blob: 1f64ad2606ab6b6231405a2f323c02924470a44d [file] [log] [blame]
Chris Lattnered7b41e2003-05-27 15:45:27 +00001//===- ScalarReplAggregates.cpp - Scalar Replacement of Aggregates --------===//
Misha Brukmanfd939082005-04-21 23:48:37 +00002//
John Criswellb576c942003-10-20 19:43:21 +00003// The LLVM Compiler Infrastructure
4//
Chris Lattner4ee451d2007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Misha Brukmanfd939082005-04-21 23:48:37 +00007//
John Criswellb576c942003-10-20 19:43:21 +00008//===----------------------------------------------------------------------===//
Chris Lattnered7b41e2003-05-27 15:45:27 +00009//
10// This transformation implements the well known scalar replacement of
11// aggregates transformation. This xform breaks up alloca instructions of
12// aggregate type (structure or array) into individual alloca instructions for
Chris Lattner38aec322003-09-11 16:45:55 +000013// each member (if possible). Then, if possible, it transforms the individual
14// alloca instructions into nice clean scalar SSA form.
15//
16// This combines a simple SRoA algorithm with the Mem2Reg algorithm because
17// often interact, especially for C++ programs. As such, iterating between
18// SRoA, then Mem2Reg until we run out of things to promote works well.
Chris Lattnered7b41e2003-05-27 15:45:27 +000019//
20//===----------------------------------------------------------------------===//
21
Chris Lattner0e5f4992006-12-19 21:40:18 +000022#define DEBUG_TYPE "scalarrepl"
Chris Lattnered7b41e2003-05-27 15:45:27 +000023#include "llvm/Transforms/Scalar.h"
Chris Lattner38aec322003-09-11 16:45:55 +000024#include "llvm/Constants.h"
25#include "llvm/DerivedTypes.h"
Chris Lattnered7b41e2003-05-27 15:45:27 +000026#include "llvm/Function.h"
Chris Lattner79b3bd32007-04-25 06:40:51 +000027#include "llvm/GlobalVariable.h"
Misha Brukmand8e1eea2004-07-29 17:05:13 +000028#include "llvm/Instructions.h"
Chris Lattner372dda82007-03-05 07:52:57 +000029#include "llvm/IntrinsicInst.h"
Owen Andersonfa5cbd62009-07-03 19:42:02 +000030#include "llvm/LLVMContext.h"
Chris Lattner72eaa0e2010-09-01 23:09:27 +000031#include "llvm/Module.h"
Chris Lattner372dda82007-03-05 07:52:57 +000032#include "llvm/Pass.h"
Cameron Zwarichb1686c32011-01-18 03:53:26 +000033#include "llvm/Analysis/Dominators.h"
Chris Lattnerc87c50a2011-01-23 22:04:55 +000034#include "llvm/Analysis/Loads.h"
Dan Gohman5034dd32010-12-15 20:02:24 +000035#include "llvm/Analysis/ValueTracking.h"
Chris Lattner38aec322003-09-11 16:45:55 +000036#include "llvm/Target/TargetData.h"
37#include "llvm/Transforms/Utils/PromoteMemToReg.h"
Devang Patel4afc90d2009-02-10 07:00:59 +000038#include "llvm/Transforms/Utils/Local.h"
Chris Lattnere0a1a5b2011-01-14 07:50:47 +000039#include "llvm/Transforms/Utils/SSAUpdater.h"
Chris Lattnera9be1df2010-11-18 06:26:49 +000040#include "llvm/Support/CallSite.h"
Chris Lattner95255282006-06-28 23:17:24 +000041#include "llvm/Support/Debug.h"
Torok Edwin7d696d82009-07-11 13:10:19 +000042#include "llvm/Support/ErrorHandling.h"
Chris Lattnera1888942005-12-12 07:19:13 +000043#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattner65a65022009-02-03 19:41:50 +000044#include "llvm/Support/IRBuilder.h"
Chris Lattnera1888942005-12-12 07:19:13 +000045#include "llvm/Support/MathExtras.h"
Chris Lattnerbdff5482009-08-23 04:37:46 +000046#include "llvm/Support/raw_ostream.h"
Chris Lattnerc87c50a2011-01-23 22:04:55 +000047#include "llvm/ADT/SetVector.h"
Chris Lattner1ccd1852007-02-12 22:56:41 +000048#include "llvm/ADT/SmallVector.h"
Reid Spencer551ccae2004-09-01 22:55:40 +000049#include "llvm/ADT/Statistic.h"
Chris Lattnerd8664732003-12-02 17:43:55 +000050using namespace llvm;
Brian Gaeked0fde302003-11-11 22:41:34 +000051
Chris Lattner0e5f4992006-12-19 21:40:18 +000052STATISTIC(NumReplaced, "Number of allocas broken up");
53STATISTIC(NumPromoted, "Number of allocas promoted");
Chris Lattnerc87c50a2011-01-23 22:04:55 +000054STATISTIC(NumAdjusted, "Number of scalar allocas adjusted to allow promotion");
Chris Lattner0e5f4992006-12-19 21:40:18 +000055STATISTIC(NumConverted, "Number of aggregates converted to scalar");
Chris Lattner79b3bd32007-04-25 06:40:51 +000056STATISTIC(NumGlobals, "Number of allocas copied from constant global");
Chris Lattnered7b41e2003-05-27 15:45:27 +000057
Chris Lattner0e5f4992006-12-19 21:40:18 +000058namespace {
Chris Lattner3e8b6632009-09-02 06:11:42 +000059 struct SROA : public FunctionPass {
Cameron Zwarichb1686c32011-01-18 03:53:26 +000060 SROA(int T, bool hasDT, char &ID)
61 : FunctionPass(ID), HasDomTree(hasDT) {
Devang Patelff366852007-07-09 21:19:23 +000062 if (T == -1)
Chris Lattnerb0e71ed2007-08-02 21:33:36 +000063 SRThreshold = 128;
Devang Patelff366852007-07-09 21:19:23 +000064 else
65 SRThreshold = T;
66 }
Devang Patel794fd752007-05-01 21:15:47 +000067
Chris Lattnered7b41e2003-05-27 15:45:27 +000068 bool runOnFunction(Function &F);
69
Chris Lattner38aec322003-09-11 16:45:55 +000070 bool performScalarRepl(Function &F);
71 bool performPromotion(Function &F);
72
Chris Lattnered7b41e2003-05-27 15:45:27 +000073 private:
Cameron Zwarichb1686c32011-01-18 03:53:26 +000074 bool HasDomTree;
Chris Lattner56c38522009-01-07 06:34:28 +000075 TargetData *TD;
Bob Wilson69743022011-01-13 20:59:44 +000076
Bob Wilsonb742def2009-12-18 20:14:40 +000077 /// DeadInsts - Keep track of instructions we have made dead, so that
78 /// we can remove them after we are done working.
79 SmallVector<Value*, 32> DeadInsts;
80
Chris Lattner39a1c042007-05-30 06:11:23 +000081 /// AllocaInfo - When analyzing uses of an alloca instruction, this captures
82 /// information about the uses. All these fields are initialized to false
83 /// and set to true when something is learned.
84 struct AllocaInfo {
Chris Lattner6c95d242011-01-23 07:29:29 +000085 /// The alloca to promote.
86 AllocaInst *AI;
87
Chris Lattner145c5322011-01-23 08:27:54 +000088 /// CheckedPHIs - This is a set of verified PHI nodes, to prevent infinite
89 /// looping and avoid redundant work.
90 SmallPtrSet<PHINode*, 8> CheckedPHIs;
91
Chris Lattner39a1c042007-05-30 06:11:23 +000092 /// isUnsafe - This is set to true if the alloca cannot be SROA'd.
93 bool isUnsafe : 1;
Bob Wilson69743022011-01-13 20:59:44 +000094
Chris Lattner39a1c042007-05-30 06:11:23 +000095 /// isMemCpySrc - This is true if this aggregate is memcpy'd from.
96 bool isMemCpySrc : 1;
97
Zhou Sheng33b0b8d2007-07-06 06:01:16 +000098 /// isMemCpyDst - This is true if this aggregate is memcpy'd into.
Chris Lattner39a1c042007-05-30 06:11:23 +000099 bool isMemCpyDst : 1;
100
Chris Lattner7e9b4272011-01-16 06:18:28 +0000101 /// hasSubelementAccess - This is true if a subelement of the alloca is
102 /// ever accessed, or false if the alloca is only accessed with mem
103 /// intrinsics or load/store that only access the entire alloca at once.
104 bool hasSubelementAccess : 1;
105
106 /// hasALoadOrStore - This is true if there are any loads or stores to it.
107 /// The alloca may just be accessed with memcpy, for example, which would
108 /// not set this.
109 bool hasALoadOrStore : 1;
110
Chris Lattner6c95d242011-01-23 07:29:29 +0000111 explicit AllocaInfo(AllocaInst *ai)
112 : AI(ai), isUnsafe(false), isMemCpySrc(false), isMemCpyDst(false),
Chris Lattner7e9b4272011-01-16 06:18:28 +0000113 hasSubelementAccess(false), hasALoadOrStore(false) {}
Chris Lattner39a1c042007-05-30 06:11:23 +0000114 };
Bob Wilson69743022011-01-13 20:59:44 +0000115
Devang Patelff366852007-07-09 21:19:23 +0000116 unsigned SRThreshold;
117
Chris Lattnerd01a0da2011-01-23 07:05:44 +0000118 void MarkUnsafe(AllocaInfo &I, Instruction *User) {
119 I.isUnsafe = true;
120 DEBUG(dbgs() << " Transformation preventing inst: " << *User << '\n');
121 }
Chris Lattner39a1c042007-05-30 06:11:23 +0000122
Victor Hernandez6c146ee2010-01-21 23:05:53 +0000123 bool isSafeAllocaToScalarRepl(AllocaInst *AI);
Chris Lattner39a1c042007-05-30 06:11:23 +0000124
Chris Lattner6c95d242011-01-23 07:29:29 +0000125 void isSafeForScalarRepl(Instruction *I, uint64_t Offset, AllocaInfo &Info);
Chris Lattner145c5322011-01-23 08:27:54 +0000126 void isSafePHISelectUseForScalarRepl(Instruction *User, uint64_t Offset,
127 AllocaInfo &Info);
Chris Lattner6c95d242011-01-23 07:29:29 +0000128 void isSafeGEP(GetElementPtrInst *GEPI, uint64_t &Offset, AllocaInfo &Info);
129 void isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
Chris Lattnerd01a0da2011-01-23 07:05:44 +0000130 const Type *MemOpType, bool isStore, AllocaInfo &Info,
Chris Lattner145c5322011-01-23 08:27:54 +0000131 Instruction *TheAccess, bool AllowWholeAccess);
Bob Wilsonb742def2009-12-18 20:14:40 +0000132 bool TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size);
Bob Wilsone88728d2009-12-19 06:53:17 +0000133 uint64_t FindElementAndOffset(const Type *&T, uint64_t &Offset,
134 const Type *&IdxTy);
Bob Wilson69743022011-01-13 20:59:44 +0000135
136 void DoScalarReplacement(AllocaInst *AI,
Victor Hernandez7b929da2009-10-23 21:09:37 +0000137 std::vector<AllocaInst*> &WorkList);
Bob Wilsonb742def2009-12-18 20:14:40 +0000138 void DeleteDeadInstructions();
Bob Wilson69743022011-01-13 20:59:44 +0000139
Bob Wilsonb742def2009-12-18 20:14:40 +0000140 void RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
141 SmallVector<AllocaInst*, 32> &NewElts);
142 void RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
143 SmallVector<AllocaInst*, 32> &NewElts);
144 void RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
145 SmallVector<AllocaInst*, 32> &NewElts);
146 void RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
Victor Hernandez7b929da2009-10-23 21:09:37 +0000147 AllocaInst *AI,
Chris Lattnerd93afec2009-01-07 07:18:45 +0000148 SmallVector<AllocaInst*, 32> &NewElts);
Victor Hernandez7b929da2009-10-23 21:09:37 +0000149 void RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
Chris Lattnerd2fa7812009-01-07 08:11:13 +0000150 SmallVector<AllocaInst*, 32> &NewElts);
Victor Hernandez7b929da2009-10-23 21:09:37 +0000151 void RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
Chris Lattner6e733d32009-01-28 20:16:43 +0000152 SmallVector<AllocaInst*, 32> &NewElts);
Bob Wilson69743022011-01-13 20:59:44 +0000153
Chris Lattner31d80102010-04-15 21:59:20 +0000154 static MemTransferInst *isOnlyCopiedFromConstantGlobal(AllocaInst *AI);
Chris Lattnered7b41e2003-05-27 15:45:27 +0000155 };
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000156
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000157 // SROA_DT - SROA that uses DominatorTree.
158 struct SROA_DT : public SROA {
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000159 static char ID;
160 public:
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000161 SROA_DT(int T = -1) : SROA(T, true, ID) {
162 initializeSROA_DTPass(*PassRegistry::getPassRegistry());
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000163 }
164
165 // getAnalysisUsage - This pass does not require any passes, but we know it
166 // will not alter the CFG, so say so.
167 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
168 AU.addRequired<DominatorTree>();
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000169 AU.setPreservesCFG();
170 }
171 };
172
173 // SROA_SSAUp - SROA that uses SSAUpdater.
174 struct SROA_SSAUp : public SROA {
175 static char ID;
176 public:
177 SROA_SSAUp(int T = -1) : SROA(T, false, ID) {
178 initializeSROA_SSAUpPass(*PassRegistry::getPassRegistry());
179 }
180
181 // getAnalysisUsage - This pass does not require any passes, but we know it
182 // will not alter the CFG, so say so.
183 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
184 AU.setPreservesCFG();
185 }
186 };
187
Chris Lattnered7b41e2003-05-27 15:45:27 +0000188}
189
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000190char SROA_DT::ID = 0;
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000191char SROA_SSAUp::ID = 0;
192
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000193INITIALIZE_PASS_BEGIN(SROA_DT, "scalarrepl",
194 "Scalar Replacement of Aggregates (DT)", false, false)
Owen Anderson2ab36d32010-10-12 19:48:12 +0000195INITIALIZE_PASS_DEPENDENCY(DominatorTree)
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000196INITIALIZE_PASS_END(SROA_DT, "scalarrepl",
197 "Scalar Replacement of Aggregates (DT)", false, false)
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000198
199INITIALIZE_PASS_BEGIN(SROA_SSAUp, "scalarrepl-ssa",
200 "Scalar Replacement of Aggregates (SSAUp)", false, false)
201INITIALIZE_PASS_END(SROA_SSAUp, "scalarrepl-ssa",
202 "Scalar Replacement of Aggregates (SSAUp)", false, false)
Dan Gohman844731a2008-05-13 00:00:25 +0000203
Brian Gaeked0fde302003-11-11 22:41:34 +0000204// Public interface to the ScalarReplAggregates pass
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000205FunctionPass *llvm::createScalarReplAggregatesPass(int Threshold,
Cameron Zwarichb1686c32011-01-18 03:53:26 +0000206 bool UseDomTree) {
207 if (UseDomTree)
208 return new SROA_DT(Threshold);
Chris Lattnerb352d6e2011-01-14 08:13:00 +0000209 return new SROA_SSAUp(Threshold);
Devang Patelff366852007-07-09 21:19:23 +0000210}
Chris Lattnered7b41e2003-05-27 15:45:27 +0000211
212
Chris Lattner4cc576b2010-04-16 00:24:57 +0000213//===----------------------------------------------------------------------===//
214// Convert To Scalar Optimization.
215//===----------------------------------------------------------------------===//
216
217namespace {
Chris Lattnera001b662010-04-16 00:38:19 +0000218/// ConvertToScalarInfo - This class implements the "Convert To Scalar"
219/// optimization, which scans the uses of an alloca and determines if it can
220/// rewrite it in terms of a single new alloca that can be mem2reg'd.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000221class ConvertToScalarInfo {
222 /// AllocaSize - The size of the alloca being considered.
223 unsigned AllocaSize;
224 const TargetData &TD;
Bob Wilson69743022011-01-13 20:59:44 +0000225
Chris Lattnera0bada72010-04-16 02:32:17 +0000226 /// IsNotTrivial - This is set to true if there is some access to the object
Chris Lattnera001b662010-04-16 00:38:19 +0000227 /// which means that mem2reg can't promote it.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000228 bool IsNotTrivial;
Bob Wilson69743022011-01-13 20:59:44 +0000229
Chris Lattnera001b662010-04-16 00:38:19 +0000230 /// VectorTy - This tracks the type that we should promote the vector to if
231 /// it is possible to turn it into a vector. This starts out null, and if it
232 /// isn't possible to turn into a vector type, it gets set to VoidTy.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000233 const Type *VectorTy;
Bob Wilson69743022011-01-13 20:59:44 +0000234
Chris Lattnera001b662010-04-16 00:38:19 +0000235 /// HadAVector - True if there is at least one vector access to the alloca.
236 /// We don't want to turn random arrays into vectors and use vector element
237 /// insert/extract, but if there are element accesses to something that is
238 /// also declared as a vector, we do want to promote to a vector.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000239 bool HadAVector;
240
241public:
242 explicit ConvertToScalarInfo(unsigned Size, const TargetData &td)
243 : AllocaSize(Size), TD(td) {
244 IsNotTrivial = false;
245 VectorTy = 0;
246 HadAVector = false;
247 }
Bob Wilson69743022011-01-13 20:59:44 +0000248
Chris Lattnera001b662010-04-16 00:38:19 +0000249 AllocaInst *TryConvert(AllocaInst *AI);
Bob Wilson69743022011-01-13 20:59:44 +0000250
Chris Lattner4cc576b2010-04-16 00:24:57 +0000251private:
252 bool CanConvertToScalar(Value *V, uint64_t Offset);
253 void MergeInType(const Type *In, uint64_t Offset);
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000254 bool MergeInVectorType(const VectorType *VInTy, uint64_t Offset);
Chris Lattner4cc576b2010-04-16 00:24:57 +0000255 void ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI, uint64_t Offset);
Bob Wilson69743022011-01-13 20:59:44 +0000256
Chris Lattner4cc576b2010-04-16 00:24:57 +0000257 Value *ConvertScalar_ExtractValue(Value *NV, const Type *ToType,
258 uint64_t Offset, IRBuilder<> &Builder);
259 Value *ConvertScalar_InsertValue(Value *StoredVal, Value *ExistingVal,
260 uint64_t Offset, IRBuilder<> &Builder);
261};
262} // end anonymous namespace.
263
Chris Lattner91abace2010-09-01 05:14:33 +0000264
Chris Lattnera001b662010-04-16 00:38:19 +0000265/// TryConvert - Analyze the specified alloca, and if it is safe to do so,
266/// rewrite it to be a new alloca which is mem2reg'able. This returns the new
267/// alloca if possible or null if not.
