blob: cbd8702a4227fbac7970002ecb71779c1b1bdefa [file] [log] [blame]
Chris Lattner8383a7b2008-04-20 20:35:01 +00001//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
Chris Lattner177480b2008-04-20 21:13:06 +000010// This file implements the Jump Threading pass.
Chris Lattner8383a7b2008-04-20 20:35:01 +000011//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "jump-threading"
15#include "llvm/Transforms/Scalar.h"
Chris Lattner177480b2008-04-20 21:13:06 +000016#include "llvm/IntrinsicInst.h"
Owen Anderson1ff50b32009-07-03 00:54:20 +000017#include "llvm/LLVMContext.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000018#include "llvm/Pass.h"
Chris Lattner9819ef72009-11-09 23:00:14 +000019#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner2cc67512008-04-21 02:57:57 +000020#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Chris Lattnerbd3401f2008-04-20 22:39:42 +000021#include "llvm/Transforms/Utils/Local.h"
Chris Lattner433a0db2009-10-10 09:05:58 +000022#include "llvm/Transforms/Utils/SSAUpdater.h"
Chris Lattneref0c6742008-12-01 04:48:07 +000023#include "llvm/Target/TargetData.h"
Mike Stumpfe095f32009-05-04 18:40:41 +000024#include "llvm/ADT/DenseMap.h"
25#include "llvm/ADT/Statistic.h"
26#include "llvm/ADT/STLExtras.h"
27#include "llvm/ADT/SmallPtrSet.h"
28#include "llvm/ADT/SmallSet.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000029#include "llvm/Support/CommandLine.h"
Chris Lattner177480b2008-04-20 21:13:06 +000030#include "llvm/Support/Debug.h"
Daniel Dunbar93b67e42009-07-26 07:49:05 +000031#include "llvm/Support/raw_ostream.h"
Chris Lattner8383a7b2008-04-20 20:35:01 +000032using namespace llvm;
33
Chris Lattnerbd3401f2008-04-20 22:39:42 +000034STATISTIC(NumThreads, "Number of jumps threaded");
35STATISTIC(NumFolds, "Number of terminators folded");
Chris Lattner78c552e2009-10-11 07:24:57 +000036STATISTIC(NumDupes, "Number of branch blocks duplicated to eliminate phi");
Chris Lattner8383a7b2008-04-20 20:35:01 +000037
Chris Lattner177480b2008-04-20 21:13:06 +000038static cl::opt<unsigned>
39Threshold("jump-threading-threshold",
40 cl::desc("Max block size to duplicate for jump threading"),
41 cl::init(6), cl::Hidden);
42
Chris Lattner8383a7b2008-04-20 20:35:01 +000043namespace {
Chris Lattner94019f82008-05-09 04:43:13 +000044 /// This pass performs 'jump threading', which looks at blocks that have
45 /// multiple predecessors and multiple successors. If one or more of the
46 /// predecessors of the block can be proven to always jump to one of the
47 /// successors, we forward the edge from the predecessor to the successor by
48 /// duplicating the contents of this block.
49 ///
50 /// An example of when this can occur is code like this:
51 ///
52 /// if () { ...
53 /// X = 4;
54 /// }
55 /// if (X < 3) {
56 ///
57 /// In this case, the unconditional branch at the end of the first if can be
58 /// revectored to the false side of the second if.
59 ///
Chris Lattner3e8b6632009-09-02 06:11:42 +000060 class JumpThreading : public FunctionPass {
Chris Lattneref0c6742008-12-01 04:48:07 +000061 TargetData *TD;
Mike Stumpfe095f32009-05-04 18:40:41 +000062#ifdef NDEBUG
63 SmallPtrSet<BasicBlock*, 16> LoopHeaders;
64#else
65 SmallSet<AssertingVH<BasicBlock>, 16> LoopHeaders;
66#endif
Chris Lattner8383a7b2008-04-20 20:35:01 +000067 public:
68 static char ID; // Pass identification
Dan Gohmanae73dc12008-09-04 17:05:41 +000069 JumpThreading() : FunctionPass(&ID) {}
Chris Lattner8383a7b2008-04-20 20:35:01 +000070
71 bool runOnFunction(Function &F);
Mike Stumpfe095f32009-05-04 18:40:41 +000072 void FindLoopHeaders(Function &F);
73
Chris Lattnerc7bcbf62008-11-27 07:20:04 +000074 bool ProcessBlock(BasicBlock *BB);
Chris Lattner5729d382009-11-07 08:05:03 +000075 bool ThreadEdge(BasicBlock *BB, const SmallVectorImpl<BasicBlock*> &PredBBs,
76 BasicBlock *SuccBB);
Chris Lattner78c552e2009-10-11 07:24:57 +000077 bool DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
78 BasicBlock *PredBB);
Chris Lattner5729d382009-11-07 08:05:03 +000079
80 typedef SmallVectorImpl<std::pair<ConstantInt*,
81 BasicBlock*> > PredValueInfo;
82
83 bool ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,
84 PredValueInfo &Result);
85 bool ProcessThreadableEdges(Instruction *CondInst, BasicBlock *BB);
86
87
Chris Lattner421fa9e2008-12-03 07:48:08 +000088 bool ProcessBranchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner3cda3cd2008-12-04 06:31:07 +000089 bool ProcessSwitchOnDuplicateCond(BasicBlock *PredBB, BasicBlock *DestBB);
Chris Lattner6bf77502008-04-22 07:05:46 +000090
Chris Lattnerd38c14e2008-04-22 06:36:15 +000091 bool ProcessJumpOnPHI(PHINode *PN);
Chris Lattner69e067f2008-11-27 05:07:53 +000092
93 bool SimplifyPartiallyRedundantLoad(LoadInst *LI);
Chris Lattner8383a7b2008-04-20 20:35:01 +000094 };
Chris Lattner8383a7b2008-04-20 20:35:01 +000095}
96
Dan Gohman844731a2008-05-13 00:00:25 +000097char JumpThreading::ID = 0;
98static RegisterPass<JumpThreading>
99X("jump-threading", "Jump Threading");
100
Chris Lattner8383a7b2008-04-20 20:35:01 +0000101// Public interface to the Jump Threading pass
102FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
103
104/// runOnFunction - Top level algorithm.
105///
106bool JumpThreading::runOnFunction(Function &F) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000107 DEBUG(errs() << "Jump threading on function '" << F.getName() << "'\n");
Dan Gohman02a436c2009-07-24 18:13:53 +0000108 TD = getAnalysisIfAvailable<TargetData>();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000109
Mike Stumpfe095f32009-05-04 18:40:41 +0000110 FindLoopHeaders(F);
111
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000112 bool AnotherIteration = true, EverChanged = false;
113 while (AnotherIteration) {
114 AnotherIteration = false;
115 bool Changed = false;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000116 for (Function::iterator I = F.begin(), E = F.end(); I != E;) {
117 BasicBlock *BB = I;
Chris Lattnerf3183f62009-11-10 21:40:01 +0000118 // Thread all of the branches we can over this block.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000119 while (ProcessBlock(BB))
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000120 Changed = true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000121
122 ++I;
123
124 // If the block is trivially dead, zap it. This eliminates the successor
125 // edges which simplifies the CFG.
126 if (pred_begin(BB) == pred_end(BB) &&
Chris Lattner20fa76e2008-12-08 22:44:07 +0000127 BB != &BB->getParent()->getEntryBlock()) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000128 DEBUG(errs() << " JT: Deleting dead block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000129 << "' with terminator: " << *BB->getTerminator() << '\n');
Mike Stumpfe095f32009-05-04 18:40:41 +0000130 LoopHeaders.erase(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000131 DeleteDeadBlock(BB);
132 Changed = true;
Chris Lattnerf3183f62009-11-10 21:40:01 +0000133 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
134 // Can't thread an unconditional jump, but if the block is "almost
135 // empty", we can replace uses of it with uses of the successor and make
136 // this dead.
137 if (BI->isUnconditional() &&
138 BB != &BB->getParent()->getEntryBlock()) {
139 BasicBlock::iterator BBI = BB->getFirstNonPHI();
140 // Ignore dbg intrinsics.
141 while (isa<DbgInfoIntrinsic>(BBI))
142 ++BBI;
143 // If the terminator is the only non-phi instruction, try to nuke it.
