blob: c82c4ff3bfb2fd0d6be5e8b04152322416b54b7d [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===-- PredicateSimplifier.cpp - Path Sensitive Simplifier ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// Path-sensitive optimizer. In a branch where x == y, replace uses of
11// x with y. Permits further optimization, such as the elimination of
12// the unreachable call:
13//
14// void test(int *p, int *q)
15// {
16// if (p != q)
17// return;
18//
19// if (*p != *q)
20// foo(); // unreachable
21// }
22//
23//===----------------------------------------------------------------------===//
24//
25// The InequalityGraph focusses on four properties; equals, not equals,
26// less-than and less-than-or-equals-to. The greater-than forms are also held
27// just to allow walking from a lesser node to a greater one. These properties
28// are stored in a lattice; LE can become LT or EQ, NE can become LT or GT.
29//
30// These relationships define a graph between values of the same type. Each
31// Value is stored in a map table that retrieves the associated Node. This
32// is how EQ relationships are stored; the map contains pointers from equal
33// Value to the same node. The node contains a most canonical Value* form
34// and the list of known relationships with other nodes.
35//
36// If two nodes are known to be inequal, then they will contain pointers to
37// each other with an "NE" relationship. If node getNode(%x) is less than
38// getNode(%y), then the %x node will contain <%y, GT> and %y will contain
39// <%x, LT>. This allows us to tie nodes together into a graph like this:
40//
41// %a < %b < %c < %d
42//
43// with four nodes representing the properties. The InequalityGraph provides
44// querying with "isRelatedBy" and mutators "addEquality" and "addInequality".
45// To find a relationship, we start with one of the nodes any binary search
46// through its list to find where the relationships with the second node start.
47// Then we iterate through those to find the first relationship that dominates
48// our context node.
49//
50// To create these properties, we wait until a branch or switch instruction
51// implies that a particular value is true (or false). The VRPSolver is
52// responsible for analyzing the variable and seeing what new inferences
53// can be made from each property. For example:
54//
55// %P = icmp ne i32* %ptr, null
56// %a = and i1 %P, %Q
57// br i1 %a label %cond_true, label %cond_false
58//
59// For the true branch, the VRPSolver will start with %a EQ true and look at
60// the definition of %a and find that it can infer that %P and %Q are both
61// true. From %P being true, it can infer that %ptr NE null. For the false
62// branch it can't infer anything from the "and" instruction.
63//
64// Besides branches, we can also infer properties from instruction that may
65// have undefined behaviour in certain cases. For example, the dividend of
66// a division may never be zero. After the division instruction, we may assume
67// that the dividend is not equal to zero.
68//
69//===----------------------------------------------------------------------===//
70//
71// The ValueRanges class stores the known integer bounds of a Value. When we
72// encounter i8 %a u< %b, the ValueRanges stores that %a = [1, 255] and
Nick Lewyckydd38f8e2007-08-04 18:45:32 +000073// %b = [0, 254].
Dan Gohmanf17a25c2007-07-18 16:29:46 +000074//
75// It never stores an empty range, because that means that the code is
76// unreachable. It never stores a single-element range since that's an equality
77// relationship and better stored in the InequalityGraph, nor an empty range
78// since that is better stored in UnreachableBlocks.
79//
80//===----------------------------------------------------------------------===//
81
82#define DEBUG_TYPE "predsimplify"
83#include "llvm/Transforms/Scalar.h"
84#include "llvm/Constants.h"
85#include "llvm/DerivedTypes.h"
86#include "llvm/Instructions.h"
87#include "llvm/Pass.h"
88#include "llvm/ADT/DepthFirstIterator.h"
89#include "llvm/ADT/SetOperations.h"
90#include "llvm/ADT/SetVector.h"
91#include "llvm/ADT/Statistic.h"
92#include "llvm/ADT/STLExtras.h"
93#include "llvm/Analysis/Dominators.h"
94#include "llvm/Assembly/Writer.h"
95#include "llvm/Support/CFG.h"
96#include "llvm/Support/Compiler.h"
97#include "llvm/Support/ConstantRange.h"
98#include "llvm/Support/Debug.h"
99#include "llvm/Support/InstVisitor.h"
100#include "llvm/Target/TargetData.h"
101#include "llvm/Transforms/Utils/Local.h"
102#include <algorithm>
103#include <deque>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000104#include <stack>
105using namespace llvm;
106
107STATISTIC(NumVarsReplaced, "Number of argument substitutions");
108STATISTIC(NumInstruction , "Number of instructions removed");
109STATISTIC(NumSimple , "Number of simple replacements");
110STATISTIC(NumBlocks , "Number of blocks marked unreachable");
111STATISTIC(NumSnuggle , "Number of comparisons snuggled");
112
Owen Andersonc6843ca2009-06-26 21:39:56 +0000113static const ConstantRange empty(1, false);
114
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000115namespace {
116 class DomTreeDFS {
117 public:
118 class Node {
119 friend class DomTreeDFS;
120 public:
121 typedef std::vector<Node *>::iterator iterator;
122 typedef std::vector<Node *>::const_iterator const_iterator;
123
124 unsigned getDFSNumIn() const { return DFSin; }
125 unsigned getDFSNumOut() const { return DFSout; }
126
127 BasicBlock *getBlock() const { return BB; }
128
129 iterator begin() { return Children.begin(); }
130 iterator end() { return Children.end(); }
131
132 const_iterator begin() const { return Children.begin(); }
133 const_iterator end() const { return Children.end(); }
134
135 bool dominates(const Node *N) const {
136 return DFSin <= N->DFSin && DFSout >= N->DFSout;
137 }
138
139 bool DominatedBy(const Node *N) const {
140 return N->dominates(this);
141 }
142
143 /// Sorts by the number of descendants. With this, you can iterate
144 /// through a sorted list and the first matching entry is the most
145 /// specific match for your basic block. The order provided is stable;
146 /// DomTreeDFS::Nodes with the same number of descendants are sorted by
147 /// DFS in number.
148 bool operator<(const Node &N) const {
149 unsigned spread = DFSout - DFSin;
150 unsigned N_spread = N.DFSout - N.DFSin;
151 if (spread == N_spread) return DFSin < N.DFSin;
152 return spread < N_spread;
153 }
154 bool operator>(const Node &N) const { return N < *this; }
155
156 private:
157 unsigned DFSin, DFSout;
158 BasicBlock *BB;
159
160 std::vector<Node *> Children;
161 };
162
163 // XXX: this may be slow. Instead of using "new" for each node, consider
164 // putting them in a vector to keep them contiguous.
165 explicit DomTreeDFS(DominatorTree *DT) {
166 std::stack<std::pair<Node *, DomTreeNode *> > S;
167
168 Entry = new Node;
169 Entry->BB = DT->getRootNode()->getBlock();
170 S.push(std::make_pair(Entry, DT->getRootNode()));
171
172 NodeMap[Entry->BB] = Entry;
173
174 while (!S.empty()) {
175 std::pair<Node *, DomTreeNode *> &Pair = S.top();
176 Node *N = Pair.first;
177 DomTreeNode *DTNode = Pair.second;
178 S.pop();
179
180 for (DomTreeNode::iterator I = DTNode->begin(), E = DTNode->end();
181 I != E; ++I) {
182 Node *NewNode = new Node;
183 NewNode->BB = (*I)->getBlock();
184 N->Children.push_back(NewNode);
185 S.push(std::make_pair(NewNode, *I));
186
187 NodeMap[NewNode->BB] = NewNode;
188 }
189 }
190
191 renumber();
192
193#ifndef NDEBUG
194 DEBUG(dump());
195#endif
196 }
197
198#ifndef NDEBUG
199 virtual
200#endif
201 ~DomTreeDFS() {
202 std::stack<Node *> S;
203
204 S.push(Entry);
205 while (!S.empty()) {
206 Node *N = S.top(); S.pop();
207
208 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I)
209 S.push(*I);
210
211 delete N;
212 }
213 }
214
215 /// getRootNode - This returns the entry node for the CFG of the function.
216 Node *getRootNode() const { return Entry; }
217
218 /// getNodeForBlock - return the node for the specified basic block.
219 Node *getNodeForBlock(BasicBlock *BB) const {
220 if (!NodeMap.count(BB)) return 0;
221 return const_cast<DomTreeDFS*>(this)->NodeMap[BB];
222 }
223
224 /// dominates - returns true if the basic block for I1 dominates that of
225 /// the basic block for I2. If the instructions belong to the same basic
226 /// block, the instruction first instruction sequentially in the block is
227 /// considered dominating.
228 bool dominates(Instruction *I1, Instruction *I2) {
229 BasicBlock *BB1 = I1->getParent(),
230 *BB2 = I2->getParent();
231 if (BB1 == BB2) {
232 if (isa<TerminatorInst>(I1)) return false;
233 if (isa<TerminatorInst>(I2)) return true;
234 if ( isa<PHINode>(I1) && !isa<PHINode>(I2)) return true;
235 if (!isa<PHINode>(I1) && isa<PHINode>(I2)) return false;
236
237 for (BasicBlock::const_iterator I = BB2->begin(), E = BB2->end();
238 I != E; ++I) {
239 if (&*I == I1) return true;
240 else if (&*I == I2) return false;
241 }
242 assert(!"Instructions not found in parent BasicBlock?");
243 } else {
244 Node *Node1 = getNodeForBlock(BB1),
245 *Node2 = getNodeForBlock(BB2);
246 return Node1 && Node2 && Node1->dominates(Node2);
247 }
Chris Lattner2b06cd32008-03-30 18:22:13 +0000248 return false; // Not reached
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000249 }
250
251 private:
252 /// renumber - calculates the depth first search numberings and applies
253 /// them onto the nodes.
254 void renumber() {
255 std::stack<std::pair<Node *, Node::iterator> > S;
256 unsigned n = 0;
257
258 Entry->DFSin = ++n;
259 S.push(std::make_pair(Entry, Entry->begin()));
260
261 while (!S.empty()) {
262 std::pair<Node *, Node::iterator> &Pair = S.top();
263 Node *N = Pair.first;
264 Node::iterator &I = Pair.second;
265
266 if (I == N->end()) {
267 N->DFSout = ++n;
268 S.pop();
269 } else {
270 Node *Next = *I++;
271 Next->DFSin = ++n;
272 S.push(std::make_pair(Next, Next->begin()));
273 }
274 }
275 }
276
277#ifndef NDEBUG
278 virtual void dump() const {
279 dump(*cerr.stream());
280 }
281
282 void dump(std::ostream &os) const {
283 os << "Predicate simplifier DomTreeDFS: \n";
284 dump(Entry, 0, os);
285 os << "\n\n";
286 }
287
288 void dump(Node *N, int depth, std::ostream &os) const {
289 ++depth;
290 for (int i = 0; i < depth; ++i) { os << " "; }
291 os << "[" << depth << "] ";
292
293 os << N->getBlock()->getName() << " (" << N->getDFSNumIn()
294 << ", " << N->getDFSNumOut() << ")\n";
295
296 for (Node::iterator I = N->begin(), E = N->end(); I != E; ++I)
297 dump(*I, depth, os);
298 }
299#endif
300
301 Node *Entry;
302 std::map<BasicBlock *, Node *> NodeMap;
303 };
304
305 // SLT SGT ULT UGT EQ
306 // 0 1 0 1 0 -- GT 10
307 // 0 1 0 1 1 -- GE 11
308 // 0 1 1 0 0 -- SGTULT 12
309 // 0 1 1 0 1 -- SGEULE 13
310 // 0 1 1 1 0 -- SGT 14
311 // 0 1 1 1 1 -- SGE 15
312 // 1 0 0 1 0 -- SLTUGT 18
313 // 1 0 0 1 1 -- SLEUGE 19
314 // 1 0 1 0 0 -- LT 20
315 // 1 0 1 0 1 -- LE 21
316 // 1 0 1 1 0 -- SLT 22
317 // 1 0 1 1 1 -- SLE 23
318 // 1 1 0 1 0 -- UGT 26
319 // 1 1 0 1 1 -- UGE 27
320 // 1 1 1 0 0 -- ULT 28
321 // 1 1 1 0 1 -- ULE 29
322 // 1 1 1 1 0 -- NE 30
323 enum LatticeBits {
324 EQ_BIT = 1, UGT_BIT = 2, ULT_BIT = 4, SGT_BIT = 8, SLT_BIT = 16
325 };
326 enum LatticeVal {
327 GT = SGT_BIT | UGT_BIT,
328 GE = GT | EQ_BIT,
329 LT = SLT_BIT | ULT_BIT,
330 LE = LT | EQ_BIT,
331 NE = SLT_BIT | SGT_BIT | ULT_BIT | UGT_BIT,
332 SGTULT = SGT_BIT | ULT_BIT,
333 SGEULE = SGTULT | EQ_BIT,
334 SLTUGT = SLT_BIT | UGT_BIT,
335 SLEUGE = SLTUGT | EQ_BIT,
336 ULT = SLT_BIT | SGT_BIT | ULT_BIT,
337 UGT = SLT_BIT | SGT_BIT | UGT_BIT,
338 SLT = SLT_BIT | ULT_BIT | UGT_BIT,
339 SGT = SGT_BIT | ULT_BIT | UGT_BIT,
340 SLE = SLT | EQ_BIT,
341 SGE = SGT | EQ_BIT,
342 ULE = ULT | EQ_BIT,
343 UGE = UGT | EQ_BIT
344 };
345
Devang Patel4354f5c2008-11-21 20:00:59 +0000346#ifndef NDEBUG
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000347 /// validPredicate - determines whether a given value is actually a lattice
348 /// value. Only used in assertions or debugging.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000349 static bool validPredicate(LatticeVal LV) {
350 switch (LV) {
351 case GT: case GE: case LT: case LE: case NE:
352 case SGTULT: case SGT: case SGEULE:
353 case SLTUGT: case SLT: case SLEUGE:
354 case ULT: case UGT:
355 case SLE: case SGE: case ULE: case UGE:
356 return true;
357 default:
358 return false;
359 }
360 }
Devang Patel4354f5c2008-11-21 20:00:59 +0000361#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362
363 /// reversePredicate - reverse the direction of the inequality
364 static LatticeVal reversePredicate(LatticeVal LV) {
365 unsigned reverse = LV ^ (SLT_BIT|SGT_BIT|ULT_BIT|UGT_BIT); //preserve EQ_BIT
366
367 if ((reverse & (SLT_BIT|SGT_BIT)) == 0)
368 reverse |= (SLT_BIT|SGT_BIT);
369
370 if ((reverse & (ULT_BIT|UGT_BIT)) == 0)
371 reverse |= (ULT_BIT|UGT_BIT);
372
373 LatticeVal Rev = static_cast<LatticeVal>(reverse);
374 assert(validPredicate(Rev) && "Failed reversing predicate.");
375 return Rev;
376 }
377
378 /// ValueNumbering stores the scope-specific value numbers for a given Value.
