blob: 9619cb98f9c8fd7536286f22e9c1b2c9fe13708b [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Target.td - Target Independent TableGen interface ---*- tablegen -*-===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file defines the target-independent interfaces which should be
11// implemented by each target which is using a TableGen based code generator.
12//
13//===----------------------------------------------------------------------===//
14
15// Include all information about LLVM intrinsics.
16include "llvm/Intrinsics.td"
17
18//===----------------------------------------------------------------------===//
19// Register file description - These classes are used to fill in the target
20// description classes.
21
22class RegisterClass; // Forward def
23
24// Register - You should define one instance of this class for each register
25// in the target machine. String n will become the "name" of the register.
26class Register<string n> {
27 string Namespace = "";
28 string Name = n;
29
30 // SpillSize - If this value is set to a non-zero value, it is the size in
31 // bits of the spill slot required to hold this register. If this value is
32 // set to zero, the information is inferred from any register classes the
33 // register belongs to.
34 int SpillSize = 0;
35
36 // SpillAlignment - This value is used to specify the alignment required for
37 // spilling the register. Like SpillSize, this should only be explicitly
38 // specified if the register is not in a register class.
39 int SpillAlignment = 0;
40
41 // Aliases - A list of registers that this register overlaps with. A read or
42 // modification of this register can potentially read or modify the aliased
43 // registers.
44 list<Register> Aliases = [];
45
46 // SubRegs - A list of registers that are parts of this register. Note these
47 // are "immediate" sub-registers and the registers within the list do not
48 // themselves overlap. e.g. For X86, EAX's SubRegs list contains only [AX],
49 // not [AX, AH, AL].
50 list<Register> SubRegs = [];
51
Anton Korobeynikov26ab1b72007-11-11 19:50:10 +000052 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
Dan Gohmanf17a25c2007-07-18 16:29:46 +000053 // These values can be determined by locating the <target>.h file in the
54 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
55 // order of these names correspond to the enumeration used by gcc. A value of
Anton Korobeynikov0c2107c2007-11-11 19:53:50 +000056 // -1 indicates that the gcc number is undefined and -2 that register number
57 // is invalid for this mode/flavour.
Anton Korobeynikov26ab1b72007-11-11 19:50:10 +000058 list<int> DwarfNumbers = [];
Dan Gohmanf17a25c2007-07-18 16:29:46 +000059}
60
61// RegisterWithSubRegs - This can be used to define instances of Register which
62// need to specify sub-registers.
63// List "subregs" specifies which registers are sub-registers to this one. This
64// is used to populate the SubRegs and AliasSet fields of TargetRegisterDesc.
65// This allows the code generator to be careful not to put two values with
66// overlapping live ranges into registers which alias.
67class RegisterWithSubRegs<string n, list<Register> subregs> : Register<n> {
68 let SubRegs = subregs;
69}
70
71// SubRegSet - This can be used to define a specific mapping of registers to
72// indices, for use as named subregs of a particular physical register. Each
73// register in 'subregs' becomes an addressable subregister at index 'n' of the
74// corresponding register in 'regs'.
75class SubRegSet<int n, list<Register> regs, list<Register> subregs> {
76 int index = n;
77
78 list<Register> From = regs;
79 list<Register> To = subregs;
80}
81
82// RegisterClass - Now that all of the registers are defined, and aliases
83// between registers are defined, specify which registers belong to which
84// register classes. This also defines the default allocation order of
85// registers by register allocators.
86//
87class RegisterClass<string namespace, list<ValueType> regTypes, int alignment,
88 list<Register> regList> {
89 string Namespace = namespace;
90
91 // RegType - Specify the list ValueType of the registers in this register
92 // class. Note that all registers in a register class must have the same
93 // ValueTypes. This is a list because some targets permit storing different
94 // types in same register, for example vector values with 128-bit total size,
95 // but different count/size of items, like SSE on x86.
96 //
97 list<ValueType> RegTypes = regTypes;
98
99 // Size - Specify the spill size in bits of the registers. A default value of
100 // zero lets tablgen pick an appropriate size.
101 int Size = 0;
102
103 // Alignment - Specify the alignment required of the registers when they are
104 // stored or loaded to memory.
105 //
106 int Alignment = alignment;
107
Evan Cheng77ac1822007-09-19 01:35:01 +0000108 // CopyCost - This value is used to specify the cost of copying a value
109 // between two registers in this register class. The default value is one
110 // meaning it takes a single instruction to perform the copying. A negative
111 // value means copying is extremely expensive or impossible.