144 if (BBI->isTerminator()) {
Chris Lattner6f84a5f2009-11-10 21:45:09 +0000145 // Since TryToSimplifyUncondBranchFromEmptyBlock may delete the
146 // block, we have to make sure it isn't in the LoopHeaders set. We
147 // reinsert afterward in the rare case when the block isn't deleted.
148 bool ErasedFromLoopHeaders = LoopHeaders.erase(BB);
Chris Lattnerf3183f62009-11-10 21:40:01 +0000149
150 if (TryToSimplifyUncondBranchFromEmptyBlock(BB))
151 Changed = true;
Chris Lattner6f84a5f2009-11-10 21:45:09 +0000152 else if (ErasedFromLoopHeaders)
Chris Lattnerf3183f62009-11-10 21:40:01 +0000153 LoopHeaders.insert(BB);
154 }
155 }
Chris Lattner421fa9e2008-12-03 07:48:08 +0000156 }
157 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000158 AnotherIteration = Changed;
159 EverChanged |= Changed;
160 }
Mike Stumpfe095f32009-05-04 18:40:41 +0000161
162 LoopHeaders.clear();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000163 return EverChanged;
Chris Lattner8383a7b2008-04-20 20:35:01 +0000164}
Chris Lattner177480b2008-04-20 21:13:06 +0000165
Chris Lattner78c552e2009-10-11 07:24:57 +0000166/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
167/// thread across it.
168static unsigned getJumpThreadDuplicationCost(const BasicBlock *BB) {
169 /// Ignore PHI nodes, these will be flattened when duplication happens.
170 BasicBlock::const_iterator I = BB->getFirstNonPHI();
171
172 // Sum up the cost of each instruction until we get to the terminator. Don't
173 // include the terminator because the copy won't include it.
174 unsigned Size = 0;
175 for (; !isa<TerminatorInst>(I); ++I) {
176 // Debugger intrinsics don't incur code size.
177 if (isa<DbgInfoIntrinsic>(I)) continue;
178
179 // If this is a pointer->pointer bitcast, it is free.
180 if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
181 continue;
182
183 // All other instructions count for at least one unit.
184 ++Size;
185
186 // Calls are more expensive. If they are non-intrinsic calls, we model them
187 // as having cost of 4. If they are a non-vector intrinsic, we model them
188 // as having cost of 2 total, and if they are a vector intrinsic, we model
189 // them as having cost 1.
190 if (const CallInst *CI = dyn_cast<CallInst>(I)) {
191 if (!isa<IntrinsicInst>(CI))
192 Size += 3;
193 else if (!isa<VectorType>(CI->getType()))
194 Size += 1;
195 }
196 }
197
198 // Threading through a switch statement is particularly profitable. If this
199 // block ends in a switch, decrease its cost to make it more likely to happen.
200 if (isa<SwitchInst>(I))
201 Size = Size > 6 ? Size-6 : 0;
202
203 return Size;
204}
205
Mike Stumpfe095f32009-05-04 18:40:41 +0000206/// FindLoopHeaders - We do not want jump threading to turn proper loop
207/// structures into irreducible loops. Doing this breaks up the loop nesting
208/// hierarchy and pessimizes later transformations. To prevent this from
209/// happening, we first have to find the loop headers. Here we approximate this
210/// by finding targets of backedges in the CFG.
211///
212/// Note that there definitely are cases when we want to allow threading of
213/// edges across a loop header. For example, threading a jump from outside the
214/// loop (the preheader) to an exit block of the loop is definitely profitable.
215/// It is also almost always profitable to thread backedges from within the loop
216/// to exit blocks, and is often profitable to thread backedges to other blocks
217/// within the loop (forming a nested loop). This simple analysis is not rich
218/// enough to track all of these properties and keep it up-to-date as the CFG
219/// mutates, so we don't allow any of these transformations.
220///
221void JumpThreading::FindLoopHeaders(Function &F) {
222 SmallVector<std::pair<const BasicBlock*,const BasicBlock*>, 32> Edges;
223 FindFunctionBackedges(F, Edges);
224
225 for (unsigned i = 0, e = Edges.size(); i != e; ++i)
226 LoopHeaders.insert(const_cast<BasicBlock*>(Edges[i].second));
227}
228
Chris Lattner5729d382009-11-07 08:05:03 +0000229/// ComputeValueKnownInPredecessors - Given a basic block BB and a value V, see
230/// if we can infer that the value is a known ConstantInt in any of our
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000231/// predecessors. If so, return the known list of value and pred BB in the
Chris Lattner5729d382009-11-07 08:05:03 +0000232/// result vector. If a value is known to be undef, it is returned as null.
233///
234/// The BB basic block is known to start with a PHI node.
235///
236/// This returns true if there were any known values.
237///
238///
239/// TODO: Per PR2563, we could infer value range information about a predecessor
240/// based on its terminator.
241bool JumpThreading::
242ComputeValueKnownInPredecessors(Value *V, BasicBlock *BB,PredValueInfo &Result){
243 PHINode *TheFirstPHI = cast<PHINode>(BB->begin());
Chris Lattner78567252009-11-06 18:15:14 +0000244
Chris Lattner5729d382009-11-07 08:05:03 +0000245 // If V is a constantint, then it is known in all predecessors.
246 if (isa<ConstantInt>(V) || isa<UndefValue>(V)) {
247 ConstantInt *CI = dyn_cast<ConstantInt>(V);
248 Result.resize(TheFirstPHI->getNumIncomingValues());
249 for (unsigned i = 0, e = Result.size(); i != e; ++i)
250 Result[i] = std::make_pair(CI, TheFirstPHI->getIncomingBlock(i));
251 return true;
252 }
253
254 // If V is a non-instruction value, or an instruction in a different block,
255 // then it can't be derived from a PHI.
256 Instruction *I = dyn_cast<Instruction>(V);
257 if (I == 0 || I->getParent() != BB)
258 return false;
259
260 /// If I is a PHI node, then we know the incoming values for any constants.
261 if (PHINode *PN = dyn_cast<PHINode>(I)) {
262 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
263 Value *InVal = PN->getIncomingValue(i);
264 if (isa<ConstantInt>(InVal) || isa<UndefValue>(InVal)) {
265 ConstantInt *CI = dyn_cast<ConstantInt>(InVal);
266 Result.push_back(std::make_pair(CI, PN->getIncomingBlock(i)));
267 }
268 }
269 return !Result.empty();
270 }
271
272 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> LHSVals, RHSVals;
273
274 // Handle some boolean conditions.
275 if (I->getType()->getPrimitiveSizeInBits() == 1) {
276 // X | true -> true
277 // X & false -> false
278 if (I->getOpcode() == Instruction::Or ||
279 I->getOpcode() == Instruction::And) {
280 ComputeValueKnownInPredecessors(I->getOperand(0), BB, LHSVals);
281 ComputeValueKnownInPredecessors(I->getOperand(1), BB, RHSVals);
282
283 if (LHSVals.empty() && RHSVals.empty())
284 return false;
285
286 ConstantInt *InterestingVal;
287 if (I->getOpcode() == Instruction::Or)
288 InterestingVal = ConstantInt::getTrue(I->getContext());
289 else
290 InterestingVal = ConstantInt::getFalse(I->getContext());
291
292 // Scan for the sentinel.
293 for (unsigned i = 0, e = LHSVals.size(); i != e; ++i)
294 if (LHSVals[i].first == InterestingVal || LHSVals[i].first == 0)
295 Result.push_back(LHSVals[i]);
296 for (unsigned i = 0, e = RHSVals.size(); i != e; ++i)
297 if (RHSVals[i].first == InterestingVal || RHSVals[i].first == 0)
298 Result.push_back(RHSVals[i]);
299 return !Result.empty();
300 }
301
Chris Lattner055d0462009-11-10 22:39:16 +0000302 // Handle the NOT form of XOR.
303 if (I->getOpcode() == Instruction::Xor &&
304 isa<ConstantInt>(I->getOperand(1)) &&
305 cast<ConstantInt>(I->getOperand(1))->isOne()) {
306 ComputeValueKnownInPredecessors(I->getOperand(0), BB, Result);
307 if (Result.empty())
308 return false;
309
310 // Invert the known values.
311 for (unsigned i = 0, e = Result.size(); i != e; ++i)
312 Result[i].first =
313 cast<ConstantInt>(ConstantExpr::getNot(Result[i].first));
314 return true;
315 }
Chris Lattner5729d382009-11-07 08:05:03 +0000316 }
317
318 // Handle compare with phi operand, where the PHI is defined in this block.
