blob: 22f1c144ea2680df17b281dc394d7a24658ba18d [file] [log] [blame]
Chris Lattner173234a2008-06-02 01:18:21 +00001//===- ValueTracking.cpp - Walk computations to compute properties --------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file contains routines that help analyze properties that chains of
11// computations have.
12//
13//===----------------------------------------------------------------------===//
14
15#include "llvm/Analysis/ValueTracking.h"
Dan Gohman24371272010-12-15 20:10:26 +000016#include "llvm/Analysis/InstructionSimplify.h"
Chris Lattner173234a2008-06-02 01:18:21 +000017#include "llvm/Constants.h"
18#include "llvm/Instructions.h"
Evan Cheng0ff39b32008-06-30 07:31:25 +000019#include "llvm/GlobalVariable.h"
Dan Gohman307a7c42009-09-15 16:14:44 +000020#include "llvm/GlobalAlias.h"
Chris Lattner173234a2008-06-02 01:18:21 +000021#include "llvm/IntrinsicInst.h"
Owen Anderson76f600b2009-07-06 22:37:39 +000022#include "llvm/LLVMContext.h"
Dan Gohmanca178902009-07-17 20:47:02 +000023#include "llvm/Operator.h"
Bill Wendling0582ae92009-03-13 04:39:26 +000024#include "llvm/Target/TargetData.h"
Chris Lattner173234a2008-06-02 01:18:21 +000025#include "llvm/Support/GetElementPtrTypeIterator.h"
26#include "llvm/Support/MathExtras.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000027#include "llvm/Support/PatternMatch.h"
Eric Christopher25ec4832010-03-05 06:58:57 +000028#include "llvm/ADT/SmallPtrSet.h"
Chris Lattner32a9e7a2008-06-04 04:46:14 +000029#include <cstring>
Chris Lattner173234a2008-06-02 01:18:21 +000030using namespace llvm;
Duncan Sandsd70d1a52011-01-25 09:38:29 +000031using namespace llvm::PatternMatch;
32
33const unsigned MaxDepth = 6;
34
35/// getBitWidth - Returns the bitwidth of the given scalar or pointer type (if
36/// unknown returns 0). For vector types, returns the element type's bitwidth.
Chris Lattnerdb125cf2011-07-18 04:54:35 +000037static unsigned getBitWidth(Type *Ty, const TargetData *TD) {
Duncan Sandsd70d1a52011-01-25 09:38:29 +000038 if (unsigned BitWidth = Ty->getScalarSizeInBits())
39 return BitWidth;
40 assert(isa<PointerType>(Ty) && "Expected a pointer type!");
41 return TD ? TD->getPointerSizeInBits() : 0;
42}
Chris Lattner173234a2008-06-02 01:18:21 +000043
Chris Lattner173234a2008-06-02 01:18:21 +000044/// ComputeMaskedBits - Determine which of the bits specified in Mask are
45/// known to be either zero or one and return them in the KnownZero/KnownOne
46/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
47/// processing.
48/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
49/// we cannot optimize based on the assumption that it is zero without changing
50/// it to be an explicit zero. If we don't change it to zero, other code could
51/// optimized based on the contradictory assumption that it is non-zero.
52/// Because instcombine aggressively folds operations with undef args anyway,
53/// this won't lose us code quality.
Chris Lattnercf5128e2009-09-08 00:06:16 +000054///
55/// This function is defined on values with integer type, values with pointer
56/// type (but only if TD is non-null), and vectors of integers. In the case
57/// where V is a vector, the mask, known zero, and known one values are the
58/// same width as the vector element, and the bit is set only if it is true
59/// for all of the elements in the vector.