268AllocaInst *ConvertToScalarInfo::TryConvert(AllocaInst *AI) {
269 // If we can't convert this scalar, or if mem2reg can trivially do it, bail
270 // out.
271 if (!CanConvertToScalar(AI, 0) || !IsNotTrivial)
272 return 0;
Bob Wilson69743022011-01-13 20:59:44 +0000273
Chris Lattnera001b662010-04-16 00:38:19 +0000274 // If we were able to find a vector type that can handle this with
275 // insert/extract elements, and if there was at least one use that had
276 // a vector type, promote this to a vector. We don't want to promote
277 // random stuff that doesn't use vectors (e.g. <9 x double>) because then
278 // we just get a lot of insert/extracts. If at least one vector is
279 // involved, then we probably really do have a union of vector/array.
280 const Type *NewTy;
Chris Lattner85a7c692011-01-23 06:40:33 +0000281 if (VectorTy && VectorTy->isVectorTy() && HadAVector) {
Chris Lattnera001b662010-04-16 00:38:19 +0000282 DEBUG(dbgs() << "CONVERT TO VECTOR: " << *AI << "\n TYPE = "
283 << *VectorTy << '\n');
284 NewTy = VectorTy; // Use the vector type.
285 } else {
286 DEBUG(dbgs() << "CONVERT TO SCALAR INTEGER: " << *AI << "\n");
287 // Create and insert the integer alloca.
288 NewTy = IntegerType::get(AI->getContext(), AllocaSize*8);
289 }
290 AllocaInst *NewAI = new AllocaInst(NewTy, 0, "", AI->getParent()->begin());
291 ConvertUsesToScalar(AI, NewAI, 0);
292 return NewAI;
293}
294
295/// MergeInType - Add the 'In' type to the accumulated vector type (VectorTy)
296/// so far at the offset specified by Offset (which is specified in bytes).
Chris Lattner4cc576b2010-04-16 00:24:57 +0000297///
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000298/// There are three cases we handle here:
Chris Lattner4cc576b2010-04-16 00:24:57 +0000299/// 1) A union of vector types of the same size and potentially its elements.
300/// Here we turn element accesses into insert/extract element operations.
301/// This promotes a <4 x float> with a store of float to the third element
302/// into a <4 x float> that uses insert element.
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000303/// 2) A union of vector types with power-of-2 size differences, e.g. a float,
304/// <2 x float> and <4 x float>. Here we turn element accesses into insert
305/// and extract element operations, and <2 x float> accesses into a cast to
306/// <2 x double>, an extract, and a cast back to <2 x float>.
307/// 3) A fully general blob of memory, which we turn into some (potentially
Chris Lattner4cc576b2010-04-16 00:24:57 +0000308/// large) integer type with extract and insert operations where the loads
Chris Lattnera001b662010-04-16 00:38:19 +0000309/// and stores would mutate the memory. We mark this by setting VectorTy
310/// to VoidTy.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000311void ConvertToScalarInfo::MergeInType(const Type *In, uint64_t Offset) {
Chris Lattnera001b662010-04-16 00:38:19 +0000312 // If we already decided to turn this into a blob of integer memory, there is
313 // nothing to be done.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000314 if (VectorTy && VectorTy->isVoidTy())
315 return;
Bob Wilson69743022011-01-13 20:59:44 +0000316
Chris Lattner4cc576b2010-04-16 00:24:57 +0000317 // If this could be contributing to a vector, analyze it.
318
319 // If the In type is a vector that is the same size as the alloca, see if it
320 // matches the existing VecTy.
321 if (const VectorType *VInTy = dyn_cast<VectorType>(In)) {
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000322 if (MergeInVectorType(VInTy, Offset))
Chris Lattner4cc576b2010-04-16 00:24:57 +0000323 return;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000324 } else if (In->isFloatTy() || In->isDoubleTy() ||
325 (In->isIntegerTy() && In->getPrimitiveSizeInBits() >= 8 &&
326 isPowerOf2_32(In->getPrimitiveSizeInBits()))) {
327 // If we're accessing something that could be an element of a vector, see
328 // if the implied vector agrees with what we already have and if Offset is
329 // compatible with it.
330 unsigned EltSize = In->getPrimitiveSizeInBits()/8;
331 if (Offset % EltSize == 0 && AllocaSize % EltSize == 0 &&
Bob Wilson69743022011-01-13 20:59:44 +0000332 (VectorTy == 0 ||
Chris Lattner4cc576b2010-04-16 00:24:57 +0000333 cast<VectorType>(VectorTy)->getElementType()
334 ->getPrimitiveSizeInBits()/8 == EltSize)) {
335 if (VectorTy == 0)
336 VectorTy = VectorType::get(In, AllocaSize/EltSize);
337 return;
338 }
339 }
Bob Wilson69743022011-01-13 20:59:44 +0000340
Chris Lattner4cc576b2010-04-16 00:24:57 +0000341 // Otherwise, we have a case that we can't handle with an optimized vector
342 // form. We can still turn this into a large integer.
343 VectorTy = Type::getVoidTy(In->getContext());
344}
345
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000346/// MergeInVectorType - Handles the vector case of MergeInType, returning true
347/// if the type was successfully merged and false otherwise.
348bool ConvertToScalarInfo::MergeInVectorType(const VectorType *VInTy,
349 uint64_t Offset) {
350 // Remember if we saw a vector type.
351 HadAVector = true;
352
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000353 // TODO: Support nonzero offsets?
354 if (Offset != 0)
355 return false;
356
357 // Only allow vectors that are a power-of-2 away from the size of the alloca.
358 if (!isPowerOf2_64(AllocaSize / (VInTy->getBitWidth() / 8)))
359 return false;
360
361 // If this the first vector we see, remember the type so that we know the
362 // element size.
363 if (!VectorTy) {
364 VectorTy = VInTy;
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000365 return true;
366 }
367
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000368 unsigned BitWidth = cast<VectorType>(VectorTy)->getBitWidth();
369 unsigned InBitWidth = VInTy->getBitWidth();
370
371 // Vectors of the same size can be converted using a simple bitcast.
372 if (InBitWidth == BitWidth && AllocaSize == (InBitWidth / 8))
373 return true;
374
375 const Type *ElementTy = cast<VectorType>(VectorTy)->getElementType();
376 const Type *InElementTy = cast<VectorType>(VectorTy)->getElementType();
377
378 // Do not allow mixed integer and floating-point accesses from vectors of
379 // different sizes.
380 if (ElementTy->isFloatingPointTy() != InElementTy->isFloatingPointTy())
381 return false;
382
383 if (ElementTy->isFloatingPointTy()) {
384 // Only allow floating-point vectors of different sizes if they have the
385 // same element type.
386 // TODO: This could be loosened a bit, but would anything benefit?
387 if (ElementTy != InElementTy)
388 return false;
389
390 // There are no arbitrary-precision floating-point types, which limits the
391 // number of legal vector types with larger element types that we can form
392 // to bitcast and extract a subvector.
393 // TODO: We could support some more cases with mixed fp128 and double here.
394 if (!(BitWidth == 64 || BitWidth == 128) ||
395 !(InBitWidth == 64 || InBitWidth == 128))
396 return false;
397 } else {
398 assert(ElementTy->isIntegerTy() && "Vector elements must be either integer "
399 "or floating-point.");
400 unsigned BitWidth = ElementTy->getPrimitiveSizeInBits();
401 unsigned InBitWidth = InElementTy->getPrimitiveSizeInBits();
402
403 // Do not allow integer types smaller than a byte or types whose widths are
404 // not a multiple of a byte.
405 if (BitWidth < 8 || InBitWidth < 8 ||
406 BitWidth % 8 != 0 || InBitWidth % 8 != 0)
407 return false;
408 }
409
410 // Pick the largest of the two vector types.
411 if (InBitWidth > BitWidth)
412 VectorTy = VInTy;
413
414 return true;
Cameron Zwarichc9ecd142011-03-09 05:43:01 +0000415}
416
Chris Lattner4cc576b2010-04-16 00:24:57 +0000417/// CanConvertToScalar - V is a pointer. If we can convert the pointee and all
418/// its accesses to a single vector type, return true and set VecTy to
419/// the new type. If we could convert the alloca into a single promotable
420/// integer, return true but set VecTy to VoidTy. Further, if the use is not a
421/// completely trivial use that mem2reg could promote, set IsNotTrivial. Offset
422/// is the current offset from the base of the alloca being analyzed.
423///
424/// If we see at least one access to the value that is as a vector type, set the
425/// SawVec flag.
426bool ConvertToScalarInfo::CanConvertToScalar(Value *V, uint64_t Offset) {
427 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
428 Instruction *User = cast<Instruction>(*UI);
Bob Wilson69743022011-01-13 20:59:44 +0000429
Chris Lattner4cc576b2010-04-16 00:24:57 +0000430 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
431 // Don't break volatile loads.
432 if (LI->isVolatile())
433 return false;
Dale Johannesen0488fb62010-09-30 23:57:10 +0000434 // Don't touch MMX operations.
435 if (LI->getType()->isX86_MMXTy())
436 return false;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000437 MergeInType(LI->getType(), Offset);
438 continue;
439 }
Bob Wilson69743022011-01-13 20:59:44 +0000440
Chris Lattner4cc576b2010-04-16 00:24:57 +0000441 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
442 // Storing the pointer, not into the value?
443 if (SI->getOperand(0) == V || SI->isVolatile()) return false;
Dale Johannesen0488fb62010-09-30 23:57:10 +0000444 // Don't touch MMX operations.
445 if (SI->getOperand(0)->getType()->isX86_MMXTy())
446 return false;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000447 MergeInType(SI->getOperand(0)->getType(), Offset);
448 continue;
449 }
Bob Wilson69743022011-01-13 20:59:44 +0000450
Chris Lattner4cc576b2010-04-16 00:24:57 +0000451 if (BitCastInst *BCI = dyn_cast<BitCastInst>(User)) {
Chris Lattnera001b662010-04-16 00:38:19 +0000452 IsNotTrivial = true; // Can't be mem2reg'd.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000453 if (!CanConvertToScalar(BCI, Offset))
454 return false;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000455 continue;
456 }
457
458 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
459 // If this is a GEP with a variable indices, we can't handle it.
460 if (!GEP->hasAllConstantIndices())
461 return false;
Bob Wilson69743022011-01-13 20:59:44 +0000462
Chris Lattner4cc576b2010-04-16 00:24:57 +0000463 // Compute the offset that this GEP adds to the pointer.
464 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
465 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
466 &Indices[0], Indices.size());
467 // See if all uses can be converted.
468 if (!CanConvertToScalar(GEP, Offset+GEPOffset))
469 return false;
Chris Lattnera001b662010-04-16 00:38:19 +0000470 IsNotTrivial = true; // Can't be mem2reg'd.
Chris Lattner4cc576b2010-04-16 00:24:57 +0000471 continue;
472 }
473
474 // If this is a constant sized memset of a constant value (e.g. 0) we can
475 // handle it.
476 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
477 // Store of constant value and constant size.
Chris Lattnera001b662010-04-16 00:38:19 +0000478 if (!isa<ConstantInt>(MSI->getValue()) ||
479 !isa<ConstantInt>(MSI->getLength()))
480 return false;
481 IsNotTrivial = true; // Can't be mem2reg'd.
482 continue;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000483 }
484
485 // If this is a memcpy or memmove into or out of the whole allocation, we
486 // can handle it like a load or store of the scalar type.
487 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
Chris Lattnera001b662010-04-16 00:38:19 +0000488 ConstantInt *Len = dyn_cast<ConstantInt>(MTI->getLength());
489 if (Len == 0 || Len->getZExtValue() != AllocaSize || Offset != 0)
490 return false;
Bob Wilson69743022011-01-13 20:59:44 +0000491
Chris Lattnera001b662010-04-16 00:38:19 +0000492 IsNotTrivial = true; // Can't be mem2reg'd.
493 continue;
Chris Lattner4cc576b2010-04-16 00:24:57 +0000494 }
Bob Wilson69743022011-01-13 20:59:44 +0000495
Chris Lattner4cc576b2010-04-16 00:24:57 +0000496 // Otherwise, we cannot handle this!
497 return false;
498 }
Bob Wilson69743022011-01-13 20:59:44 +0000499
Chris Lattner4cc576b2010-04-16 00:24:57 +0000500 return true;
501}
502
503/// ConvertUsesToScalar - Convert all of the users of Ptr to use the new alloca
504/// directly. This happens when we are converting an "integer union" to a
505/// single integer scalar, or when we are converting a "vector union" to a
506/// vector with insert/extractelement instructions.
507///
508/// Offset is an offset from the original alloca, in bits that need to be
509/// shifted to the right. By the end of this, there should be no uses of Ptr.
510void ConvertToScalarInfo::ConvertUsesToScalar(Value *Ptr, AllocaInst *NewAI,
511 uint64_t Offset) {
512 while (!Ptr->use_empty()) {
513 Instruction *User = cast<Instruction>(Ptr->use_back());
514
515 if (BitCastInst *CI = dyn_cast<BitCastInst>(User)) {
516 ConvertUsesToScalar(CI, NewAI, Offset);
517 CI->eraseFromParent();
518 continue;
519 }
520
521 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
522 // Compute the offset that this GEP adds to the pointer.
523 SmallVector<Value*, 8> Indices(GEP->op_begin()+1, GEP->op_end());
524 uint64_t GEPOffset = TD.getIndexedOffset(GEP->getPointerOperandType(),
525 &Indices[0], Indices.size());
526 ConvertUsesToScalar(GEP, NewAI, Offset+GEPOffset*8);
527 GEP->eraseFromParent();
528 continue;
529 }
Bob Wilson69743022011-01-13 20:59:44 +0000530
Chris Lattner61db1f52010-12-26 22:57:41 +0000531 IRBuilder<> Builder(User);
Bob Wilson69743022011-01-13 20:59:44 +0000532
Chris Lattner4cc576b2010-04-16 00:24:57 +0000533 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
534 // The load is a bit extract from NewAI shifted right by Offset bits.
535 Value *LoadedVal = Builder.CreateLoad(NewAI, "tmp");
536 Value *NewLoadVal
537 = ConvertScalar_ExtractValue(LoadedVal, LI->getType(), Offset, Builder);
538 LI->replaceAllUsesWith(NewLoadVal);
539 LI->eraseFromParent();
540 continue;
541 }
Bob Wilson69743022011-01-13 20:59:44 +0000542
Chris Lattner4cc576b2010-04-16 00:24:57 +0000543 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
544 assert(SI->getOperand(0) != Ptr && "Consistency error!");
545 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
546 Value *New = ConvertScalar_InsertValue(SI->getOperand(0), Old, Offset,
547 Builder);
548 Builder.CreateStore(New, NewAI);
549 SI->eraseFromParent();
Bob Wilson69743022011-01-13 20:59:44 +0000550
Chris Lattner4cc576b2010-04-16 00:24:57 +0000551 // If the load we just inserted is now dead, then the inserted store
552 // overwrote the entire thing.
553 if (Old->use_empty())
554 Old->eraseFromParent();
555 continue;
556 }
Bob Wilson69743022011-01-13 20:59:44 +0000557
Chris Lattner4cc576b2010-04-16 00:24:57 +0000558 // If this is a constant sized memset of a constant value (e.g. 0) we can
559 // transform it into a store of the expanded constant value.
560 if (MemSetInst *MSI = dyn_cast<MemSetInst>(User)) {
561 assert(MSI->getRawDest() == Ptr && "Consistency error!");
562 unsigned NumBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
563 if (NumBytes != 0) {
564 unsigned Val = cast<ConstantInt>(MSI->getValue())->getZExtValue();
Bob Wilson69743022011-01-13 20:59:44 +0000565
Chris Lattner4cc576b2010-04-16 00:24:57 +0000566 // Compute the value replicated the right number of times.
567 APInt APVal(NumBytes*8, Val);
568
569 // Splat the value if non-zero.
570 if (Val)
571 for (unsigned i = 1; i != NumBytes; ++i)
572 APVal |= APVal << 8;
Bob Wilson69743022011-01-13 20:59:44 +0000573
Chris Lattner4cc576b2010-04-16 00:24:57 +0000574 Instruction *Old = Builder.CreateLoad(NewAI, NewAI->getName()+".in");
575 Value *New = ConvertScalar_InsertValue(
576 ConstantInt::get(User->getContext(), APVal),
577 Old, Offset, Builder);
578 Builder.CreateStore(New, NewAI);
Bob Wilson69743022011-01-13 20:59:44 +0000579
Chris Lattner4cc576b2010-04-16 00:24:57 +0000580 // If the load we just inserted is now dead, then the memset overwrote
581 // the entire thing.
582 if (Old->use_empty())
Bob Wilson69743022011-01-13 20:59:44 +0000583 Old->eraseFromParent();
Chris Lattner4cc576b2010-04-16 00:24:57 +0000584 }
585 MSI->eraseFromParent();
586 continue;
587 }
588
589 // If this is a memcpy or memmove into or out of the whole allocation, we
590 // can handle it like a load or store of the scalar type.
591 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(User)) {
592 assert(Offset == 0 && "must be store to start of alloca");
Bob Wilson69743022011-01-13 20:59:44 +0000593
Chris Lattner4cc576b2010-04-16 00:24:57 +0000594 // If the source and destination are both to the same alloca, then this is
595 // a noop copy-to-self, just delete it. Otherwise, emit a load and store
596 // as appropriate.
Dan Gohmanbd1801b2011-01-24 18:53:32 +0000597 AllocaInst *OrigAI = cast<AllocaInst>(GetUnderlyingObject(Ptr, &TD, 0));
Bob Wilson69743022011-01-13 20:59:44 +0000598
Dan Gohmanbd1801b2011-01-24 18:53:32 +0000599 if (GetUnderlyingObject(MTI->getSource(), &TD, 0) != OrigAI) {
Chris Lattner4cc576b2010-04-16 00:24:57 +0000600 // Dest must be OrigAI, change this to be a load from the original
601 // pointer (bitcasted), then a store to our new alloca.