319 if (CmpInst *Cmp = dyn_cast<CmpInst>(I)) {
320 PHINode *PN = dyn_cast<PHINode>(Cmp->getOperand(0));
321 if (PN && PN->getParent() == BB) {
322 // We can do this simplification if any comparisons fold to true or false.
323 // See if any do.
324 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
325 BasicBlock *PredBB = PN->getIncomingBlock(i);
326 Value *LHS = PN->getIncomingValue(i);
327 Value *RHS = Cmp->getOperand(1)->DoPHITranslation(BB, PredBB);
328
Chris Lattner9dbb4292009-11-09 23:28:39 +0000329 Value *Res = SimplifyCmpInst(Cmp->getPredicate(), LHS, RHS);
Chris Lattner5729d382009-11-07 08:05:03 +0000330 if (Res == 0) continue;
331
332 if (isa<UndefValue>(Res))
333 Result.push_back(std::make_pair((ConstantInt*)0, PredBB));
334 else if (ConstantInt *CI = dyn_cast<ConstantInt>(Res))
335 Result.push_back(std::make_pair(CI, PredBB));
336 }
337
338 return !Result.empty();
339 }
340
341 // TODO: We could also recurse to see if we can determine constants another
342 // way.
343 }
344 return false;
345}
346
347
Chris Lattner6bf77502008-04-22 07:05:46 +0000348
Chris Lattnere33583b2009-10-11 04:18:15 +0000349/// GetBestDestForBranchOnUndef - If we determine that the specified block ends
350/// in an undefined jump, decide which block is best to revector to.
351///
352/// Since we can pick an arbitrary destination, we pick the successor with the
353/// fewest predecessors. This should reduce the in-degree of the others.
354///
355static unsigned GetBestDestForJumpOnUndef(BasicBlock *BB) {
356 TerminatorInst *BBTerm = BB->getTerminator();
357 unsigned MinSucc = 0;
358 BasicBlock *TestBB = BBTerm->getSuccessor(MinSucc);
359 // Compute the successor with the minimum number of predecessors.
360 unsigned MinNumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
361 for (unsigned i = 1, e = BBTerm->getNumSuccessors(); i != e; ++i) {
362 TestBB = BBTerm->getSuccessor(i);
363 unsigned NumPreds = std::distance(pred_begin(TestBB), pred_end(TestBB));
364 if (NumPreds < MinNumPreds)
365 MinSucc = i;
366 }
367
368 return MinSucc;
369}
370
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000371/// ProcessBlock - If there are any predecessors whose control can be threaded
Chris Lattner177480b2008-04-20 21:13:06 +0000372/// through to a successor, transform them now.
Chris Lattnerc7bcbf62008-11-27 07:20:04 +0000373bool JumpThreading::ProcessBlock(BasicBlock *BB) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000374 // If this block has a single predecessor, and if that pred has a single
375 // successor, merge the blocks. This encourages recursive jump threading
376 // because now the condition in this block can be threaded through
377 // predecessors of our predecessor block.
Chris Lattner5729d382009-11-07 08:05:03 +0000378 if (BasicBlock *SinglePred = BB->getSinglePredecessor()) {
Chris Lattnerf5102a02008-11-28 19:54:49 +0000379 if (SinglePred->getTerminator()->getNumSuccessors() == 1 &&
380 SinglePred != BB) {
Mike Stumpfe095f32009-05-04 18:40:41 +0000381 // If SinglePred was a loop header, BB becomes one.
382 if (LoopHeaders.erase(SinglePred))
383 LoopHeaders.insert(BB);
384
Chris Lattner3d86d242008-11-27 19:25:19 +0000385 // Remember if SinglePred was the entry block of the function. If so, we
386 // will need to move BB back to the entry position.
387 bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
Chris Lattner69e067f2008-11-27 05:07:53 +0000388 MergeBasicBlockIntoOnlyPred(BB);
Chris Lattner3d86d242008-11-27 19:25:19 +0000389
390 if (isEntry && BB != &BB->getParent()->getEntryBlock())
391 BB->moveBefore(&BB->getParent()->getEntryBlock());
Chris Lattner69e067f2008-11-27 05:07:53 +0000392 return true;
393 }
Chris Lattner5729d382009-11-07 08:05:03 +0000394 }
395
396 // Look to see if the terminator is a branch of switch, if not we can't thread
397 // it.
Chris Lattner177480b2008-04-20 21:13:06 +0000398 Value *Condition;
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000399 if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
400 // Can't thread an unconditional jump.
401 if (BI->isUnconditional()) return false;
Chris Lattner177480b2008-04-20 21:13:06 +0000402 Condition = BI->getCondition();
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000403 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator()))
Chris Lattner177480b2008-04-20 21:13:06 +0000404 Condition = SI->getCondition();
405 else
406 return false; // Must be an invoke.
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000407
408 // If the terminator of this block is branching on a constant, simplify the
Chris Lattner037c7812008-04-21 18:25:01 +0000409 // terminator to an unconditional branch. This can occur due to threading in
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000410 // other blocks.
411 if (isa<ConstantInt>(Condition)) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000412 DEBUG(errs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000413 << "' folding terminator: " << *BB->getTerminator() << '\n');
Chris Lattnerbd3401f2008-04-20 22:39:42 +0000414 ++NumFolds;
415 ConstantFoldTerminator(BB);
416 return true;
417 }
418
Chris Lattner421fa9e2008-12-03 07:48:08 +0000419 // If the terminator is branching on an undef, we can pick any of the
Chris Lattnere33583b2009-10-11 04:18:15 +0000420 // successors to branch to. Let GetBestDestForJumpOnUndef decide.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000421 if (isa<UndefValue>(Condition)) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000422 unsigned BestSucc = GetBestDestForJumpOnUndef(BB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000423
424 // Fold the branch/switch.
Chris Lattnere33583b2009-10-11 04:18:15 +0000425 TerminatorInst *BBTerm = BB->getTerminator();
Chris Lattner421fa9e2008-12-03 07:48:08 +0000426 for (unsigned i = 0, e = BBTerm->getNumSuccessors(); i != e; ++i) {
Chris Lattnere33583b2009-10-11 04:18:15 +0000427 if (i == BestSucc) continue;
Chris Lattnerc2c23d02009-11-09 22:32:36 +0000428 RemovePredecessorAndSimplify(BBTerm->getSuccessor(i), BB, TD);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000429 }
430
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000431 DEBUG(errs() << " In block '" << BB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000432 << "' folding undef terminator: " << *BBTerm << '\n');
Chris Lattnere33583b2009-10-11 04:18:15 +0000433 BranchInst::Create(BBTerm->getSuccessor(BestSucc), BBTerm);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000434 BBTerm->eraseFromParent();
435 return true;
436 }
437
438 Instruction *CondInst = dyn_cast<Instruction>(Condition);
439
440 // If the condition is an instruction defined in another block, see if a
441 // predecessor has the same condition:
442 // br COND, BBX, BBY
443 // BBX:
444 // br COND, BBZ, BBW
445 if (!Condition->hasOneUse() && // Multiple uses.
446 (CondInst == 0 || CondInst->getParent() != BB)) { // Non-local definition.
447 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
448 if (isa<BranchInst>(BB->getTerminator())) {
449 for (; PI != E; ++PI)
450 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
451 if (PBI->isConditional() && PBI->getCondition() == Condition &&
452 ProcessBranchOnDuplicateCond(*PI, BB))
453 return true;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000454 } else {
455 assert(isa<SwitchInst>(BB->getTerminator()) && "Unknown jump terminator");
456 for (; PI != E; ++PI)
457 if (SwitchInst *PSI = dyn_cast<SwitchInst>((*PI)->getTerminator()))
458 if (PSI->getCondition() == Condition &&
459 ProcessSwitchOnDuplicateCond(*PI, BB))
460 return true;
Chris Lattner421fa9e2008-12-03 07:48:08 +0000461 }
462 }
463
Chris Lattner421fa9e2008-12-03 07:48:08 +0000464 // All the rest of our checks depend on the condition being an instruction.