Chris Lattner173234a2008-06-02 01:18:21 +000060void llvm::ComputeMaskedBits(Value *V, const APInt &Mask,
61 APInt &KnownZero, APInt &KnownOne,
Dan Gohman846a2f22009-08-27 17:51:25 +000062 const TargetData *TD, unsigned Depth) {
Chris Lattner173234a2008-06-02 01:18:21 +000063 assert(V && "No Value?");
Dan Gohman9004c8a2009-05-21 02:28:33 +000064 assert(Depth <= MaxDepth && "Limit Search Depth");
Chris Lattner79abedb2009-01-20 18:22:57 +000065 unsigned BitWidth = Mask.getBitWidth();
Duncan Sands1df98592010-02-16 11:11:14 +000066 assert((V->getType()->isIntOrIntVectorTy() || V->getType()->isPointerTy())
Duncan Sandsb0bc6c32010-02-15 16:12:20 +000067 && "Not integer or pointer type!");
Dan Gohman6de29f82009-06-15 22:12:54 +000068 assert((!TD ||
69 TD->getTypeSizeInBits(V->getType()->getScalarType()) == BitWidth) &&
Duncan Sandsb0bc6c32010-02-15 16:12:20 +000070 (!V->getType()->isIntOrIntVectorTy() ||
Dan Gohman6de29f82009-06-15 22:12:54 +000071 V->getType()->getScalarSizeInBits() == BitWidth) &&
Chris Lattner173234a2008-06-02 01:18:21 +000072 KnownZero.getBitWidth() == BitWidth &&
73 KnownOne.getBitWidth() == BitWidth &&
74 "V, Mask, KnownOne and KnownZero should have same BitWidth");
75
76 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
77 // We know all of the bits for a constant!
78 KnownOne = CI->getValue() & Mask;
79 KnownZero = ~KnownOne & Mask;
80 return;
81 }
Dan Gohman6de29f82009-06-15 22:12:54 +000082 // Null and aggregate-zero are all-zeros.
83 if (isa<ConstantPointerNull>(V) ||
84 isa<ConstantAggregateZero>(V)) {
Jay Foad7a874dd2010-12-01 08:53:58 +000085 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +000086 KnownZero = Mask;
87 return;
88 }
Dan Gohman6de29f82009-06-15 22:12:54 +000089 // Handle a constant vector by taking the intersection of the known bits of
90 // each element.
91 if (ConstantVector *CV = dyn_cast<ConstantVector>(V)) {
Jay Foad7a874dd2010-12-01 08:53:58 +000092 KnownZero.setAllBits(); KnownOne.setAllBits();
Dan Gohman6de29f82009-06-15 22:12:54 +000093 for (unsigned i = 0, e = CV->getNumOperands(); i != e; ++i) {
94 APInt KnownZero2(BitWidth, 0), KnownOne2(BitWidth, 0);
95 ComputeMaskedBits(CV->getOperand(i), Mask, KnownZero2, KnownOne2,
96 TD, Depth);
97 KnownZero &= KnownZero2;
98 KnownOne &= KnownOne2;
99 }
100 return;
101 }
Chris Lattner173234a2008-06-02 01:18:21 +0000102 // The address of an aligned GlobalValue has trailing zeros.
103 if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
104 unsigned Align = GV->getAlignment();
Dan Gohman00407252009-08-11 15:50:03 +0000105 if (Align == 0 && TD && GV->getType()->getElementType()->isSized()) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000106 Type *ObjectType = GV->getType()->getElementType();
Dan Gohman00407252009-08-11 15:50:03 +0000107 // If the object is defined in the current Module, we'll be giving
108 // it the preferred alignment. Otherwise, we have to assume that it
109 // may only have the minimum ABI alignment.
110 if (!GV->isDeclaration() && !GV->mayBeOverridden())
111 Align = TD->getPrefTypeAlignment(ObjectType);
112 else
113 Align = TD->getABITypeAlignment(ObjectType);
114 }
Chris Lattner173234a2008-06-02 01:18:21 +0000115 if (Align > 0)
116 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
117 CountTrailingZeros_32(Align));
118 else
Jay Foad7a874dd2010-12-01 08:53:58 +0000119 KnownZero.clearAllBits();
120 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000121 return;
122 }
Dan Gohman307a7c42009-09-15 16:14:44 +0000123 // A weak GlobalAlias is totally unknown. A non-weak GlobalAlias has
124 // the bits of its aliasee.
