blob: a24d4ca7eb3a21e9d6c37b39e6f83d7e2e642da0 [file] [log] [blame]
Chris Lattner02446fc2010-01-04 07:37:31 +00001//===- InstCombineCompares.cpp --------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visitICmp and visitFCmp functions.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/IntrinsicInst.h"
16#include "llvm/Analysis/InstructionSimplify.h"
17#include "llvm/Analysis/MemoryBuiltins.h"
18#include "llvm/Target/TargetData.h"
19#include "llvm/Support/ConstantRange.h"
20#include "llvm/Support/GetElementPtrTypeIterator.h"
21#include "llvm/Support/PatternMatch.h"
22using namespace llvm;
23using namespace PatternMatch;
24
Chris Lattnerb20c0b52011-02-10 05:23:05 +000025static ConstantInt *getOne(Constant *C) {
26 return ConstantInt::get(cast<IntegerType>(C->getType()), 1);
27}
28
Chris Lattner02446fc2010-01-04 07:37:31 +000029/// AddOne - Add one to a ConstantInt
30static Constant *AddOne(Constant *C) {
31 return ConstantExpr::getAdd(C, ConstantInt::get(C->getType(), 1));
32}
33/// SubOne - Subtract one from a ConstantInt
Chris Lattnerb20c0b52011-02-10 05:23:05 +000034static Constant *SubOne(Constant *C) {
35 return ConstantExpr::getSub(C, ConstantInt::get(C->getType(), 1));
Chris Lattner02446fc2010-01-04 07:37:31 +000036}
37
38static ConstantInt *ExtractElement(Constant *V, Constant *Idx) {
39 return cast<ConstantInt>(ConstantExpr::getExtractElement(V, Idx));
40}
41
42static bool HasAddOverflow(ConstantInt *Result,
43 ConstantInt *In1, ConstantInt *In2,
44 bool IsSigned) {
45 if (IsSigned)
46 if (In2->getValue().isNegative())
47 return Result->getValue().sgt(In1->getValue());
48 else
49 return Result->getValue().slt(In1->getValue());
50 else
51 return Result->getValue().ult(In1->getValue());
52}
53
54/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
55/// overflowed for this type.
56static bool AddWithOverflow(Constant *&Result, Constant *In1,
57 Constant *In2, bool IsSigned = false) {
58 Result = ConstantExpr::getAdd(In1, In2);
59
60 if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
61 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
62 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
63 if (HasAddOverflow(ExtractElement(Result, Idx),
64 ExtractElement(In1, Idx),
65 ExtractElement(In2, Idx),
66 IsSigned))
67 return true;
68 }
69 return false;
70 }
71
72 return HasAddOverflow(cast<ConstantInt>(Result),
73 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
74 IsSigned);
75}
76
77static bool HasSubOverflow(ConstantInt *Result,
78 ConstantInt *In1, ConstantInt *In2,
79 bool IsSigned) {
80 if (IsSigned)
81 if (In2->getValue().isNegative())
82 return Result->getValue().slt(In1->getValue());
83 else
84 return Result->getValue().sgt(In1->getValue());
85 else
86 return Result->getValue().ugt(In1->getValue());
87}
88
89/// SubWithOverflow - Compute Result = In1-In2, returning true if the result
90/// overflowed for this type.
91static bool SubWithOverflow(Constant *&Result, Constant *In1,
92 Constant *In2, bool IsSigned = false) {
93 Result = ConstantExpr::getSub(In1, In2);
94
95 if (const VectorType *VTy = dyn_cast<VectorType>(In1->getType())) {
96 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) {
97 Constant *Idx = ConstantInt::get(Type::getInt32Ty(In1->getContext()), i);
98 if (HasSubOverflow(ExtractElement(Result, Idx),
99 ExtractElement(In1, Idx),
100 ExtractElement(In2, Idx),
101 IsSigned))
102 return true;
103 }
104 return false;
105 }
106
107 return HasSubOverflow(cast<ConstantInt>(Result),
108 cast<ConstantInt>(In1), cast<ConstantInt>(In2),
109 IsSigned);
110}
111
112/// isSignBitCheck - Given an exploded icmp instruction, return true if the
113/// comparison only checks the sign bit. If it only checks the sign bit, set
114/// TrueIfSigned if the result of the comparison is true when the input value is
115/// signed.
116static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
117 bool &TrueIfSigned) {
118 switch (pred) {
119 case ICmpInst::ICMP_SLT: // True if LHS s< 0
120 TrueIfSigned = true;
121 return RHS->isZero();
122 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
123 TrueIfSigned = true;
124 return RHS->isAllOnesValue();
125 case ICmpInst::ICMP_SGT: // True if LHS s> -1
126 TrueIfSigned = false;
127 return RHS->isAllOnesValue();
128 case ICmpInst::ICMP_UGT:
129 // True if LHS u> RHS and RHS == high-bit-mask - 1
130 TrueIfSigned = true;
131 return RHS->getValue() ==
132 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
133 case ICmpInst::ICMP_UGE:
134 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
135 TrueIfSigned = true;
136 return RHS->getValue().isSignBit();
137 default:
138 return false;
139 }
140}
141
142// isHighOnes - Return true if the constant is of the form 1+0+.
143// This is the same as lowones(~X).
144static bool isHighOnes(const ConstantInt *CI) {
145 return (~CI->getValue() + 1).isPowerOf2();
146}
147
148/// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
149/// set of known zero and one bits, compute the maximum and minimum values that
150/// could have the specified known zero and known one bits, returning them in
151/// min/max.
152static void ComputeSignedMinMaxValuesFromKnownBits(const APInt& KnownZero,
153 const APInt& KnownOne,
154 APInt& Min, APInt& Max) {
155 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
156 KnownZero.getBitWidth() == Min.getBitWidth() &&
157 KnownZero.getBitWidth() == Max.getBitWidth() &&
158 "KnownZero, KnownOne and Min, Max must have equal bitwidth.");
159 APInt UnknownBits = ~(KnownZero|KnownOne);
160
161 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
162 // bit if it is unknown.
163 Min = KnownOne;
164 Max = KnownOne|UnknownBits;
165
166 if (UnknownBits.isNegative()) { // Sign bit is unknown
Jay Foad7a874dd2010-12-01 08:53:58 +0000167 Min.setBit(Min.getBitWidth()-1);
168 Max.clearBit(Max.getBitWidth()-1);
Chris Lattner02446fc2010-01-04 07:37:31 +0000169 }
170}
171
172// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
173// a set of known zero and one bits, compute the maximum and minimum values that
174// could have the specified known zero and known one bits, returning them in
175// min/max.
176static void ComputeUnsignedMinMaxValuesFromKnownBits(const APInt &KnownZero,
177 const APInt &KnownOne,
178 APInt &Min, APInt &Max) {
179 assert(KnownZero.getBitWidth() == KnownOne.getBitWidth() &&
180 KnownZero.getBitWidth() == Min.getBitWidth() &&
181 KnownZero.getBitWidth() == Max.getBitWidth() &&
182 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
183 APInt UnknownBits = ~(KnownZero|KnownOne);
184
185 // The minimum value is when the unknown bits are all zeros.
186 Min = KnownOne;
187 // The maximum value is when the unknown bits are all ones.
188 Max = KnownOne|UnknownBits;
189}
190
191
192
193/// FoldCmpLoadFromIndexedGlobal - Called we see this pattern:
194/// cmp pred (load (gep GV, ...)), cmpcst
195/// where GV is a global variable with a constant initializer. Try to simplify
196/// this into some simple computation that does not need the load. For example
197/// we can optimize "icmp eq (load (gep "foo", 0, i)), 0" into "icmp eq i, 3".
198///
199/// If AndCst is non-null, then the loaded value is masked with that constant
200/// before doing the comparison. This handles cases like "A[i]&4 == 0".
201Instruction *InstCombiner::
202FoldCmpLoadFromIndexedGlobal(GetElementPtrInst *GEP, GlobalVariable *GV,
203 CmpInst &ICI, ConstantInt *AndCst) {
Chris Lattnerd7f5a582010-01-04 18:57:15 +0000204 // We need TD information to know the pointer size unless this is inbounds.
205 if (!GEP->isInBounds() && TD == 0) return 0;
206
Chris Lattner02446fc2010-01-04 07:37:31 +0000207 ConstantArray *Init = dyn_cast<ConstantArray>(GV->getInitializer());
208 if (Init == 0 || Init->getNumOperands() > 1024) return 0;
209
210 // There are many forms of this optimization we can handle, for now, just do
211 // the simple index into a single-dimensional array.
212 //
213 // Require: GEP GV, 0, i {{, constant indices}}
214 if (GEP->getNumOperands() < 3 ||
215 !isa<ConstantInt>(GEP->getOperand(1)) ||
216 !cast<ConstantInt>(GEP->getOperand(1))->isZero() ||
217 isa<Constant>(GEP->getOperand(2)))
218 return 0;
219
220 // Check that indices after the variable are constants and in-range for the
221 // type they index. Collect the indices. This is typically for arrays of
222 // structs.
223 SmallVector<unsigned, 4> LaterIndices;
224
225 const Type *EltTy = cast<ArrayType>(Init->getType())->getElementType();
226 for (unsigned i = 3, e = GEP->getNumOperands(); i != e; ++i) {
227 ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(i));
228 if (Idx == 0) return 0; // Variable index.
229
230 uint64_t IdxVal = Idx->getZExtValue();
231 if ((unsigned)IdxVal != IdxVal) return 0; // Too large array index.
232
233 if (const StructType *STy = dyn_cast<StructType>(EltTy))
234 EltTy = STy->getElementType(IdxVal);
235 else if (const ArrayType *ATy = dyn_cast<ArrayType>(EltTy)) {
236 if (IdxVal >= ATy->getNumElements()) return 0;
237 EltTy = ATy->getElementType();
238 } else {
239 return 0; // Unknown type.
240 }
241
242 LaterIndices.push_back(IdxVal);
243 }
244
245 enum { Overdefined = -3, Undefined = -2 };
246
247 // Variables for our state machines.
248
249 // FirstTrueElement/SecondTrueElement - Used to emit a comparison of the form
250 // "i == 47 | i == 87", where 47 is the first index the condition is true for,
251 // and 87 is the second (and last) index. FirstTrueElement is -2 when
252 // undefined, otherwise set to the first true element. SecondTrueElement is
253 // -2 when undefined, -3 when overdefined and >= 0 when that index is true.
254 int FirstTrueElement = Undefined, SecondTrueElement = Undefined;
255
256 // FirstFalseElement/SecondFalseElement - Used to emit a comparison of the
257 // form "i != 47 & i != 87". Same state transitions as for true elements.
258 int FirstFalseElement = Undefined, SecondFalseElement = Undefined;
259
260 /// TrueRangeEnd/FalseRangeEnd - In conjunction with First*Element, these
261 /// define a state machine that triggers for ranges of values that the index
262 /// is true or false for. This triggers on things like "abbbbc"[i] == 'b'.
263 /// This is -2 when undefined, -3 when overdefined, and otherwise the last
264 /// index in the range (inclusive). We use -2 for undefined here because we
265 /// use relative comparisons and don't want 0-1 to match -1.
266 int TrueRangeEnd = Undefined, FalseRangeEnd = Undefined;
267
268 // MagicBitvector - This is a magic bitvector where we set a bit if the
269 // comparison is true for element 'i'. If there are 64 elements or less in
270 // the array, this will fully represent all the comparison results.
271 uint64_t MagicBitvector = 0;
272
273
274 // Scan the array and see if one of our patterns matches.
275 Constant *CompareRHS = cast<Constant>(ICI.getOperand(1));
276 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
277 Constant *Elt = Init->getOperand(i);
278
279 // If this is indexing an array of structures, get the structure element.
280 if (!LaterIndices.empty())
281 Elt = ConstantExpr::getExtractValue(Elt, LaterIndices.data(),
282 LaterIndices.size());
283
284 // If the element is masked, handle it.
285 if (AndCst) Elt = ConstantExpr::getAnd(Elt, AndCst);
286
287 // Find out if the comparison would be true or false for the i'th element.
288 Constant *C = ConstantFoldCompareInstOperands(ICI.getPredicate(), Elt,
289 CompareRHS, TD);
290 // If the result is undef for this element, ignore it.
291 if (isa<UndefValue>(C)) {
292 // Extend range state machines to cover this element in case there is an
293 // undef in the middle of the range.
294 if (TrueRangeEnd == (int)i-1)
295 TrueRangeEnd = i;
296 if (FalseRangeEnd == (int)i-1)
297 FalseRangeEnd = i;
298 continue;
299 }
300
301 // If we can't compute the result for any of the elements, we have to give
302 // up evaluating the entire conditional.
303 if (!isa<ConstantInt>(C)) return 0;
304
305 // Otherwise, we know if the comparison is true or false for this element,
306 // update our state machines.
307 bool IsTrueForElt = !cast<ConstantInt>(C)->isZero();
308
309 // State machine for single/double/range index comparison.
310 if (IsTrueForElt) {
311 // Update the TrueElement state machine.
312 if (FirstTrueElement == Undefined)
313 FirstTrueElement = TrueRangeEnd = i; // First true element.
314 else {
315 // Update double-compare state machine.
316 if (SecondTrueElement == Undefined)
317 SecondTrueElement = i;
318 else
319 SecondTrueElement = Overdefined;
320
321 // Update range state machine.
322 if (TrueRangeEnd == (int)i-1)
323 TrueRangeEnd = i;
324 else
325 TrueRangeEnd = Overdefined;
326 }
327 } else {
328 // Update the FalseElement state machine.
329 if (FirstFalseElement == Undefined)
330 FirstFalseElement = FalseRangeEnd = i; // First false element.
331 else {
332 // Update double-compare state machine.
333 if (SecondFalseElement == Undefined)
334 SecondFalseElement = i;
335 else
336 SecondFalseElement = Overdefined;
337
338 // Update range state machine.
339 if (FalseRangeEnd == (int)i-1)
340 FalseRangeEnd = i;
341 else
342 FalseRangeEnd = Overdefined;
343 }
344 }
345
346
347 // If this element is in range, update our magic bitvector.
348 if (i < 64 && IsTrueForElt)
349 MagicBitvector |= 1ULL << i;
350
351 // If all of our states become overdefined, bail out early. Since the
352 // predicate is expensive, only check it every 8 elements. This is only
353 // really useful for really huge arrays.
354 if ((i & 8) == 0 && i >= 64 && SecondTrueElement == Overdefined &&
355 SecondFalseElement == Overdefined && TrueRangeEnd == Overdefined &&
356 FalseRangeEnd == Overdefined)
357 return 0;
358 }
359
360 // Now that we've scanned the entire array, emit our new comparison(s). We
361 // order the state machines in complexity of the generated code.
362 Value *Idx = GEP->getOperand(2);
363
Chris Lattnerd7f5a582010-01-04 18:57:15 +0000364 // If the index is larger than the pointer size of the target, truncate the
365 // index down like the GEP would do implicitly. We don't have to do this for
366 // an inbounds GEP because the index can't be out of range.
367 if (!GEP->isInBounds() &&
368 Idx->getType()->getPrimitiveSizeInBits() > TD->getPointerSizeInBits())
369 Idx = Builder->CreateTrunc(Idx, TD->getIntPtrType(Idx->getContext()));
Chris Lattner02446fc2010-01-04 07:37:31 +0000370
371 // If the comparison is only true for one or two elements, emit direct
372 // comparisons.
