETNE);
1460
1461 CurMBB->addSuccessor(B.TargetBB);
1462 CurMBB->addSuccessor(NextMBB);
1463
1464 SDValue BrAnd = DAG.getNode(ISD::BRCOND, MVT::Other, getControlRoot(),
1465 AndCmp, DAG.getBasicBlock(B.TargetBB));
1466
1467 // Set NextBlock to be the MBB immediately after the current one, if any.
1468 // This is used to avoid emitting unnecessary branches to the next block.
1469 MachineBasicBlock *NextBlock = 0;
1470 MachineFunction::iterator BBI = CurMBB;
1471 if (++BBI != CurMBB->getParent()->end())
1472 NextBlock = BBI;
1473
1474 if (NextMBB == NextBlock)
1475 DAG.setRoot(BrAnd);
1476 else
1477 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, BrAnd,
1478 DAG.getBasicBlock(NextMBB)));
1479
1480 return;
1481}
1482
1483void SelectionDAGLowering::visitInvoke(InvokeInst &I) {
1484 // Retrieve successors.
1485 MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
1486 MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
1487
1488 if (isa<InlineAsm>(I.getCalledValue()))
1489 visitInlineAsm(&I);
1490 else
1491 LowerCallTo(&I, getValue(I.getOperand(0)), false, LandingPad);
1492
1493 // If the value of the invoke is used outside of its defining block, make it
1494 // available as a virtual register.
1495 if (!I.use_empty()) {
1496 DenseMap<const Value*, unsigned>::iterator VMI = FuncInfo.ValueMap.find(&I);
1497 if (VMI != FuncInfo.ValueMap.end())
1498 CopyValueToVirtualRegister(&I, VMI->second);
1499 }
1500
1501 // Update successor info
1502 CurMBB->addSuccessor(Return);
1503 CurMBB->addSuccessor(LandingPad);
1504
1505 // Drop into normal successor.
1506 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1507 DAG.getBasicBlock(Return)));
1508}
1509
1510void SelectionDAGLowering::visitUnwind(UnwindInst &I) {
1511}
1512
1513/// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
1514/// small case ranges).
1515bool SelectionDAGLowering::handleSmallSwitchRange(CaseRec& CR,
1516 CaseRecVector& WorkList,
1517 Value* SV,
1518 MachineBasicBlock* Default) {
1519 Case& BackCase = *(CR.Range.second-1);
1520
1521 // Size is the number of Cases represented by this range.
1522 unsigned Size = CR.Range.second - CR.Range.first;
1523 if (Size > 3)
1524 return false;
1525
1526 // Get the MachineFunction which holds the current MBB. This is used when
1527 // inserting any additional MBBs necessary to represent the switch.
1528 MachineFunction *CurMF = CurMBB->getParent();
1529
1530 // Figure out which block is immediately after the current one.
1531 MachineBasicBlock *NextBlock = 0;
1532 MachineFunction::iterator BBI = CR.CaseBB;
1533
1534 if (++BBI != CurMBB->getParent()->end())
1535 NextBlock = BBI;
1536
1537 // TODO: If any two of the cases has the same destination, and if one value
1538 // is the same as the other, but has one bit unset that the other has set,
1539 // use bit manipulation to do two compares at once. For example:
1540 // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
1541
1542 // Rearrange the case blocks so that the last one falls through if possible.
1543 if (NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
1544 // The last case block won't fall through into 'NextBlock' if we emit the
1545 // branches in this order. See if rearranging a case value would help.
1546 for (CaseItr I = CR.Range.first, E = CR.Range.second-1; I != E; ++I) {
1547 if (I->BB == NextBlock) {
1548 std::swap(*I, BackCase);
1549 break;
1550 }
1551 }
1552 }
1553
1554 // Create a CaseBlock record representing a conditional branch to
1555 // the Case's target mbb if the value being switched on SV is equal
1556 // to C.
1557 MachineBasicBlock *CurBlock = CR.CaseBB;
1558 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
1559 MachineBasicBlock *FallThrough;
1560 if (I != E-1) {
1561 FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
1562 CurMF->insert(BBI, FallThrough);
1563 } else {
1564 // If the last case doesn't match, go to the default block.
1565 FallThrough = Default;
1566 }
1567
1568 Value *RHS, *LHS, *MHS;
1569 ISD::CondCode CC;
1570 if (I->High == I->Low) {
1571 // This is just small small case range :) containing exactly 1 case
1572 CC = ISD::SETEQ;
1573 LHS = SV; RHS = I->High; MHS = NULL;
1574 } else {
1575 CC = ISD::SETLE;
1576 LHS = I->Low; MHS = SV; RHS = I->High;
1577 }
1578 CaseBlock CB(CC, LHS, RHS, MHS, I->BB, FallThrough, CurBlock);
1579
1580 // If emitting the first comparison, just call visitSwitchCase to emit the
1581 // code into the current block. Otherwise, push the CaseBlock onto the
1582 // vector to be later processed by SDISel, and insert the node's MBB
1583 // before the next MBB.
1584 if (CurBlock == CurMBB)
1585 visitSwitchCase(CB);
1586 else
1587 SwitchCases.push_back(CB);
1588
1589 CurBlock = FallThrough;
1590 }
1591
1592 return true;
1593}
1594
1595static inline bool areJTsAllowed(const TargetLowering &TLI) {
1596 return !DisableJumpTables &&
1597 (TLI.isOperationLegal(ISD::BR_JT, MVT::Other) ||
1598 TLI.isOperationLegal(ISD::BRIND, MVT::Other));
1599}
1600
1601/// handleJTSwitchCase - Emit jumptable for current switch case range
1602bool SelectionDAGLowering::handleJTSwitchCase(CaseRec& CR,
1603 CaseRecVector& WorkList,
1604 Value* SV,
1605 MachineBasicBlock* Default) {
1606 Case& FrontCase = *CR.Range.first;
1607 Case& BackCase = *(CR.Range.second-1);
1608
1609 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1610 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1611
1612 uint64_t TSize = 0;
1613 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1614 I!=E; ++I)
1615 TSize += I->size();
1616
1617 if (!areJTsAllowed(TLI) || TSize <= 3)
1618 return false;
1619
1620 double Density = (double)TSize / (double)((Last - First) + 1ULL);
1621 if (Density < 0.4)
1622 return false;
1623
1624 DOUT << "Lowering jump table\n"
1625 << "First entry: " << First << ". Last entry: " << Last << "\n"
1626 << "Size: " << TSize << ". Density: " << Density << "\n\n";
1627
1628 // Get the MachineFunction which holds the current MBB. This is used when
1629 // inserting any additional MBBs necessary to represent the switch.
1630 MachineFunction *CurMF = CurMBB->getParent();
1631
1632 // Figure out which block is immediately after the current one.
1633 MachineBasicBlock *NextBlock = 0;
1634 MachineFunction::iterator BBI = CR.CaseBB;
1635
1636 if (++BBI != CurMBB->getParent()->end())
1637 NextBlock = BBI;
1638
1639 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1640
1641 // Create a new basic block to hold the code for loading the address
1642 // of the jump table, and jumping to it. Update successor information;
1643 // we will either branch to the default case for the switch, or the jump
1644 // table.
1645 MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1646 CurMF->insert(BBI, JumpTableBB);
1647 CR.CaseBB->addSuccessor(Default);
1648 CR.CaseBB->addSuccessor(JumpTableBB);
1649
1650 // Build a vector of destination BBs, corresponding to each target
1651 // of the jump table. If the value of the jump table slot corresponds to
1652 // a case statement, push the case's BB onto the vector, otherwise, push
1653 // the default BB.
1654 std::vector<MachineBasicBlock*> DestBBs;
1655 int64_t TEI = First;
1656 for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
1657 int64_t Low = cast<ConstantInt>(I->Low)->getSExtValue();
1658 int64_t High = cast<ConstantInt>(I->High)->getSExtValue();
1659
1660 if ((Low <= TEI) && (TEI <= High)) {
1661 DestBBs.push_back(I->BB);
1662 if (TEI==High)
1663 ++I;
1664 } else {
1665 DestBBs.push_back(Default);
1666 }
1667 }
1668
1669 // Update successor info. Add one edge to each unique successor.
1670 BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
1671 for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
1672 E = DestBBs.end(); I != E; ++I) {
1673 if (!SuccsHandled[(*I)->getNumber()]) {
1674 SuccsHandled[(*I)->getNumber()] = true;
1675 JumpTableBB->addSuccessor(*I);
1676 }
1677 }
1678
1679 // Create a jump table index for this jump table, or return an existing
1680 // one.
1681 unsigned JTI = CurMF->getJumpTableInfo()->getJumpTableIndex(DestBBs);
1682
1683 // Set the jump table information so that we can codegen it as a second
1684 // MachineBasicBlock
1685 JumpTable JT(-1U, JTI, JumpTableBB, Default);
1686 JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == CurMBB));
1687 if (CR.CaseBB == CurMBB)
1688 visitJumpTableHeader(JT, JTH);
1689
1690 JTCases.push_back(JumpTableBlock(JTH, JT));
1691
1692 return true;
1693}
1694
1695/// handleBTSplitSwitchCase - emit comparison and split binary search tree into
1696/// 2 subtrees.
1697bool SelectionDAGLowering::handleBTSplitSwitchCase(CaseRec& CR,
1698 CaseRecVector& WorkList,
1699 Value* SV,
1700 MachineBasicBlock* Default) {
1701 // Get the MachineFunction which holds the current MBB. This is used when
1702 // inserting any additional MBBs necessary to represent the switch.
1703 MachineFunction *CurMF = CurMBB->getParent();
1704
1705 // Figure out which block is immediately after the current one.
1706 MachineBasicBlock *NextBlock = 0;
1707 MachineFunction::iterator BBI = CR.CaseBB;
1708
1709 if (++BBI != CurMBB->getParent()->end())
1710 NextBlock = BBI;
1711
1712 Case& FrontCase = *CR.Range.first;
1713 Case& BackCase = *(CR.Range.second-1);
1714 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1715
1716 // Size is the number of Cases represented by this range.
1717 unsigned Size = CR.Range.second - CR.Range.first;
1718
1719 int64_t First = cast<ConstantInt>(FrontCase.Low)->getSExtValue();
1720 int64_t Last = cast<ConstantInt>(BackCase.High)->getSExtValue();
1721 double FMetric = 0;
1722 CaseItr Pivot = CR.Range.first + Size/2;
1723
1724 // Select optimal pivot, maximizing sum density of LHS and RHS. This will
1725 // (heuristically) allow us to emit JumpTable's later.
1726 uint64_t TSize = 0;
1727 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1728 I!=E; ++I)
1729 TSize += I->size();
1730
1731 uint64_t LSize = FrontCase.size();
1732 uint64_t RSize = TSize-LSize;
1733 DOUT << "Selecting best pivot: \n"
1734 << "First: " << First << ", Last: " << Last <<"\n"
1735 << "LSize: " << LSize << ", RSize: " << RSize << "\n";
1736 for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
1737 J!=E; ++I, ++J) {
1738 int64_t LEnd = cast<ConstantInt>(I->High)->getSExtValue();
1739 int64_t RBegin = cast<ConstantInt>(J->Low)->getSExtValue();
1740 assert((RBegin-LEnd>=1) && "Invalid case distance");
1741 double LDensity = (double)LSize / (double)((LEnd - First) + 1ULL);
1742 double RDensity = (double)RSize / (double)((Last - RBegin) + 1ULL);
1743 double Metric = Log2_64(RBegin-LEnd)*(LDensity+RDensity);
1744 // Should always split in some non-trivial place
1745 DOUT <<"=>Step\n"
1746 << "LEnd: " << LEnd << ", RBegin: " << RBegin << "\n"
1747 << "LDensity: " << LDensity << ", RDensity: " << RDensity << "\n"
1748 << "Metric: " << Metric << "\n";
1749 if (FMetric < Metric) {
1750 Pivot = J;
1751 FMetric = Metric;
1752 DOUT << "Current metric set to: " << FMetric << "\n";
1753 }
1754
1755 LSize += J->size();
1756 RSize -= J->size();
1757 }
1758 if (areJTsAllowed(TLI)) {
1759 // If our case is dense we *really* should handle it earlier!
1760 assert((FMetric > 0) && "Should handle dense range earlier!");
1761 } else {
1762 Pivot = CR.Range.first + Size/2;
1763 }
1764
1765 CaseRange LHSR(CR.Range.first, Pivot);
1766 CaseRange RHSR(Pivot, CR.Range.second);
1767 Constant *C = Pivot->Low;
1768 MachineBasicBlock *FalseBB = 0, *TrueBB = 0;
1769
1770 // We know that we branch to the LHS if the Value being switched on is
1771 // less than the Pivot value, C. We use this to optimize our binary
1772 // tree a bit, by recognizing that if SV is greater than or equal to the
1773 // LHS's Case Value, and that Case Value is exactly one less than the
1774 // Pivot's Value, then we can branch directly to the LHS's Target,
1775 // rather than creating a leaf node for it.
1776 if ((LHSR.second - LHSR.first) == 1 &&
1777 LHSR.first->High == CR.GE &&
1778 cast<ConstantInt>(C)->getSExtValue() ==
1779 (cast<ConstantInt>(CR.GE)->getSExtValue() + 1LL)) {
1780 TrueBB = LHSR.first->BB;
1781 } else {
1782 TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1783 CurMF->insert(BBI, TrueBB);
1784 WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
1785 }
1786
1787 // Similar to the optimization above, if the Value being switched on is
1788 // known to be less than the Constant CR.LT, and the current Case Value
1789 // is CR.LT - 1, then we can branch directly to the target block for
1790 // the current Case Value, rather than emitting a RHS leaf node for it.
1791 if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
1792 cast<ConstantInt>(RHSR.first->Low)->getSExtValue() ==
1793 (cast<ConstantInt>(CR.LT)->getSExtValue() - 1LL)) {
1794 FalseBB = RHSR.first->BB;
1795 } else {
1796 FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1797 CurMF->insert(BBI, FalseBB);
1798 WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
1799 }
1800
1801 // Create a CaseBlock record representing a conditional branch to
1802 // the LHS node if the value being switched on SV is less than C.
1803 // Otherwise, branch to LHS.
1804 CaseBlock CB(ISD::SETLT, SV, C, NULL, TrueBB, FalseBB, CR.CaseBB);
1805
1806 if (CR.CaseBB == CurMBB)
1807 visitSwitchCase(CB);
1808 else
1809 SwitchCases.push_back(CB);
1810
1811 return true;
1812}
1813
1814/// handleBitTestsSwitchCase - if current case range has few destination and
1815/// range span less, than machine word bitwidth, encode case range into series
1816/// of masks and emit bit tests with these masks.
1817bool SelectionDAGLowering::handleBitTestsSwitchCase(CaseRec& CR,
1818 CaseRecVector& WorkList,
1819 Value* SV,
1820 MachineBasicBlock* Default){
1821 unsigned IntPtrBits = TLI.getPointerTy().getSizeInBits();
1822
1823 Case& FrontCase = *CR.Range.first;
1824 Case& BackCase = *(CR.Range.second-1);
1825
1826 // Get the MachineFunction which holds the current MBB. This is used when
1827 // inserting any additional MBBs necessary to represent the switch.
1828 MachineFunction *CurMF = CurMBB->getParent();
1829
1830 unsigned numCmps = 0;
1831 for (CaseItr I = CR.Range.first, E = CR.Range.second;
1832 I!=E; ++I) {
1833 // Single case counts one, case range - two.
1834 if (I->Low == I->High)
1835 numCmps +=1;
1836 else
1837 numCmps +=2;
1838 }
1839
1840 // Count unique destinations
1841 SmallSet<MachineBasicBlock*, 4> Dests;
1842 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1843 Dests.insert(I->BB);
1844 if (Dests.size() > 3)
1845 // Don't bother the code below, if there are too much unique destinations
1846 return false;
1847 }
1848 DOUT << "Total number of unique destinations: " << Dests.size() << "\n"
1849 << "Total number of comparisons: " << numCmps << "\n";
1850
1851 // Compute span of values.
1852 Constant* minValue = FrontCase.Low;
1853 Constant* maxValue = BackCase.High;
1854 uint64_t range = cast<ConstantInt>(maxValue)->getSExtValue() -
1855 cast<ConstantInt>(minValue)->getSExtValue();
1856 DOUT << "Compare range: " << range << "\n"
1857 << "Low bound: " << cast<ConstantInt>(minValue)->getSExtValue() << "\n"
1858 << "High bound: " << cast<ConstantInt>(maxValue)->getSExtValue() << "\n";
1859
1860 if (range>=IntPtrBits ||
1861 (!(Dests.size() == 1 && numCmps >= 3) &&
1862 !(Dests.size() == 2 && numCmps >= 5) &&
1863 !(Dests.size() >= 3 && numCmps >= 6)))
1864 return false;
1865
1866 DOUT << "Emitting bit tests\n";
1867 int64_t lowBound = 0;
1868
1869 // Optimize the case where all the case values fit in a
1870 // word without having to subtract minValue. In this case,
1871 // we can optimize away the subtraction.
1872 if (cast<ConstantInt>(minValue)->getSExtValue() >= 0 &&
1873 cast<ConstantInt>(maxValue)->getSExtValue() < IntPtrBits) {
1874 range = cast<ConstantInt>(maxValue)->getSExtValue();
1875 } else {
1876 lowBound = cast<ConstantInt>(minValue)->getSExtValue();
1877 }
1878
1879 CaseBitsVector CasesBits;
1880 unsigned i, count = 0;
1881
1882 for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
1883 MachineBasicBlock* Dest = I->BB;
1884 for (i = 0; i < count; ++i)
1885 if (Dest == CasesBits[i].BB)
1886 break;
1887
1888 if (i == count) {
1889 assert((count < 3) && "Too much destinations to test!");
1890 CasesBits.push_back(CaseBits(0, Dest, 0));
1891 count++;
1892 }
1893
1894 uint64_t lo = cast<ConstantInt>(I->Low)->getSExtValue() - lowBound;
1895 uint64_t hi = cast<ConstantInt>(I->High)->getSExtValue() - lowBound;
1896
1897 for (uint64_t j = lo; j <= hi; j++) {
1898 CasesBits[i].Mask |= 1ULL << j;
1899 CasesBits[i].Bits++;
1900 }
1901
1902 }
1903 std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
1904
1905 BitTestInfo BTC;
1906
1907 // Figure out which block is immediately after the current one.
1908 MachineFunction::iterator BBI = CR.CaseBB;
1909 ++BBI;
1910
1911 const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
1912
1913 DOUT << "Cases:\n";
1914 for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
1915 DOUT << "Mask: " << CasesBits[i].Mask << ", Bits: " << CasesBits[i].Bits
1916 << ", BB: " << CasesBits[i].BB << "\n";
1917
1918 MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
1919 CurMF->insert(BBI, CaseBB);
1920 BTC.push_back(BitTestCase(CasesBits[i].Mask,
1921 CaseBB,
1922 CasesBits[i].BB));
1923 }
1924
1925 BitTestBlock BTB(lowBound, range, SV,
1926 -1U, (CR.CaseBB == CurMBB),
1927 CR.CaseBB, Default, BTC);
1928
1929 if (CR.CaseBB == CurMBB)
1930 visitBitTestHeader(BTB);
1931
1932 BitTestCases.push_back(BTB);
1933
1934 return true;
1935}
1936
1937
1938/// Clusterify - Transform simple list of Cases into list of CaseRange's
1939unsigned SelectionDAGLowering::Clusterify(CaseVector& Cases,
1940 const SwitchInst& SI) {
1941 unsigned numCmps = 0;
1942
1943 // Start with "simple" cases
1944 for (unsigned i = 1; i < SI.getNumSuccessors(); ++i) {
1945 MachineBasicBlock *SMBB = FuncInfo.MBBMap[SI.getSuccessor(i)];
1946 Cases.push_back(Case(SI.getSuccessorValue(i),
1947 SI.getSuccessorValue(i),
1948 SMBB));
1949 }
1950 std::sort(Cases.begin(), Cases.end(), CaseCmp());
1951
1952 // Merge case into clusters
1953 if (Cases.size()>=2)
1954 // Must recompute end() each iteration because it may be
1955 // invalidated by erase if we hold on to it
1956 for (CaseItr I=Cases.begin(), J=++(Cases.begin()); J!=Cases.end(); ) {
1957 int64_t nextValue = cast<ConstantInt>(J->Low)->getSExtValue();
1958 int64_t currentValue = cast<ConstantInt>(I->High)->getSExtValue();
1959 MachineBasicBlock* nextBB = J->BB;
1960 MachineBasicBlock* currentBB = I->BB;
1961
1962 // If the two neighboring cases go to the same destination, merge them
1963 // into a single case.
1964 if ((nextValue-currentValue==1) && (currentBB == nextBB)) {
1965 I->High = J->High;
1966 J = Cases.erase(J);
1967 } else {
1968 I = J++;
1969 }
1970 }
1971
1972 for (CaseItr I=Cases.begin(), E=Cases.end(); I!=E; ++I, ++numCmps) {
1973 if (I->Low != I->High)
1974 // A range counts double, since it requires two compares.
1975 ++numCmps;
1976 }
1977
1978 return numCmps;
1979}
1980
1981void SelectionDAGLowering::visitSwitch(SwitchInst &SI) {
1982 // Figure out which block is immediately after the current one.
1983 MachineBasicBlock *NextBlock = 0;
1984 MachineFunction::iterator BBI = CurMBB;
1985
1986 MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
1987
1988 // If there is only the default destination, branch to it if it is not the
1989 // next basic block. Otherwise, just fall through.
1990 if (SI.getNumOperands() == 2) {
1991 // Update machine-CFG edges.
1992
1993 // If this is not a fall-through branch, emit the branch.
1994 CurMBB->addSuccessor(Default);
1995 if (Default != NextBlock)
1996 DAG.setRoot(DAG.getNode(ISD::BR, MVT::Other, getControlRoot(),
1997 DAG.getBasicBlock(Default)));
1998
1999 return;
2000 }
2001
2002 // If there are any non-default case statements, create a vector of Cases
2003 // representing each one, and sort the vector so that we can efficiently
2004 // create a binary search tree from them.
2005 CaseVector Cases;
2006 unsigned numCmps = Clusterify(Cases, SI);
2007 DOUT << "Clusterify finished. Total clusters: " << Cases.size()
2008 << ". Total compares: " << numCmps << "\n";
2009
2010 // Get the Value to be switched on and default basic blocks, which will be
2011 // inserted into CaseBlock records, representing basic blocks in the binary
2012 // search tree.
2013 Value *SV = SI.getOperand(0);
2014
2015 // Push the initial CaseRec onto the worklist
2016 CaseRecVector WorkList;
2017 WorkList.push_back(CaseRec(CurMBB,0,0,CaseRange(Cases.begin(),Cases.end())));
2018
2019 while (!WorkList.empty()) {
2020 // Grab a record representing a case range to process off the worklist
2021 CaseRec CR = WorkList.back();
2022 WorkList.pop_back();
2023
2024 if (handleBitTestsSwitchCase(CR, WorkList, SV, Default))
2025 continue;
2026
2027 // If the range has few cases (two or less) emit a series of specific
2028 // tests.
2029 if (handleSmallSwitchRange(CR, WorkList, SV, Default))
2030 continue;
2031
2032 // If the switch has more than 5 blocks, and at least 40% dense, and the
2033 // target supports indirect branches, then emit a jump table rather than
2034 // lowering the switch to a binary tree of conditional branches.