465 if (CondInst == 0)
466 return false;
467
Chris Lattner177480b2008-04-20 21:13:06 +0000468 // See if this is a phi node in the current block.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000469 if (PHINode *PN = dyn_cast<PHINode>(CondInst))
470 if (PN->getParent() == BB)
471 return ProcessJumpOnPHI(PN);
Chris Lattner177480b2008-04-20 21:13:06 +0000472
Nick Lewycky9683f182009-06-19 04:56:29 +0000473 if (CmpInst *CondCmp = dyn_cast<CmpInst>(CondInst)) {
Chris Lattner5729d382009-11-07 08:05:03 +0000474 if (!isa<PHINode>(CondCmp->getOperand(0)) ||
475 cast<PHINode>(CondCmp->getOperand(0))->getParent() != BB) {
476 // If we have a comparison, loop over the predecessors to see if there is
477 // a condition with a lexically identical value.
478 pred_iterator PI = pred_begin(BB), E = pred_end(BB);
479 for (; PI != E; ++PI)
480 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
481 if (PBI->isConditional() && *PI != BB) {
482 if (CmpInst *CI = dyn_cast<CmpInst>(PBI->getCondition())) {
483 if (CI->getOperand(0) == CondCmp->getOperand(0) &&
484 CI->getOperand(1) == CondCmp->getOperand(1) &&
485 CI->getPredicate() == CondCmp->getPredicate()) {
486 // TODO: Could handle things like (x != 4) --> (x == 17)
487 if (ProcessBranchOnDuplicateCond(*PI, BB))
488 return true;
489 }
Chris Lattner79c740f2009-06-19 16:27:56 +0000490 }
491 }
Chris Lattner5729d382009-11-07 08:05:03 +0000492 }
Nick Lewycky9683f182009-06-19 04:56:29 +0000493 }
Chris Lattner69e067f2008-11-27 05:07:53 +0000494
495 // Check for some cases that are worth simplifying. Right now we want to look
496 // for loads that are used by a switch or by the condition for the branch. If
497 // we see one, check to see if it's partially redundant. If so, insert a PHI
498 // which can then be used to thread the values.
499 //
500 // This is particularly important because reg2mem inserts loads and stores all
501 // over the place, and this blocks jump threading if we don't zap them.
Chris Lattner421fa9e2008-12-03 07:48:08 +0000502 Value *SimplifyValue = CondInst;
Chris Lattner69e067f2008-11-27 05:07:53 +0000503 if (CmpInst *CondCmp = dyn_cast<CmpInst>(SimplifyValue))
504 if (isa<Constant>(CondCmp->getOperand(1)))
505 SimplifyValue = CondCmp->getOperand(0);
506
507 if (LoadInst *LI = dyn_cast<LoadInst>(SimplifyValue))
508 if (SimplifyPartiallyRedundantLoad(LI))
509 return true;
510
Chris Lattner5729d382009-11-07 08:05:03 +0000511
512 // Handle a variety of cases where we are branching on something derived from
513 // a PHI node in the current block. If we can prove that any predecessors
514 // compute a predictable value based on a PHI node, thread those predecessors.
515 //
516 // We only bother doing this if the current block has a PHI node and if the
517 // conditional instruction lives in the current block. If either condition
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000518 // fails, this won't be a computable value anyway.
Chris Lattner5729d382009-11-07 08:05:03 +0000519 if (CondInst->getParent() == BB && isa<PHINode>(BB->front()))
520 if (ProcessThreadableEdges(CondInst, BB))
521 return true;
522
523
Chris Lattner69e067f2008-11-27 05:07:53 +0000524 // TODO: If we have: "br (X > 0)" and we have a predecessor where we know
525 // "(X == 4)" thread through this block.
Chris Lattnera5ddb592008-04-22 21:40:39 +0000526
Chris Lattnerd38c14e2008-04-22 06:36:15 +0000527 return false;
528}
529
Chris Lattner421fa9e2008-12-03 07:48:08 +0000530/// ProcessBranchOnDuplicateCond - We found a block and a predecessor of that
531/// block that jump on exactly the same condition. This means that we almost
532/// always know the direction of the edge in the DESTBB:
533/// PREDBB:
534/// br COND, DESTBB, BBY
535/// DESTBB:
536/// br COND, BBZ, BBW
537///
538/// If DESTBB has multiple predecessors, we can't just constant fold the branch
539/// in DESTBB, we have to thread over it.
540bool JumpThreading::ProcessBranchOnDuplicateCond(BasicBlock *PredBB,
541 BasicBlock *BB) {
542 BranchInst *PredBI = cast<BranchInst>(PredBB->getTerminator());
543
544 // If both successors of PredBB go to DESTBB, we don't know anything. We can
545 // fold the branch to an unconditional one, which allows other recursive
546 // simplifications.
547 bool BranchDir;
548 if (PredBI->getSuccessor(1) != BB)
549 BranchDir = true;
550 else if (PredBI->getSuccessor(0) != BB)
551 BranchDir = false;
552 else {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000553 DEBUG(errs() << " In block '" << PredBB->getName()
Chris Lattner78c552e2009-10-11 07:24:57 +0000554 << "' folding terminator: " << *PredBB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000555 ++NumFolds;
556 ConstantFoldTerminator(PredBB);
557 return true;
558 }
559
560 BranchInst *DestBI = cast<BranchInst>(BB->getTerminator());
561
562 // If the dest block has one predecessor, just fix the branch condition to a
563 // constant and fold it.
564 if (BB->getSinglePredecessor()) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000565 DEBUG(errs() << " In block '" << BB->getName()
566 << "' folding condition to '" << BranchDir << "': "
Chris Lattner78c552e2009-10-11 07:24:57 +0000567 << *BB->getTerminator() << '\n');
Chris Lattner421fa9e2008-12-03 07:48:08 +0000568 ++NumFolds;
Chris Lattner5a06cf62009-10-11 18:39:58 +0000569 Value *OldCond = DestBI->getCondition();
Owen Anderson1d0be152009-08-13 21:58:54 +0000570 DestBI->setCondition(ConstantInt::get(Type::getInt1Ty(BB->getContext()),
571 BranchDir));
Chris Lattner421fa9e2008-12-03 07:48:08 +0000572 ConstantFoldTerminator(BB);
Chris Lattner5a06cf62009-10-11 18:39:58 +0000573 RecursivelyDeleteTriviallyDeadInstructions(OldCond);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000574 return true;
575 }
Chris Lattnerbdbf1a12009-10-11 04:33:43 +0000576
Chris Lattner421fa9e2008-12-03 07:48:08 +0000577
578 // Next, figure out which successor we are threading to.
579 BasicBlock *SuccBB = DestBI->getSuccessor(!BranchDir);
580
Chris Lattner5729d382009-11-07 08:05:03 +0000581 SmallVector<BasicBlock*, 2> Preds;
582 Preds.push_back(PredBB);
583
Mike Stumpfe095f32009-05-04 18:40:41 +0000584 // Ok, try to thread it!
Chris Lattner5729d382009-11-07 08:05:03 +0000585 return ThreadEdge(BB, Preds, SuccBB);
Chris Lattner421fa9e2008-12-03 07:48:08 +0000586}
587
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000588/// ProcessSwitchOnDuplicateCond - We found a block and a predecessor of that
589/// block that switch on exactly the same condition. This means that we almost
590/// always know the direction of the edge in the DESTBB:
591/// PREDBB:
592/// switch COND [... DESTBB, BBY ... ]
593/// DESTBB:
594/// switch COND [... BBZ, BBW ]
595///
596/// Optimizing switches like this is very important, because simplifycfg builds
597/// switches out of repeated 'if' conditions.
598bool JumpThreading::ProcessSwitchOnDuplicateCond(BasicBlock *PredBB,
599 BasicBlock *DestBB) {
Chris Lattner2c7ed112009-01-19 21:20:34 +0000600 // Can't thread edge to self.
601 if (PredBB == DestBB)
602 return false;
603
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000604 SwitchInst *PredSI = cast<SwitchInst>(PredBB->getTerminator());
605 SwitchInst *DestSI = cast<SwitchInst>(DestBB->getTerminator());
606
607 // There are a variety of optimizations that we can potentially do on these
608 // blocks: we order them from most to least preferable.
609
610 // If DESTBB *just* contains the switch, then we can forward edges from PREDBB
611 // directly to their destination. This does not introduce *any* code size
Dale Johannesen6b233392009-03-17 00:38:24 +0000612 // growth. Skip debug info first.
613 BasicBlock::iterator BBI = DestBB->begin();
614 while (isa<DbgInfoIntrinsic>(BBI))
615 BBI++;
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000616
617 // FIXME: Thread if it just contains a PHI.