379 class VISIBILITY_HIDDEN ValueNumbering {
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000380
381 /// VNPair is a tuple of {Value, index number, DomTreeDFS::Node}. It
382 /// includes the comparison operators necessary to allow you to store it
383 /// in a sorted vector.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000384 class VISIBILITY_HIDDEN VNPair {
385 public:
386 Value *V;
387 unsigned index;
388 DomTreeDFS::Node *Subtree;
389
390 VNPair(Value *V, unsigned index, DomTreeDFS::Node *Subtree)
391 : V(V), index(index), Subtree(Subtree) {}
392
393 bool operator==(const VNPair &RHS) const {
394 return V == RHS.V && Subtree == RHS.Subtree;
395 }
396
397 bool operator<(const VNPair &RHS) const {
398 if (V != RHS.V) return V < RHS.V;
399 return *Subtree < *RHS.Subtree;
400 }
401
402 bool operator<(Value *RHS) const {
403 return V < RHS;
404 }
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000405
406 bool operator>(Value *RHS) const {
407 return V > RHS;
408 }
409
410 friend bool operator<(Value *RHS, const VNPair &pair) {
411 return pair.operator>(RHS);
412 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000413 };
414
415 typedef std::vector<VNPair> VNMapType;
416 VNMapType VNMap;
417
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000418 /// The canonical choice for value number at index.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000419 std::vector<Value *> Values;
420
421 DomTreeDFS *DTDFS;
422
423 public:
424#ifndef NDEBUG
425 virtual ~ValueNumbering() {}
426 virtual void dump() {
427 dump(*cerr.stream());
428 }
429
430 void dump(std::ostream &os) {
431 for (unsigned i = 1; i <= Values.size(); ++i) {
432 os << i << " = ";
433 WriteAsOperand(os, Values[i-1]);
434 os << " {";
435 for (unsigned j = 0; j < VNMap.size(); ++j) {
436 if (VNMap[j].index == i) {
437 WriteAsOperand(os, VNMap[j].V);
438 os << " (" << VNMap[j].Subtree->getDFSNumIn() << ") ";
439 }
440 }
441 os << "}\n";
442 }
443 }
444#endif
445
446 /// compare - returns true if V1 is a better canonical value than V2.
447 bool compare(Value *V1, Value *V2) const {
448 if (isa<Constant>(V1))
449 return !isa<Constant>(V2);
450 else if (isa<Constant>(V2))
451 return false;
452 else if (isa<Argument>(V1))
453 return !isa<Argument>(V2);
454 else if (isa<Argument>(V2))
455 return false;
456
457 Instruction *I1 = dyn_cast<Instruction>(V1);
458 Instruction *I2 = dyn_cast<Instruction>(V2);
459
460 if (!I1 || !I2)
461 return V1->getNumUses() < V2->getNumUses();
462
463 return DTDFS->dominates(I1, I2);
464 }
465
466 ValueNumbering(DomTreeDFS *DTDFS) : DTDFS(DTDFS) {}
467
468 /// valueNumber - finds the value number for V under the Subtree. If
469 /// there is no value number, returns zero.
470 unsigned valueNumber(Value *V, DomTreeDFS::Node *Subtree) {
471 if (!(isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V))
472 || V->getType() == Type::VoidTy) return 0;
473
474 VNMapType::iterator E = VNMap.end();
475 VNPair pair(V, 0, Subtree);
476 VNMapType::iterator I = std::lower_bound(VNMap.begin(), E, pair);
477 while (I != E && I->V == V) {
478 if (I->Subtree->dominates(Subtree))
479 return I->index;
480 ++I;
481 }
482 return 0;
483 }
484
485 /// getOrInsertVN - always returns a value number, creating it if necessary.
486 unsigned getOrInsertVN(Value *V, DomTreeDFS::Node *Subtree) {
487 if (unsigned n = valueNumber(V, Subtree))
488 return n;
489 else
490 return newVN(V);
491 }
492
493 /// newVN - creates a new value number. Value V must not already have a
494 /// value number assigned.
495 unsigned newVN(Value *V) {
496 assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
497 "Bad Value for value numbering.");
498 assert(V->getType() != Type::VoidTy && "Won't value number a void value");
499
500 Values.push_back(V);
501
502 VNPair pair = VNPair(V, Values.size(), DTDFS->getRootNode());
503 VNMapType::iterator I = std::lower_bound(VNMap.begin(), VNMap.end(), pair);
504 assert((I == VNMap.end() || value(I->index) != V) &&
505 "Attempt to create a duplicate value number.");
506 VNMap.insert(I, pair);
507
508 return Values.size();
509 }
510
511 /// value - returns the Value associated with a value number.
512 Value *value(unsigned index) const {
513 assert(index != 0 && "Zero index is reserved for not found.");
514 assert(index <= Values.size() && "Index out of range.");
515 return Values[index-1];
516 }
517
518 /// canonicalize - return a Value that is equal to V under Subtree.
519 Value *canonicalize(Value *V, DomTreeDFS::Node *Subtree) {
520 if (isa<Constant>(V)) return V;
521
522 if (unsigned n = valueNumber(V, Subtree))
523 return value(n);
524 else
525 return V;
526 }
527
528 /// addEquality - adds that value V belongs to the set of equivalent
529 /// values defined by value number n under Subtree.
530 void addEquality(unsigned n, Value *V, DomTreeDFS::Node *Subtree) {
531 assert(canonicalize(value(n), Subtree) == value(n) &&
532 "Node's 'canonical' choice isn't best within this subtree.");
533
534 // Suppose that we are given "%x -> node #1 (%y)". The problem is that
535 // we may already have "%z -> node #2 (%x)" somewhere above us in the
536 // graph. We need to find those edges and add "%z -> node #1 (%y)"
537 // to keep the lookups canonical.
538
539 std::vector<Value *> ToRepoint(1, V);
540
541 if (unsigned Conflict = valueNumber(V, Subtree)) {
542 for (VNMapType::iterator I = VNMap.begin(), E = VNMap.end();
543 I != E; ++I) {
544 if (I->index == Conflict && I->Subtree->dominates(Subtree))
545 ToRepoint.push_back(I->V);
546 }
547 }
548
549 for (std::vector<Value *>::iterator VI = ToRepoint.begin(),
550 VE = ToRepoint.end(); VI != VE; ++VI) {
551 Value *V = *VI;
552
553 VNPair pair(V, n, Subtree);
554 VNMapType::iterator B = VNMap.begin(), E = VNMap.end();
555 VNMapType::iterator I = std::lower_bound(B, E, pair);
556 if (I != E && I->V == V && I->Subtree == Subtree)
557 I->index = n; // Update best choice
558 else
559 VNMap.insert(I, pair); // New Value
560
561 // XXX: we currently don't have to worry about updating values with
562 // more specific Subtrees, but we will need to for PHI node support.
563
564#ifndef NDEBUG
565 Value *V_n = value(n);
566 if (isa<Constant>(V) && isa<Constant>(V_n)) {
567 assert(V == V_n && "Constant equals different constant?");
568 }
569#endif
570 }
571 }
572
573 /// remove - removes all references to value V.
574 void remove(Value *V) {
575 VNMapType::iterator B = VNMap.begin(), E = VNMap.end();
576 VNPair pair(V, 0, DTDFS->getRootNode());
577 VNMapType::iterator J = std::upper_bound(B, E, pair);
578 VNMapType::iterator I = J;
579
580 while (I != B && (I == E || I->V == V)) --I;
581
582 VNMap.erase(I, J);
583 }
584 };
585
586 /// The InequalityGraph stores the relationships between values.
587 /// Each Value in the graph is assigned to a Node. Nodes are pointer
588 /// comparable for equality. The caller is expected to maintain the logical
589 /// consistency of the system.
590 ///
591 /// The InequalityGraph class may invalidate Node*s after any mutator call.
592 /// @brief The InequalityGraph stores the relationships between values.
593 class VISIBILITY_HIDDEN InequalityGraph {
594 ValueNumbering &VN;
595 DomTreeDFS::Node *TreeRoot;
596
597 InequalityGraph(); // DO NOT IMPLEMENT
598 InequalityGraph(InequalityGraph &); // DO NOT IMPLEMENT
599 public:
600 InequalityGraph(ValueNumbering &VN, DomTreeDFS::Node *TreeRoot)
601 : VN(VN), TreeRoot(TreeRoot) {}
602
603 class Node;
604
605 /// An Edge is contained inside a Node making one end of the edge implicit
606 /// and contains a pointer to the other end. The edge contains a lattice
607 /// value specifying the relationship and an DomTreeDFS::Node specifying
608 /// the root in the dominator tree to which this edge applies.
609 class VISIBILITY_HIDDEN Edge {
610 public:
611 Edge(unsigned T, LatticeVal V, DomTreeDFS::Node *ST)
612 : To(T), LV(V), Subtree(ST) {}
613
614 unsigned To;
615 LatticeVal LV;
616 DomTreeDFS::Node *Subtree;
617
618 bool operator<(const Edge &edge) const {
619 if (To != edge.To) return To < edge.To;
620 return *Subtree < *edge.Subtree;
621 }
622
623 bool operator<(unsigned to) const {
624 return To < to;
625 }
626
627 bool operator>(unsigned to) const {
628 return To > to;
629 }
630
631 friend bool operator<(unsigned to, const Edge &edge) {
632 return edge.operator>(to);
633 }
634 };
635
636 /// A single node in the InequalityGraph. This stores the canonical Value
637 /// for the node, as well as the relationships with the neighbours.
638 ///
639 /// @brief A single node in the InequalityGraph.
640 class VISIBILITY_HIDDEN Node {
641 friend class InequalityGraph;
642
643 typedef SmallVector<Edge, 4> RelationsType;
644 RelationsType Relations;
645
646 // TODO: can this idea improve performance?
647 //friend class std::vector<Node>;
648 //Node(Node &N) { RelationsType.swap(N.RelationsType); }
649
650 public:
651 typedef RelationsType::iterator iterator;
652 typedef RelationsType::const_iterator const_iterator;
653
654#ifndef NDEBUG
655 virtual ~Node() {}
656 virtual void dump() const {
657 dump(*cerr.stream());
658 }
659 private:
660 void dump(std::ostream &os) const {
661 static const std::string names[32] =
662 { "000000", "000001", "000002", "000003", "000004", "000005",
663 "000006", "000007", "000008", "000009", " >", " >=",
664 " s>u<", "s>=u<=", " s>", " s>=", "000016", "000017",
665 " s<u>", "s<=u>=", " <", " <=", " s<", " s<=",
666 "000024", "000025", " u>", " u>=", " u<", " u<=",
667 " !=", "000031" };
668 for (Node::const_iterator NI = begin(), NE = end(); NI != NE; ++NI) {
669 os << names[NI->LV] << " " << NI->To
670 << " (" << NI->Subtree->getDFSNumIn() << "), ";
671 }
672 }
673 public:
674#endif
675
676 iterator begin() { return Relations.begin(); }
677 iterator end() { return Relations.end(); }
678 const_iterator begin() const { return Relations.begin(); }
679 const_iterator end() const { return Relations.end(); }
680
681 iterator find(unsigned n, DomTreeDFS::Node *Subtree) {
682 iterator E = end();
683 for (iterator I = std::lower_bound(begin(), E, n);
684 I != E && I->To == n; ++I) {
685 if (Subtree->DominatedBy(I->Subtree))
686 return I;
687 }
688 return E;
689 }
690
691 const_iterator find(unsigned n, DomTreeDFS::Node *Subtree) const {
692 const_iterator E = end();
693 for (const_iterator I = std::lower_bound(begin(), E, n);
694 I != E && I->To == n; ++I) {
695 if (Subtree->DominatedBy(I->Subtree))
696 return I;
697 }
698 return E;
699 }
700
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000701 /// update - updates the lattice value for a given node, creating a new
702 /// entry if one doesn't exist. The new lattice value must not be
703 /// inconsistent with any previously existing value.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000704 void update(unsigned n, LatticeVal R, DomTreeDFS::Node *Subtree) {
705 assert(validPredicate(R) && "Invalid predicate.");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000706
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000707 Edge edge(n, R, Subtree);
708 iterator B = begin(), E = end();
709 iterator I = std::lower_bound(B, E, edge);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000710
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000711 iterator J = I;
712 while (J != E && J->To == n) {
713 if (Subtree->DominatedBy(J->Subtree))
714 break;
715 ++J;
716 }
717
Nick Lewycky7f8b99b2007-08-18 23:18:03 +0000718 if (J != E && J->To == n) {
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000719 edge.LV = static_cast<LatticeVal>(J->LV & R);
720 assert(validPredicate(edge.LV) && "Invalid union of lattice values.");
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000721
Nick Lewycky7f8b99b2007-08-18 23:18:03 +0000722 if (edge.LV == J->LV)
723 return; // This update adds nothing new.
Bill Wendling44a36ea2008-02-26 10:53:30 +0000724 }
Nick Lewycky7f8b99b2007-08-18 23:18:03 +0000725
726 if (I != B) {
727 // We also have to tighten any edge beneath our update.