2035 if (handleJTSwitchCase(CR, WorkList, SV, Default))
2036 continue;
2037
2038 // Emit binary tree. We need to pick a pivot, and push left and right ranges
2039 // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2040 handleBTSplitSwitchCase(CR, WorkList, SV, Default);
2041 }
2042}
2043
2044
2045void SelectionDAGLowering::visitSub(User &I) {
2046 // -0.0 - X --> fneg
2047 const Type *Ty = I.getType();
2048 if (isa<VectorType>(Ty)) {
2049 if (ConstantVector *CV = dyn_cast<ConstantVector>(I.getOperand(0))) {
2050 const VectorType *DestTy = cast<VectorType>(I.getType());
2051 const Type *ElTy = DestTy->getElementType();
2052 if (ElTy->isFloatingPoint()) {
2053 unsigned VL = DestTy->getNumElements();
2054 std::vector<Constant*> NZ(VL, ConstantFP::getNegativeZero(ElTy));
2055 Constant *CNZ = ConstantVector::get(&NZ[0], NZ.size());
2056 if (CV == CNZ) {
2057 SDValue Op2 = getValue(I.getOperand(1));
2058 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2059 return;
2060 }
2061 }
2062 }
2063 }
2064 if (Ty->isFloatingPoint()) {
2065 if (ConstantFP *CFP = dyn_cast<ConstantFP>(I.getOperand(0)))
2066 if (CFP->isExactlyValue(ConstantFP::getNegativeZero(Ty)->getValueAPF())) {
2067 SDValue Op2 = getValue(I.getOperand(1));
2068 setValue(&I, DAG.getNode(ISD::FNEG, Op2.getValueType(), Op2));
2069 return;
2070 }
2071 }
2072
2073 visitBinary(I, Ty->isFPOrFPVector() ? ISD::FSUB : ISD::SUB);
2074}
2075
2076void SelectionDAGLowering::visitBinary(User &I, unsigned OpCode) {
2077 SDValue Op1 = getValue(I.getOperand(0));
2078 SDValue Op2 = getValue(I.getOperand(1));
2079
2080 setValue(&I, DAG.getNode(OpCode, Op1.getValueType(), Op1, Op2));
2081}
2082
2083void SelectionDAGLowering::visitShift(User &I, unsigned Opcode) {
2084 SDValue Op1 = getValue(I.getOperand(0));
2085 SDValue Op2 = getValue(I.getOperand(1));
2086 if (!isa<VectorType>(I.getType())) {
2087 if (TLI.getShiftAmountTy().bitsLT(Op2.getValueType()))
2088 Op2 = DAG.getNode(ISD::TRUNCATE, TLI.getShiftAmountTy(), Op2);
2089 else if (TLI.getShiftAmountTy().bitsGT(Op2.getValueType()))
2090 Op2 = DAG.getNode(ISD::ANY_EXTEND, TLI.getShiftAmountTy(), Op2);
2091 }
2092
2093 setValue(&I, DAG.getNode(Opcode, Op1.getValueType(), Op1, Op2));
2094}
2095
2096void SelectionDAGLowering::visitICmp(User &I) {
2097 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2098 if (ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2099 predicate = IC->getPredicate();
2100 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2101 predicate = ICmpInst::Predicate(IC->getPredicate());
2102 SDValue Op1 = getValue(I.getOperand(0));
2103 SDValue Op2 = getValue(I.getOperand(1));
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00002104 ISD::CondCode Opcode = getICmpCondCode(predicate);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002105 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Opcode));
2106}
2107
2108void SelectionDAGLowering::visitFCmp(User &I) {
2109 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2110 if (FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2111 predicate = FC->getPredicate();
2112 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2113 predicate = FCmpInst::Predicate(FC->getPredicate());
2114 SDValue Op1 = getValue(I.getOperand(0));
2115 SDValue Op2 = getValue(I.getOperand(1));
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00002116 ISD::CondCode Condition = getFCmpCondCode(predicate);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002117 setValue(&I, DAG.getSetCC(MVT::i1, Op1, Op2, Condition));
2118}
2119
2120void SelectionDAGLowering::visitVICmp(User &I) {
2121 ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2122 if (VICmpInst *IC = dyn_cast<VICmpInst>(&I))
2123 predicate = IC->getPredicate();
2124 else if (ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2125 predicate = ICmpInst::Predicate(IC->getPredicate());
2126 SDValue Op1 = getValue(I.getOperand(0));
2127 SDValue Op2 = getValue(I.getOperand(1));
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00002128 ISD::CondCode Opcode = getICmpCondCode(predicate);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002129 setValue(&I, DAG.getVSetCC(Op1.getValueType(), Op1, Op2, Opcode));
2130}
2131
2132void SelectionDAGLowering::visitVFCmp(User &I) {
2133 FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2134 if (VFCmpInst *FC = dyn_cast<VFCmpInst>(&I))
2135 predicate = FC->getPredicate();
2136 else if (ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2137 predicate = FCmpInst::Predicate(FC->getPredicate());
2138 SDValue Op1 = getValue(I.getOperand(0));
2139 SDValue Op2 = getValue(I.getOperand(1));
Dan Gohman8c1a6ca2008-10-17 18:18:45 +00002140 ISD::CondCode Condition = getFCmpCondCode(predicate);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002141 MVT DestVT = TLI.getValueType(I.getType());
2142
2143 setValue(&I, DAG.getVSetCC(DestVT, Op1, Op2, Condition));
2144}
2145
2146void SelectionDAGLowering::visitSelect(User &I) {
Dan Gohman7ea1ca62008-10-21 20:00:42 +00002147 SmallVector<MVT, 4> ValueVTs;
2148 ComputeValueVTs(TLI, I.getType(), ValueVTs);
2149 unsigned NumValues = ValueVTs.size();
2150 if (NumValues != 0) {
2151 SmallVector<SDValue, 4> Values(NumValues);
2152 SDValue Cond = getValue(I.getOperand(0));
2153 SDValue TrueVal = getValue(I.getOperand(1));
2154 SDValue FalseVal = getValue(I.getOperand(2));
2155
2156 for (unsigned i = 0; i != NumValues; ++i)
2157 Values[i] = DAG.getNode(ISD::SELECT, TrueVal.getValueType(), Cond,
2158 SDValue(TrueVal.getNode(), TrueVal.getResNo() + i),
2159 SDValue(FalseVal.getNode(), FalseVal.getResNo() + i));
2160
2161 setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues),
2162 &Values[0], NumValues));
2163 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002164}
2165
2166
2167void SelectionDAGLowering::visitTrunc(User &I) {
2168 // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2169 SDValue N = getValue(I.getOperand(0));
2170 MVT DestVT = TLI.getValueType(I.getType());
2171 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2172}
2173
2174void SelectionDAGLowering::visitZExt(User &I) {
2175 // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2176 // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2177 SDValue N = getValue(I.getOperand(0));
2178 MVT DestVT = TLI.getValueType(I.getType());
2179 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2180}
2181
2182void SelectionDAGLowering::visitSExt(User &I) {
2183 // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2184 // SExt also can't be a cast to bool for same reason. So, nothing much to do
2185 SDValue N = getValue(I.getOperand(0));
2186 MVT DestVT = TLI.getValueType(I.getType());
2187 setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, DestVT, N));
2188}
2189
2190void SelectionDAGLowering::visitFPTrunc(User &I) {
2191 // FPTrunc is never a no-op cast, no need to check
2192 SDValue N = getValue(I.getOperand(0));
2193 MVT DestVT = TLI.getValueType(I.getType());
2194 setValue(&I, DAG.getNode(ISD::FP_ROUND, DestVT, N, DAG.getIntPtrConstant(0)));
2195}
2196
2197void SelectionDAGLowering::visitFPExt(User &I){
2198 // FPTrunc is never a no-op cast, no need to check
2199 SDValue N = getValue(I.getOperand(0));
2200 MVT DestVT = TLI.getValueType(I.getType());
2201 setValue(&I, DAG.getNode(ISD::FP_EXTEND, DestVT, N));
2202}
2203
2204void SelectionDAGLowering::visitFPToUI(User &I) {
2205 // FPToUI is never a no-op cast, no need to check
2206 SDValue N = getValue(I.getOperand(0));
2207 MVT DestVT = TLI.getValueType(I.getType());
2208 setValue(&I, DAG.getNode(ISD::FP_TO_UINT, DestVT, N));
2209}
2210
2211void SelectionDAGLowering::visitFPToSI(User &I) {
2212 // FPToSI is never a no-op cast, no need to check
2213 SDValue N = getValue(I.getOperand(0));
2214 MVT DestVT = TLI.getValueType(I.getType());
2215 setValue(&I, DAG.getNode(ISD::FP_TO_SINT, DestVT, N));
2216}
2217
2218void SelectionDAGLowering::visitUIToFP(User &I) {
2219 // UIToFP is never a no-op cast, no need to check
2220 SDValue N = getValue(I.getOperand(0));
2221 MVT DestVT = TLI.getValueType(I.getType());
2222 setValue(&I, DAG.getNode(ISD::UINT_TO_FP, DestVT, N));
2223}
2224
2225void SelectionDAGLowering::visitSIToFP(User &I){
Bill Wendling181b6272008-10-19 20:34:04 +00002226 // SIToFP is never a no-op cast, no need to check
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002227 SDValue N = getValue(I.getOperand(0));
2228 MVT DestVT = TLI.getValueType(I.getType());
2229 setValue(&I, DAG.getNode(ISD::SINT_TO_FP, DestVT, N));
2230}
2231
2232void SelectionDAGLowering::visitPtrToInt(User &I) {
2233 // What to do depends on the size of the integer and the size of the pointer.
2234 // We can either truncate, zero extend, or no-op, accordingly.
2235 SDValue N = getValue(I.getOperand(0));
2236 MVT SrcVT = N.getValueType();
2237 MVT DestVT = TLI.getValueType(I.getType());
2238 SDValue Result;
2239 if (DestVT.bitsLT(SrcVT))
2240 Result = DAG.getNode(ISD::TRUNCATE, DestVT, N);
2241 else
2242 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2243 Result = DAG.getNode(ISD::ZERO_EXTEND, DestVT, N);
2244 setValue(&I, Result);
2245}
2246
2247void SelectionDAGLowering::visitIntToPtr(User &I) {
2248 // What to do depends on the size of the integer and the size of the pointer.
2249 // We can either truncate, zero extend, or no-op, accordingly.
2250 SDValue N = getValue(I.getOperand(0));
2251 MVT SrcVT = N.getValueType();
2252 MVT DestVT = TLI.getValueType(I.getType());
2253 if (DestVT.bitsLT(SrcVT))
2254 setValue(&I, DAG.getNode(ISD::TRUNCATE, DestVT, N));
2255 else
2256 // Note: ZERO_EXTEND can handle cases where the sizes are equal too
2257 setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, DestVT, N));
2258}
2259
2260void SelectionDAGLowering::visitBitCast(User &I) {
2261 SDValue N = getValue(I.getOperand(0));
2262 MVT DestVT = TLI.getValueType(I.getType());
2263
2264 // BitCast assures us that source and destination are the same size so this
2265 // is either a BIT_CONVERT or a no-op.
2266 if (DestVT != N.getValueType())
2267 setValue(&I, DAG.getNode(ISD::BIT_CONVERT, DestVT, N)); // convert types
2268 else
2269 setValue(&I, N); // noop cast.
2270}
2271
2272void SelectionDAGLowering::visitInsertElement(User &I) {
2273 SDValue InVec = getValue(I.getOperand(0));
2274 SDValue InVal = getValue(I.getOperand(1));
2275 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2276 getValue(I.getOperand(2)));
2277
2278 setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT,
2279 TLI.getValueType(I.getType()),
2280 InVec, InVal, InIdx));
2281}
2282
2283void SelectionDAGLowering::visitExtractElement(User &I) {
2284 SDValue InVec = getValue(I.getOperand(0));
2285 SDValue InIdx = DAG.getNode(ISD::ZERO_EXTEND, TLI.getPointerTy(),
2286 getValue(I.getOperand(1)));
2287 setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT,
2288 TLI.getValueType(I.getType()), InVec, InIdx));
2289}
2290
Mon P Wangaeb06d22008-11-10 04:46:22 +00002291
2292// Utility for visitShuffleVector - Returns true if the mask is mask starting
2293// from SIndx and increasing to the element length (undefs are allowed).
2294static bool SequentialMask(SDValue Mask, unsigned SIndx) {
2295 unsigned NumElems = Mask.getNumOperands();
2296 for (unsigned i = 0; i != NumElems; ++i) {
2297 if (Mask.getOperand(i).getOpcode() != ISD::UNDEF) {
2298 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getZExtValue();
2299 if (Idx != i + SIndx)
2300 return false;
2301 }
2302 }
2303 return true;
2304}
2305
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002306void SelectionDAGLowering::visitShuffleVector(User &I) {
2307 SDValue V1 = getValue(I.getOperand(0));
2308 SDValue V2 = getValue(I.getOperand(1));
2309 SDValue Mask = getValue(I.getOperand(2));
2310
Mon P Wangaeb06d22008-11-10 04:46:22 +00002311 MVT VT = TLI.getValueType(I.getType());
2312 MVT VT1 = V1.getValueType();
2313 unsigned MaskNumElts = Mask.getNumOperands();
2314 unsigned Src1NumElts = VT1.getVectorNumElements();
2315
2316 if (Src1NumElts == MaskNumElts) {
2317 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask));
2318 return;
2319 }
2320
2321 // Normalize the shuffle vector since mask and vector length don't match.
2322 if (Src1NumElts < MaskNumElts && MaskNumElts % Src1NumElts == 0) {
2323 // We can concat vectors to make the mask and input vector match.
2324 if (Src1NumElts*2 == MaskNumElts && SequentialMask(Mask, 0)) {
2325 // The shuffle is concatenating two vectors.
2326 setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, VT, V1, V2));
2327 return;
2328 }
2329
2330 // Pad both vectors with undefs to the same size as the mask.
2331 unsigned NumConcat = MaskNumElts / Src1NumElts;
2332 std::vector<SDValue> UnOps(Src1NumElts,
2333 DAG.getNode(ISD::UNDEF,
2334 VT1.getVectorElementType()));
2335 SDValue UndefVal = DAG.getNode(ISD::BUILD_VECTOR, VT1,
2336 &UnOps[0], UnOps.size());
2337
2338 SmallVector<SDValue, 8> MOps1, MOps2;
2339 MOps1.push_back(V1);
2340 MOps2.push_back(V2);
2341 for (unsigned i = 1; i != NumConcat; ++i) {
2342 MOps1.push_back(UndefVal);
2343 MOps2.push_back(UndefVal);
2344 }
2345 V1 = DAG.getNode(ISD::CONCAT_VECTORS, VT, &MOps1[0], MOps1.size());
2346 V2 = DAG.getNode(ISD::CONCAT_VECTORS, VT, &MOps2[0], MOps2.size());
2347
2348 // Readjust mask for new input vector length.
2349 SmallVector<SDValue, 8> MappedOps;
2350 for (unsigned i = 0; i != MaskNumElts; ++i) {
2351 if (Mask.getOperand(i).getOpcode() == ISD::UNDEF) {
2352 MappedOps.push_back(Mask.getOperand(i));
2353 } else {
2354 unsigned Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getZExtValue();
2355 if (Idx < Src1NumElts) {
2356 MappedOps.push_back(DAG.getConstant(Idx,
2357 Mask.getOperand(i).getValueType()));
2358 } else {
2359 MappedOps.push_back(DAG.getConstant(Idx + MaskNumElts - Src1NumElts,
2360 Mask.getOperand(i).getValueType()));
2361 }
2362 }
2363 }
2364 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2365 &MappedOps[0], MappedOps.size());
2366
2367 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask));
2368 return;
2369 }
2370
2371 if (Src1NumElts > MaskNumElts) {
2372 // Resulting vector is shorter than the incoming vector.
2373 if (Src1NumElts == MaskNumElts && SequentialMask(Mask,0)) {
2374 // Shuffle extracts 1st vector.
2375 setValue(&I, V1);
2376 return;
2377 }
2378
2379 if (Src1NumElts == MaskNumElts && SequentialMask(Mask,MaskNumElts)) {
2380 // Shuffle extracts 2nd vector.
2381 setValue(&I, V2);
2382 return;
2383 }
2384
2385 // Analyze the access pattern of the vector to see if we can extract each
2386 // subvector and then do the shuffle. The analysis is done by calculating
2387 // the range of elements the mask access on both vectors. If it is useful,
2388 // we could do better by considering separate what elements are accessed
2389 // in each vector (i.e., have min/max for each vector).
2390 int MinRange = Src1NumElts+1;
2391 int MaxRange = -1;
2392 for (unsigned i = 0; i != MaskNumElts; ++i) {
2393 SDValue Arg = Mask.getOperand(i);
2394 if (Arg.getOpcode() != ISD::UNDEF) {
2395 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2396 int Idx = cast<ConstantSDNode>(Mask.getOperand(i))->getZExtValue();
2397 if (Idx > (int) Src1NumElts)
2398 Idx -= Src1NumElts;
2399 if (Idx > MaxRange)
2400 MaxRange = Idx;
2401 if (Idx < MinRange)
2402 MinRange = Idx;
2403 }
2404 }
2405 // Adjust MinRange to start at an even boundary since this give us
2406 // better quality splits later.
2407 if ((unsigned) MinRange < Src1NumElts && MinRange%2 != 0)
2408 MinRange = MinRange - 1;
2409 if (MaxRange - MinRange < (int) MaskNumElts) {
2410 // Extract subvector because the range is less than the new vector length
2411 unsigned StartIdx = (MinRange/MaskNumElts)*MaskNumElts;
2412 if (MaxRange - StartIdx < MaskNumElts) {
2413 V1 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, VT, V1,
2414 DAG.getIntPtrConstant(MinRange));
2415 V2 = DAG.getNode(ISD::EXTRACT_SUBVECTOR, VT, V2,
2416 DAG.getIntPtrConstant(MinRange));
2417 // Readjust mask for new input vector length.
2418 SmallVector<SDValue, 8> MappedOps;
2419 for (unsigned i = 0; i != MaskNumElts; ++i) {
2420 if (Mask.getOperand(i).getOpcode() == ISD::UNDEF) {
2421 MappedOps.push_back(Mask.getOperand(i));
2422 } else {
2423 unsigned Idx =
2424 cast<ConstantSDNode>(Mask.getOperand(i))->getZExtValue();
2425 if (Idx < Src1NumElts) {
2426 MappedOps.push_back(DAG.getConstant(Idx - StartIdx,
2427 Mask.getOperand(i).getValueType()));
2428 } else {
2429 Idx = Idx - Src1NumElts - StartIdx + MaskNumElts;
2430 MappedOps.push_back(DAG.getConstant(Idx,
2431 Mask.getOperand(i).getValueType()));
2432 }
2433 }
2434 }
2435 Mask = DAG.getNode(ISD::BUILD_VECTOR, Mask.getValueType(),
2436 &MappedOps[0], MappedOps.size());
2437
2438 setValue(&I, DAG.getNode(ISD::VECTOR_SHUFFLE, VT, V1, V2, Mask));
2439 return;
2440 }
2441 }
2442 }
2443
2444 // We can't use either concat vectors or extract subvectors so we fall back
2445 // to insert and extracts.
2446 MVT EltVT = VT.getVectorElementType();
2447 MVT PtrVT = TLI.getPointerTy();
2448 SmallVector<SDValue,8> Ops;
2449 for (unsigned i = 0; i != MaskNumElts; ++i) {
2450 SDValue Arg = Mask.getOperand(i);
2451 if (Arg.getOpcode() == ISD::UNDEF) {
2452 Ops.push_back(DAG.getNode(ISD::UNDEF, EltVT));
2453 } else {
2454 assert(isa<ConstantSDNode>(Arg) && "Invalid VECTOR_SHUFFLE mask!");
2455 unsigned Idx = cast<ConstantSDNode>(Arg)->getZExtValue();
2456 if (Idx < Src1NumElts)
2457 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, V1,
2458 DAG.getConstant(Idx, PtrVT)));
2459 else
2460 Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, EltVT, V2,
2461 DAG.getConstant(Idx - Src1NumElts, PtrVT)));
2462 }
2463 }
2464 setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, VT, &Ops[0], Ops.size()));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002465}
2466
2467void SelectionDAGLowering::visitInsertValue(InsertValueInst &I) {
2468 const Value *Op0 = I.getOperand(0);
2469 const Value *Op1 = I.getOperand(1);
2470 const Type *AggTy = I.getType();
2471 const Type *ValTy = Op1->getType();
2472 bool IntoUndef = isa<UndefValue>(Op0);
2473 bool FromUndef = isa<UndefValue>(Op1);
2474
2475 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2476 I.idx_begin(), I.idx_end());
2477
2478 SmallVector<MVT, 4> AggValueVTs;
2479 ComputeValueVTs(TLI, AggTy, AggValueVTs);
2480 SmallVector<MVT, 4> ValValueVTs;
2481 ComputeValueVTs(TLI, ValTy, ValValueVTs);
2482
2483 unsigned NumAggValues = AggValueVTs.size();
2484 unsigned NumValValues = ValValueVTs.size();
2485 SmallVector<SDValue, 4> Values(NumAggValues);
2486
2487 SDValue Agg = getValue(Op0);
2488 SDValue Val = getValue(Op1);
2489 unsigned i = 0;
2490 // Copy the beginning value(s) from the original aggregate.
2491 for (; i != LinearIndex; ++i)
2492 Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2493 SDValue(Agg.getNode(), Agg.getResNo() + i);
2494 // Copy values from the inserted value(s).
2495 for (; i != LinearIndex + NumValValues; ++i)
2496 Values[i] = FromUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2497 SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
2498 // Copy remaining value(s) from the original aggregate.
2499 for (; i != NumAggValues; ++i)
2500 Values[i] = IntoUndef ? DAG.getNode(ISD::UNDEF, AggValueVTs[i]) :
2501 SDValue(Agg.getNode(), Agg.getResNo() + i);
2502
2503 setValue(&I, DAG.getMergeValues(DAG.getVTList(&AggValueVTs[0], NumAggValues),
2504 &Values[0], NumAggValues));
2505}
2506
2507void SelectionDAGLowering::visitExtractValue(ExtractValueInst &I) {
2508 const Value *Op0 = I.getOperand(0);
2509 const Type *AggTy = Op0->getType();
2510 const Type *ValTy = I.getType();
2511 bool OutOfUndef = isa<UndefValue>(Op0);
2512
2513 unsigned LinearIndex = ComputeLinearIndex(TLI, AggTy,
2514 I.idx_begin(), I.idx_end());
2515
2516 SmallVector<MVT, 4> ValValueVTs;
2517 ComputeValueVTs(TLI, ValTy, ValValueVTs);
2518
2519 unsigned NumValValues = ValValueVTs.size();
2520 SmallVector<SDValue, 4> Values(NumValValues);
2521
2522 SDValue Agg = getValue(Op0);
2523 // Copy out the selected value(s).
2524 for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
2525 Values[i - LinearIndex] =
2526 OutOfUndef ? DAG.getNode(ISD::UNDEF, Agg.getNode()->getValueType(Agg.getResNo() + i)) :
2527 SDValue(Agg.getNode(), Agg.getResNo() + i);
2528
2529 setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValValueVTs[0], NumValValues),
2530 &Values[0], NumValValues));
2531}
2532
2533
2534void SelectionDAGLowering::visitGetElementPtr(User &I) {
2535 SDValue N = getValue(I.getOperand(0));
2536 const Type *Ty = I.getOperand(0)->getType();
2537
2538 for (GetElementPtrInst::op_iterator OI = I.op_begin()+1, E = I.op_end();
2539 OI != E; ++OI) {
2540 Value *Idx = *OI;
2541 if (const StructType *StTy = dyn_cast<StructType>(Ty)) {
2542 unsigned Field = cast<ConstantInt>(Idx)->getZExtValue();
2543 if (Field) {
2544 // N = N + Offset
2545 uint64_t Offset = TD->getStructLayout(StTy)->getElementOffset(Field);
2546 N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2547 DAG.getIntPtrConstant(Offset));
2548 }
2549 Ty = StTy->getElementType(Field);
2550 } else {
2551 Ty = cast<SequentialType>(Ty)->getElementType();
2552
2553 // If this is a constant subscript, handle it quickly.
2554 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
2555 if (CI->getZExtValue() == 0) continue;
2556 uint64_t Offs =
2557 TD->getABITypeSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
2558 N = DAG.getNode(ISD::ADD, N.getValueType(), N,
2559 DAG.getIntPtrConstant(Offs));
2560 continue;
2561 }
2562
2563 // N = N + Idx * ElementSize;
2564 uint64_t ElementSize = TD->getABITypeSize(Ty);
2565 SDValue IdxN = getValue(Idx);
2566
2567 // If the index is smaller or larger than intptr_t, truncate or extend
2568 // it.