602 assert(MTI->getRawDest() == Ptr && "Neither use is of pointer?");
603 Value *SrcPtr = MTI->getSource();
Mon P Wange90a6332010-12-23 01:41:32 +0000604 const PointerType* SPTy = cast<PointerType>(SrcPtr->getType());
605 const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
606 if (SPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
607 AIPTy = PointerType::get(AIPTy->getElementType(),
608 SPTy->getAddressSpace());
609 }
610 SrcPtr = Builder.CreateBitCast(SrcPtr, AIPTy);
611
Chris Lattner4cc576b2010-04-16 00:24:57 +0000612 LoadInst *SrcVal = Builder.CreateLoad(SrcPtr, "srcval");
613 SrcVal->setAlignment(MTI->getAlignment());
614 Builder.CreateStore(SrcVal, NewAI);
Dan Gohmanbd1801b2011-01-24 18:53:32 +0000615 } else if (GetUnderlyingObject(MTI->getDest(), &TD, 0) != OrigAI) {
Chris Lattner4cc576b2010-04-16 00:24:57 +0000616 // Src must be OrigAI, change this to be a load from NewAI then a store
617 // through the original dest pointer (bitcasted).
618 assert(MTI->getRawSource() == Ptr && "Neither use is of pointer?");
619 LoadInst *SrcVal = Builder.CreateLoad(NewAI, "srcval");
620
Mon P Wange90a6332010-12-23 01:41:32 +0000621 const PointerType* DPTy = cast<PointerType>(MTI->getDest()->getType());
622 const PointerType* AIPTy = cast<PointerType>(NewAI->getType());
623 if (DPTy->getAddressSpace() != AIPTy->getAddressSpace()) {
624 AIPTy = PointerType::get(AIPTy->getElementType(),
625 DPTy->getAddressSpace());
626 }
627 Value *DstPtr = Builder.CreateBitCast(MTI->getDest(), AIPTy);
628
Chris Lattner4cc576b2010-04-16 00:24:57 +0000629 StoreInst *NewStore = Builder.CreateStore(SrcVal, DstPtr);
630 NewStore->setAlignment(MTI->getAlignment());
631 } else {
632 // Noop transfer. Src == Dst
633 }
634
635 MTI->eraseFromParent();
636 continue;
637 }
Bob Wilson69743022011-01-13 20:59:44 +0000638
Chris Lattner4cc576b2010-04-16 00:24:57 +0000639 llvm_unreachable("Unsupported operation!");
640 }
641}
642
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000643/// getScaledElementType - Gets a scaled element type for a partial vector
644/// access of an alloca. The input type must be an integer or float, and
645/// the resulting type must be an integer, float or double.
646static const Type *getScaledElementType(const Type *OldTy, unsigned Scale) {
647 assert((OldTy->isIntegerTy() || OldTy->isFloatTy()) && "Partial vector "
648 "accesses must be scaled from integer or float elements.");
649
650 LLVMContext &Context = OldTy->getContext();
651 unsigned Size = OldTy->getPrimitiveSizeInBits() * Scale;
652
653 if (OldTy->isIntegerTy())
654 return Type::getIntNTy(Context, Size);
655 if (Size == 32)
656 return Type::getFloatTy(Context);
657 if (Size == 64)
658 return Type::getDoubleTy(Context);
659
660 llvm_unreachable("Invalid type for a partial vector access of an alloca!");
661}
662
Chris Lattner4cc576b2010-04-16 00:24:57 +0000663/// ConvertScalar_ExtractValue - Extract a value of type ToType from an integer
664/// or vector value FromVal, extracting the bits from the offset specified by
665/// Offset. This returns the value, which is of type ToType.
666///
667/// This happens when we are converting an "integer union" to a single
668/// integer scalar, or when we are converting a "vector union" to a vector with
669/// insert/extractelement instructions.
670///
671/// Offset is an offset from the original alloca, in bits that need to be
672/// shifted to the right.
673Value *ConvertToScalarInfo::
674ConvertScalar_ExtractValue(Value *FromVal, const Type *ToType,
675 uint64_t Offset, IRBuilder<> &Builder) {
676 // If the load is of the whole new alloca, no conversion is needed.
677 if (FromVal->getType() == ToType && Offset == 0)
678 return FromVal;
679
680 // If the result alloca is a vector type, this is either an element
681 // access or a bitcast to another vector type of the same size.
682 if (const VectorType *VTy = dyn_cast<VectorType>(FromVal->getType())) {
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000683 if (ToType->isVectorTy()) {
684 if (isPowerOf2_64(AllocaSize / TD.getTypeAllocSize(ToType))) {
685 assert(Offset == 0 && "Can't extract a value of a smaller vector type "
686 "from a nonzero offset.");
687
688 const Type *ToElementTy = cast<VectorType>(ToType)->getElementType();
689 unsigned Scale = AllocaSize / TD.getTypeAllocSize(ToType);
690 const Type *CastElementTy = getScaledElementType(ToElementTy, Scale);
691 unsigned NumCastVectorElements = VTy->getNumElements() / Scale;
692
693 LLVMContext &Context = FromVal->getContext();
694 const Type *CastTy = VectorType::get(CastElementTy,
695 NumCastVectorElements);
696 Value *Cast = Builder.CreateBitCast(FromVal, CastTy, "tmp");
697 Value *Extract = Builder.CreateExtractElement(Cast, ConstantInt::get(
698 Type::getInt32Ty(Context), 0), "tmp");
699 return Builder.CreateBitCast(Extract, ToType, "tmp");
700 }
701
Chris Lattner4cc576b2010-04-16 00:24:57 +0000702 return Builder.CreateBitCast(FromVal, ToType, "tmp");
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000703 }
Chris Lattner4cc576b2010-04-16 00:24:57 +0000704
705 // Otherwise it must be an element access.
706 unsigned Elt = 0;
707 if (Offset) {
708 unsigned EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
709 Elt = Offset/EltSize;
710 assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
711 }
712 // Return the element extracted out of it.
713 Value *V = Builder.CreateExtractElement(FromVal, ConstantInt::get(
714 Type::getInt32Ty(FromVal->getContext()), Elt), "tmp");
715 if (V->getType() != ToType)
716 V = Builder.CreateBitCast(V, ToType, "tmp");
717 return V;
718 }
Bob Wilson69743022011-01-13 20:59:44 +0000719
Chris Lattner4cc576b2010-04-16 00:24:57 +0000720 // If ToType is a first class aggregate, extract out each of the pieces and
721 // use insertvalue's to form the FCA.
722 if (const StructType *ST = dyn_cast<StructType>(ToType)) {
723 const StructLayout &Layout = *TD.getStructLayout(ST);
724 Value *Res = UndefValue::get(ST);
725 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
726 Value *Elt = ConvertScalar_ExtractValue(FromVal, ST->getElementType(i),
727 Offset+Layout.getElementOffsetInBits(i),
728 Builder);
729 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
730 }
731 return Res;
732 }
Bob Wilson69743022011-01-13 20:59:44 +0000733
Chris Lattner4cc576b2010-04-16 00:24:57 +0000734 if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
735 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
736 Value *Res = UndefValue::get(AT);
737 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
738 Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
739 Offset+i*EltSize, Builder);
740 Res = Builder.CreateInsertValue(Res, Elt, i, "tmp");
741 }
742 return Res;
743 }
744
745 // Otherwise, this must be a union that was converted to an integer value.
746 const IntegerType *NTy = cast<IntegerType>(FromVal->getType());
747
748 // If this is a big-endian system and the load is narrower than the
749 // full alloca type, we need to do a shift to get the right bits.
750 int ShAmt = 0;
751 if (TD.isBigEndian()) {
752 // On big-endian machines, the lowest bit is stored at the bit offset
753 // from the pointer given by getTypeStoreSizeInBits. This matters for
754 // integers with a bitwidth that is not a multiple of 8.
755 ShAmt = TD.getTypeStoreSizeInBits(NTy) -
756 TD.getTypeStoreSizeInBits(ToType) - Offset;
757 } else {
758 ShAmt = Offset;
759 }
760
761 // Note: we support negative bitwidths (with shl) which are not defined.
762 // We do this to support (f.e.) loads off the end of a structure where
763 // only some bits are used.
764 if (ShAmt > 0 && (unsigned)ShAmt < NTy->getBitWidth())
765 FromVal = Builder.CreateLShr(FromVal,
766 ConstantInt::get(FromVal->getType(),
767 ShAmt), "tmp");
768 else if (ShAmt < 0 && (unsigned)-ShAmt < NTy->getBitWidth())
Bob Wilson69743022011-01-13 20:59:44 +0000769 FromVal = Builder.CreateShl(FromVal,
Chris Lattner4cc576b2010-04-16 00:24:57 +0000770 ConstantInt::get(FromVal->getType(),
771 -ShAmt), "tmp");
772
773 // Finally, unconditionally truncate the integer to the right width.
774 unsigned LIBitWidth = TD.getTypeSizeInBits(ToType);
775 if (LIBitWidth < NTy->getBitWidth())
776 FromVal =
Bob Wilson69743022011-01-13 20:59:44 +0000777 Builder.CreateTrunc(FromVal, IntegerType::get(FromVal->getContext(),
Chris Lattner4cc576b2010-04-16 00:24:57 +0000778 LIBitWidth), "tmp");
779 else if (LIBitWidth > NTy->getBitWidth())
780 FromVal =
Bob Wilson69743022011-01-13 20:59:44 +0000781 Builder.CreateZExt(FromVal, IntegerType::get(FromVal->getContext(),
Chris Lattner4cc576b2010-04-16 00:24:57 +0000782 LIBitWidth), "tmp");
783
784 // If the result is an integer, this is a trunc or bitcast.
785 if (ToType->isIntegerTy()) {
786 // Should be done.
787 } else if (ToType->isFloatingPointTy() || ToType->isVectorTy()) {
788 // Just do a bitcast, we know the sizes match up.
789 FromVal = Builder.CreateBitCast(FromVal, ToType, "tmp");
790 } else {
791 // Otherwise must be a pointer.
792 FromVal = Builder.CreateIntToPtr(FromVal, ToType, "tmp");
793 }
794 assert(FromVal->getType() == ToType && "Didn't convert right?");
795 return FromVal;
796}
797
798/// ConvertScalar_InsertValue - Insert the value "SV" into the existing integer
799/// or vector value "Old" at the offset specified by Offset.
800///
801/// This happens when we are converting an "integer union" to a
802/// single integer scalar, or when we are converting a "vector union" to a
803/// vector with insert/extractelement instructions.
804///
805/// Offset is an offset from the original alloca, in bits that need to be
806/// shifted to the right.
807Value *ConvertToScalarInfo::
808ConvertScalar_InsertValue(Value *SV, Value *Old,
809 uint64_t Offset, IRBuilder<> &Builder) {
810 // Convert the stored type to the actual type, shift it left to insert
811 // then 'or' into place.
812 const Type *AllocaType = Old->getType();
813 LLVMContext &Context = Old->getContext();
814
815 if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
816 uint64_t VecSize = TD.getTypeAllocSizeInBits(VTy);
817 uint64_t ValSize = TD.getTypeAllocSizeInBits(SV->getType());
Bob Wilson69743022011-01-13 20:59:44 +0000818
Chris Lattner4cc576b2010-04-16 00:24:57 +0000819 // Changing the whole vector with memset or with an access of a different
820 // vector type?
821 if (ValSize == VecSize)
822 return Builder.CreateBitCast(SV, AllocaType, "tmp");
823
Cameron Zwarichb2fd7702011-03-09 05:43:05 +0000824 if (SV->getType()->isVectorTy() && isPowerOf2_64(VecSize / ValSize)) {
825 assert(Offset == 0 && "Can't insert a value of a smaller vector type at "
826 "a nonzero offset.");
827
828 const Type *ToElementTy =
829 cast<VectorType>(SV->getType())->getElementType();
830 unsigned Scale = VecSize / ValSize;
831 const Type *CastElementTy = getScaledElementType(ToElementTy, Scale);
832 unsigned NumCastVectorElements = VTy->getNumElements() / Scale;
833
834 LLVMContext &Context = SV->getContext();
835 const Type *OldCastTy = VectorType::get(CastElementTy,
836 NumCastVectorElements);
837 Value *OldCast = Builder.CreateBitCast(Old, OldCastTy, "tmp");
838
839 Value *SVCast = Builder.CreateBitCast(SV, CastElementTy, "tmp");
840 Value *Insert =
841 Builder.CreateInsertElement(OldCast, SVCast, ConstantInt::get(
842 Type::getInt32Ty(Context), 0), "tmp");
843 return Builder.CreateBitCast(Insert, AllocaType, "tmp");
844 }
845
Chris Lattner4cc576b2010-04-16 00:24:57 +0000846 uint64_t EltSize = TD.getTypeAllocSizeInBits(VTy->getElementType());
847
848 // Must be an element insertion.
849 unsigned Elt = Offset/EltSize;
Bob Wilson69743022011-01-13 20:59:44 +0000850
Chris Lattner4cc576b2010-04-16 00:24:57 +0000851 if (SV->getType() != VTy->getElementType())
852 SV = Builder.CreateBitCast(SV, VTy->getElementType(), "tmp");
Bob Wilson69743022011-01-13 20:59:44 +0000853
854 SV = Builder.CreateInsertElement(Old, SV,
Chris Lattner4cc576b2010-04-16 00:24:57 +0000855 ConstantInt::get(Type::getInt32Ty(SV->getContext()), Elt),
856 "tmp");
857 return SV;
858 }
Bob Wilson69743022011-01-13 20:59:44 +0000859
Chris Lattner4cc576b2010-04-16 00:24:57 +0000860 // If SV is a first-class aggregate value, insert each value recursively.
861 if (const StructType *ST = dyn_cast<StructType>(SV->getType())) {
862 const StructLayout &Layout = *TD.getStructLayout(ST);
863 for (unsigned i = 0, e = ST->getNumElements(); i != e; ++i) {
864 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
Bob Wilson69743022011-01-13 20:59:44 +0000865 Old = ConvertScalar_InsertValue(Elt, Old,
Chris Lattner4cc576b2010-04-16 00:24:57 +0000866 Offset+Layout.getElementOffsetInBits(i),
867 Builder);
868 }
869 return Old;
870 }
Bob Wilson69743022011-01-13 20:59:44 +0000871
Chris Lattner4cc576b2010-04-16 00:24:57 +0000872 if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
873 uint64_t EltSize = TD.getTypeAllocSizeInBits(AT->getElementType());
874 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
875 Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
876 Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
877 }
878 return Old;
879 }
880
881 // If SV is a float, convert it to the appropriate integer type.
882 // If it is a pointer, do the same.
883 unsigned SrcWidth = TD.getTypeSizeInBits(SV->getType());
884 unsigned DestWidth = TD.getTypeSizeInBits(AllocaType);
885 unsigned SrcStoreWidth = TD.getTypeStoreSizeInBits(SV->getType());
886 unsigned DestStoreWidth = TD.getTypeStoreSizeInBits(AllocaType);
887 if (SV->getType()->isFloatingPointTy() || SV->getType()->isVectorTy())
888 SV = Builder.CreateBitCast(SV,
889 IntegerType::get(SV->getContext(),SrcWidth), "tmp");
890 else if (SV->getType()->isPointerTy())
891 SV = Builder.CreatePtrToInt(SV, TD.getIntPtrType(SV->getContext()), "tmp");
892
893 // Zero extend or truncate the value if needed.
894 if (SV->getType() != AllocaType) {
895 if (SV->getType()->getPrimitiveSizeInBits() <
896 AllocaType->getPrimitiveSizeInBits())
897 SV = Builder.CreateZExt(SV, AllocaType, "tmp");
898 else {
899 // Truncation may be needed if storing more than the alloca can hold
900 // (undefined behavior).
901 SV = Builder.CreateTrunc(SV, AllocaType, "tmp");
902 SrcWidth = DestWidth;
903 SrcStoreWidth = DestStoreWidth;
904 }
905 }
906
907 // If this is a big-endian system and the store is narrower than the
908 // full alloca type, we need to do a shift to get the right bits.
909 int ShAmt = 0;
910 if (TD.isBigEndian()) {
911 // On big-endian machines, the lowest bit is stored at the bit offset
912 // from the pointer given by getTypeStoreSizeInBits. This matters for
913 // integers with a bitwidth that is not a multiple of 8.
914 ShAmt = DestStoreWidth - SrcStoreWidth - Offset;
915 } else {
916 ShAmt = Offset;
917 }
918
919 // Note: we support negative bitwidths (with shr) which are not defined.
920 // We do this to support (f.e.) stores off the end of a structure where
921 // only some bits in the structure are set.
922 APInt Mask(APInt::getLowBitsSet(DestWidth, SrcWidth));
923 if (ShAmt > 0 && (unsigned)ShAmt < DestWidth) {
924 SV = Builder.CreateShl(SV, ConstantInt::get(SV->getType(),
925 ShAmt), "tmp");
926 Mask <<= ShAmt;
927 } else if (ShAmt < 0 && (unsigned)-ShAmt < DestWidth) {
928 SV = Builder.CreateLShr(SV, ConstantInt::get(SV->getType(),
929 -ShAmt), "tmp");
930 Mask = Mask.lshr(-ShAmt);
931 }
932
933 // Mask out the bits we are about to insert from the old value, and or
934 // in the new bits.
935 if (SrcWidth != DestWidth) {
936 assert(DestWidth > SrcWidth);
937 Old = Builder.CreateAnd(Old, ConstantInt::get(Context, ~Mask), "mask");
938 SV = Builder.CreateOr(Old, SV, "ins");
939 }
940 return SV;
941}
942
943
944//===----------------------------------------------------------------------===//
945// SRoA Driver
946//===----------------------------------------------------------------------===//
947
948
Chris Lattnered7b41e2003-05-27 15:45:27 +0000949bool SROA::runOnFunction(Function &F) {
Dan Gohmane4af1cf2009-08-19 18:22:18 +0000950 TD = getAnalysisIfAvailable<TargetData>();
951
Chris Lattnerfe7ea0d2003-09-12 15:36:03 +0000952 bool Changed = performPromotion(F);
Dan Gohmane4af1cf2009-08-19 18:22:18 +0000953
954 // FIXME: ScalarRepl currently depends on TargetData more than it
955 // theoretically needs to. It should be refactored in order to support
956 // target-independent IR. Until this is done, just skip the actual
957 // scalar-replacement portion of this pass.
958 if (!TD) return Changed;
959
Chris Lattnerfe7ea0d2003-09-12 15:36:03 +0000960 while (1) {
961 bool LocalChange = performScalarRepl(F);
962 if (!LocalChange) break; // No need to repromote if no scalarrepl
963 Changed = true;
964 LocalChange = performPromotion(F);
965 if (!LocalChange) break; // No need to re-scalarrepl if no promotion
966 }
Chris Lattner38aec322003-09-11 16:45:55 +0000967
968 return Changed;
969}
970
Chris Lattnerd0f56132011-01-14 19:50:47 +0000971namespace {
972class AllocaPromoter : public LoadAndStorePromoter {
973 AllocaInst *AI;
974public:
Chris Lattnerdeaf55f2011-01-15 00:12:35 +0000975 AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S)
976 : LoadAndStorePromoter(Insts, S), AI(0) {}
Chris Lattnerd0f56132011-01-14 19:50:47 +0000977
Chris Lattnerdeaf55f2011-01-15 00:12:35 +0000978 void run(AllocaInst *AI, const SmallVectorImpl<Instruction*> &Insts) {
Chris Lattnerd0f56132011-01-14 19:50:47 +0000979 // Remember which alloca we're promoting (for isInstInList).