112 int CopyCost = 1;
113
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000114 // MemberList - Specify which registers are in this class. If the
115 // allocation_order_* method are not specified, this also defines the order of
116 // allocation used by the register allocator.
117 //
118 list<Register> MemberList = regList;
119
120 // SubClassList - Specify which register classes correspond to subregisters
121 // of this class. The order should be by subregister set index.
122 list<RegisterClass> SubRegClassList = [];
123
124 // MethodProtos/MethodBodies - These members can be used to insert arbitrary
125 // code into a generated register class. The normal usage of this is to
126 // overload virtual methods.
127 code MethodProtos = [{}];
128 code MethodBodies = [{}];
129}
130
131
132//===----------------------------------------------------------------------===//
133// DwarfRegNum - This class provides a mapping of the llvm register enumeration
134// to the register numbering used by gcc and gdb. These values are used by a
135// debug information writer (ex. DwarfWriter) to describe where values may be
136// located during execution.
Anton Korobeynikov26ab1b72007-11-11 19:50:10 +0000137class DwarfRegNum<list<int> Numbers> {
138 // DwarfNumbers - Numbers used internally by gcc/gdb to identify the register.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000139 // These values can be determined by locating the <target>.h file in the
140 // directory llvmgcc/gcc/config/<target>/ and looking for REGISTER_NAMES. The
141 // order of these names correspond to the enumeration used by gcc. A value of
Anton Korobeynikov0c2107c2007-11-11 19:53:50 +0000142 // -1 indicates that the gcc number is undefined and -2 that register number is
143 // invalid for this mode/flavour.
Anton Korobeynikov26ab1b72007-11-11 19:50:10 +0000144 list<int> DwarfNumbers = Numbers;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000145}
146
147//===----------------------------------------------------------------------===//
148// Pull in the common support for scheduling
149//
150include "TargetSchedule.td"
151
152class Predicate; // Forward def
153
154//===----------------------------------------------------------------------===//
155// Instruction set description - These classes correspond to the C++ classes in
156// the Target/TargetInstrInfo.h file.
157//
158class Instruction {
159 string Name = ""; // The opcode string for this instruction
160 string Namespace = "";
161
Evan Chengb783fa32007-07-19 01:14:50 +0000162 dag OutOperandList; // An dag containing the MI def operand list.
163 dag InOperandList; // An dag containing the MI use operand list.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000164 string AsmString = ""; // The .s format to print the instruction with.
165
166 // Pattern - Set to the DAG pattern for this instruction, if we know of one,
167 // otherwise, uninitialized.
168 list<dag> Pattern;
169
170 // The follow state will eventually be inferred automatically from the
171 // instruction pattern.
172
173 list<Register> Uses = []; // Default to using no non-operand registers
174 list<Register> Defs = []; // Default to modifying no non-operand registers
175
176 // Predicates - List of predicates which will be turned into isel matching
177 // code.
178 list<Predicate> Predicates = [];
179
180 // Code size.
181 int CodeSize = 0;
182
183 // Added complexity passed onto matching pattern.
184 int AddedComplexity = 0;
185
186 // These bits capture information about the high-level semantics of the
187 // instruction.
188 bit isReturn = 0; // Is this instruction a return instruction?
189 bit isBranch = 0; // Is this instruction a branch instruction?
Owen Andersonf8053082007-11-12 07:39:39 +0000190 bit isIndirectBranch = 0; // Is this instruction an indirect branch?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191 bit isBarrier = 0; // Can control flow fall through this instruction?
192 bit isCall = 0; // Is this instruction a call instruction?
193 bit isLoad = 0; // Is this instruction a load instruction?
194 bit isStore = 0; // Is this instruction a store instruction?
Evan Chenge399fbb2007-12-12 23:12:09 +0000195 bit isImplicitDef = 0; // Is this instruction an implicit def instruction?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000196 bit isTwoAddress = 0; // Is this a two address instruction?
197 bit isConvertibleToThreeAddress = 0; // Can this 2-addr instruction promote?
198 bit isCommutable = 0; // Is this 3 operand instruction commutable?
199 bit isTerminator = 0; // Is this part of the terminator for a basic block?
200 bit isReMaterializable = 0; // Is this instruction re-materializable?
201 bit isPredicable = 0; // Is this instruction predicable?
202 bit hasDelaySlot = 0; // Does this instruction have an delay slot?
203 bit usesCustomDAGSchedInserter = 0; // Pseudo instr needing special help.
204 bit hasCtrlDep = 0; // Does this instruction r/w ctrl-flow chains?