728 for (iterator K = I - 1; K->To == n; --K) {
729 if (K->Subtree->DominatedBy(Subtree)) {
730 LatticeVal LV = static_cast<LatticeVal>(K->LV & edge.LV);
731 assert(validPredicate(LV) && "Invalid union of lattice values");
732 K->LV = LV;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000733 }
Nick Lewycky7f8b99b2007-08-18 23:18:03 +0000734 if (K == B) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000735 }
Bill Wendling44a36ea2008-02-26 10:53:30 +0000736 }
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000737
738 // Insert new edge at Subtree if it isn't already there.
739 if (I == E || I->To != n || Subtree != I->Subtree)
740 Relations.insert(I, edge);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000741 }
742 };
743
744 private:
745
746 std::vector<Node> Nodes;
747
748 public:
749 /// node - returns the node object at a given value number. The pointer
750 /// returned may be invalidated on the next call to node().
751 Node *node(unsigned index) {
752 assert(VN.value(index)); // This triggers the necessary checks.
753 if (Nodes.size() < index) Nodes.resize(index);
754 return &Nodes[index-1];
755 }
756
757 /// isRelatedBy - true iff n1 op n2
758 bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
759 LatticeVal LV) {
760 if (n1 == n2) return LV & EQ_BIT;
761
762 Node *N1 = node(n1);
763 Node::iterator I = N1->find(n2, Subtree), E = N1->end();
764 if (I != E) return (I->LV & LV) == I->LV;
765
766 return false;
767 }
768
769 // The add* methods assume that your input is logically valid and may
770 // assertion-fail or infinitely loop if you attempt a contradiction.
771
772 /// addInequality - Sets n1 op n2.
773 /// It is also an error to call this on an inequality that is already true.
774 void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
775 LatticeVal LV1) {
776 assert(n1 != n2 && "A node can't be inequal to itself.");
777
778 if (LV1 != NE)
779 assert(!isRelatedBy(n1, n2, Subtree, reversePredicate(LV1)) &&
780 "Contradictory inequality.");
781
782 // Suppose we're adding %n1 < %n2. Find all the %a < %n1 and
783 // add %a < %n2 too. This keeps the graph fully connected.
784 if (LV1 != NE) {
785 // Break up the relationship into signed and unsigned comparison parts.
786 // If the signed parts of %a op1 %n1 match that of %n1 op2 %n2, and
787 // op1 and op2 aren't NE, then add %a op3 %n2. The new relationship
788 // should have the EQ_BIT iff it's set for both op1 and op2.
789
790 unsigned LV1_s = LV1 & (SLT_BIT|SGT_BIT);
791 unsigned LV1_u = LV1 & (ULT_BIT|UGT_BIT);
792
793 for (Node::iterator I = node(n1)->begin(), E = node(n1)->end(); I != E; ++I) {
794 if (I->LV != NE && I->To != n2) {
795
796 DomTreeDFS::Node *Local_Subtree = NULL;
797 if (Subtree->DominatedBy(I->Subtree))
798 Local_Subtree = Subtree;
799 else if (I->Subtree->DominatedBy(Subtree))
800 Local_Subtree = I->Subtree;
801
802 if (Local_Subtree) {
803 unsigned new_relationship = 0;
804 LatticeVal ILV = reversePredicate(I->LV);
805 unsigned ILV_s = ILV & (SLT_BIT|SGT_BIT);
806 unsigned ILV_u = ILV & (ULT_BIT|UGT_BIT);
807
808 if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
809 new_relationship |= ILV_s;
810 if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
811 new_relationship |= ILV_u;
812
813 if (new_relationship) {
814 if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
815 new_relationship |= (SLT_BIT|SGT_BIT);
816 if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
817 new_relationship |= (ULT_BIT|UGT_BIT);
818 if ((LV1 & EQ_BIT) && (ILV & EQ_BIT))
819 new_relationship |= EQ_BIT;
820
821 LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
822
823 node(I->To)->update(n2, NewLV, Local_Subtree);
824 node(n2)->update(I->To, reversePredicate(NewLV), Local_Subtree);
825 }
826 }
827 }
828 }
829
830 for (Node::iterator I = node(n2)->begin(), E = node(n2)->end(); I != E; ++I) {
831 if (I->LV != NE && I->To != n1) {
832 DomTreeDFS::Node *Local_Subtree = NULL;
833 if (Subtree->DominatedBy(I->Subtree))
834 Local_Subtree = Subtree;
835 else if (I->Subtree->DominatedBy(Subtree))
836 Local_Subtree = I->Subtree;
837
838 if (Local_Subtree) {
839 unsigned new_relationship = 0;
840 unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT);
841 unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT);
842
843 if (LV1_s != (SLT_BIT|SGT_BIT) && ILV_s == LV1_s)
844 new_relationship |= ILV_s;
845
846 if (LV1_u != (ULT_BIT|UGT_BIT) && ILV_u == LV1_u)
847 new_relationship |= ILV_u;
848
849 if (new_relationship) {
850 if ((new_relationship & (SLT_BIT|SGT_BIT)) == 0)
851 new_relationship |= (SLT_BIT|SGT_BIT);
852 if ((new_relationship & (ULT_BIT|UGT_BIT)) == 0)
853 new_relationship |= (ULT_BIT|UGT_BIT);
854 if ((LV1 & EQ_BIT) && (I->LV & EQ_BIT))
855 new_relationship |= EQ_BIT;
856
857 LatticeVal NewLV = static_cast<LatticeVal>(new_relationship);
858
859 node(n1)->update(I->To, NewLV, Local_Subtree);
860 node(I->To)->update(n1, reversePredicate(NewLV), Local_Subtree);
861 }
862 }
863 }
864 }
865 }
866
867 node(n1)->update(n2, LV1, Subtree);
868 node(n2)->update(n1, reversePredicate(LV1), Subtree);
869 }
870
871 /// remove - removes a node from the graph by removing all references to
872 /// and from it.
873 void remove(unsigned n) {
874 Node *N = node(n);
875 for (Node::iterator NI = N->begin(), NE = N->end(); NI != NE; ++NI) {
876 Node::iterator Iter = node(NI->To)->find(n, TreeRoot);
877 do {
878 node(NI->To)->Relations.erase(Iter);
879 Iter = node(NI->To)->find(n, TreeRoot);
880 } while (Iter != node(NI->To)->end());
881 }
882 N->Relations.clear();
883 }
884
885#ifndef NDEBUG
886 virtual ~InequalityGraph() {}
887 virtual void dump() {
888 dump(*cerr.stream());
889 }
890
891 void dump(std::ostream &os) {
892 for (unsigned i = 1; i <= Nodes.size(); ++i) {
893 os << i << " = {";
894 node(i)->dump(os);
895 os << "}\n";
896 }
897 }
898#endif
899 };
900
901 class VRPSolver;
902
903 /// ValueRanges tracks the known integer ranges and anti-ranges of the nodes
904 /// in the InequalityGraph.
905 class VISIBILITY_HIDDEN ValueRanges {
906 ValueNumbering &VN;
907 TargetData *TD;
908
909 class VISIBILITY_HIDDEN ScopedRange {
910 typedef std::vector<std::pair<DomTreeDFS::Node *, ConstantRange> >
911 RangeListType;
912 RangeListType RangeList;
913
914 static bool swo(const std::pair<DomTreeDFS::Node *, ConstantRange> &LHS,
915 const std::pair<DomTreeDFS::Node *, ConstantRange> &RHS) {
916 return *LHS.first < *RHS.first;
917 }
918
919 public:
920#ifndef NDEBUG
921 virtual ~ScopedRange() {}
922 virtual void dump() const {
923 dump(*cerr.stream());
924 }
925
926 void dump(std::ostream &os) const {
927 os << "{";
928 for (const_iterator I = begin(), E = end(); I != E; ++I) {
Chris Lattner1fefaac2008-08-23 22:23:09 +0000929 os << &I->second << " (" << I->first->getDFSNumIn() << "), ";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000930 }
931 os << "}";
932 }
933#endif
934
935 typedef RangeListType::iterator iterator;
936 typedef RangeListType::const_iterator const_iterator;
937
938 iterator begin() { return RangeList.begin(); }
939 iterator end() { return RangeList.end(); }
940 const_iterator begin() const { return RangeList.begin(); }
941 const_iterator end() const { return RangeList.end(); }
942
943 iterator find(DomTreeDFS::Node *Subtree) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000944 iterator E = end();
945 iterator I = std::lower_bound(begin(), E,
946 std::make_pair(Subtree, empty), swo);
947
948 while (I != E && !I->first->dominates(Subtree)) ++I;
949 return I;
950 }
951
952 const_iterator find(DomTreeDFS::Node *Subtree) const {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000953 const_iterator E = end();
954 const_iterator I = std::lower_bound(begin(), E,
955 std::make_pair(Subtree, empty), swo);
956
957 while (I != E && !I->first->dominates(Subtree)) ++I;
958 return I;
959 }
960
961 void update(const ConstantRange &CR, DomTreeDFS::Node *Subtree) {
962 assert(!CR.isEmptySet() && "Empty ConstantRange.");
Nick Lewyckydd38f8e2007-08-04 18:45:32 +0000963 assert(!CR.isSingleElement() && "Refusing to store single element.");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000964
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000965 iterator E = end();
966 iterator I =
967 std::lower_bound(begin(), E, std::make_pair(Subtree, empty), swo);
968
969 if (I != end() && I->first == Subtree) {
970 ConstantRange CR2 = I->second.maximalIntersectWith(CR);
971 assert(!CR2.isEmptySet() && !CR2.isSingleElement() &&
972 "Invalid union of ranges.");
973 I->second = CR2;
974 } else
975 RangeList.insert(I, std::make_pair(Subtree, CR));
976 }
977 };
978
979 std::vector<ScopedRange> Ranges;
980
981 void update(unsigned n, const ConstantRange &CR, DomTreeDFS::Node *Subtree){
982 if (CR.isFullSet()) return;
983 if (Ranges.size() < n) Ranges.resize(n);
984 Ranges[n-1].update(CR, Subtree);
985 }
986
987 /// create - Creates a ConstantRange that matches the given LatticeVal
988 /// relation with a given integer.
989 ConstantRange create(LatticeVal LV, const ConstantRange &CR) {
990 assert(!CR.isEmptySet() && "Can't deal with empty set.");
991
992 if (LV == NE)
Nick Lewyckyc21feac2009-07-11 06:15:39 +0000993 return ConstantRange::makeICmpRegion(ICmpInst::ICMP_NE, CR);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000994
995 unsigned LV_s = LV & (SGT_BIT|SLT_BIT);
996 unsigned LV_u = LV & (UGT_BIT|ULT_BIT);
997 bool hasEQ = LV & EQ_BIT;
998
999 ConstantRange Range(CR.getBitWidth());
1000
1001 if (LV_s == SGT_BIT) {
Nick Lewyckyc21feac2009-07-11 06:15:39 +00001002 Range = Range.maximalIntersectWith(ConstantRange::makeICmpRegion(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001003 hasEQ ? ICmpInst::ICMP_SGE : ICmpInst::ICMP_SGT, CR));
1004 } else if (LV_s == SLT_BIT) {
Nick Lewyckyc21feac2009-07-11 06:15:39 +00001005 Range = Range.maximalIntersectWith(ConstantRange::makeICmpRegion(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001006 hasEQ ? ICmpInst::ICMP_SLE : ICmpInst::ICMP_SLT, CR));
1007 }
1008
1009 if (LV_u == UGT_BIT) {
Nick Lewyckyc21feac2009-07-11 06:15:39 +00001010 Range = Range.maximalIntersectWith(ConstantRange::makeICmpRegion(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001011 hasEQ ? ICmpInst::ICMP_UGE : ICmpInst::ICMP_UGT, CR));
1012 } else if (LV_u == ULT_BIT) {
Nick Lewyckyc21feac2009-07-11 06:15:39 +00001013 Range = Range.maximalIntersectWith(ConstantRange::makeICmpRegion(
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001014 hasEQ ? ICmpInst::ICMP_ULE : ICmpInst::ICMP_ULT, CR));
1015 }
1016
1017 return Range;
1018 }
1019
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001020#ifndef NDEBUG
1021 bool isCanonical(Value *V, DomTreeDFS::Node *Subtree) {
1022 return V == VN.canonicalize(V, Subtree);
1023 }
1024#endif
1025
1026 public:
1027
1028 ValueRanges(ValueNumbering &VN, TargetData *TD) : VN(VN), TD(TD) {}
1029
1030#ifndef NDEBUG
1031 virtual ~ValueRanges() {}
1032
1033 virtual void dump() const {
1034 dump(*cerr.stream());
1035 }
1036
1037 void dump(std::ostream &os) const {
1038 for (unsigned i = 0, e = Ranges.size(); i != e; ++i) {
1039 os << (i+1) << " = ";
1040 Ranges[i].dump(os);
1041 os << "\n";
1042 }
1043 }
1044#endif
1045
1046 /// range - looks up the ConstantRange associated with a value number.
1047 ConstantRange range(unsigned n, DomTreeDFS::Node *Subtree) {
1048 assert(VN.value(n)); // performs range checks
1049
1050 if (n <= Ranges.size()) {
1051 ScopedRange::iterator I = Ranges[n-1].find(Subtree);
1052 if (I != Ranges[n-1].end()) return I->second;
1053 }
1054
1055 Value *V = VN.value(n);
1056 ConstantRange CR = range(V);
1057 return CR;
1058 }
1059
1060 /// range - determine a range from a Value without performing any lookups.
1061 ConstantRange range(Value *V) const {
1062 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
1063 return ConstantRange(C->getValue());
1064 else if (isa<ConstantPointerNull>(V))
1065 return ConstantRange(APInt::getNullValue(typeToWidth(V->getType())));
1066 else
Dan Gohmana789bff2008-02-20 16:44:09 +00001067 return ConstantRange(typeToWidth(V->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001068 }
1069
1070 // typeToWidth - returns the number of bits necessary to store a value of
1071 // this type, or zero if unknown.