125 if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
126 if (GA->mayBeOverridden()) {
Jay Foad7a874dd2010-12-01 08:53:58 +0000127 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Dan Gohman307a7c42009-09-15 16:14:44 +0000128 } else {
129 ComputeMaskedBits(GA->getAliasee(), Mask, KnownZero, KnownOne,
130 TD, Depth+1);
131 }
132 return;
133 }
Chris Lattnerb3f06732011-05-23 00:03:39 +0000134
135 if (Argument *A = dyn_cast<Argument>(V)) {
136 // Get alignment information off byval arguments if specified in the IR.
137 if (A->hasByValAttr())
138 if (unsigned Align = A->getParamAlignment())
139 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
140 CountTrailingZeros_32(Align));
141 return;
142 }
Chris Lattner173234a2008-06-02 01:18:21 +0000143
Chris Lattnerb3f06732011-05-23 00:03:39 +0000144 // Start out not knowing anything.
145 KnownZero.clearAllBits(); KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000146
Dan Gohman9004c8a2009-05-21 02:28:33 +0000147 if (Depth == MaxDepth || Mask == 0)
Chris Lattner173234a2008-06-02 01:18:21 +0000148 return; // Limit search depth.
149
Dan Gohmanca178902009-07-17 20:47:02 +0000150 Operator *I = dyn_cast<Operator>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000151 if (!I) return;
152
153 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
Dan Gohmanca178902009-07-17 20:47:02 +0000154 switch (I->getOpcode()) {
Chris Lattner173234a2008-06-02 01:18:21 +0000155 default: break;
156 case Instruction::And: {
157 // If either the LHS or the RHS are Zero, the result is zero.
158 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
159 APInt Mask2(Mask & ~KnownZero);
160 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
161 Depth+1);
162 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
163 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
164
165 // Output known-1 bits are only known if set in both the LHS & RHS.
166 KnownOne &= KnownOne2;
167 // Output known-0 are known to be clear if zero in either the LHS | RHS.
168 KnownZero |= KnownZero2;
169 return;
170 }
171 case Instruction::Or: {
172 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
173 APInt Mask2(Mask & ~KnownOne);
174 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
175 Depth+1);
176 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
177 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
178
179 // Output known-0 bits are only known if clear in both the LHS & RHS.
180 KnownZero &= KnownZero2;
181 // Output known-1 are known to be set if set in either the LHS | RHS.
182 KnownOne |= KnownOne2;
183 return;
184 }
185 case Instruction::Xor: {
186 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, TD, Depth+1);
187 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, TD,
188 Depth+1);
189 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
190 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
191
192 // Output known-0 bits are known if clear or set in both the LHS & RHS.
193 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
194 // Output known-1 are known to be set if set in only one of the LHS, RHS.
195 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
196 KnownZero = KnownZeroOut;
197 return;
198 }
199 case Instruction::Mul: {
200 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
201 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero, KnownOne, TD,Depth+1);
202 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
203 Depth+1);
Duncan Sands32a43cc2011-10-27 19:16:21 +0000204 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
205 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
206
207 bool isKnownNegative = false;
208 bool isKnownNonNegative = false;
209 // If the multiplication is known not to overflow, compute the sign bit.
210 if (Mask.isNegative() &&
211 cast<OverflowingBinaryOperator>(I)->hasNoSignedWrap()) {
212 Value *Op1 = I->getOperand(1), *Op2 = I->getOperand(0);
213 if (Op1 == Op2) {
214 // The product of a number with itself is non-negative.
215 isKnownNonNegative = true;
216 } else {
217 bool isKnownNonNegative1 = KnownZero.isNegative();
218 bool isKnownNonNegative2 = KnownZero2.isNegative();
219 bool isKnownNegative1 = KnownOne.isNegative();
220 bool isKnownNegative2 = KnownOne2.isNegative();
221 // The product of two numbers with the same sign is non-negative.