2569 if (IdxN.getValueType().bitsLT(N.getValueType()))
2570 IdxN = DAG.getNode(ISD::SIGN_EXTEND, N.getValueType(), IdxN);
2571 else if (IdxN.getValueType().bitsGT(N.getValueType()))
2572 IdxN = DAG.getNode(ISD::TRUNCATE, N.getValueType(), IdxN);
2573
2574 // If this is a multiply by a power of two, turn it into a shl
2575 // immediately. This is a very common case.
2576 if (ElementSize != 1) {
2577 if (isPowerOf2_64(ElementSize)) {
2578 unsigned Amt = Log2_64(ElementSize);
2579 IdxN = DAG.getNode(ISD::SHL, N.getValueType(), IdxN,
2580 DAG.getConstant(Amt, TLI.getShiftAmountTy()));
2581 } else {
2582 SDValue Scale = DAG.getIntPtrConstant(ElementSize);
2583 IdxN = DAG.getNode(ISD::MUL, N.getValueType(), IdxN, Scale);
2584 }
2585 }
2586
2587 N = DAG.getNode(ISD::ADD, N.getValueType(), N, IdxN);
2588 }
2589 }
2590 setValue(&I, N);
2591}
2592
2593void SelectionDAGLowering::visitAlloca(AllocaInst &I) {
2594 // If this is a fixed sized alloca in the entry block of the function,
2595 // allocate it statically on the stack.
2596 if (FuncInfo.StaticAllocaMap.count(&I))
2597 return; // getValue will auto-populate this.
2598
2599 const Type *Ty = I.getAllocatedType();
2600 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
2601 unsigned Align =
2602 std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
2603 I.getAlignment());
2604
2605 SDValue AllocSize = getValue(I.getArraySize());
2606 MVT IntPtr = TLI.getPointerTy();
2607 if (IntPtr.bitsLT(AllocSize.getValueType()))
2608 AllocSize = DAG.getNode(ISD::TRUNCATE, IntPtr, AllocSize);
2609 else if (IntPtr.bitsGT(AllocSize.getValueType()))
2610 AllocSize = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, AllocSize);
2611
2612 AllocSize = DAG.getNode(ISD::MUL, IntPtr, AllocSize,
2613 DAG.getIntPtrConstant(TySize));
2614
2615 // Handle alignment. If the requested alignment is less than or equal to
2616 // the stack alignment, ignore it. If the size is greater than or equal to
2617 // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
2618 unsigned StackAlign =
2619 TLI.getTargetMachine().getFrameInfo()->getStackAlignment();
2620 if (Align <= StackAlign)
2621 Align = 0;
2622
2623 // Round the size of the allocation up to the stack alignment size
2624 // by add SA-1 to the size.
2625 AllocSize = DAG.getNode(ISD::ADD, AllocSize.getValueType(), AllocSize,
2626 DAG.getIntPtrConstant(StackAlign-1));
2627 // Mask out the low bits for alignment purposes.
2628 AllocSize = DAG.getNode(ISD::AND, AllocSize.getValueType(), AllocSize,
2629 DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
2630
2631 SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
2632 const MVT *VTs = DAG.getNodeValueTypes(AllocSize.getValueType(),
2633 MVT::Other);
2634 SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, VTs, 2, Ops, 3);
2635 setValue(&I, DSA);
2636 DAG.setRoot(DSA.getValue(1));
2637
2638 // Inform the Frame Information that we have just allocated a variable-sized
2639 // object.
2640 CurMBB->getParent()->getFrameInfo()->CreateVariableSizedObject();
2641}
2642
2643void SelectionDAGLowering::visitLoad(LoadInst &I) {
2644 const Value *SV = I.getOperand(0);
2645 SDValue Ptr = getValue(SV);
2646
2647 const Type *Ty = I.getType();
2648 bool isVolatile = I.isVolatile();
2649 unsigned Alignment = I.getAlignment();
2650
2651 SmallVector<MVT, 4> ValueVTs;
2652 SmallVector<uint64_t, 4> Offsets;
2653 ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
2654 unsigned NumValues = ValueVTs.size();
2655 if (NumValues == 0)
2656 return;
2657
2658 SDValue Root;
2659 bool ConstantMemory = false;
2660 if (I.isVolatile())
2661 // Serialize volatile loads with other side effects.
2662 Root = getRoot();
2663 else if (AA->pointsToConstantMemory(SV)) {
2664 // Do not serialize (non-volatile) loads of constant memory with anything.
2665 Root = DAG.getEntryNode();
2666 ConstantMemory = true;
2667 } else {
2668 // Do not serialize non-volatile loads against each other.
2669 Root = DAG.getRoot();
2670 }
2671
2672 SmallVector<SDValue, 4> Values(NumValues);
2673 SmallVector<SDValue, 4> Chains(NumValues);
2674 MVT PtrVT = Ptr.getValueType();
2675 for (unsigned i = 0; i != NumValues; ++i) {
2676 SDValue L = DAG.getLoad(ValueVTs[i], Root,
2677 DAG.getNode(ISD::ADD, PtrVT, Ptr,
2678 DAG.getConstant(Offsets[i], PtrVT)),
2679 SV, Offsets[i],
2680 isVolatile, Alignment);
2681 Values[i] = L;
2682 Chains[i] = L.getValue(1);
2683 }
2684
2685 if (!ConstantMemory) {
2686 SDValue Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
2687 &Chains[0], NumValues);
2688 if (isVolatile)
2689 DAG.setRoot(Chain);
2690 else
2691 PendingLoads.push_back(Chain);
2692 }
2693
2694 setValue(&I, DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], NumValues),
2695 &Values[0], NumValues));
2696}
2697
2698
2699void SelectionDAGLowering::visitStore(StoreInst &I) {
2700 Value *SrcV = I.getOperand(0);
2701 Value *PtrV = I.getOperand(1);
2702
2703 SmallVector<MVT, 4> ValueVTs;
2704 SmallVector<uint64_t, 4> Offsets;
2705 ComputeValueVTs(TLI, SrcV->getType(), ValueVTs, &Offsets);
2706 unsigned NumValues = ValueVTs.size();
2707 if (NumValues == 0)
2708 return;
2709
2710 // Get the lowered operands. Note that we do this after
2711 // checking if NumResults is zero, because with zero results
2712 // the operands won't have values in the map.
2713 SDValue Src = getValue(SrcV);
2714 SDValue Ptr = getValue(PtrV);
2715
2716 SDValue Root = getRoot();
2717 SmallVector<SDValue, 4> Chains(NumValues);
2718 MVT PtrVT = Ptr.getValueType();
2719 bool isVolatile = I.isVolatile();
2720 unsigned Alignment = I.getAlignment();
2721 for (unsigned i = 0; i != NumValues; ++i)
2722 Chains[i] = DAG.getStore(Root, SDValue(Src.getNode(), Src.getResNo() + i),
2723 DAG.getNode(ISD::ADD, PtrVT, Ptr,
2724 DAG.getConstant(Offsets[i], PtrVT)),
2725 PtrV, Offsets[i],
2726 isVolatile, Alignment);
2727
2728 DAG.setRoot(DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumValues));
2729}
2730
2731/// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
2732/// node.
2733void SelectionDAGLowering::visitTargetIntrinsic(CallInst &I,
2734 unsigned Intrinsic) {
2735 bool HasChain = !I.doesNotAccessMemory();
2736 bool OnlyLoad = HasChain && I.onlyReadsMemory();
2737
2738 // Build the operand list.
2739 SmallVector<SDValue, 8> Ops;
2740 if (HasChain) { // If this intrinsic has side-effects, chainify it.
2741 if (OnlyLoad) {
2742 // We don't need to serialize loads against other loads.
2743 Ops.push_back(DAG.getRoot());
2744 } else {
2745 Ops.push_back(getRoot());
2746 }
2747 }
Mon P Wang3efcd4a2008-11-01 20:24:53 +00002748
2749 // Info is set by getTgtMemInstrinsic
2750 TargetLowering::IntrinsicInfo Info;
2751 bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
2752
2753 // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
2754 if (!IsTgtIntrinsic)
2755 Ops.push_back(DAG.getConstant(Intrinsic, TLI.getPointerTy()));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002756
2757 // Add all operands of the call to the operand list.
2758 for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
2759 SDValue Op = getValue(I.getOperand(i));
2760 assert(TLI.isTypeLegal(Op.getValueType()) &&
2761 "Intrinsic uses a non-legal type?");
2762 Ops.push_back(Op);
2763 }
2764
2765 std::vector<MVT> VTs;
2766 if (I.getType() != Type::VoidTy) {
2767 MVT VT = TLI.getValueType(I.getType());
2768 if (VT.isVector()) {
2769 const VectorType *DestTy = cast<VectorType>(I.getType());
2770 MVT EltVT = TLI.getValueType(DestTy->getElementType());
2771
2772 VT = MVT::getVectorVT(EltVT, DestTy->getNumElements());
2773 assert(VT != MVT::Other && "Intrinsic uses a non-legal type?");
2774 }
2775
2776 assert(TLI.isTypeLegal(VT) && "Intrinsic uses a non-legal type?");
2777 VTs.push_back(VT);
2778 }
2779 if (HasChain)
2780 VTs.push_back(MVT::Other);
2781
2782 const MVT *VTList = DAG.getNodeValueTypes(VTs);
2783
2784 // Create the node.
2785 SDValue Result;
Mon P Wang3efcd4a2008-11-01 20:24:53 +00002786 if (IsTgtIntrinsic) {
2787 // This is target intrinsic that touches memory
2788 Result = DAG.getMemIntrinsicNode(Info.opc, VTList, VTs.size(),
2789 &Ops[0], Ops.size(),
2790 Info.memVT, Info.ptrVal, Info.offset,
2791 Info.align, Info.vol,
2792 Info.readMem, Info.writeMem);
2793 }
2794 else if (!HasChain)
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002795 Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, VTList, VTs.size(),
2796 &Ops[0], Ops.size());
2797 else if (I.getType() != Type::VoidTy)
2798 Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, VTList, VTs.size(),
2799 &Ops[0], Ops.size());
2800 else
2801 Result = DAG.getNode(ISD::INTRINSIC_VOID, VTList, VTs.size(),
2802 &Ops[0], Ops.size());
2803
2804 if (HasChain) {
2805 SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
2806 if (OnlyLoad)
2807 PendingLoads.push_back(Chain);
2808 else
2809 DAG.setRoot(Chain);
2810 }
2811 if (I.getType() != Type::VoidTy) {
2812 if (const VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
2813 MVT VT = TLI.getValueType(PTy);
2814 Result = DAG.getNode(ISD::BIT_CONVERT, VT, Result);
2815 }
2816 setValue(&I, Result);
2817 }
2818}
2819
2820/// ExtractTypeInfo - Returns the type info, possibly bitcast, encoded in V.
2821static GlobalVariable *ExtractTypeInfo(Value *V) {
2822 V = V->stripPointerCasts();
2823 GlobalVariable *GV = dyn_cast<GlobalVariable>(V);
2824 assert ((GV || isa<ConstantPointerNull>(V)) &&
2825 "TypeInfo must be a global variable or NULL");
2826 return GV;
2827}
2828
2829namespace llvm {
2830
2831/// AddCatchInfo - Extract the personality and type infos from an eh.selector
2832/// call, and add them to the specified machine basic block.
2833void AddCatchInfo(CallInst &I, MachineModuleInfo *MMI,
2834 MachineBasicBlock *MBB) {
2835 // Inform the MachineModuleInfo of the personality for this landing pad.
2836 ConstantExpr *CE = cast<ConstantExpr>(I.getOperand(2));
2837 assert(CE->getOpcode() == Instruction::BitCast &&
2838 isa<Function>(CE->getOperand(0)) &&
2839 "Personality should be a function");
2840 MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
2841
2842 // Gather all the type infos for this landing pad and pass them along to
2843 // MachineModuleInfo.
2844 std::vector<GlobalVariable *> TyInfo;
2845 unsigned N = I.getNumOperands();
2846
2847 for (unsigned i = N - 1; i > 2; --i) {
2848 if (ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(i))) {
2849 unsigned FilterLength = CI->getZExtValue();
2850 unsigned FirstCatch = i + FilterLength + !FilterLength;
2851 assert (FirstCatch <= N && "Invalid filter length");
2852
2853 if (FirstCatch < N) {
2854 TyInfo.reserve(N - FirstCatch);
2855 for (unsigned j = FirstCatch; j < N; ++j)
2856 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2857 MMI->addCatchTypeInfo(MBB, TyInfo);
2858 TyInfo.clear();
2859 }
2860
2861 if (!FilterLength) {
2862 // Cleanup.
2863 MMI->addCleanup(MBB);
2864 } else {
2865 // Filter.
2866 TyInfo.reserve(FilterLength - 1);
2867 for (unsigned j = i + 1; j < FirstCatch; ++j)
2868 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2869 MMI->addFilterTypeInfo(MBB, TyInfo);
2870 TyInfo.clear();
2871 }
2872
2873 N = i;
2874 }
2875 }
2876
2877 if (N > 3) {
2878 TyInfo.reserve(N - 3);
2879 for (unsigned j = 3; j < N; ++j)
2880 TyInfo.push_back(ExtractTypeInfo(I.getOperand(j)));
2881 MMI->addCatchTypeInfo(MBB, TyInfo);
2882 }
2883}
2884
2885}
2886
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002887/// GetSignificand - Get the significand and build it into a floating-point
2888/// number with exponent of 1:
2889///
2890/// Op = (Op & 0x007fffff) | 0x3f800000;
2891///
2892/// where Op is the hexidecimal representation of floating point value.
Bill Wendling39150252008-09-09 20:39:27 +00002893static SDValue
2894GetSignificand(SelectionDAG &DAG, SDValue Op) {
2895 SDValue t1 = DAG.getNode(ISD::AND, MVT::i32, Op,
2896 DAG.getConstant(0x007fffff, MVT::i32));
2897 SDValue t2 = DAG.getNode(ISD::OR, MVT::i32, t1,
2898 DAG.getConstant(0x3f800000, MVT::i32));
2899 return DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t2);
2900}
2901
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002902/// GetExponent - Get the exponent:
2903///
2904/// (float)((Op1 >> 23) - 127);
2905///
2906/// where Op is the hexidecimal representation of floating point value.
Bill Wendling39150252008-09-09 20:39:27 +00002907static SDValue
2908GetExponent(SelectionDAG &DAG, SDValue Op) {
Bill Wendlingfc2508e2008-09-10 06:26:10 +00002909 SDValue t1 = DAG.getNode(ISD::SRL, MVT::i32, Op,
Bill Wendling39150252008-09-09 20:39:27 +00002910 DAG.getConstant(23, MVT::i32));
Bill Wendlingfc2508e2008-09-10 06:26:10 +00002911 SDValue t2 = DAG.getNode(ISD::SUB, MVT::i32, t1,
Bill Wendling39150252008-09-09 20:39:27 +00002912 DAG.getConstant(127, MVT::i32));
Bill Wendlingfc2508e2008-09-10 06:26:10 +00002913 return DAG.getNode(ISD::UINT_TO_FP, MVT::f32, t2);
Bill Wendling39150252008-09-09 20:39:27 +00002914}
2915
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002916/// getF32Constant - Get 32-bit floating point constant.
2917static SDValue
2918getF32Constant(SelectionDAG &DAG, unsigned Flt) {
2919 return DAG.getConstantFP(APFloat(APInt(32, Flt)), MVT::f32);
2920}
2921
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00002922/// Inlined utility function to implement binary input atomic intrinsics for
2923/// visitIntrinsicCall: I is a call instruction
2924/// Op is the associated NodeType for I
2925const char *
2926SelectionDAGLowering::implVisitBinaryAtomic(CallInst& I, ISD::NodeType Op) {
2927 SDValue Root = getRoot();
2928 SDValue L = DAG.getAtomic(Op, Root,
2929 getValue(I.getOperand(1)),
2930 getValue(I.getOperand(2)),
2931 I.getOperand(1));
2932 setValue(&I, L);
2933 DAG.setRoot(L.getValue(1));
2934 return 0;
2935}
2936
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002937/// visitExp - Lower an exp intrinsic. Handles the special sequences for
2938/// limited-precision mode.
Dale Johannesen59e577f2008-09-05 18:38:42 +00002939void
2940SelectionDAGLowering::visitExp(CallInst &I) {
2941 SDValue result;
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002942
2943 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
2944 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
2945 SDValue Op = getValue(I.getOperand(1));
2946
2947 // Put the exponent in the right bit position for later addition to the
2948 // final result:
2949 //
2950 // #define LOG2OFe 1.4426950f
2951 // IntegerPartOfX = ((int32_t)(X * LOG2OFe));
2952 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, Op,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002953 getF32Constant(DAG, 0x3fb8aa3b));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002954 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, MVT::i32, t0);
2955
2956 // FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
2957 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, MVT::f32, IntegerPartOfX);
2958 SDValue X = DAG.getNode(ISD::FSUB, MVT::f32, t0, t1);
2959
2960 // IntegerPartOfX <<= 23;
2961 IntegerPartOfX = DAG.getNode(ISD::SHL, MVT::i32, IntegerPartOfX,
2962 DAG.getConstant(23, MVT::i32));
2963
2964 if (LimitFloatPrecision <= 6) {
2965 // For floating-point precision of 6:
2966 //
2967 // TwoToFractionalPartOfX =
2968 // 0.997535578f +
2969 // (0.735607626f + 0.252464424f * x) * x;
2970 //
2971 // error 0.0144103317, which is 6 bits
2972 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002973 getF32Constant(DAG, 0x3e814304));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002974 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002975 getF32Constant(DAG, 0x3f3c50c8));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002976 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
2977 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002978 getF32Constant(DAG, 0x3f7f5e7e));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002979 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t5);
2980
2981 // Add the exponent into the result in integer domain.
2982 SDValue t6 = DAG.getNode(ISD::ADD, MVT::i32,
2983 TwoToFracPartOfX, IntegerPartOfX);
2984
2985 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t6);
2986 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
2987 // For floating-point precision of 12:
2988 //
2989 // TwoToFractionalPartOfX =
2990 // 0.999892986f +
2991 // (0.696457318f +
2992 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
2993 //
2994 // 0.000107046256 error, which is 13 to 14 bits
2995 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002996 getF32Constant(DAG, 0x3da235e3));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002997 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00002998 getF32Constant(DAG, 0x3e65b8f3));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00002999 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3000 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003001 getF32Constant(DAG, 0x3f324b07));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003002 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3003 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003004 getF32Constant(DAG, 0x3f7ff8fd));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003005 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t7);
3006
3007 // Add the exponent into the result in integer domain.
3008 SDValue t8 = DAG.getNode(ISD::ADD, MVT::i32,
3009 TwoToFracPartOfX, IntegerPartOfX);
3010
3011 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t8);
3012 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3013 // For floating-point precision of 18:
3014 //
3015 // TwoToFractionalPartOfX =
3016 // 0.999999982f +
3017 // (0.693148872f +
3018 // (0.240227044f +
3019 // (0.554906021e-1f +
3020 // (0.961591928e-2f +
3021 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3022 //
3023 // error 2.47208000*10^(-7), which is better than 18 bits
3024 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003025 getF32Constant(DAG, 0x3924b03e));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003026 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003027 getF32Constant(DAG, 0x3ab24b87));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003028 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3029 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003030 getF32Constant(DAG, 0x3c1d8c17));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003031 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3032 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003033 getF32Constant(DAG, 0x3d634a1d));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003034 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3035 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003036 getF32Constant(DAG, 0x3e75fe14));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003037 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
3038 SDValue t11 = DAG.getNode(ISD::FADD, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003039 getF32Constant(DAG, 0x3f317234));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003040 SDValue t12 = DAG.getNode(ISD::FMUL, MVT::f32, t11, X);
3041 SDValue t13 = DAG.getNode(ISD::FADD, MVT::f32, t12,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003042 getF32Constant(DAG, 0x3f800000));
Bill Wendlingb4ec2832008-09-09 22:13:54 +00003043 SDValue TwoToFracPartOfX = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t13);
3044
3045 // Add the exponent into the result in integer domain.
3046 SDValue t14 = DAG.getNode(ISD::ADD, MVT::i32,
3047 TwoToFracPartOfX, IntegerPartOfX);
3048
3049 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, t14);
3050 }
3051 } else {
3052 // No special expansion.
3053 result = DAG.getNode(ISD::FEXP,
3054 getValue(I.getOperand(1)).getValueType(),
3055 getValue(I.getOperand(1)));
3056 }
3057
Dale Johannesen59e577f2008-09-05 18:38:42 +00003058 setValue(&I, result);
3059}
3060
Bill Wendling39150252008-09-09 20:39:27 +00003061/// visitLog - Lower a log intrinsic. Handles the special sequences for
3062/// limited-precision mode.
Dale Johannesen59e577f2008-09-05 18:38:42 +00003063void
3064SelectionDAGLowering::visitLog(CallInst &I) {
3065 SDValue result;
Bill Wendling39150252008-09-09 20:39:27 +00003066
3067 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
3068 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3069 SDValue Op = getValue(I.getOperand(1));
3070 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
3071
3072 // Scale the exponent by log(2) [0.69314718f].
3073 SDValue Exp = GetExponent(DAG, Op1);
3074 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, MVT::f32, Exp,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003075 getF32Constant(DAG, 0x3f317218));
Bill Wendling39150252008-09-09 20:39:27 +00003076
3077 // Get the significand and build it into a floating-point number with
3078 // exponent of 1.
3079 SDValue X = GetSignificand(DAG, Op1);
3080
3081 if (LimitFloatPrecision <= 6) {
3082 // For floating-point precision of 6:
3083 //
3084 // LogofMantissa =
3085 // -1.1609546f +
3086 // (1.4034025f - 0.23903021f * x) * x;
3087 //
3088 // error 0.0034276066, which is better than 8 bits
3089 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003090 getF32Constant(DAG, 0xbe74c456));
Bill Wendling39150252008-09-09 20:39:27 +00003091 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003092 getF32Constant(DAG, 0x3fb3a2b1));
Bill Wendling39150252008-09-09 20:39:27 +00003093 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3094 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003095 getF32Constant(DAG, 0x3f949a29));
Bill Wendling39150252008-09-09 20:39:27 +00003096
3097 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, LogOfMantissa);
3098 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3099 // For floating-point precision of 12:
3100 //
3101 // LogOfMantissa =
3102 // -1.7417939f +
3103 // (2.8212026f +
3104 // (-1.4699568f +
3105 // (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
3106 //
3107 // error 0.000061011436, which is 14 bits
3108 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003109 getF32Constant(DAG, 0xbd67b6d6));
Bill Wendling39150252008-09-09 20:39:27 +00003110 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003111 getF32Constant(DAG, 0x3ee4f4b8));
Bill Wendling39150252008-09-09 20:39:27 +00003112 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3113 SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003114 getF32Constant(DAG, 0x3fbc278b));
Bill Wendling39150252008-09-09 20:39:27 +00003115 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3116 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003117 getF32Constant(DAG, 0x40348e95));
Bill Wendling39150252008-09-09 20:39:27 +00003118 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3119 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003120 getF32Constant(DAG, 0x3fdef31a));
Bill Wendling39150252008-09-09 20:39:27 +00003121
3122 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, LogOfMantissa);
3123 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3124 // For floating-point precision of 18:
3125 //
3126 // LogOfMantissa =
3127 // -2.1072184f +
3128 // (4.2372794f +
3129 // (-3.7029485f +
3130 // (2.2781945f +
3131 // (-0.87823314f +
3132 // (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
3133 //
3134 // error 0.0000023660568, which is better than 18 bits
3135 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003136 getF32Constant(DAG, 0xbc91e5ac));
Bill Wendling39150252008-09-09 20:39:27 +00003137 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003138 getF32Constant(DAG, 0x3e4350aa));
Bill Wendling39150252008-09-09 20:39:27 +00003139 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3140 SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003141 getF32Constant(DAG, 0x3f60d3e3));
Bill Wendling39150252008-09-09 20:39:27 +00003142 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3143 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003144 getF32Constant(DAG, 0x4011cdf0));
Bill Wendling39150252008-09-09 20:39:27 +00003145 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3146 SDValue t7 = DAG.getNode(ISD::FSUB, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003147 getF32Constant(DAG, 0x406cfd1c));
Bill Wendling39150252008-09-09 20:39:27 +00003148 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3149 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003150 getF32Constant(DAG, 0x408797cb));
Bill Wendling39150252008-09-09 20:39:27 +00003151 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
3152 SDValue LogOfMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003153 getF32Constant(DAG, 0x4006dcab));
Bill Wendling39150252008-09-09 20:39:27 +00003154
3155 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, LogOfMantissa);
3156 }
3157 } else {
3158 // No special expansion.