1072 uint32_t typeToWidth(const Type *Ty) const {
1073 if (TD)
1074 return TD->getTypeSizeInBits(Ty);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00001075 else
1076 return Ty->getPrimitiveSizeInBits();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001077 }
1078
1079 static bool isRelatedBy(const ConstantRange &CR1, const ConstantRange &CR2,
1080 LatticeVal LV) {
1081 switch (LV) {
1082 default: assert(!"Impossible lattice value!");
1083 case NE:
1084 return CR1.maximalIntersectWith(CR2).isEmptySet();
1085 case ULT:
1086 return CR1.getUnsignedMax().ult(CR2.getUnsignedMin());
1087 case ULE:
1088 return CR1.getUnsignedMax().ule(CR2.getUnsignedMin());
1089 case UGT:
1090 return CR1.getUnsignedMin().ugt(CR2.getUnsignedMax());
1091 case UGE:
1092 return CR1.getUnsignedMin().uge(CR2.getUnsignedMax());
1093 case SLT:
1094 return CR1.getSignedMax().slt(CR2.getSignedMin());
1095 case SLE:
1096 return CR1.getSignedMax().sle(CR2.getSignedMin());
1097 case SGT:
1098 return CR1.getSignedMin().sgt(CR2.getSignedMax());
1099 case SGE:
1100 return CR1.getSignedMin().sge(CR2.getSignedMax());
1101 case LT:
1102 return CR1.getUnsignedMax().ult(CR2.getUnsignedMin()) &&
1103 CR1.getSignedMax().slt(CR2.getUnsignedMin());
1104 case LE:
1105 return CR1.getUnsignedMax().ule(CR2.getUnsignedMin()) &&
1106 CR1.getSignedMax().sle(CR2.getUnsignedMin());
1107 case GT:
1108 return CR1.getUnsignedMin().ugt(CR2.getUnsignedMax()) &&
1109 CR1.getSignedMin().sgt(CR2.getSignedMax());
1110 case GE:
1111 return CR1.getUnsignedMin().uge(CR2.getUnsignedMax()) &&
1112 CR1.getSignedMin().sge(CR2.getSignedMax());
1113 case SLTUGT:
1114 return CR1.getSignedMax().slt(CR2.getSignedMin()) &&
1115 CR1.getUnsignedMin().ugt(CR2.getUnsignedMax());
1116 case SLEUGE:
1117 return CR1.getSignedMax().sle(CR2.getSignedMin()) &&
1118 CR1.getUnsignedMin().uge(CR2.getUnsignedMax());
1119 case SGTULT:
1120 return CR1.getSignedMin().sgt(CR2.getSignedMax()) &&
1121 CR1.getUnsignedMax().ult(CR2.getUnsignedMin());
1122 case SGEULE:
1123 return CR1.getSignedMin().sge(CR2.getSignedMax()) &&
1124 CR1.getUnsignedMax().ule(CR2.getUnsignedMin());
1125 }
1126 }
1127
1128 bool isRelatedBy(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
1129 LatticeVal LV) {
1130 ConstantRange CR1 = range(n1, Subtree);
1131 ConstantRange CR2 = range(n2, Subtree);
1132
1133 // True iff all values in CR1 are LV to all values in CR2.
1134 return isRelatedBy(CR1, CR2, LV);
1135 }
1136
1137 void addToWorklist(Value *V, Constant *C, ICmpInst::Predicate Pred,
1138 VRPSolver *VRP);
1139 void markBlock(VRPSolver *VRP);
1140
1141 void mergeInto(Value **I, unsigned n, unsigned New,
1142 DomTreeDFS::Node *Subtree, VRPSolver *VRP) {
1143 ConstantRange CR_New = range(New, Subtree);
1144 ConstantRange Merged = CR_New;
1145
1146 for (; n != 0; ++I, --n) {
1147 unsigned i = VN.valueNumber(*I, Subtree);
1148 ConstantRange CR_Kill = i ? range(i, Subtree) : range(*I);
1149 if (CR_Kill.isFullSet()) continue;
1150 Merged = Merged.maximalIntersectWith(CR_Kill);
1151 }
1152
1153 if (Merged.isFullSet() || Merged == CR_New) return;
1154
1155 applyRange(New, Merged, Subtree, VRP);
1156 }
1157
1158 void applyRange(unsigned n, const ConstantRange &CR,
1159 DomTreeDFS::Node *Subtree, VRPSolver *VRP) {
1160 ConstantRange Merged = CR.maximalIntersectWith(range(n, Subtree));
1161 if (Merged.isEmptySet()) {
1162 markBlock(VRP);
1163 return;
1164 }
1165
1166 if (const APInt *I = Merged.getSingleElement()) {
1167 Value *V = VN.value(n); // XXX: redesign worklist.
1168 const Type *Ty = V->getType();
1169 if (Ty->isInteger()) {
1170 addToWorklist(V, ConstantInt::get(*I), ICmpInst::ICMP_EQ, VRP);
1171 return;
1172 } else if (const PointerType *PTy = dyn_cast<PointerType>(Ty)) {
1173 assert(*I == 0 && "Pointer is null but not zero?");
1174 addToWorklist(V, ConstantPointerNull::get(PTy),
1175 ICmpInst::ICMP_EQ, VRP);
1176 return;
1177 }
1178 }
1179
1180 update(n, Merged, Subtree);
1181 }
1182
1183 void addNotEquals(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
1184 VRPSolver *VRP) {
1185 ConstantRange CR1 = range(n1, Subtree);
1186 ConstantRange CR2 = range(n2, Subtree);
1187
1188 uint32_t W = CR1.getBitWidth();
1189
1190 if (const APInt *I = CR1.getSingleElement()) {
1191 if (CR2.isFullSet()) {
1192 ConstantRange NewCR2(CR1.getUpper(), CR1.getLower());
1193 applyRange(n2, NewCR2, Subtree, VRP);
1194 } else if (*I == CR2.getLower()) {
1195 APInt NewLower(CR2.getLower() + 1),
1196 NewUpper(CR2.getUpper());
1197 if (NewLower == NewUpper)
1198 NewLower = NewUpper = APInt::getMinValue(W);
1199
1200 ConstantRange NewCR2(NewLower, NewUpper);
1201 applyRange(n2, NewCR2, Subtree, VRP);
1202 } else if (*I == CR2.getUpper() - 1) {
1203 APInt NewLower(CR2.getLower()),
1204 NewUpper(CR2.getUpper() - 1);
1205 if (NewLower == NewUpper)
1206 NewLower = NewUpper = APInt::getMinValue(W);
1207
1208 ConstantRange NewCR2(NewLower, NewUpper);
1209 applyRange(n2, NewCR2, Subtree, VRP);
1210 }
1211 }
1212
1213 if (const APInt *I = CR2.getSingleElement()) {
1214 if (CR1.isFullSet()) {
1215 ConstantRange NewCR1(CR2.getUpper(), CR2.getLower());
1216 applyRange(n1, NewCR1, Subtree, VRP);
1217 } else if (*I == CR1.getLower()) {
1218 APInt NewLower(CR1.getLower() + 1),
1219 NewUpper(CR1.getUpper());
1220 if (NewLower == NewUpper)
1221 NewLower = NewUpper = APInt::getMinValue(W);
1222
1223 ConstantRange NewCR1(NewLower, NewUpper);
1224 applyRange(n1, NewCR1, Subtree, VRP);
1225 } else if (*I == CR1.getUpper() - 1) {
1226 APInt NewLower(CR1.getLower()),
1227 NewUpper(CR1.getUpper() - 1);
1228 if (NewLower == NewUpper)
1229 NewLower = NewUpper = APInt::getMinValue(W);
1230
1231 ConstantRange NewCR1(NewLower, NewUpper);
1232 applyRange(n1, NewCR1, Subtree, VRP);
1233 }
1234 }
1235 }
1236
1237 void addInequality(unsigned n1, unsigned n2, DomTreeDFS::Node *Subtree,
1238 LatticeVal LV, VRPSolver *VRP) {
1239 assert(!isRelatedBy(n1, n2, Subtree, LV) && "Asked to do useless work.");
1240
1241 if (LV == NE) {
1242 addNotEquals(n1, n2, Subtree, VRP);
1243 return;
1244 }
1245
1246 ConstantRange CR1 = range(n1, Subtree);
1247 ConstantRange CR2 = range(n2, Subtree);
1248
1249 if (!CR1.isSingleElement()) {
1250 ConstantRange NewCR1 = CR1.maximalIntersectWith(create(LV, CR2));
1251 if (NewCR1 != CR1)
1252 applyRange(n1, NewCR1, Subtree, VRP);
1253 }
1254
1255 if (!CR2.isSingleElement()) {
1256 ConstantRange NewCR2 = CR2.maximalIntersectWith(
1257 create(reversePredicate(LV), CR1));
1258 if (NewCR2 != CR2)
1259 applyRange(n2, NewCR2, Subtree, VRP);
1260 }
1261 }
1262 };
1263
1264 /// UnreachableBlocks keeps tracks of blocks that are for one reason or
1265 /// another discovered to be unreachable. This is used to cull the graph when
1266 /// analyzing instructions, and to mark blocks with the "unreachable"
1267 /// terminator instruction after the function has executed.
1268 class VISIBILITY_HIDDEN UnreachableBlocks {
1269 private:
1270 std::vector<BasicBlock *> DeadBlocks;
1271
1272 public:
1273 /// mark - mark a block as dead
1274 void mark(BasicBlock *BB) {
1275 std::vector<BasicBlock *>::iterator E = DeadBlocks.end();
1276 std::vector<BasicBlock *>::iterator I =
1277 std::lower_bound(DeadBlocks.begin(), E, BB);
1278
1279 if (I == E || *I != BB) DeadBlocks.insert(I, BB);
1280 }
1281
1282 /// isDead - returns whether a block is known to be dead already
1283 bool isDead(BasicBlock *BB) {
1284 std::vector<BasicBlock *>::iterator E = DeadBlocks.end();
1285 std::vector<BasicBlock *>::iterator I =
1286 std::lower_bound(DeadBlocks.begin(), E, BB);
1287
1288 return I != E && *I == BB;
1289 }
1290
1291 /// kill - replace the dead blocks' terminator with an UnreachableInst.
1292 bool kill() {
1293 bool modified = false;
1294 for (std::vector<BasicBlock *>::iterator I = DeadBlocks.begin(),
1295 E = DeadBlocks.end(); I != E; ++I) {
1296 BasicBlock *BB = *I;
1297
1298 DOUT << "unreachable block: " << BB->getName() << "\n";
1299
1300 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
1301 SI != SE; ++SI) {
1302 BasicBlock *Succ = *SI;
1303 Succ->removePredecessor(BB);
1304 }
1305
1306 TerminatorInst *TI = BB->getTerminator();
1307 TI->replaceAllUsesWith(UndefValue::get(TI->getType()));
1308 TI->eraseFromParent();
1309 new UnreachableInst(BB);
1310 ++NumBlocks;
1311 modified = true;
1312 }
1313 DeadBlocks.clear();
1314 return modified;
1315 }
1316 };
1317
1318 /// VRPSolver keeps track of how changes to one variable affect other
1319 /// variables, and forwards changes along to the InequalityGraph. It
1320 /// also maintains the correct choice for "canonical" in the IG.
1321 /// @brief VRPSolver calculates inferences from a new relationship.
1322 class VISIBILITY_HIDDEN VRPSolver {
1323 private:
1324 friend class ValueRanges;
1325
1326 struct Operation {
1327 Value *LHS, *RHS;
1328 ICmpInst::Predicate Op;
1329
1330 BasicBlock *ContextBB; // XXX use a DomTreeDFS::Node instead
1331 Instruction *ContextInst;
1332 };
1333 std::deque<Operation> WorkList;
1334
1335 ValueNumbering &VN;
1336 InequalityGraph &IG;
1337 UnreachableBlocks &UB;
1338 ValueRanges &VR;
1339 DomTreeDFS *DTDFS;
1340 DomTreeDFS::Node *Top;
1341 BasicBlock *TopBB;
1342 Instruction *TopInst;
1343 bool &modified;
1344
1345 typedef InequalityGraph::Node Node;
1346
1347 // below - true if the Instruction is dominated by the current context
1348 // block or instruction
1349 bool below(Instruction *I) {
1350 BasicBlock *BB = I->getParent();
1351 if (TopInst && TopInst->getParent() == BB) {
1352 if (isa<TerminatorInst>(TopInst)) return false;
1353 if (isa<TerminatorInst>(I)) return true;
1354 if ( isa<PHINode>(TopInst) && !isa<PHINode>(I)) return true;
1355 if (!isa<PHINode>(TopInst) && isa<PHINode>(I)) return false;
1356
1357 for (BasicBlock::const_iterator Iter = BB->begin(), E = BB->end();
1358 Iter != E; ++Iter) {
1359 if (&*Iter == TopInst) return true;
1360 else if (&*Iter == I) return false;
1361 }
1362 assert(!"Instructions not found in parent BasicBlock?");
1363 } else {
1364 DomTreeDFS::Node *Node = DTDFS->getNodeForBlock(BB);
1365 if (!Node) return false;
1366 return Top->dominates(Node);
1367 }
Chris Lattner2b06cd32008-03-30 18:22:13 +00001368 return false; // Not reached
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001369 }
1370
1371 // aboveOrBelow - true if the Instruction either dominates or is dominated
1372 // by the current context block or instruction
1373 bool aboveOrBelow(Instruction *I) {
1374 BasicBlock *BB = I->getParent();
1375 DomTreeDFS::Node *Node = DTDFS->getNodeForBlock(BB);
1376 if (!Node) return false;
1377
1378 return Top == Node || Top->dominates(Node) || Node->dominates(Top);
1379 }
1380
1381 bool makeEqual(Value *V1, Value *V2) {
1382 DOUT << "makeEqual(" << *V1 << ", " << *V2 << ")\n";
1383 DOUT << "context is ";
1384 if (TopInst) DOUT << "I: " << *TopInst << "\n";
1385 else DOUT << "BB: " << TopBB->getName()
1386 << "(" << Top->getDFSNumIn() << ")\n";
1387
1388 assert(V1->getType() == V2->getType() &&
1389 "Can't make two values with different types equal.");
1390
1391 if (V1 == V2) return true;
1392
1393 if (isa<Constant>(V1) && isa<Constant>(V2))
1394 return false;
1395
1396 unsigned n1 = VN.valueNumber(V1, Top), n2 = VN.valueNumber(V2, Top);
1397
1398 if (n1 && n2) {
1399 if (n1 == n2) return true;
1400 if (IG.isRelatedBy(n1, n2, Top, NE)) return false;
1401 }
1402
1403 if (n1) assert(V1 == VN.value(n1) && "Value isn't canonical.");
1404 if (n2) assert(V2 == VN.value(n2) && "Value isn't canonical.");
1405
1406 assert(!VN.compare(V2, V1) && "Please order parameters to makeEqual.");
1407
1408 assert(!isa<Constant>(V2) && "Tried to remove a constant.");
1409
1410 SetVector<unsigned> Remove;
1411 if (n2) Remove.insert(n2);
1412
1413 if (n1 && n2) {
1414 // Suppose we're being told that %x == %y, and %x <= %z and %y >= %z.