980 this->AI = AI;
Chris Lattnerdeaf55f2011-01-15 00:12:35 +0000981 LoadAndStorePromoter::run(Insts);
Chris Lattnerd0f56132011-01-14 19:50:47 +0000982 AI->eraseFromParent();
Chris Lattnere0a1a5b2011-01-14 07:50:47 +0000983 }
984
Chris Lattnerd0f56132011-01-14 19:50:47 +0000985 virtual bool isInstInList(Instruction *I,
986 const SmallVectorImpl<Instruction*> &Insts) const {
987 if (LoadInst *LI = dyn_cast<LoadInst>(I))
988 return LI->getOperand(0) == AI;
989 return cast<StoreInst>(I)->getPointerOperand() == AI;
Chris Lattnere0a1a5b2011-01-14 07:50:47 +0000990 }
Chris Lattnerd0f56132011-01-14 19:50:47 +0000991};
992} // end anon namespace
Chris Lattner38aec322003-09-11 16:45:55 +0000993
Chris Lattnerc87c50a2011-01-23 22:04:55 +0000994/// isSafeSelectToSpeculate - Select instructions that use an alloca and are
995/// subsequently loaded can be rewritten to load both input pointers and then
996/// select between the result, allowing the load of the alloca to be promoted.
997/// From this:
998/// %P2 = select i1 %cond, i32* %Alloca, i32* %Other
999/// %V = load i32* %P2
1000/// to:
1001/// %V1 = load i32* %Alloca -> will be mem2reg'd
1002/// %V2 = load i32* %Other
Chris Lattnere3357862011-01-24 01:07:11 +00001003/// %V = select i1 %cond, i32 %V1, i32 %V2
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001004///
1005/// We can do this to a select if its only uses are loads and if the operand to
1006/// the select can be loaded unconditionally.
1007static bool isSafeSelectToSpeculate(SelectInst *SI, const TargetData *TD) {
1008 bool TDerefable = SI->getTrueValue()->isDereferenceablePointer();
1009 bool FDerefable = SI->getFalseValue()->isDereferenceablePointer();
1010
1011 for (Value::use_iterator UI = SI->use_begin(), UE = SI->use_end();
1012 UI != UE; ++UI) {
1013 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1014 if (LI == 0 || LI->isVolatile()) return false;
1015
Chris Lattnere3357862011-01-24 01:07:11 +00001016 // Both operands to the select need to be dereferencable, either absolutely
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001017 // (e.g. allocas) or at this point because we can see other accesses to it.
1018 if (!TDerefable && !isSafeToLoadUnconditionally(SI->getTrueValue(), LI,
1019 LI->getAlignment(), TD))
1020 return false;
1021 if (!FDerefable && !isSafeToLoadUnconditionally(SI->getFalseValue(), LI,
1022 LI->getAlignment(), TD))
1023 return false;
1024 }
1025
1026 return true;
1027}
1028
Chris Lattnere3357862011-01-24 01:07:11 +00001029/// isSafePHIToSpeculate - PHI instructions that use an alloca and are
1030/// subsequently loaded can be rewritten to load both input pointers in the pred
1031/// blocks and then PHI the results, allowing the load of the alloca to be
1032/// promoted.
1033/// From this:
1034/// %P2 = phi [i32* %Alloca, i32* %Other]
1035/// %V = load i32* %P2
1036/// to:
1037/// %V1 = load i32* %Alloca -> will be mem2reg'd
1038/// ...
1039/// %V2 = load i32* %Other
1040/// ...
1041/// %V = phi [i32 %V1, i32 %V2]
1042///
1043/// We can do this to a select if its only uses are loads and if the operand to
1044/// the select can be loaded unconditionally.
1045static bool isSafePHIToSpeculate(PHINode *PN, const TargetData *TD) {
1046 // For now, we can only do this promotion if the load is in the same block as
1047 // the PHI, and if there are no stores between the phi and load.
1048 // TODO: Allow recursive phi users.
1049 // TODO: Allow stores.
1050 BasicBlock *BB = PN->getParent();
1051 unsigned MaxAlign = 0;
1052 for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
1053 UI != UE; ++UI) {
1054 LoadInst *LI = dyn_cast<LoadInst>(*UI);
1055 if (LI == 0 || LI->isVolatile()) return false;
1056
1057 // For now we only allow loads in the same block as the PHI. This is a
1058 // common case that happens when instcombine merges two loads through a PHI.
1059 if (LI->getParent() != BB) return false;
1060
1061 // Ensure that there are no instructions between the PHI and the load that
1062 // could store.
1063 for (BasicBlock::iterator BBI = PN; &*BBI != LI; ++BBI)
1064 if (BBI->mayWriteToMemory())
1065 return false;
1066
1067 MaxAlign = std::max(MaxAlign, LI->getAlignment());
1068 }
1069
1070 // Okay, we know that we have one or more loads in the same block as the PHI.
1071 // We can transform this if it is safe to push the loads into the predecessor
1072 // blocks. The only thing to watch out for is that we can't put a possibly
1073 // trapping load in the predecessor if it is a critical edge.
1074 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1075 BasicBlock *Pred = PN->getIncomingBlock(i);
1076
1077 // If the predecessor has a single successor, then the edge isn't critical.
1078 if (Pred->getTerminator()->getNumSuccessors() == 1)
1079 continue;
1080
1081 Value *InVal = PN->getIncomingValue(i);
1082
1083 // If the InVal is an invoke in the pred, we can't put a load on the edge.
1084 if (InvokeInst *II = dyn_cast<InvokeInst>(InVal))
1085 if (II->getParent() == Pred)
1086 return false;
1087
1088 // If this pointer is always safe to load, or if we can prove that there is
1089 // already a load in the block, then we can move the load to the pred block.
1090 if (InVal->isDereferenceablePointer() ||
1091 isSafeToLoadUnconditionally(InVal, Pred->getTerminator(), MaxAlign, TD))
1092 continue;
1093
1094 return false;
1095 }
1096
1097 return true;
1098}
1099
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001100
1101/// tryToMakeAllocaBePromotable - This returns true if the alloca only has
1102/// direct (non-volatile) loads and stores to it. If the alloca is close but
1103/// not quite there, this will transform the code to allow promotion. As such,
1104/// it is a non-pure predicate.
1105static bool tryToMakeAllocaBePromotable(AllocaInst *AI, const TargetData *TD) {
1106 SetVector<Instruction*, SmallVector<Instruction*, 4>,
1107 SmallPtrSet<Instruction*, 4> > InstsToRewrite;
1108
1109 for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end();
1110 UI != UE; ++UI) {
1111 User *U = *UI;
1112 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
1113 if (LI->isVolatile())
1114 return false;
1115 continue;
1116 }
1117
1118 if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
1119 if (SI->getOperand(0) == AI || SI->isVolatile())
1120 return false; // Don't allow a store OF the AI, only INTO the AI.
1121 continue;
1122 }
1123
1124 if (SelectInst *SI = dyn_cast<SelectInst>(U)) {
1125 // If the condition being selected on is a constant, fold the select, yes
1126 // this does (rarely) happen early on.
1127 if (ConstantInt *CI = dyn_cast<ConstantInt>(SI->getCondition())) {
1128 Value *Result = SI->getOperand(1+CI->isZero());
1129 SI->replaceAllUsesWith(Result);
1130 SI->eraseFromParent();
1131
1132 // This is very rare and we just scrambled the use list of AI, start
1133 // over completely.
1134 return tryToMakeAllocaBePromotable(AI, TD);
1135 }
1136
1137 // If it is safe to turn "load (select c, AI, ptr)" into a select of two
1138 // loads, then we can transform this by rewriting the select.
1139 if (!isSafeSelectToSpeculate(SI, TD))
1140 return false;
1141
1142 InstsToRewrite.insert(SI);
1143 continue;
1144 }
1145
Chris Lattnere3357862011-01-24 01:07:11 +00001146 if (PHINode *PN = dyn_cast<PHINode>(U)) {
1147 if (PN->use_empty()) { // Dead PHIs can be stripped.
1148 InstsToRewrite.insert(PN);
1149 continue;
1150 }
1151
1152 // If it is safe to turn "load (phi [AI, ptr, ...])" into a PHI of loads
1153 // in the pred blocks, then we can transform this by rewriting the PHI.
1154 if (!isSafePHIToSpeculate(PN, TD))
1155 return false;
1156
1157 InstsToRewrite.insert(PN);
1158 continue;
1159 }
1160
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001161 return false;
1162 }
1163
1164 // If there are no instructions to rewrite, then all uses are load/stores and
1165 // we're done!
1166 if (InstsToRewrite.empty())
1167 return true;
1168
1169 // If we have instructions that need to be rewritten for this to be promotable
1170 // take care of it now.
1171 for (unsigned i = 0, e = InstsToRewrite.size(); i != e; ++i) {
Chris Lattnere3357862011-01-24 01:07:11 +00001172 if (SelectInst *SI = dyn_cast<SelectInst>(InstsToRewrite[i])) {
1173 // Selects in InstsToRewrite only have load uses. Rewrite each as two
1174 // loads with a new select.
1175 while (!SI->use_empty()) {
1176 LoadInst *LI = cast<LoadInst>(SI->use_back());
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001177
Chris Lattnere3357862011-01-24 01:07:11 +00001178 IRBuilder<> Builder(LI);
1179 LoadInst *TrueLoad =
1180 Builder.CreateLoad(SI->getTrueValue(), LI->getName()+".t");
1181 LoadInst *FalseLoad =
1182 Builder.CreateLoad(SI->getFalseValue(), LI->getName()+".t");
1183
1184 // Transfer alignment and TBAA info if present.
1185 TrueLoad->setAlignment(LI->getAlignment());
1186 FalseLoad->setAlignment(LI->getAlignment());
1187 if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) {
1188 TrueLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1189 FalseLoad->setMetadata(LLVMContext::MD_tbaa, Tag);
1190 }
1191
1192 Value *V = Builder.CreateSelect(SI->getCondition(), TrueLoad, FalseLoad);
1193 V->takeName(LI);
1194 LI->replaceAllUsesWith(V);
1195 LI->eraseFromParent();
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001196 }
Chris Lattnere3357862011-01-24 01:07:11 +00001197
1198 // Now that all the loads are gone, the select is gone too.
1199 SI->eraseFromParent();
1200 continue;
1201 }
1202
1203 // Otherwise, we have a PHI node which allows us to push the loads into the
1204 // predecessors.
1205 PHINode *PN = cast<PHINode>(InstsToRewrite[i]);
1206 if (PN->use_empty()) {
1207 PN->eraseFromParent();
1208 continue;
1209 }
1210
1211 const Type *LoadTy = cast<PointerType>(PN->getType())->getElementType();
1212 PHINode *NewPN = PHINode::Create(LoadTy, PN->getName()+".ld", PN);
1213
1214 // Get the TBAA tag and alignment to use from one of the loads. It doesn't
1215 // matter which one we get and if any differ, it doesn't matter.
1216 LoadInst *SomeLoad = cast<LoadInst>(PN->use_back());
1217 MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa);
1218 unsigned Align = SomeLoad->getAlignment();
1219
1220 // Rewrite all loads of the PN to use the new PHI.
1221 while (!PN->use_empty()) {
1222 LoadInst *LI = cast<LoadInst>(PN->use_back());
1223 LI->replaceAllUsesWith(NewPN);
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001224 LI->eraseFromParent();
1225 }
1226
Chris Lattnere3357862011-01-24 01:07:11 +00001227 // Inject loads into all of the pred blocks. Keep track of which blocks we
1228 // insert them into in case we have multiple edges from the same block.
1229 DenseMap<BasicBlock*, LoadInst*> InsertedLoads;
1230
1231 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1232 BasicBlock *Pred = PN->getIncomingBlock(i);
1233 LoadInst *&Load = InsertedLoads[Pred];
1234 if (Load == 0) {
1235 Load = new LoadInst(PN->getIncomingValue(i),
1236 PN->getName() + "." + Pred->getName(),
1237 Pred->getTerminator());
1238 Load->setAlignment(Align);
1239 if (TBAATag) Load->setMetadata(LLVMContext::MD_tbaa, TBAATag);
1240 }
1241
1242 NewPN->addIncoming(Load, Pred);
1243 }
1244
1245 PN->eraseFromParent();
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001246 }
1247
1248 ++NumAdjusted;
1249 return true;
1250}
1251
1252
Chris Lattner38aec322003-09-11 16:45:55 +00001253bool SROA::performPromotion(Function &F) {
1254 std::vector<AllocaInst*> Allocas;
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001255 DominatorTree *DT = 0;
Cameron Zwarichb1686c32011-01-18 03:53:26 +00001256 if (HasDomTree)
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001257 DT = &getAnalysis<DominatorTree>();
Chris Lattner38aec322003-09-11 16:45:55 +00001258
Chris Lattner02a3be02003-09-20 14:39:18 +00001259 BasicBlock &BB = F.getEntryBlock(); // Get the entry node for the function
Chris Lattner38aec322003-09-11 16:45:55 +00001260
Chris Lattnerfe7ea0d2003-09-12 15:36:03 +00001261 bool Changed = false;
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001262 SmallVector<Instruction*, 64> Insts;
Chris Lattner38aec322003-09-11 16:45:55 +00001263 while (1) {
1264 Allocas.clear();
1265
1266 // Find allocas that are safe to promote, by looking at all instructions in
1267 // the entry node
1268 for (BasicBlock::iterator I = BB.begin(), E = --BB.end(); I != E; ++I)
1269 if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) // Is it an alloca?
Chris Lattnerc87c50a2011-01-23 22:04:55 +00001270 if (tryToMakeAllocaBePromotable(AI, TD))
Chris Lattner38aec322003-09-11 16:45:55 +00001271 Allocas.push_back(AI);
1272
1273 if (Allocas.empty()) break;
1274
Cameron Zwarichb1686c32011-01-18 03:53:26 +00001275 if (HasDomTree)
Cameron Zwarich419e8a62011-01-17 17:38:41 +00001276 PromoteMemToReg(Allocas, *DT);
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001277 else {
1278 SSAUpdater SSA;
Chris Lattnerdeaf55f2011-01-15 00:12:35 +00001279 for (unsigned i = 0, e = Allocas.size(); i != e; ++i) {
1280 AllocaInst *AI = Allocas[i];
1281
1282 // Build list of instructions to promote.
1283 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
1284 UI != E; ++UI)
1285 Insts.push_back(cast<Instruction>(*UI));
1286
1287 AllocaPromoter(Insts, SSA).run(AI, Insts);
1288 Insts.clear();
1289 }
Chris Lattnere0a1a5b2011-01-14 07:50:47 +00001290 }
Chris Lattner38aec322003-09-11 16:45:55 +00001291 NumPromoted += Allocas.size();
1292 Changed = true;
1293 }
1294
1295 return Changed;
1296}
1297
Chris Lattner4cc576b2010-04-16 00:24:57 +00001298
Bob Wilson3992feb2010-02-03 17:23:56 +00001299/// ShouldAttemptScalarRepl - Decide if an alloca is a good candidate for
1300/// SROA. It must be a struct or array type with a small number of elements.
1301static bool ShouldAttemptScalarRepl(AllocaInst *AI) {
1302 const Type *T = AI->getAllocatedType();
1303 // Do not promote any struct into more than 32 separate vars.
Chris Lattner963a97f2008-06-22 17:46:21 +00001304 if (const StructType *ST = dyn_cast<StructType>(T))
Bob Wilson3992feb2010-02-03 17:23:56 +00001305 return ST->getNumElements() <= 32;
1306 // Arrays are much less likely to be safe for SROA; only consider
1307 // them if they are very small.
1308 if (const ArrayType *AT = dyn_cast<ArrayType>(T))
1309 return AT->getNumElements() <= 8;
1310 return false;
Chris Lattner963a97f2008-06-22 17:46:21 +00001311}
1312
Chris Lattnerc4472072010-04-15 23:50:26 +00001313
Chris Lattner38aec322003-09-11 16:45:55 +00001314// performScalarRepl - This algorithm is a simple worklist driven algorithm,
1315// which runs on all of the malloc/alloca instructions in the function, removing
1316// them if they are only used by getelementptr instructions.
1317//
1318bool SROA::performScalarRepl(Function &F) {
Victor Hernandez7b929da2009-10-23 21:09:37 +00001319 std::vector<AllocaInst*> WorkList;
Chris Lattnered7b41e2003-05-27 15:45:27 +00001320
Chris Lattner31d80102010-04-15 21:59:20 +00001321 // Scan the entry basic block, adding allocas to the worklist.
Chris Lattner02a3be02003-09-20 14:39:18 +00001322 BasicBlock &BB = F.getEntryBlock();
Chris Lattnered7b41e2003-05-27 15:45:27 +00001323 for (BasicBlock::iterator I = BB.begin(), E = BB.end(); I != E; ++I)
Victor Hernandez7b929da2009-10-23 21:09:37 +00001324 if (AllocaInst *A = dyn_cast<AllocaInst>(I))
Chris Lattnered7b41e2003-05-27 15:45:27 +00001325 WorkList.push_back(A);
1326
1327 // Process the worklist
1328 bool Changed = false;
1329 while (!WorkList.empty()) {
Victor Hernandez7b929da2009-10-23 21:09:37 +00001330 AllocaInst *AI = WorkList.back();
Chris Lattnered7b41e2003-05-27 15:45:27 +00001331 WorkList.pop_back();
Bob Wilson69743022011-01-13 20:59:44 +00001332
Chris Lattneradd2bd72006-12-22 23:14:42 +00001333 // Handle dead allocas trivially. These can be formed by SROA'ing arrays
1334 // with unused elements.
1335 if (AI->use_empty()) {
1336 AI->eraseFromParent();
Chris Lattnerc4472072010-04-15 23:50:26 +00001337 Changed = true;
Chris Lattneradd2bd72006-12-22 23:14:42 +00001338 continue;
1339 }
Chris Lattner7809ecd2009-02-03 01:30:09 +00001340
1341 // If this alloca is impossible for us to promote, reject it early.
1342 if (AI->isArrayAllocation() || !AI->getAllocatedType()->isSized())
1343 continue;
Bob Wilson69743022011-01-13 20:59:44 +00001344
Chris Lattner79b3bd32007-04-25 06:40:51 +00001345 // Check to see if this allocation is only modified by a memcpy/memmove from
1346 // a constant global. If this is the case, we can change all users to use
1347 // the constant global instead. This is commonly produced by the CFE by
1348 // constructs like "void foo() { int A[] = {1,2,3,4,5,6,7,8,9...}; }" if 'A'
1349 // is only subsequently read.