373 if (SecondTrueElement != Overdefined) {
374 // None true -> false.
375 if (FirstTrueElement == Undefined)
376 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(GEP->getContext()));
377
378 Value *FirstTrueIdx = ConstantInt::get(Idx->getType(), FirstTrueElement);
379
380 // True for one element -> 'i == 47'.
381 if (SecondTrueElement == Undefined)
382 return new ICmpInst(ICmpInst::ICMP_EQ, Idx, FirstTrueIdx);
383
384 // True for two elements -> 'i == 47 | i == 72'.
385 Value *C1 = Builder->CreateICmpEQ(Idx, FirstTrueIdx);
386 Value *SecondTrueIdx = ConstantInt::get(Idx->getType(), SecondTrueElement);
387 Value *C2 = Builder->CreateICmpEQ(Idx, SecondTrueIdx);
388 return BinaryOperator::CreateOr(C1, C2);
389 }
390
391 // If the comparison is only false for one or two elements, emit direct
392 // comparisons.
393 if (SecondFalseElement != Overdefined) {
394 // None false -> true.
395 if (FirstFalseElement == Undefined)
396 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(GEP->getContext()));
397
398 Value *FirstFalseIdx = ConstantInt::get(Idx->getType(), FirstFalseElement);
399
400 // False for one element -> 'i != 47'.
401 if (SecondFalseElement == Undefined)
402 return new ICmpInst(ICmpInst::ICMP_NE, Idx, FirstFalseIdx);
403
404 // False for two elements -> 'i != 47 & i != 72'.
405 Value *C1 = Builder->CreateICmpNE(Idx, FirstFalseIdx);
406 Value *SecondFalseIdx = ConstantInt::get(Idx->getType(),SecondFalseElement);
407 Value *C2 = Builder->CreateICmpNE(Idx, SecondFalseIdx);
408 return BinaryOperator::CreateAnd(C1, C2);
409 }
410
411 // If the comparison can be replaced with a range comparison for the elements
412 // where it is true, emit the range check.
413 if (TrueRangeEnd != Overdefined) {
414 assert(TrueRangeEnd != FirstTrueElement && "Should emit single compare");
415
416 // Generate (i-FirstTrue) <u (TrueRangeEnd-FirstTrue+1).
417 if (FirstTrueElement) {
418 Value *Offs = ConstantInt::get(Idx->getType(), -FirstTrueElement);
419 Idx = Builder->CreateAdd(Idx, Offs);
420 }
421
422 Value *End = ConstantInt::get(Idx->getType(),
423 TrueRangeEnd-FirstTrueElement+1);
424 return new ICmpInst(ICmpInst::ICMP_ULT, Idx, End);
425 }
426
427 // False range check.
428 if (FalseRangeEnd != Overdefined) {
429 assert(FalseRangeEnd != FirstFalseElement && "Should emit single compare");
430 // Generate (i-FirstFalse) >u (FalseRangeEnd-FirstFalse).
431 if (FirstFalseElement) {
432 Value *Offs = ConstantInt::get(Idx->getType(), -FirstFalseElement);
433 Idx = Builder->CreateAdd(Idx, Offs);
434 }
435
436 Value *End = ConstantInt::get(Idx->getType(),
437 FalseRangeEnd-FirstFalseElement);
438 return new ICmpInst(ICmpInst::ICMP_UGT, Idx, End);
439 }
440
441
442 // If a 32-bit or 64-bit magic bitvector captures the entire comparison state
443 // of this load, replace it with computation that does:
444 // ((magic_cst >> i) & 1) != 0
445 if (Init->getNumOperands() <= 32 ||
446 (TD && Init->getNumOperands() <= 64 && TD->isLegalInteger(64))) {
447 const Type *Ty;
448 if (Init->getNumOperands() <= 32)
449 Ty = Type::getInt32Ty(Init->getContext());
450 else
451 Ty = Type::getInt64Ty(Init->getContext());
452 Value *V = Builder->CreateIntCast(Idx, Ty, false);
453 V = Builder->CreateLShr(ConstantInt::get(Ty, MagicBitvector), V);
454 V = Builder->CreateAnd(ConstantInt::get(Ty, 1), V);
455 return new ICmpInst(ICmpInst::ICMP_NE, V, ConstantInt::get(Ty, 0));
456 }
457
458 return 0;
459}
460
461
462/// EvaluateGEPOffsetExpression - Return a value that can be used to compare
463/// the *offset* implied by a GEP to zero. For example, if we have &A[i], we
464/// want to return 'i' for "icmp ne i, 0". Note that, in general, indices can
465/// be complex, and scales are involved. The above expression would also be
466/// legal to codegen as "icmp ne (i*4), 0" (assuming A is a pointer to i32).
467/// This later form is less amenable to optimization though, and we are allowed
468/// to generate the first by knowing that pointer arithmetic doesn't overflow.
469///
470/// If we can't emit an optimized form for this expression, this returns null.
471///
472static Value *EvaluateGEPOffsetExpression(User *GEP, Instruction &I,
473 InstCombiner &IC) {
474 TargetData &TD = *IC.getTargetData();
475 gep_type_iterator GTI = gep_type_begin(GEP);
476
477 // Check to see if this gep only has a single variable index. If so, and if
478 // any constant indices are a multiple of its scale, then we can compute this
479 // in terms of the scale of the variable index. For example, if the GEP
480 // implies an offset of "12 + i*4", then we can codegen this as "3 + i",
481 // because the expression will cross zero at the same point.
482 unsigned i, e = GEP->getNumOperands();
483 int64_t Offset = 0;
484 for (i = 1; i != e; ++i, ++GTI) {
485 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i))) {
486 // Compute the aggregate offset of constant indices.
487 if (CI->isZero()) continue;
488
489 // Handle a struct index, which adds its field offset to the pointer.
490 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
491 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
492 } else {
493 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
494 Offset += Size*CI->getSExtValue();
495 }
496 } else {
497 // Found our variable index.
498 break;
499 }
500 }
501
502 // If there are no variable indices, we must have a constant offset, just
503 // evaluate it the general way.
504 if (i == e) return 0;
505
506 Value *VariableIdx = GEP->getOperand(i);
507 // Determine the scale factor of the variable element. For example, this is
508 // 4 if the variable index is into an array of i32.
509 uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
510
511 // Verify that there are no other variable indices. If so, emit the hard way.
512 for (++i, ++GTI; i != e; ++i, ++GTI) {
513 ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(i));
514 if (!CI) return 0;
515
516 // Compute the aggregate offset of constant indices.
517 if (CI->isZero()) continue;
518
519 // Handle a struct index, which adds its field offset to the pointer.
520 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
521 Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
522 } else {
523 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
524 Offset += Size*CI->getSExtValue();
525 }
526 }
527
528 // Okay, we know we have a single variable index, which must be a
529 // pointer/array/vector index. If there is no offset, life is simple, return
530 // the index.
531 unsigned IntPtrWidth = TD.getPointerSizeInBits();
532 if (Offset == 0) {
533 // Cast to intptrty in case a truncation occurs. If an extension is needed,
534 // we don't need to bother extending: the extension won't affect where the
535 // computation crosses zero.
536 if (VariableIdx->getType()->getPrimitiveSizeInBits() > IntPtrWidth)
537 VariableIdx = new TruncInst(VariableIdx,
538 TD.getIntPtrType(VariableIdx->getContext()),
539 VariableIdx->getName(), &I);
540 return VariableIdx;
541 }
542
543 // Otherwise, there is an index. The computation we will do will be modulo
544 // the pointer size, so get it.
545 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
546
547 Offset &= PtrSizeMask;
548 VariableScale &= PtrSizeMask;
549
550 // To do this transformation, any constant index must be a multiple of the
551 // variable scale factor. For example, we can evaluate "12 + 4*i" as "3 + i",
552 // but we can't evaluate "10 + 3*i" in terms of i. Check that the offset is a
553 // multiple of the variable scale.
554 int64_t NewOffs = Offset / (int64_t)VariableScale;
555 if (Offset != NewOffs*(int64_t)VariableScale)
556 return 0;
557
558 // Okay, we can do this evaluation. Start by converting the index to intptr.
559 const Type *IntPtrTy = TD.getIntPtrType(VariableIdx->getContext());
560 if (VariableIdx->getType() != IntPtrTy)
561 VariableIdx = CastInst::CreateIntegerCast(VariableIdx, IntPtrTy,
562 true /*SExt*/,
563 VariableIdx->getName(), &I);
564 Constant *OffsetVal = ConstantInt::get(IntPtrTy, NewOffs);
565 return BinaryOperator::CreateAdd(VariableIdx, OffsetVal, "offset", &I);
566}
567
568/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
569/// else. At this point we know that the GEP is on the LHS of the comparison.
570Instruction *InstCombiner::FoldGEPICmp(GEPOperator *GEPLHS, Value *RHS,
571 ICmpInst::Predicate Cond,
572 Instruction &I) {
573 // Look through bitcasts.
574 if (BitCastInst *BCI = dyn_cast<BitCastInst>(RHS))
575 RHS = BCI->getOperand(0);
576
577 Value *PtrBase = GEPLHS->getOperand(0);
578 if (TD && PtrBase == RHS && GEPLHS->isInBounds()) {
579 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
580 // This transformation (ignoring the base and scales) is valid because we
581 // know pointers can't overflow since the gep is inbounds. See if we can
582 // output an optimized form.
583 Value *Offset = EvaluateGEPOffsetExpression(GEPLHS, I, *this);
584
585 // If not, synthesize the offset the hard way.
586 if (Offset == 0)
587 Offset = EmitGEPOffset(GEPLHS);
588 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
589 Constant::getNullValue(Offset->getType()));
590 } else if (GEPOperator *GEPRHS = dyn_cast<GEPOperator>(RHS)) {
591 // If the base pointers are different, but the indices are the same, just
592 // compare the base pointer.
593 if (PtrBase != GEPRHS->getOperand(0)) {
594 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
595 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
596 GEPRHS->getOperand(0)->getType();
597 if (IndicesTheSame)
598 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
599 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
600 IndicesTheSame = false;
601 break;
602 }
603
604 // If all indices are the same, just compare the base pointers.
605 if (IndicesTheSame)
606 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
607 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
608
609 // Otherwise, the base pointers are different and the indices are
610 // different, bail out.
611 return 0;
612 }
613
614 // If one of the GEPs has all zero indices, recurse.
615 bool AllZeros = true;
616 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
617 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
618 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
619 AllZeros = false;
620 break;
621 }
622 if (AllZeros)
623 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
624 ICmpInst::getSwappedPredicate(Cond), I);
625
626 // If the other GEP has all zero indices, recurse.
627 AllZeros = true;
628 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
629 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
630 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
631 AllZeros = false;
632 break;
633 }
634 if (AllZeros)
635 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
636
637 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
638 // If the GEPs only differ by one index, compare it.
639 unsigned NumDifferences = 0; // Keep track of # differences.
640 unsigned DiffOperand = 0; // The operand that differs.
641 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
642 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
643 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
644 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
645 // Irreconcilable differences.
646 NumDifferences = 2;
647 break;
648 } else {
649 if (NumDifferences++) break;
650 DiffOperand = i;
651 }
652 }
653
654 if (NumDifferences == 0) // SAME GEP?
655 return ReplaceInstUsesWith(I, // No comparison is needed here.
656 ConstantInt::get(Type::getInt1Ty(I.getContext()),
657 ICmpInst::isTrueWhenEqual(Cond)));
658
659 else if (NumDifferences == 1) {
660 Value *LHSV = GEPLHS->getOperand(DiffOperand);
661 Value *RHSV = GEPRHS->getOperand(DiffOperand);
662 // Make sure we do a signed comparison here.
663 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
664 }
665 }
666
667 // Only lower this if the icmp is the only user of the GEP or if we expect
668 // the result to fold to a constant!
669 if (TD &&
670 (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
671 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
672 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
673 Value *L = EmitGEPOffset(GEPLHS);
674 Value *R = EmitGEPOffset(GEPRHS);
675 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
676 }
677 }
678 return 0;
679}
680
681/// FoldICmpAddOpCst - Fold "icmp pred (X+CI), X".
682Instruction *InstCombiner::FoldICmpAddOpCst(ICmpInst &ICI,
683 Value *X, ConstantInt *CI,
684 ICmpInst::Predicate Pred,
685 Value *TheAdd) {
686 // If we have X+0, exit early (simplifying logic below) and let it get folded
687 // elsewhere. icmp X+0, X -> icmp X, X
688 if (CI->isZero()) {
689 bool isTrue = ICmpInst::isTrueWhenEqual(Pred);
690 return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
691 }
692
693 // (X+4) == X -> false.
694 if (Pred == ICmpInst::ICMP_EQ)
695 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
696
697 // (X+4) != X -> true.
698 if (Pred == ICmpInst::ICMP_NE)
699 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
700
701 // If this is an instruction (as opposed to constantexpr) get NUW/NSW info.
702 bool isNUW = false, isNSW = false;
703 if (BinaryOperator *Add = dyn_cast<BinaryOperator>(TheAdd)) {
704 isNUW = Add->hasNoUnsignedWrap();
705 isNSW = Add->hasNoSignedWrap();
706 }
707
708 // From this point on, we know that (X+C <= X) --> (X+C < X) because C != 0,
709 // so the values can never be equal. Similiarly for all other "or equals"
710 // operators.
711
Chris Lattner9aa1e242010-01-08 17:48:19 +0000712 // (X+1) <u X --> X >u (MAXUINT-1) --> X == 255
Chris Lattner02446fc2010-01-04 07:37:31 +0000713 // (X+2) <u X --> X >u (MAXUINT-2) --> X > 253
714 // (X+MAXUINT) <u X --> X >u (MAXUINT-MAXUINT) --> X != 0
715 if (Pred == ICmpInst::ICMP_ULT || Pred == ICmpInst::ICMP_ULE) {
716 // If this is an NUW add, then this is always false.
717 if (isNUW)
718 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(X->getContext()));
719
Chris Lattner9aa1e242010-01-08 17:48:19 +0000720 Value *R =
721 ConstantExpr::getSub(ConstantInt::getAllOnesValue(CI->getType()), CI);
Chris Lattner02446fc2010-01-04 07:37:31 +0000722 return new ICmpInst(ICmpInst::ICMP_UGT, X, R);
723 }
724
725 // (X+1) >u X --> X <u (0-1) --> X != 255
726 // (X+2) >u X --> X <u (0-2) --> X <u 254
727 // (X+MAXUINT) >u X --> X <u (0-MAXUINT) --> X <u 1 --> X == 0
728 if (Pred == ICmpInst::ICMP_UGT || Pred == ICmpInst::ICMP_UGE) {
729 // If this is an NUW add, then this is always true.