1415 // We can't just merge %x and %y because the relationship with %z would
1416 // be EQ and that's invalid. What we're doing is looking for any nodes
1417 // %z such that %x <= %z and %y >= %z, and vice versa.
1418
1419 Node::iterator end = IG.node(n2)->end();
1420
1421 // Find the intersection between N1 and N2 which is dominated by
1422 // Top. If we find %x where N1 <= %x <= N2 (or >=) then add %x to
1423 // Remove.
1424 for (Node::iterator I = IG.node(n1)->begin(), E = IG.node(n1)->end();
1425 I != E; ++I) {
1426 if (!(I->LV & EQ_BIT) || !Top->DominatedBy(I->Subtree)) continue;
1427
1428 unsigned ILV_s = I->LV & (SLT_BIT|SGT_BIT);
1429 unsigned ILV_u = I->LV & (ULT_BIT|UGT_BIT);
1430 Node::iterator NI = IG.node(n2)->find(I->To, Top);
1431 if (NI != end) {
1432 LatticeVal NILV = reversePredicate(NI->LV);
1433 unsigned NILV_s = NILV & (SLT_BIT|SGT_BIT);
1434 unsigned NILV_u = NILV & (ULT_BIT|UGT_BIT);
1435
1436 if ((ILV_s != (SLT_BIT|SGT_BIT) && ILV_s == NILV_s) ||
1437 (ILV_u != (ULT_BIT|UGT_BIT) && ILV_u == NILV_u))
1438 Remove.insert(I->To);
1439 }
1440 }
1441
1442 // See if one of the nodes about to be removed is actually a better
1443 // canonical choice than n1.
1444 unsigned orig_n1 = n1;
1445 SetVector<unsigned>::iterator DontRemove = Remove.end();
1446 for (SetVector<unsigned>::iterator I = Remove.begin()+1 /* skip n2 */,
1447 E = Remove.end(); I != E; ++I) {
1448 unsigned n = *I;
1449 Value *V = VN.value(n);
1450 if (VN.compare(V, V1)) {
1451 V1 = V;
1452 n1 = n;
1453 DontRemove = I;
1454 }
1455 }
1456 if (DontRemove != Remove.end()) {
1457 unsigned n = *DontRemove;
1458 Remove.remove(n);
1459 Remove.insert(orig_n1);
1460 }
1461 }
1462
1463 // We'd like to allow makeEqual on two values to perform a simple
Nick Lewycky494c1022008-05-26 22:49:36 +00001464 // substitution without creating nodes in the IG whenever possible.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001465 //
1466 // The first iteration through this loop operates on V2 before going
1467 // through the Remove list and operating on those too. If all of the
1468 // iterations performed simple replacements then we exit early.
1469 bool mergeIGNode = false;
1470 unsigned i = 0;
1471 for (Value *R = V2; i == 0 || i < Remove.size(); ++i) {
1472 if (i) R = VN.value(Remove[i]); // skip n2.
1473
1474 // Try to replace the whole instruction. If we can, we're done.
1475 Instruction *I2 = dyn_cast<Instruction>(R);
1476 if (I2 && below(I2)) {
1477 std::vector<Instruction *> ToNotify;
Jay Foadd1d6a142009-06-06 17:49:35 +00001478 for (Value::use_iterator UI = I2->use_begin(), UE = I2->use_end();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001479 UI != UE;) {
1480 Use &TheUse = UI.getUse();
1481 ++UI;
Jay Foadd1d6a142009-06-06 17:49:35 +00001482 Instruction *I = cast<Instruction>(TheUse.getUser());
1483 ToNotify.push_back(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001484 }
1485
1486 DOUT << "Simply removing " << *I2
1487 << ", replacing with " << *V1 << "\n";
1488 I2->replaceAllUsesWith(V1);
1489 // leave it dead; it'll get erased later.
1490 ++NumInstruction;
1491 modified = true;
1492
1493 for (std::vector<Instruction *>::iterator II = ToNotify.begin(),
1494 IE = ToNotify.end(); II != IE; ++II) {
1495 opsToDef(*II);
1496 }
1497
1498 continue;
1499 }
1500
1501 // Otherwise, replace all dominated uses.
1502 for (Value::use_iterator UI = R->use_begin(), UE = R->use_end();
1503 UI != UE;) {
1504 Use &TheUse = UI.getUse();
1505 ++UI;
1506 if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
1507 if (below(I)) {
1508 TheUse.set(V1);
1509 modified = true;
1510 ++NumVarsReplaced;
1511 opsToDef(I);
1512 }
1513 }
1514 }
1515
1516 // If that killed the instruction, stop here.
1517 if (I2 && isInstructionTriviallyDead(I2)) {
1518 DOUT << "Killed all uses of " << *I2
1519 << ", replacing with " << *V1 << "\n";
1520 continue;
1521 }
1522
1523 // If we make it to here, then we will need to create a node for N1.
1524 // Otherwise, we can skip out early!
1525 mergeIGNode = true;
1526 }
1527
1528 if (!isa<Constant>(V1)) {
1529 if (Remove.empty()) {
1530 VR.mergeInto(&V2, 1, VN.getOrInsertVN(V1, Top), Top, this);
1531 } else {
1532 std::vector<Value*> RemoveVals;
1533 RemoveVals.reserve(Remove.size());
1534
1535 for (SetVector<unsigned>::iterator I = Remove.begin(),
1536 E = Remove.end(); I != E; ++I) {
1537 Value *V = VN.value(*I);
1538 if (!V->use_empty())
1539 RemoveVals.push_back(V);
1540 }
1541 VR.mergeInto(&RemoveVals[0], RemoveVals.size(),
1542 VN.getOrInsertVN(V1, Top), Top, this);
1543 }
1544 }
1545
1546 if (mergeIGNode) {
1547 // Create N1.
1548 if (!n1) n1 = VN.getOrInsertVN(V1, Top);
Nick Lewycky88b1e172008-05-27 00:59:05 +00001549 IG.node(n1); // Ensure that IG.Nodes won't get resized
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001550
1551 // Migrate relationships from removed nodes to N1.
1552 for (SetVector<unsigned>::iterator I = Remove.begin(), E = Remove.end();
1553 I != E; ++I) {
1554 unsigned n = *I;
1555 for (Node::iterator NI = IG.node(n)->begin(), NE = IG.node(n)->end();
1556 NI != NE; ++NI) {
1557 if (NI->Subtree->DominatedBy(Top)) {
1558 if (NI->To == n1) {
1559 assert((NI->LV & EQ_BIT) && "Node inequal to itself.");
1560 continue;
1561 }
1562 if (Remove.count(NI->To))
1563 continue;
1564
1565 IG.node(NI->To)->update(n1, reversePredicate(NI->LV), Top);
1566 IG.node(n1)->update(NI->To, NI->LV, Top);
1567 }
1568 }
1569 }
1570
1571 // Point V2 (and all items in Remove) to N1.
1572 if (!n2)
1573 VN.addEquality(n1, V2, Top);
1574 else {
1575 for (SetVector<unsigned>::iterator I = Remove.begin(),
1576 E = Remove.end(); I != E; ++I) {
1577 VN.addEquality(n1, VN.value(*I), Top);
1578 }
1579 }
1580
1581 // If !Remove.empty() then V2 = Remove[0]->getValue().
1582 // Even when Remove is empty, we still want to process V2.
1583 i = 0;
1584 for (Value *R = V2; i == 0 || i < Remove.size(); ++i) {
1585 if (i) R = VN.value(Remove[i]); // skip n2.
1586
1587 if (Instruction *I2 = dyn_cast<Instruction>(R)) {
1588 if (aboveOrBelow(I2))
1589 defToOps(I2);
1590 }
1591 for (Value::use_iterator UI = V2->use_begin(), UE = V2->use_end();
1592 UI != UE;) {
1593 Use &TheUse = UI.getUse();
1594 ++UI;
1595 if (Instruction *I = dyn_cast<Instruction>(TheUse.getUser())) {
1596 if (aboveOrBelow(I))
1597 opsToDef(I);
1598 }
1599 }
1600 }
1601 }
1602
1603 // re-opsToDef all dominated users of V1.
1604 if (Instruction *I = dyn_cast<Instruction>(V1)) {
1605 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end();
1606 UI != UE;) {
1607 Use &TheUse = UI.getUse();
1608 ++UI;
1609 Value *V = TheUse.getUser();
1610 if (!V->use_empty()) {
Jay Foadd1d6a142009-06-06 17:49:35 +00001611 Instruction *Inst = cast<Instruction>(V);
1612 if (aboveOrBelow(Inst))
1613 opsToDef(Inst);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001614 }
1615 }
1616 }
1617
1618 return true;
1619 }
1620
1621 /// cmpInstToLattice - converts an CmpInst::Predicate to lattice value
1622 /// Requires that the lattice value be valid; does not accept ICMP_EQ.
1623 static LatticeVal cmpInstToLattice(ICmpInst::Predicate Pred) {
1624 switch (Pred) {
1625 case ICmpInst::ICMP_EQ:
1626 assert(!"No matching lattice value.");
1627 return static_cast<LatticeVal>(EQ_BIT);
1628 default:
1629 assert(!"Invalid 'icmp' predicate.");
1630 case ICmpInst::ICMP_NE:
1631 return NE;
1632 case ICmpInst::ICMP_UGT:
1633 return UGT;
1634 case ICmpInst::ICMP_UGE:
1635 return UGE;
1636 case ICmpInst::ICMP_ULT:
1637 return ULT;
1638 case ICmpInst::ICMP_ULE:
1639 return ULE;
1640 case ICmpInst::ICMP_SGT:
1641 return SGT;
1642 case ICmpInst::ICMP_SGE:
1643 return SGE;
1644 case ICmpInst::ICMP_SLT:
1645 return SLT;
1646 case ICmpInst::ICMP_SLE:
1647 return SLE;
1648 }
1649 }
1650
1651 public:
1652 VRPSolver(ValueNumbering &VN, InequalityGraph &IG, UnreachableBlocks &UB,
1653 ValueRanges &VR, DomTreeDFS *DTDFS, bool &modified,
1654 BasicBlock *TopBB)
1655 : VN(VN),
1656 IG(IG),
1657 UB(UB),
1658 VR(VR),
1659 DTDFS(DTDFS),
1660 Top(DTDFS->getNodeForBlock(TopBB)),
1661 TopBB(TopBB),
1662 TopInst(NULL),
1663 modified(modified)
1664 {
1665 assert(Top && "VRPSolver created for unreachable basic block.");
1666 }
1667
1668 VRPSolver(ValueNumbering &VN, InequalityGraph &IG, UnreachableBlocks &UB,
1669 ValueRanges &VR, DomTreeDFS *DTDFS, bool &modified,
1670 Instruction *TopInst)
1671 : VN(VN),
1672 IG(IG),
1673 UB(UB),
1674 VR(VR),
1675 DTDFS(DTDFS),
1676 Top(DTDFS->getNodeForBlock(TopInst->getParent())),
1677 TopBB(TopInst->getParent()),
1678 TopInst(TopInst),
1679 modified(modified)
1680 {
1681 assert(Top && "VRPSolver created for unreachable basic block.");
1682 assert(Top->getBlock() == TopInst->getParent() && "Context mismatch.");
1683 }
1684
1685 bool isRelatedBy(Value *V1, Value *V2, ICmpInst::Predicate Pred) const {
1686 if (Constant *C1 = dyn_cast<Constant>(V1))
1687 if (Constant *C2 = dyn_cast<Constant>(V2))
1688 return ConstantExpr::getCompare(Pred, C1, C2) ==
1689 ConstantInt::getTrue();
1690
1691 unsigned n1 = VN.valueNumber(V1, Top);
1692 unsigned n2 = VN.valueNumber(V2, Top);
1693
1694 if (n1 && n2) {
1695 if (n1 == n2) return Pred == ICmpInst::ICMP_EQ ||
1696 Pred == ICmpInst::ICMP_ULE ||
1697 Pred == ICmpInst::ICMP_UGE ||
1698 Pred == ICmpInst::ICMP_SLE ||
1699 Pred == ICmpInst::ICMP_SGE;
1700 if (Pred == ICmpInst::ICMP_EQ) return false;
1701 if (IG.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true;
1702 if (VR.isRelatedBy(n1, n2, Top, cmpInstToLattice(Pred))) return true;
1703 }
1704
1705 if ((n1 && !n2 && isa<Constant>(V2)) ||
1706 (n2 && !n1 && isa<Constant>(V1))) {
1707 ConstantRange CR1 = n1 ? VR.range(n1, Top) : VR.range(V1);
1708 ConstantRange CR2 = n2 ? VR.range(n2, Top) : VR.range(V2);
1709
1710 if (Pred == ICmpInst::ICMP_EQ)
1711 return CR1.isSingleElement() &&
1712 CR1.getSingleElement() == CR2.getSingleElement();
1713
1714 return VR.isRelatedBy(CR1, CR2, cmpInstToLattice(Pred));
1715 }
1716 if (Pred == ICmpInst::ICMP_EQ) return V1 == V2;
1717 return false;
1718 }
1719
1720 /// add - adds a new property to the work queue
1721 void add(Value *V1, Value *V2, ICmpInst::Predicate Pred,
1722 Instruction *I = NULL) {
1723 DOUT << "adding " << *V1 << " " << Pred << " " << *V2;
1724 if (I) DOUT << " context: " << *I;
1725 else DOUT << " default context (" << Top->getDFSNumIn() << ")";
1726 DOUT << "\n";
1727
1728 assert(V1->getType() == V2->getType() &&
1729 "Can't relate two values with different types.");
1730
1731 WorkList.push_back(Operation());
1732 Operation &O = WorkList.back();
1733 O.LHS = V1, O.RHS = V2, O.Op = Pred, O.ContextInst = I;
1734 O.ContextBB = I ? I->getParent() : TopBB;
1735 }
1736
1737 /// defToOps - Given an instruction definition that we've learned something
1738 /// new about, find any new relationships between its operands.