Chris Lattner31d80102010-04-15 21:59:20 +00001350 if (MemTransferInst *TheCopy = isOnlyCopiedFromConstantGlobal(AI)) {
David Greene504c7d82010-01-05 01:27:09 +00001351 DEBUG(dbgs() << "Found alloca equal to global: " << *AI << '\n');
1352 DEBUG(dbgs() << " memcpy = " << *TheCopy << '\n');
Chris Lattner31d80102010-04-15 21:59:20 +00001353 Constant *TheSrc = cast<Constant>(TheCopy->getSource());
Owen Andersonbaf3c402009-07-29 18:55:55 +00001354 AI->replaceAllUsesWith(ConstantExpr::getBitCast(TheSrc, AI->getType()));
Chris Lattner79b3bd32007-04-25 06:40:51 +00001355 TheCopy->eraseFromParent(); // Don't mutate the global.
1356 AI->eraseFromParent();
1357 ++NumGlobals;
1358 Changed = true;
1359 continue;
1360 }
Bob Wilson69743022011-01-13 20:59:44 +00001361
Chris Lattner7809ecd2009-02-03 01:30:09 +00001362 // Check to see if we can perform the core SROA transformation. We cannot
1363 // transform the allocation instruction if it is an array allocation
1364 // (allocations OF arrays are ok though), and an allocation of a scalar
1365 // value cannot be decomposed at all.
Duncan Sands777d2302009-05-09 07:06:46 +00001366 uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
Bill Wendling5a377cb2009-03-03 12:12:58 +00001367
Nick Lewyckyd3aa25e2009-08-17 05:37:31 +00001368 // Do not promote [0 x %struct].
1369 if (AllocaSize == 0) continue;
Bob Wilson69743022011-01-13 20:59:44 +00001370
Chris Lattner31d80102010-04-15 21:59:20 +00001371 // Do not promote any struct whose size is too big.
1372 if (AllocaSize > SRThreshold) continue;
Bob Wilson69743022011-01-13 20:59:44 +00001373
Bob Wilson3992feb2010-02-03 17:23:56 +00001374 // If the alloca looks like a good candidate for scalar replacement, and if
1375 // all its users can be transformed, then split up the aggregate into its
1376 // separate elements.
1377 if (ShouldAttemptScalarRepl(AI) && isSafeAllocaToScalarRepl(AI)) {
1378 DoScalarReplacement(AI, WorkList);
1379 Changed = true;
1380 continue;
1381 }
1382
Chris Lattner6e733d32009-01-28 20:16:43 +00001383 // If we can turn this aggregate value (potentially with casts) into a
1384 // simple scalar value that can be mem2reg'd into a register value.
Chris Lattner2e0d5f82009-01-31 02:28:54 +00001385 // IsNotTrivial tracks whether this is something that mem2reg could have
1386 // promoted itself. If so, we don't want to transform it needlessly. Note
1387 // that we can't just check based on the type: the alloca may be of an i32
1388 // but that has pointer arithmetic to set byte 3 of it or something.
Chris Lattner593375d2010-04-16 00:20:00 +00001389 if (AllocaInst *NewAI =
1390 ConvertToScalarInfo((unsigned)AllocaSize, *TD).TryConvert(AI)) {
Chris Lattner7809ecd2009-02-03 01:30:09 +00001391 NewAI->takeName(AI);
1392 AI->eraseFromParent();
1393 ++NumConverted;
1394 Changed = true;
1395 continue;
Bob Wilson69743022011-01-13 20:59:44 +00001396 }
1397
Chris Lattner7809ecd2009-02-03 01:30:09 +00001398 // Otherwise, couldn't process this alloca.
Chris Lattnered7b41e2003-05-27 15:45:27 +00001399 }
1400
1401 return Changed;
1402}
Chris Lattner5e062a12003-05-30 04:15:41 +00001403
Chris Lattnera10b29b2007-04-25 05:02:56 +00001404/// DoScalarReplacement - This alloca satisfied the isSafeAllocaToScalarRepl
1405/// predicate, do SROA now.
Bob Wilson69743022011-01-13 20:59:44 +00001406void SROA::DoScalarReplacement(AllocaInst *AI,
Victor Hernandez7b929da2009-10-23 21:09:37 +00001407 std::vector<AllocaInst*> &WorkList) {
David Greene504c7d82010-01-05 01:27:09 +00001408 DEBUG(dbgs() << "Found inst to SROA: " << *AI << '\n');
Chris Lattnera10b29b2007-04-25 05:02:56 +00001409 SmallVector<AllocaInst*, 32> ElementAllocas;
1410 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
1411 ElementAllocas.reserve(ST->getNumContainedTypes());
1412 for (unsigned i = 0, e = ST->getNumContainedTypes(); i != e; ++i) {
Bob Wilson69743022011-01-13 20:59:44 +00001413 AllocaInst *NA = new AllocaInst(ST->getContainedType(i), 0,
Chris Lattnera10b29b2007-04-25 05:02:56 +00001414 AI->getAlignment(),
Daniel Dunbarfe09b202009-07-30 17:37:43 +00001415 AI->getName() + "." + Twine(i), AI);
Chris Lattnera10b29b2007-04-25 05:02:56 +00001416 ElementAllocas.push_back(NA);
1417 WorkList.push_back(NA); // Add to worklist for recursive processing
1418 }
1419 } else {
1420 const ArrayType *AT = cast<ArrayType>(AI->getAllocatedType());
1421 ElementAllocas.reserve(AT->getNumElements());
1422 const Type *ElTy = AT->getElementType();
1423 for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
Owen Anderson50dead02009-07-15 23:53:25 +00001424 AllocaInst *NA = new AllocaInst(ElTy, 0, AI->getAlignment(),
Daniel Dunbarfe09b202009-07-30 17:37:43 +00001425 AI->getName() + "." + Twine(i), AI);
Chris Lattnera10b29b2007-04-25 05:02:56 +00001426 ElementAllocas.push_back(NA);
1427 WorkList.push_back(NA); // Add to worklist for recursive processing
1428 }
1429 }
1430
Bob Wilsonb742def2009-12-18 20:14:40 +00001431 // Now that we have created the new alloca instructions, rewrite all the
1432 // uses of the old alloca.
1433 RewriteForScalarRepl(AI, AI, 0, ElementAllocas);
Chris Lattnera59adc42009-12-14 05:11:02 +00001434
Bob Wilsonb742def2009-12-18 20:14:40 +00001435 // Now erase any instructions that were made dead while rewriting the alloca.
1436 DeleteDeadInstructions();
Bob Wilson39c88a62009-12-17 18:34:24 +00001437 AI->eraseFromParent();
Bob Wilsonb742def2009-12-18 20:14:40 +00001438
Dan Gohmanfe601042010-06-22 15:08:57 +00001439 ++NumReplaced;
Chris Lattnera10b29b2007-04-25 05:02:56 +00001440}
Chris Lattnera59adc42009-12-14 05:11:02 +00001441
Bob Wilsonb742def2009-12-18 20:14:40 +00001442/// DeleteDeadInstructions - Erase instructions on the DeadInstrs list,
1443/// recursively including all their operands that become trivially dead.
1444void SROA::DeleteDeadInstructions() {
1445 while (!DeadInsts.empty()) {
1446 Instruction *I = cast<Instruction>(DeadInsts.pop_back_val());
Chris Lattnera59adc42009-12-14 05:11:02 +00001447
Bob Wilsonb742def2009-12-18 20:14:40 +00001448 for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI)
1449 if (Instruction *U = dyn_cast<Instruction>(*OI)) {
1450 // Zero out the operand and see if it becomes trivially dead.
1451 // (But, don't add allocas to the dead instruction list -- they are
1452 // already on the worklist and will be deleted separately.)
1453 *OI = 0;
1454 if (isInstructionTriviallyDead(U) && !isa<AllocaInst>(U))
1455 DeadInsts.push_back(U);
Chris Lattnera59adc42009-12-14 05:11:02 +00001456 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001457
1458 I->eraseFromParent();
Chris Lattnera59adc42009-12-14 05:11:02 +00001459 }
Chris Lattnera59adc42009-12-14 05:11:02 +00001460}
Bob Wilson69743022011-01-13 20:59:44 +00001461
Bob Wilsonb742def2009-12-18 20:14:40 +00001462/// isSafeForScalarRepl - Check if instruction I is a safe use with regard to
1463/// performing scalar replacement of alloca AI. The results are flagged in
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001464/// the Info parameter. Offset indicates the position within AI that is
1465/// referenced by this instruction.
Chris Lattner6c95d242011-01-23 07:29:29 +00001466void SROA::isSafeForScalarRepl(Instruction *I, uint64_t Offset,
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001467 AllocaInfo &Info) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001468 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1469 Instruction *User = cast<Instruction>(*UI);
Chris Lattnerbe883a22003-11-25 21:09:18 +00001470
Bob Wilsonb742def2009-12-18 20:14:40 +00001471 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
Chris Lattner6c95d242011-01-23 07:29:29 +00001472 isSafeForScalarRepl(BC, Offset, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00001473 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001474 uint64_t GEPOffset = Offset;
Chris Lattner6c95d242011-01-23 07:29:29 +00001475 isSafeGEP(GEPI, GEPOffset, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00001476 if (!Info.isUnsafe)
Chris Lattner6c95d242011-01-23 07:29:29 +00001477 isSafeForScalarRepl(GEPI, GEPOffset, Info);
Gabor Greif19101c72010-06-28 11:20:42 +00001478 } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001479 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001480 if (Length == 0)
1481 return MarkUnsafe(Info, User);
Chris Lattner6c95d242011-01-23 07:29:29 +00001482 isSafeMemAccess(Offset, Length->getZExtValue(), 0,
Chris Lattner145c5322011-01-23 08:27:54 +00001483 UI.getOperandNo() == 0, Info, MI,
1484 true /*AllowWholeAccess*/);
Bob Wilsonb742def2009-12-18 20:14:40 +00001485 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001486 if (LI->isVolatile())
1487 return MarkUnsafe(Info, User);
1488 const Type *LIType = LI->getType();
Chris Lattner6c95d242011-01-23 07:29:29 +00001489 isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
Chris Lattner145c5322011-01-23 08:27:54 +00001490 LIType, false, Info, LI, true /*AllowWholeAccess*/);
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001491 Info.hasALoadOrStore = true;
1492
Bob Wilsonb742def2009-12-18 20:14:40 +00001493 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1494 // Store is ok if storing INTO the pointer, not storing the pointer
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001495 if (SI->isVolatile() || SI->getOperand(0) == I)
1496 return MarkUnsafe(Info, User);
1497
1498 const Type *SIType = SI->getOperand(0)->getType();
Chris Lattner6c95d242011-01-23 07:29:29 +00001499 isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
Chris Lattner145c5322011-01-23 08:27:54 +00001500 SIType, true, Info, SI, true /*AllowWholeAccess*/);
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001501 Info.hasALoadOrStore = true;
Chris Lattner145c5322011-01-23 08:27:54 +00001502 } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1503 isSafePHISelectUseForScalarRepl(User, Offset, Info);
1504 } else {
1505 return MarkUnsafe(Info, User);
1506 }
1507 if (Info.isUnsafe) return;
1508 }
1509}
1510
1511
1512/// isSafePHIUseForScalarRepl - If we see a PHI node or select using a pointer
1513/// derived from the alloca, we can often still split the alloca into elements.
1514/// This is useful if we have a large alloca where one element is phi'd
1515/// together somewhere: we can SRoA and promote all the other elements even if
1516/// we end up not being able to promote this one.
1517///
1518/// All we require is that the uses of the PHI do not index into other parts of
1519/// the alloca. The most important use case for this is single load and stores
1520/// that are PHI'd together, which can happen due to code sinking.
1521void SROA::isSafePHISelectUseForScalarRepl(Instruction *I, uint64_t Offset,
1522 AllocaInfo &Info) {
1523 // If we've already checked this PHI, don't do it again.
1524 if (PHINode *PN = dyn_cast<PHINode>(I))
1525 if (!Info.CheckedPHIs.insert(PN))
1526 return;
1527
1528 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E; ++UI) {
1529 Instruction *User = cast<Instruction>(*UI);
1530
1531 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1532 isSafePHISelectUseForScalarRepl(BC, Offset, Info);
1533 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
1534 // Only allow "bitcast" GEPs for simplicity. We could generalize this,
1535 // but would have to prove that we're staying inside of an element being
1536 // promoted.
1537 if (!GEPI->hasAllZeroIndices())
1538 return MarkUnsafe(Info, User);
1539 isSafePHISelectUseForScalarRepl(GEPI, Offset, Info);
1540 } else if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
1541 if (LI->isVolatile())
1542 return MarkUnsafe(Info, User);
1543 const Type *LIType = LI->getType();
1544 isSafeMemAccess(Offset, TD->getTypeAllocSize(LIType),
1545 LIType, false, Info, LI, false /*AllowWholeAccess*/);
1546 Info.hasALoadOrStore = true;
1547
1548 } else if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
1549 // Store is ok if storing INTO the pointer, not storing the pointer
1550 if (SI->isVolatile() || SI->getOperand(0) == I)
1551 return MarkUnsafe(Info, User);
1552
1553 const Type *SIType = SI->getOperand(0)->getType();
1554 isSafeMemAccess(Offset, TD->getTypeAllocSize(SIType),
1555 SIType, true, Info, SI, false /*AllowWholeAccess*/);
1556 Info.hasALoadOrStore = true;
1557 } else if (isa<PHINode>(User) || isa<SelectInst>(User)) {
1558 isSafePHISelectUseForScalarRepl(User, Offset, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00001559 } else {
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001560 return MarkUnsafe(Info, User);
Bob Wilsonb742def2009-12-18 20:14:40 +00001561 }
1562 if (Info.isUnsafe) return;
Bob Wilson39c88a62009-12-17 18:34:24 +00001563 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001564}
Bob Wilson39c88a62009-12-17 18:34:24 +00001565
Bob Wilsonb742def2009-12-18 20:14:40 +00001566/// isSafeGEP - Check if a GEP instruction can be handled for scalar
1567/// replacement. It is safe when all the indices are constant, in-bounds
1568/// references, and when the resulting offset corresponds to an element within
1569/// the alloca type. The results are flagged in the Info parameter. Upon
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001570/// return, Offset is adjusted as specified by the GEP indices.
Chris Lattner6c95d242011-01-23 07:29:29 +00001571void SROA::isSafeGEP(GetElementPtrInst *GEPI,
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001572 uint64_t &Offset, AllocaInfo &Info) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001573 gep_type_iterator GEPIt = gep_type_begin(GEPI), E = gep_type_end(GEPI);
1574 if (GEPIt == E)
1575 return;
Bob Wilson39c88a62009-12-17 18:34:24 +00001576
Chris Lattner88e6dc82008-08-23 05:21:06 +00001577 // Walk through the GEP type indices, checking the types that this indexes
1578 // into.
Bob Wilsonb742def2009-12-18 20:14:40 +00001579 for (; GEPIt != E; ++GEPIt) {
Chris Lattner88e6dc82008-08-23 05:21:06 +00001580 // Ignore struct elements, no extra checking needed for these.
Duncan Sands1df98592010-02-16 11:11:14 +00001581 if ((*GEPIt)->isStructTy())
Chris Lattner88e6dc82008-08-23 05:21:06 +00001582 continue;
Matthijs Kooijman5fac55f2008-10-06 16:23:31 +00001583
Bob Wilsonb742def2009-12-18 20:14:40 +00001584 ConstantInt *IdxVal = dyn_cast<ConstantInt>(GEPIt.getOperand());
1585 if (!IdxVal)
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001586 return MarkUnsafe(Info, GEPI);
Chris Lattner88e6dc82008-08-23 05:21:06 +00001587 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001588
Bob Wilsonf27a4cd2009-12-22 06:57:14 +00001589 // Compute the offset due to this GEP and check if the alloca has a
1590 // component element at that offset.
Bob Wilson3c3af5d2009-12-21 18:39:47 +00001591 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1592 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1593 &Indices[0], Indices.size());
Chris Lattner6c95d242011-01-23 07:29:29 +00001594 if (!TypeHasComponent(Info.AI->getAllocatedType(), Offset, 0))
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001595 MarkUnsafe(Info, GEPI);
Chris Lattner5e062a12003-05-30 04:15:41 +00001596}
1597
Bob Wilson704d1342011-01-13 17:45:11 +00001598/// isHomogeneousAggregate - Check if type T is a struct or array containing
1599/// elements of the same type (which is always true for arrays). If so,
1600/// return true with NumElts and EltTy set to the number of elements and the
1601/// element type, respectively.
1602static bool isHomogeneousAggregate(const Type *T, unsigned &NumElts,
1603 const Type *&EltTy) {
1604 if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1605 NumElts = AT->getNumElements();
Bob Wilsonf0908ae2011-01-13 18:26:59 +00001606 EltTy = (NumElts == 0 ? 0 : AT->getElementType());
Bob Wilson704d1342011-01-13 17:45:11 +00001607 return true;
1608 }
1609 if (const StructType *ST = dyn_cast<StructType>(T)) {
1610 NumElts = ST->getNumContainedTypes();
Bob Wilsonf0908ae2011-01-13 18:26:59 +00001611 EltTy = (NumElts == 0 ? 0 : ST->getContainedType(0));
Bob Wilson704d1342011-01-13 17:45:11 +00001612 for (unsigned n = 1; n < NumElts; ++n) {
1613 if (ST->getContainedType(n) != EltTy)
1614 return false;
1615 }
1616 return true;
1617 }
1618 return false;
1619}
1620
1621/// isCompatibleAggregate - Check if T1 and T2 are either the same type or are
1622/// "homogeneous" aggregates with the same element type and number of elements.
1623static bool isCompatibleAggregate(const Type *T1, const Type *T2) {
1624 if (T1 == T2)
1625 return true;
1626
1627 unsigned NumElts1, NumElts2;
1628 const Type *EltTy1, *EltTy2;
1629 if (isHomogeneousAggregate(T1, NumElts1, EltTy1) &&
1630 isHomogeneousAggregate(T2, NumElts2, EltTy2) &&
1631 NumElts1 == NumElts2 &&
1632 EltTy1 == EltTy2)
1633 return true;
1634
1635 return false;
1636}
1637
Bob Wilsonb742def2009-12-18 20:14:40 +00001638/// isSafeMemAccess - Check if a load/store/memcpy operates on the entire AI
1639/// alloca or has an offset and size that corresponds to a component element
1640/// within it. The offset checked here may have been formed from a GEP with a
1641/// pointer bitcasted to a different type.