Dale Johannesen6b233392009-03-17 00:38:24 +0000618 if (isa<SwitchInst>(BBI)) {
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000619 bool MadeChange = false;
620 // Ignore the default edge for now.
621 for (unsigned i = 1, e = DestSI->getNumSuccessors(); i != e; ++i) {
622 ConstantInt *DestVal = DestSI->getCaseValue(i);
623 BasicBlock *DestSucc = DestSI->getSuccessor(i);
624
625 // Okay, DestSI has a case for 'DestVal' that goes to 'DestSucc'. See if
626 // PredSI has an explicit case for it. If so, forward. If it is covered
627 // by the default case, we can't update PredSI.
628 unsigned PredCase = PredSI->findCaseValue(DestVal);
629 if (PredCase == 0) continue;
630
631 // If PredSI doesn't go to DestBB on this value, then it won't reach the
632 // case on this condition.
633 if (PredSI->getSuccessor(PredCase) != DestBB &&
634 DestSI->getSuccessor(i) != DestBB)
635 continue;
636
637 // Otherwise, we're safe to make the change. Make sure that the edge from
638 // DestSI to DestSucc is not critical and has no PHI nodes.
Daniel Dunbar93b67e42009-07-26 07:49:05 +0000639 DEBUG(errs() << "FORWARDING EDGE " << *DestVal << " FROM: " << *PredSI);
640 DEBUG(errs() << "THROUGH: " << *DestSI);
Chris Lattner3cda3cd2008-12-04 06:31:07 +0000641
642 // If the destination has PHI nodes, just split the edge for updating
643 // simplicity.
644 if (isa<PHINode>(DestSucc->begin()) && !DestSucc->getSinglePredecessor()){
645 SplitCriticalEdge(DestSI, i, this);
646 DestSucc = DestSI->getSuccessor(i);
647 }
648 FoldSingleEntryPHINodes(DestSucc);
649 PredSI->setSuccessor(PredCase, DestSucc);
650 MadeChange = true;
651 }
652
653 if (MadeChange)
654 return true;
655 }
656
657 return false;
658}
659
660
Chris Lattner69e067f2008-11-27 05:07:53 +0000661/// SimplifyPartiallyRedundantLoad - If LI is an obviously partially redundant
662/// load instruction, eliminate it by replacing it with a PHI node. This is an
663/// important optimization that encourages jump threading, and needs to be run
664/// interlaced with other jump threading tasks.
665bool JumpThreading::SimplifyPartiallyRedundantLoad(LoadInst *LI) {
666 // Don't hack volatile loads.
667 if (LI->isVolatile()) return false;
668
669 // If the load is defined in a block with exactly one predecessor, it can't be
670 // partially redundant.
671 BasicBlock *LoadBB = LI->getParent();
672 if (LoadBB->getSinglePredecessor())
673 return false;
674
675 Value *LoadedPtr = LI->getOperand(0);
676
677 // If the loaded operand is defined in the LoadBB, it can't be available.
678 // FIXME: Could do PHI translation, that would be fun :)
679 if (Instruction *PtrOp = dyn_cast<Instruction>(LoadedPtr))
680 if (PtrOp->getParent() == LoadBB)
681 return false;
682
683 // Scan a few instructions up from the load, to see if it is obviously live at
684 // the entry to its block.
685 BasicBlock::iterator BBIt = LI;
686
Chris Lattner52c95852008-11-27 08:10:05 +0000687 if (Value *AvailableVal = FindAvailableLoadedValue(LoadedPtr, LoadBB,
688 BBIt, 6)) {
Chris Lattner69e067f2008-11-27 05:07:53 +0000689 // If the value if the load is locally available within the block, just use
690 // it. This frequently occurs for reg2mem'd allocas.
691 //cerr << "LOAD ELIMINATED:\n" << *BBIt << *LI << "\n";
Chris Lattner2a99b482009-01-09 06:08:12 +0000692
693 // If the returned value is the load itself, replace with an undef. This can
694 // only happen in dead loops.
Owen Anderson9e9a0d52009-07-30 23:03:37 +0000695 if (AvailableVal == LI) AvailableVal = UndefValue::get(LI->getType());
Chris Lattner69e067f2008-11-27 05:07:53 +0000696 LI->replaceAllUsesWith(AvailableVal);
697 LI->eraseFromParent();
698 return true;
699 }
700
701 // Otherwise, if we scanned the whole block and got to the top of the block,
702 // we know the block is locally transparent to the load. If not, something
703 // might clobber its value.
704 if (BBIt != LoadBB->begin())
705 return false;
706
707
708 SmallPtrSet<BasicBlock*, 8> PredsScanned;
709 typedef SmallVector<std::pair<BasicBlock*, Value*>, 8> AvailablePredsTy;
710 AvailablePredsTy AvailablePreds;
711 BasicBlock *OneUnavailablePred = 0;
712
713 // If we got here, the loaded value is transparent through to the start of the
714 // block. Check to see if it is available in any of the predecessor blocks.
715 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
716 PI != PE; ++PI) {
717 BasicBlock *PredBB = *PI;
718
719 // If we already scanned this predecessor, skip it.
720 if (!PredsScanned.insert(PredBB))
721 continue;
722
723 // Scan the predecessor to see if the value is available in the pred.
724 BBIt = PredBB->end();
Chris Lattner52c95852008-11-27 08:10:05 +0000725 Value *PredAvailable = FindAvailableLoadedValue(LoadedPtr, PredBB, BBIt, 6);
Chris Lattner69e067f2008-11-27 05:07:53 +0000726 if (!PredAvailable) {
727 OneUnavailablePred = PredBB;
728 continue;
729 }
730
731 // If so, this load is partially redundant. Remember this info so that we
732 // can create a PHI node.
733 AvailablePreds.push_back(std::make_pair(PredBB, PredAvailable));
734 }
735
736 // If the loaded value isn't available in any predecessor, it isn't partially
737 // redundant.
738 if (AvailablePreds.empty()) return false;
739
740 // Okay, the loaded value is available in at least one (and maybe all!)
741 // predecessors. If the value is unavailable in more than one unique
742 // predecessor, we want to insert a merge block for those common predecessors.
743 // This ensures that we only have to insert one reload, thus not increasing
744 // code size.
745 BasicBlock *UnavailablePred = 0;
746
747 // If there is exactly one predecessor where the value is unavailable, the
748 // already computed 'OneUnavailablePred' block is it. If it ends in an
749 // unconditional branch, we know that it isn't a critical edge.
750 if (PredsScanned.size() == AvailablePreds.size()+1 &&
751 OneUnavailablePred->getTerminator()->getNumSuccessors() == 1) {
752 UnavailablePred = OneUnavailablePred;
753 } else if (PredsScanned.size() != AvailablePreds.size()) {
754 // Otherwise, we had multiple unavailable predecessors or we had a critical
755 // edge from the one.
756 SmallVector<BasicBlock*, 8> PredsToSplit;
757 SmallPtrSet<BasicBlock*, 8> AvailablePredSet;
758
759 for (unsigned i = 0, e = AvailablePreds.size(); i != e; ++i)
760 AvailablePredSet.insert(AvailablePreds[i].first);
761
762 // Add all the unavailable predecessors to the PredsToSplit list.
763 for (pred_iterator PI = pred_begin(LoadBB), PE = pred_end(LoadBB);
764 PI != PE; ++PI)
765 if (!AvailablePredSet.count(*PI))
766 PredsToSplit.push_back(*PI);
767
768 // Split them out to their own block.
769 UnavailablePred =
770 SplitBlockPredecessors(LoadBB, &PredsToSplit[0], PredsToSplit.size(),
771 "thread-split", this);
772 }
773
774 // If the value isn't available in all predecessors, then there will be
775 // exactly one where it isn't available. Insert a load on that edge and add
776 // it to the AvailablePreds list.
777 if (UnavailablePred) {
778 assert(UnavailablePred->getTerminator()->getNumSuccessors() == 1 &&
779 "Can't handle critical edge here!");
780 Value *NewVal = new LoadInst(LoadedPtr, LI->getName()+".pr",
781 UnavailablePred->getTerminator());
782 AvailablePreds.push_back(std::make_pair(UnavailablePred, NewVal));
783 }
784
785 // Now we know that each predecessor of this block has a value in
786 // AvailablePreds, sort them for efficient access as we're walking the preds.
Chris Lattnera3522002008-12-01 06:52:57 +0000787 array_pod_sort(AvailablePreds.begin(), AvailablePreds.end());
Chris Lattner69e067f2008-11-27 05:07:53 +0000788
789 // Create a PHI node at the start of the block for the PRE'd load value.