1739 void defToOps(Instruction *I) {
1740 Instruction *NewContext = below(I) ? I : TopInst;
1741 Value *Canonical = VN.canonicalize(I, Top);
1742
1743 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1744 const Type *Ty = BO->getType();
1745 assert(!Ty->isFPOrFPVector() && "Float in work queue!");
1746
1747 Value *Op0 = VN.canonicalize(BO->getOperand(0), Top);
1748 Value *Op1 = VN.canonicalize(BO->getOperand(1), Top);
1749
1750 // TODO: "and i32 -1, %x" EQ %y then %x EQ %y.
1751
1752 switch (BO->getOpcode()) {
1753 case Instruction::And: {
1754 // "and i32 %a, %b" EQ -1 then %a EQ -1 and %b EQ -1
1755 ConstantInt *CI = ConstantInt::getAllOnesValue(Ty);
1756 if (Canonical == CI) {
1757 add(CI, Op0, ICmpInst::ICMP_EQ, NewContext);
1758 add(CI, Op1, ICmpInst::ICMP_EQ, NewContext);
1759 }
1760 } break;
1761 case Instruction::Or: {
1762 // "or i32 %a, %b" EQ 0 then %a EQ 0 and %b EQ 0
1763 Constant *Zero = Constant::getNullValue(Ty);
1764 if (Canonical == Zero) {
1765 add(Zero, Op0, ICmpInst::ICMP_EQ, NewContext);
1766 add(Zero, Op1, ICmpInst::ICMP_EQ, NewContext);
1767 }
1768 } break;
1769 case Instruction::Xor: {
1770 // "xor i32 %c, %a" EQ %b then %a EQ %c ^ %b
1771 // "xor i32 %c, %a" EQ %c then %a EQ 0
1772 // "xor i32 %c, %a" NE %c then %a NE 0
1773 // Repeat the above, with order of operands reversed.
1774 Value *LHS = Op0;
1775 Value *RHS = Op1;
1776 if (!isa<Constant>(LHS)) std::swap(LHS, RHS);
1777
1778 if (ConstantInt *CI = dyn_cast<ConstantInt>(Canonical)) {
1779 if (ConstantInt *Arg = dyn_cast<ConstantInt>(LHS)) {
1780 add(RHS, ConstantInt::get(CI->getValue() ^ Arg->getValue()),
1781 ICmpInst::ICMP_EQ, NewContext);
1782 }
1783 }
1784 if (Canonical == LHS) {
1785 if (isa<ConstantInt>(Canonical))
1786 add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_EQ,
1787 NewContext);
1788 } else if (isRelatedBy(LHS, Canonical, ICmpInst::ICMP_NE)) {
1789 add(RHS, Constant::getNullValue(Ty), ICmpInst::ICMP_NE,
1790 NewContext);
1791 }
1792 } break;
1793 default:
1794 break;
1795 }
1796 } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) {
1797 // "icmp ult i32 %a, %y" EQ true then %a u< y
1798 // etc.
1799
1800 if (Canonical == ConstantInt::getTrue()) {
1801 add(IC->getOperand(0), IC->getOperand(1), IC->getPredicate(),
1802 NewContext);
1803 } else if (Canonical == ConstantInt::getFalse()) {
1804 add(IC->getOperand(0), IC->getOperand(1),
1805 ICmpInst::getInversePredicate(IC->getPredicate()), NewContext);
1806 }
1807 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
1808 if (I->getType()->isFPOrFPVector()) return;
1809
1810 // Given: "%a = select i1 %x, i32 %b, i32 %c"
1811 // %a EQ %b and %b NE %c then %x EQ true
1812 // %a EQ %c and %b NE %c then %x EQ false
1813
1814 Value *True = SI->getTrueValue();
1815 Value *False = SI->getFalseValue();
1816 if (isRelatedBy(True, False, ICmpInst::ICMP_NE)) {
1817 if (Canonical == VN.canonicalize(True, Top) ||
1818 isRelatedBy(Canonical, False, ICmpInst::ICMP_NE))
1819 add(SI->getCondition(), ConstantInt::getTrue(),
1820 ICmpInst::ICMP_EQ, NewContext);
1821 else if (Canonical == VN.canonicalize(False, Top) ||
1822 isRelatedBy(Canonical, True, ICmpInst::ICMP_NE))
1823 add(SI->getCondition(), ConstantInt::getFalse(),
1824 ICmpInst::ICMP_EQ, NewContext);
1825 }
1826 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
1827 for (GetElementPtrInst::op_iterator OI = GEPI->idx_begin(),
1828 OE = GEPI->idx_end(); OI != OE; ++OI) {
1829 ConstantInt *Op = dyn_cast<ConstantInt>(VN.canonicalize(*OI, Top));
1830 if (!Op || !Op->isZero()) return;
1831 }
1832 // TODO: The GEPI indices are all zero. Copy from definition to operand,
1833 // jumping the type plane as needed.
1834 if (isRelatedBy(GEPI, Constant::getNullValue(GEPI->getType()),
1835 ICmpInst::ICMP_NE)) {
1836 Value *Ptr = GEPI->getPointerOperand();
1837 add(Ptr, Constant::getNullValue(Ptr->getType()), ICmpInst::ICMP_NE,
1838 NewContext);
1839 }
1840 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
1841 const Type *SrcTy = CI->getSrcTy();
1842
1843 unsigned ci = VN.getOrInsertVN(CI, Top);
1844 uint32_t W = VR.typeToWidth(SrcTy);
1845 if (!W) return;
1846 ConstantRange CR = VR.range(ci, Top);
1847
1848 if (CR.isFullSet()) return;
1849
1850 switch (CI->getOpcode()) {
1851 default: break;
1852 case Instruction::ZExt:
1853 case Instruction::SExt:
1854 VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top),
1855 CR.truncate(W), Top, this);
1856 break;
1857 case Instruction::BitCast:
1858 VR.applyRange(VN.getOrInsertVN(CI->getOperand(0), Top),
1859 CR, Top, this);
1860 break;
1861 }
1862 }
1863 }
1864
1865 /// opsToDef - A new relationship was discovered involving one of this
1866 /// instruction's operands. Find any new relationship involving the
1867 /// definition, or another operand.
1868 void opsToDef(Instruction *I) {
1869 Instruction *NewContext = below(I) ? I : TopInst;
1870
1871 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
1872 Value *Op0 = VN.canonicalize(BO->getOperand(0), Top);
1873 Value *Op1 = VN.canonicalize(BO->getOperand(1), Top);
1874
1875 if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0))
1876 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
1877 add(BO, ConstantExpr::get(BO->getOpcode(), CI0, CI1),
1878 ICmpInst::ICMP_EQ, NewContext);
1879 return;
1880 }
1881
1882 // "%y = and i1 true, %x" then %x EQ %y
1883 // "%y = or i1 false, %x" then %x EQ %y
1884 // "%x = add i32 %y, 0" then %x EQ %y
1885 // "%x = mul i32 %y, 0" then %x EQ 0
1886
1887 Instruction::BinaryOps Opcode = BO->getOpcode();
1888 const Type *Ty = BO->getType();
1889 assert(!Ty->isFPOrFPVector() && "Float in work queue!");
1890
1891 Constant *Zero = Constant::getNullValue(Ty);
Nick Lewycky4c168562008-10-24 04:00:26 +00001892 Constant *One = ConstantInt::get(Ty, 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001893 ConstantInt *AllOnes = ConstantInt::getAllOnesValue(Ty);
1894
1895 switch (Opcode) {
1896 default: break;
1897 case Instruction::LShr:
1898 case Instruction::AShr:
1899 case Instruction::Shl:
Nick Lewycky4c168562008-10-24 04:00:26 +00001900 if (Op1 == Zero) {
1901 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1902 return;
1903 }
1904 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001905 case Instruction::Sub:
1906 if (Op1 == Zero) {
1907 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1908 return;
1909 }
Nick Lewycky4c168562008-10-24 04:00:26 +00001910 if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0)) {
1911 unsigned n_ci0 = VN.getOrInsertVN(Op1, Top);
1912 ConstantRange CR = VR.range(n_ci0, Top);
1913 if (!CR.isFullSet()) {
1914 CR.subtract(CI0->getValue());
1915 unsigned n_bo = VN.getOrInsertVN(BO, Top);
1916 VR.applyRange(n_bo, CR, Top, this);
1917 return;
1918 }
1919 }
1920 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
1921 unsigned n_ci1 = VN.getOrInsertVN(Op0, Top);
1922 ConstantRange CR = VR.range(n_ci1, Top);
1923 if (!CR.isFullSet()) {
1924 CR.subtract(CI1->getValue());
1925 unsigned n_bo = VN.getOrInsertVN(BO, Top);
1926 VR.applyRange(n_bo, CR, Top, this);
1927 return;
1928 }
1929 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001930 break;
1931 case Instruction::Or:
1932 if (Op0 == AllOnes || Op1 == AllOnes) {
1933 add(BO, AllOnes, ICmpInst::ICMP_EQ, NewContext);
1934 return;
Nick Lewycky4c168562008-10-24 04:00:26 +00001935 }
1936 if (Op0 == Zero) {
1937 add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
1938 return;
1939 } else if (Op1 == Zero) {
1940 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1941 return;
1942 }
1943 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001944 case Instruction::Add:
Nick Lewycky4c168562008-10-24 04:00:26 +00001945 if (ConstantInt *CI0 = dyn_cast<ConstantInt>(Op0)) {
1946 unsigned n_ci0 = VN.getOrInsertVN(Op1, Top);
1947 ConstantRange CR = VR.range(n_ci0, Top);
1948 if (!CR.isFullSet()) {
1949 CR.subtract(-CI0->getValue());
1950 unsigned n_bo = VN.getOrInsertVN(BO, Top);
1951 VR.applyRange(n_bo, CR, Top, this);
1952 return;
1953 }
1954 }
1955 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(Op1)) {
1956 unsigned n_ci1 = VN.getOrInsertVN(Op0, Top);
1957 ConstantRange CR = VR.range(n_ci1, Top);
1958 if (!CR.isFullSet()) {
1959 CR.subtract(-CI1->getValue());
1960 unsigned n_bo = VN.getOrInsertVN(BO, Top);
1961 VR.applyRange(n_bo, CR, Top, this);
1962 return;
1963 }
1964 }
1965 // fall-through
1966 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001967 if (Op0 == Zero) {
1968 add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
1969 return;
1970 } else if (Op1 == Zero) {
1971 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1972 return;
1973 }
1974 break;
1975 case Instruction::And:
1976 if (Op0 == AllOnes) {
1977 add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
1978 return;
1979 } else if (Op1 == AllOnes) {
1980 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1981 return;
1982 }
Nick Lewycky4c168562008-10-24 04:00:26 +00001983 if (Op0 == Zero || Op1 == Zero) {
1984 add(BO, Zero, ICmpInst::ICMP_EQ, NewContext);
1985 return;
1986 }
1987 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001988 case Instruction::Mul:
1989 if (Op0 == Zero || Op1 == Zero) {
1990 add(BO, Zero, ICmpInst::ICMP_EQ, NewContext);
1991 return;
1992 }
Nick Lewycky4c168562008-10-24 04:00:26 +00001993 if (Op0 == One) {
1994 add(BO, Op1, ICmpInst::ICMP_EQ, NewContext);
1995 return;
1996 } else if (Op1 == One) {
1997 add(BO, Op0, ICmpInst::ICMP_EQ, NewContext);
1998 return;
1999 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002000 break;
2001 }
2002
2003 // "%x = add i32 %y, %z" and %x EQ %y then %z EQ 0
2004 // "%x = add i32 %y, %z" and %x EQ %z then %y EQ 0
2005 // "%x = shl i32 %y, %z" and %x EQ %y and %y NE 0 then %z EQ 0
Nick Lewycky4c168562008-10-24 04:00:26 +00002006 // "%x = udiv i32 %y, %z" and %x EQ %y and %y NE 0 then %z EQ 1
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002007
2008 Value *Known = Op0, *Unknown = Op1,
2009 *TheBO = VN.canonicalize(BO, Top);
2010 if (Known != TheBO) std::swap(Known, Unknown);
2011 if (Known == TheBO) {
2012 switch (Opcode) {
2013 default: break;
2014 case Instruction::LShr:
2015 case Instruction::AShr:
2016 case Instruction::Shl:
2017 if (!isRelatedBy(Known, Zero, ICmpInst::ICMP_NE)) break;
2018 // otherwise, fall-through.
2019 case Instruction::Sub:
Nick Lewycky56d24822007-09-20 00:48:36 +00002020 if (Unknown == Op0) break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002021 // otherwise, fall-through.