Chris Lattner145c5322011-01-23 08:27:54 +00001642///
1643/// If AllowWholeAccess is true, then this allows uses of the entire alloca as a
1644/// unit. If false, it only allows accesses known to be in a single element.
Chris Lattner6c95d242011-01-23 07:29:29 +00001645void SROA::isSafeMemAccess(uint64_t Offset, uint64_t MemSize,
Bob Wilsonb742def2009-12-18 20:14:40 +00001646 const Type *MemOpType, bool isStore,
Chris Lattner145c5322011-01-23 08:27:54 +00001647 AllocaInfo &Info, Instruction *TheAccess,
1648 bool AllowWholeAccess) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001649 // Check if this is a load/store of the entire alloca.
Chris Lattner145c5322011-01-23 08:27:54 +00001650 if (Offset == 0 && AllowWholeAccess &&
Chris Lattner6c95d242011-01-23 07:29:29 +00001651 MemSize == TD->getTypeAllocSize(Info.AI->getAllocatedType())) {
Bob Wilson704d1342011-01-13 17:45:11 +00001652 // This can be safe for MemIntrinsics (where MemOpType is 0) and integer
1653 // loads/stores (which are essentially the same as the MemIntrinsics with
1654 // regard to copying padding between elements). But, if an alloca is
1655 // flagged as both a source and destination of such operations, we'll need
1656 // to check later for padding between elements.
1657 if (!MemOpType || MemOpType->isIntegerTy()) {
1658 if (isStore)
1659 Info.isMemCpyDst = true;
1660 else
1661 Info.isMemCpySrc = true;
Bob Wilsonb742def2009-12-18 20:14:40 +00001662 return;
1663 }
Bob Wilson704d1342011-01-13 17:45:11 +00001664 // This is also safe for references using a type that is compatible with
1665 // the type of the alloca, so that loads/stores can be rewritten using
1666 // insertvalue/extractvalue.
Chris Lattner6c95d242011-01-23 07:29:29 +00001667 if (isCompatibleAggregate(MemOpType, Info.AI->getAllocatedType())) {
Chris Lattner7e9b4272011-01-16 06:18:28 +00001668 Info.hasSubelementAccess = true;
Bob Wilson704d1342011-01-13 17:45:11 +00001669 return;
Chris Lattner7e9b4272011-01-16 06:18:28 +00001670 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001671 }
1672 // Check if the offset/size correspond to a component within the alloca type.
Chris Lattner6c95d242011-01-23 07:29:29 +00001673 const Type *T = Info.AI->getAllocatedType();
Chris Lattner7e9b4272011-01-16 06:18:28 +00001674 if (TypeHasComponent(T, Offset, MemSize)) {
1675 Info.hasSubelementAccess = true;
Bob Wilsonb742def2009-12-18 20:14:40 +00001676 return;
Chris Lattner7e9b4272011-01-16 06:18:28 +00001677 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001678
Chris Lattnerd01a0da2011-01-23 07:05:44 +00001679 return MarkUnsafe(Info, TheAccess);
Bob Wilsonb742def2009-12-18 20:14:40 +00001680}
1681
1682/// TypeHasComponent - Return true if T has a component type with the
1683/// specified offset and size. If Size is zero, do not check the size.
1684bool SROA::TypeHasComponent(const Type *T, uint64_t Offset, uint64_t Size) {
1685 const Type *EltTy;
1686 uint64_t EltSize;
1687 if (const StructType *ST = dyn_cast<StructType>(T)) {
1688 const StructLayout *Layout = TD->getStructLayout(ST);
1689 unsigned EltIdx = Layout->getElementContainingOffset(Offset);
1690 EltTy = ST->getContainedType(EltIdx);
1691 EltSize = TD->getTypeAllocSize(EltTy);
1692 Offset -= Layout->getElementOffset(EltIdx);
1693 } else if (const ArrayType *AT = dyn_cast<ArrayType>(T)) {
1694 EltTy = AT->getElementType();
1695 EltSize = TD->getTypeAllocSize(EltTy);
Bob Wilsonf27a4cd2009-12-22 06:57:14 +00001696 if (Offset >= AT->getNumElements() * EltSize)
1697 return false;
Bob Wilsonb742def2009-12-18 20:14:40 +00001698 Offset %= EltSize;
1699 } else {
1700 return false;
1701 }
1702 if (Offset == 0 && (Size == 0 || EltSize == Size))
1703 return true;
1704 // Check if the component spans multiple elements.
1705 if (Offset + Size > EltSize)
1706 return false;
1707 return TypeHasComponent(EltTy, Offset, Size);
1708}
1709
1710/// RewriteForScalarRepl - Alloca AI is being split into NewElts, so rewrite
1711/// the instruction I, which references it, to use the separate elements.
1712/// Offset indicates the position within AI that is referenced by this
1713/// instruction.
1714void SROA::RewriteForScalarRepl(Instruction *I, AllocaInst *AI, uint64_t Offset,
1715 SmallVector<AllocaInst*, 32> &NewElts) {
Chris Lattner145c5322011-01-23 08:27:54 +00001716 for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI!=E;) {
1717 Use &TheUse = UI.getUse();
1718 Instruction *User = cast<Instruction>(*UI++);
Bob Wilsonb742def2009-12-18 20:14:40 +00001719
1720 if (BitCastInst *BC = dyn_cast<BitCastInst>(User)) {
1721 RewriteBitCast(BC, AI, Offset, NewElts);
Chris Lattner145c5322011-01-23 08:27:54 +00001722 continue;
1723 }
1724
1725 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001726 RewriteGEP(GEPI, AI, Offset, NewElts);
Chris Lattner145c5322011-01-23 08:27:54 +00001727 continue;
1728 }
1729
1730 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001731 ConstantInt *Length = dyn_cast<ConstantInt>(MI->getLength());
1732 uint64_t MemSize = Length->getZExtValue();
1733 if (Offset == 0 &&
1734 MemSize == TD->getTypeAllocSize(AI->getAllocatedType()))
1735 RewriteMemIntrinUserOfAlloca(MI, I, AI, NewElts);
Bob Wilsone88728d2009-12-19 06:53:17 +00001736 // Otherwise the intrinsic can only touch a single element and the
1737 // address operand will be updated, so nothing else needs to be done.
Chris Lattner145c5322011-01-23 08:27:54 +00001738 continue;
1739 }
1740
1741 if (LoadInst *LI = dyn_cast<LoadInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001742 const Type *LIType = LI->getType();
Chris Lattner192228e2011-01-16 05:28:59 +00001743
Bob Wilson704d1342011-01-13 17:45:11 +00001744 if (isCompatibleAggregate(LIType, AI->getAllocatedType())) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001745 // Replace:
1746 // %res = load { i32, i32 }* %alloc
1747 // with:
1748 // %load.0 = load i32* %alloc.0
1749 // %insert.0 insertvalue { i32, i32 } zeroinitializer, i32 %load.0, 0
1750 // %load.1 = load i32* %alloc.1
1751 // %insert = insertvalue { i32, i32 } %insert.0, i32 %load.1, 1
1752 // (Also works for arrays instead of structs)
1753 Value *Insert = UndefValue::get(LIType);
1754 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1755 Value *Load = new LoadInst(NewElts[i], "load", LI);
1756 Insert = InsertValueInst::Create(Insert, Load, i, "insert", LI);
1757 }
1758 LI->replaceAllUsesWith(Insert);
1759 DeadInsts.push_back(LI);
Duncan Sands1df98592010-02-16 11:11:14 +00001760 } else if (LIType->isIntegerTy() &&
Bob Wilsonb742def2009-12-18 20:14:40 +00001761 TD->getTypeAllocSize(LIType) ==
1762 TD->getTypeAllocSize(AI->getAllocatedType())) {
1763 // If this is a load of the entire alloca to an integer, rewrite it.
1764 RewriteLoadUserOfWholeAlloca(LI, AI, NewElts);
1765 }
Chris Lattner145c5322011-01-23 08:27:54 +00001766 continue;
1767 }
1768
1769 if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001770 Value *Val = SI->getOperand(0);
1771 const Type *SIType = Val->getType();
Bob Wilson704d1342011-01-13 17:45:11 +00001772 if (isCompatibleAggregate(SIType, AI->getAllocatedType())) {
Bob Wilsonb742def2009-12-18 20:14:40 +00001773 // Replace:
1774 // store { i32, i32 } %val, { i32, i32 }* %alloc
1775 // with:
1776 // %val.0 = extractvalue { i32, i32 } %val, 0
1777 // store i32 %val.0, i32* %alloc.0
1778 // %val.1 = extractvalue { i32, i32 } %val, 1
1779 // store i32 %val.1, i32* %alloc.1
1780 // (Also works for arrays instead of structs)
1781 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1782 Value *Extract = ExtractValueInst::Create(Val, i, Val->getName(), SI);
1783 new StoreInst(Extract, NewElts[i], SI);
1784 }
1785 DeadInsts.push_back(SI);
Duncan Sands1df98592010-02-16 11:11:14 +00001786 } else if (SIType->isIntegerTy() &&
Bob Wilsonb742def2009-12-18 20:14:40 +00001787 TD->getTypeAllocSize(SIType) ==
1788 TD->getTypeAllocSize(AI->getAllocatedType())) {
1789 // If this is a store of the entire alloca from an integer, rewrite it.
1790 RewriteStoreUserOfWholeAlloca(SI, AI, NewElts);
1791 }
Chris Lattner145c5322011-01-23 08:27:54 +00001792 continue;
1793 }
1794
1795 if (isa<SelectInst>(User) || isa<PHINode>(User)) {
1796 // If we have a PHI user of the alloca itself (as opposed to a GEP or
1797 // bitcast) we have to rewrite it. GEP and bitcast uses will be RAUW'd to
1798 // the new pointer.
1799 if (!isa<AllocaInst>(I)) continue;
1800
1801 assert(Offset == 0 && NewElts[0] &&
1802 "Direct alloca use should have a zero offset");
1803
1804 // If we have a use of the alloca, we know the derived uses will be
1805 // utilizing just the first element of the scalarized result. Insert a
1806 // bitcast of the first alloca before the user as required.
1807 AllocaInst *NewAI = NewElts[0];
1808 BitCastInst *BCI = new BitCastInst(NewAI, AI->getType(), "", NewAI);
1809 NewAI->moveBefore(BCI);
1810 TheUse = BCI;
1811 continue;
Bob Wilsonb742def2009-12-18 20:14:40 +00001812 }
Bob Wilson39c88a62009-12-17 18:34:24 +00001813 }
1814}
1815
Bob Wilsonb742def2009-12-18 20:14:40 +00001816/// RewriteBitCast - Update a bitcast reference to the alloca being replaced
1817/// and recursively continue updating all of its uses.
1818void SROA::RewriteBitCast(BitCastInst *BC, AllocaInst *AI, uint64_t Offset,
1819 SmallVector<AllocaInst*, 32> &NewElts) {
1820 RewriteForScalarRepl(BC, AI, Offset, NewElts);
1821 if (BC->getOperand(0) != AI)
1822 return;
Bob Wilson39c88a62009-12-17 18:34:24 +00001823
Bob Wilsonb742def2009-12-18 20:14:40 +00001824 // The bitcast references the original alloca. Replace its uses with
1825 // references to the first new element alloca.
1826 Instruction *Val = NewElts[0];
1827 if (Val->getType() != BC->getDestTy()) {
1828 Val = new BitCastInst(Val, BC->getDestTy(), "", BC);
1829 Val->takeName(BC);
Daniel Dunbarfca55c82009-12-16 10:56:17 +00001830 }
Bob Wilsonb742def2009-12-18 20:14:40 +00001831 BC->replaceAllUsesWith(Val);
1832 DeadInsts.push_back(BC);
Daniel Dunbarfca55c82009-12-16 10:56:17 +00001833}
1834
Bob Wilsonb742def2009-12-18 20:14:40 +00001835/// FindElementAndOffset - Return the index of the element containing Offset
1836/// within the specified type, which must be either a struct or an array.
1837/// Sets T to the type of the element and Offset to the offset within that
Bob Wilsone88728d2009-12-19 06:53:17 +00001838/// element. IdxTy is set to the type of the index result to be used in a
1839/// GEP instruction.
1840uint64_t SROA::FindElementAndOffset(const Type *&T, uint64_t &Offset,
1841 const Type *&IdxTy) {
1842 uint64_t Idx = 0;
Bob Wilsonb742def2009-12-18 20:14:40 +00001843 if (const StructType *ST = dyn_cast<StructType>(T)) {
1844 const StructLayout *Layout = TD->getStructLayout(ST);
1845 Idx = Layout->getElementContainingOffset(Offset);
1846 T = ST->getContainedType(Idx);
1847 Offset -= Layout->getElementOffset(Idx);
Bob Wilsone88728d2009-12-19 06:53:17 +00001848 IdxTy = Type::getInt32Ty(T->getContext());
1849 return Idx;
Chris Lattnera59adc42009-12-14 05:11:02 +00001850 }
Bob Wilsone88728d2009-12-19 06:53:17 +00001851 const ArrayType *AT = cast<ArrayType>(T);
1852 T = AT->getElementType();
1853 uint64_t EltSize = TD->getTypeAllocSize(T);
1854 Idx = Offset / EltSize;
1855 Offset -= Idx * EltSize;
1856 IdxTy = Type::getInt64Ty(T->getContext());
Bob Wilsonb742def2009-12-18 20:14:40 +00001857 return Idx;
1858}
1859
1860/// RewriteGEP - Check if this GEP instruction moves the pointer across
1861/// elements of the alloca that are being split apart, and if so, rewrite
1862/// the GEP to be relative to the new element.
1863void SROA::RewriteGEP(GetElementPtrInst *GEPI, AllocaInst *AI, uint64_t Offset,
1864 SmallVector<AllocaInst*, 32> &NewElts) {
1865 uint64_t OldOffset = Offset;
1866 SmallVector<Value*, 8> Indices(GEPI->op_begin() + 1, GEPI->op_end());
1867 Offset += TD->getIndexedOffset(GEPI->getPointerOperandType(),
1868 &Indices[0], Indices.size());
1869
1870 RewriteForScalarRepl(GEPI, AI, Offset, NewElts);
1871
1872 const Type *T = AI->getAllocatedType();
Bob Wilsone88728d2009-12-19 06:53:17 +00001873 const Type *IdxTy;
1874 uint64_t OldIdx = FindElementAndOffset(T, OldOffset, IdxTy);
Bob Wilsonb742def2009-12-18 20:14:40 +00001875 if (GEPI->getOperand(0) == AI)
Bob Wilsone88728d2009-12-19 06:53:17 +00001876 OldIdx = ~0ULL; // Force the GEP to be rewritten.
Bob Wilsonb742def2009-12-18 20:14:40 +00001877
1878 T = AI->getAllocatedType();
1879 uint64_t EltOffset = Offset;
Bob Wilsone88728d2009-12-19 06:53:17 +00001880 uint64_t Idx = FindElementAndOffset(T, EltOffset, IdxTy);
Bob Wilsonb742def2009-12-18 20:14:40 +00001881
1882 // If this GEP does not move the pointer across elements of the alloca
1883 // being split, then it does not needs to be rewritten.
1884 if (Idx == OldIdx)
1885 return;
1886
1887 const Type *i32Ty = Type::getInt32Ty(AI->getContext());
1888 SmallVector<Value*, 8> NewArgs;
1889 NewArgs.push_back(Constant::getNullValue(i32Ty));
1890 while (EltOffset != 0) {
Bob Wilsone88728d2009-12-19 06:53:17 +00001891 uint64_t EltIdx = FindElementAndOffset(T, EltOffset, IdxTy);
1892 NewArgs.push_back(ConstantInt::get(IdxTy, EltIdx));
Bob Wilsonb742def2009-12-18 20:14:40 +00001893 }
1894 Instruction *Val = NewElts[Idx];
1895 if (NewArgs.size() > 1) {
1896 Val = GetElementPtrInst::CreateInBounds(Val, NewArgs.begin(),
1897 NewArgs.end(), "", GEPI);
1898 Val->takeName(GEPI);
1899 }
1900 if (Val->getType() != GEPI->getType())
Benjamin Kramer2d64ca02010-01-27 19:46:52 +00001901 Val = new BitCastInst(Val, GEPI->getType(), Val->getName(), GEPI);
Bob Wilsonb742def2009-12-18 20:14:40 +00001902 GEPI->replaceAllUsesWith(Val);
1903 DeadInsts.push_back(GEPI);
Chris Lattnerd93afec2009-01-07 07:18:45 +00001904}
1905
1906/// RewriteMemIntrinUserOfAlloca - MI is a memcpy/memset/memmove from or to AI.
1907/// Rewrite it to copy or set the elements of the scalarized memory.
Bob Wilsonb742def2009-12-18 20:14:40 +00001908void SROA::RewriteMemIntrinUserOfAlloca(MemIntrinsic *MI, Instruction *Inst,
Victor Hernandez7b929da2009-10-23 21:09:37 +00001909 AllocaInst *AI,
Chris Lattnerd93afec2009-01-07 07:18:45 +00001910 SmallVector<AllocaInst*, 32> &NewElts) {
Chris Lattnerd93afec2009-01-07 07:18:45 +00001911 // If this is a memcpy/memmove, construct the other pointer as the
Chris Lattner88fe1ad2009-03-04 19:23:25 +00001912 // appropriate type. The "Other" pointer is the pointer that goes to memory
1913 // that doesn't have anything to do with the alloca that we are promoting. For
1914 // memset, this Value* stays null.
Chris Lattnerd93afec2009-01-07 07:18:45 +00001915 Value *OtherPtr = 0;
Chris Lattnerdfe964c2009-03-08 03:59:00 +00001916 unsigned MemAlignment = MI->getAlignment();
Chris Lattner3ce5e882009-03-08 03:37:16 +00001917 if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(MI)) { // memmove/memcopy
Bob Wilsonb742def2009-12-18 20:14:40 +00001918 if (Inst == MTI->getRawDest())
Chris Lattner3ce5e882009-03-08 03:37:16 +00001919 OtherPtr = MTI->getRawSource();
Chris Lattnerd93afec2009-01-07 07:18:45 +00001920 else {
Bob Wilsonb742def2009-12-18 20:14:40 +00001921 assert(Inst == MTI->getRawSource());
Chris Lattner3ce5e882009-03-08 03:37:16 +00001922 OtherPtr = MTI->getRawDest();
Chris Lattnerd93afec2009-01-07 07:18:45 +00001923 }
1924 }
Bob Wilson78c50b82009-12-08 18:22:03 +00001925
Chris Lattnerd93afec2009-01-07 07:18:45 +00001926 // If there is an other pointer, we want to convert it to the same pointer
1927 // type as AI has, so we can GEP through it safely.