3159 result = DAG.getNode(ISD::FLOG,
3160 getValue(I.getOperand(1)).getValueType(),
3161 getValue(I.getOperand(1)));
3162 }
3163
Dale Johannesen59e577f2008-09-05 18:38:42 +00003164 setValue(&I, result);
3165}
3166
Bill Wendling3eb59402008-09-09 00:28:24 +00003167/// visitLog2 - Lower a log2 intrinsic. Handles the special sequences for
3168/// limited-precision mode.
Dale Johannesen59e577f2008-09-05 18:38:42 +00003169void
3170SelectionDAGLowering::visitLog2(CallInst &I) {
3171 SDValue result;
Bill Wendling3eb59402008-09-09 00:28:24 +00003172
Dale Johannesen853244f2008-09-05 23:49:37 +00003173 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
Bill Wendling3eb59402008-09-09 00:28:24 +00003174 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3175 SDValue Op = getValue(I.getOperand(1));
3176 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
3177
Bill Wendling39150252008-09-09 20:39:27 +00003178 // Get the exponent.
3179 SDValue LogOfExponent = GetExponent(DAG, Op1);
Bill Wendling3eb59402008-09-09 00:28:24 +00003180
3181 // Get the significand and build it into a floating-point number with
Bill Wendling39150252008-09-09 20:39:27 +00003182 // exponent of 1.
3183 SDValue X = GetSignificand(DAG, Op1);
Bill Wendling3eb59402008-09-09 00:28:24 +00003184
3185 // Different possible minimax approximations of significand in
3186 // floating-point for various degrees of accuracy over [1,2].
3187 if (LimitFloatPrecision <= 6) {
3188 // For floating-point precision of 6:
3189 //
3190 // Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
3191 //
3192 // error 0.0049451742, which is more than 7 bits
Bill Wendling39150252008-09-09 20:39:27 +00003193 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003194 getF32Constant(DAG, 0xbeb08fe0));
Bill Wendling39150252008-09-09 20:39:27 +00003195 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003196 getF32Constant(DAG, 0x40019463));
Bill Wendling39150252008-09-09 20:39:27 +00003197 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3198 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003199 getF32Constant(DAG, 0x3fd6633d));
Bill Wendling3eb59402008-09-09 00:28:24 +00003200
3201 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log2ofMantissa);
3202 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3203 // For floating-point precision of 12:
3204 //
3205 // Log2ofMantissa =
3206 // -2.51285454f +
3207 // (4.07009056f +
3208 // (-2.12067489f +
3209 // (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
3210 //
3211 // error 0.0000876136000, which is better than 13 bits
Bill Wendling39150252008-09-09 20:39:27 +00003212 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003213 getF32Constant(DAG, 0xbda7262e));
Bill Wendling39150252008-09-09 20:39:27 +00003214 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003215 getF32Constant(DAG, 0x3f25280b));
Bill Wendling39150252008-09-09 20:39:27 +00003216 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3217 SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003218 getF32Constant(DAG, 0x4007b923));
Bill Wendling39150252008-09-09 20:39:27 +00003219 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3220 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003221 getF32Constant(DAG, 0x40823e2f));
Bill Wendling39150252008-09-09 20:39:27 +00003222 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3223 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003224 getF32Constant(DAG, 0x4020d29c));
Bill Wendling3eb59402008-09-09 00:28:24 +00003225
3226 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log2ofMantissa);
3227 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3228 // For floating-point precision of 18:
3229 //
3230 // Log2ofMantissa =
3231 // -3.0400495f +
3232 // (6.1129976f +
3233 // (-5.3420409f +
3234 // (3.2865683f +
3235 // (-1.2669343f +
3236 // (0.27515199f -
3237 // 0.25691327e-1f * x) * x) * x) * x) * x) * x;
3238 //
3239 // error 0.0000018516, which is better than 18 bits
Bill Wendling39150252008-09-09 20:39:27 +00003240 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003241 getF32Constant(DAG, 0xbcd2769e));
Bill Wendling39150252008-09-09 20:39:27 +00003242 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003243 getF32Constant(DAG, 0x3e8ce0b9));
Bill Wendling39150252008-09-09 20:39:27 +00003244 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3245 SDValue t3 = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003246 getF32Constant(DAG, 0x3fa22ae7));
Bill Wendling39150252008-09-09 20:39:27 +00003247 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3248 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003249 getF32Constant(DAG, 0x40525723));
Bill Wendling39150252008-09-09 20:39:27 +00003250 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3251 SDValue t7 = DAG.getNode(ISD::FSUB, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003252 getF32Constant(DAG, 0x40aaf200));
Bill Wendling39150252008-09-09 20:39:27 +00003253 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3254 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003255 getF32Constant(DAG, 0x40c39dad));
Bill Wendling3eb59402008-09-09 00:28:24 +00003256 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
Bill Wendling39150252008-09-09 20:39:27 +00003257 SDValue Log2ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003258 getF32Constant(DAG, 0x4042902c));
Bill Wendling3eb59402008-09-09 00:28:24 +00003259
3260 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log2ofMantissa);
3261 }
Dale Johannesen853244f2008-09-05 23:49:37 +00003262 } else {
Bill Wendling3eb59402008-09-09 00:28:24 +00003263 // No special expansion.
Dale Johannesen853244f2008-09-05 23:49:37 +00003264 result = DAG.getNode(ISD::FLOG2,
3265 getValue(I.getOperand(1)).getValueType(),
3266 getValue(I.getOperand(1)));
3267 }
Bill Wendling3eb59402008-09-09 00:28:24 +00003268
Dale Johannesen59e577f2008-09-05 18:38:42 +00003269 setValue(&I, result);
3270}
3271
Bill Wendling3eb59402008-09-09 00:28:24 +00003272/// visitLog10 - Lower a log10 intrinsic. Handles the special sequences for
3273/// limited-precision mode.
Dale Johannesen59e577f2008-09-05 18:38:42 +00003274void
3275SelectionDAGLowering::visitLog10(CallInst &I) {
3276 SDValue result;
Bill Wendling181b6272008-10-19 20:34:04 +00003277
Dale Johannesen852680a2008-09-05 21:27:19 +00003278 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
Bill Wendling3eb59402008-09-09 00:28:24 +00003279 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3280 SDValue Op = getValue(I.getOperand(1));
3281 SDValue Op1 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, Op);
3282
Bill Wendling39150252008-09-09 20:39:27 +00003283 // Scale the exponent by log10(2) [0.30102999f].
3284 SDValue Exp = GetExponent(DAG, Op1);
3285 SDValue LogOfExponent = DAG.getNode(ISD::FMUL, MVT::f32, Exp,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003286 getF32Constant(DAG, 0x3e9a209a));
Bill Wendling3eb59402008-09-09 00:28:24 +00003287
3288 // Get the significand and build it into a floating-point number with
Bill Wendling39150252008-09-09 20:39:27 +00003289 // exponent of 1.
3290 SDValue X = GetSignificand(DAG, Op1);
Bill Wendling3eb59402008-09-09 00:28:24 +00003291
3292 if (LimitFloatPrecision <= 6) {
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003293 // For floating-point precision of 6:
3294 //
3295 // Log10ofMantissa =
3296 // -0.50419619f +
3297 // (0.60948995f - 0.10380950f * x) * x;
3298 //
3299 // error 0.0014886165, which is 6 bits
Bill Wendling39150252008-09-09 20:39:27 +00003300 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003301 getF32Constant(DAG, 0xbdd49a13));
Bill Wendling39150252008-09-09 20:39:27 +00003302 SDValue t1 = DAG.getNode(ISD::FADD, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003303 getF32Constant(DAG, 0x3f1c0789));
Bill Wendling39150252008-09-09 20:39:27 +00003304 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3305 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003306 getF32Constant(DAG, 0x3f011300));
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003307
3308 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log10ofMantissa);
Bill Wendling3eb59402008-09-09 00:28:24 +00003309 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3310 // For floating-point precision of 12:
3311 //
3312 // Log10ofMantissa =
3313 // -0.64831180f +
3314 // (0.91751397f +
3315 // (-0.31664806f + 0.47637168e-1f * x) * x) * x;
3316 //
3317 // error 0.00019228036, which is better than 12 bits
Bill Wendling39150252008-09-09 20:39:27 +00003318 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003319 getF32Constant(DAG, 0x3d431f31));
Bill Wendling39150252008-09-09 20:39:27 +00003320 SDValue t1 = DAG.getNode(ISD::FSUB, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003321 getF32Constant(DAG, 0x3ea21fb2));
Bill Wendling39150252008-09-09 20:39:27 +00003322 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3323 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003324 getF32Constant(DAG, 0x3f6ae232));
Bill Wendling39150252008-09-09 20:39:27 +00003325 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3326 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003327 getF32Constant(DAG, 0x3f25f7c3));
Bill Wendling3eb59402008-09-09 00:28:24 +00003328
3329 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log10ofMantissa);
3330 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003331 // For floating-point precision of 18:
3332 //
3333 // Log10ofMantissa =
3334 // -0.84299375f +
3335 // (1.5327582f +
3336 // (-1.0688956f +
3337 // (0.49102474f +
3338 // (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
3339 //
3340 // error 0.0000037995730, which is better than 18 bits
Bill Wendling39150252008-09-09 20:39:27 +00003341 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003342 getF32Constant(DAG, 0x3c5d51ce));
Bill Wendling39150252008-09-09 20:39:27 +00003343 SDValue t1 = DAG.getNode(ISD::FSUB, MVT::f32, t0,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003344 getF32Constant(DAG, 0x3e00685a));
Bill Wendling39150252008-09-09 20:39:27 +00003345 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, t1, X);
3346 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003347 getF32Constant(DAG, 0x3efb6798));
Bill Wendling39150252008-09-09 20:39:27 +00003348 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3349 SDValue t5 = DAG.getNode(ISD::FSUB, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003350 getF32Constant(DAG, 0x3f88d192));
Bill Wendling39150252008-09-09 20:39:27 +00003351 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3352 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003353 getF32Constant(DAG, 0x3fc4316c));
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003354 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
Bill Wendling39150252008-09-09 20:39:27 +00003355 SDValue Log10ofMantissa = DAG.getNode(ISD::FSUB, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003356 getF32Constant(DAG, 0x3f57ce70));
Bill Wendlingbd297bc2008-09-09 18:42:23 +00003357
3358 result = DAG.getNode(ISD::FADD, MVT::f32, LogOfExponent, Log10ofMantissa);
Bill Wendling3eb59402008-09-09 00:28:24 +00003359 }
Dale Johannesen852680a2008-09-05 21:27:19 +00003360 } else {
Bill Wendling3eb59402008-09-09 00:28:24 +00003361 // No special expansion.
Dale Johannesen852680a2008-09-05 21:27:19 +00003362 result = DAG.getNode(ISD::FLOG10,
3363 getValue(I.getOperand(1)).getValueType(),
3364 getValue(I.getOperand(1)));
3365 }
Bill Wendling3eb59402008-09-09 00:28:24 +00003366
Dale Johannesen59e577f2008-09-05 18:38:42 +00003367 setValue(&I, result);
3368}
3369
Bill Wendlinge10c8142008-09-09 22:39:21 +00003370/// visitExp2 - Lower an exp2 intrinsic. Handles the special sequences for
3371/// limited-precision mode.
Dale Johannesen601d3c02008-09-05 01:48:15 +00003372void
3373SelectionDAGLowering::visitExp2(CallInst &I) {
3374 SDValue result;
Bill Wendlinge10c8142008-09-09 22:39:21 +00003375
Dale Johannesen601d3c02008-09-05 01:48:15 +00003376 if (getValue(I.getOperand(1)).getValueType() == MVT::f32 &&
Bill Wendlinge10c8142008-09-09 22:39:21 +00003377 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3378 SDValue Op = getValue(I.getOperand(1));
3379
3380 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, MVT::i32, Op);
3381
3382 // FractionalPartOfX = x - (float)IntegerPartOfX;
3383 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, MVT::f32, IntegerPartOfX);
3384 SDValue X = DAG.getNode(ISD::FSUB, MVT::f32, Op, t1);
3385
3386 // IntegerPartOfX <<= 23;
3387 IntegerPartOfX = DAG.getNode(ISD::SHL, MVT::i32, IntegerPartOfX,
3388 DAG.getConstant(23, MVT::i32));
3389
3390 if (LimitFloatPrecision <= 6) {
3391 // For floating-point precision of 6:
3392 //
3393 // TwoToFractionalPartOfX =
3394 // 0.997535578f +
3395 // (0.735607626f + 0.252464424f * x) * x;
3396 //
3397 // error 0.0144103317, which is 6 bits
3398 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003399 getF32Constant(DAG, 0x3e814304));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003400 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003401 getF32Constant(DAG, 0x3f3c50c8));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003402 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3403 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003404 getF32Constant(DAG, 0x3f7f5e7e));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003405 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t5);
3406 SDValue TwoToFractionalPartOfX =
3407 DAG.getNode(ISD::ADD, MVT::i32, t6, IntegerPartOfX);
3408
3409 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3410 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3411 // For floating-point precision of 12:
3412 //
3413 // TwoToFractionalPartOfX =
3414 // 0.999892986f +
3415 // (0.696457318f +
3416 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3417 //
3418 // error 0.000107046256, which is 13 to 14 bits
3419 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003420 getF32Constant(DAG, 0x3da235e3));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003421 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003422 getF32Constant(DAG, 0x3e65b8f3));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003423 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3424 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003425 getF32Constant(DAG, 0x3f324b07));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003426 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3427 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003428 getF32Constant(DAG, 0x3f7ff8fd));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003429 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t7);
3430 SDValue TwoToFractionalPartOfX =
3431 DAG.getNode(ISD::ADD, MVT::i32, t8, IntegerPartOfX);
3432
3433 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3434 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3435 // For floating-point precision of 18:
3436 //
3437 // TwoToFractionalPartOfX =
3438 // 0.999999982f +
3439 // (0.693148872f +
3440 // (0.240227044f +
3441 // (0.554906021e-1f +
3442 // (0.961591928e-2f +
3443 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3444 // error 2.47208000*10^(-7), which is better than 18 bits
3445 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003446 getF32Constant(DAG, 0x3924b03e));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003447 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003448 getF32Constant(DAG, 0x3ab24b87));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003449 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3450 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003451 getF32Constant(DAG, 0x3c1d8c17));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003452 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3453 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003454 getF32Constant(DAG, 0x3d634a1d));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003455 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3456 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003457 getF32Constant(DAG, 0x3e75fe14));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003458 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
3459 SDValue t11 = DAG.getNode(ISD::FADD, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003460 getF32Constant(DAG, 0x3f317234));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003461 SDValue t12 = DAG.getNode(ISD::FMUL, MVT::f32, t11, X);
3462 SDValue t13 = DAG.getNode(ISD::FADD, MVT::f32, t12,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003463 getF32Constant(DAG, 0x3f800000));
Bill Wendlinge10c8142008-09-09 22:39:21 +00003464 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t13);
3465 SDValue TwoToFractionalPartOfX =
3466 DAG.getNode(ISD::ADD, MVT::i32, t14, IntegerPartOfX);
3467
3468 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3469 }
Dale Johannesen601d3c02008-09-05 01:48:15 +00003470 } else {
Bill Wendling3eb59402008-09-09 00:28:24 +00003471 // No special expansion.
Dale Johannesen601d3c02008-09-05 01:48:15 +00003472 result = DAG.getNode(ISD::FEXP2,
3473 getValue(I.getOperand(1)).getValueType(),
3474 getValue(I.getOperand(1)));
3475 }
Bill Wendlinge10c8142008-09-09 22:39:21 +00003476
Dale Johannesen601d3c02008-09-05 01:48:15 +00003477 setValue(&I, result);
3478}
3479
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003480/// visitPow - Lower a pow intrinsic. Handles the special sequences for
3481/// limited-precision mode with x == 10.0f.
3482void
3483SelectionDAGLowering::visitPow(CallInst &I) {
3484 SDValue result;
3485 Value *Val = I.getOperand(1);
3486 bool IsExp10 = false;
3487
3488 if (getValue(Val).getValueType() == MVT::f32 &&
Bill Wendling277fc242008-09-10 00:24:59 +00003489 getValue(I.getOperand(2)).getValueType() == MVT::f32 &&
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003490 LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3491 if (Constant *C = const_cast<Constant*>(dyn_cast<Constant>(Val))) {
3492 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
3493 APFloat Ten(10.0f);
3494 IsExp10 = CFP->getValueAPF().bitwiseIsEqual(Ten);
3495 }
3496 }
3497 }
3498
3499 if (IsExp10 && LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3500 SDValue Op = getValue(I.getOperand(2));
3501
3502 // Put the exponent in the right bit position for later addition to the
3503 // final result:
3504 //
3505 // #define LOG2OF10 3.3219281f
3506 // IntegerPartOfX = (int32_t)(x * LOG2OF10);
3507 SDValue t0 = DAG.getNode(ISD::FMUL, MVT::f32, Op,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003508 getF32Constant(DAG, 0x40549a78));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003509 SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, MVT::i32, t0);
3510
3511 // FractionalPartOfX = x - (float)IntegerPartOfX;
3512 SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, MVT::f32, IntegerPartOfX);
3513 SDValue X = DAG.getNode(ISD::FSUB, MVT::f32, t0, t1);
3514
3515 // IntegerPartOfX <<= 23;
3516 IntegerPartOfX = DAG.getNode(ISD::SHL, MVT::i32, IntegerPartOfX,
3517 DAG.getConstant(23, MVT::i32));
3518
3519 if (LimitFloatPrecision <= 6) {
3520 // For floating-point precision of 6:
3521 //
3522 // twoToFractionalPartOfX =
3523 // 0.997535578f +
3524 // (0.735607626f + 0.252464424f * x) * x;
3525 //
3526 // error 0.0144103317, which is 6 bits
3527 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003528 getF32Constant(DAG, 0x3e814304));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003529 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003530 getF32Constant(DAG, 0x3f3c50c8));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003531 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3532 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003533 getF32Constant(DAG, 0x3f7f5e7e));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003534 SDValue t6 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t5);
3535 SDValue TwoToFractionalPartOfX =
3536 DAG.getNode(ISD::ADD, MVT::i32, t6, IntegerPartOfX);
3537
3538 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3539 } else if (LimitFloatPrecision > 6 && LimitFloatPrecision <= 12) {
3540 // For floating-point precision of 12:
3541 //
3542 // TwoToFractionalPartOfX =
3543 // 0.999892986f +
3544 // (0.696457318f +
3545 // (0.224338339f + 0.792043434e-1f * x) * x) * x;
3546 //
3547 // error 0.000107046256, which is 13 to 14 bits
3548 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003549 getF32Constant(DAG, 0x3da235e3));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003550 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003551 getF32Constant(DAG, 0x3e65b8f3));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003552 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3553 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003554 getF32Constant(DAG, 0x3f324b07));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003555 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3556 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003557 getF32Constant(DAG, 0x3f7ff8fd));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003558 SDValue t8 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t7);
3559 SDValue TwoToFractionalPartOfX =
3560 DAG.getNode(ISD::ADD, MVT::i32, t8, IntegerPartOfX);
3561
3562 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3563 } else { // LimitFloatPrecision > 12 && LimitFloatPrecision <= 18
3564 // For floating-point precision of 18:
3565 //
3566 // TwoToFractionalPartOfX =
3567 // 0.999999982f +
3568 // (0.693148872f +
3569 // (0.240227044f +
3570 // (0.554906021e-1f +
3571 // (0.961591928e-2f +
3572 // (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
3573 // error 2.47208000*10^(-7), which is better than 18 bits
3574 SDValue t2 = DAG.getNode(ISD::FMUL, MVT::f32, X,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003575 getF32Constant(DAG, 0x3924b03e));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003576 SDValue t3 = DAG.getNode(ISD::FADD, MVT::f32, t2,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003577 getF32Constant(DAG, 0x3ab24b87));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003578 SDValue t4 = DAG.getNode(ISD::FMUL, MVT::f32, t3, X);
3579 SDValue t5 = DAG.getNode(ISD::FADD, MVT::f32, t4,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003580 getF32Constant(DAG, 0x3c1d8c17));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003581 SDValue t6 = DAG.getNode(ISD::FMUL, MVT::f32, t5, X);
3582 SDValue t7 = DAG.getNode(ISD::FADD, MVT::f32, t6,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003583 getF32Constant(DAG, 0x3d634a1d));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003584 SDValue t8 = DAG.getNode(ISD::FMUL, MVT::f32, t7, X);
3585 SDValue t9 = DAG.getNode(ISD::FADD, MVT::f32, t8,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003586 getF32Constant(DAG, 0x3e75fe14));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003587 SDValue t10 = DAG.getNode(ISD::FMUL, MVT::f32, t9, X);
3588 SDValue t11 = DAG.getNode(ISD::FADD, MVT::f32, t10,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003589 getF32Constant(DAG, 0x3f317234));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003590 SDValue t12 = DAG.getNode(ISD::FMUL, MVT::f32, t11, X);
3591 SDValue t13 = DAG.getNode(ISD::FADD, MVT::f32, t12,
Bill Wendlingcd4c73a2008-09-22 00:44:35 +00003592 getF32Constant(DAG, 0x3f800000));
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003593 SDValue t14 = DAG.getNode(ISD::BIT_CONVERT, MVT::i32, t13);
3594 SDValue TwoToFractionalPartOfX =
3595 DAG.getNode(ISD::ADD, MVT::i32, t14, IntegerPartOfX);
3596
3597 result = DAG.getNode(ISD::BIT_CONVERT, MVT::f32, TwoToFractionalPartOfX);
3598 }
3599 } else {
3600 // No special expansion.
3601 result = DAG.getNode(ISD::FPOW,
3602 getValue(I.getOperand(1)).getValueType(),
3603 getValue(I.getOperand(1)),
3604 getValue(I.getOperand(2)));
3605 }
3606
3607 setValue(&I, result);
3608}
3609
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003610/// visitIntrinsicCall - Lower the call to the specified intrinsic function. If
3611/// we want to emit this as a call to a named external function, return the name
3612/// otherwise lower it and return null.
3613const char *
3614SelectionDAGLowering::visitIntrinsicCall(CallInst &I, unsigned Intrinsic) {
3615 switch (Intrinsic) {
3616 default:
3617 // By default, turn this into a target intrinsic node.
3618 visitTargetIntrinsic(I, Intrinsic);
3619 return 0;
3620 case Intrinsic::vastart: visitVAStart(I); return 0;
3621 case Intrinsic::vaend: visitVAEnd(I); return 0;
3622 case Intrinsic::vacopy: visitVACopy(I); return 0;
3623 case Intrinsic::returnaddress:
3624 setValue(&I, DAG.getNode(ISD::RETURNADDR, TLI.getPointerTy(),
3625 getValue(I.getOperand(1))));
3626 return 0;
Bill Wendlingd5d81912008-09-26 22:10:44 +00003627 case Intrinsic::frameaddress:
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003628 setValue(&I, DAG.getNode(ISD::FRAMEADDR, TLI.getPointerTy(),
3629 getValue(I.getOperand(1))));
3630 return 0;
3631 case Intrinsic::setjmp:
3632 return "_setjmp"+!TLI.usesUnderscoreSetJmp();
3633 break;
3634 case Intrinsic::longjmp:
3635 return "_longjmp"+!TLI.usesUnderscoreLongJmp();
3636 break;
3637 case Intrinsic::memcpy_i32:
3638 case Intrinsic::memcpy_i64: {
3639 SDValue Op1 = getValue(I.getOperand(1));
3640 SDValue Op2 = getValue(I.getOperand(2));
3641 SDValue Op3 = getValue(I.getOperand(3));
3642 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3643 DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3644 I.getOperand(1), 0, I.getOperand(2), 0));
3645 return 0;
3646 }
3647 case Intrinsic::memset_i32:
3648 case Intrinsic::memset_i64: {
3649 SDValue Op1 = getValue(I.getOperand(1));
3650 SDValue Op2 = getValue(I.getOperand(2));
3651 SDValue Op3 = getValue(I.getOperand(3));
3652 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3653 DAG.setRoot(DAG.getMemset(getRoot(), Op1, Op2, Op3, Align,
3654 I.getOperand(1), 0));
3655 return 0;
3656 }
3657 case Intrinsic::memmove_i32:
3658 case Intrinsic::memmove_i64: {
3659 SDValue Op1 = getValue(I.getOperand(1));
3660 SDValue Op2 = getValue(I.getOperand(2));
3661 SDValue Op3 = getValue(I.getOperand(3));
3662 unsigned Align = cast<ConstantInt>(I.getOperand(4))->getZExtValue();
3663
3664 // If the source and destination are known to not be aliases, we can
3665 // lower memmove as memcpy.