2022 case Instruction::Xor:
2023 case Instruction::Add:
2024 add(Unknown, Zero, ICmpInst::ICMP_EQ, NewContext);
2025 break;
2026 case Instruction::UDiv:
2027 case Instruction::SDiv:
2028 if (Unknown == Op1) break;
Nick Lewycky4c168562008-10-24 04:00:26 +00002029 if (isRelatedBy(Known, Zero, ICmpInst::ICMP_NE))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002030 add(Unknown, One, ICmpInst::ICMP_EQ, NewContext);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002031 break;
2032 }
2033 }
2034
2035 // TODO: "%a = add i32 %b, 1" and %b > %z then %a >= %z.
2036
2037 } else if (ICmpInst *IC = dyn_cast<ICmpInst>(I)) {
2038 // "%a = icmp ult i32 %b, %c" and %b u< %c then %a EQ true
2039 // "%a = icmp ult i32 %b, %c" and %b u>= %c then %a EQ false
2040 // etc.
2041
2042 Value *Op0 = VN.canonicalize(IC->getOperand(0), Top);
2043 Value *Op1 = VN.canonicalize(IC->getOperand(1), Top);
2044
2045 ICmpInst::Predicate Pred = IC->getPredicate();
2046 if (isRelatedBy(Op0, Op1, Pred))
2047 add(IC, ConstantInt::getTrue(), ICmpInst::ICMP_EQ, NewContext);
2048 else if (isRelatedBy(Op0, Op1, ICmpInst::getInversePredicate(Pred)))
2049 add(IC, ConstantInt::getFalse(), ICmpInst::ICMP_EQ, NewContext);
2050
2051 } else if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
2052 if (I->getType()->isFPOrFPVector()) return;
2053
2054 // Given: "%a = select i1 %x, i32 %b, i32 %c"
2055 // %x EQ true then %a EQ %b
2056 // %x EQ false then %a EQ %c
2057 // %b EQ %c then %a EQ %b
2058
2059 Value *Canonical = VN.canonicalize(SI->getCondition(), Top);
2060 if (Canonical == ConstantInt::getTrue()) {
2061 add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext);
2062 } else if (Canonical == ConstantInt::getFalse()) {
2063 add(SI, SI->getFalseValue(), ICmpInst::ICMP_EQ, NewContext);
2064 } else if (VN.canonicalize(SI->getTrueValue(), Top) ==
2065 VN.canonicalize(SI->getFalseValue(), Top)) {
2066 add(SI, SI->getTrueValue(), ICmpInst::ICMP_EQ, NewContext);
2067 }
2068 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
2069 const Type *DestTy = CI->getDestTy();
2070 if (DestTy->isFPOrFPVector()) return;
2071
2072 Value *Op = VN.canonicalize(CI->getOperand(0), Top);
2073 Instruction::CastOps Opcode = CI->getOpcode();
2074
2075 if (Constant *C = dyn_cast<Constant>(Op)) {
2076 add(CI, ConstantExpr::getCast(Opcode, C, DestTy),
2077 ICmpInst::ICMP_EQ, NewContext);
2078 }
2079
2080 uint32_t W = VR.typeToWidth(DestTy);
2081 unsigned ci = VN.getOrInsertVN(CI, Top);
2082 ConstantRange CR = VR.range(VN.getOrInsertVN(Op, Top), Top);
2083
2084 if (!CR.isFullSet()) {
2085 switch (Opcode) {
2086 default: break;
2087 case Instruction::ZExt:
2088 VR.applyRange(ci, CR.zeroExtend(W), Top, this);
2089 break;
2090 case Instruction::SExt:
2091 VR.applyRange(ci, CR.signExtend(W), Top, this);
2092 break;
2093 case Instruction::Trunc: {
2094 ConstantRange Result = CR.truncate(W);
2095 if (!Result.isFullSet())
2096 VR.applyRange(ci, Result, Top, this);
2097 } break;
2098 case Instruction::BitCast:
2099 VR.applyRange(ci, CR, Top, this);
2100 break;
2101 // TODO: other casts?
2102 }
2103 }
2104 } else if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
2105 for (GetElementPtrInst::op_iterator OI = GEPI->idx_begin(),
2106 OE = GEPI->idx_end(); OI != OE; ++OI) {
2107 ConstantInt *Op = dyn_cast<ConstantInt>(VN.canonicalize(*OI, Top));
2108 if (!Op || !Op->isZero()) return;
2109 }
2110 // TODO: The GEPI indices are all zero. Copy from operand to definition,
2111 // jumping the type plane as needed.
2112 Value *Ptr = GEPI->getPointerOperand();
2113 if (isRelatedBy(Ptr, Constant::getNullValue(Ptr->getType()),
2114 ICmpInst::ICMP_NE)) {
2115 add(GEPI, Constant::getNullValue(GEPI->getType()), ICmpInst::ICMP_NE,
2116 NewContext);
2117 }
2118 }
2119 }
2120
2121 /// solve - process the work queue
2122 void solve() {
2123 //DOUT << "WorkList entry, size: " << WorkList.size() << "\n";
2124 while (!WorkList.empty()) {
2125 //DOUT << "WorkList size: " << WorkList.size() << "\n";
2126
2127 Operation &O = WorkList.front();
2128 TopInst = O.ContextInst;
2129 TopBB = O.ContextBB;
2130 Top = DTDFS->getNodeForBlock(TopBB); // XXX move this into Context
2131
2132 O.LHS = VN.canonicalize(O.LHS, Top);
2133 O.RHS = VN.canonicalize(O.RHS, Top);
2134
2135 assert(O.LHS == VN.canonicalize(O.LHS, Top) && "Canonicalize isn't.");
2136 assert(O.RHS == VN.canonicalize(O.RHS, Top) && "Canonicalize isn't.");
2137
2138 DOUT << "solving " << *O.LHS << " " << O.Op << " " << *O.RHS;
2139 if (O.ContextInst) DOUT << " context inst: " << *O.ContextInst;
2140 else DOUT << " context block: " << O.ContextBB->getName();
2141 DOUT << "\n";
2142
2143 DEBUG(VN.dump());
2144 DEBUG(IG.dump());
2145 DEBUG(VR.dump());
2146
2147 // If they're both Constant, skip it. Check for contradiction and mark
2148 // the BB as unreachable if so.
2149 if (Constant *CI_L = dyn_cast<Constant>(O.LHS)) {
2150 if (Constant *CI_R = dyn_cast<Constant>(O.RHS)) {
2151 if (ConstantExpr::getCompare(O.Op, CI_L, CI_R) ==
2152 ConstantInt::getFalse())
2153 UB.mark(TopBB);
2154
2155 WorkList.pop_front();
2156 continue;
2157 }
2158 }
2159
2160 if (VN.compare(O.LHS, O.RHS)) {
2161 std::swap(O.LHS, O.RHS);
2162 O.Op = ICmpInst::getSwappedPredicate(O.Op);
2163 }
2164
2165 if (O.Op == ICmpInst::ICMP_EQ) {
2166 if (!makeEqual(O.RHS, O.LHS))
2167 UB.mark(TopBB);
2168 } else {
2169 LatticeVal LV = cmpInstToLattice(O.Op);
2170
2171 if ((LV & EQ_BIT) &&
2172 isRelatedBy(O.LHS, O.RHS, ICmpInst::getSwappedPredicate(O.Op))) {
2173 if (!makeEqual(O.RHS, O.LHS))
2174 UB.mark(TopBB);
2175 } else {
2176 if (isRelatedBy(O.LHS, O.RHS, ICmpInst::getInversePredicate(O.Op))){
2177 UB.mark(TopBB);
2178 WorkList.pop_front();
2179 continue;
2180 }
2181
2182 unsigned n1 = VN.getOrInsertVN(O.LHS, Top);
2183 unsigned n2 = VN.getOrInsertVN(O.RHS, Top);
2184
2185 if (n1 == n2) {
2186 if (O.Op != ICmpInst::ICMP_UGE && O.Op != ICmpInst::ICMP_ULE &&
2187 O.Op != ICmpInst::ICMP_SGE && O.Op != ICmpInst::ICMP_SLE)
2188 UB.mark(TopBB);
2189
2190 WorkList.pop_front();
2191 continue;
2192 }
2193
2194 if (VR.isRelatedBy(n1, n2, Top, LV) ||
2195 IG.isRelatedBy(n1, n2, Top, LV)) {
2196 WorkList.pop_front();
2197 continue;
2198 }
2199
2200 VR.addInequality(n1, n2, Top, LV, this);
2201 if ((!isa<ConstantInt>(O.RHS) && !isa<ConstantInt>(O.LHS)) ||
2202 LV == NE)
2203 IG.addInequality(n1, n2, Top, LV);
2204
2205 if (Instruction *I1 = dyn_cast<Instruction>(O.LHS)) {
2206 if (aboveOrBelow(I1))
2207 defToOps(I1);
2208 }
2209 if (isa<Instruction>(O.LHS) || isa<Argument>(O.LHS)) {
2210 for (Value::use_iterator UI = O.LHS->use_begin(),
2211 UE = O.LHS->use_end(); UI != UE;) {
2212 Use &TheUse = UI.getUse();
2213 ++UI;
Jay Foadd1d6a142009-06-06 17:49:35 +00002214 Instruction *I = cast<Instruction>(TheUse.getUser());
2215 if (aboveOrBelow(I))
2216 opsToDef(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002217 }
2218 }
2219 if (Instruction *I2 = dyn_cast<Instruction>(O.RHS)) {
2220 if (aboveOrBelow(I2))
2221 defToOps(I2);
2222 }
2223 if (isa<Instruction>(O.RHS) || isa<Argument>(O.RHS)) {
2224 for (Value::use_iterator UI = O.RHS->use_begin(),
2225 UE = O.RHS->use_end(); UI != UE;) {
2226 Use &TheUse = UI.getUse();
2227 ++UI;
Jay Foadd1d6a142009-06-06 17:49:35 +00002228 Instruction *I = cast<Instruction>(TheUse.getUser());
2229 if (aboveOrBelow(I))
2230 opsToDef(I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002231 }
2232 }
2233 }
2234 }
2235 WorkList.pop_front();
2236 }
2237 }
2238 };
2239
2240 void ValueRanges::addToWorklist(Value *V, Constant *C,
2241 ICmpInst::Predicate Pred, VRPSolver *VRP) {
2242 VRP->add(V, C, Pred, VRP->TopInst);
2243 }
2244
2245 void ValueRanges::markBlock(VRPSolver *VRP) {
2246 VRP->UB.mark(VRP->TopBB);
2247 }
2248
2249 /// PredicateSimplifier - This class is a simplifier that replaces
2250 /// one equivalent variable with another. It also tracks what
2251 /// can't be equal and will solve setcc instructions when possible.
2252 /// @brief Root of the predicate simplifier optimization.
2253 class VISIBILITY_HIDDEN PredicateSimplifier : public FunctionPass {
2254 DomTreeDFS *DTDFS;
2255 bool modified;
2256 ValueNumbering *VN;
2257 InequalityGraph *IG;
2258 UnreachableBlocks UB;
2259 ValueRanges *VR;
2260
2261 std::vector<DomTreeDFS::Node *> WorkList;
2262
2263 public:
2264 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +00002265 PredicateSimplifier() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002266
2267 bool runOnFunction(Function &F);
2268
2269 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
2270 AU.addRequiredID(BreakCriticalEdgesID);
2271 AU.addRequired<DominatorTree>();
2272 AU.addRequired<TargetData>();
2273 AU.addPreserved<TargetData>();
2274 }
2275
2276 private:
2277 /// Forwards - Adds new properties to VRPSolver and uses them to
2278 /// simplify instructions. Because new properties sometimes apply to
2279 /// a transition from one BasicBlock to another, this will use the
2280 /// PredicateSimplifier::proceedToSuccessor(s) interface to enter the
2281 /// basic block.
2282 /// @brief Performs abstract execution of the program.
2283 class VISIBILITY_HIDDEN Forwards : public InstVisitor<Forwards> {
2284 friend class InstVisitor<Forwards>;
2285 PredicateSimplifier *PS;
2286 DomTreeDFS::Node *DTNode;
2287
2288 public:
2289 ValueNumbering &VN;
2290 InequalityGraph &IG;
2291 UnreachableBlocks &UB;
2292 ValueRanges &VR;
2293
2294 Forwards(PredicateSimplifier *PS, DomTreeDFS::Node *DTNode)
2295 : PS(PS), DTNode(DTNode), VN(*PS->VN), IG(*PS->IG), UB(PS->UB),
2296 VR(*PS->VR) {}
2297
2298 void visitTerminatorInst(TerminatorInst &TI);
2299 void visitBranchInst(BranchInst &BI);
2300 void visitSwitchInst(SwitchInst &SI);
2301
2302 void visitAllocaInst(AllocaInst &AI);
2303 void visitLoadInst(LoadInst &LI);
2304 void visitStoreInst(StoreInst &SI);
2305
2306 void visitSExtInst(SExtInst &SI);
2307 void visitZExtInst(ZExtInst &ZI);
2308
2309 void visitBinaryOperator(BinaryOperator &BO);
2310 void visitICmpInst(ICmpInst &IC);
2311 };
2312
2313 // Used by terminator instructions to proceed from the current basic
2314 // block to the next. Verifies that "current" dominates "next",
2315 // then calls visitBasicBlock.
2316 void proceedToSuccessors(DomTreeDFS::Node *Current) {
2317 for (DomTreeDFS::Node::iterator I = Current->begin(),
2318 E = Current->end(); I != E; ++I) {
2319 WorkList.push_back(*I);
2320 }
2321 }
2322
2323 void proceedToSuccessor(DomTreeDFS::Node *Next) {
2324 WorkList.push_back(Next);
2325 }
2326
2327 // Visits each instruction in the basic block.
2328 void visitBasicBlock(DomTreeDFS::Node *Node) {
2329 BasicBlock *BB = Node->getBlock();
2330 DOUT << "Entering Basic Block: " << BB->getName()
2331 << " (" << Node->getDFSNumIn() << ")\n";
2332 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
2333 visitInstruction(I++, Node);
2334 }
2335 }
2336
2337 // Tries to simplify each Instruction and add new properties.