790 PHINode *PN = PHINode::Create(LI->getType(), "", LoadBB->begin());
791 PN->takeName(LI);
792
793 // Insert new entries into the PHI for each predecessor. A single block may
794 // have multiple entries here.
795 for (pred_iterator PI = pred_begin(LoadBB), E = pred_end(LoadBB); PI != E;
796 ++PI) {
797 AvailablePredsTy::iterator I =
798 std::lower_bound(AvailablePreds.begin(), AvailablePreds.end(),
799 std::make_pair(*PI, (Value*)0));
800
801 assert(I != AvailablePreds.end() && I->first == *PI &&
802 "Didn't find entry for predecessor!");
803
804 PN->addIncoming(I->second, I->first);
805 }
806
807 //cerr << "PRE: " << *LI << *PN << "\n";
808
809 LI->replaceAllUsesWith(PN);
810 LI->eraseFromParent();
811
812 return true;
813}
814
Chris Lattner5729d382009-11-07 08:05:03 +0000815/// FindMostPopularDest - The specified list contains multiple possible
816/// threadable destinations. Pick the one that occurs the most frequently in
817/// the list.
818static BasicBlock *
819FindMostPopularDest(BasicBlock *BB,
820 const SmallVectorImpl<std::pair<BasicBlock*,
821 BasicBlock*> > &PredToDestList) {
822 assert(!PredToDestList.empty());
823
824 // Determine popularity. If there are multiple possible destinations, we
825 // explicitly choose to ignore 'undef' destinations. We prefer to thread
826 // blocks with known and real destinations to threading undef. We'll handle
827 // them later if interesting.
828 DenseMap<BasicBlock*, unsigned> DestPopularity;
829 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
830 if (PredToDestList[i].second)
831 DestPopularity[PredToDestList[i].second]++;
832
833 // Find the most popular dest.
834 DenseMap<BasicBlock*, unsigned>::iterator DPI = DestPopularity.begin();
835 BasicBlock *MostPopularDest = DPI->first;
836 unsigned Popularity = DPI->second;
837 SmallVector<BasicBlock*, 4> SamePopularity;
838
839 for (++DPI; DPI != DestPopularity.end(); ++DPI) {
840 // If the popularity of this entry isn't higher than the popularity we've
841 // seen so far, ignore it.
842 if (DPI->second < Popularity)
843 ; // ignore.
844 else if (DPI->second == Popularity) {
845 // If it is the same as what we've seen so far, keep track of it.
846 SamePopularity.push_back(DPI->first);
847 } else {
848 // If it is more popular, remember it.
849 SamePopularity.clear();
850 MostPopularDest = DPI->first;
851 Popularity = DPI->second;
852 }
853 }
854
855 // Okay, now we know the most popular destination. If there is more than
856 // destination, we need to determine one. This is arbitrary, but we need
857 // to make a deterministic decision. Pick the first one that appears in the
858 // successor list.
859 if (!SamePopularity.empty()) {
860 SamePopularity.push_back(MostPopularDest);
861 TerminatorInst *TI = BB->getTerminator();
862 for (unsigned i = 0; ; ++i) {
863 assert(i != TI->getNumSuccessors() && "Didn't find any successor!");
864
865 if (std::find(SamePopularity.begin(), SamePopularity.end(),
866 TI->getSuccessor(i)) == SamePopularity.end())
867 continue;
868
869 MostPopularDest = TI->getSuccessor(i);
870 break;
871 }
872 }
873
874 // Okay, we have finally picked the most popular destination.
875 return MostPopularDest;
876}
877
878bool JumpThreading::ProcessThreadableEdges(Instruction *CondInst,
879 BasicBlock *BB) {
880 // If threading this would thread across a loop header, don't even try to
881 // thread the edge.
882 if (LoopHeaders.count(BB))
883 return false;
884
Chris Lattner5729d382009-11-07 08:05:03 +0000885 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 8> PredValues;
886 if (!ComputeValueKnownInPredecessors(CondInst, BB, PredValues))
887 return false;
888 assert(!PredValues.empty() &&
889 "ComputeValueKnownInPredecessors returned true with no values");
890
891 DEBUG(errs() << "IN BB: " << *BB;
892 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
893 errs() << " BB '" << BB->getName() << "': FOUND condition = ";
894 if (PredValues[i].first)
895 errs() << *PredValues[i].first;
896 else
897 errs() << "UNDEF";
898 errs() << " for pred '" << PredValues[i].second->getName()
899 << "'.\n";
900 });
901
902 // Decide what we want to thread through. Convert our list of known values to
903 // a list of known destinations for each pred. This also discards duplicate
904 // predecessors and keeps track of the undefined inputs (which are represented
Chris Lattnere7e63fe2009-11-09 00:41:49 +0000905 // as a null dest in the PredToDestList).
Chris Lattner5729d382009-11-07 08:05:03 +0000906 SmallPtrSet<BasicBlock*, 16> SeenPreds;
907 SmallVector<std::pair<BasicBlock*, BasicBlock*>, 16> PredToDestList;
908
909 BasicBlock *OnlyDest = 0;
910 BasicBlock *MultipleDestSentinel = (BasicBlock*)(intptr_t)~0ULL;
911
912 for (unsigned i = 0, e = PredValues.size(); i != e; ++i) {
913 BasicBlock *Pred = PredValues[i].second;
914 if (!SeenPreds.insert(Pred))
915 continue; // Duplicate predecessor entry.
916
917 // If the predecessor ends with an indirect goto, we can't change its
918 // destination.
919 if (isa<IndirectBrInst>(Pred->getTerminator()))
920 continue;
921
922 ConstantInt *Val = PredValues[i].first;
923
924 BasicBlock *DestBB;
925 if (Val == 0) // Undef.
926 DestBB = 0;
927 else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
928 DestBB = BI->getSuccessor(Val->isZero());
929 else {
930 SwitchInst *SI = cast<SwitchInst>(BB->getTerminator());
931 DestBB = SI->getSuccessor(SI->findCaseValue(Val));
932 }
933
934 // If we have exactly one destination, remember it for efficiency below.
935 if (i == 0)
936 OnlyDest = DestBB;
937 else if (OnlyDest != DestBB)
938 OnlyDest = MultipleDestSentinel;
939
940 PredToDestList.push_back(std::make_pair(Pred, DestBB));
941 }
942
943 // If all edges were unthreadable, we fail.
944 if (PredToDestList.empty())
945 return false;
946
947 // Determine which is the most common successor. If we have many inputs and
948 // this block is a switch, we want to start by threading the batch that goes
949 // to the most popular destination first. If we only know about one
950 // threadable destination (the common case) we can avoid this.
951 BasicBlock *MostPopularDest = OnlyDest;
952
953 if (MostPopularDest == MultipleDestSentinel)
954 MostPopularDest = FindMostPopularDest(BB, PredToDestList);
955
956 // Now that we know what the most popular destination is, factor all
957 // predecessors that will jump to it into a single predecessor.
958 SmallVector<BasicBlock*, 16> PredsToFactor;
959 for (unsigned i = 0, e = PredToDestList.size(); i != e; ++i)
960 if (PredToDestList[i].second == MostPopularDest) {
961 BasicBlock *Pred = PredToDestList[i].first;
962
963 // This predecessor may be a switch or something else that has multiple
964 // edges to the block. Factor each of these edges by listing them
965 // according to # occurrences in PredsToFactor.
966 TerminatorInst *PredTI = Pred->getTerminator();
967 for (unsigned i = 0, e = PredTI->getNumSuccessors(); i != e; ++i)
968 if (PredTI->getSuccessor(i) == BB)
969 PredsToFactor.push_back(Pred);
970 }
971
972 // If the threadable edges are branching on an undefined value, we get to pick
973 // the destination that these predecessors should get to.
974 if (MostPopularDest == 0)
975 MostPopularDest = BB->getTerminator()->
976 getSuccessor(GetBestDestForJumpOnUndef(BB));
977
978 // Ok, try to thread it!
979 return ThreadEdge(BB, PredsToFactor, MostPopularDest);
980}
Chris Lattner69e067f2008-11-27 05:07:53 +0000981
Chris Lattnere33583b2009-10-11 04:18:15 +0000982/// ProcessJumpOnPHI - We have a conditional branch or switch on a PHI node in
Chris Lattnerd38c14e2008-04-22 06:36:15 +0000983/// the current block. See if there are any simplifications we can do based on
984/// inputs to the phi node.