222 isKnownNonNegative = (isKnownNegative1 && isKnownNegative2) ||
223 (isKnownNonNegative1 && isKnownNonNegative2);
224 // The product of a negative number and a non-negative number is either
225 // negative or zero.
226 if (!isKnownNonNegative)
227 isKnownNegative = (isKnownNegative1 && isKnownNonNegative2 &&
228 isKnownNonZero(Op2, TD, Depth)) ||
229 (isKnownNegative2 && isKnownNonNegative1 &&
230 isKnownNonZero(Op1, TD, Depth));
231 }
232 }
233
Chris Lattner173234a2008-06-02 01:18:21 +0000234 // If low bits are zero in either operand, output low known-0 bits.
235 // Also compute a conserative estimate for high known-0 bits.
236 // More trickiness is possible, but this is sufficient for the
237 // interesting case of alignment computation.
Jay Foad7a874dd2010-12-01 08:53:58 +0000238 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000239 unsigned TrailZ = KnownZero.countTrailingOnes() +
240 KnownZero2.countTrailingOnes();
241 unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
242 KnownZero2.countLeadingOnes(),
243 BitWidth) - BitWidth;
244
245 TrailZ = std::min(TrailZ, BitWidth);
246 LeadZ = std::min(LeadZ, BitWidth);
247 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
248 APInt::getHighBitsSet(BitWidth, LeadZ);
249 KnownZero &= Mask;
Duncan Sands32a43cc2011-10-27 19:16:21 +0000250
Duncan Sandsa8f5cd32011-11-23 16:26:47 +0000251 // Only make use of no-wrap flags if we failed to compute the sign bit
252 // directly. This matters if the multiplication always overflows, in
253 // which case we prefer to follow the result of the direct computation,
254 // though as the program is invoking undefined behaviour we can choose
255 // whatever we like here.
256 if (isKnownNonNegative && !KnownOne.isNegative())
Duncan Sands32a43cc2011-10-27 19:16:21 +0000257 KnownZero.setBit(BitWidth - 1);
Duncan Sandsa8f5cd32011-11-23 16:26:47 +0000258 else if (isKnownNegative && !KnownZero.isNegative())
Duncan Sands32a43cc2011-10-27 19:16:21 +0000259 KnownOne.setBit(BitWidth - 1);
260
Chris Lattner173234a2008-06-02 01:18:21 +0000261 return;
262 }
263 case Instruction::UDiv: {
264 // For the purposes of computing leading zeros we can conservatively
265 // treat a udiv as a logical right shift by the power of 2 known to
266 // be less than the denominator.
267 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
268 ComputeMaskedBits(I->getOperand(0),
269 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
270 unsigned LeadZ = KnownZero2.countLeadingOnes();
271
Jay Foad7a874dd2010-12-01 08:53:58 +0000272 KnownOne2.clearAllBits();
273 KnownZero2.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000274 ComputeMaskedBits(I->getOperand(1),
275 AllOnes, KnownZero2, KnownOne2, TD, Depth+1);
276 unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
277 if (RHSUnknownLeadingOnes != BitWidth)
278 LeadZ = std::min(BitWidth,
279 LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
280
281 KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ) & Mask;
282 return;
283 }
284 case Instruction::Select:
285 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, TD, Depth+1);
286 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, TD,
287 Depth+1);
288 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
289 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
290
291 // Only known if known in both the LHS and RHS.
292 KnownOne &= KnownOne2;
293 KnownZero &= KnownZero2;
294 return;
295 case Instruction::FPTrunc:
296 case Instruction::FPExt:
297 case Instruction::FPToUI:
298 case Instruction::FPToSI:
299 case Instruction::SIToFP:
300 case Instruction::UIToFP:
301 return; // Can't work with floating point.
302 case Instruction::PtrToInt:
303 case Instruction::IntToPtr:
304 // We can't handle these if we don't know the pointer size.
305 if (!TD) return;
306 // FALL THROUGH and handle them the same as zext/trunc.