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000205 bit isNotDuplicable = 0; // Is it unsafe to duplicate this instruction?
Bill Wendlingaf109da2007-12-14 01:48:59 +0000206
207 // Side effect flags - If neither of these flags is set, then the instruction
208 // *always* has side effects. Otherwise, it's one or the other.
209 bit mayHaveSideEffects = 0; // This instruction *may* have side effects.
210 bit neverHasSideEffects = 0; // This instruction never has side effects.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000211
212 InstrItinClass Itinerary = NoItinerary;// Execution steps used for scheduling.
213
214 string Constraints = ""; // OperandConstraint, e.g. $src = $dst.
215
216 /// DisableEncoding - List of operand names (e.g. "$op1,$op2") that should not
217 /// be encoded into the output machineinstr.
218 string DisableEncoding = "";
219}
220
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000221/// Predicates - These are extra conditionals which are turned into instruction
222/// selector matching code. Currently each predicate is just a string.
223class Predicate<string cond> {
224 string CondString = cond;
225}
226
227/// NoHonorSignDependentRounding - This predicate is true if support for
228/// sign-dependent-rounding is not enabled.
229def NoHonorSignDependentRounding
230 : Predicate<"!HonorSignDependentRoundingFPMath()">;
231
232class Requires<list<Predicate> preds> {
233 list<Predicate> Predicates = preds;
234}
235
236/// ops definition - This is just a simple marker used to identify the operands
Evan Chengb783fa32007-07-19 01:14:50 +0000237/// list for an instruction. outs and ins are identical both syntatically and
238/// semantically, they are used to define def operands and use operands to
239/// improve readibility. This should be used like this:
240/// (outs R32:$dst), (ins R32:$src1, R32:$src2) or something similar.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000241def ops;
Evan Chengb783fa32007-07-19 01:14:50 +0000242def outs;
243def ins;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000244
245/// variable_ops definition - Mark this instruction as taking a variable number
246/// of operands.
247def variable_ops;
248
249/// ptr_rc definition - Mark this operand as being a pointer value whose
250/// register class is resolved dynamically via a callback to TargetInstrInfo.
251/// FIXME: We should probably change this to a class which contain a list of
252/// flags. But currently we have but one flag.
253def ptr_rc;
254
255/// Operand Types - These provide the built-in operand types that may be used
256/// by a target. Targets can optionally provide their own operand types as
257/// needed, though this should not be needed for RISC targets.
258class Operand<ValueType ty> {
259 ValueType Type = ty;
260 string PrintMethod = "printOperand";
261 dag MIOperandInfo = (ops);
262}
263
264def i1imm : Operand<i1>;
265def i8imm : Operand<i8>;
266def i16imm : Operand<i16>;
267def i32imm : Operand<i32>;
268def i64imm : Operand<i64>;
269
270/// zero_reg definition - Special node to stand for the zero register.
271///
272def zero_reg;
273
274/// PredicateOperand - This can be used to define a predicate operand for an
275/// instruction. OpTypes specifies the MIOperandInfo for the operand, and
276/// AlwaysVal specifies the value of this predicate when set to "always
277/// execute".
278class PredicateOperand<ValueType ty, dag OpTypes, dag AlwaysVal>
279 : Operand<ty> {
280 let MIOperandInfo = OpTypes;
281 dag DefaultOps = AlwaysVal;
282}
283
284/// OptionalDefOperand - This is used to define a optional definition operand
285/// for an instruction. DefaultOps is the register the operand represents if none
286/// is supplied, e.g. zero_reg.
287class OptionalDefOperand<ValueType ty, dag OpTypes, dag defaultops>
288 : Operand<ty> {
289 let MIOperandInfo = OpTypes;
290 dag DefaultOps = defaultops;
291}
292
293
294// InstrInfo - This class should only be instantiated once to provide parameters
295// which are global to the the target machine.
296//
297class InstrInfo {
298 // If the target wants to associate some target-specific information with each
299 // instruction, it should provide these two lists to indicate how to assemble
300 // the target specific information into the 32 bits available.
301 //
302 list<string> TSFlagsFields = [];
303 list<int> TSFlagsShifts = [];
304
305 // Target can specify its instructions in either big or little-endian formats.
306 // For instance, while both Sparc and PowerPC are big-endian platforms, the
307 // Sparc manual specifies its instructions in the format [31..0] (big), while
308 // PowerPC specifies them using the format [0..31] (little).
309 bit isLittleEndianEncoding = 0;
310}
311
312// Standard Instructions.