985///
986bool JumpThreading::ProcessJumpOnPHI(PHINode *PN) {
Chris Lattner6b65f472009-10-11 04:40:21 +0000987 BasicBlock *BB = PN->getParent();
988
Chris Lattner5729d382009-11-07 08:05:03 +0000989 // If any of the predecessor blocks end in an unconditional branch, we can
990 // *duplicate* the jump into that block in order to further encourage jump
991 // threading and to eliminate cases where we have branch on a phi of an icmp
992 // (branch on icmp is much better).
Chris Lattner78c552e2009-10-11 07:24:57 +0000993
994 // We don't want to do this tranformation for switches, because we don't
995 // really want to duplicate a switch.
996 if (isa<SwitchInst>(BB->getTerminator()))
997 return false;
998
999 // Look for unconditional branch predecessors.
1000 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1001 BasicBlock *PredBB = PN->getIncomingBlock(i);
1002 if (BranchInst *PredBr = dyn_cast<BranchInst>(PredBB->getTerminator()))
1003 if (PredBr->isUnconditional() &&
1004 // Try to duplicate BB into PredBB.
1005 DuplicateCondBranchOnPHIIntoPred(BB, PredBB))
1006 return true;
1007 }
1008
Chris Lattner6b65f472009-10-11 04:40:21 +00001009 return false;
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001010}
1011
Chris Lattnera5ddb592008-04-22 21:40:39 +00001012
Chris Lattner78c552e2009-10-11 07:24:57 +00001013/// AddPHINodeEntriesForMappedBlock - We're adding 'NewPred' as a new
1014/// predecessor to the PHIBB block. If it has PHI nodes, add entries for
1015/// NewPred using the entries from OldPred (suitably mapped).
1016static void AddPHINodeEntriesForMappedBlock(BasicBlock *PHIBB,
1017 BasicBlock *OldPred,
1018 BasicBlock *NewPred,
1019 DenseMap<Instruction*, Value*> &ValueMap) {
1020 for (BasicBlock::iterator PNI = PHIBB->begin();
1021 PHINode *PN = dyn_cast<PHINode>(PNI); ++PNI) {
1022 // Ok, we have a PHI node. Figure out what the incoming value was for the
1023 // DestBlock.
1024 Value *IV = PN->getIncomingValueForBlock(OldPred);
1025
1026 // Remap the value if necessary.
1027 if (Instruction *Inst = dyn_cast<Instruction>(IV)) {
1028 DenseMap<Instruction*, Value*>::iterator I = ValueMap.find(Inst);
1029 if (I != ValueMap.end())
1030 IV = I->second;
1031 }
1032
1033 PN->addIncoming(IV, NewPred);
1034 }
1035}
Chris Lattner6bf77502008-04-22 07:05:46 +00001036
Chris Lattner5729d382009-11-07 08:05:03 +00001037/// ThreadEdge - We have decided that it is safe and profitable to factor the
1038/// blocks in PredBBs to one predecessor, then thread an edge from it to SuccBB
1039/// across BB. Transform the IR to reflect this change.
1040bool JumpThreading::ThreadEdge(BasicBlock *BB,
1041 const SmallVectorImpl<BasicBlock*> &PredBBs,
Chris Lattnerbdbf1a12009-10-11 04:33:43 +00001042 BasicBlock *SuccBB) {
Mike Stumpfe095f32009-05-04 18:40:41 +00001043 // If threading to the same block as we come from, we would infinite loop.
1044 if (SuccBB == BB) {
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001045 DEBUG(errs() << " Not threading across BB '" << BB->getName()
1046 << "' - would thread to self!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001047 return false;
1048 }
1049
1050 // If threading this would thread across a loop header, don't thread the edge.
1051 // See the comments above FindLoopHeaders for justifications and caveats.
1052 if (LoopHeaders.count(BB)) {
Chris Lattner5729d382009-11-07 08:05:03 +00001053 DEBUG(errs() << " Not threading across loop header BB '" << BB->getName()
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001054 << "' to dest BB '" << SuccBB->getName()
1055 << "' - it might create an irreducible loop!\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001056 return false;
1057 }
1058
Chris Lattner78c552e2009-10-11 07:24:57 +00001059 unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
1060 if (JumpThreadCost > Threshold) {
1061 DEBUG(errs() << " Not threading BB '" << BB->getName()
1062 << "' - Cost is too high: " << JumpThreadCost << "\n");
1063 return false;
1064 }
1065
Chris Lattner5729d382009-11-07 08:05:03 +00001066 // And finally, do it! Start by factoring the predecessors is needed.
1067 BasicBlock *PredBB;
1068 if (PredBBs.size() == 1)
1069 PredBB = PredBBs[0];
1070 else {
1071 DEBUG(errs() << " Factoring out " << PredBBs.size()
1072 << " common predecessors.\n");
1073 PredBB = SplitBlockPredecessors(BB, &PredBBs[0], PredBBs.size(),
1074 ".thr_comm", this);
1075 }
1076
Mike Stumpfe095f32009-05-04 18:40:41 +00001077 // And finally, do it!
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001078 DEBUG(errs() << " Threading edge from '" << PredBB->getName() << "' to '"
Daniel Dunbar460f6562009-07-26 09:48:23 +00001079 << SuccBB->getName() << "' with cost: " << JumpThreadCost
Daniel Dunbar93b67e42009-07-26 07:49:05 +00001080 << ", across block:\n "
1081 << *BB << "\n");
Mike Stumpfe095f32009-05-04 18:40:41 +00001082
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001083 // We are going to have to map operands from the original BB block to the new
1084 // copy of the block 'NewBB'. If there are PHI nodes in BB, evaluate them to
1085 // account for entry from PredBB.
1086 DenseMap<Instruction*, Value*> ValueMapping;
1087
Owen Anderson1d0be152009-08-13 21:58:54 +00001088 BasicBlock *NewBB = BasicBlock::Create(BB->getContext(),
1089 BB->getName()+".thread",
1090 BB->getParent(), BB);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001091 NewBB->moveAfter(PredBB);
1092
1093 BasicBlock::iterator BI = BB->begin();
1094 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1095 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1096
1097 // Clone the non-phi instructions of BB into NewBB, keeping track of the
1098 // mapping and using it to remap operands in the cloned instructions.
1099 for (; !isa<TerminatorInst>(BI); ++BI) {
Nick Lewycky67760642009-09-27 07:38:41 +00001100 Instruction *New = BI->clone();
Daniel Dunbar460f6562009-07-26 09:48:23 +00001101 New->setName(BI->getName());
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001102 NewBB->getInstList().push_back(New);
1103 ValueMapping[BI] = New;
1104
1105 // Remap operands to patch up intra-block references.
1106 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
Dan Gohmanf530c922009-07-02 00:17:47 +00001107 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1108 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1109 if (I != ValueMapping.end())
1110 New->setOperand(i, I->second);
1111 }
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001112 }
1113
1114 // We didn't copy the terminator from BB over to NewBB, because there is now
1115 // an unconditional jump to SuccBB. Insert the unconditional jump.
1116 BranchInst::Create(SuccBB, NewBB);
1117
1118 // Check to see if SuccBB has PHI nodes. If so, we need to add entries to the
1119 // PHI nodes for NewBB now.
Chris Lattner78c552e2009-10-11 07:24:57 +00001120 AddPHINodeEntriesForMappedBlock(SuccBB, BB, NewBB, ValueMapping);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001121
Chris Lattner433a0db2009-10-10 09:05:58 +00001122 // If there were values defined in BB that are used outside the block, then we
1123 // now have to update all uses of the value to use either the original value,
1124 // the cloned value, or some PHI derived value. This can require arbitrary
1125 // PHI insertion, of which we are prepared to do, clean these up now.
1126 SSAUpdater SSAUpdate;
1127 SmallVector<Use*, 16> UsesToRename;
1128 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1129 // Scan all uses of this instruction to see if it is used outside of its
1130 // block, and if so, record them in UsesToRename.
1131 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1132 ++UI) {
1133 Instruction *User = cast<Instruction>(*UI);
1134 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1135 if (UserPN->getIncomingBlock(UI) == BB)
1136 continue;
1137 } else if (User->getParent() == BB)
1138 continue;
1139
1140 UsesToRename.push_back(&UI.getUse());
1141 }
1142
1143 // If there are no uses outside the block, we're done with this instruction.