730 if (isNUW)
731 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(X->getContext()));
732 return new ICmpInst(ICmpInst::ICMP_ULT, X, ConstantExpr::getNeg(CI));
733 }
734
735 unsigned BitWidth = CI->getType()->getPrimitiveSizeInBits();
736 ConstantInt *SMax = ConstantInt::get(X->getContext(),
737 APInt::getSignedMaxValue(BitWidth));
738
739 // (X+ 1) <s X --> X >s (MAXSINT-1) --> X == 127
740 // (X+ 2) <s X --> X >s (MAXSINT-2) --> X >s 125
741 // (X+MAXSINT) <s X --> X >s (MAXSINT-MAXSINT) --> X >s 0
742 // (X+MINSINT) <s X --> X >s (MAXSINT-MINSINT) --> X >s -1
743 // (X+ -2) <s X --> X >s (MAXSINT- -2) --> X >s 126
744 // (X+ -1) <s X --> X >s (MAXSINT- -1) --> X != 127
745 if (Pred == ICmpInst::ICMP_SLT || Pred == ICmpInst::ICMP_SLE) {
746 // If this is an NSW add, then we have two cases: if the constant is
747 // positive, then this is always false, if negative, this is always true.
748 if (isNSW) {
749 bool isTrue = CI->getValue().isNegative();
750 return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
751 }
752
753 return new ICmpInst(ICmpInst::ICMP_SGT, X, ConstantExpr::getSub(SMax, CI));
754 }
755
756 // (X+ 1) >s X --> X <s (MAXSINT-(1-1)) --> X != 127
757 // (X+ 2) >s X --> X <s (MAXSINT-(2-1)) --> X <s 126
758 // (X+MAXSINT) >s X --> X <s (MAXSINT-(MAXSINT-1)) --> X <s 1
759 // (X+MINSINT) >s X --> X <s (MAXSINT-(MINSINT-1)) --> X <s -2
760 // (X+ -2) >s X --> X <s (MAXSINT-(-2-1)) --> X <s -126
761 // (X+ -1) >s X --> X <s (MAXSINT-(-1-1)) --> X == -128
762
763 // If this is an NSW add, then we have two cases: if the constant is
764 // positive, then this is always true, if negative, this is always false.
765 if (isNSW) {
766 bool isTrue = !CI->getValue().isNegative();
767 return ReplaceInstUsesWith(ICI, ConstantInt::get(ICI.getType(), isTrue));
768 }
769
770 assert(Pred == ICmpInst::ICMP_SGT || Pred == ICmpInst::ICMP_SGE);
771 Constant *C = ConstantInt::get(X->getContext(), CI->getValue()-1);
772 return new ICmpInst(ICmpInst::ICMP_SLT, X, ConstantExpr::getSub(SMax, C));
773}
774
775/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
776/// and CmpRHS are both known to be integer constants.
777Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
778 ConstantInt *DivRHS) {
779 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
780 const APInt &CmpRHSV = CmpRHS->getValue();
781
782 // FIXME: If the operand types don't match the type of the divide
783 // then don't attempt this transform. The code below doesn't have the
784 // logic to deal with a signed divide and an unsigned compare (and
785 // vice versa). This is because (x /s C1) <s C2 produces different
786 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
787 // (x /u C1) <u C2. Simply casting the operands and result won't
788 // work. :( The if statement below tests that condition and bails
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000789 // if it finds it.
Chris Lattner02446fc2010-01-04 07:37:31 +0000790 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
791 if (!ICI.isEquality() && DivIsSigned != ICI.isSigned())
792 return 0;
793 if (DivRHS->isZero())
794 return 0; // The ProdOV computation fails on divide by zero.
795 if (DivIsSigned && DivRHS->isAllOnesValue())
796 return 0; // The overflow computation also screws up here
797 if (DivRHS->isOne())
798 return 0; // Not worth bothering, and eliminates some funny cases
799 // with INT_MIN.
800
801 // Compute Prod = CI * DivRHS. We are essentially solving an equation
802 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
803 // C2 (CI). By solving for X we can turn this into a range check
804 // instead of computing a divide.
805 Constant *Prod = ConstantExpr::getMul(CmpRHS, DivRHS);
806
807 // Determine if the product overflows by seeing if the product is
808 // not equal to the divide. Make sure we do the same kind of divide
809 // as in the LHS instruction that we're folding.
810 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
811 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
812
813 // Get the ICmp opcode
814 ICmpInst::Predicate Pred = ICI.getPredicate();
815
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000816 /// If the division is known to be exact, then there is no remainder from the
817 /// divide, so the covered range size is unit, otherwise it is the divisor.
818 ConstantInt *RangeSize = DivI->isExact() ? getOne(Prod) : DivRHS;
819
Chris Lattner02446fc2010-01-04 07:37:31 +0000820 // Figure out the interval that is being checked. For example, a comparison
821 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
822 // Compute this interval based on the constants involved and the signedness of
823 // the compare/divide. This computes a half-open interval, keeping track of
824 // whether either value in the interval overflows. After analysis each
825 // overflow variable is set to 0 if it's corresponding bound variable is valid
826 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
827 int LoOverflow = 0, HiOverflow = 0;
828 Constant *LoBound = 0, *HiBound = 0;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000829
Chris Lattner02446fc2010-01-04 07:37:31 +0000830 if (!DivIsSigned) { // udiv
831 // e.g. X/5 op 3 --> [15, 20)
832 LoBound = Prod;
833 HiOverflow = LoOverflow = ProdOV;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000834 if (!HiOverflow) {
835 // If this is not an exact divide, then many values in the range collapse
836 // to the same result value.
837 HiOverflow = AddWithOverflow(HiBound, LoBound, RangeSize, false);
838 }
839
Chris Lattner02446fc2010-01-04 07:37:31 +0000840 } else if (DivRHS->getValue().isStrictlyPositive()) { // Divisor is > 0.
841 if (CmpRHSV == 0) { // (X / pos) op 0
842 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000843 LoBound = ConstantExpr::getNeg(SubOne(RangeSize));
844 HiBound = RangeSize;
Chris Lattner02446fc2010-01-04 07:37:31 +0000845 } else if (CmpRHSV.isStrictlyPositive()) { // (X / pos) op pos
846 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
847 HiOverflow = LoOverflow = ProdOV;
848 if (!HiOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000849 HiOverflow = AddWithOverflow(HiBound, Prod, RangeSize, true);
Chris Lattner02446fc2010-01-04 07:37:31 +0000850 } else { // (X / pos) op neg
851 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
852 HiBound = AddOne(Prod);
853 LoOverflow = HiOverflow = ProdOV ? -1 : 0;
854 if (!LoOverflow) {
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000855 ConstantInt *DivNeg =cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000856 LoOverflow = AddWithOverflow(LoBound, HiBound, DivNeg, true) ? -1 : 0;
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000857 }
Chris Lattner02446fc2010-01-04 07:37:31 +0000858 }
859 } else if (DivRHS->getValue().isNegative()) { // Divisor is < 0.
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000860 if (DivI->isExact())
861 RangeSize = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000862 if (CmpRHSV == 0) { // (X / neg) op 0
863 // e.g. X/-5 op 0 --> [-4, 5)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000864 LoBound = AddOne(RangeSize);
865 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(RangeSize));
Chris Lattner02446fc2010-01-04 07:37:31 +0000866 if (HiBound == DivRHS) { // -INTMIN = INTMIN
867 HiOverflow = 1; // [INTMIN+1, overflow)
868 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
869 }
870 } else if (CmpRHSV.isStrictlyPositive()) { // (X / neg) op pos
871 // e.g. X/-5 op 3 --> [-19, -14)
872 HiBound = AddOne(Prod);
873 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
874 if (!LoOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000875 LoOverflow = AddWithOverflow(LoBound, HiBound, RangeSize, true) ? -1:0;
Chris Lattner02446fc2010-01-04 07:37:31 +0000876 } else { // (X / neg) op neg
877 LoBound = Prod; // e.g. X/-5 op -3 --> [15, 20)
878 LoOverflow = HiOverflow = ProdOV;
879 if (!HiOverflow)
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000880 HiOverflow = SubWithOverflow(HiBound, Prod, RangeSize, true);
Chris Lattner02446fc2010-01-04 07:37:31 +0000881 }
882
883 // Dividing by a negative swaps the condition. LT <-> GT
884 Pred = ICmpInst::getSwappedPredicate(Pred);
885 }
886
887 Value *X = DivI->getOperand(0);
888 switch (Pred) {
889 default: llvm_unreachable("Unhandled icmp opcode!");
890 case ICmpInst::ICMP_EQ:
891 if (LoOverflow && HiOverflow)
892 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000893 if (HiOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000894 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
895 ICmpInst::ICMP_UGE, X, LoBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000896 if (LoOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000897 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
898 ICmpInst::ICMP_ULT, X, HiBound);
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000899 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
900 DivIsSigned, true));
Chris Lattner02446fc2010-01-04 07:37:31 +0000901 case ICmpInst::ICMP_NE:
902 if (LoOverflow && HiOverflow)
903 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000904 if (HiOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000905 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
906 ICmpInst::ICMP_ULT, X, LoBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000907 if (LoOverflow)
Chris Lattner02446fc2010-01-04 07:37:31 +0000908 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
909 ICmpInst::ICMP_UGE, X, HiBound);
Chris Lattnerf34f48c2010-03-05 08:46:26 +0000910 return ReplaceInstUsesWith(ICI, InsertRangeTest(X, LoBound, HiBound,
911 DivIsSigned, false));
Chris Lattner02446fc2010-01-04 07:37:31 +0000912 case ICmpInst::ICMP_ULT:
913 case ICmpInst::ICMP_SLT:
914 if (LoOverflow == +1) // Low bound is greater than input range.
915 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
916 if (LoOverflow == -1) // Low bound is less than input range.
917 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
918 return new ICmpInst(Pred, X, LoBound);
919 case ICmpInst::ICMP_UGT:
920 case ICmpInst::ICMP_SGT:
921 if (HiOverflow == +1) // High bound greater than input range.
922 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse(ICI.getContext()));
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000923 if (HiOverflow == -1) // High bound less than input range.
Chris Lattner02446fc2010-01-04 07:37:31 +0000924 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue(ICI.getContext()));
925 if (Pred == ICmpInst::ICMP_UGT)
926 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
Chris Lattnerb20c0b52011-02-10 05:23:05 +0000927 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
Chris Lattner02446fc2010-01-04 07:37:31 +0000928 }
929}
930
931
932/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
933///
934Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
935 Instruction *LHSI,
936 ConstantInt *RHS) {
937 const APInt &RHSV = RHS->getValue();
938
939 switch (LHSI->getOpcode()) {
940 case Instruction::Trunc:
941 if (ICI.isEquality() && LHSI->hasOneUse()) {
942 // Simplify icmp eq (trunc x to i8), 42 -> icmp eq x, 42|highbits if all
943 // of the high bits truncated out of x are known.
944 unsigned DstBits = LHSI->getType()->getPrimitiveSizeInBits(),
945 SrcBits = LHSI->getOperand(0)->getType()->getPrimitiveSizeInBits();
946 APInt Mask(APInt::getHighBitsSet(SrcBits, SrcBits-DstBits));
947 APInt KnownZero(SrcBits, 0), KnownOne(SrcBits, 0);
948 ComputeMaskedBits(LHSI->getOperand(0), Mask, KnownZero, KnownOne);
949
950 // If all the high bits are known, we can do this xform.
951 if ((KnownZero|KnownOne).countLeadingOnes() >= SrcBits-DstBits) {
952 // Pull in the high bits from known-ones set.
Jay Foad40f8f622010-12-07 08:25:19 +0000953 APInt NewRHS = RHS->getValue().zext(SrcBits);
Chris Lattner02446fc2010-01-04 07:37:31 +0000954 NewRHS |= KnownOne;
955 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
956 ConstantInt::get(ICI.getContext(), NewRHS));
957 }
958 }
959 break;
960
961 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
962 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
963 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
964 // fold the xor.
965 if ((ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0) ||
966 (ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue())) {
967 Value *CompareVal = LHSI->getOperand(0);
968
969 // If the sign bit of the XorCST is not set, there is no change to
970 // the operation, just stop using the Xor.
971 if (!XorCST->getValue().isNegative()) {
972 ICI.setOperand(0, CompareVal);
973 Worklist.Add(LHSI);
974 return &ICI;
975 }
976
977 // Was the old condition true if the operand is positive?
978 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
979
980 // If so, the new one isn't.
981 isTrueIfPositive ^= true;
982
983 if (isTrueIfPositive)
984 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal,
985 SubOne(RHS));
986 else
987 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal,
988 AddOne(RHS));
989 }
990
991 if (LHSI->hasOneUse()) {
992 // (icmp u/s (xor A SignBit), C) -> (icmp s/u A, (xor C SignBit))
993 if (!ICI.isEquality() && XorCST->getValue().isSignBit()) {
994 const APInt &SignBit = XorCST->getValue();
995 ICmpInst::Predicate Pred = ICI.isSigned()
996 ? ICI.getUnsignedPredicate()
997 : ICI.getSignedPredicate();
998 return new ICmpInst(Pred, LHSI->getOperand(0),
999 ConstantInt::get(ICI.getContext(),
1000 RHSV ^ SignBit));
1001 }
1002
1003 // (icmp u/s (xor A ~SignBit), C) -> (icmp s/u (xor C ~SignBit), A)
1004 if (!ICI.isEquality() && XorCST->getValue().isMaxSignedValue()) {
1005 const APInt &NotSignBit = XorCST->getValue();
1006 ICmpInst::Predicate Pred = ICI.isSigned()
1007 ? ICI.getUnsignedPredicate()
1008 : ICI.getSignedPredicate();
1009 Pred = ICI.getSwappedPredicate(Pred);
1010 return new ICmpInst(Pred, LHSI->getOperand(0),
1011 ConstantInt::get(ICI.getContext(),
1012 RHSV ^ NotSignBit));
1013 }
1014 }
1015 }
1016 break;
1017 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
1018 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
1019 LHSI->getOperand(0)->hasOneUse()) {
1020 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
1021
1022 // If the LHS is an AND of a truncating cast, we can widen the
1023 // and/compare to be the input width without changing the value
1024 // produced, eliminating a cast.
1025 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
1026 // We can do this transformation if either the AND constant does not
1027 // have its sign bit set or if it is an equality comparison.
1028 // Extending a relational comparison when we're checking the sign
1029 // bit would not work.
1030 if (Cast->hasOneUse() &&
1031 (ICI.isEquality() ||
1032 (AndCST->getValue().isNonNegative() && RHSV.isNonNegative()))) {
1033 uint32_t BitWidth =
1034 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
Jay Foad40f8f622010-12-07 08:25:19 +00001035 APInt NewCST = AndCST->getValue().zext(BitWidth);
1036 APInt NewCI = RHSV.zext(BitWidth);
Chris Lattner02446fc2010-01-04 07:37:31 +00001037 Value *NewAnd =
1038 Builder->CreateAnd(Cast->getOperand(0),
1039 ConstantInt::get(ICI.getContext(), NewCST),
1040 LHSI->getName());
1041 return new ICmpInst(ICI.getPredicate(), NewAnd,
1042 ConstantInt::get(ICI.getContext(), NewCI));
1043 }
1044 }
1045
1046 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
1047 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
1048 // happens a LOT in code produced by the C front-end, for bitfield
1049 // access.
1050 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
1051 if (Shift && !Shift->isShift())
1052 Shift = 0;
1053
1054 ConstantInt *ShAmt;
1055 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
1056 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
1057 const Type *AndTy = AndCST->getType(); // Type of the and.