3666 uint64_t Size = -1ULL;
3667 if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op3))
Dan Gohmanf5aeb1a2008-09-12 16:56:44 +00003668 Size = C->getZExtValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003669 if (AA->alias(I.getOperand(1), Size, I.getOperand(2), Size) ==
3670 AliasAnalysis::NoAlias) {
3671 DAG.setRoot(DAG.getMemcpy(getRoot(), Op1, Op2, Op3, Align, false,
3672 I.getOperand(1), 0, I.getOperand(2), 0));
3673 return 0;
3674 }
3675
3676 DAG.setRoot(DAG.getMemmove(getRoot(), Op1, Op2, Op3, Align,
3677 I.getOperand(1), 0, I.getOperand(2), 0));
3678 return 0;
3679 }
3680 case Intrinsic::dbg_stoppoint: {
3681 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3682 DbgStopPointInst &SPI = cast<DbgStopPointInst>(I);
3683 if (MMI && SPI.getContext() && MMI->Verify(SPI.getContext())) {
3684 DebugInfoDesc *DD = MMI->getDescFor(SPI.getContext());
3685 assert(DD && "Not a debug information descriptor");
3686 DAG.setRoot(DAG.getDbgStopPoint(getRoot(),
3687 SPI.getLine(),
3688 SPI.getColumn(),
3689 cast<CompileUnitDesc>(DD)));
3690 }
3691
3692 return 0;
3693 }
3694 case Intrinsic::dbg_region_start: {
3695 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3696 DbgRegionStartInst &RSI = cast<DbgRegionStartInst>(I);
3697 if (MMI && RSI.getContext() && MMI->Verify(RSI.getContext())) {
3698 unsigned LabelID = MMI->RecordRegionStart(RSI.getContext());
3699 DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3700 }
3701
3702 return 0;
3703 }
3704 case Intrinsic::dbg_region_end: {
3705 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3706 DbgRegionEndInst &REI = cast<DbgRegionEndInst>(I);
3707 if (MMI && REI.getContext() && MMI->Verify(REI.getContext())) {
3708 unsigned LabelID = MMI->RecordRegionEnd(REI.getContext());
3709 DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
3710 }
3711
3712 return 0;
3713 }
3714 case Intrinsic::dbg_func_start: {
3715 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3716 if (!MMI) return 0;
3717 DbgFuncStartInst &FSI = cast<DbgFuncStartInst>(I);
3718 Value *SP = FSI.getSubprogram();
3719 if (SP && MMI->Verify(SP)) {
3720 // llvm.dbg.func.start implicitly defines a dbg_stoppoint which is
3721 // what (most?) gdb expects.
3722 DebugInfoDesc *DD = MMI->getDescFor(SP);
3723 assert(DD && "Not a debug information descriptor");
3724 SubprogramDesc *Subprogram = cast<SubprogramDesc>(DD);
3725 const CompileUnitDesc *CompileUnit = Subprogram->getFile();
3726 unsigned SrcFile = MMI->RecordSource(CompileUnit);
Devang Patel20dd0462008-11-06 00:30:09 +00003727 // Record the source line but does not create a label for the normal
3728 // function start. It will be emitted at asm emission time. However,
3729 // create a label if this is a beginning of inlined function.
3730 unsigned LabelID = MMI->RecordSourceLine(Subprogram->getLine(), 0, SrcFile);
3731 if (MMI->getSourceLines().size() != 1)
3732 DAG.setRoot(DAG.getLabel(ISD::DBG_LABEL, getRoot(), LabelID));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003733 }
3734
3735 return 0;
3736 }
3737 case Intrinsic::dbg_declare: {
3738 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3739 DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
3740 Value *Variable = DI.getVariable();
3741 if (MMI && Variable && MMI->Verify(Variable))
3742 DAG.setRoot(DAG.getNode(ISD::DECLARE, MVT::Other, getRoot(),
3743 getValue(DI.getAddress()), getValue(Variable)));
3744 return 0;
3745 }
3746
3747 case Intrinsic::eh_exception: {
3748 if (!CurMBB->isLandingPad()) {
3749 // FIXME: Mark exception register as live in. Hack for PR1508.
3750 unsigned Reg = TLI.getExceptionAddressRegister();
3751 if (Reg) CurMBB->addLiveIn(Reg);
3752 }
3753 // Insert the EXCEPTIONADDR instruction.
3754 SDVTList VTs = DAG.getVTList(TLI.getPointerTy(), MVT::Other);
3755 SDValue Ops[1];
3756 Ops[0] = DAG.getRoot();
3757 SDValue Op = DAG.getNode(ISD::EXCEPTIONADDR, VTs, Ops, 1);
3758 setValue(&I, Op);
3759 DAG.setRoot(Op.getValue(1));
3760 return 0;
3761 }
3762
3763 case Intrinsic::eh_selector_i32:
3764 case Intrinsic::eh_selector_i64: {
3765 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3766 MVT VT = (Intrinsic == Intrinsic::eh_selector_i32 ?
3767 MVT::i32 : MVT::i64);
3768
3769 if (MMI) {
3770 if (CurMBB->isLandingPad())
3771 AddCatchInfo(I, MMI, CurMBB);
3772 else {
3773#ifndef NDEBUG
3774 FuncInfo.CatchInfoLost.insert(&I);
3775#endif
3776 // FIXME: Mark exception selector register as live in. Hack for PR1508.
3777 unsigned Reg = TLI.getExceptionSelectorRegister();
3778 if (Reg) CurMBB->addLiveIn(Reg);
3779 }
3780
3781 // Insert the EHSELECTION instruction.
3782 SDVTList VTs = DAG.getVTList(VT, MVT::Other);
3783 SDValue Ops[2];
3784 Ops[0] = getValue(I.getOperand(1));
3785 Ops[1] = getRoot();
3786 SDValue Op = DAG.getNode(ISD::EHSELECTION, VTs, Ops, 2);
3787 setValue(&I, Op);
3788 DAG.setRoot(Op.getValue(1));
3789 } else {
3790 setValue(&I, DAG.getConstant(0, VT));
3791 }
3792
3793 return 0;
3794 }
3795
3796 case Intrinsic::eh_typeid_for_i32:
3797 case Intrinsic::eh_typeid_for_i64: {
3798 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
3799 MVT VT = (Intrinsic == Intrinsic::eh_typeid_for_i32 ?
3800 MVT::i32 : MVT::i64);
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003801
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003802 if (MMI) {
3803 // Find the type id for the given typeinfo.
3804 GlobalVariable *GV = ExtractTypeInfo(I.getOperand(1));
3805
3806 unsigned TypeID = MMI->getTypeIDFor(GV);
3807 setValue(&I, DAG.getConstant(TypeID, VT));
3808 } else {
3809 // Return something different to eh_selector.
3810 setValue(&I, DAG.getConstant(1, VT));
3811 }
3812
3813 return 0;
3814 }
3815
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003816 case Intrinsic::eh_return_i32:
3817 case Intrinsic::eh_return_i64:
3818 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003819 MMI->setCallsEHReturn(true);
3820 DAG.setRoot(DAG.getNode(ISD::EH_RETURN,
3821 MVT::Other,
3822 getControlRoot(),
3823 getValue(I.getOperand(1)),
3824 getValue(I.getOperand(2))));
3825 } else {
3826 setValue(&I, DAG.getConstant(0, TLI.getPointerTy()));
3827 }
3828
3829 return 0;
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003830 case Intrinsic::eh_unwind_init:
3831 if (MachineModuleInfo *MMI = DAG.getMachineModuleInfo()) {
3832 MMI->setCallsUnwindInit(true);
3833 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003834
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003835 return 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003836
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003837 case Intrinsic::eh_dwarf_cfa: {
3838 MVT VT = getValue(I.getOperand(1)).getValueType();
3839 SDValue CfaArg;
3840 if (VT.bitsGT(TLI.getPointerTy()))
3841 CfaArg = DAG.getNode(ISD::TRUNCATE,
3842 TLI.getPointerTy(), getValue(I.getOperand(1)));
3843 else
3844 CfaArg = DAG.getNode(ISD::SIGN_EXTEND,
3845 TLI.getPointerTy(), getValue(I.getOperand(1)));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003846
Anton Korobeynikova0e8a1e2008-09-08 21:13:56 +00003847 SDValue Offset = DAG.getNode(ISD::ADD,
3848 TLI.getPointerTy(),
3849 DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET,
3850 TLI.getPointerTy()),
3851 CfaArg);
3852 setValue(&I, DAG.getNode(ISD::ADD,
3853 TLI.getPointerTy(),
3854 DAG.getNode(ISD::FRAMEADDR,
3855 TLI.getPointerTy(),
3856 DAG.getConstant(0,
3857 TLI.getPointerTy())),
3858 Offset));
3859 return 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003860 }
3861
3862 case Intrinsic::sqrt:
3863 setValue(&I, DAG.getNode(ISD::FSQRT,
3864 getValue(I.getOperand(1)).getValueType(),
3865 getValue(I.getOperand(1))));
3866 return 0;
3867 case Intrinsic::powi:
3868 setValue(&I, DAG.getNode(ISD::FPOWI,
3869 getValue(I.getOperand(1)).getValueType(),
3870 getValue(I.getOperand(1)),
3871 getValue(I.getOperand(2))));
3872 return 0;
3873 case Intrinsic::sin:
3874 setValue(&I, DAG.getNode(ISD::FSIN,
3875 getValue(I.getOperand(1)).getValueType(),
3876 getValue(I.getOperand(1))));
3877 return 0;
3878 case Intrinsic::cos:
3879 setValue(&I, DAG.getNode(ISD::FCOS,
3880 getValue(I.getOperand(1)).getValueType(),
3881 getValue(I.getOperand(1))));
3882 return 0;
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003883 case Intrinsic::log:
Dale Johannesen59e577f2008-09-05 18:38:42 +00003884 visitLog(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003885 return 0;
3886 case Intrinsic::log2:
Dale Johannesen59e577f2008-09-05 18:38:42 +00003887 visitLog2(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003888 return 0;
3889 case Intrinsic::log10:
Dale Johannesen59e577f2008-09-05 18:38:42 +00003890 visitLog10(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003891 return 0;
3892 case Intrinsic::exp:
Dale Johannesen59e577f2008-09-05 18:38:42 +00003893 visitExp(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003894 return 0;
3895 case Intrinsic::exp2:
Dale Johannesen601d3c02008-09-05 01:48:15 +00003896 visitExp2(I);
Dale Johannesen7794f2a2008-09-04 00:47:13 +00003897 return 0;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003898 case Intrinsic::pow:
Bill Wendlingaeb5c7b2008-09-10 00:20:20 +00003899 visitPow(I);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003900 return 0;
3901 case Intrinsic::pcmarker: {
3902 SDValue Tmp = getValue(I.getOperand(1));
3903 DAG.setRoot(DAG.getNode(ISD::PCMARKER, MVT::Other, getRoot(), Tmp));
3904 return 0;
3905 }
3906 case Intrinsic::readcyclecounter: {
3907 SDValue Op = getRoot();
3908 SDValue Tmp = DAG.getNode(ISD::READCYCLECOUNTER,
3909 DAG.getNodeValueTypes(MVT::i64, MVT::Other), 2,
3910 &Op, 1);
3911 setValue(&I, Tmp);
3912 DAG.setRoot(Tmp.getValue(1));
3913 return 0;
3914 }
3915 case Intrinsic::part_select: {
3916 // Currently not implemented: just abort
3917 assert(0 && "part_select intrinsic not implemented");
3918 abort();
3919 }
3920 case Intrinsic::part_set: {
3921 // Currently not implemented: just abort
3922 assert(0 && "part_set intrinsic not implemented");
3923 abort();
3924 }
3925 case Intrinsic::bswap:
3926 setValue(&I, DAG.getNode(ISD::BSWAP,
3927 getValue(I.getOperand(1)).getValueType(),
3928 getValue(I.getOperand(1))));
3929 return 0;
3930 case Intrinsic::cttz: {
3931 SDValue Arg = getValue(I.getOperand(1));
3932 MVT Ty = Arg.getValueType();
3933 SDValue result = DAG.getNode(ISD::CTTZ, Ty, Arg);
3934 setValue(&I, result);
3935 return 0;
3936 }
3937 case Intrinsic::ctlz: {
3938 SDValue Arg = getValue(I.getOperand(1));
3939 MVT Ty = Arg.getValueType();
3940 SDValue result = DAG.getNode(ISD::CTLZ, Ty, Arg);
3941 setValue(&I, result);
3942 return 0;
3943 }
3944 case Intrinsic::ctpop: {
3945 SDValue Arg = getValue(I.getOperand(1));
3946 MVT Ty = Arg.getValueType();
3947 SDValue result = DAG.getNode(ISD::CTPOP, Ty, Arg);
3948 setValue(&I, result);
3949 return 0;
3950 }
3951 case Intrinsic::stacksave: {
3952 SDValue Op = getRoot();
3953 SDValue Tmp = DAG.getNode(ISD::STACKSAVE,
3954 DAG.getNodeValueTypes(TLI.getPointerTy(), MVT::Other), 2, &Op, 1);
3955 setValue(&I, Tmp);
3956 DAG.setRoot(Tmp.getValue(1));
3957 return 0;
3958 }
3959 case Intrinsic::stackrestore: {
3960 SDValue Tmp = getValue(I.getOperand(1));
3961 DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, MVT::Other, getRoot(), Tmp));
3962 return 0;
3963 }
Bill Wendling4c3a1d82008-11-06 07:23:03 +00003964 case Intrinsic::stackprotector_create: {
Bill Wendlingb2a42982008-11-06 02:29:10 +00003965 // Emit code into the DAG to store the stack guard onto the stack.
3966 MachineFunction &MF = DAG.getMachineFunction();
3967 MachineFrameInfo *MFI = MF.getFrameInfo();
3968 MVT PtrTy = TLI.getPointerTy();
3969
Bill Wendlingb7c6ebc2008-11-07 01:23:58 +00003970 SDValue Src = getValue(I.getOperand(1)); // The guard's value.
3971 AllocaInst *Slot = cast<AllocaInst>(I.getOperand(2));
Bill Wendlingb2a42982008-11-06 02:29:10 +00003972
Bill Wendlingb7c6ebc2008-11-07 01:23:58 +00003973 int FI = FuncInfo.StaticAllocaMap[Slot];
Bill Wendlingb2a42982008-11-06 02:29:10 +00003974 MFI->setStackProtectorIndex(FI);
3975
3976 SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
3977
3978 // Store the stack protector onto the stack.
3979 SDValue Result = DAG.getStore(getRoot(), Src, FIN,
3980 PseudoSourceValue::getFixedStack(FI),
3981 0, true);
3982 setValue(&I, Result);
3983 DAG.setRoot(Result);
3984 return 0;
3985 }
Bill Wendling4c3a1d82008-11-06 07:23:03 +00003986 case Intrinsic::stackprotector_check: {
Bill Wendlingb2a42982008-11-06 02:29:10 +00003987 // Emit code into the DAG to retrieve the stack guard off of the stack.
3988 MachineFunction &MF = DAG.getMachineFunction();
3989 MachineFrameInfo *MFI = MF.getFrameInfo();
3990 MVT PtrTy = TLI.getPointerTy();
3991
3992 // Load the value stored on the stack.
3993 int FI = MFI->getStackProtectorIndex();
3994 SDValue FIN = DAG.getFrameIndex(MFI->getStackProtectorIndex(), PtrTy);
3995 setValue(&I, DAG.getLoad(PtrTy, getRoot(), FIN,
3996 PseudoSourceValue::getFixedStack(FI), 0, true));
3997 return 0;
3998 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00003999 case Intrinsic::var_annotation:
4000 // Discard annotate attributes
4001 return 0;
4002
4003 case Intrinsic::init_trampoline: {
4004 const Function *F = cast<Function>(I.getOperand(2)->stripPointerCasts());
4005
4006 SDValue Ops[6];
4007 Ops[0] = getRoot();
4008 Ops[1] = getValue(I.getOperand(1));
4009 Ops[2] = getValue(I.getOperand(2));
4010 Ops[3] = getValue(I.getOperand(3));
4011 Ops[4] = DAG.getSrcValue(I.getOperand(1));
4012 Ops[5] = DAG.getSrcValue(F);
4013
4014 SDValue Tmp = DAG.getNode(ISD::TRAMPOLINE,
4015 DAG.getNodeValueTypes(TLI.getPointerTy(),
4016 MVT::Other), 2,
4017 Ops, 6);
4018
4019 setValue(&I, Tmp);
4020 DAG.setRoot(Tmp.getValue(1));
4021 return 0;
4022 }
4023
4024 case Intrinsic::gcroot:
4025 if (GFI) {
4026 Value *Alloca = I.getOperand(1);
4027 Constant *TypeMap = cast<Constant>(I.getOperand(2));
4028
4029 FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
4030 GFI->addStackRoot(FI->getIndex(), TypeMap);
4031 }
4032 return 0;
4033
4034 case Intrinsic::gcread:
4035 case Intrinsic::gcwrite:
4036 assert(0 && "GC failed to lower gcread/gcwrite intrinsics!");
4037 return 0;
4038
4039 case Intrinsic::flt_rounds: {
4040 setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, MVT::i32));
4041 return 0;
4042 }
4043
4044 case Intrinsic::trap: {
4045 DAG.setRoot(DAG.getNode(ISD::TRAP, MVT::Other, getRoot()));
4046 return 0;
4047 }
4048 case Intrinsic::prefetch: {
4049 SDValue Ops[4];
4050 Ops[0] = getRoot();
4051 Ops[1] = getValue(I.getOperand(1));
4052 Ops[2] = getValue(I.getOperand(2));
4053 Ops[3] = getValue(I.getOperand(3));
4054 DAG.setRoot(DAG.getNode(ISD::PREFETCH, MVT::Other, &Ops[0], 4));
4055 return 0;
4056 }
4057
4058 case Intrinsic::memory_barrier: {
4059 SDValue Ops[6];
4060 Ops[0] = getRoot();
4061 for (int x = 1; x < 6; ++x)
4062 Ops[x] = getValue(I.getOperand(x));
4063
4064 DAG.setRoot(DAG.getNode(ISD::MEMBARRIER, MVT::Other, &Ops[0], 6));
4065 return 0;
4066 }
4067 case Intrinsic::atomic_cmp_swap: {
4068 SDValue Root = getRoot();
4069 SDValue L;
4070 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4071 case MVT::i8:
4072 L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_8, Root,
4073 getValue(I.getOperand(1)),
4074 getValue(I.getOperand(2)),
4075 getValue(I.getOperand(3)),
4076 I.getOperand(1));
4077 break;
4078 case MVT::i16:
4079 L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_16, Root,
4080 getValue(I.getOperand(1)),
4081 getValue(I.getOperand(2)),
4082 getValue(I.getOperand(3)),
4083 I.getOperand(1));
4084 break;
4085 case MVT::i32:
4086 L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_32, Root,
4087 getValue(I.getOperand(1)),
4088 getValue(I.getOperand(2)),
4089 getValue(I.getOperand(3)),
4090 I.getOperand(1));
4091 break;
4092 case MVT::i64:
4093 L = DAG.getAtomic(ISD::ATOMIC_CMP_SWAP_64, Root,
4094 getValue(I.getOperand(1)),
4095 getValue(I.getOperand(2)),
4096 getValue(I.getOperand(3)),
4097 I.getOperand(1));
4098 break;
4099 default:
4100 assert(0 && "Invalid atomic type");
4101 abort();
4102 }
4103 setValue(&I, L);
4104 DAG.setRoot(L.getValue(1));
4105 return 0;
4106 }
4107 case Intrinsic::atomic_load_add:
4108 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4109 case MVT::i8:
4110 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_8);
4111 case MVT::i16:
4112 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_16);
4113 case MVT::i32:
4114 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_32);
4115 case MVT::i64:
4116 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_ADD_64);
4117 default:
4118 assert(0 && "Invalid atomic type");
4119 abort();
4120 }
4121 case Intrinsic::atomic_load_sub:
4122 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4123 case MVT::i8:
4124 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_8);
4125 case MVT::i16:
4126 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_16);
4127 case MVT::i32:
4128 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_32);
4129 case MVT::i64:
4130 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_SUB_64);
4131 default:
4132 assert(0 && "Invalid atomic type");
4133 abort();
4134 }
4135 case Intrinsic::atomic_load_or:
4136 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4137 case MVT::i8:
4138 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_8);
4139 case MVT::i16:
4140 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_16);
4141 case MVT::i32:
4142 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_32);
4143 case MVT::i64:
4144 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_OR_64);
4145 default:
4146 assert(0 && "Invalid atomic type");
4147 abort();
4148 }
4149 case Intrinsic::atomic_load_xor:
4150 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4151 case MVT::i8:
4152 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_8);
4153 case MVT::i16:
4154 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_16);
4155 case MVT::i32:
4156 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_32);
4157 case MVT::i64:
4158 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_XOR_64);
4159 default:
4160 assert(0 && "Invalid atomic type");
4161 abort();
4162 }
4163 case Intrinsic::atomic_load_and:
4164 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4165 case MVT::i8:
4166 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_8);
4167 case MVT::i16:
4168 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_16);
4169 case MVT::i32:
4170 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_32);
4171 case MVT::i64:
4172 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_AND_64);
4173 default:
4174 assert(0 && "Invalid atomic type");
4175 abort();
4176 }
4177 case Intrinsic::atomic_load_nand:
4178 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4179 case MVT::i8:
4180 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_8);
4181 case MVT::i16:
4182 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_16);
4183 case MVT::i32:
4184 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_32);
4185 case MVT::i64:
4186 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_NAND_64);
4187 default:
4188 assert(0 && "Invalid atomic type");
4189 abort();
4190 }
4191 case Intrinsic::atomic_load_max:
4192 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4193 case MVT::i8:
4194 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_8);
4195 case MVT::i16:
4196 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_16);
4197 case MVT::i32:
4198 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_32);
4199 case MVT::i64:
4200 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MAX_64);
4201 default:
4202 assert(0 && "Invalid atomic type");
4203 abort();
4204 }
4205 case Intrinsic::atomic_load_min:
4206 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4207 case MVT::i8:
4208 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_8);
4209 case MVT::i16:
4210 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_16);
4211 case MVT::i32:
4212 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_32);
4213 case MVT::i64:
4214 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_MIN_64);
4215 default:
4216 assert(0 && "Invalid atomic type");
4217 abort();
4218 }
4219 case Intrinsic::atomic_load_umin:
4220 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4221 case MVT::i8:
4222 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_8);
4223 case MVT::i16:
4224 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_16);
4225 case MVT::i32:
4226 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_32);
4227 case MVT::i64:
4228 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMIN_64);
4229 default:
4230 assert(0 && "Invalid atomic type");
4231 abort();
4232 }
4233 case Intrinsic::atomic_load_umax:
4234 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4235 case MVT::i8:
4236 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_8);
4237 case MVT::i16:
4238 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_16);
4239 case MVT::i32:
4240 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_32);
4241 case MVT::i64:
4242 return implVisitBinaryAtomic(I, ISD::ATOMIC_LOAD_UMAX_64);
4243 default:
4244 assert(0 && "Invalid atomic type");
4245 abort();
4246 }
4247 case Intrinsic::atomic_swap:
4248 switch (getValue(I.getOperand(2)).getValueType().getSimpleVT()) {
4249 case MVT::i8:
4250 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_8);
4251 case MVT::i16:
4252 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_16);
4253 case MVT::i32:
4254 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_32);
4255 case MVT::i64:
4256 return implVisitBinaryAtomic(I, ISD::ATOMIC_SWAP_64);
4257 default:
4258 assert(0 && "Invalid atomic type");
4259 abort();
4260 }
4261 }
4262}
4263
4264
4265void SelectionDAGLowering::LowerCallTo(CallSite CS, SDValue Callee,
4266 bool IsTailCall,
4267 MachineBasicBlock *LandingPad) {
4268 const PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
4269 const FunctionType *FTy = cast<FunctionType>(PT->getElementType());
4270 MachineModuleInfo *MMI = DAG.getMachineModuleInfo();
4271 unsigned BeginLabel = 0, EndLabel = 0;
4272
4273 TargetLowering::ArgListTy Args;
4274 TargetLowering::ArgListEntry Entry;
4275 Args.reserve(CS.arg_size());
4276 for (CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
4277 i != e; ++i) {
4278 SDValue ArgNode = getValue(*i);
4279 Entry.Node = ArgNode; Entry.Ty = (*i)->getType();
4280
4281 unsigned attrInd = i - CS.arg_begin() + 1;
Devang Patel05988662008-09-25 21:00:45 +00004282 Entry.isSExt = CS.paramHasAttr(attrInd, Attribute::SExt);
4283 Entry.isZExt = CS.paramHasAttr(attrInd, Attribute::ZExt);
4284 Entry.isInReg = CS.paramHasAttr(attrInd, Attribute::InReg);
4285 Entry.isSRet = CS.paramHasAttr(attrInd, Attribute::StructRet);
4286 Entry.isNest = CS.paramHasAttr(attrInd, Attribute::Nest);
4287 Entry.isByVal = CS.paramHasAttr(attrInd, Attribute::ByVal);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004288 Entry.Alignment = CS.getParamAlignment(attrInd);
4289 Args.push_back(Entry);
4290 }
4291
4292 if (LandingPad && MMI) {
4293 // Insert a label before the invoke call to mark the try range. This can be
4294 // used to detect deletion of the invoke via the MachineModuleInfo.