307 case Instruction::ZExt:
308 case Instruction::Trunc: {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000309 Type *SrcTy = I->getOperand(0)->getType();
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000310
311 unsigned SrcBitWidth;
Chris Lattner173234a2008-06-02 01:18:21 +0000312 // Note that we handle pointer operands here because of inttoptr/ptrtoint
313 // which fall through here.
Duncan Sands1df98592010-02-16 11:11:14 +0000314 if (SrcTy->isPointerTy())
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000315 SrcBitWidth = TD->getTypeSizeInBits(SrcTy);
316 else
317 SrcBitWidth = SrcTy->getScalarSizeInBits();
318
Jay Foad40f8f622010-12-07 08:25:19 +0000319 APInt MaskIn = Mask.zextOrTrunc(SrcBitWidth);
320 KnownZero = KnownZero.zextOrTrunc(SrcBitWidth);
321 KnownOne = KnownOne.zextOrTrunc(SrcBitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000322 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
323 Depth+1);
Jay Foad40f8f622010-12-07 08:25:19 +0000324 KnownZero = KnownZero.zextOrTrunc(BitWidth);
325 KnownOne = KnownOne.zextOrTrunc(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000326 // Any top bits are known to be zero.
327 if (BitWidth > SrcBitWidth)
328 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
329 return;
330 }
331 case Instruction::BitCast: {
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000332 Type *SrcTy = I->getOperand(0)->getType();
Duncan Sands1df98592010-02-16 11:11:14 +0000333 if ((SrcTy->isIntegerTy() || SrcTy->isPointerTy()) &&
Chris Lattner0dabb0b2009-07-02 16:04:08 +0000334 // TODO: For now, not handling conversions like:
335 // (bitcast i64 %x to <2 x i32>)
Duncan Sands1df98592010-02-16 11:11:14 +0000336 !I->getType()->isVectorTy()) {
Chris Lattner173234a2008-06-02 01:18:21 +0000337 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, TD,
338 Depth+1);
339 return;
340 }
341 break;
342 }
343 case Instruction::SExt: {
344 // Compute the bits in the result that are not present in the input.
Chris Lattnerb9a4ddb2009-09-08 00:13:52 +0000345 unsigned SrcBitWidth = I->getOperand(0)->getType()->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000346
Jay Foad40f8f622010-12-07 08:25:19 +0000347 APInt MaskIn = Mask.trunc(SrcBitWidth);
348 KnownZero = KnownZero.trunc(SrcBitWidth);
349 KnownOne = KnownOne.trunc(SrcBitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000350 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, TD,
351 Depth+1);
352 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Jay Foad40f8f622010-12-07 08:25:19 +0000353 KnownZero = KnownZero.zext(BitWidth);
354 KnownOne = KnownOne.zext(BitWidth);
Chris Lattner173234a2008-06-02 01:18:21 +0000355
356 // If the sign bit of the input is known set or clear, then we know the
357 // top bits of the result.
358 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
359 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
360 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
361 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
362 return;
363 }
364 case Instruction::Shl:
365 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
366 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
367 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
368 APInt Mask2(Mask.lshr(ShiftAmt));
369 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
370 Depth+1);
371 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
372 KnownZero <<= ShiftAmt;
373 KnownOne <<= ShiftAmt;
374 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
375 return;
376 }
377 break;
378 case Instruction::LShr:
379 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
380 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
381 // Compute the new bits that are at the top now.
382 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
383
384 // Unsigned shift right.
385 APInt Mask2(Mask.shl(ShiftAmt));
386 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne, TD,
387 Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000388 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000389 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
390 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
391 // high bits known zero.
392 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
393 return;
394 }
395 break;
396 case Instruction::AShr:
397 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
398 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
399 // Compute the new bits that are at the top now.
Chris Lattner43b40a42011-01-04 18:19:15 +0000400 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth-1);
Chris Lattner173234a2008-06-02 01:18:21 +0000401
402 // Signed shift right.