1058
1059 // We can fold this as long as we can't shift unknown bits
1060 // into the mask. This can only happen with signed shift
1061 // rights, as they sign-extend.
1062 if (ShAmt) {
1063 bool CanFold = Shift->isLogicalShift();
1064 if (!CanFold) {
1065 // To test for the bad case of the signed shr, see if any
1066 // of the bits shifted in could be tested after the mask.
1067 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
1068 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
1069
1070 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
1071 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
1072 AndCST->getValue()) == 0)
1073 CanFold = true;
1074 }
1075
1076 if (CanFold) {
1077 Constant *NewCst;
1078 if (Shift->getOpcode() == Instruction::Shl)
1079 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
1080 else
1081 NewCst = ConstantExpr::getShl(RHS, ShAmt);
1082
1083 // Check to see if we are shifting out any of the bits being
1084 // compared.
1085 if (ConstantExpr::get(Shift->getOpcode(),
1086 NewCst, ShAmt) != RHS) {
1087 // If we shifted bits out, the fold is not going to work out.
1088 // As a special case, check to see if this means that the
1089 // result is always true or false now.
1090 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1091 return ReplaceInstUsesWith(ICI,
1092 ConstantInt::getFalse(ICI.getContext()));
1093 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
1094 return ReplaceInstUsesWith(ICI,
1095 ConstantInt::getTrue(ICI.getContext()));
1096 } else {
1097 ICI.setOperand(1, NewCst);
1098 Constant *NewAndCST;
1099 if (Shift->getOpcode() == Instruction::Shl)
1100 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
1101 else
1102 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
1103 LHSI->setOperand(1, NewAndCST);
1104 LHSI->setOperand(0, Shift->getOperand(0));
1105 Worklist.Add(Shift); // Shift is dead.
1106 return &ICI;
1107 }
1108 }
1109 }
1110
1111 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
1112 // preferable because it allows the C<<Y expression to be hoisted out
1113 // of a loop if Y is invariant and X is not.
1114 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
1115 ICI.isEquality() && !Shift->isArithmeticShift() &&
1116 !isa<Constant>(Shift->getOperand(0))) {
1117 // Compute C << Y.
1118 Value *NS;
1119 if (Shift->getOpcode() == Instruction::LShr) {
1120 NS = Builder->CreateShl(AndCST, Shift->getOperand(1), "tmp");
1121 } else {
1122 // Insert a logical shift.
1123 NS = Builder->CreateLShr(AndCST, Shift->getOperand(1), "tmp");
1124 }
1125
1126 // Compute X & (C << Y).
1127 Value *NewAnd =
1128 Builder->CreateAnd(Shift->getOperand(0), NS, LHSI->getName());
1129
1130 ICI.setOperand(0, NewAnd);
1131 return &ICI;
1132 }
1133 }
1134
1135 // Try to optimize things like "A[i]&42 == 0" to index computations.
1136 if (LoadInst *LI = dyn_cast<LoadInst>(LHSI->getOperand(0))) {
1137 if (GetElementPtrInst *GEP =
1138 dyn_cast<GetElementPtrInst>(LI->getOperand(0)))
1139 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
1140 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
1141 !LI->isVolatile() && isa<ConstantInt>(LHSI->getOperand(1))) {
1142 ConstantInt *C = cast<ConstantInt>(LHSI->getOperand(1));
1143 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV,ICI, C))
1144 return Res;
1145 }
1146 }
1147 break;
1148
1149 case Instruction::Or: {
1150 if (!ICI.isEquality() || !RHS->isNullValue() || !LHSI->hasOneUse())
1151 break;
1152 Value *P, *Q;
1153 if (match(LHSI, m_Or(m_PtrToInt(m_Value(P)), m_PtrToInt(m_Value(Q))))) {
1154 // Simplify icmp eq (or (ptrtoint P), (ptrtoint Q)), 0
1155 // -> and (icmp eq P, null), (icmp eq Q, null).
1156
1157 Value *ICIP = Builder->CreateICmp(ICI.getPredicate(), P,
1158 Constant::getNullValue(P->getType()));
1159 Value *ICIQ = Builder->CreateICmp(ICI.getPredicate(), Q,
1160 Constant::getNullValue(Q->getType()));
1161 Instruction *Op;
1162 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
1163 Op = BinaryOperator::CreateAnd(ICIP, ICIQ);
1164 else
1165 Op = BinaryOperator::CreateOr(ICIP, ICIQ);
1166 return Op;
1167 }
1168 break;
1169 }
1170
1171 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
1172 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1173 if (!ShAmt) break;
1174
1175 uint32_t TypeBits = RHSV.getBitWidth();
1176
1177 // Check that the shift amount is in range. If not, don't perform
1178 // undefined shifts. When the shift is visited it will be
1179 // simplified.
1180 if (ShAmt->uge(TypeBits))
1181 break;
1182
1183 if (ICI.isEquality()) {
1184 // If we are comparing against bits always shifted out, the
1185 // comparison cannot succeed.
1186 Constant *Comp =
1187 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt),
1188 ShAmt);
1189 if (Comp != RHS) {// Comparing against a bit that we know is zero.
1190 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1191 Constant *Cst =
1192 ConstantInt::get(Type::getInt1Ty(ICI.getContext()), IsICMP_NE);
1193 return ReplaceInstUsesWith(ICI, Cst);
1194 }
1195
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001196 // If the shift is NUW, then it is just shifting out zeros, no need for an
1197 // AND.
1198 if (cast<BinaryOperator>(LHSI)->hasNoUnsignedWrap())
1199 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1200 ConstantExpr::getLShr(RHS, ShAmt));
1201
Chris Lattner02446fc2010-01-04 07:37:31 +00001202 if (LHSI->hasOneUse()) {
1203 // Otherwise strength reduce the shift into an and.
1204 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
1205 Constant *Mask =
1206 ConstantInt::get(ICI.getContext(), APInt::getLowBitsSet(TypeBits,
1207 TypeBits-ShAmtVal));
1208
1209 Value *And =
1210 Builder->CreateAnd(LHSI->getOperand(0),Mask, LHSI->getName()+".mask");
1211 return new ICmpInst(ICI.getPredicate(), And,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001212 ConstantExpr::getLShr(RHS, ShAmt));
Chris Lattner02446fc2010-01-04 07:37:31 +00001213 }
1214 }
1215
1216 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
1217 bool TrueIfSigned = false;
1218 if (LHSI->hasOneUse() &&
1219 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
1220 // (X << 31) <s 0 --> (X&1) != 0
1221 Constant *Mask = ConstantInt::get(ICI.getContext(), APInt(TypeBits, 1) <<
1222 (TypeBits-ShAmt->getZExtValue()-1));
1223 Value *And =
1224 Builder->CreateAnd(LHSI->getOperand(0), Mask, LHSI->getName()+".mask");
1225 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
1226 And, Constant::getNullValue(And->getType()));
1227 }
1228 break;
1229 }
1230
1231 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
1232 case Instruction::AShr: {
1233 // Only handle equality comparisons of shift-by-constant.
1234 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1235 if (!ShAmt || !ICI.isEquality()) break;
1236
1237 // Check that the shift amount is in range. If not, don't perform
1238 // undefined shifts. When the shift is visited it will be
1239 // simplified.
1240 uint32_t TypeBits = RHSV.getBitWidth();
Chris Lattner02446fc2010-01-04 07:37:31 +00001241 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001242 if (ShAmtVal >= TypeBits)
1243 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00001244
1245 // If we are comparing against bits always shifted out, the
1246 // comparison cannot succeed.
1247 APInt Comp = RHSV << ShAmtVal;
1248 if (LHSI->getOpcode() == Instruction::LShr)
1249 Comp = Comp.lshr(ShAmtVal);
1250 else
1251 Comp = Comp.ashr(ShAmtVal);
1252
1253 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
1254 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1255 Constant *Cst = ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1256 IsICMP_NE);
1257 return ReplaceInstUsesWith(ICI, Cst);
1258 }
1259
1260 // Otherwise, check to see if the bits shifted out are known to be zero.
1261 // If so, we can compare against the unshifted value:
1262 // (X & 4) >> 1 == 2 --> (X & 4) == 4.
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001263 if (LHSI->hasOneUse() && cast<BinaryOperator>(LHSI)->isExact())
Chris Lattner02446fc2010-01-04 07:37:31 +00001264 return new ICmpInst(ICI.getPredicate(), LHSI->getOperand(0),
1265 ConstantExpr::getShl(RHS, ShAmt));
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001266
Chris Lattner02446fc2010-01-04 07:37:31 +00001267 if (LHSI->hasOneUse()) {
1268 // Otherwise strength reduce the shift into an and.
1269 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
1270 Constant *Mask = ConstantInt::get(ICI.getContext(), Val);
1271
1272 Value *And = Builder->CreateAnd(LHSI->getOperand(0),
1273 Mask, LHSI->getName()+".mask");
1274 return new ICmpInst(ICI.getPredicate(), And,
1275 ConstantExpr::getShl(RHS, ShAmt));
1276 }
1277 break;
1278 }
1279
1280 case Instruction::SDiv:
1281 case Instruction::UDiv:
1282 // Fold: icmp pred ([us]div X, C1), C2 -> range test
1283 // Fold this div into the comparison, producing a range check.
1284 // Determine, based on the divide type, what the range is being
1285 // checked. If there is an overflow on the low or high side, remember
1286 // it, otherwise compute the range [low, hi) bounding the new value.
1287 // See: InsertRangeTest above for the kinds of replacements possible.
1288 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
1289 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
1290 DivRHS))
1291 return R;
1292 break;
1293
1294 case Instruction::Add:
1295 // Fold: icmp pred (add X, C1), C2
1296 if (!ICI.isEquality()) {
1297 ConstantInt *LHSC = dyn_cast<ConstantInt>(LHSI->getOperand(1));
1298 if (!LHSC) break;
1299 const APInt &LHSV = LHSC->getValue();
1300
1301 ConstantRange CR = ICI.makeConstantRange(ICI.getPredicate(), RHSV)
1302 .subtract(LHSV);
1303
1304 if (ICI.isSigned()) {
1305 if (CR.getLower().isSignBit()) {
1306 return new ICmpInst(ICmpInst::ICMP_SLT, LHSI->getOperand(0),
1307 ConstantInt::get(ICI.getContext(),CR.getUpper()));
1308 } else if (CR.getUpper().isSignBit()) {
1309 return new ICmpInst(ICmpInst::ICMP_SGE, LHSI->getOperand(0),
1310 ConstantInt::get(ICI.getContext(),CR.getLower()));
1311 }
1312 } else {
1313 if (CR.getLower().isMinValue()) {
1314 return new ICmpInst(ICmpInst::ICMP_ULT, LHSI->getOperand(0),
1315 ConstantInt::get(ICI.getContext(),CR.getUpper()));
1316 } else if (CR.getUpper().isMinValue()) {
1317 return new ICmpInst(ICmpInst::ICMP_UGE, LHSI->getOperand(0),
1318 ConstantInt::get(ICI.getContext(),CR.getLower()));
1319 }
1320 }
1321 }
1322 break;
1323 }
1324
1325 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
1326 if (ICI.isEquality()) {
1327 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
1328
1329 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
1330 // the second operand is a constant, simplify a bit.
1331 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
1332 switch (BO->getOpcode()) {
1333 case Instruction::SRem:
1334 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
1335 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
1336 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
Dan Gohmane0567812010-04-08 23:03:40 +00001337 if (V.sgt(1) && V.isPowerOf2()) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001338 Value *NewRem =
1339 Builder->CreateURem(BO->getOperand(0), BO->getOperand(1),
1340 BO->getName());
1341 return new ICmpInst(ICI.getPredicate(), NewRem,
1342 Constant::getNullValue(BO->getType()));
1343 }
1344 }
1345 break;
1346 case Instruction::Add:
1347 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
1348 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1349 if (BO->hasOneUse())
1350 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1351 ConstantExpr::getSub(RHS, BOp1C));
1352 } else if (RHSV == 0) {
1353 // Replace ((add A, B) != 0) with (A != -B) if A or B is
1354 // efficiently invertible, or if the add has just this one use.
1355 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
1356
1357 if (Value *NegVal = dyn_castNegVal(BOp1))
1358 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
1359 else if (Value *NegVal = dyn_castNegVal(BOp0))
1360 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
1361 else if (BO->hasOneUse()) {
1362 Value *Neg = Builder->CreateNeg(BOp1);
1363 Neg->takeName(BO);
1364 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
1365 }
1366 }
1367 break;
1368 case Instruction::Xor:
1369 // For the xor case, we can xor two constants together, eliminating
1370 // the explicit xor.
1371 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
1372 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1373 ConstantExpr::getXor(RHS, BOC));
1374
1375 // FALLTHROUGH
1376 case Instruction::Sub:
1377 // Replace (([sub|xor] A, B) != 0) with (A != B)
1378 if (RHSV == 0)
1379 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
1380 BO->getOperand(1));
1381 break;
1382
1383 case Instruction::Or:
1384 // If bits are being or'd in that are not present in the constant we
1385 // are comparing against, then the comparison could never succeed!
Eli Friedman618898e2010-07-29 18:03:33 +00001386 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001387 Constant *NotCI = ConstantExpr::getNot(RHS);
1388 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
1389 return ReplaceInstUsesWith(ICI,
1390 ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1391 isICMP_NE));
1392 }
1393 break;
1394
1395 case Instruction::And:
1396 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
1397 // If bits are being compared against that are and'd out, then the
1398 // comparison can never succeed!
1399 if ((RHSV & ~BOC->getValue()) != 0)
1400 return ReplaceInstUsesWith(ICI,
1401 ConstantInt::get(Type::getInt1Ty(ICI.getContext()),
1402 isICMP_NE));
1403
1404 // If we have ((X & C) == C), turn it into ((X & C) != 0).
1405 if (RHS == BOC && RHSV.isPowerOf2())
1406 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
1407 ICmpInst::ICMP_NE, LHSI,
1408 Constant::getNullValue(RHS->getType()));
1409
1410 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
1411 if (BOC->getValue().isSignBit()) {
1412 Value *X = BO->getOperand(0);
1413 Constant *Zero = Constant::getNullValue(X->getType());
1414 ICmpInst::Predicate pred = isICMP_NE ?
1415 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
1416 return new ICmpInst(pred, X, Zero);
1417 }
1418
1419 // ((X & ~7) == 0) --> X < 8
1420 if (RHSV == 0 && isHighOnes(BOC)) {
1421 Value *X = BO->getOperand(0);
1422 Constant *NegX = ConstantExpr::getNeg(BOC);
1423 ICmpInst::Predicate pred = isICMP_NE ?
1424 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
1425 return new ICmpInst(pred, X, NegX);
1426 }
1427 }
1428 default: break;
1429 }
1430 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
1431 // Handle icmp {eq|ne} <intrinsic>, intcst.