1928 if (OtherPtr) {
Chris Lattner0238f8c2010-07-08 00:27:05 +00001929 unsigned AddrSpace =
1930 cast<PointerType>(OtherPtr->getType())->getAddressSpace();
Bob Wilsonb742def2009-12-18 20:14:40 +00001931
1932 // Remove bitcasts and all-zero GEPs from OtherPtr. This is an
1933 // optimization, but it's also required to detect the corner case where
1934 // both pointer operands are referencing the same memory, and where
1935 // OtherPtr may be a bitcast or GEP that currently being rewritten. (This
1936 // function is only called for mem intrinsics that access the whole
1937 // aggregate, so non-zero GEPs are not an issue here.)
Chris Lattner0238f8c2010-07-08 00:27:05 +00001938 OtherPtr = OtherPtr->stripPointerCasts();
Bob Wilson69743022011-01-13 20:59:44 +00001939
Bob Wilsona756b1d2010-01-19 04:32:48 +00001940 // Copying the alloca to itself is a no-op: just delete it.
1941 if (OtherPtr == AI || OtherPtr == NewElts[0]) {
1942 // This code will run twice for a no-op memcpy -- once for each operand.
1943 // Put only one reference to MI on the DeadInsts list.
1944 for (SmallVector<Value*, 32>::const_iterator I = DeadInsts.begin(),
1945 E = DeadInsts.end(); I != E; ++I)
1946 if (*I == MI) return;
1947 DeadInsts.push_back(MI);
Bob Wilsonb742def2009-12-18 20:14:40 +00001948 return;
Bob Wilsona756b1d2010-01-19 04:32:48 +00001949 }
Bob Wilson69743022011-01-13 20:59:44 +00001950
Chris Lattnerd93afec2009-01-07 07:18:45 +00001951 // If the pointer is not the right type, insert a bitcast to the right
1952 // type.
Chris Lattner0238f8c2010-07-08 00:27:05 +00001953 const Type *NewTy =
1954 PointerType::get(AI->getType()->getElementType(), AddrSpace);
Bob Wilson69743022011-01-13 20:59:44 +00001955
Chris Lattner0238f8c2010-07-08 00:27:05 +00001956 if (OtherPtr->getType() != NewTy)
1957 OtherPtr = new BitCastInst(OtherPtr, NewTy, OtherPtr->getName(), MI);
Chris Lattnerd93afec2009-01-07 07:18:45 +00001958 }
Bob Wilson69743022011-01-13 20:59:44 +00001959
Chris Lattnerd93afec2009-01-07 07:18:45 +00001960 // Process each element of the aggregate.
Bob Wilsonb742def2009-12-18 20:14:40 +00001961 bool SROADest = MI->getRawDest() == Inst;
Bob Wilson69743022011-01-13 20:59:44 +00001962
Owen Anderson1d0be152009-08-13 21:58:54 +00001963 Constant *Zero = Constant::getNullValue(Type::getInt32Ty(MI->getContext()));
Chris Lattnerd93afec2009-01-07 07:18:45 +00001964
1965 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
1966 // If this is a memcpy/memmove, emit a GEP of the other element address.
1967 Value *OtherElt = 0;
Chris Lattner1541e0f2009-03-04 19:20:50 +00001968 unsigned OtherEltAlign = MemAlignment;
Bob Wilson69743022011-01-13 20:59:44 +00001969
Bob Wilsona756b1d2010-01-19 04:32:48 +00001970 if (OtherPtr) {
Owen Anderson1d0be152009-08-13 21:58:54 +00001971 Value *Idx[2] = { Zero,
1972 ConstantInt::get(Type::getInt32Ty(MI->getContext()), i) };
Bob Wilsonb742def2009-12-18 20:14:40 +00001973 OtherElt = GetElementPtrInst::CreateInBounds(OtherPtr, Idx, Idx + 2,
Benjamin Kramer2d64ca02010-01-27 19:46:52 +00001974 OtherPtr->getName()+"."+Twine(i),
Bob Wilsonb742def2009-12-18 20:14:40 +00001975 MI);
Chris Lattner1541e0f2009-03-04 19:20:50 +00001976 uint64_t EltOffset;
1977 const PointerType *OtherPtrTy = cast<PointerType>(OtherPtr->getType());
Chris Lattnerd55c1c12010-04-16 01:05:38 +00001978 const Type *OtherTy = OtherPtrTy->getElementType();
1979 if (const StructType *ST = dyn_cast<StructType>(OtherTy)) {
Chris Lattner1541e0f2009-03-04 19:20:50 +00001980 EltOffset = TD->getStructLayout(ST)->getElementOffset(i);
1981 } else {
Chris Lattnerd55c1c12010-04-16 01:05:38 +00001982 const Type *EltTy = cast<SequentialType>(OtherTy)->getElementType();
Duncan Sands777d2302009-05-09 07:06:46 +00001983 EltOffset = TD->getTypeAllocSize(EltTy)*i;
Chris Lattner1541e0f2009-03-04 19:20:50 +00001984 }
Bob Wilson69743022011-01-13 20:59:44 +00001985
Chris Lattner1541e0f2009-03-04 19:20:50 +00001986 // The alignment of the other pointer is the guaranteed alignment of the
1987 // element, which is affected by both the known alignment of the whole
1988 // mem intrinsic and the alignment of the element. If the alignment of
1989 // the memcpy (f.e.) is 32 but the element is at a 4-byte offset, then the
1990 // known alignment is just 4 bytes.
1991 OtherEltAlign = (unsigned)MinAlign(OtherEltAlign, EltOffset);
Chris Lattnerc14d3ca2007-03-08 06:36:54 +00001992 }
Bob Wilson69743022011-01-13 20:59:44 +00001993
Chris Lattnerd93afec2009-01-07 07:18:45 +00001994 Value *EltPtr = NewElts[i];
Chris Lattner1541e0f2009-03-04 19:20:50 +00001995 const Type *EltTy = cast<PointerType>(EltPtr->getType())->getElementType();
Bob Wilson69743022011-01-13 20:59:44 +00001996
Chris Lattnerd93afec2009-01-07 07:18:45 +00001997 // If we got down to a scalar, insert a load or store as appropriate.
1998 if (EltTy->isSingleValueType()) {
Chris Lattner3ce5e882009-03-08 03:37:16 +00001999 if (isa<MemTransferInst>(MI)) {
Chris Lattner1541e0f2009-03-04 19:20:50 +00002000 if (SROADest) {
2001 // From Other to Alloca.
2002 Value *Elt = new LoadInst(OtherElt, "tmp", false, OtherEltAlign, MI);
2003 new StoreInst(Elt, EltPtr, MI);
2004 } else {
2005 // From Alloca to Other.
2006 Value *Elt = new LoadInst(EltPtr, "tmp", MI);
2007 new StoreInst(Elt, OtherElt, false, OtherEltAlign, MI);
2008 }
Chris Lattnerd93afec2009-01-07 07:18:45 +00002009 continue;
2010 }
2011 assert(isa<MemSetInst>(MI));
Bob Wilson69743022011-01-13 20:59:44 +00002012
Chris Lattnerd93afec2009-01-07 07:18:45 +00002013 // If the stored element is zero (common case), just store a null
2014 // constant.
2015 Constant *StoreVal;
Gabor Greif6f14c8c2010-06-30 09:16:16 +00002016 if (ConstantInt *CI = dyn_cast<ConstantInt>(MI->getArgOperand(1))) {
Chris Lattnerd93afec2009-01-07 07:18:45 +00002017 if (CI->isZero()) {
Owen Andersona7235ea2009-07-31 20:28:14 +00002018 StoreVal = Constant::getNullValue(EltTy); // 0.0, null, 0, <0,0>
Chris Lattnerd93afec2009-01-07 07:18:45 +00002019 } else {
2020 // If EltTy is a vector type, get the element type.
Dan Gohman44118f02009-06-16 00:20:26 +00002021 const Type *ValTy = EltTy->getScalarType();
2022
Chris Lattnerd93afec2009-01-07 07:18:45 +00002023 // Construct an integer with the right value.
2024 unsigned EltSize = TD->getTypeSizeInBits(ValTy);
2025 APInt OneVal(EltSize, CI->getZExtValue());
2026 APInt TotalVal(OneVal);
2027 // Set each byte.
2028 for (unsigned i = 0; 8*i < EltSize; ++i) {
2029 TotalVal = TotalVal.shl(8);
2030 TotalVal |= OneVal;
2031 }
Bob Wilson69743022011-01-13 20:59:44 +00002032
Chris Lattnerd93afec2009-01-07 07:18:45 +00002033 // Convert the integer value to the appropriate type.
Chris Lattnerd55c1c12010-04-16 01:05:38 +00002034 StoreVal = ConstantInt::get(CI->getContext(), TotalVal);
Duncan Sands1df98592010-02-16 11:11:14 +00002035 if (ValTy->isPointerTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +00002036 StoreVal = ConstantExpr::getIntToPtr(StoreVal, ValTy);
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002037 else if (ValTy->isFloatingPointTy())
Owen Andersonbaf3c402009-07-29 18:55:55 +00002038 StoreVal = ConstantExpr::getBitCast(StoreVal, ValTy);
Chris Lattnerd93afec2009-01-07 07:18:45 +00002039 assert(StoreVal->getType() == ValTy && "Type mismatch!");
Bob Wilson69743022011-01-13 20:59:44 +00002040
Chris Lattnerd93afec2009-01-07 07:18:45 +00002041 // If the requested value was a vector constant, create it.
2042 if (EltTy != ValTy) {
2043 unsigned NumElts = cast<VectorType>(ValTy)->getNumElements();
2044 SmallVector<Constant*, 16> Elts(NumElts, StoreVal);
Chris Lattner2ca5c862011-02-15 00:14:00 +00002045 StoreVal = ConstantVector::get(Elts);
Chris Lattnerd93afec2009-01-07 07:18:45 +00002046 }
2047 }
2048 new StoreInst(StoreVal, EltPtr, MI);
2049 continue;
2050 }
2051 // Otherwise, if we're storing a byte variable, use a memset call for
2052 // this element.
2053 }
Bob Wilson69743022011-01-13 20:59:44 +00002054
Duncan Sands777d2302009-05-09 07:06:46 +00002055 unsigned EltSize = TD->getTypeAllocSize(EltTy);
Bob Wilson69743022011-01-13 20:59:44 +00002056
Chris Lattner61db1f52010-12-26 22:57:41 +00002057 IRBuilder<> Builder(MI);
Bob Wilson69743022011-01-13 20:59:44 +00002058
Chris Lattnerd93afec2009-01-07 07:18:45 +00002059 // Finally, insert the meminst for this element.
Chris Lattner61db1f52010-12-26 22:57:41 +00002060 if (isa<MemSetInst>(MI)) {
2061 Builder.CreateMemSet(EltPtr, MI->getArgOperand(1), EltSize,
2062 MI->isVolatile());
Chris Lattnerd93afec2009-01-07 07:18:45 +00002063 } else {
Chris Lattner61db1f52010-12-26 22:57:41 +00002064 assert(isa<MemTransferInst>(MI));
2065 Value *Dst = SROADest ? EltPtr : OtherElt; // Dest ptr
2066 Value *Src = SROADest ? OtherElt : EltPtr; // Src ptr
Bob Wilson69743022011-01-13 20:59:44 +00002067
Chris Lattner61db1f52010-12-26 22:57:41 +00002068 if (isa<MemCpyInst>(MI))
2069 Builder.CreateMemCpy(Dst, Src, EltSize, OtherEltAlign,MI->isVolatile());
2070 else
2071 Builder.CreateMemMove(Dst, Src, EltSize,OtherEltAlign,MI->isVolatile());
Chris Lattnerd93afec2009-01-07 07:18:45 +00002072 }
Chris Lattner372dda82007-03-05 07:52:57 +00002073 }
Bob Wilsonb742def2009-12-18 20:14:40 +00002074 DeadInsts.push_back(MI);
Chris Lattner372dda82007-03-05 07:52:57 +00002075}
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002076
Bob Wilson39fdd692009-12-04 21:57:37 +00002077/// RewriteStoreUserOfWholeAlloca - We found a store of an integer that
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002078/// overwrites the entire allocation. Extract out the pieces of the stored
2079/// integer and store them individually.
Victor Hernandez7b929da2009-10-23 21:09:37 +00002080void SROA::RewriteStoreUserOfWholeAlloca(StoreInst *SI, AllocaInst *AI,
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002081 SmallVector<AllocaInst*, 32> &NewElts){
2082 // Extract each element out of the integer according to its structure offset
2083 // and store the element value to the individual alloca.
2084 Value *SrcVal = SI->getOperand(0);
Bob Wilsonb742def2009-12-18 20:14:40 +00002085 const Type *AllocaEltTy = AI->getAllocatedType();
Duncan Sands777d2302009-05-09 07:06:46 +00002086 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
Bob Wilson69743022011-01-13 20:59:44 +00002087
Chris Lattner70728532011-01-16 05:58:24 +00002088 IRBuilder<> Builder(SI);
2089
Eli Friedman41b33f42009-06-01 09:14:32 +00002090 // Handle tail padding by extending the operand
2091 if (TD->getTypeSizeInBits(SrcVal->getType()) != AllocaSizeBits)
Chris Lattner70728532011-01-16 05:58:24 +00002092 SrcVal = Builder.CreateZExt(SrcVal,
2093 IntegerType::get(SI->getContext(), AllocaSizeBits));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002094
David Greene504c7d82010-01-05 01:27:09 +00002095 DEBUG(dbgs() << "PROMOTING STORE TO WHOLE ALLOCA: " << *AI << '\n' << *SI
Nick Lewycky59136252009-09-15 07:08:25 +00002096 << '\n');
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002097
2098 // There are two forms here: AI could be an array or struct. Both cases
2099 // have different ways to compute the element offset.
2100 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2101 const StructLayout *Layout = TD->getStructLayout(EltSTy);
Bob Wilson69743022011-01-13 20:59:44 +00002102
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002103 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2104 // Get the number of bits to shift SrcVal to get the value.
2105 const Type *FieldTy = EltSTy->getElementType(i);
2106 uint64_t Shift = Layout->getElementOffsetInBits(i);
Bob Wilson69743022011-01-13 20:59:44 +00002107
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002108 if (TD->isBigEndian())
Duncan Sands777d2302009-05-09 07:06:46 +00002109 Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
Bob Wilson69743022011-01-13 20:59:44 +00002110
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002111 Value *EltVal = SrcVal;
2112 if (Shift) {
Owen Andersoneed707b2009-07-24 23:12:02 +00002113 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
Chris Lattner70728532011-01-16 05:58:24 +00002114 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002115 }
Bob Wilson69743022011-01-13 20:59:44 +00002116
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002117 // Truncate down to an integer of the right size.
2118 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
Bob Wilson69743022011-01-13 20:59:44 +00002119
Chris Lattner583dd602009-01-09 18:18:43 +00002120 // Ignore zero sized fields like {}, they obviously contain no data.
2121 if (FieldSizeBits == 0) continue;
Bob Wilson69743022011-01-13 20:59:44 +00002122
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002123 if (FieldSizeBits != AllocaSizeBits)
Chris Lattner70728532011-01-16 05:58:24 +00002124 EltVal = Builder.CreateTrunc(EltVal,
2125 IntegerType::get(SI->getContext(), FieldSizeBits));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002126 Value *DestField = NewElts[i];
2127 if (EltVal->getType() == FieldTy) {
2128 // Storing to an integer field of this size, just do it.
Duncan Sands1df98592010-02-16 11:11:14 +00002129 } else if (FieldTy->isFloatingPointTy() || FieldTy->isVectorTy()) {
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002130 // Bitcast to the right element type (for fp/vector values).
Chris Lattner70728532011-01-16 05:58:24 +00002131 EltVal = Builder.CreateBitCast(EltVal, FieldTy);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002132 } else {
2133 // Otherwise, bitcast the dest pointer (for aggregates).
Chris Lattner70728532011-01-16 05:58:24 +00002134 DestField = Builder.CreateBitCast(DestField,
2135 PointerType::getUnqual(EltVal->getType()));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002136 }
2137 new StoreInst(EltVal, DestField, SI);
2138 }
Bob Wilson69743022011-01-13 20:59:44 +00002139
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002140 } else {
2141 const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
2142 const Type *ArrayEltTy = ATy->getElementType();
Duncan Sands777d2302009-05-09 07:06:46 +00002143 uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002144 uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
2145
2146 uint64_t Shift;
Bob Wilson69743022011-01-13 20:59:44 +00002147
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002148 if (TD->isBigEndian())
2149 Shift = AllocaSizeBits-ElementOffset;
Bob Wilson69743022011-01-13 20:59:44 +00002150 else
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002151 Shift = 0;
Bob Wilson69743022011-01-13 20:59:44 +00002152
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002153 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
Chris Lattner583dd602009-01-09 18:18:43 +00002154 // Ignore zero sized fields like {}, they obviously contain no data.
2155 if (ElementSizeBits == 0) continue;
Bob Wilson69743022011-01-13 20:59:44 +00002156
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002157 Value *EltVal = SrcVal;
2158 if (Shift) {
Owen Andersoneed707b2009-07-24 23:12:02 +00002159 Value *ShiftVal = ConstantInt::get(EltVal->getType(), Shift);
Chris Lattner70728532011-01-16 05:58:24 +00002160 EltVal = Builder.CreateLShr(EltVal, ShiftVal, "sroa.store.elt");
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002161 }
Bob Wilson69743022011-01-13 20:59:44 +00002162
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002163 // Truncate down to an integer of the right size.
2164 if (ElementSizeBits != AllocaSizeBits)
Chris Lattner70728532011-01-16 05:58:24 +00002165 EltVal = Builder.CreateTrunc(EltVal,
2166 IntegerType::get(SI->getContext(),
2167 ElementSizeBits));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002168 Value *DestField = NewElts[i];
2169 if (EltVal->getType() == ArrayEltTy) {
2170 // Storing to an integer field of this size, just do it.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00002171 } else if (ArrayEltTy->isFloatingPointTy() ||
Duncan Sands1df98592010-02-16 11:11:14 +00002172 ArrayEltTy->isVectorTy()) {
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002173 // Bitcast to the right element type (for fp/vector values).
Chris Lattner70728532011-01-16 05:58:24 +00002174 EltVal = Builder.CreateBitCast(EltVal, ArrayEltTy);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002175 } else {
2176 // Otherwise, bitcast the dest pointer (for aggregates).