403 APInt Mask2(Mask.shl(ShiftAmt));
404 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
405 Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000406 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000407 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
408 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
409
410 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
411 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
412 KnownZero |= HighBits;
413 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
414 KnownOne |= HighBits;
415 return;
416 }
417 break;
418 case Instruction::Sub: {
419 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(I->getOperand(0))) {
420 // We know that the top bits of C-X are clear if X contains less bits
421 // than C (i.e. no wrap-around can happen). For example, 20-X is
422 // positive if we can prove that X is >= 0 and < 16.
423 if (!CLHS->getValue().isNegative()) {
424 unsigned NLZ = (CLHS->getValue()+1).countLeadingZeros();
425 // NLZ can't be BitWidth with no sign bit
426 APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
427 ComputeMaskedBits(I->getOperand(1), MaskV, KnownZero2, KnownOne2,
428 TD, Depth+1);
429
430 // If all of the MaskV bits are known to be zero, then we know the
431 // output top bits are zero, because we now know that the output is
432 // from [0-C].
433 if ((KnownZero2 & MaskV) == MaskV) {
434 unsigned NLZ2 = CLHS->getValue().countLeadingZeros();
435 // Top bits known zero.
436 KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2) & Mask;
437 }
438 }
439 }
440 }
441 // fall through
442 case Instruction::Add: {
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000443 // If one of the operands has trailing zeros, then the bits that the
Dan Gohman39250432009-05-24 18:02:35 +0000444 // other operand has in those bit positions will be preserved in the
445 // result. For an add, this works with either operand. For a subtract,
446 // this only works if the known zeros are in the right operand.
447 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
448 APInt Mask2 = APInt::getLowBitsSet(BitWidth,
449 BitWidth - Mask.countLeadingZeros());
450 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
Chris Lattner173234a2008-06-02 01:18:21 +0000451 Depth+1);
Dan Gohman39250432009-05-24 18:02:35 +0000452 assert((LHSKnownZero & LHSKnownOne) == 0 &&
453 "Bits known to be one AND zero?");
454 unsigned LHSKnownZeroOut = LHSKnownZero.countTrailingOnes();
Chris Lattner173234a2008-06-02 01:18:21 +0000455
456 ComputeMaskedBits(I->getOperand(1), Mask2, KnownZero2, KnownOne2, TD,
457 Depth+1);
458 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
Dan Gohman39250432009-05-24 18:02:35 +0000459 unsigned RHSKnownZeroOut = KnownZero2.countTrailingOnes();
Chris Lattner173234a2008-06-02 01:18:21 +0000460
Dan Gohman39250432009-05-24 18:02:35 +0000461 // Determine which operand has more trailing zeros, and use that
462 // many bits from the other operand.
463 if (LHSKnownZeroOut > RHSKnownZeroOut) {
Dan Gohmanca178902009-07-17 20:47:02 +0000464 if (I->getOpcode() == Instruction::Add) {
Dan Gohman39250432009-05-24 18:02:35 +0000465 APInt Mask = APInt::getLowBitsSet(BitWidth, LHSKnownZeroOut);
466 KnownZero |= KnownZero2 & Mask;
467 KnownOne |= KnownOne2 & Mask;
468 } else {
469 // If the known zeros are in the left operand for a subtract,
470 // fall back to the minimum known zeros in both operands.
471 KnownZero |= APInt::getLowBitsSet(BitWidth,
472 std::min(LHSKnownZeroOut,
473 RHSKnownZeroOut));
474 }
475 } else if (RHSKnownZeroOut >= LHSKnownZeroOut) {
476 APInt Mask = APInt::getLowBitsSet(BitWidth, RHSKnownZeroOut);
477 KnownZero |= LHSKnownZero & Mask;
478 KnownOne |= LHSKnownOne & Mask;
479 }
Nick Lewyckyb69050a2011-03-11 09:00:19 +0000480
481 // Are we still trying to solve for the sign bit?