Chris Lattner03357402010-01-05 18:09:56 +00001432 switch (II->getIntrinsicID()) {
1433 case Intrinsic::bswap:
Chris Lattner02446fc2010-01-04 07:37:31 +00001434 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001435 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner02446fc2010-01-04 07:37:31 +00001436 ICI.setOperand(1, ConstantInt::get(II->getContext(), RHSV.byteSwap()));
1437 return &ICI;
Chris Lattner03357402010-01-05 18:09:56 +00001438 case Intrinsic::ctlz:
1439 case Intrinsic::cttz:
1440 // ctz(A) == bitwidth(a) -> A == 0 and likewise for !=
1441 if (RHSV == RHS->getType()->getBitWidth()) {
1442 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001443 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner03357402010-01-05 18:09:56 +00001444 ICI.setOperand(1, ConstantInt::get(RHS->getType(), 0));
1445 return &ICI;
1446 }
1447 break;
1448 case Intrinsic::ctpop:
1449 // popcount(A) == 0 -> A == 0 and likewise for !=
1450 if (RHS->isZero()) {
1451 Worklist.Add(II);
Gabor Greifcaf70b32010-06-24 16:11:44 +00001452 ICI.setOperand(0, II->getArgOperand(0));
Chris Lattner03357402010-01-05 18:09:56 +00001453 ICI.setOperand(1, RHS);
1454 return &ICI;
1455 }
1456 break;
1457 default:
Duncan Sands34727662010-07-12 08:16:59 +00001458 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00001459 }
1460 }
1461 }
1462 return 0;
1463}
1464
1465/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
1466/// We only handle extending casts so far.
1467///
1468Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
1469 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
1470 Value *LHSCIOp = LHSCI->getOperand(0);
1471 const Type *SrcTy = LHSCIOp->getType();
1472 const Type *DestTy = LHSCI->getType();
1473 Value *RHSCIOp;
1474
1475 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
1476 // integer type is the same size as the pointer type.
1477 if (TD && LHSCI->getOpcode() == Instruction::PtrToInt &&
1478 TD->getPointerSizeInBits() ==
1479 cast<IntegerType>(DestTy)->getBitWidth()) {
1480 Value *RHSOp = 0;
1481 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
1482 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
1483 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
1484 RHSOp = RHSC->getOperand(0);
1485 // If the pointer types don't match, insert a bitcast.
1486 if (LHSCIOp->getType() != RHSOp->getType())
1487 RHSOp = Builder->CreateBitCast(RHSOp, LHSCIOp->getType());
1488 }
1489
1490 if (RHSOp)
1491 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
1492 }
1493
1494 // The code below only handles extension cast instructions, so far.
1495 // Enforce this.
1496 if (LHSCI->getOpcode() != Instruction::ZExt &&
1497 LHSCI->getOpcode() != Instruction::SExt)
1498 return 0;
1499
1500 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
1501 bool isSignedCmp = ICI.isSigned();
1502
1503 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
1504 // Not an extension from the same type?
1505 RHSCIOp = CI->getOperand(0);
1506 if (RHSCIOp->getType() != LHSCIOp->getType())
1507 return 0;
1508
1509 // If the signedness of the two casts doesn't agree (i.e. one is a sext
1510 // and the other is a zext), then we can't handle this.
1511 if (CI->getOpcode() != LHSCI->getOpcode())
1512 return 0;
1513
1514 // Deal with equality cases early.
1515 if (ICI.isEquality())
1516 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1517
1518 // A signed comparison of sign extended values simplifies into a
1519 // signed comparison.
1520 if (isSignedCmp && isSignedExt)
1521 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
1522
1523 // The other three cases all fold into an unsigned comparison.
1524 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, RHSCIOp);
1525 }
1526
1527 // If we aren't dealing with a constant on the RHS, exit early
1528 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
1529 if (!CI)
1530 return 0;
1531
1532 // Compute the constant that would happen if we truncated to SrcTy then
1533 // reextended to DestTy.
1534 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
1535 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(),
1536 Res1, DestTy);
1537
1538 // If the re-extended constant didn't change...
1539 if (Res2 == CI) {
1540 // Deal with equality cases early.
1541 if (ICI.isEquality())
1542 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1543
1544 // A signed comparison of sign extended values simplifies into a
1545 // signed comparison.
1546 if (isSignedExt && isSignedCmp)
1547 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
1548
1549 // The other three cases all fold into an unsigned comparison.
1550 return new ICmpInst(ICI.getUnsignedPredicate(), LHSCIOp, Res1);
1551 }
1552
1553 // The re-extended constant changed so the constant cannot be represented
1554 // in the shorter type. Consequently, we cannot emit a simple comparison.
Duncan Sands9d32f602011-01-20 13:21:55 +00001555 // All the cases that fold to true or false will have already been handled
1556 // by SimplifyICmpInst, so only deal with the tricky case.
Chris Lattner02446fc2010-01-04 07:37:31 +00001557
Duncan Sands9d32f602011-01-20 13:21:55 +00001558 if (isSignedCmp || !isSignedExt)
1559 return 0;
Chris Lattner02446fc2010-01-04 07:37:31 +00001560
1561 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
1562 // should have been folded away previously and not enter in here.
Duncan Sands9d32f602011-01-20 13:21:55 +00001563
1564 // We're performing an unsigned comp with a sign extended value.
1565 // This is true if the input is >= 0. [aka >s -1]
1566 Constant *NegOne = Constant::getAllOnesValue(SrcTy);
1567 Value *Result = Builder->CreateICmpSGT(LHSCIOp, NegOne, ICI.getName());
Chris Lattner02446fc2010-01-04 07:37:31 +00001568
1569 // Finally, return the value computed.
Duncan Sands9d32f602011-01-20 13:21:55 +00001570 if (ICI.getPredicate() == ICmpInst::ICMP_ULT)
Chris Lattner02446fc2010-01-04 07:37:31 +00001571 return ReplaceInstUsesWith(ICI, Result);
1572
Duncan Sands9d32f602011-01-20 13:21:55 +00001573 assert(ICI.getPredicate() == ICmpInst::ICMP_UGT && "ICmp should be folded!");
Chris Lattner02446fc2010-01-04 07:37:31 +00001574 return BinaryOperator::CreateNot(Result);
1575}
1576
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001577/// ProcessUGT_ADDCST_ADD - The caller has matched a pattern of the form:
1578/// I = icmp ugt (add (add A, B), CI2), CI1
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001579/// If this is of the form:
1580/// sum = a + b
1581/// if (sum+128 >u 255)
1582/// Then replace it with llvm.sadd.with.overflow.i8.
1583///
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001584static Instruction *ProcessUGT_ADDCST_ADD(ICmpInst &I, Value *A, Value *B,
1585 ConstantInt *CI2, ConstantInt *CI1,
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001586 InstCombiner &IC) {
Chris Lattner368397b2010-12-19 17:59:02 +00001587 // The transformation we're trying to do here is to transform this into an
1588 // llvm.sadd.with.overflow. To do this, we have to replace the original add
1589 // with a narrower add, and discard the add-with-constant that is part of the
1590 // range check (if we can't eliminate it, this isn't profitable).
1591
1592 // In order to eliminate the add-with-constant, the compare can be its only
1593 // use.
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001594 Instruction *AddWithCst = cast<Instruction>(I.getOperand(0));
Chris Lattner368397b2010-12-19 17:59:02 +00001595 if (!AddWithCst->hasOneUse()) return 0;
Chris Lattnerdd7e8372010-12-19 18:22:06 +00001596
1597 // If CI2 is 2^7, 2^15, 2^31, then it might be an sadd.with.overflow.
1598 if (!CI2->getValue().isPowerOf2()) return 0;
1599 unsigned NewWidth = CI2->getValue().countTrailingZeros();
1600 if (NewWidth != 7 && NewWidth != 15 && NewWidth != 31) return 0;
1601
1602 // The width of the new add formed is 1 more than the bias.
1603 ++NewWidth;
1604
1605 // Check to see that CI1 is an all-ones value with NewWidth bits.
1606 if (CI1->getBitWidth() == NewWidth ||
1607 CI1->getValue() != APInt::getLowBitsSet(CI1->getBitWidth(), NewWidth))
1608 return 0;
1609
1610 // In order to replace the original add with a narrower
1611 // llvm.sadd.with.overflow, the only uses allowed are the add-with-constant
1612 // and truncates that discard the high bits of the add. Verify that this is
1613 // the case.
1614 Instruction *OrigAdd = cast<Instruction>(AddWithCst->getOperand(0));
1615 for (Value::use_iterator UI = OrigAdd->use_begin(), E = OrigAdd->use_end();
1616 UI != E; ++UI) {
1617 if (*UI == AddWithCst) continue;
1618
1619 // Only accept truncates for now. We would really like a nice recursive
1620 // predicate like SimplifyDemandedBits, but which goes downwards the use-def
1621 // chain to see which bits of a value are actually demanded. If the
1622 // original add had another add which was then immediately truncated, we
1623 // could still do the transformation.
1624 TruncInst *TI = dyn_cast<TruncInst>(*UI);
1625 if (TI == 0 ||
1626 TI->getType()->getPrimitiveSizeInBits() > NewWidth) return 0;
1627 }
1628
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001629 // If the pattern matches, truncate the inputs to the narrower type and
1630 // use the sadd_with_overflow intrinsic to efficiently compute both the
1631 // result and the overflow bit.
Chris Lattner0a624742010-12-19 18:35:09 +00001632 Module *M = I.getParent()->getParent()->getParent();
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001633
Chris Lattner0a624742010-12-19 18:35:09 +00001634 const Type *NewType = IntegerType::get(OrigAdd->getContext(), NewWidth);
1635 Value *F = Intrinsic::getDeclaration(M, Intrinsic::sadd_with_overflow,
1636 &NewType, 1);
1637
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001638 InstCombiner::BuilderTy *Builder = IC.Builder;
1639
Chris Lattner0a624742010-12-19 18:35:09 +00001640 // Put the new code above the original add, in case there are any uses of the
1641 // add between the add and the compare.
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001642 Builder->SetInsertPoint(OrigAdd);
Chris Lattner0a624742010-12-19 18:35:09 +00001643
1644 Value *TruncA = Builder->CreateTrunc(A, NewType, A->getName()+".trunc");
1645 Value *TruncB = Builder->CreateTrunc(B, NewType, B->getName()+".trunc");
1646 CallInst *Call = Builder->CreateCall2(F, TruncA, TruncB, "sadd");
1647 Value *Add = Builder->CreateExtractValue(Call, 0, "sadd.result");
1648 Value *ZExt = Builder->CreateZExt(Add, OrigAdd->getType());
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001649
1650 // The inner add was the result of the narrow add, zero extended to the
1651 // wider type. Replace it with the result computed by the intrinsic.
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001652 IC.ReplaceInstUsesWith(*OrigAdd, ZExt);
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001653
Chris Lattner0a624742010-12-19 18:35:09 +00001654 // The original icmp gets replaced with the overflow value.
1655 return ExtractValueInst::Create(Call, 1, "sadd.overflow");
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001656}
Chris Lattner02446fc2010-01-04 07:37:31 +00001657
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001658static Instruction *ProcessUAddIdiom(Instruction &I, Value *OrigAddV,
1659 InstCombiner &IC) {
1660 // Don't bother doing this transformation for pointers, don't do it for
1661 // vectors.
1662 if (!isa<IntegerType>(OrigAddV->getType())) return 0;
1663
1664 // If the add is a constant expr, then we don't bother transforming it.
1665 Instruction *OrigAdd = dyn_cast<Instruction>(OrigAddV);
1666 if (OrigAdd == 0) return 0;
1667
1668 Value *LHS = OrigAdd->getOperand(0), *RHS = OrigAdd->getOperand(1);
1669
1670 // Put the new code above the original add, in case there are any uses of the
1671 // add between the add and the compare.
1672 InstCombiner::BuilderTy *Builder = IC.Builder;
1673 Builder->SetInsertPoint(OrigAdd);
1674
1675 Module *M = I.getParent()->getParent()->getParent();
1676 const Type *Ty = LHS->getType();
1677 Value *F = Intrinsic::getDeclaration(M, Intrinsic::uadd_with_overflow, &Ty,1);
1678 CallInst *Call = Builder->CreateCall2(F, LHS, RHS, "uadd");
1679 Value *Add = Builder->CreateExtractValue(Call, 0);
1680
1681 IC.ReplaceInstUsesWith(*OrigAdd, Add);
1682
1683 // The original icmp gets replaced with the overflow value.
1684 return ExtractValueInst::Create(Call, 1, "uadd.overflow");
1685}
1686
Owen Andersonda1c1222011-01-11 00:36:45 +00001687// DemandedBitsLHSMask - When performing a comparison against a constant,
1688// it is possible that not all the bits in the LHS are demanded. This helper
1689// method computes the mask that IS demanded.
1690static APInt DemandedBitsLHSMask(ICmpInst &I,
1691 unsigned BitWidth, bool isSignCheck) {
1692 if (isSignCheck)
1693 return APInt::getSignBit(BitWidth);
1694
1695 ConstantInt *CI = dyn_cast<ConstantInt>(I.getOperand(1));
1696 if (!CI) return APInt::getAllOnesValue(BitWidth);
Owen Andersona33b6252011-01-11 18:26:37 +00001697 const APInt &RHS = CI->getValue();
Owen Andersonda1c1222011-01-11 00:36:45 +00001698
1699 switch (I.getPredicate()) {
1700 // For a UGT comparison, we don't care about any bits that
1701 // correspond to the trailing ones of the comparand. The value of these
1702 // bits doesn't impact the outcome of the comparison, because any value
1703 // greater than the RHS must differ in a bit higher than these due to carry.
1704 case ICmpInst::ICMP_UGT: {
1705 unsigned trailingOnes = RHS.countTrailingOnes();
1706 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingOnes);
1707 return ~lowBitsSet;
1708 }
1709
1710 // Similarly, for a ULT comparison, we don't care about the trailing zeros.
1711 // Any value less than the RHS must differ in a higher bit because of carries.
1712 case ICmpInst::ICMP_ULT: {
1713 unsigned trailingZeros = RHS.countTrailingZeros();
1714 APInt lowBitsSet = APInt::getLowBitsSet(BitWidth, trailingZeros);
1715 return ~lowBitsSet;
1716 }
1717
1718 default:
1719 return APInt::getAllOnesValue(BitWidth);
1720 }
1721
Owen Andersonda1c1222011-01-11 00:36:45 +00001722}
Chris Lattner02446fc2010-01-04 07:37:31 +00001723
1724Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
1725 bool Changed = false;
Chris Lattner5f670d42010-02-01 19:54:45 +00001726 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattner02446fc2010-01-04 07:37:31 +00001727
1728 /// Orders the operands of the compare so that they are listed from most
1729 /// complex to least complex. This puts constants before unary operators,
1730 /// before binary operators.