313def PHI : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000314 let OutOperandList = (ops);
315 let InOperandList = (ops variable_ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000316 let AsmString = "PHINODE";
317 let Namespace = "TargetInstrInfo";
318}
319def INLINEASM : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000320 let OutOperandList = (ops);
321 let InOperandList = (ops variable_ops);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000322 let AsmString = "";
323 let Namespace = "TargetInstrInfo";
324}
325def LABEL : Instruction {
Evan Chengb783fa32007-07-19 01:14:50 +0000326 let OutOperandList = (ops);
327 let InOperandList = (ops i32imm:$id);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000328 let AsmString = "";
329 let Namespace = "TargetInstrInfo";
330 let hasCtrlDep = 1;
331}
Christopher Lamb071a2a72007-07-26 07:48:21 +0000332def EXTRACT_SUBREG : Instruction {
333 let OutOperandList = (ops variable_ops);
334 let InOperandList = (ops variable_ops);
335 let AsmString = "";
336 let Namespace = "TargetInstrInfo";
337}
338def INSERT_SUBREG : Instruction {
339 let OutOperandList = (ops variable_ops);
340 let InOperandList = (ops variable_ops);
341 let AsmString = "";
342 let Namespace = "TargetInstrInfo";
343}
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000344
345//===----------------------------------------------------------------------===//
346// AsmWriter - This class can be implemented by targets that need to customize
347// the format of the .s file writer.
348//
349// Subtargets can have multiple different asmwriters (e.g. AT&T vs Intel syntax
350// on X86 for example).
351//
352class AsmWriter {
353 // AsmWriterClassName - This specifies the suffix to use for the asmwriter
354 // class. Generated AsmWriter classes are always prefixed with the target
355 // name.
356 string AsmWriterClassName = "AsmPrinter";
357
358 // InstFormatName - AsmWriters can specify the name of the format string to
359 // print instructions with.
360 string InstFormatName = "AsmString";
361
362 // Variant - AsmWriters can be of multiple different variants. Variants are
363 // used to support targets that need to emit assembly code in ways that are
364 // mostly the same for different targets, but have minor differences in
365 // syntax. If the asmstring contains {|} characters in them, this integer
366 // will specify which alternative to use. For example "{x|y|z}" with Variant
367 // == 1, will expand to "y".
368 int Variant = 0;
369}
370def DefaultAsmWriter : AsmWriter;
371
372
373//===----------------------------------------------------------------------===//
374// Target - This class contains the "global" target information
375//
376class Target {
377 // InstructionSet - Instruction set description for this target.
378 InstrInfo InstructionSet;
379
380 // AssemblyWriters - The AsmWriter instances available for this target.
381 list<AsmWriter> AssemblyWriters = [DefaultAsmWriter];
382}
383
384//===----------------------------------------------------------------------===//
385// SubtargetFeature - A characteristic of the chip set.
386//
387class SubtargetFeature<string n, string a, string v, string d,
388 list<SubtargetFeature> i = []> {
389 // Name - Feature name. Used by command line (-mattr=) to determine the
390 // appropriate target chip.
391 //
392 string Name = n;
393
394 // Attribute - Attribute to be set by feature.
395 //
396 string Attribute = a;
397
398 // Value - Value the attribute to be set to by feature.
399 //
400 string Value = v;
401
402 // Desc - Feature description. Used by command line (-mattr=) to display help
403 // information.
404 //
405 string Desc = d;
406
407 // Implies - Features that this feature implies are present. If one of those
408 // features isn't set, then this one shouldn't be set either.
409 //
410 list<SubtargetFeature> Implies = i;
411}
412
413//===----------------------------------------------------------------------===//
414// Processor chip sets - These values represent each of the chip sets supported
415// by the scheduler. Each Processor definition requires corresponding
416// instruction itineraries.
417//
418class Processor<string n, ProcessorItineraries pi, list<SubtargetFeature> f> {
419 // Name - Chip set name. Used by command line (-mcpu=) to determine the
420 // appropriate target chip.
421 //
422 string Name = n;
423
424 // ProcItin - The scheduling information for the target processor.
425 //
426 ProcessorItineraries ProcItin = pi;
427
428 // Features - list of
429 list<SubtargetFeature> Features = f;
430}
431
432//===----------------------------------------------------------------------===//
433// Pull in the common support for calling conventions.
434//
435include "TargetCallingConv.td"
436
437//===----------------------------------------------------------------------===//
438// Pull in the common support for DAG isel generation.
439//
440include "TargetSelectionDAG.td"