Benjamin Kramer14b2a592011-03-12 17:18:11 +0000482 if (Mask.isNegative() && !KnownZero.isNegative() && !KnownOne.isNegative()){
Nick Lewyckyb69050a2011-03-11 09:00:19 +0000483 OverflowingBinaryOperator *OBO = cast<OverflowingBinaryOperator>(I);
484 if (OBO->hasNoSignedWrap()) {
Benjamin Kramer14b2a592011-03-12 17:18:11 +0000485 if (I->getOpcode() == Instruction::Add) {
486 // Adding two positive numbers can't wrap into negative
487 if (LHSKnownZero.isNegative() && KnownZero2.isNegative())
488 KnownZero |= APInt::getSignBit(BitWidth);
489 // and adding two negative numbers can't wrap into positive.
490 else if (LHSKnownOne.isNegative() && KnownOne2.isNegative())
491 KnownOne |= APInt::getSignBit(BitWidth);
492 } else {
493 // Subtracting a negative number from a positive one can't wrap
494 if (LHSKnownZero.isNegative() && KnownOne2.isNegative())
495 KnownZero |= APInt::getSignBit(BitWidth);
496 // neither can subtracting a positive number from a negative one.
497 else if (LHSKnownOne.isNegative() && KnownZero2.isNegative())
498 KnownOne |= APInt::getSignBit(BitWidth);
499 }
Nick Lewyckyb69050a2011-03-11 09:00:19 +0000500 }
501 }
502
Chris Lattner173234a2008-06-02 01:18:21 +0000503 return;
504 }
505 case Instruction::SRem:
506 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
Duncan Sandscfd54182010-01-29 06:18:37 +0000507 APInt RA = Rem->getValue().abs();
508 if (RA.isPowerOf2()) {
509 APInt LowBits = RA - 1;
Chris Lattner173234a2008-06-02 01:18:21 +0000510 APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
511 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, TD,
512 Depth+1);
513
Duncan Sandscfd54182010-01-29 06:18:37 +0000514 // The low bits of the first operand are unchanged by the srem.
515 KnownZero = KnownZero2 & LowBits;
516 KnownOne = KnownOne2 & LowBits;
Chris Lattner173234a2008-06-02 01:18:21 +0000517
Duncan Sandscfd54182010-01-29 06:18:37 +0000518 // If the first operand is non-negative or has all low bits zero, then
519 // the upper bits are all zero.
520 if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
521 KnownZero |= ~LowBits;
522
523 // If the first operand is negative and not all low bits are zero, then
524 // the upper bits are all one.
525 if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
526 KnownOne |= ~LowBits;
527
528 KnownZero &= Mask;
529 KnownOne &= Mask;
Chris Lattner173234a2008-06-02 01:18:21 +0000530
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000531 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000532 }
533 }
Nick Lewyckyc14bc772011-03-07 01:50:10 +0000534
535 // The sign bit is the LHS's sign bit, except when the result of the
536 // remainder is zero.
537 if (Mask.isNegative() && KnownZero.isNonNegative()) {
538 APInt Mask2 = APInt::getSignBit(BitWidth);
539 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
540 ComputeMaskedBits(I->getOperand(0), Mask2, LHSKnownZero, LHSKnownOne, TD,
541 Depth+1);
542 // If it's known zero, our sign bit is also zero.
543 if (LHSKnownZero.isNegative())
544 KnownZero |= LHSKnownZero;
545 }
546
Chris Lattner173234a2008-06-02 01:18:21 +0000547 break;
548 case Instruction::URem: {
549 if (ConstantInt *Rem = dyn_cast<ConstantInt>(I->getOperand(1))) {
550 APInt RA = Rem->getValue();
551 if (RA.isPowerOf2()) {
552 APInt LowBits = (RA - 1);
553 APInt Mask2 = LowBits & Mask;
554 KnownZero |= ~LowBits & Mask;
555 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, TD,
556 Depth+1);
Nick Lewyckyae3d8022009-11-23 03:29:18 +0000557 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
Chris Lattner173234a2008-06-02 01:18:21 +0000558 break;
559 }
560 }
561
562 // Since the result is less than or equal to either operand, any leading
563 // zero bits in either operand must also exist in the result.