Chris Lattner5f670d42010-02-01 19:54:45 +00001731 if (getComplexity(Op0) < getComplexity(Op1)) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001732 I.swapOperands();
Chris Lattner5f670d42010-02-01 19:54:45 +00001733 std::swap(Op0, Op1);
Chris Lattner02446fc2010-01-04 07:37:31 +00001734 Changed = true;
1735 }
1736
Chris Lattner02446fc2010-01-04 07:37:31 +00001737 if (Value *V = SimplifyICmpInst(I.getPredicate(), Op0, Op1, TD))
1738 return ReplaceInstUsesWith(I, V);
1739
1740 const Type *Ty = Op0->getType();
1741
1742 // icmp's with boolean values can always be turned into bitwise operations
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001743 if (Ty->isIntegerTy(1)) {
Chris Lattner02446fc2010-01-04 07:37:31 +00001744 switch (I.getPredicate()) {
1745 default: llvm_unreachable("Invalid icmp instruction!");
1746 case ICmpInst::ICMP_EQ: { // icmp eq i1 A, B -> ~(A^B)
1747 Value *Xor = Builder->CreateXor(Op0, Op1, I.getName()+"tmp");
1748 return BinaryOperator::CreateNot(Xor);
1749 }
1750 case ICmpInst::ICMP_NE: // icmp eq i1 A, B -> A^B
1751 return BinaryOperator::CreateXor(Op0, Op1);
1752
1753 case ICmpInst::ICMP_UGT:
1754 std::swap(Op0, Op1); // Change icmp ugt -> icmp ult
1755 // FALL THROUGH
1756 case ICmpInst::ICMP_ULT:{ // icmp ult i1 A, B -> ~A & B
1757 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1758 return BinaryOperator::CreateAnd(Not, Op1);
1759 }
1760 case ICmpInst::ICMP_SGT:
1761 std::swap(Op0, Op1); // Change icmp sgt -> icmp slt
1762 // FALL THROUGH
1763 case ICmpInst::ICMP_SLT: { // icmp slt i1 A, B -> A & ~B
1764 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1765 return BinaryOperator::CreateAnd(Not, Op0);
1766 }
1767 case ICmpInst::ICMP_UGE:
1768 std::swap(Op0, Op1); // Change icmp uge -> icmp ule
1769 // FALL THROUGH
1770 case ICmpInst::ICMP_ULE: { // icmp ule i1 A, B -> ~A | B
1771 Value *Not = Builder->CreateNot(Op0, I.getName()+"tmp");
1772 return BinaryOperator::CreateOr(Not, Op1);
1773 }
1774 case ICmpInst::ICMP_SGE:
1775 std::swap(Op0, Op1); // Change icmp sge -> icmp sle
1776 // FALL THROUGH
1777 case ICmpInst::ICMP_SLE: { // icmp sle i1 A, B -> A | ~B
1778 Value *Not = Builder->CreateNot(Op1, I.getName()+"tmp");
1779 return BinaryOperator::CreateOr(Not, Op0);
1780 }
1781 }
1782 }
1783
1784 unsigned BitWidth = 0;
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001785 if (Ty->isIntOrIntVectorTy())
Chris Lattner02446fc2010-01-04 07:37:31 +00001786 BitWidth = Ty->getScalarSizeInBits();
Chris Lattnere5cbdca2010-12-19 19:37:52 +00001787 else if (TD) // Pointers require TD info to get their size.
1788 BitWidth = TD->getTypeSizeInBits(Ty->getScalarType());
1789
Chris Lattner02446fc2010-01-04 07:37:31 +00001790 bool isSignBit = false;
1791
1792 // See if we are doing a comparison with a constant.
1793 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1794 Value *A = 0, *B = 0;
1795
Owen Andersone63dda52010-12-17 18:08:00 +00001796 // Match the following pattern, which is a common idiom when writing
1797 // overflow-safe integer arithmetic function. The source performs an
1798 // addition in wider type, and explicitly checks for overflow using
1799 // comparisons against INT_MIN and INT_MAX. Simplify this by using the
1800 // sadd_with_overflow intrinsic.
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001801 //
1802 // TODO: This could probably be generalized to handle other overflow-safe
Owen Andersone63dda52010-12-17 18:08:00 +00001803 // operations if we worked out the formulas to compute the appropriate
1804 // magic constants.
1805 //
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001806 // sum = a + b
1807 // if (sum+128 >u 255) ... -> llvm.sadd.with.overflow.i8
Owen Andersone63dda52010-12-17 18:08:00 +00001808 {
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001809 ConstantInt *CI2; // I = icmp ugt (add (add A, B), CI2), CI
Owen Andersone63dda52010-12-17 18:08:00 +00001810 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001811 match(Op0, m_Add(m_Add(m_Value(A), m_Value(B)), m_ConstantInt(CI2))))
Chris Lattner0fe80bb2010-12-19 18:38:44 +00001812 if (Instruction *Res = ProcessUGT_ADDCST_ADD(I, A, B, CI2, CI, *this))
Chris Lattnerf0f568b2010-12-19 17:52:50 +00001813 return Res;
Owen Andersone63dda52010-12-17 18:08:00 +00001814 }
1815
Chris Lattner02446fc2010-01-04 07:37:31 +00001816 // (icmp ne/eq (sub A B) 0) -> (icmp ne/eq A, B)
1817 if (I.isEquality() && CI->isZero() &&
1818 match(Op0, m_Sub(m_Value(A), m_Value(B)))) {
1819 // (icmp cond A B) if cond is equality
1820 return new ICmpInst(I.getPredicate(), A, B);
1821 }
1822
1823 // If we have an icmp le or icmp ge instruction, turn it into the
1824 // appropriate icmp lt or icmp gt instruction. This allows us to rely on
1825 // them being folded in the code below. The SimplifyICmpInst code has
1826 // already handled the edge cases for us, so we just assert on them.
1827 switch (I.getPredicate()) {
1828 default: break;
1829 case ICmpInst::ICMP_ULE:
1830 assert(!CI->isMaxValue(false)); // A <=u MAX -> TRUE
1831 return new ICmpInst(ICmpInst::ICMP_ULT, Op0,
1832 ConstantInt::get(CI->getContext(), CI->getValue()+1));
1833 case ICmpInst::ICMP_SLE:
1834 assert(!CI->isMaxValue(true)); // A <=s MAX -> TRUE
1835 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
1836 ConstantInt::get(CI->getContext(), CI->getValue()+1));
1837 case ICmpInst::ICMP_UGE:
1838 assert(!CI->isMinValue(false)); // A >=u MIN -> TRUE
1839 return new ICmpInst(ICmpInst::ICMP_UGT, Op0,
1840 ConstantInt::get(CI->getContext(), CI->getValue()-1));
1841 case ICmpInst::ICMP_SGE:
1842 assert(!CI->isMinValue(true)); // A >=s MIN -> TRUE
1843 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1844 ConstantInt::get(CI->getContext(), CI->getValue()-1));
1845 }
1846
1847 // If this comparison is a normal comparison, it demands all
1848 // bits, if it is a sign bit comparison, it only demands the sign bit.
1849 bool UnusedBit;
1850 isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
1851 }
1852
1853 // See if we can fold the comparison based on range information we can get
1854 // by checking whether bits are known to be zero or one in the input.
1855 if (BitWidth != 0) {
1856 APInt Op0KnownZero(BitWidth, 0), Op0KnownOne(BitWidth, 0);
1857 APInt Op1KnownZero(BitWidth, 0), Op1KnownOne(BitWidth, 0);
1858
1859 if (SimplifyDemandedBits(I.getOperandUse(0),
Owen Andersonda1c1222011-01-11 00:36:45 +00001860 DemandedBitsLHSMask(I, BitWidth, isSignBit),
Chris Lattner02446fc2010-01-04 07:37:31 +00001861 Op0KnownZero, Op0KnownOne, 0))
1862 return &I;
1863 if (SimplifyDemandedBits(I.getOperandUse(1),
1864 APInt::getAllOnesValue(BitWidth),
1865 Op1KnownZero, Op1KnownOne, 0))
1866 return &I;
1867
1868 // Given the known and unknown bits, compute a range that the LHS could be
1869 // in. Compute the Min, Max and RHS values based on the known bits. For the
1870 // EQ and NE we use unsigned values.
1871 APInt Op0Min(BitWidth, 0), Op0Max(BitWidth, 0);
1872 APInt Op1Min(BitWidth, 0), Op1Max(BitWidth, 0);
1873 if (I.isSigned()) {
1874 ComputeSignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1875 Op0Min, Op0Max);
1876 ComputeSignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1877 Op1Min, Op1Max);
1878 } else {
1879 ComputeUnsignedMinMaxValuesFromKnownBits(Op0KnownZero, Op0KnownOne,
1880 Op0Min, Op0Max);
1881 ComputeUnsignedMinMaxValuesFromKnownBits(Op1KnownZero, Op1KnownOne,
1882 Op1Min, Op1Max);
1883 }
1884
1885 // If Min and Max are known to be the same, then SimplifyDemandedBits
1886 // figured out that the LHS is a constant. Just constant fold this now so
1887 // that code below can assume that Min != Max.
1888 if (!isa<Constant>(Op0) && Op0Min == Op0Max)
1889 return new ICmpInst(I.getPredicate(),
1890 ConstantInt::get(I.getContext(), Op0Min), Op1);
1891 if (!isa<Constant>(Op1) && Op1Min == Op1Max)
1892 return new ICmpInst(I.getPredicate(), Op0,
1893 ConstantInt::get(I.getContext(), Op1Min));
1894
1895 // Based on the range information we know about the LHS, see if we can
1896 // simplify this comparison. For example, (x&4) < 8 is always true.
1897 switch (I.getPredicate()) {
1898 default: llvm_unreachable("Unknown icmp opcode!");
Chris Lattner75d8f592010-11-21 06:44:42 +00001899 case ICmpInst::ICMP_EQ: {
Chris Lattner02446fc2010-01-04 07:37:31 +00001900 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1901 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
Chris Lattner75d8f592010-11-21 06:44:42 +00001902
1903 // If all bits are known zero except for one, then we know at most one
1904 // bit is set. If the comparison is against zero, then this is a check
1905 // to see if *that* bit is set.
1906 APInt Op0KnownZeroInverted = ~Op0KnownZero;
1907 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1908 // If the LHS is an AND with the same constant, look through it.
1909 Value *LHS = 0;
1910 ConstantInt *LHSC = 0;
1911 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1912 LHSC->getValue() != Op0KnownZeroInverted)
1913 LHS = Op0;
1914
1915 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
Chris Lattner79b967b2010-11-23 02:42:04 +00001916 // then turn "((1 << x)&8) == 0" into "x != 3".
Chris Lattner75d8f592010-11-21 06:44:42 +00001917 Value *X = 0;
1918 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
1919 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
Chris Lattner79b967b2010-11-23 02:42:04 +00001920 return new ICmpInst(ICmpInst::ICMP_NE, X,
Chris Lattner75d8f592010-11-21 06:44:42 +00001921 ConstantInt::get(X->getType(), CmpVal));
1922 }
1923
1924 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
Chris Lattner79b967b2010-11-23 02:42:04 +00001925 // then turn "((8 >>u x)&1) == 0" into "x != 3".
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001926 const APInt *CI;
Chris Lattner75d8f592010-11-21 06:44:42 +00001927 if (Op0KnownZeroInverted == 1 &&
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001928 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
Chris Lattner79b967b2010-11-23 02:42:04 +00001929 return new ICmpInst(ICmpInst::ICMP_NE, X,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001930 ConstantInt::get(X->getType(),
1931 CI->countTrailingZeros()));
Chris Lattner75d8f592010-11-21 06:44:42 +00001932 }
1933
Chris Lattner02446fc2010-01-04 07:37:31 +00001934 break;
Chris Lattner75d8f592010-11-21 06:44:42 +00001935 }
1936 case ICmpInst::ICMP_NE: {
Chris Lattner02446fc2010-01-04 07:37:31 +00001937 if (Op0Max.ult(Op1Min) || Op0Min.ugt(Op1Max))
1938 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
Chris Lattner75d8f592010-11-21 06:44:42 +00001939
1940 // If all bits are known zero except for one, then we know at most one
1941 // bit is set. If the comparison is against zero, then this is a check
1942 // to see if *that* bit is set.
1943 APInt Op0KnownZeroInverted = ~Op0KnownZero;
1944 if (~Op1KnownZero == 0 && Op0KnownZeroInverted.isPowerOf2()) {
1945 // If the LHS is an AND with the same constant, look through it.
1946 Value *LHS = 0;
1947 ConstantInt *LHSC = 0;
1948 if (!match(Op0, m_And(m_Value(LHS), m_ConstantInt(LHSC))) ||
1949 LHSC->getValue() != Op0KnownZeroInverted)
1950 LHS = Op0;
1951
1952 // If the LHS is 1 << x, and we know the result is a power of 2 like 8,
Chris Lattner79b967b2010-11-23 02:42:04 +00001953 // then turn "((1 << x)&8) != 0" into "x == 3".
Chris Lattner75d8f592010-11-21 06:44:42 +00001954 Value *X = 0;
1955 if (match(LHS, m_Shl(m_One(), m_Value(X)))) {
1956 unsigned CmpVal = Op0KnownZeroInverted.countTrailingZeros();
Chris Lattner79b967b2010-11-23 02:42:04 +00001957 return new ICmpInst(ICmpInst::ICMP_EQ, X,
Chris Lattner75d8f592010-11-21 06:44:42 +00001958 ConstantInt::get(X->getType(), CmpVal));
1959 }
1960
1961 // If the LHS is 8 >>u x, and we know the result is a power of 2 like 1,
Chris Lattner79b967b2010-11-23 02:42:04 +00001962 // then turn "((8 >>u x)&1) != 0" into "x == 3".