Chris Lattner70728532011-01-16 05:58:24 +00002177 DestField = Builder.CreateBitCast(DestField,
2178 PointerType::getUnqual(EltVal->getType()));
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002179 }
2180 new StoreInst(EltVal, DestField, SI);
Bob Wilson69743022011-01-13 20:59:44 +00002181
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002182 if (TD->isBigEndian())
2183 Shift -= ElementOffset;
Bob Wilson69743022011-01-13 20:59:44 +00002184 else
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002185 Shift += ElementOffset;
2186 }
2187 }
Bob Wilson69743022011-01-13 20:59:44 +00002188
Bob Wilsonb742def2009-12-18 20:14:40 +00002189 DeadInsts.push_back(SI);
Chris Lattnerd2fa7812009-01-07 08:11:13 +00002190}
2191
Bob Wilson39fdd692009-12-04 21:57:37 +00002192/// RewriteLoadUserOfWholeAlloca - We found a load of the entire allocation to
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002193/// an integer. Load the individual pieces to form the aggregate value.
Victor Hernandez7b929da2009-10-23 21:09:37 +00002194void SROA::RewriteLoadUserOfWholeAlloca(LoadInst *LI, AllocaInst *AI,
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002195 SmallVector<AllocaInst*, 32> &NewElts) {
2196 // Extract each element out of the NewElts according to its structure offset
2197 // and form the result value.
Bob Wilsonb742def2009-12-18 20:14:40 +00002198 const Type *AllocaEltTy = AI->getAllocatedType();
Duncan Sands777d2302009-05-09 07:06:46 +00002199 uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
Bob Wilson69743022011-01-13 20:59:44 +00002200
David Greene504c7d82010-01-05 01:27:09 +00002201 DEBUG(dbgs() << "PROMOTING LOAD OF WHOLE ALLOCA: " << *AI << '\n' << *LI
Nick Lewycky59136252009-09-15 07:08:25 +00002202 << '\n');
Bob Wilson69743022011-01-13 20:59:44 +00002203
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002204 // There are two forms here: AI could be an array or struct. Both cases
2205 // have different ways to compute the element offset.
2206 const StructLayout *Layout = 0;
2207 uint64_t ArrayEltBitOffset = 0;
2208 if (const StructType *EltSTy = dyn_cast<StructType>(AllocaEltTy)) {
2209 Layout = TD->getStructLayout(EltSTy);
2210 } else {
2211 const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
Duncan Sands777d2302009-05-09 07:06:46 +00002212 ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
Bob Wilson69743022011-01-13 20:59:44 +00002213 }
2214
2215 Value *ResultVal =
Owen Anderson1d0be152009-08-13 21:58:54 +00002216 Constant::getNullValue(IntegerType::get(LI->getContext(), AllocaSizeBits));
Bob Wilson69743022011-01-13 20:59:44 +00002217
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002218 for (unsigned i = 0, e = NewElts.size(); i != e; ++i) {
2219 // Load the value from the alloca. If the NewElt is an aggregate, cast
2220 // the pointer to an integer of the same size before doing the load.
2221 Value *SrcField = NewElts[i];
2222 const Type *FieldTy =
2223 cast<PointerType>(SrcField->getType())->getElementType();
Chris Lattner583dd602009-01-09 18:18:43 +00002224 uint64_t FieldSizeBits = TD->getTypeSizeInBits(FieldTy);
Bob Wilson69743022011-01-13 20:59:44 +00002225
Chris Lattner583dd602009-01-09 18:18:43 +00002226 // Ignore zero sized fields like {}, they obviously contain no data.
2227 if (FieldSizeBits == 0) continue;
Bob Wilson69743022011-01-13 20:59:44 +00002228
2229 const IntegerType *FieldIntTy = IntegerType::get(LI->getContext(),
Owen Anderson1d0be152009-08-13 21:58:54 +00002230 FieldSizeBits);
Duncan Sands1df98592010-02-16 11:11:14 +00002231 if (!FieldTy->isIntegerTy() && !FieldTy->isFloatingPointTy() &&
2232 !FieldTy->isVectorTy())
Owen Andersonfa5cbd62009-07-03 19:42:02 +00002233 SrcField = new BitCastInst(SrcField,
Owen Andersondebcb012009-07-29 22:17:13 +00002234 PointerType::getUnqual(FieldIntTy),
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002235 "", LI);
2236 SrcField = new LoadInst(SrcField, "sroa.load.elt", LI);
2237
2238 // If SrcField is a fp or vector of the right size but that isn't an
2239 // integer type, bitcast to an integer so we can shift it.
2240 if (SrcField->getType() != FieldIntTy)
2241 SrcField = new BitCastInst(SrcField, FieldIntTy, "", LI);
2242
2243 // Zero extend the field to be the same size as the final alloca so that
2244 // we can shift and insert it.
2245 if (SrcField->getType() != ResultVal->getType())
2246 SrcField = new ZExtInst(SrcField, ResultVal->getType(), "", LI);
Bob Wilson69743022011-01-13 20:59:44 +00002247
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002248 // Determine the number of bits to shift SrcField.
2249 uint64_t Shift;
2250 if (Layout) // Struct case.
2251 Shift = Layout->getElementOffsetInBits(i);
2252 else // Array case.
2253 Shift = i*ArrayEltBitOffset;
Bob Wilson69743022011-01-13 20:59:44 +00002254
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002255 if (TD->isBigEndian())
2256 Shift = AllocaSizeBits-Shift-FieldIntTy->getBitWidth();
Bob Wilson69743022011-01-13 20:59:44 +00002257
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002258 if (Shift) {
Owen Andersoneed707b2009-07-24 23:12:02 +00002259 Value *ShiftVal = ConstantInt::get(SrcField->getType(), Shift);
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002260 SrcField = BinaryOperator::CreateShl(SrcField, ShiftVal, "", LI);
2261 }
2262
Chris Lattner14952472010-06-27 07:58:26 +00002263 // Don't create an 'or x, 0' on the first iteration.
2264 if (!isa<Constant>(ResultVal) ||
2265 !cast<Constant>(ResultVal)->isNullValue())
2266 ResultVal = BinaryOperator::CreateOr(SrcField, ResultVal, "", LI);
2267 else
2268 ResultVal = SrcField;
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002269 }
Eli Friedman41b33f42009-06-01 09:14:32 +00002270
2271 // Handle tail padding by truncating the result
2272 if (TD->getTypeSizeInBits(LI->getType()) != AllocaSizeBits)
2273 ResultVal = new TruncInst(ResultVal, LI->getType(), "", LI);
2274
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002275 LI->replaceAllUsesWith(ResultVal);
Bob Wilsonb742def2009-12-18 20:14:40 +00002276 DeadInsts.push_back(LI);
Chris Lattner5ffe6ac2009-01-08 05:42:05 +00002277}
2278
Duncan Sands3cb36502007-11-04 14:43:57 +00002279/// HasPadding - Return true if the specified type has any structure or
Bob Wilson694a10e2011-01-13 17:45:08 +00002280/// alignment padding in between the elements that would be split apart
2281/// by SROA; return false otherwise.
Duncan Sandsa0fcc082008-06-04 08:21:45 +00002282static bool HasPadding(const Type *Ty, const TargetData &TD) {
Bob Wilson694a10e2011-01-13 17:45:08 +00002283 if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
2284 Ty = ATy->getElementType();
2285 return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
Chris Lattner39a1c042007-05-30 06:11:23 +00002286 }
Bob Wilson694a10e2011-01-13 17:45:08 +00002287
2288 // SROA currently handles only Arrays and Structs.
2289 const StructType *STy = cast<StructType>(Ty);
2290 const StructLayout *SL = TD.getStructLayout(STy);
2291 unsigned PrevFieldBitOffset = 0;
2292 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
2293 unsigned FieldBitOffset = SL->getElementOffsetInBits(i);
2294
2295 // Check to see if there is any padding between this element and the
2296 // previous one.
2297 if (i) {
2298 unsigned PrevFieldEnd =
2299 PrevFieldBitOffset+TD.getTypeSizeInBits(STy->getElementType(i-1));
2300 if (PrevFieldEnd < FieldBitOffset)
2301 return true;
2302 }
2303 PrevFieldBitOffset = FieldBitOffset;
2304 }
2305 // Check for tail padding.
2306 if (unsigned EltCount = STy->getNumElements()) {
2307 unsigned PrevFieldEnd = PrevFieldBitOffset +
2308 TD.getTypeSizeInBits(STy->getElementType(EltCount-1));
2309 if (PrevFieldEnd < SL->getSizeInBits())
2310 return true;
2311 }
2312 return false;
Chris Lattner39a1c042007-05-30 06:11:23 +00002313}
Chris Lattner372dda82007-03-05 07:52:57 +00002314
Chris Lattnerf5990ed2004-11-14 04:24:28 +00002315/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
2316/// an aggregate can be broken down into elements. Return 0 if not, 3 if safe,
2317/// or 1 if safe after canonicalization has been performed.
Victor Hernandez6c146ee2010-01-21 23:05:53 +00002318bool SROA::isSafeAllocaToScalarRepl(AllocaInst *AI) {
Chris Lattner5e062a12003-05-30 04:15:41 +00002319 // Loop over the use list of the alloca. We can only transform it if all of
2320 // the users are safe to transform.
Chris Lattner6c95d242011-01-23 07:29:29 +00002321 AllocaInfo Info(AI);
Bob Wilson69743022011-01-13 20:59:44 +00002322
Chris Lattner6c95d242011-01-23 07:29:29 +00002323 isSafeForScalarRepl(AI, 0, Info);
Bob Wilsonb742def2009-12-18 20:14:40 +00002324 if (Info.isUnsafe) {
David Greene504c7d82010-01-05 01:27:09 +00002325 DEBUG(dbgs() << "Cannot transform: " << *AI << '\n');
Victor Hernandez6c146ee2010-01-21 23:05:53 +00002326 return false;
Chris Lattnerf5990ed2004-11-14 04:24:28 +00002327 }
Bob Wilson69743022011-01-13 20:59:44 +00002328
Chris Lattner39a1c042007-05-30 06:11:23 +00002329 // Okay, we know all the users are promotable. If the aggregate is a memcpy
2330 // source and destination, we have to be careful. In particular, the memcpy
2331 // could be moving around elements that live in structure padding of the LLVM
2332 // types, but may actually be used. In these cases, we refuse to promote the
2333 // struct.
2334 if (Info.isMemCpySrc && Info.isMemCpyDst &&
Bob Wilsonb742def2009-12-18 20:14:40 +00002335 HasPadding(AI->getAllocatedType(), *TD))
Victor Hernandez6c146ee2010-01-21 23:05:53 +00002336 return false;
Duncan Sands3cb36502007-11-04 14:43:57 +00002337
Chris Lattner396a0562011-01-16 17:46:19 +00002338 // If the alloca never has an access to just *part* of it, but is accessed
2339 // via loads and stores, then we should use ConvertToScalarInfo to promote
Chris Lattner7e9b4272011-01-16 06:18:28 +00002340 // the alloca instead of promoting each piece at a time and inserting fission
2341 // and fusion code.
2342 if (!Info.hasSubelementAccess && Info.hasALoadOrStore) {
2343 // If the struct/array just has one element, use basic SRoA.
2344 if (const StructType *ST = dyn_cast<StructType>(AI->getAllocatedType())) {
2345 if (ST->getNumElements() > 1) return false;
2346 } else {
2347 if (cast<ArrayType>(AI->getAllocatedType())->getNumElements() > 1)
2348 return false;
2349 }
2350 }
Chris Lattner145c5322011-01-23 08:27:54 +00002351
Victor Hernandez6c146ee2010-01-21 23:05:53 +00002352 return true;
Chris Lattner5e062a12003-05-30 04:15:41 +00002353}
Chris Lattnera1888942005-12-12 07:19:13 +00002354
Chris Lattner800de312008-02-29 07:03:13 +00002355
Chris Lattner79b3bd32007-04-25 06:40:51 +00002356
2357/// PointsToConstantGlobal - Return true if V (possibly indirectly) points to
2358/// some part of a constant global variable. This intentionally only accepts
2359/// constant expressions because we don't can't rewrite arbitrary instructions.
2360static bool PointsToConstantGlobal(Value *V) {
2361 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
2362 return GV->isConstant();
2363 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
Bob Wilson69743022011-01-13 20:59:44 +00002364 if (CE->getOpcode() == Instruction::BitCast ||
Chris Lattner79b3bd32007-04-25 06:40:51 +00002365 CE->getOpcode() == Instruction::GetElementPtr)
2366 return PointsToConstantGlobal(CE->getOperand(0));
2367 return false;
2368}
2369
2370/// isOnlyCopiedFromConstantGlobal - Recursively walk the uses of a (derived)
2371/// pointer to an alloca. Ignore any reads of the pointer, return false if we
2372/// see any stores or other unknown uses. If we see pointer arithmetic, keep
2373/// track of whether it moves the pointer (with isOffset) but otherwise traverse
2374/// the uses. If we see a memcpy/memmove that targets an unoffseted pointer to
Nick Lewycky081f8002010-11-24 22:04:20 +00002375/// the alloca, and if the source pointer is a pointer to a constant global, we
Chris Lattner79b3bd32007-04-25 06:40:51 +00002376/// can optimize this.
Chris Lattner31d80102010-04-15 21:59:20 +00002377static bool isOnlyCopiedFromConstantGlobal(Value *V, MemTransferInst *&TheCopy,
Chris Lattner79b3bd32007-04-25 06:40:51 +00002378 bool isOffset) {
2379 for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI!=E; ++UI) {
Gabor Greif8a8a4352010-04-06 19:32:30 +00002380 User *U = cast<Instruction>(*UI);
2381
Chris Lattner2e618492010-11-18 06:20:47 +00002382 if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
Chris Lattner6e733d32009-01-28 20:16:43 +00002383 // Ignore non-volatile loads, they are always ok.
Chris Lattner2e618492010-11-18 06:20:47 +00002384 if (LI->isVolatile()) return false;
2385 continue;
2386 }
Bob Wilson69743022011-01-13 20:59:44 +00002387
Gabor Greif8a8a4352010-04-06 19:32:30 +00002388 if (BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
Chris Lattner79b3bd32007-04-25 06:40:51 +00002389 // If uses of the bitcast are ok, we are ok.
2390 if (!isOnlyCopiedFromConstantGlobal(BCI, TheCopy, isOffset))
2391 return false;
2392 continue;
2393 }
Gabor Greif8a8a4352010-04-06 19:32:30 +00002394 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
Chris Lattner79b3bd32007-04-25 06:40:51 +00002395 // If the GEP has all zero indices, it doesn't offset the pointer. If it
2396 // doesn't, it does.
2397 if (!isOnlyCopiedFromConstantGlobal(GEP, TheCopy,
2398 isOffset || !GEP->hasAllZeroIndices()))
2399 return false;
2400 continue;
2401 }
Bob Wilson69743022011-01-13 20:59:44 +00002402
Chris Lattner62480652010-11-18 06:41:51 +00002403 if (CallSite CS = U) {
2404 // If this is a readonly/readnone call site, then we know it is just a
2405 // load and we can ignore it.
Chris Lattnera9be1df2010-11-18 06:26:49 +00002406 if (CS.onlyReadsMemory())
2407 continue;
Nick Lewycky081f8002010-11-24 22:04:20 +00002408
2409 // If this is the function being called then we treat it like a load and
2410 // ignore it.
2411 if (CS.isCallee(UI))
2412 continue;
Bob Wilson69743022011-01-13 20:59:44 +00002413
Chris Lattner62480652010-11-18 06:41:51 +00002414 // If this is being passed as a byval argument, the caller is making a
2415 // copy, so it is only a read of the alloca.
2416 unsigned ArgNo = CS.getArgumentNo(UI);
2417 if (CS.paramHasAttr(ArgNo+1, Attribute::ByVal))
2418 continue;
2419 }
Bob Wilson69743022011-01-13 20:59:44 +00002420
Chris Lattner79b3bd32007-04-25 06:40:51 +00002421 // If this is isn't our memcpy/memmove, reject it as something we can't
2422 // handle.
Chris Lattner31d80102010-04-15 21:59:20 +00002423 MemTransferInst *MI = dyn_cast<MemTransferInst>(U);
2424 if (MI == 0)
Chris Lattner79b3bd32007-04-25 06:40:51 +00002425 return false;
Bob Wilson69743022011-01-13 20:59:44 +00002426
Chris Lattner2e618492010-11-18 06:20:47 +00002427 // If the transfer is using the alloca as a source of the transfer, then
Chris Lattner2e29ebd2010-11-18 07:32:33 +00002428 // ignore it since it is a load (unless the transfer is volatile).
Chris Lattner2e618492010-11-18 06:20:47 +00002429 if (UI.getOperandNo() == 1) {
2430 if (MI->isVolatile()) return false;
2431 continue;
2432 }
Chris Lattner79b3bd32007-04-25 06:40:51 +00002433
2434 // If we already have seen a copy, reject the second one.
2435 if (TheCopy) return false;
Bob Wilson69743022011-01-13 20:59:44 +00002436
Chris Lattner79b3bd32007-04-25 06:40:51 +00002437 // If the pointer has been offset from the start of the alloca, we can't
2438 // safely handle this.
2439 if (isOffset) return false;
2440
2441 // If the memintrinsic isn't using the alloca as the dest, reject it.
Gabor Greifa6aac4c2010-07-16 09:38:02 +00002442 if (UI.getOperandNo() != 0) return false;
Bob Wilson69743022011-01-13 20:59:44 +00002443
Chris Lattner79b3bd32007-04-25 06:40:51 +00002444 // If the source of the memcpy/move is not a constant global, reject it.
Chris Lattner31d80102010-04-15 21:59:20 +00002445 if (!PointsToConstantGlobal(MI->getSource()))
Chris Lattner79b3bd32007-04-25 06:40:51 +00002446 return false;
Bob Wilson69743022011-01-13 20:59:44 +00002447
Chris Lattner79b3bd32007-04-25 06:40:51 +00002448 // Otherwise, the transform is safe. Remember the copy instruction.
2449 TheCopy = MI;
2450 }
2451 return true;
2452}
2453
2454/// isOnlyCopiedFromConstantGlobal - Return true if the specified alloca is only
2455/// modified by a copy from a constant global. If we can prove this, we can
2456/// replace any uses of the alloca with uses of the global directly.
Chris Lattner31d80102010-04-15 21:59:20 +00002457MemTransferInst *SROA::isOnlyCopiedFromConstantGlobal(AllocaInst *AI) {
2458 MemTransferInst *TheCopy = 0;
Chris Lattner79b3bd32007-04-25 06:40:51 +00002459 if (::isOnlyCopiedFromConstantGlobal(AI, TheCopy, false))
2460 return TheCopy;
2461 return 0;
2462}