4295 BeginLabel = MMI->NextLabelID();
4296 // Both PendingLoads and PendingExports must be flushed here;
4297 // this call might not return.
4298 (void)getRoot();
4299 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getControlRoot(), BeginLabel));
4300 }
4301
4302 std::pair<SDValue,SDValue> Result =
4303 TLI.LowerCallTo(getRoot(), CS.getType(),
Devang Patel05988662008-09-25 21:00:45 +00004304 CS.paramHasAttr(0, Attribute::SExt),
Dale Johannesen86098bd2008-09-26 19:31:26 +00004305 CS.paramHasAttr(0, Attribute::ZExt), FTy->isVarArg(),
4306 CS.paramHasAttr(0, Attribute::InReg),
4307 CS.getCallingConv(),
Dan Gohman1937e2f2008-09-16 01:42:28 +00004308 IsTailCall && PerformTailCallOpt,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004309 Callee, Args, DAG);
4310 if (CS.getType() != Type::VoidTy)
4311 setValue(CS.getInstruction(), Result.first);
4312 DAG.setRoot(Result.second);
4313
4314 if (LandingPad && MMI) {
4315 // Insert a label at the end of the invoke call to mark the try range. This
4316 // can be used to detect deletion of the invoke via the MachineModuleInfo.
4317 EndLabel = MMI->NextLabelID();
4318 DAG.setRoot(DAG.getLabel(ISD::EH_LABEL, getRoot(), EndLabel));
4319
4320 // Inform MachineModuleInfo of range.
4321 MMI->addInvoke(LandingPad, BeginLabel, EndLabel);
4322 }
4323}
4324
4325
4326void SelectionDAGLowering::visitCall(CallInst &I) {
4327 const char *RenameFn = 0;
4328 if (Function *F = I.getCalledFunction()) {
4329 if (F->isDeclaration()) {
4330 if (unsigned IID = F->getIntrinsicID()) {
4331 RenameFn = visitIntrinsicCall(I, IID);
4332 if (!RenameFn)
4333 return;
4334 }
4335 }
4336
4337 // Check for well-known libc/libm calls. If the function is internal, it
4338 // can't be a library call.
4339 unsigned NameLen = F->getNameLen();
4340 if (!F->hasInternalLinkage() && NameLen) {
4341 const char *NameStr = F->getNameStart();
4342 if (NameStr[0] == 'c' &&
4343 ((NameLen == 8 && !strcmp(NameStr, "copysign")) ||
4344 (NameLen == 9 && !strcmp(NameStr, "copysignf")))) {
4345 if (I.getNumOperands() == 3 && // Basic sanity checks.
4346 I.getOperand(1)->getType()->isFloatingPoint() &&
4347 I.getType() == I.getOperand(1)->getType() &&
4348 I.getType() == I.getOperand(2)->getType()) {
4349 SDValue LHS = getValue(I.getOperand(1));
4350 SDValue RHS = getValue(I.getOperand(2));
4351 setValue(&I, DAG.getNode(ISD::FCOPYSIGN, LHS.getValueType(),
4352 LHS, RHS));
4353 return;
4354 }
4355 } else if (NameStr[0] == 'f' &&
4356 ((NameLen == 4 && !strcmp(NameStr, "fabs")) ||
4357 (NameLen == 5 && !strcmp(NameStr, "fabsf")) ||
4358 (NameLen == 5 && !strcmp(NameStr, "fabsl")))) {
4359 if (I.getNumOperands() == 2 && // Basic sanity checks.
4360 I.getOperand(1)->getType()->isFloatingPoint() &&
4361 I.getType() == I.getOperand(1)->getType()) {
4362 SDValue Tmp = getValue(I.getOperand(1));
4363 setValue(&I, DAG.getNode(ISD::FABS, Tmp.getValueType(), Tmp));
4364 return;
4365 }
4366 } else if (NameStr[0] == 's' &&
4367 ((NameLen == 3 && !strcmp(NameStr, "sin")) ||
4368 (NameLen == 4 && !strcmp(NameStr, "sinf")) ||
4369 (NameLen == 4 && !strcmp(NameStr, "sinl")))) {
4370 if (I.getNumOperands() == 2 && // Basic sanity checks.
4371 I.getOperand(1)->getType()->isFloatingPoint() &&
4372 I.getType() == I.getOperand(1)->getType()) {
4373 SDValue Tmp = getValue(I.getOperand(1));
4374 setValue(&I, DAG.getNode(ISD::FSIN, Tmp.getValueType(), Tmp));
4375 return;
4376 }
4377 } else if (NameStr[0] == 'c' &&
4378 ((NameLen == 3 && !strcmp(NameStr, "cos")) ||
4379 (NameLen == 4 && !strcmp(NameStr, "cosf")) ||
4380 (NameLen == 4 && !strcmp(NameStr, "cosl")))) {
4381 if (I.getNumOperands() == 2 && // Basic sanity checks.
4382 I.getOperand(1)->getType()->isFloatingPoint() &&
4383 I.getType() == I.getOperand(1)->getType()) {
4384 SDValue Tmp = getValue(I.getOperand(1));
4385 setValue(&I, DAG.getNode(ISD::FCOS, Tmp.getValueType(), Tmp));
4386 return;
4387 }
4388 }
4389 }
4390 } else if (isa<InlineAsm>(I.getOperand(0))) {
4391 visitInlineAsm(&I);
4392 return;
4393 }
4394
4395 SDValue Callee;
4396 if (!RenameFn)
4397 Callee = getValue(I.getOperand(0));
4398 else
Bill Wendling056292f2008-09-16 21:48:12 +00004399 Callee = DAG.getExternalSymbol(RenameFn, TLI.getPointerTy());
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004400
4401 LowerCallTo(&I, Callee, I.isTailCall());
4402}
4403
4404
4405/// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
4406/// this value and returns the result as a ValueVT value. This uses
4407/// Chain/Flag as the input and updates them for the output Chain/Flag.
4408/// If the Flag pointer is NULL, no flag is used.
4409SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
4410 SDValue &Chain,
4411 SDValue *Flag) const {
4412 // Assemble the legal parts into the final values.
4413 SmallVector<SDValue, 4> Values(ValueVTs.size());
4414 SmallVector<SDValue, 8> Parts;
4415 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4416 // Copy the legal parts from the registers.
4417 MVT ValueVT = ValueVTs[Value];
4418 unsigned NumRegs = TLI->getNumRegisters(ValueVT);
4419 MVT RegisterVT = RegVTs[Value];
4420
4421 Parts.resize(NumRegs);
4422 for (unsigned i = 0; i != NumRegs; ++i) {
4423 SDValue P;
4424 if (Flag == 0)
4425 P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT);
4426 else {
4427 P = DAG.getCopyFromReg(Chain, Regs[Part+i], RegisterVT, *Flag);
4428 *Flag = P.getValue(2);
4429 }
4430 Chain = P.getValue(1);
4431
4432 // If the source register was virtual and if we know something about it,
4433 // add an assert node.
4434 if (TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) &&
4435 RegisterVT.isInteger() && !RegisterVT.isVector()) {
4436 unsigned SlotNo = Regs[Part+i]-TargetRegisterInfo::FirstVirtualRegister;
4437 FunctionLoweringInfo &FLI = DAG.getFunctionLoweringInfo();
4438 if (FLI.LiveOutRegInfo.size() > SlotNo) {
4439 FunctionLoweringInfo::LiveOutInfo &LOI = FLI.LiveOutRegInfo[SlotNo];
4440
4441 unsigned RegSize = RegisterVT.getSizeInBits();
4442 unsigned NumSignBits = LOI.NumSignBits;
4443 unsigned NumZeroBits = LOI.KnownZero.countLeadingOnes();
4444
4445 // FIXME: We capture more information than the dag can represent. For
4446 // now, just use the tightest assertzext/assertsext possible.
4447 bool isSExt = true;
4448 MVT FromVT(MVT::Other);
4449 if (NumSignBits == RegSize)
4450 isSExt = true, FromVT = MVT::i1; // ASSERT SEXT 1
4451 else if (NumZeroBits >= RegSize-1)
4452 isSExt = false, FromVT = MVT::i1; // ASSERT ZEXT 1
4453 else if (NumSignBits > RegSize-8)
4454 isSExt = true, FromVT = MVT::i8; // ASSERT SEXT 8
4455 else if (NumZeroBits >= RegSize-9)
4456 isSExt = false, FromVT = MVT::i8; // ASSERT ZEXT 8
4457 else if (NumSignBits > RegSize-16)
Bill Wendling181b6272008-10-19 20:34:04 +00004458 isSExt = true, FromVT = MVT::i16; // ASSERT SEXT 16
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004459 else if (NumZeroBits >= RegSize-17)
Bill Wendling181b6272008-10-19 20:34:04 +00004460 isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004461 else if (NumSignBits > RegSize-32)
Bill Wendling181b6272008-10-19 20:34:04 +00004462 isSExt = true, FromVT = MVT::i32; // ASSERT SEXT 32
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004463 else if (NumZeroBits >= RegSize-33)
Bill Wendling181b6272008-10-19 20:34:04 +00004464 isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004465
4466 if (FromVT != MVT::Other) {
4467 P = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext,
4468 RegisterVT, P, DAG.getValueType(FromVT));
4469
4470 }
4471 }
4472 }
4473
4474 Parts[i] = P;
4475 }
4476
4477 Values[Value] = getCopyFromParts(DAG, Parts.begin(), NumRegs, RegisterVT,
4478 ValueVT);
4479 Part += NumRegs;
4480 Parts.clear();
4481 }
4482
4483 return DAG.getMergeValues(DAG.getVTList(&ValueVTs[0], ValueVTs.size()),
4484 &Values[0], ValueVTs.size());
4485}
4486
4487/// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
4488/// specified value into the registers specified by this object. This uses
4489/// Chain/Flag as the input and updates them for the output Chain/Flag.
4490/// If the Flag pointer is NULL, no flag is used.
4491void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG,
4492 SDValue &Chain, SDValue *Flag) const {
4493 // Get the list of the values's legal parts.
4494 unsigned NumRegs = Regs.size();
4495 SmallVector<SDValue, 8> Parts(NumRegs);
4496 for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
4497 MVT ValueVT = ValueVTs[Value];
4498 unsigned NumParts = TLI->getNumRegisters(ValueVT);
4499 MVT RegisterVT = RegVTs[Value];
4500
4501 getCopyToParts(DAG, Val.getValue(Val.getResNo() + Value),
4502 &Parts[Part], NumParts, RegisterVT);
4503 Part += NumParts;
4504 }
4505
4506 // Copy the parts into the registers.
4507 SmallVector<SDValue, 8> Chains(NumRegs);
4508 for (unsigned i = 0; i != NumRegs; ++i) {
4509 SDValue Part;
4510 if (Flag == 0)
4511 Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i]);
4512 else {
4513 Part = DAG.getCopyToReg(Chain, Regs[i], Parts[i], *Flag);
4514 *Flag = Part.getValue(1);
4515 }
4516 Chains[i] = Part.getValue(0);
4517 }
4518
4519 if (NumRegs == 1 || Flag)
4520 // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
4521 // flagged to it. That is the CopyToReg nodes and the user are considered
4522 // a single scheduling unit. If we create a TokenFactor and return it as
4523 // chain, then the TokenFactor is both a predecessor (operand) of the
4524 // user as well as a successor (the TF operands are flagged to the user).
4525 // c1, f1 = CopyToReg
4526 // c2, f2 = CopyToReg
4527 // c3 = TokenFactor c1, c2
4528 // ...
4529 // = op c3, ..., f2
4530 Chain = Chains[NumRegs-1];
4531 else
4532 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other, &Chains[0], NumRegs);
4533}
4534
4535/// AddInlineAsmOperands - Add this value to the specified inlineasm node
4536/// operand list. This adds the code marker and includes the number of
4537/// values added into it.
4538void RegsForValue::AddInlineAsmOperands(unsigned Code, SelectionDAG &DAG,
4539 std::vector<SDValue> &Ops) const {
4540 MVT IntPtrTy = DAG.getTargetLoweringInfo().getPointerTy();
4541 Ops.push_back(DAG.getTargetConstant(Code | (Regs.size() << 3), IntPtrTy));
4542 for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
4543 unsigned NumRegs = TLI->getNumRegisters(ValueVTs[Value]);
4544 MVT RegisterVT = RegVTs[Value];
Chris Lattner58f15c42008-10-17 16:21:11 +00004545 for (unsigned i = 0; i != NumRegs; ++i) {
4546 assert(Reg < Regs.size() && "Mismatch in # registers expected");
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004547 Ops.push_back(DAG.getRegister(Regs[Reg++], RegisterVT));
Chris Lattner58f15c42008-10-17 16:21:11 +00004548 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004549 }
4550}
4551
4552/// isAllocatableRegister - If the specified register is safe to allocate,
4553/// i.e. it isn't a stack pointer or some other special register, return the
4554/// register class for the register. Otherwise, return null.
4555static const TargetRegisterClass *
4556isAllocatableRegister(unsigned Reg, MachineFunction &MF,
4557 const TargetLowering &TLI,
4558 const TargetRegisterInfo *TRI) {
4559 MVT FoundVT = MVT::Other;
4560 const TargetRegisterClass *FoundRC = 0;
4561 for (TargetRegisterInfo::regclass_iterator RCI = TRI->regclass_begin(),
4562 E = TRI->regclass_end(); RCI != E; ++RCI) {
4563 MVT ThisVT = MVT::Other;
4564
4565 const TargetRegisterClass *RC = *RCI;
4566 // If none of the the value types for this register class are valid, we
4567 // can't use it. For example, 64-bit reg classes on 32-bit targets.
4568 for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
4569 I != E; ++I) {
4570 if (TLI.isTypeLegal(*I)) {
4571 // If we have already found this register in a different register class,
4572 // choose the one with the largest VT specified. For example, on
4573 // PowerPC, we favor f64 register classes over f32.
4574 if (FoundVT == MVT::Other || FoundVT.bitsLT(*I)) {
4575 ThisVT = *I;
4576 break;
4577 }
4578 }
4579 }
4580
4581 if (ThisVT == MVT::Other) continue;
4582
4583 // NOTE: This isn't ideal. In particular, this might allocate the
4584 // frame pointer in functions that need it (due to them not being taken
4585 // out of allocation, because a variable sized allocation hasn't been seen
4586 // yet). This is a slight code pessimization, but should still work.
4587 for (TargetRegisterClass::iterator I = RC->allocation_order_begin(MF),
4588 E = RC->allocation_order_end(MF); I != E; ++I)
4589 if (*I == Reg) {
4590 // We found a matching register class. Keep looking at others in case
4591 // we find one with larger registers that this physreg is also in.
4592 FoundRC = RC;
4593 FoundVT = ThisVT;
4594 break;
4595 }
4596 }
4597 return FoundRC;
4598}
4599
4600
4601namespace llvm {
4602/// AsmOperandInfo - This contains information for each constraint that we are
4603/// lowering.
Daniel Dunbarc0c3b9a2008-09-10 04:16:29 +00004604struct VISIBILITY_HIDDEN SDISelAsmOperandInfo :
4605 public TargetLowering::AsmOperandInfo {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004606 /// CallOperand - If this is the result output operand or a clobber
4607 /// this is null, otherwise it is the incoming operand to the CallInst.
4608 /// This gets modified as the asm is processed.
4609 SDValue CallOperand;
4610
4611 /// AssignedRegs - If this is a register or register class operand, this
4612 /// contains the set of register corresponding to the operand.
4613 RegsForValue AssignedRegs;
4614
4615 explicit SDISelAsmOperandInfo(const InlineAsm::ConstraintInfo &info)
4616 : TargetLowering::AsmOperandInfo(info), CallOperand(0,0) {
4617 }
4618
4619 /// MarkAllocatedRegs - Once AssignedRegs is set, mark the assigned registers
4620 /// busy in OutputRegs/InputRegs.
4621 void MarkAllocatedRegs(bool isOutReg, bool isInReg,
4622 std::set<unsigned> &OutputRegs,
4623 std::set<unsigned> &InputRegs,
4624 const TargetRegisterInfo &TRI) const {
4625 if (isOutReg) {
4626 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4627 MarkRegAndAliases(AssignedRegs.Regs[i], OutputRegs, TRI);
4628 }
4629 if (isInReg) {
4630 for (unsigned i = 0, e = AssignedRegs.Regs.size(); i != e; ++i)
4631 MarkRegAndAliases(AssignedRegs.Regs[i], InputRegs, TRI);
4632 }
4633 }
Chris Lattner81249c92008-10-17 17:05:25 +00004634
4635 /// getCallOperandValMVT - Return the MVT of the Value* that this operand
4636 /// corresponds to. If there is no Value* for this operand, it returns
4637 /// MVT::Other.
4638 MVT getCallOperandValMVT(const TargetLowering &TLI,
4639 const TargetData *TD) const {
4640 if (CallOperandVal == 0) return MVT::Other;
4641
4642 if (isa<BasicBlock>(CallOperandVal))
4643 return TLI.getPointerTy();
4644
4645 const llvm::Type *OpTy = CallOperandVal->getType();
4646
4647 // If this is an indirect operand, the operand is a pointer to the
4648 // accessed type.
4649 if (isIndirect)
4650 OpTy = cast<PointerType>(OpTy)->getElementType();
4651
4652 // If OpTy is not a single value, it may be a struct/union that we
4653 // can tile with integers.
4654 if (!OpTy->isSingleValueType() && OpTy->isSized()) {
4655 unsigned BitSize = TD->getTypeSizeInBits(OpTy);
4656 switch (BitSize) {
4657 default: break;
4658 case 1:
4659 case 8:
4660 case 16:
4661 case 32:
4662 case 64:
Chris Lattnercfc14c12008-10-17 19:59:51 +00004663 case 128:
Chris Lattner81249c92008-10-17 17:05:25 +00004664 OpTy = IntegerType::get(BitSize);
4665 break;
4666 }
4667 }
4668
4669 return TLI.getValueType(OpTy, true);
4670 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004671
4672private:
4673 /// MarkRegAndAliases - Mark the specified register and all aliases in the
4674 /// specified set.
4675 static void MarkRegAndAliases(unsigned Reg, std::set<unsigned> &Regs,
4676 const TargetRegisterInfo &TRI) {
4677 assert(TargetRegisterInfo::isPhysicalRegister(Reg) && "Isn't a physreg");
4678 Regs.insert(Reg);
4679 if (const unsigned *Aliases = TRI.getAliasSet(Reg))
4680 for (; *Aliases; ++Aliases)
4681 Regs.insert(*Aliases);
4682 }
4683};
4684} // end llvm namespace.
4685
4686
4687/// GetRegistersForValue - Assign registers (virtual or physical) for the
4688/// specified operand. We prefer to assign virtual registers, to allow the
4689/// register allocator handle the assignment process. However, if the asm uses
4690/// features that we can't model on machineinstrs, we have SDISel do the
4691/// allocation. This produces generally horrible, but correct, code.
4692///
4693/// OpInfo describes the operand.
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004694/// Input and OutputRegs are the set of already allocated physical registers.
4695///
4696void SelectionDAGLowering::
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004697GetRegistersForValue(SDISelAsmOperandInfo &OpInfo,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004698 std::set<unsigned> &OutputRegs,
4699 std::set<unsigned> &InputRegs) {
4700 // Compute whether this value requires an input register, an output register,
4701 // or both.
4702 bool isOutReg = false;
4703 bool isInReg = false;
4704 switch (OpInfo.Type) {
4705 case InlineAsm::isOutput:
4706 isOutReg = true;
4707
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004708 // If there is an input constraint that matches this, we need to reserve
4709 // the input register so no other inputs allocate to it.
Chris Lattner6bdcda32008-10-17 16:47:46 +00004710 isInReg = OpInfo.hasMatchingInput();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004711 break;
4712 case InlineAsm::isInput:
4713 isInReg = true;
4714 isOutReg = false;
4715 break;
4716 case InlineAsm::isClobber:
4717 isOutReg = true;
4718 isInReg = true;
4719 break;
4720 }
4721
4722
4723 MachineFunction &MF = DAG.getMachineFunction();
4724 SmallVector<unsigned, 4> Regs;
4725
4726 // If this is a constraint for a single physreg, or a constraint for a
4727 // register class, find it.
4728 std::pair<unsigned, const TargetRegisterClass*> PhysReg =
4729 TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
4730 OpInfo.ConstraintVT);
4731
4732 unsigned NumRegs = 1;
Chris Lattner01426e12008-10-21 00:45:36 +00004733 if (OpInfo.ConstraintVT != MVT::Other) {
4734 // If this is a FP input in an integer register (or visa versa) insert a bit
4735 // cast of the input value. More generally, handle any case where the input
4736 // value disagrees with the register class we plan to stick this in.
4737 if (OpInfo.Type == InlineAsm::isInput &&
4738 PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
4739 // Try to convert to the first MVT that the reg class contains. If the
4740 // types are identical size, use a bitcast to convert (e.g. two differing
4741 // vector types).
4742 MVT RegVT = *PhysReg.second->vt_begin();
4743 if (RegVT.getSizeInBits() == OpInfo.ConstraintVT.getSizeInBits()) {
4744 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, RegVT,
4745 OpInfo.CallOperand);
4746 OpInfo.ConstraintVT = RegVT;
4747 } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
4748 // If the input is a FP value and we want it in FP registers, do a
4749 // bitcast to the corresponding integer type. This turns an f64 value
4750 // into i64, which can be passed with two i32 values on a 32-bit
4751 // machine.
4752 RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
4753 OpInfo.CallOperand = DAG.getNode(ISD::BIT_CONVERT, RegVT,
4754 OpInfo.CallOperand);
4755 OpInfo.ConstraintVT = RegVT;
4756 }
4757 }
4758
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004759 NumRegs = TLI.getNumRegisters(OpInfo.ConstraintVT);
Chris Lattner01426e12008-10-21 00:45:36 +00004760 }
4761
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004762 MVT RegVT;
4763 MVT ValueVT = OpInfo.ConstraintVT;
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004764
4765 // If this is a constraint for a specific physical register, like {r17},
4766 // assign it now.