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001963 const APInt *CI;
Chris Lattner75d8f592010-11-21 06:44:42 +00001964 if (Op0KnownZeroInverted == 1 &&
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001965 match(LHS, m_LShr(m_Power2(CI), m_Value(X))))
Chris Lattner79b967b2010-11-23 02:42:04 +00001966 return new ICmpInst(ICmpInst::ICMP_EQ, X,
Chris Lattnerb20c0b52011-02-10 05:23:05 +00001967 ConstantInt::get(X->getType(),
1968 CI->countTrailingZeros()));
Chris Lattner75d8f592010-11-21 06:44:42 +00001969 }
1970
Chris Lattner02446fc2010-01-04 07:37:31 +00001971 break;
Chris Lattner75d8f592010-11-21 06:44:42 +00001972 }
Chris Lattner02446fc2010-01-04 07:37:31 +00001973 case ICmpInst::ICMP_ULT:
1974 if (Op0Max.ult(Op1Min)) // A <u B -> true if max(A) < min(B)
1975 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1976 if (Op0Min.uge(Op1Max)) // A <u B -> false if min(A) >= max(B)
1977 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1978 if (Op1Min == Op0Max) // A <u B -> A != B if max(A) == min(B)
1979 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
1980 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
1981 if (Op1Max == Op0Min+1) // A <u C -> A == C-1 if min(A)+1 == C
1982 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
1983 ConstantInt::get(CI->getContext(), CI->getValue()-1));
1984
1985 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
1986 if (CI->isMinValue(true))
1987 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
1988 Constant::getAllOnesValue(Op0->getType()));
1989 }
1990 break;
1991 case ICmpInst::ICMP_UGT:
1992 if (Op0Min.ugt(Op1Max)) // A >u B -> true if min(A) > max(B)
1993 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
1994 if (Op0Max.ule(Op1Min)) // A >u B -> false if max(A) <= max(B)
1995 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
1996
1997 if (Op1Max == Op0Min) // A >u B -> A != B if min(A) == max(B)
1998 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
1999 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2000 if (Op1Min == Op0Max-1) // A >u C -> A == C+1 if max(a)-1 == C
2001 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2002 ConstantInt::get(CI->getContext(), CI->getValue()+1));
2003
2004 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
2005 if (CI->isMaxValue(true))
2006 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
2007 Constant::getNullValue(Op0->getType()));
2008 }
2009 break;
2010 case ICmpInst::ICMP_SLT:
2011 if (Op0Max.slt(Op1Min)) // A <s B -> true if max(A) < min(C)
2012 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2013 if (Op0Min.sge(Op1Max)) // A <s B -> false if min(A) >= max(C)
2014 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2015 if (Op1Min == Op0Max) // A <s B -> A != B if max(A) == min(B)
2016 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2017 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2018 if (Op1Max == Op0Min+1) // A <s C -> A == C-1 if min(A)+1 == C
2019 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2020 ConstantInt::get(CI->getContext(), CI->getValue()-1));
2021 }
2022 break;
2023 case ICmpInst::ICMP_SGT:
2024 if (Op0Min.sgt(Op1Max)) // A >s B -> true if min(A) > max(B)
2025 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2026 if (Op0Max.sle(Op1Min)) // A >s B -> false if max(A) <= min(B)
2027 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2028
2029 if (Op1Max == Op0Min) // A >s B -> A != B if min(A) == max(B)
2030 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
2031 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2032 if (Op1Min == Op0Max-1) // A >s C -> A == C+1 if max(A)-1 == C
2033 return new ICmpInst(ICmpInst::ICMP_EQ, Op0,
2034 ConstantInt::get(CI->getContext(), CI->getValue()+1));
2035 }
2036 break;
2037 case ICmpInst::ICMP_SGE:
2038 assert(!isa<ConstantInt>(Op1) && "ICMP_SGE with ConstantInt not folded!");
2039 if (Op0Min.sge(Op1Max)) // A >=s B -> true if min(A) >= max(B)
2040 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2041 if (Op0Max.slt(Op1Min)) // A >=s B -> false if max(A) < min(B)
2042 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2043 break;
2044 case ICmpInst::ICMP_SLE:
2045 assert(!isa<ConstantInt>(Op1) && "ICMP_SLE with ConstantInt not folded!");
2046 if (Op0Max.sle(Op1Min)) // A <=s B -> true if max(A) <= min(B)
2047 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2048 if (Op0Min.sgt(Op1Max)) // A <=s B -> false if min(A) > max(B)
2049 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2050 break;
2051 case ICmpInst::ICMP_UGE:
2052 assert(!isa<ConstantInt>(Op1) && "ICMP_UGE with ConstantInt not folded!");
2053 if (Op0Min.uge(Op1Max)) // A >=u B -> true if min(A) >= max(B)
2054 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2055 if (Op0Max.ult(Op1Min)) // A >=u B -> false if max(A) < min(B)
2056 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2057 break;
2058 case ICmpInst::ICMP_ULE:
2059 assert(!isa<ConstantInt>(Op1) && "ICMP_ULE with ConstantInt not folded!");
2060 if (Op0Max.ule(Op1Min)) // A <=u B -> true if max(A) <= min(B)
2061 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2062 if (Op0Min.ugt(Op1Max)) // A <=u B -> false if min(A) > max(B)
2063 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2064 break;
2065 }
2066
2067 // Turn a signed comparison into an unsigned one if both operands
2068 // are known to have the same sign.
2069 if (I.isSigned() &&
2070 ((Op0KnownZero.isNegative() && Op1KnownZero.isNegative()) ||
2071 (Op0KnownOne.isNegative() && Op1KnownOne.isNegative())))
2072 return new ICmpInst(I.getUnsignedPredicate(), Op0, Op1);
2073 }
2074
2075 // Test if the ICmpInst instruction is used exclusively by a select as
2076 // part of a minimum or maximum operation. If so, refrain from doing
2077 // any other folding. This helps out other analyses which understand
2078 // non-obfuscated minimum and maximum idioms, such as ScalarEvolution
2079 // and CodeGen. And in this case, at least one of the comparison
2080 // operands has at least one user besides the compare (the select),
2081 // which would often largely negate the benefit of folding anyway.
2082 if (I.hasOneUse())
2083 if (SelectInst *SI = dyn_cast<SelectInst>(*I.use_begin()))
2084 if ((SI->getOperand(1) == Op0 && SI->getOperand(2) == Op1) ||
2085 (SI->getOperand(2) == Op0 && SI->getOperand(1) == Op1))
2086 return 0;
2087
2088 // See if we are doing a comparison between a constant and an instruction that
2089 // can be folded into the comparison.
2090 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2091 // Since the RHS is a ConstantInt (CI), if the left hand side is an
2092 // instruction, see if that instruction also has constants so that the
2093 // instruction can be folded into the icmp
2094 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2095 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
2096 return Res;
2097 }
2098
2099 // Handle icmp with constant (but not simple integer constant) RHS
2100 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2101 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2102 switch (LHSI->getOpcode()) {
2103 case Instruction::GetElementPtr:
2104 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
2105 if (RHSC->isNullValue() &&
2106 cast<GetElementPtrInst>(LHSI)->hasAllZeroIndices())
2107 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2108 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2109 break;
2110 case Instruction::PHI:
2111 // Only fold icmp into the PHI if the phi and icmp are in the same
2112 // block. If in the same block, we're encouraging jump threading. If
2113 // not, we are just pessimizing the code by making an i1 phi.
2114 if (LHSI->getParent() == I.getParent())
Chris Lattner9922ccf2011-01-16 05:14:26 +00002115 if (Instruction *NV = FoldOpIntoPhi(I))
Chris Lattner02446fc2010-01-04 07:37:31 +00002116 return NV;
2117 break;
2118 case Instruction::Select: {
2119 // If either operand of the select is a constant, we can fold the
2120 // comparison into the select arms, which will cause one to be
2121 // constant folded and the select turned into a bitwise or.
2122 Value *Op1 = 0, *Op2 = 0;
2123 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1)))
2124 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2125 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2)))
2126 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
2127
2128 // We only want to perform this transformation if it will not lead to
2129 // additional code. This is true if either both sides of the select
2130 // fold to a constant (in which case the icmp is replaced with a select
2131 // which will usually simplify) or this is the only user of the
2132 // select (in which case we are trading a select+icmp for a simpler
2133 // select+icmp).
2134 if ((Op1 && Op2) || (LHSI->hasOneUse() && (Op1 || Op2))) {
2135 if (!Op1)
2136 Op1 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(1),
2137 RHSC, I.getName());
2138 if (!Op2)
2139 Op2 = Builder->CreateICmp(I.getPredicate(), LHSI->getOperand(2),
2140 RHSC, I.getName());
2141 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2142 }
2143 break;
2144 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002145 case Instruction::IntToPtr:
2146 // icmp pred inttoptr(X), null -> icmp pred X, 0
2147 if (RHSC->isNullValue() && TD &&
2148 TD->getIntPtrType(RHSC->getContext()) ==
2149 LHSI->getOperand(0)->getType())
2150 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
2151 Constant::getNullValue(LHSI->getOperand(0)->getType()));
2152 break;
2153
2154 case Instruction::Load:
2155 // Try to optimize things like "A[i] > 4" to index computations.
2156 if (GetElementPtrInst *GEP =
2157 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2158 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2159 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2160 !cast<LoadInst>(LHSI)->isVolatile())
2161 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2162 return Res;
2163 }
2164 break;
2165 }
2166 }
2167
2168 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
2169 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op0))
2170 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
2171 return NI;
2172 if (GEPOperator *GEP = dyn_cast<GEPOperator>(Op1))
2173 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
2174 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
2175 return NI;
2176
2177 // Test to see if the operands of the icmp are casted versions of other
2178 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
2179 // now.
2180 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
Duncan Sands1df98592010-02-16 11:11:14 +00002181 if (Op0->getType()->isPointerTy() &&
Chris Lattner02446fc2010-01-04 07:37:31 +00002182 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
2183 // We keep moving the cast from the left operand over to the right
2184 // operand, where it can often be eliminated completely.
2185 Op0 = CI->getOperand(0);
2186
2187 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
2188 // so eliminate it as well.
2189 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
2190 Op1 = CI2->getOperand(0);
2191
2192 // If Op1 is a constant, we can fold the cast into the constant.
2193 if (Op0->getType() != Op1->getType()) {
2194 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
2195 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
2196 } else {
2197 // Otherwise, cast the RHS right before the icmp
2198 Op1 = Builder->CreateBitCast(Op1, Op0->getType());
2199 }
2200 }
2201 return new ICmpInst(I.getPredicate(), Op0, Op1);
2202 }
2203 }
2204
2205 if (isa<CastInst>(Op0)) {
2206 // Handle the special case of: icmp (cast bool to X), <cst>
2207 // This comes up when you have code like
2208 // int X = A < B;
2209 // if (X) ...
2210 // For generality, we handle any zero-extension of any operand comparison
2211 // with a constant or another cast from the same type.
2212 if (isa<Constant>(Op1) || isa<CastInst>(Op1))
2213 if (Instruction *R = visitICmpInstWithCastAndCast(I))
2214 return R;
2215 }
2216
2217 // See if it's the same type of instruction on the left and right.
2218 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
2219 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2220 if (Op0I->getOpcode() == Op1I->getOpcode() && Op0I->hasOneUse() &&
2221 Op1I->hasOneUse() && Op0I->getOperand(1) == Op1I->getOperand(1)) {
2222 switch (Op0I->getOpcode()) {
2223 default: break;
2224 case Instruction::Add:
2225 case Instruction::Sub:
2226 case Instruction::Xor:
2227 if (I.isEquality()) // a+x icmp eq/ne b+x --> a icmp b
2228 return new ICmpInst(I.getPredicate(), Op0I->getOperand(0),
2229 Op1I->getOperand(0));
2230 // icmp u/s (a ^ signbit), (b ^ signbit) --> icmp s/u a, b
2231 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2232 if (CI->getValue().isSignBit()) {
2233 ICmpInst::Predicate Pred = I.isSigned()
2234 ? I.getUnsignedPredicate()
2235 : I.getSignedPredicate();
2236 return new ICmpInst(Pred, Op0I->getOperand(0),
2237 Op1I->getOperand(0));
2238 }
2239
2240 if (CI->getValue().isMaxSignedValue()) {
2241 ICmpInst::Predicate Pred = I.isSigned()
2242 ? I.getUnsignedPredicate()
2243 : I.getSignedPredicate();
2244 Pred = I.getSwappedPredicate(Pred);
2245 return new ICmpInst(Pred, Op0I->getOperand(0),
2246 Op1I->getOperand(0));
2247 }
2248 }
2249 break;
2250 case Instruction::Mul:
2251 if (!I.isEquality())
2252 break;
2253
2254 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0I->getOperand(1))) {
2255 // a * Cst icmp eq/ne b * Cst --> a & Mask icmp b & Mask
2256 // Mask = -1 >> count-trailing-zeros(Cst).
2257 if (!CI->isZero() && !CI->isOne()) {
2258 const APInt &AP = CI->getValue();
2259 ConstantInt *Mask = ConstantInt::get(I.getContext(),
2260 APInt::getLowBitsSet(AP.getBitWidth(),
2261 AP.getBitWidth() -
2262 AP.countTrailingZeros()));
2263 Value *And1 = Builder->CreateAnd(Op0I->getOperand(0), Mask);
2264 Value *And2 = Builder->CreateAnd(Op1I->getOperand(0), Mask);
2265 return new ICmpInst(I.getPredicate(), And1, And2);
2266 }
2267 }
2268 break;
2269 }
2270 }
2271 }
2272 }
2273
Chris Lattner02446fc2010-01-04 07:37:31 +00002274 { Value *A, *B;
Chris Lattnerfdb5b012011-01-15 05:41:33 +00002275 // ~x < ~y --> y < x
2276 // ~x < cst --> ~cst < x
2277 if (match(Op0, m_Not(m_Value(A)))) {
2278 if (match(Op1, m_Not(m_Value(B))))
2279 return new ICmpInst(I.getPredicate(), B, A);
Chris Lattner27a98482011-01-15 05:42:47 +00002280 if (ConstantInt *RHSC = dyn_cast<ConstantInt>(Op1))
Chris Lattnerfdb5b012011-01-15 05:41:33 +00002281 return new ICmpInst(I.getPredicate(), ConstantExpr::getNot(RHSC), A);
2282 }
Chris Lattnere5cbdca2010-12-19 19:37:52 +00002283
2284 // (a+b) <u a --> llvm.uadd.with.overflow.
2285 // (a+b) <u b --> llvm.uadd.with.overflow.
2286 if (I.getPredicate() == ICmpInst::ICMP_ULT &&
2287 match(Op0, m_Add(m_Value(A), m_Value(B))) &&
2288 (Op1 == A || Op1 == B))
2289 if (Instruction *R = ProcessUAddIdiom(I, Op0, *this))
2290 return R;
2291
2292 // a >u (a+b) --> llvm.uadd.with.overflow.
2293 // b >u (a+b) --> llvm.uadd.with.overflow.
2294 if (I.getPredicate() == ICmpInst::ICMP_UGT &&
2295 match(Op1, m_Add(m_Value(A), m_Value(B))) &&
2296 (Op0 == A || Op0 == B))
2297 if (Instruction *R = ProcessUAddIdiom(I, Op1, *this))
2298 return R;
Chris Lattner02446fc2010-01-04 07:37:31 +00002299 }
2300
2301 if (I.isEquality()) {
2302 Value *A, *B, *C, *D;
2303
2304 // -x == -y --> x == y
2305 if (match(Op0, m_Neg(m_Value(A))) &&
2306 match(Op1, m_Neg(m_Value(B))))
2307 return new ICmpInst(I.getPredicate(), A, B);
2308
2309 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
2310 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
2311 Value *OtherVal = A == Op1 ? B : A;
2312 return new ICmpInst(I.getPredicate(), OtherVal,
2313 Constant::getNullValue(A->getType()));
2314 }
2315
2316 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
2317 // A^c1 == C^c2 --> A == C^(c1^c2)
2318 ConstantInt *C1, *C2;
2319 if (match(B, m_ConstantInt(C1)) &&
2320 match(D, m_ConstantInt(C2)) && Op1->hasOneUse()) {
2321 Constant *NC = ConstantInt::get(I.getContext(),
2322 C1->getValue() ^ C2->getValue());
2323 Value *Xor = Builder->CreateXor(C, NC, "tmp");
2324 return new ICmpInst(I.getPredicate(), A, Xor);
2325 }
2326
2327 // A^B == A^D -> B == D
2328 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
2329 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
2330 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
2331 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
2332 }
2333 }
2334
2335 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
2336 (A == Op0 || B == Op0)) {
2337 // A == (A^B) -> B == 0
2338 Value *OtherVal = A == Op0 ? B : A;
2339 return new ICmpInst(I.getPredicate(), OtherVal,
2340 Constant::getNullValue(A->getType()));
2341 }
2342
2343 // (A-B) == A -> B == 0
2344 if (match(Op0, m_Sub(m_Specific(Op1), m_Value(B))))
2345 return new ICmpInst(I.getPredicate(), B,
2346 Constant::getNullValue(B->getType()));
2347
2348 // A == (A-B) -> B == 0
2349 if (match(Op1, m_Sub(m_Specific(Op0), m_Value(B))))
2350 return new ICmpInst(I.getPredicate(), B,
2351 Constant::getNullValue(B->getType()));
Anders Carlsson77bc49e2011-01-30 22:01:13 +00002352
2353 // (A+B) == A -> B == 0
2354 if (match(Op0, m_Add(m_Specific(Op1), m_Value(B))))
2355 return new ICmpInst(I.getPredicate(), B,
2356 Constant::getNullValue(B->getType()));
2357
2358 // A == (A+B) -> B == 0
2359 if (match(Op1, m_Add(m_Specific(Op0), m_Value(B))))
2360 return new ICmpInst(I.getPredicate(), B,
2361 Constant::getNullValue(B->getType()));
2362
Chris Lattner02446fc2010-01-04 07:37:31 +00002363 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
2364 if (Op0->hasOneUse() && Op1->hasOneUse() &&
2365 match(Op0, m_And(m_Value(A), m_Value(B))) &&
2366 match(Op1, m_And(m_Value(C), m_Value(D)))) {
2367 Value *X = 0, *Y = 0, *Z = 0;
2368
2369 if (A == C) {
2370 X = B; Y = D; Z = A;
2371 } else if (A == D) {
2372 X = B; Y = C; Z = A;
2373 } else if (B == C) {
2374 X = A; Y = D; Z = B;
2375 } else if (B == D) {
2376 X = A; Y = C; Z = B;
2377 }
2378
2379 if (X) { // Build (X^Y) & Z
2380 Op1 = Builder->CreateXor(X, Y, "tmp");
2381 Op1 = Builder->CreateAnd(Op1, Z, "tmp");
2382 I.setOperand(0, Op1);
2383 I.setOperand(1, Constant::getNullValue(Op1->getType()));
2384 return &I;
2385 }
2386 }
2387 }
2388
2389 {
2390 Value *X; ConstantInt *Cst;
2391 // icmp X+Cst, X
2392 if (match(Op0, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op1 == X)
2393 return FoldICmpAddOpCst(I, X, Cst, I.getPredicate(), Op0);
2394
2395 // icmp X, X+Cst
2396 if (match(Op1, m_Add(m_Value(X), m_ConstantInt(Cst))) && Op0 == X)
2397 return FoldICmpAddOpCst(I, X, Cst, I.getSwappedPredicate(), Op1);
2398 }
2399 return Changed ? &I : 0;
2400}
2401
2402
2403
2404
2405
2406
2407/// FoldFCmp_IntToFP_Cst - Fold fcmp ([us]itofp x, cst) if possible.