1144 if (UsesToRename.empty())
1145 continue;
1146
1147 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1148
1149 // We found a use of I outside of BB. Rename all uses of I that are outside
1150 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1151 // with the two values we know.
1152 SSAUpdate.Initialize(I);
1153 SSAUpdate.AddAvailableValue(BB, I);
1154 SSAUpdate.AddAvailableValue(NewBB, ValueMapping[I]);
1155
1156 while (!UsesToRename.empty())
1157 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1158 DEBUG(errs() << "\n");
1159 }
1160
1161
Chris Lattneref0c6742008-12-01 04:48:07 +00001162 // Ok, NewBB is good to go. Update the terminator of PredBB to jump to
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001163 // NewBB instead of BB. This eliminates predecessors from BB, which requires
1164 // us to simplify any PHI nodes in BB.
1165 TerminatorInst *PredTerm = PredBB->getTerminator();
1166 for (unsigned i = 0, e = PredTerm->getNumSuccessors(); i != e; ++i)
1167 if (PredTerm->getSuccessor(i) == BB) {
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001168 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattnerbd3401f2008-04-20 22:39:42 +00001169 PredTerm->setSuccessor(i, NewBB);
1170 }
Chris Lattneref0c6742008-12-01 04:48:07 +00001171
1172 // At this point, the IR is fully up to date and consistent. Do a quick scan
1173 // over the new instructions and zap any that are constants or dead. This
1174 // frequently happens because of phi translation.
1175 BI = NewBB->begin();
1176 for (BasicBlock::iterator E = NewBB->end(); BI != E; ) {
1177 Instruction *Inst = BI++;
Chris Lattnerfddcf472009-11-10 01:57:31 +00001178
Chris Lattnere3453782009-11-10 01:08:51 +00001179 if (Value *V = SimplifyInstruction(Inst, TD)) {
Chris Lattnerfddcf472009-11-10 01:57:31 +00001180 WeakVH BIHandle(BI);
1181 ReplaceAndSimplifyAllUses(Inst, V, TD);
1182 if (BIHandle == 0)
1183 BI = NewBB->begin();
Chris Lattneref0c6742008-12-01 04:48:07 +00001184 continue;
1185 }
1186
1187 RecursivelyDeleteTriviallyDeadInstructions(Inst);
1188 }
Mike Stumpfe095f32009-05-04 18:40:41 +00001189
1190 // Threaded an edge!
1191 ++NumThreads;
1192 return true;
Chris Lattner177480b2008-04-20 21:13:06 +00001193}
Chris Lattner78c552e2009-10-11 07:24:57 +00001194
1195/// DuplicateCondBranchOnPHIIntoPred - PredBB contains an unconditional branch
1196/// to BB which contains an i1 PHI node and a conditional branch on that PHI.
1197/// If we can duplicate the contents of BB up into PredBB do so now, this
1198/// improves the odds that the branch will be on an analyzable instruction like
1199/// a compare.
1200bool JumpThreading::DuplicateCondBranchOnPHIIntoPred(BasicBlock *BB,
1201 BasicBlock *PredBB) {
1202 // If BB is a loop header, then duplicating this block outside the loop would
1203 // cause us to transform this into an irreducible loop, don't do this.
1204 // See the comments above FindLoopHeaders for justifications and caveats.
1205 if (LoopHeaders.count(BB)) {
1206 DEBUG(errs() << " Not duplicating loop header '" << BB->getName()
1207 << "' into predecessor block '" << PredBB->getName()
1208 << "' - it might create an irreducible loop!\n");
1209 return false;
1210 }
1211
1212 unsigned DuplicationCost = getJumpThreadDuplicationCost(BB);
1213 if (DuplicationCost > Threshold) {
1214 DEBUG(errs() << " Not duplicating BB '" << BB->getName()
1215 << "' - Cost is too high: " << DuplicationCost << "\n");
1216 return false;
1217 }
1218
1219 // Okay, we decided to do this! Clone all the instructions in BB onto the end
1220 // of PredBB.
1221 DEBUG(errs() << " Duplicating block '" << BB->getName() << "' into end of '"
1222 << PredBB->getName() << "' to eliminate branch on phi. Cost: "
1223 << DuplicationCost << " block is:" << *BB << "\n");
1224
1225 // We are going to have to map operands from the original BB block into the
1226 // PredBB block. Evaluate PHI nodes in BB.
1227 DenseMap<Instruction*, Value*> ValueMapping;
1228
1229 BasicBlock::iterator BI = BB->begin();
1230 for (; PHINode *PN = dyn_cast<PHINode>(BI); ++BI)
1231 ValueMapping[PN] = PN->getIncomingValueForBlock(PredBB);
1232
1233 BranchInst *OldPredBranch = cast<BranchInst>(PredBB->getTerminator());
1234
1235 // Clone the non-phi instructions of BB into PredBB, keeping track of the
1236 // mapping and using it to remap operands in the cloned instructions.
1237 for (; BI != BB->end(); ++BI) {
1238 Instruction *New = BI->clone();
1239 New->setName(BI->getName());
1240 PredBB->getInstList().insert(OldPredBranch, New);
1241 ValueMapping[BI] = New;
1242
1243 // Remap operands to patch up intra-block references.
1244 for (unsigned i = 0, e = New->getNumOperands(); i != e; ++i)
1245 if (Instruction *Inst = dyn_cast<Instruction>(New->getOperand(i))) {
1246 DenseMap<Instruction*, Value*>::iterator I = ValueMapping.find(Inst);
1247 if (I != ValueMapping.end())
1248 New->setOperand(i, I->second);
1249 }
1250 }
1251
1252 // Check to see if the targets of the branch had PHI nodes. If so, we need to
1253 // add entries to the PHI nodes for branch from PredBB now.
1254 BranchInst *BBBranch = cast<BranchInst>(BB->getTerminator());
1255 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(0), BB, PredBB,
1256 ValueMapping);
1257 AddPHINodeEntriesForMappedBlock(BBBranch->getSuccessor(1), BB, PredBB,
1258 ValueMapping);
1259
1260 // If there were values defined in BB that are used outside the block, then we
1261 // now have to update all uses of the value to use either the original value,
1262 // the cloned value, or some PHI derived value. This can require arbitrary
1263 // PHI insertion, of which we are prepared to do, clean these up now.
1264 SSAUpdater SSAUpdate;
1265 SmallVector<Use*, 16> UsesToRename;
1266 for (BasicBlock::iterator I = BB->begin(); I != BB->end(); ++I) {
1267 // Scan all uses of this instruction to see if it is used outside of its
1268 // block, and if so, record them in UsesToRename.
1269 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;
1270 ++UI) {
1271 Instruction *User = cast<Instruction>(*UI);
1272 if (PHINode *UserPN = dyn_cast<PHINode>(User)) {
1273 if (UserPN->getIncomingBlock(UI) == BB)
1274 continue;
1275 } else if (User->getParent() == BB)
1276 continue;
1277
1278 UsesToRename.push_back(&UI.getUse());
1279 }
1280
1281 // If there are no uses outside the block, we're done with this instruction.
1282 if (UsesToRename.empty())
1283 continue;
1284
1285 DEBUG(errs() << "JT: Renaming non-local uses of: " << *I << "\n");
1286
1287 // We found a use of I outside of BB. Rename all uses of I that are outside
1288 // its block to be uses of the appropriate PHI node etc. See ValuesInBlocks
1289 // with the two values we know.
1290 SSAUpdate.Initialize(I);
1291 SSAUpdate.AddAvailableValue(BB, I);
1292 SSAUpdate.AddAvailableValue(PredBB, ValueMapping[I]);
1293
1294 while (!UsesToRename.empty())
1295 SSAUpdate.RewriteUse(*UsesToRename.pop_back_val());
1296 DEBUG(errs() << "\n");
1297 }
1298
1299 // PredBB no longer jumps to BB, remove entries in the PHI node for the edge
1300 // that we nuked.
Chris Lattnerc2c23d02009-11-09 22:32:36 +00001301 RemovePredecessorAndSimplify(BB, PredBB, TD);
Chris Lattner78c552e2009-10-11 07:24:57 +00001302
1303 // Remove the unconditional branch at the end of the PredBB block.
1304 OldPredBranch->eraseFromParent();
1305
1306 ++NumDupes;
1307 return true;
1308}
1309
1310