4767 if (PhysReg.first) {
4768 if (OpInfo.ConstraintVT == MVT::Other)
4769 ValueVT = *PhysReg.second->vt_begin();
4770
4771 // Get the actual register value type. This is important, because the user
4772 // may have asked for (e.g.) the AX register in i32 type. We need to
4773 // remember that AX is actually i16 to get the right extension.
4774 RegVT = *PhysReg.second->vt_begin();
4775
4776 // This is a explicit reference to a physical register.
4777 Regs.push_back(PhysReg.first);
4778
4779 // If this is an expanded reference, add the rest of the regs to Regs.
4780 if (NumRegs != 1) {
4781 TargetRegisterClass::iterator I = PhysReg.second->begin();
4782 for (; *I != PhysReg.first; ++I)
4783 assert(I != PhysReg.second->end() && "Didn't find reg!");
4784
4785 // Already added the first reg.
4786 --NumRegs; ++I;
4787 for (; NumRegs; --NumRegs, ++I) {
4788 assert(I != PhysReg.second->end() && "Ran out of registers to allocate!");
4789 Regs.push_back(*I);
4790 }
4791 }
4792 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4793 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4794 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4795 return;
4796 }
4797
4798 // Otherwise, if this was a reference to an LLVM register class, create vregs
4799 // for this reference.
4800 std::vector<unsigned> RegClassRegs;
4801 const TargetRegisterClass *RC = PhysReg.second;
4802 if (RC) {
Dale Johannesen8e3455b2008-09-24 23:13:09 +00004803 // If this is a tied register, our regalloc doesn't know how to maintain
Chris Lattner58f15c42008-10-17 16:21:11 +00004804 // the constraint, so we have to pick a register to pin the input/output to.
4805 // If it isn't a matched constraint, go ahead and create vreg and let the
4806 // regalloc do its thing.
Chris Lattner6bdcda32008-10-17 16:47:46 +00004807 if (!OpInfo.hasMatchingInput()) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004808 RegVT = *PhysReg.second->vt_begin();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004809 if (OpInfo.ConstraintVT == MVT::Other)
4810 ValueVT = RegVT;
4811
4812 // Create the appropriate number of virtual registers.
4813 MachineRegisterInfo &RegInfo = MF.getRegInfo();
4814 for (; NumRegs; --NumRegs)
4815 Regs.push_back(RegInfo.createVirtualRegister(PhysReg.second));
4816
4817 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, RegVT, ValueVT);
4818 return;
4819 }
4820
4821 // Otherwise, we can't allocate it. Let the code below figure out how to
4822 // maintain these constraints.
4823 RegClassRegs.assign(PhysReg.second->begin(), PhysReg.second->end());
4824
4825 } else {
4826 // This is a reference to a register class that doesn't directly correspond
4827 // to an LLVM register class. Allocate NumRegs consecutive, available,
4828 // registers from the class.
4829 RegClassRegs = TLI.getRegClassForInlineAsmConstraint(OpInfo.ConstraintCode,
4830 OpInfo.ConstraintVT);
4831 }
4832
4833 const TargetRegisterInfo *TRI = DAG.getTarget().getRegisterInfo();
4834 unsigned NumAllocated = 0;
4835 for (unsigned i = 0, e = RegClassRegs.size(); i != e; ++i) {
4836 unsigned Reg = RegClassRegs[i];
4837 // See if this register is available.
4838 if ((isOutReg && OutputRegs.count(Reg)) || // Already used.
4839 (isInReg && InputRegs.count(Reg))) { // Already used.
4840 // Make sure we find consecutive registers.
4841 NumAllocated = 0;
4842 continue;
4843 }
4844
4845 // Check to see if this register is allocatable (i.e. don't give out the
4846 // stack pointer).
4847 if (RC == 0) {
4848 RC = isAllocatableRegister(Reg, MF, TLI, TRI);
4849 if (!RC) { // Couldn't allocate this register.
4850 // Reset NumAllocated to make sure we return consecutive registers.
4851 NumAllocated = 0;
4852 continue;
4853 }
4854 }
4855
4856 // Okay, this register is good, we can use it.
4857 ++NumAllocated;
4858
4859 // If we allocated enough consecutive registers, succeed.
4860 if (NumAllocated == NumRegs) {
4861 unsigned RegStart = (i-NumAllocated)+1;
4862 unsigned RegEnd = i+1;
4863 // Mark all of the allocated registers used.
4864 for (unsigned i = RegStart; i != RegEnd; ++i)
4865 Regs.push_back(RegClassRegs[i]);
4866
4867 OpInfo.AssignedRegs = RegsForValue(TLI, Regs, *RC->vt_begin(),
4868 OpInfo.ConstraintVT);
4869 OpInfo.MarkAllocatedRegs(isOutReg, isInReg, OutputRegs, InputRegs, *TRI);
4870 return;
4871 }
4872 }
4873
4874 // Otherwise, we couldn't allocate enough registers for this.
4875}
4876
Evan Chengda43bcf2008-09-24 00:05:32 +00004877/// hasInlineAsmMemConstraint - Return true if the inline asm instruction being
4878/// processed uses a memory 'm' constraint.
4879static bool
4880hasInlineAsmMemConstraint(std::vector<InlineAsm::ConstraintInfo> &CInfos,
4881 TargetLowering &TLI) {
4882 for (unsigned i = 0, e = CInfos.size(); i != e; ++i) {
4883 InlineAsm::ConstraintInfo &CI = CInfos[i];
4884 for (unsigned j = 0, ee = CI.Codes.size(); j != ee; ++j) {
4885 TargetLowering::ConstraintType CType = TLI.getConstraintType(CI.Codes[j]);
4886 if (CType == TargetLowering::C_Memory)
4887 return true;
4888 }
4889 }
4890
4891 return false;
4892}
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004893
4894/// visitInlineAsm - Handle a call to an InlineAsm object.
4895///
4896void SelectionDAGLowering::visitInlineAsm(CallSite CS) {
4897 InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
4898
4899 /// ConstraintOperands - Information about all of the constraints.
4900 std::vector<SDISelAsmOperandInfo> ConstraintOperands;
4901
4902 SDValue Chain = getRoot();
4903 SDValue Flag;
4904
4905 std::set<unsigned> OutputRegs, InputRegs;
4906
4907 // Do a prepass over the constraints, canonicalizing them, and building up the
4908 // ConstraintOperands list.
4909 std::vector<InlineAsm::ConstraintInfo>
4910 ConstraintInfos = IA->ParseConstraints();
4911
Evan Chengda43bcf2008-09-24 00:05:32 +00004912 bool hasMemory = hasInlineAsmMemConstraint(ConstraintInfos, TLI);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004913
4914 unsigned ArgNo = 0; // ArgNo - The argument of the CallInst.
4915 unsigned ResNo = 0; // ResNo - The result number of the next output.
4916 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4917 ConstraintOperands.push_back(SDISelAsmOperandInfo(ConstraintInfos[i]));
4918 SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
4919
4920 MVT OpVT = MVT::Other;
4921
4922 // Compute the value type for each operand.
4923 switch (OpInfo.Type) {
4924 case InlineAsm::isOutput:
4925 // Indirect outputs just consume an argument.
4926 if (OpInfo.isIndirect) {
4927 OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4928 break;
4929 }
Chris Lattner2a0b96c2008-10-18 18:49:30 +00004930
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004931 // The return value of the call is this value. As such, there is no
4932 // corresponding argument.
4933 assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
4934 if (const StructType *STy = dyn_cast<StructType>(CS.getType())) {
4935 OpVT = TLI.getValueType(STy->getElementType(ResNo));
4936 } else {
4937 assert(ResNo == 0 && "Asm only has one result!");
4938 OpVT = TLI.getValueType(CS.getType());
4939 }
4940 ++ResNo;
4941 break;
4942 case InlineAsm::isInput:
4943 OpInfo.CallOperandVal = CS.getArgument(ArgNo++);
4944 break;
4945 case InlineAsm::isClobber:
4946 // Nothing to do.
4947 break;
4948 }
4949
4950 // If this is an input or an indirect output, process the call argument.
4951 // BasicBlocks are labels, currently appearing only in asm's.
4952 if (OpInfo.CallOperandVal) {
Chris Lattner81249c92008-10-17 17:05:25 +00004953 if (BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004954 OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
Chris Lattner81249c92008-10-17 17:05:25 +00004955 } else {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004956 OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004957 }
Chris Lattner81249c92008-10-17 17:05:25 +00004958
4959 OpVT = OpInfo.getCallOperandValMVT(TLI, TD);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004960 }
4961
4962 OpInfo.ConstraintVT = OpVT;
Chris Lattner2a0b96c2008-10-18 18:49:30 +00004963 }
4964
4965 // Second pass over the constraints: compute which constraint option to use
4966 // and assign registers to constraints that want a specific physreg.
4967 for (unsigned i = 0, e = ConstraintInfos.size(); i != e; ++i) {
4968 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
4969
4970 // If this is an output operand with a matching input operand, look up the
4971 // matching input. It might have a different type (e.g. the output might be
4972 // i32 and the input i64) and we need to pick the larger width to ensure we
4973 // reserve the right number of registers.
4974 if (OpInfo.hasMatchingInput()) {
4975 SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
4976 if (OpInfo.ConstraintVT != Input.ConstraintVT) {
4977 assert(OpInfo.ConstraintVT.isInteger() &&
4978 Input.ConstraintVT.isInteger() &&
4979 "Asm constraints must be the same or different sized integers");
4980 if (OpInfo.ConstraintVT.getSizeInBits() <
4981 Input.ConstraintVT.getSizeInBits())
4982 OpInfo.ConstraintVT = Input.ConstraintVT;
4983 else
4984 Input.ConstraintVT = OpInfo.ConstraintVT;
4985 }
4986 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004987
4988 // Compute the constraint code and ConstraintType to use.
Evan Chengda43bcf2008-09-24 00:05:32 +00004989 TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, hasMemory, &DAG);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004990
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00004991 // If this is a memory input, and if the operand is not indirect, do what we
4992 // need to to provide an address for the memory input.
4993 if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
4994 !OpInfo.isIndirect) {
4995 assert(OpInfo.Type == InlineAsm::isInput &&
4996 "Can only indirectify direct input operands!");
4997
4998 // Memory operands really want the address of the value. If we don't have
4999 // an indirect input, put it in the constpool if we can, otherwise spill
5000 // it to a stack slot.
5001
5002 // If the operand is a float, integer, or vector constant, spill to a
5003 // constant pool entry to get its address.
5004 Value *OpVal = OpInfo.CallOperandVal;
5005 if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
5006 isa<ConstantVector>(OpVal)) {
5007 OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
5008 TLI.getPointerTy());
5009 } else {
5010 // Otherwise, create a stack slot and emit a store to it before the
5011 // asm.
5012 const Type *Ty = OpVal->getType();
5013 uint64_t TySize = TLI.getTargetData()->getABITypeSize(Ty);
5014 unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
5015 MachineFunction &MF = DAG.getMachineFunction();
5016 int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
5017 SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
5018 Chain = DAG.getStore(Chain, OpInfo.CallOperand, StackSlot, NULL, 0);
5019 OpInfo.CallOperand = StackSlot;
5020 }
5021
5022 // There is no longer a Value* corresponding to this operand.
5023 OpInfo.CallOperandVal = 0;
5024 // It is now an indirect operand.
5025 OpInfo.isIndirect = true;
5026 }
5027
5028 // If this constraint is for a specific register, allocate it before
5029 // anything else.
5030 if (OpInfo.ConstraintType == TargetLowering::C_Register)
Dale Johannesen8e3455b2008-09-24 23:13:09 +00005031 GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005032 }
5033 ConstraintInfos.clear();
5034
5035
5036 // Second pass - Loop over all of the operands, assigning virtual or physregs
Chris Lattner58f15c42008-10-17 16:21:11 +00005037 // to register class operands.
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005038 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5039 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5040
5041 // C_Register operands have already been allocated, Other/Memory don't need
5042 // to be.
5043 if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
Dale Johannesen8e3455b2008-09-24 23:13:09 +00005044 GetRegistersForValue(OpInfo, OutputRegs, InputRegs);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005045 }
5046
5047 // AsmNodeOperands - The operands for the ISD::INLINEASM node.
5048 std::vector<SDValue> AsmNodeOperands;
5049 AsmNodeOperands.push_back(SDValue()); // reserve space for input chain
5050 AsmNodeOperands.push_back(
Bill Wendling056292f2008-09-16 21:48:12 +00005051 DAG.getTargetExternalSymbol(IA->getAsmString().c_str(), MVT::Other));
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005052
5053
5054 // Loop over all of the inputs, copying the operand values into the
5055 // appropriate registers and processing the output regs.
5056 RegsForValue RetValRegs;
5057
5058 // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
5059 std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
5060
5061 for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
5062 SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
5063
5064 switch (OpInfo.Type) {
5065 case InlineAsm::isOutput: {
5066 if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
5067 OpInfo.ConstraintType != TargetLowering::C_Register) {
5068 // Memory output, or 'other' output (e.g. 'X' constraint).
5069 assert(OpInfo.isIndirect && "Memory output must be indirect operand");
5070
5071 // Add information to the INLINEASM node to know about this output.
Dale Johannesen86b49f82008-09-24 01:07:17 +00005072 unsigned ResOpType = 4/*MEM*/ | (1<<3);
5073 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005074 TLI.getPointerTy()));
5075 AsmNodeOperands.push_back(OpInfo.CallOperand);
5076 break;
5077 }
5078
5079 // Otherwise, this is a register or register class output.
5080
5081 // Copy the output from the appropriate register. Find a register that
5082 // we can use.
5083 if (OpInfo.AssignedRegs.Regs.empty()) {
5084 cerr << "Couldn't allocate output reg for constraint '"
5085 << OpInfo.ConstraintCode << "'!\n";
5086 exit(1);
5087 }
5088
5089 // If this is an indirect operand, store through the pointer after the
5090 // asm.
5091 if (OpInfo.isIndirect) {
5092 IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
5093 OpInfo.CallOperandVal));
5094 } else {
5095 // This is the result value of the call.
5096 assert(CS.getType() != Type::VoidTy && "Bad inline asm!");
5097 // Concatenate this output onto the outputs list.
5098 RetValRegs.append(OpInfo.AssignedRegs);
5099 }
5100
5101 // Add information to the INLINEASM node to know that this register is
5102 // set.
Dale Johannesen913d3df2008-09-12 17:49:03 +00005103 OpInfo.AssignedRegs.AddInlineAsmOperands(OpInfo.isEarlyClobber ?
5104 6 /* EARLYCLOBBER REGDEF */ :
5105 2 /* REGDEF */ ,
5106 DAG, AsmNodeOperands);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005107 break;
5108 }
5109 case InlineAsm::isInput: {
5110 SDValue InOperandVal = OpInfo.CallOperand;
5111
Chris Lattner6bdcda32008-10-17 16:47:46 +00005112 if (OpInfo.isMatchingInputConstraint()) { // Matching constraint?
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005113 // If this is required to match an output register we have already set,
5114 // just use its register.
Chris Lattner58f15c42008-10-17 16:21:11 +00005115 unsigned OperandNo = OpInfo.getMatchedOperand();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005116
5117 // Scan until we find the definition we already emitted of this operand.
5118 // When we find it, create a RegsForValue operand.
5119 unsigned CurOp = 2; // The first operand.
5120 for (; OperandNo; --OperandNo) {
5121 // Advance to the next operand.
5122 unsigned NumOps =
Dan Gohmanf5aeb1a2008-09-12 16:56:44 +00005123 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005124 assert(((NumOps & 7) == 2 /*REGDEF*/ ||
Dale Johannesen913d3df2008-09-12 17:49:03 +00005125 (NumOps & 7) == 6 /*EARLYCLOBBER REGDEF*/ ||
Dale Johannesen86b49f82008-09-24 01:07:17 +00005126 (NumOps & 7) == 4 /*MEM*/) &&
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005127 "Skipped past definitions?");
5128 CurOp += (NumOps>>3)+1;
5129 }
5130
5131 unsigned NumOps =
Dan Gohmanf5aeb1a2008-09-12 16:56:44 +00005132 cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
Dale Johannesen913d3df2008-09-12 17:49:03 +00005133 if ((NumOps & 7) == 2 /*REGDEF*/
5134 || (NumOps & 7) == 6 /* EARLYCLOBBER REGDEF */) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005135 // Add NumOps>>3 registers to MatchedRegs.
5136 RegsForValue MatchedRegs;
5137 MatchedRegs.TLI = &TLI;
5138 MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
5139 MatchedRegs.RegVTs.push_back(AsmNodeOperands[CurOp+1].getValueType());
5140 for (unsigned i = 0, e = NumOps>>3; i != e; ++i) {
5141 unsigned Reg =
5142 cast<RegisterSDNode>(AsmNodeOperands[++CurOp])->getReg();
5143 MatchedRegs.Regs.push_back(Reg);
5144 }
5145
5146 // Use the produced MatchedRegs object to
5147 MatchedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
Dale Johannesen86b49f82008-09-24 01:07:17 +00005148 MatchedRegs.AddInlineAsmOperands(1 /*REGUSE*/, DAG, AsmNodeOperands);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005149 break;
5150 } else {
Dale Johannesen86b49f82008-09-24 01:07:17 +00005151 assert(((NumOps & 7) == 4) && "Unknown matching constraint!");
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005152 assert((NumOps >> 3) == 1 && "Unexpected number of operands");
5153 // Add information to the INLINEASM node to know about this input.
Dale Johannesen91aac102008-09-17 21:13:11 +00005154 AsmNodeOperands.push_back(DAG.getTargetConstant(NumOps,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005155 TLI.getPointerTy()));
5156 AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
5157 break;
5158 }
5159 }
5160
5161 if (OpInfo.ConstraintType == TargetLowering::C_Other) {
5162 assert(!OpInfo.isIndirect &&
5163 "Don't know how to handle indirect other inputs yet!");
5164
5165 std::vector<SDValue> Ops;
5166 TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode[0],
Evan Chengda43bcf2008-09-24 00:05:32 +00005167 hasMemory, Ops, DAG);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005168 if (Ops.empty()) {
5169 cerr << "Invalid operand for inline asm constraint '"
5170 << OpInfo.ConstraintCode << "'!\n";
5171 exit(1);
5172 }
5173
5174 // Add information to the INLINEASM node to know about this input.
5175 unsigned ResOpType = 3 /*IMM*/ | (Ops.size() << 3);
5176 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
5177 TLI.getPointerTy()));
5178 AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
5179 break;
5180 } else if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
5181 assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
5182 assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
5183 "Memory operands expect pointer values");
5184
5185 // Add information to the INLINEASM node to know about this input.
Dale Johannesen86b49f82008-09-24 01:07:17 +00005186 unsigned ResOpType = 4/*MEM*/ | (1<<3);
5187 AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005188 TLI.getPointerTy()));
5189 AsmNodeOperands.push_back(InOperandVal);
5190 break;
5191 }
5192
5193 assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
5194 OpInfo.ConstraintType == TargetLowering::C_Register) &&
5195 "Unknown constraint type!");
5196 assert(!OpInfo.isIndirect &&
5197 "Don't know how to handle indirect register inputs yet!");
5198
5199 // Copy the input into the appropriate registers.
Evan Chengaa765b82008-09-25 00:14:04 +00005200 if (OpInfo.AssignedRegs.Regs.empty()) {
5201 cerr << "Couldn't allocate output reg for constraint '"
5202 << OpInfo.ConstraintCode << "'!\n";
5203 exit(1);
5204 }
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005205
5206 OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, Chain, &Flag);
5207
Dale Johannesen86b49f82008-09-24 01:07:17 +00005208 OpInfo.AssignedRegs.AddInlineAsmOperands(1/*REGUSE*/,
5209 DAG, AsmNodeOperands);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005210 break;
5211 }
5212 case InlineAsm::isClobber: {
5213 // Add the clobbered value to the operand list, so that the register
5214 // allocator is aware that the physreg got clobbered.
5215 if (!OpInfo.AssignedRegs.Regs.empty())
Dale Johannesen91aac102008-09-17 21:13:11 +00005216 OpInfo.AssignedRegs.AddInlineAsmOperands(6 /* EARLYCLOBBER REGDEF */,
5217 DAG, AsmNodeOperands);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005218 break;
5219 }
5220 }
5221 }
5222
5223 // Finish up input operands.
5224 AsmNodeOperands[0] = Chain;
5225 if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
5226
5227 Chain = DAG.getNode(ISD::INLINEASM,
5228 DAG.getNodeValueTypes(MVT::Other, MVT::Flag), 2,
5229 &AsmNodeOperands[0], AsmNodeOperands.size());
5230 Flag = Chain.getValue(1);
5231
5232 // If this asm returns a register value, copy the result from that register
5233 // and set it as the value of the call.
5234 if (!RetValRegs.Regs.empty()) {
5235 SDValue Val = RetValRegs.getCopyFromRegs(DAG, Chain, &Flag);
Chris Lattner2a0b96c2008-10-18 18:49:30 +00005236
5237 // FIXME: Why don't we do this for inline asms with MRVs?
5238 if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
5239 MVT ResultType = TLI.getValueType(CS.getType());
5240
5241 // If any of the results of the inline asm is a vector, it may have the
5242 // wrong width/num elts. This can happen for register classes that can
5243 // contain multiple different value types. The preg or vreg allocated may
5244 // not have the same VT as was expected. Convert it to the right type
5245 // with bit_convert.
5246 if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
5247 Val = DAG.getNode(ISD::BIT_CONVERT, ResultType, Val);
Dan Gohman95915732008-10-18 01:03:45 +00005248
Chris Lattner2a0b96c2008-10-18 18:49:30 +00005249 } else if (ResultType != Val.getValueType() &&
5250 ResultType.isInteger() && Val.getValueType().isInteger()) {
5251 // If a result value was tied to an input value, the computed result may
5252 // have a wider width than the expected result. Extract the relevant
5253 // portion.
5254 Val = DAG.getNode(ISD::TRUNCATE, ResultType, Val);
Dan Gohman95915732008-10-18 01:03:45 +00005255 }
Chris Lattner2a0b96c2008-10-18 18:49:30 +00005256
5257 assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
Chris Lattner0c526442008-10-17 17:52:49 +00005258 }
Dan Gohman95915732008-10-18 01:03:45 +00005259
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005260 setValue(CS.getInstruction(), Val);
5261 }
5262
5263 std::vector<std::pair<SDValue, Value*> > StoresToEmit;
5264
5265 // Process indirect outputs, first output all of the flagged copies out of
5266 // physregs.
5267 for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
5268 RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
5269 Value *Ptr = IndirectStoresToEmit[i].second;
5270 SDValue OutVal = OutRegs.getCopyFromRegs(DAG, Chain, &Flag);
5271 StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
5272 }
5273
5274 // Emit the non-flagged stores from the physregs.
5275 SmallVector<SDValue, 8> OutChains;
5276 for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i)
5277 OutChains.push_back(DAG.getStore(Chain, StoresToEmit[i].first,
5278 getValue(StoresToEmit[i].second),
5279 StoresToEmit[i].second, 0));
5280 if (!OutChains.empty())
5281 Chain = DAG.getNode(ISD::TokenFactor, MVT::Other,
5282 &OutChains[0], OutChains.size());
5283 DAG.setRoot(Chain);
5284}
5285
5286
5287void SelectionDAGLowering::visitMalloc(MallocInst &I) {
5288 SDValue Src = getValue(I.getOperand(0));
5289
5290 MVT IntPtr = TLI.getPointerTy();
5291
5292 if (IntPtr.bitsLT(Src.getValueType()))
5293 Src = DAG.getNode(ISD::TRUNCATE, IntPtr, Src);
5294 else if (IntPtr.bitsGT(Src.getValueType()))
5295 Src = DAG.getNode(ISD::ZERO_EXTEND, IntPtr, Src);
5296
5297 // Scale the source by the type size.