2408///
2409Instruction *InstCombiner::FoldFCmp_IntToFP_Cst(FCmpInst &I,
2410 Instruction *LHSI,
2411 Constant *RHSC) {
2412 if (!isa<ConstantFP>(RHSC)) return 0;
2413 const APFloat &RHS = cast<ConstantFP>(RHSC)->getValueAPF();
2414
2415 // Get the width of the mantissa. We don't want to hack on conversions that
2416 // might lose information from the integer, e.g. "i64 -> float"
2417 int MantissaWidth = LHSI->getType()->getFPMantissaWidth();
2418 if (MantissaWidth == -1) return 0; // Unknown.
2419
2420 // Check to see that the input is converted from an integer type that is small
2421 // enough that preserves all bits. TODO: check here for "known" sign bits.
2422 // This would allow us to handle (fptosi (x >>s 62) to float) if x is i64 f.e.
2423 unsigned InputSize = LHSI->getOperand(0)->getType()->getScalarSizeInBits();
2424
2425 // If this is a uitofp instruction, we need an extra bit to hold the sign.
2426 bool LHSUnsigned = isa<UIToFPInst>(LHSI);
2427 if (LHSUnsigned)
2428 ++InputSize;
2429
2430 // If the conversion would lose info, don't hack on this.
2431 if ((int)InputSize > MantissaWidth)
2432 return 0;
2433
2434 // Otherwise, we can potentially simplify the comparison. We know that it
2435 // will always come through as an integer value and we know the constant is
2436 // not a NAN (it would have been previously simplified).
2437 assert(!RHS.isNaN() && "NaN comparison not already folded!");
2438
2439 ICmpInst::Predicate Pred;
2440 switch (I.getPredicate()) {
2441 default: llvm_unreachable("Unexpected predicate!");
2442 case FCmpInst::FCMP_UEQ:
2443 case FCmpInst::FCMP_OEQ:
2444 Pred = ICmpInst::ICMP_EQ;
2445 break;
2446 case FCmpInst::FCMP_UGT:
2447 case FCmpInst::FCMP_OGT:
2448 Pred = LHSUnsigned ? ICmpInst::ICMP_UGT : ICmpInst::ICMP_SGT;
2449 break;
2450 case FCmpInst::FCMP_UGE:
2451 case FCmpInst::FCMP_OGE:
2452 Pred = LHSUnsigned ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_SGE;
2453 break;
2454 case FCmpInst::FCMP_ULT:
2455 case FCmpInst::FCMP_OLT:
2456 Pred = LHSUnsigned ? ICmpInst::ICMP_ULT : ICmpInst::ICMP_SLT;
2457 break;
2458 case FCmpInst::FCMP_ULE:
2459 case FCmpInst::FCMP_OLE:
2460 Pred = LHSUnsigned ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_SLE;
2461 break;
2462 case FCmpInst::FCMP_UNE:
2463 case FCmpInst::FCMP_ONE:
2464 Pred = ICmpInst::ICMP_NE;
2465 break;
2466 case FCmpInst::FCMP_ORD:
2467 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2468 case FCmpInst::FCMP_UNO:
2469 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2470 }
2471
2472 const IntegerType *IntTy = cast<IntegerType>(LHSI->getOperand(0)->getType());
2473
2474 // Now we know that the APFloat is a normal number, zero or inf.
2475
2476 // See if the FP constant is too large for the integer. For example,
2477 // comparing an i8 to 300.0.
2478 unsigned IntWidth = IntTy->getScalarSizeInBits();
2479
2480 if (!LHSUnsigned) {
2481 // If the RHS value is > SignedMax, fold the comparison. This handles +INF
2482 // and large values.
2483 APFloat SMax(RHS.getSemantics(), APFloat::fcZero, false);
2484 SMax.convertFromAPInt(APInt::getSignedMaxValue(IntWidth), true,
2485 APFloat::rmNearestTiesToEven);
2486 if (SMax.compare(RHS) == APFloat::cmpLessThan) { // smax < 13123.0
2487 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SLT ||
2488 Pred == ICmpInst::ICMP_SLE)
2489 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2490 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2491 }
2492 } else {
2493 // If the RHS value is > UnsignedMax, fold the comparison. This handles
2494 // +INF and large values.
2495 APFloat UMax(RHS.getSemantics(), APFloat::fcZero, false);
2496 UMax.convertFromAPInt(APInt::getMaxValue(IntWidth), false,
2497 APFloat::rmNearestTiesToEven);
2498 if (UMax.compare(RHS) == APFloat::cmpLessThan) { // umax < 13123.0
2499 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_ULT ||
2500 Pred == ICmpInst::ICMP_ULE)
2501 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2502 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2503 }
2504 }
2505
2506 if (!LHSUnsigned) {
2507 // See if the RHS value is < SignedMin.
2508 APFloat SMin(RHS.getSemantics(), APFloat::fcZero, false);
2509 SMin.convertFromAPInt(APInt::getSignedMinValue(IntWidth), true,
2510 APFloat::rmNearestTiesToEven);
2511 if (SMin.compare(RHS) == APFloat::cmpGreaterThan) { // smin > 12312.0
2512 if (Pred == ICmpInst::ICMP_NE || Pred == ICmpInst::ICMP_SGT ||
2513 Pred == ICmpInst::ICMP_SGE)
2514 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2515 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2516 }
2517 }
2518
2519 // Okay, now we know that the FP constant fits in the range [SMIN, SMAX] or
2520 // [0, UMAX], but it may still be fractional. See if it is fractional by
2521 // casting the FP value to the integer value and back, checking for equality.
2522 // Don't do this for zero, because -0.0 is not fractional.
2523 Constant *RHSInt = LHSUnsigned
2524 ? ConstantExpr::getFPToUI(RHSC, IntTy)
2525 : ConstantExpr::getFPToSI(RHSC, IntTy);
2526 if (!RHS.isZero()) {
2527 bool Equal = LHSUnsigned
2528 ? ConstantExpr::getUIToFP(RHSInt, RHSC->getType()) == RHSC
2529 : ConstantExpr::getSIToFP(RHSInt, RHSC->getType()) == RHSC;
2530 if (!Equal) {
2531 // If we had a comparison against a fractional value, we have to adjust
2532 // the compare predicate and sometimes the value. RHSC is rounded towards
2533 // zero at this point.
2534 switch (Pred) {
2535 default: llvm_unreachable("Unexpected integer comparison!");
2536 case ICmpInst::ICMP_NE: // (float)int != 4.4 --> true
2537 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2538 case ICmpInst::ICMP_EQ: // (float)int == 4.4 --> false
2539 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2540 case ICmpInst::ICMP_ULE:
2541 // (float)int <= 4.4 --> int <= 4
2542 // (float)int <= -4.4 --> false
2543 if (RHS.isNegative())
2544 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2545 break;
2546 case ICmpInst::ICMP_SLE:
2547 // (float)int <= 4.4 --> int <= 4
2548 // (float)int <= -4.4 --> int < -4
2549 if (RHS.isNegative())
2550 Pred = ICmpInst::ICMP_SLT;
2551 break;
2552 case ICmpInst::ICMP_ULT:
2553 // (float)int < -4.4 --> false
2554 // (float)int < 4.4 --> int <= 4
2555 if (RHS.isNegative())
2556 return ReplaceInstUsesWith(I, ConstantInt::getFalse(I.getContext()));
2557 Pred = ICmpInst::ICMP_ULE;
2558 break;
2559 case ICmpInst::ICMP_SLT:
2560 // (float)int < -4.4 --> int < -4
2561 // (float)int < 4.4 --> int <= 4
2562 if (!RHS.isNegative())
2563 Pred = ICmpInst::ICMP_SLE;
2564 break;
2565 case ICmpInst::ICMP_UGT:
2566 // (float)int > 4.4 --> int > 4
2567 // (float)int > -4.4 --> true
2568 if (RHS.isNegative())
2569 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2570 break;
2571 case ICmpInst::ICMP_SGT:
2572 // (float)int > 4.4 --> int > 4
2573 // (float)int > -4.4 --> int >= -4
2574 if (RHS.isNegative())
2575 Pred = ICmpInst::ICMP_SGE;
2576 break;
2577 case ICmpInst::ICMP_UGE:
2578 // (float)int >= -4.4 --> true
2579 // (float)int >= 4.4 --> int > 4
2580 if (!RHS.isNegative())
2581 return ReplaceInstUsesWith(I, ConstantInt::getTrue(I.getContext()));
2582 Pred = ICmpInst::ICMP_UGT;
2583 break;
2584 case ICmpInst::ICMP_SGE:
2585 // (float)int >= -4.4 --> int >= -4
2586 // (float)int >= 4.4 --> int > 4
2587 if (!RHS.isNegative())
2588 Pred = ICmpInst::ICMP_SGT;
2589 break;
2590 }
2591 }
2592 }
2593
2594 // Lower this FP comparison into an appropriate integer version of the
2595 // comparison.
2596 return new ICmpInst(Pred, LHSI->getOperand(0), RHSInt);
2597}
2598
2599Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
2600 bool Changed = false;
2601
2602 /// Orders the operands of the compare so that they are listed from most
2603 /// complex to least complex. This puts constants before unary operators,
2604 /// before binary operators.
2605 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1))) {
2606 I.swapOperands();
2607 Changed = true;
2608 }
2609
2610 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2611
2612 if (Value *V = SimplifyFCmpInst(I.getPredicate(), Op0, Op1, TD))
2613 return ReplaceInstUsesWith(I, V);
2614
2615 // Simplify 'fcmp pred X, X'
2616 if (Op0 == Op1) {
2617 switch (I.getPredicate()) {
2618 default: llvm_unreachable("Unknown predicate!");
2619 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
2620 case FCmpInst::FCMP_ULT: // True if unordered or less than
2621 case FCmpInst::FCMP_UGT: // True if unordered or greater than
2622 case FCmpInst::FCMP_UNE: // True if unordered or not equal
2623 // Canonicalize these to be 'fcmp uno %X, 0.0'.
2624 I.setPredicate(FCmpInst::FCMP_UNO);
2625 I.setOperand(1, Constant::getNullValue(Op0->getType()));
2626 return &I;
2627
2628 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
2629 case FCmpInst::FCMP_OEQ: // True if ordered and equal
2630 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
2631 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
2632 // Canonicalize these to be 'fcmp ord %X, 0.0'.
2633 I.setPredicate(FCmpInst::FCMP_ORD);
2634 I.setOperand(1, Constant::getNullValue(Op0->getType()));
2635 return &I;
2636 }
2637 }
2638
2639 // Handle fcmp with constant RHS
2640 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
2641 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
2642 switch (LHSI->getOpcode()) {
2643 case Instruction::PHI:
2644 // Only fold fcmp into the PHI if the phi and fcmp are in the same
2645 // block. If in the same block, we're encouraging jump threading. If
2646 // not, we are just pessimizing the code by making an i1 phi.
2647 if (LHSI->getParent() == I.getParent())
Chris Lattner9922ccf2011-01-16 05:14:26 +00002648 if (Instruction *NV = FoldOpIntoPhi(I))
Chris Lattner02446fc2010-01-04 07:37:31 +00002649 return NV;
2650 break;
2651 case Instruction::SIToFP:
2652 case Instruction::UIToFP:
2653 if (Instruction *NV = FoldFCmp_IntToFP_Cst(I, LHSI, RHSC))
2654 return NV;
2655 break;
2656 case Instruction::Select: {
2657 // If either operand of the select is a constant, we can fold the
2658 // comparison into the select arms, which will cause one to be
2659 // constant folded and the select turned into a bitwise or.
2660 Value *Op1 = 0, *Op2 = 0;
2661 if (LHSI->hasOneUse()) {
2662 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
2663 // Fold the known value into the constant operand.
2664 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2665 // Insert a new FCmp of the other select operand.
2666 Op2 = Builder->CreateFCmp(I.getPredicate(),
2667 LHSI->getOperand(2), RHSC, I.getName());
2668 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
2669 // Fold the known value into the constant operand.
2670 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
2671 // Insert a new FCmp of the other select operand.
2672 Op1 = Builder->CreateFCmp(I.getPredicate(), LHSI->getOperand(1),
2673 RHSC, I.getName());
2674 }
2675 }
2676
2677 if (Op1)
2678 return SelectInst::Create(LHSI->getOperand(0), Op1, Op2);
2679 break;
2680 }
Dan Gohman39516a62010-02-24 06:46:09 +00002681 case Instruction::Load:
2682 if (GetElementPtrInst *GEP =
2683 dyn_cast<GetElementPtrInst>(LHSI->getOperand(0))) {
2684 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GEP->getOperand(0)))
2685 if (GV->isConstant() && GV->hasDefinitiveInitializer() &&
2686 !cast<LoadInst>(LHSI)->isVolatile())
2687 if (Instruction *Res = FoldCmpLoadFromIndexedGlobal(GEP, GV, I))
2688 return Res;
2689 }
2690 break;
Chris Lattner02446fc2010-01-04 07:37:31 +00002691 }
Chris Lattner02446fc2010-01-04 07:37:31 +00002692 }
2693
2694 return Changed ? &I : 0;
2695}