2338 void visitInstruction(Instruction *I, DomTreeDFS::Node *DT) {
2339 DOUT << "Considering instruction " << *I << "\n";
2340 DEBUG(VN->dump());
2341 DEBUG(IG->dump());
2342 DEBUG(VR->dump());
2343
2344 // Sometimes instructions are killed in earlier analysis.
2345 if (isInstructionTriviallyDead(I)) {
2346 ++NumSimple;
2347 modified = true;
2348 if (unsigned n = VN->valueNumber(I, DTDFS->getRootNode()))
2349 if (VN->value(n) == I) IG->remove(n);
2350 VN->remove(I);
2351 I->eraseFromParent();
2352 return;
2353 }
2354
2355#ifndef NDEBUG
2356 // Try to replace the whole instruction.
2357 Value *V = VN->canonicalize(I, DT);
2358 assert(V == I && "Late instruction canonicalization.");
2359 if (V != I) {
2360 modified = true;
2361 ++NumInstruction;
2362 DOUT << "Removing " << *I << ", replacing with " << *V << "\n";
2363 if (unsigned n = VN->valueNumber(I, DTDFS->getRootNode()))
2364 if (VN->value(n) == I) IG->remove(n);
2365 VN->remove(I);
2366 I->replaceAllUsesWith(V);
2367 I->eraseFromParent();
2368 return;
2369 }
2370
2371 // Try to substitute operands.
2372 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i) {
2373 Value *Oper = I->getOperand(i);
2374 Value *V = VN->canonicalize(Oper, DT);
2375 assert(V == Oper && "Late operand canonicalization.");
2376 if (V != Oper) {
2377 modified = true;
2378 ++NumVarsReplaced;
2379 DOUT << "Resolving " << *I;
2380 I->setOperand(i, V);
2381 DOUT << " into " << *I;
2382 }
2383 }
2384#endif
2385
2386 std::string name = I->getParent()->getName();
2387 DOUT << "push (%" << name << ")\n";
2388 Forwards visit(this, DT);
2389 visit.visit(*I);
2390 DOUT << "pop (%" << name << ")\n";
2391 }
2392 };
2393
2394 bool PredicateSimplifier::runOnFunction(Function &F) {
2395 DominatorTree *DT = &getAnalysis<DominatorTree>();
2396 DTDFS = new DomTreeDFS(DT);
2397 TargetData *TD = &getAnalysis<TargetData>();
2398
2399 DOUT << "Entering Function: " << F.getName() << "\n";
2400
2401 modified = false;
2402 DomTreeDFS::Node *Root = DTDFS->getRootNode();
2403 VN = new ValueNumbering(DTDFS);
2404 IG = new InequalityGraph(*VN, Root);
2405 VR = new ValueRanges(*VN, TD);
2406 WorkList.push_back(Root);
2407
2408 do {
2409 DomTreeDFS::Node *DTNode = WorkList.back();
2410 WorkList.pop_back();
2411 if (!UB.isDead(DTNode->getBlock())) visitBasicBlock(DTNode);
2412 } while (!WorkList.empty());
2413
2414 delete DTDFS;
2415 delete VR;
2416 delete IG;
Nuno Lopesd19d9b52008-11-09 12:45:23 +00002417 delete VN;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002418
2419 modified |= UB.kill();
2420
2421 return modified;
2422 }
2423
2424 void PredicateSimplifier::Forwards::visitTerminatorInst(TerminatorInst &TI) {
2425 PS->proceedToSuccessors(DTNode);
2426 }
2427
2428 void PredicateSimplifier::Forwards::visitBranchInst(BranchInst &BI) {
2429 if (BI.isUnconditional()) {
2430 PS->proceedToSuccessors(DTNode);
2431 return;
2432 }
2433
2434 Value *Condition = BI.getCondition();
2435 BasicBlock *TrueDest = BI.getSuccessor(0);
2436 BasicBlock *FalseDest = BI.getSuccessor(1);
2437
2438 if (isa<Constant>(Condition) || TrueDest == FalseDest) {
2439 PS->proceedToSuccessors(DTNode);
2440 return;
2441 }
2442
2443 for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end();
2444 I != E; ++I) {
2445 BasicBlock *Dest = (*I)->getBlock();
2446 DOUT << "Branch thinking about %" << Dest->getName()
2447 << "(" << PS->DTDFS->getNodeForBlock(Dest)->getDFSNumIn() << ")\n";
2448
2449 if (Dest == TrueDest) {
2450 DOUT << "(" << DTNode->getBlock()->getName() << ") true set:\n";
2451 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest);
2452 VRP.add(ConstantInt::getTrue(), Condition, ICmpInst::ICMP_EQ);
2453 VRP.solve();
2454 DEBUG(VN.dump());
2455 DEBUG(IG.dump());
2456 DEBUG(VR.dump());
2457 } else if (Dest == FalseDest) {
2458 DOUT << "(" << DTNode->getBlock()->getName() << ") false set:\n";
2459 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, Dest);
2460 VRP.add(ConstantInt::getFalse(), Condition, ICmpInst::ICMP_EQ);
2461 VRP.solve();
2462 DEBUG(VN.dump());
2463 DEBUG(IG.dump());
2464 DEBUG(VR.dump());
2465 }
2466
2467 PS->proceedToSuccessor(*I);
2468 }
2469 }
2470
2471 void PredicateSimplifier::Forwards::visitSwitchInst(SwitchInst &SI) {
2472 Value *Condition = SI.getCondition();
2473
2474 // Set the EQProperty in each of the cases BBs, and the NEProperties
2475 // in the default BB.
2476
2477 for (DomTreeDFS::Node::iterator I = DTNode->begin(), E = DTNode->end();
2478 I != E; ++I) {
2479 BasicBlock *BB = (*I)->getBlock();
2480 DOUT << "Switch thinking about BB %" << BB->getName()
2481 << "(" << PS->DTDFS->getNodeForBlock(BB)->getDFSNumIn() << ")\n";
2482
2483 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, BB);
2484 if (BB == SI.getDefaultDest()) {
2485 for (unsigned i = 1, e = SI.getNumCases(); i < e; ++i)
2486 if (SI.getSuccessor(i) != BB)
2487 VRP.add(Condition, SI.getCaseValue(i), ICmpInst::ICMP_NE);
2488 VRP.solve();
2489 } else if (ConstantInt *CI = SI.findCaseDest(BB)) {
2490 VRP.add(Condition, CI, ICmpInst::ICMP_EQ);
2491 VRP.solve();
2492 }
2493 PS->proceedToSuccessor(*I);
2494 }
2495 }
2496
2497 void PredicateSimplifier::Forwards::visitAllocaInst(AllocaInst &AI) {
2498 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &AI);
2499 VRP.add(Constant::getNullValue(AI.getType()), &AI, ICmpInst::ICMP_NE);
2500 VRP.solve();
2501 }
2502
2503 void PredicateSimplifier::Forwards::visitLoadInst(LoadInst &LI) {
2504 Value *Ptr = LI.getPointerOperand();
Nick Lewycky4c168562008-10-24 04:00:26 +00002505 // avoid "load i8* null" -> null NE null.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002506 if (isa<Constant>(Ptr)) return;
2507
2508 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &LI);
2509 VRP.add(Constant::getNullValue(Ptr->getType()), Ptr, ICmpInst::ICMP_NE);
2510 VRP.solve();
2511 }
2512
2513 void PredicateSimplifier::Forwards::visitStoreInst(StoreInst &SI) {
2514 Value *Ptr = SI.getPointerOperand();
2515 if (isa<Constant>(Ptr)) return;
2516
2517 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI);
2518 VRP.add(Constant::getNullValue(Ptr->getType()), Ptr, ICmpInst::ICMP_NE);
2519 VRP.solve();
2520 }
2521
2522 void PredicateSimplifier::Forwards::visitSExtInst(SExtInst &SI) {
2523 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &SI);
2524 uint32_t SrcBitWidth = cast<IntegerType>(SI.getSrcTy())->getBitWidth();
2525 uint32_t DstBitWidth = cast<IntegerType>(SI.getDestTy())->getBitWidth();
2526 APInt Min(APInt::getHighBitsSet(DstBitWidth, DstBitWidth-SrcBitWidth+1));
2527 APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth-1));
2528 VRP.add(ConstantInt::get(Min), &SI, ICmpInst::ICMP_SLE);
2529 VRP.add(ConstantInt::get(Max), &SI, ICmpInst::ICMP_SGE);
2530 VRP.solve();
2531 }
2532
2533 void PredicateSimplifier::Forwards::visitZExtInst(ZExtInst &ZI) {
2534 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &ZI);
2535 uint32_t SrcBitWidth = cast<IntegerType>(ZI.getSrcTy())->getBitWidth();
2536 uint32_t DstBitWidth = cast<IntegerType>(ZI.getDestTy())->getBitWidth();
2537 APInt Max(APInt::getLowBitsSet(DstBitWidth, SrcBitWidth));
2538 VRP.add(ConstantInt::get(Max), &ZI, ICmpInst::ICMP_UGE);
2539 VRP.solve();
2540 }
2541
2542 void PredicateSimplifier::Forwards::visitBinaryOperator(BinaryOperator &BO) {
2543 Instruction::BinaryOps ops = BO.getOpcode();
2544
2545 switch (ops) {
2546 default: break;
2547 case Instruction::URem:
2548 case Instruction::SRem:
2549 case Instruction::UDiv:
2550 case Instruction::SDiv: {
2551 Value *Divisor = BO.getOperand(1);
2552 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2553 VRP.add(Constant::getNullValue(Divisor->getType()), Divisor,
2554 ICmpInst::ICMP_NE);
2555 VRP.solve();
2556 break;
2557 }
2558 }
2559
2560 switch (ops) {
2561 default: break;
2562 case Instruction::Shl: {
2563 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2564 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_UGE);
2565 VRP.solve();
2566 } break;
2567 case Instruction::AShr: {
2568 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2569 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_SLE);
2570 VRP.solve();
2571 } break;
2572 case Instruction::LShr:
2573 case Instruction::UDiv: {
2574 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2575 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_ULE);
2576 VRP.solve();
2577 } break;
2578 case Instruction::URem: {
2579 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2580 VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_ULE);
2581 VRP.solve();
2582 } break;
2583 case Instruction::And: {
2584 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2585 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_ULE);
2586 VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_ULE);
2587 VRP.solve();
2588 } break;
2589 case Instruction::Or: {
2590 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &BO);
2591 VRP.add(&BO, BO.getOperand(0), ICmpInst::ICMP_UGE);
2592 VRP.add(&BO, BO.getOperand(1), ICmpInst::ICMP_UGE);
2593 VRP.solve();
2594 } break;
2595 }
2596 }
2597
2598 void PredicateSimplifier::Forwards::visitICmpInst(ICmpInst &IC) {
2599 // If possible, squeeze the ICmp predicate into something simpler.
2600 // Eg., if x = [0, 4) and we're being asked icmp uge %x, 3 then change
2601 // the predicate to eq.
2602
2603 // XXX: once we do full PHI handling, modifying the instruction in the
2604 // Forwards visitor will cause missed optimizations.
2605
2606 ICmpInst::Predicate Pred = IC.getPredicate();
2607
2608 switch (Pred) {
2609 default: break;
2610 case ICmpInst::ICMP_ULE: Pred = ICmpInst::ICMP_ULT; break;
2611 case ICmpInst::ICMP_UGE: Pred = ICmpInst::ICMP_UGT; break;
2612 case ICmpInst::ICMP_SLE: Pred = ICmpInst::ICMP_SLT; break;
2613 case ICmpInst::ICMP_SGE: Pred = ICmpInst::ICMP_SGT; break;
2614 }
2615 if (Pred != IC.getPredicate()) {
2616 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &IC);
2617 if (VRP.isRelatedBy(IC.getOperand(1), IC.getOperand(0),
2618 ICmpInst::ICMP_NE)) {
2619 ++NumSnuggle;
2620 PS->modified = true;
2621 IC.setPredicate(Pred);
2622 }
2623 }
2624
2625 Pred = IC.getPredicate();
2626
2627 if (ConstantInt *Op1 = dyn_cast<ConstantInt>(IC.getOperand(1))) {
2628 ConstantInt *NextVal = 0;
2629 switch (Pred) {
2630 default: break;
2631 case ICmpInst::ICMP_SLT:
2632 case ICmpInst::ICMP_ULT:
2633 if (Op1->getValue() != 0)
2634 NextVal = ConstantInt::get(Op1->getValue()-1);
2635 break;
2636 case ICmpInst::ICMP_SGT:
2637 case ICmpInst::ICMP_UGT:
2638 if (!Op1->getValue().isAllOnesValue())
2639 NextVal = ConstantInt::get(Op1->getValue()+1);
2640 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002641 }
Nick Lewycky4c168562008-10-24 04:00:26 +00002642
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002643 if (NextVal) {
2644 VRPSolver VRP(VN, IG, UB, VR, PS->DTDFS, PS->modified, &IC);
2645 if (VRP.isRelatedBy(IC.getOperand(0), NextVal,
2646 ICmpInst::getInversePredicate(Pred))) {
Owen Anderson6601fcd2009-07-09 23:48:35 +00002647 ICmpInst *NewIC = new ICmpInst(&IC, ICmpInst::ICMP_EQ,
2648 IC.getOperand(0), NextVal, "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002649 NewIC->takeName(&IC);
2650 IC.replaceAllUsesWith(NewIC);
2651
2652 // XXX: prove this isn't necessary
2653 if (unsigned n = VN.valueNumber(&IC, PS->DTDFS->getRootNode()))
2654 if (VN.value(n) == &IC) IG.remove(n);
2655 VN.remove(&IC);
2656
2657 IC.eraseFromParent();
2658 ++NumSnuggle;
2659 PS->modified = true;
2660 }
2661 }
2662 }
2663 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002664}
2665
Dan Gohman089efff2008-05-13 00:00:25 +00002666char PredicateSimplifier::ID = 0;
2667static RegisterPass<PredicateSimplifier>
2668X("predsimplify", "Predicate Simplifier");
2669
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002670FunctionPass *llvm::createPredicateSimplifierPass() {
2671 return new PredicateSimplifier();
2672}