5298 uint64_t ElementSize = TD->getABITypeSize(I.getType()->getElementType());
5299 Src = DAG.getNode(ISD::MUL, Src.getValueType(),
5300 Src, DAG.getIntPtrConstant(ElementSize));
5301
5302 TargetLowering::ArgListTy Args;
5303 TargetLowering::ArgListEntry Entry;
5304 Entry.Node = Src;
5305 Entry.Ty = TLI.getTargetData()->getIntPtrType();
5306 Args.push_back(Entry);
5307
5308 std::pair<SDValue,SDValue> Result =
Dale Johannesen86098bd2008-09-26 19:31:26 +00005309 TLI.LowerCallTo(getRoot(), I.getType(), false, false, false, false,
5310 CallingConv::C, PerformTailCallOpt,
5311 DAG.getExternalSymbol("malloc", IntPtr),
Dan Gohman1937e2f2008-09-16 01:42:28 +00005312 Args, DAG);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005313 setValue(&I, Result.first); // Pointers always fit in registers
5314 DAG.setRoot(Result.second);
5315}
5316
5317void SelectionDAGLowering::visitFree(FreeInst &I) {
5318 TargetLowering::ArgListTy Args;
5319 TargetLowering::ArgListEntry Entry;
5320 Entry.Node = getValue(I.getOperand(0));
5321 Entry.Ty = TLI.getTargetData()->getIntPtrType();
5322 Args.push_back(Entry);
5323 MVT IntPtr = TLI.getPointerTy();
5324 std::pair<SDValue,SDValue> Result =
Dale Johannesen86098bd2008-09-26 19:31:26 +00005325 TLI.LowerCallTo(getRoot(), Type::VoidTy, false, false, false, false,
Dan Gohman1937e2f2008-09-16 01:42:28 +00005326 CallingConv::C, PerformTailCallOpt,
Bill Wendling056292f2008-09-16 21:48:12 +00005327 DAG.getExternalSymbol("free", IntPtr), Args, DAG);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005328 DAG.setRoot(Result.second);
5329}
5330
5331void SelectionDAGLowering::visitVAStart(CallInst &I) {
5332 DAG.setRoot(DAG.getNode(ISD::VASTART, MVT::Other, getRoot(),
5333 getValue(I.getOperand(1)),
5334 DAG.getSrcValue(I.getOperand(1))));
5335}
5336
5337void SelectionDAGLowering::visitVAArg(VAArgInst &I) {
5338 SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getRoot(),
5339 getValue(I.getOperand(0)),
5340 DAG.getSrcValue(I.getOperand(0)));
5341 setValue(&I, V);
5342 DAG.setRoot(V.getValue(1));
5343}
5344
5345void SelectionDAGLowering::visitVAEnd(CallInst &I) {
5346 DAG.setRoot(DAG.getNode(ISD::VAEND, MVT::Other, getRoot(),
5347 getValue(I.getOperand(1)),
5348 DAG.getSrcValue(I.getOperand(1))));
5349}
5350
5351void SelectionDAGLowering::visitVACopy(CallInst &I) {
5352 DAG.setRoot(DAG.getNode(ISD::VACOPY, MVT::Other, getRoot(),
5353 getValue(I.getOperand(1)),
5354 getValue(I.getOperand(2)),
5355 DAG.getSrcValue(I.getOperand(1)),
5356 DAG.getSrcValue(I.getOperand(2))));
5357}
5358
5359/// TargetLowering::LowerArguments - This is the default LowerArguments
5360/// implementation, which just inserts a FORMAL_ARGUMENTS node. FIXME: When all
5361/// targets are migrated to using FORMAL_ARGUMENTS, this hook should be
5362/// integrated into SDISel.
5363void TargetLowering::LowerArguments(Function &F, SelectionDAG &DAG,
5364 SmallVectorImpl<SDValue> &ArgValues) {
5365 // Add CC# and isVararg as operands to the FORMAL_ARGUMENTS node.
5366 SmallVector<SDValue, 3+16> Ops;
5367 Ops.push_back(DAG.getRoot());
5368 Ops.push_back(DAG.getConstant(F.getCallingConv(), getPointerTy()));
5369 Ops.push_back(DAG.getConstant(F.isVarArg(), getPointerTy()));
5370
5371 // Add one result value for each formal argument.
5372 SmallVector<MVT, 16> RetVals;
5373 unsigned j = 1;
5374 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
5375 I != E; ++I, ++j) {
5376 SmallVector<MVT, 4> ValueVTs;
5377 ComputeValueVTs(*this, I->getType(), ValueVTs);
5378 for (unsigned Value = 0, NumValues = ValueVTs.size();
5379 Value != NumValues; ++Value) {
5380 MVT VT = ValueVTs[Value];
5381 const Type *ArgTy = VT.getTypeForMVT();
5382 ISD::ArgFlagsTy Flags;
5383 unsigned OriginalAlignment =
5384 getTargetData()->getABITypeAlignment(ArgTy);
5385
Devang Patel05988662008-09-25 21:00:45 +00005386 if (F.paramHasAttr(j, Attribute::ZExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005387 Flags.setZExt();
Devang Patel05988662008-09-25 21:00:45 +00005388 if (F.paramHasAttr(j, Attribute::SExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005389 Flags.setSExt();
Devang Patel05988662008-09-25 21:00:45 +00005390 if (F.paramHasAttr(j, Attribute::InReg))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005391 Flags.setInReg();
Devang Patel05988662008-09-25 21:00:45 +00005392 if (F.paramHasAttr(j, Attribute::StructRet))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005393 Flags.setSRet();
Devang Patel05988662008-09-25 21:00:45 +00005394 if (F.paramHasAttr(j, Attribute::ByVal)) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005395 Flags.setByVal();
5396 const PointerType *Ty = cast<PointerType>(I->getType());
5397 const Type *ElementTy = Ty->getElementType();
5398 unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5399 unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy);
5400 // For ByVal, alignment should be passed from FE. BE will guess if
5401 // this info is not there but there are cases it cannot get right.
5402 if (F.getParamAlignment(j))
5403 FrameAlign = F.getParamAlignment(j);
5404 Flags.setByValAlign(FrameAlign);
5405 Flags.setByValSize(FrameSize);
5406 }
Devang Patel05988662008-09-25 21:00:45 +00005407 if (F.paramHasAttr(j, Attribute::Nest))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005408 Flags.setNest();
5409 Flags.setOrigAlign(OriginalAlignment);
5410
5411 MVT RegisterVT = getRegisterType(VT);
5412 unsigned NumRegs = getNumRegisters(VT);
5413 for (unsigned i = 0; i != NumRegs; ++i) {
5414 RetVals.push_back(RegisterVT);
5415 ISD::ArgFlagsTy MyFlags = Flags;
5416 if (NumRegs > 1 && i == 0)
5417 MyFlags.setSplit();
5418 // if it isn't first piece, alignment must be 1
5419 else if (i > 0)
5420 MyFlags.setOrigAlign(1);
5421 Ops.push_back(DAG.getArgFlags(MyFlags));
5422 }
5423 }
5424 }
5425
5426 RetVals.push_back(MVT::Other);
5427
5428 // Create the node.
5429 SDNode *Result = DAG.getNode(ISD::FORMAL_ARGUMENTS,
5430 DAG.getVTList(&RetVals[0], RetVals.size()),
5431 &Ops[0], Ops.size()).getNode();
5432
5433 // Prelower FORMAL_ARGUMENTS. This isn't required for functionality, but
5434 // allows exposing the loads that may be part of the argument access to the
5435 // first DAGCombiner pass.
5436 SDValue TmpRes = LowerOperation(SDValue(Result, 0), DAG);
5437
5438 // The number of results should match up, except that the lowered one may have
5439 // an extra flag result.
5440 assert((Result->getNumValues() == TmpRes.getNode()->getNumValues() ||
5441 (Result->getNumValues()+1 == TmpRes.getNode()->getNumValues() &&
5442 TmpRes.getValue(Result->getNumValues()).getValueType() == MVT::Flag))
5443 && "Lowering produced unexpected number of results!");
5444
5445 // The FORMAL_ARGUMENTS node itself is likely no longer needed.
5446 if (Result != TmpRes.getNode() && Result->use_empty()) {
5447 HandleSDNode Dummy(DAG.getRoot());
5448 DAG.RemoveDeadNode(Result);
5449 }
5450
5451 Result = TmpRes.getNode();
5452
5453 unsigned NumArgRegs = Result->getNumValues() - 1;
5454 DAG.setRoot(SDValue(Result, NumArgRegs));
5455
5456 // Set up the return result vector.
5457 unsigned i = 0;
5458 unsigned Idx = 1;
5459 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
5460 ++I, ++Idx) {
5461 SmallVector<MVT, 4> ValueVTs;
5462 ComputeValueVTs(*this, I->getType(), ValueVTs);
5463 for (unsigned Value = 0, NumValues = ValueVTs.size();
5464 Value != NumValues; ++Value) {
5465 MVT VT = ValueVTs[Value];
5466 MVT PartVT = getRegisterType(VT);
5467
5468 unsigned NumParts = getNumRegisters(VT);
5469 SmallVector<SDValue, 4> Parts(NumParts);
5470 for (unsigned j = 0; j != NumParts; ++j)
5471 Parts[j] = SDValue(Result, i++);
5472
5473 ISD::NodeType AssertOp = ISD::DELETED_NODE;
Devang Patel05988662008-09-25 21:00:45 +00005474 if (F.paramHasAttr(Idx, Attribute::SExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005475 AssertOp = ISD::AssertSext;
Devang Patel05988662008-09-25 21:00:45 +00005476 else if (F.paramHasAttr(Idx, Attribute::ZExt))
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005477 AssertOp = ISD::AssertZext;
5478
5479 ArgValues.push_back(getCopyFromParts(DAG, &Parts[0], NumParts, PartVT, VT,
5480 AssertOp));
5481 }
5482 }
5483 assert(i == NumArgRegs && "Argument register count mismatch!");
5484}
5485
5486
5487/// TargetLowering::LowerCallTo - This is the default LowerCallTo
5488/// implementation, which just inserts an ISD::CALL node, which is later custom
5489/// lowered by the target to something concrete. FIXME: When all targets are
5490/// migrated to using ISD::CALL, this hook should be integrated into SDISel.
5491std::pair<SDValue, SDValue>
5492TargetLowering::LowerCallTo(SDValue Chain, const Type *RetTy,
5493 bool RetSExt, bool RetZExt, bool isVarArg,
Dale Johannesen86098bd2008-09-26 19:31:26 +00005494 bool isInreg,
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005495 unsigned CallingConv, bool isTailCall,
5496 SDValue Callee,
5497 ArgListTy &Args, SelectionDAG &DAG) {
Dan Gohman1937e2f2008-09-16 01:42:28 +00005498 assert((!isTailCall || PerformTailCallOpt) &&
5499 "isTailCall set when tail-call optimizations are disabled!");
5500
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005501 SmallVector<SDValue, 32> Ops;
5502 Ops.push_back(Chain); // Op#0 - Chain
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005503 Ops.push_back(Callee);
5504
5505 // Handle all of the outgoing arguments.
5506 for (unsigned i = 0, e = Args.size(); i != e; ++i) {
5507 SmallVector<MVT, 4> ValueVTs;
5508 ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
5509 for (unsigned Value = 0, NumValues = ValueVTs.size();
5510 Value != NumValues; ++Value) {
5511 MVT VT = ValueVTs[Value];
5512 const Type *ArgTy = VT.getTypeForMVT();
Chris Lattner2a0b96c2008-10-18 18:49:30 +00005513 SDValue Op = SDValue(Args[i].Node.getNode(),
5514 Args[i].Node.getResNo() + Value);
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005515 ISD::ArgFlagsTy Flags;
5516 unsigned OriginalAlignment =
5517 getTargetData()->getABITypeAlignment(ArgTy);
5518
5519 if (Args[i].isZExt)
5520 Flags.setZExt();
5521 if (Args[i].isSExt)
5522 Flags.setSExt();
5523 if (Args[i].isInReg)
5524 Flags.setInReg();
5525 if (Args[i].isSRet)
5526 Flags.setSRet();
5527 if (Args[i].isByVal) {
5528 Flags.setByVal();
5529 const PointerType *Ty = cast<PointerType>(Args[i].Ty);
5530 const Type *ElementTy = Ty->getElementType();
5531 unsigned FrameAlign = getByValTypeAlignment(ElementTy);
5532 unsigned FrameSize = getTargetData()->getABITypeSize(ElementTy);
5533 // For ByVal, alignment should come from FE. BE will guess if this
5534 // info is not there but there are cases it cannot get right.
5535 if (Args[i].Alignment)
5536 FrameAlign = Args[i].Alignment;
5537 Flags.setByValAlign(FrameAlign);
5538 Flags.setByValSize(FrameSize);
5539 }
5540 if (Args[i].isNest)
5541 Flags.setNest();
5542 Flags.setOrigAlign(OriginalAlignment);
5543
5544 MVT PartVT = getRegisterType(VT);
5545 unsigned NumParts = getNumRegisters(VT);
5546 SmallVector<SDValue, 4> Parts(NumParts);
5547 ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
5548
5549 if (Args[i].isSExt)
5550 ExtendKind = ISD::SIGN_EXTEND;
5551 else if (Args[i].isZExt)
5552 ExtendKind = ISD::ZERO_EXTEND;
5553
5554 getCopyToParts(DAG, Op, &Parts[0], NumParts, PartVT, ExtendKind);
5555
5556 for (unsigned i = 0; i != NumParts; ++i) {
5557 // if it isn't first piece, alignment must be 1
5558 ISD::ArgFlagsTy MyFlags = Flags;
5559 if (NumParts > 1 && i == 0)
5560 MyFlags.setSplit();
5561 else if (i != 0)
5562 MyFlags.setOrigAlign(1);
5563
5564 Ops.push_back(Parts[i]);
5565 Ops.push_back(DAG.getArgFlags(MyFlags));
5566 }
5567 }
5568 }
5569
5570 // Figure out the result value types. We start by making a list of
5571 // the potentially illegal return value types.
5572 SmallVector<MVT, 4> LoweredRetTys;
5573 SmallVector<MVT, 4> RetTys;
5574 ComputeValueVTs(*this, RetTy, RetTys);
5575
5576 // Then we translate that to a list of legal types.
5577 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5578 MVT VT = RetTys[I];
5579 MVT RegisterVT = getRegisterType(VT);
5580 unsigned NumRegs = getNumRegisters(VT);
5581 for (unsigned i = 0; i != NumRegs; ++i)
5582 LoweredRetTys.push_back(RegisterVT);
5583 }
5584
5585 LoweredRetTys.push_back(MVT::Other); // Always has a chain.
5586
5587 // Create the CALL node.
Dale Johannesen86098bd2008-09-26 19:31:26 +00005588 SDValue Res = DAG.getCall(CallingConv, isVarArg, isTailCall, isInreg,
Dan Gohman095cc292008-09-13 01:54:27 +00005589 DAG.getVTList(&LoweredRetTys[0],
5590 LoweredRetTys.size()),
Dale Johannesen86098bd2008-09-26 19:31:26 +00005591 &Ops[0], Ops.size()
5592 );
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005593 Chain = Res.getValue(LoweredRetTys.size() - 1);
5594
5595 // Gather up the call result into a single value.
Dan Gohmanb5cc34d2008-10-07 00:12:37 +00005596 if (RetTy != Type::VoidTy && !RetTys.empty()) {
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005597 ISD::NodeType AssertOp = ISD::DELETED_NODE;
5598
5599 if (RetSExt)
5600 AssertOp = ISD::AssertSext;
5601 else if (RetZExt)
5602 AssertOp = ISD::AssertZext;
5603
5604 SmallVector<SDValue, 4> ReturnValues;
5605 unsigned RegNo = 0;
5606 for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
5607 MVT VT = RetTys[I];
5608 MVT RegisterVT = getRegisterType(VT);
5609 unsigned NumRegs = getNumRegisters(VT);
5610 unsigned RegNoEnd = NumRegs + RegNo;
5611 SmallVector<SDValue, 4> Results;
5612 for (; RegNo != RegNoEnd; ++RegNo)
5613 Results.push_back(Res.getValue(RegNo));
5614 SDValue ReturnValue =
5615 getCopyFromParts(DAG, &Results[0], NumRegs, RegisterVT, VT,
5616 AssertOp);
5617 ReturnValues.push_back(ReturnValue);
5618 }
5619 Res = DAG.getMergeValues(DAG.getVTList(&RetTys[0], RetTys.size()),
5620 &ReturnValues[0], ReturnValues.size());
5621 }
5622
5623 return std::make_pair(Res, Chain);
5624}
5625
5626SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) {
5627 assert(0 && "LowerOperation not implemented for this target!");
5628 abort();
5629 return SDValue();
5630}
5631
5632
5633void SelectionDAGLowering::CopyValueToVirtualRegister(Value *V, unsigned Reg) {
5634 SDValue Op = getValue(V);
5635 assert((Op.getOpcode() != ISD::CopyFromReg ||
5636 cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
5637 "Copy from a reg to the same reg!");
5638 assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
5639
5640 RegsForValue RFV(TLI, Reg, V->getType());
5641 SDValue Chain = DAG.getEntryNode();
5642 RFV.getCopyToRegs(Op, DAG, Chain, 0);
5643 PendingExports.push_back(Chain);
5644}
5645
5646#include "llvm/CodeGen/SelectionDAGISel.h"
5647
5648void SelectionDAGISel::
5649LowerArguments(BasicBlock *LLVMBB) {
5650 // If this is the entry block, emit arguments.
5651 Function &F = *LLVMBB->getParent();
5652 SDValue OldRoot = SDL->DAG.getRoot();
5653 SmallVector<SDValue, 16> Args;
5654 TLI.LowerArguments(F, SDL->DAG, Args);
5655
5656 unsigned a = 0;
5657 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end();
5658 AI != E; ++AI) {
5659 SmallVector<MVT, 4> ValueVTs;
5660 ComputeValueVTs(TLI, AI->getType(), ValueVTs);
5661 unsigned NumValues = ValueVTs.size();
5662 if (!AI->use_empty()) {
5663 SDL->setValue(AI, SDL->DAG.getMergeValues(&Args[a], NumValues));
5664 // If this argument is live outside of the entry block, insert a copy from
5665 // whereever we got it to the vreg that other BB's will reference it as.
5666 DenseMap<const Value*, unsigned>::iterator VMI=FuncInfo->ValueMap.find(AI);
5667 if (VMI != FuncInfo->ValueMap.end()) {
5668 SDL->CopyValueToVirtualRegister(AI, VMI->second);
5669 }
5670 }
5671 a += NumValues;
5672 }
5673
5674 // Finally, if the target has anything special to do, allow it to do so.
5675 // FIXME: this should insert code into the DAG!
5676 EmitFunctionEntryCode(F, SDL->DAG.getMachineFunction());
5677}
5678
5679/// Handle PHI nodes in successor blocks. Emit code into the SelectionDAG to
5680/// ensure constants are generated when needed. Remember the virtual registers
5681/// that need to be added to the Machine PHI nodes as input. We cannot just
5682/// directly add them, because expansion might result in multiple MBB's for one
5683/// BB. As such, the start of the BB might correspond to a different MBB than
5684/// the end.
5685///
5686void
5687SelectionDAGISel::HandlePHINodesInSuccessorBlocks(BasicBlock *LLVMBB) {
5688 TerminatorInst *TI = LLVMBB->getTerminator();
5689
5690 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
5691
5692 // Check successor nodes' PHI nodes that expect a constant to be available
5693 // from this block.
5694 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5695 BasicBlock *SuccBB = TI->getSuccessor(succ);
5696 if (!isa<PHINode>(SuccBB->begin())) continue;
5697 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
5698
5699 // If this terminator has multiple identical successors (common for
5700 // switches), only handle each succ once.
5701 if (!SuccsHandled.insert(SuccMBB)) continue;
5702
5703 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5704 PHINode *PN;
5705
5706 // At this point we know that there is a 1-1 correspondence between LLVM PHI
5707 // nodes and Machine PHI nodes, but the incoming operands have not been
5708 // emitted yet.
5709 for (BasicBlock::iterator I = SuccBB->begin();
5710 (PN = dyn_cast<PHINode>(I)); ++I) {
5711 // Ignore dead phi's.
5712 if (PN->use_empty()) continue;
5713
5714 unsigned Reg;
5715 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5716
5717 if (Constant *C = dyn_cast<Constant>(PHIOp)) {
5718 unsigned &RegOut = SDL->ConstantsOut[C];
5719 if (RegOut == 0) {
5720 RegOut = FuncInfo->CreateRegForValue(C);
5721 SDL->CopyValueToVirtualRegister(C, RegOut);
5722 }
5723 Reg = RegOut;
5724 } else {
5725 Reg = FuncInfo->ValueMap[PHIOp];
5726 if (Reg == 0) {
5727 assert(isa<AllocaInst>(PHIOp) &&
5728 FuncInfo->StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
5729 "Didn't codegen value into a register!??");
5730 Reg = FuncInfo->CreateRegForValue(PHIOp);
5731 SDL->CopyValueToVirtualRegister(PHIOp, Reg);
5732 }
5733 }
5734
5735 // Remember that this register needs to added to the machine PHI node as
5736 // the input for this MBB.
5737 SmallVector<MVT, 4> ValueVTs;
5738 ComputeValueVTs(TLI, PN->getType(), ValueVTs);
5739 for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
5740 MVT VT = ValueVTs[vti];
5741 unsigned NumRegisters = TLI.getNumRegisters(VT);
5742 for (unsigned i = 0, e = NumRegisters; i != e; ++i)
5743 SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
5744 Reg += NumRegisters;
5745 }
5746 }
5747 }
5748 SDL->ConstantsOut.clear();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005749}
5750
Dan Gohman3df24e62008-09-03 23:12:08 +00005751/// This is the Fast-ISel version of HandlePHINodesInSuccessorBlocks. It only
5752/// supports legal types, and it emits MachineInstrs directly instead of
5753/// creating SelectionDAG nodes.
5754///
5755bool
5756SelectionDAGISel::HandlePHINodesInSuccessorBlocksFast(BasicBlock *LLVMBB,
5757 FastISel *F) {
5758 TerminatorInst *TI = LLVMBB->getTerminator();
Dan Gohmanf0cbcd42008-09-03 16:12:24 +00005759
Dan Gohman3df24e62008-09-03 23:12:08 +00005760 SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
5761 unsigned OrigNumPHINodesToUpdate = SDL->PHINodesToUpdate.size();
5762
5763 // Check successor nodes' PHI nodes that expect a constant to be available
5764 // from this block.
5765 for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
5766 BasicBlock *SuccBB = TI->getSuccessor(succ);
5767 if (!isa<PHINode>(SuccBB->begin())) continue;
5768 MachineBasicBlock *SuccMBB = FuncInfo->MBBMap[SuccBB];
5769
5770 // If this terminator has multiple identical successors (common for
5771 // switches), only handle each succ once.
5772 if (!SuccsHandled.insert(SuccMBB)) continue;
5773
5774 MachineBasicBlock::iterator MBBI = SuccMBB->begin();
5775 PHINode *PN;
5776
5777 // At this point we know that there is a 1-1 correspondence between LLVM PHI
5778 // nodes and Machine PHI nodes, but the incoming operands have not been
5779 // emitted yet.
5780 for (BasicBlock::iterator I = SuccBB->begin();
5781 (PN = dyn_cast<PHINode>(I)); ++I) {
5782 // Ignore dead phi's.
5783 if (PN->use_empty()) continue;
5784
5785 // Only handle legal types. Two interesting things to note here. First,
5786 // by bailing out early, we may leave behind some dead instructions,
5787 // since SelectionDAG's HandlePHINodesInSuccessorBlocks will insert its
5788 // own moves. Second, this check is necessary becuase FastISel doesn't
5789 // use CreateRegForValue to create registers, so it always creates
5790 // exactly one register for each non-void instruction.
5791 MVT VT = TLI.getValueType(PN->getType(), /*AllowUnknown=*/true);
5792 if (VT == MVT::Other || !TLI.isTypeLegal(VT)) {
Dan Gohman74321ab2008-09-10 21:01:31 +00005793 // Promote MVT::i1.
5794 if (VT == MVT::i1)
5795 VT = TLI.getTypeToTransformTo(VT);
5796 else {
5797 SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
5798 return false;
5799 }
Dan Gohman3df24e62008-09-03 23:12:08 +00005800 }
5801
5802 Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
5803
5804 unsigned Reg = F->getRegForValue(PHIOp);
5805 if (Reg == 0) {
5806 SDL->PHINodesToUpdate.resize(OrigNumPHINodesToUpdate);
5807 return false;
5808 }
5809 SDL->PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg));
5810 }
5811 }
5812
5813 return true;
5814}