564 APInt AllOnes = APInt::getAllOnesValue(BitWidth);
565 ComputeMaskedBits(I->getOperand(0), AllOnes, KnownZero, KnownOne,
566 TD, Depth+1);
567 ComputeMaskedBits(I->getOperand(1), AllOnes, KnownZero2, KnownOne2,
568 TD, Depth+1);
569
Chris Lattner79abedb2009-01-20 18:22:57 +0000570 unsigned Leaders = std::max(KnownZero.countLeadingOnes(),
Chris Lattner173234a2008-06-02 01:18:21 +0000571 KnownZero2.countLeadingOnes());
Jay Foad7a874dd2010-12-01 08:53:58 +0000572 KnownOne.clearAllBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000573 KnownZero = APInt::getHighBitsSet(BitWidth, Leaders) & Mask;
574 break;
575 }
576
Victor Hernandeza276c602009-10-17 01:18:07 +0000577 case Instruction::Alloca: {
Victor Hernandez7b929da2009-10-23 21:09:37 +0000578 AllocaInst *AI = cast<AllocaInst>(V);
Chris Lattner173234a2008-06-02 01:18:21 +0000579 unsigned Align = AI->getAlignment();
Victor Hernandeza276c602009-10-17 01:18:07 +0000580 if (Align == 0 && TD)
581 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
Chris Lattner173234a2008-06-02 01:18:21 +0000582
583 if (Align > 0)
584 KnownZero = Mask & APInt::getLowBitsSet(BitWidth,
585 CountTrailingZeros_32(Align));
586 break;
587 }
588 case Instruction::GetElementPtr: {
589 // Analyze all of the subscripts of this getelementptr instruction
590 // to determine if we can prove known low zero bits.
591 APInt LocalMask = APInt::getAllOnesValue(BitWidth);
592 APInt LocalKnownZero(BitWidth, 0), LocalKnownOne(BitWidth, 0);
593 ComputeMaskedBits(I->getOperand(0), LocalMask,
594 LocalKnownZero, LocalKnownOne, TD, Depth+1);
595 unsigned TrailZ = LocalKnownZero.countTrailingOnes();
596
597 gep_type_iterator GTI = gep_type_begin(I);
598 for (unsigned i = 1, e = I->getNumOperands(); i != e; ++i, ++GTI) {
599 Value *Index = I->getOperand(i);
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000600 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattner173234a2008-06-02 01:18:21 +0000601 // Handle struct member offset arithmetic.
602 if (!TD) return;
603 const StructLayout *SL = TD->getStructLayout(STy);
604 unsigned Idx = cast<ConstantInt>(Index)->getZExtValue();
605 uint64_t Offset = SL->getElementOffset(Idx);
606 TrailZ = std::min(TrailZ,
607 CountTrailingZeros_64(Offset));
608 } else {
609 // Handle array index arithmetic.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000610 Type *IndexedTy = GTI.getIndexedType();
Chris Lattner173234a2008-06-02 01:18:21 +0000611 if (!IndexedTy->isSized()) return;
Dan Gohman6de29f82009-06-15 22:12:54 +0000612 unsigned GEPOpiBits = Index->getType()->getScalarSizeInBits();
Duncan Sands777d2302009-05-09 07:06:46 +0000613 uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
Chris Lattner173234a2008-06-02 01:18:21 +0000614 LocalMask = APInt::getAllOnesValue(GEPOpiBits);
615 LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
616 ComputeMaskedBits(Index, LocalMask,
617 LocalKnownZero, LocalKnownOne, TD, Depth+1);
618 TrailZ = std::min(TrailZ,
Chris Lattner79abedb2009-01-20 18:22:57 +0000619 unsigned(CountTrailingZeros_64(TypeSize) +
620 LocalKnownZero.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000621 }
622 }
623
624 KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) & Mask;
625 break;
626 }
627 case Instruction::PHI: {
628 PHINode *P = cast<PHINode>(I);
629 // Handle the case of a simple two-predecessor recurrence PHI.
630 // There's a lot more that could theoretically be done here, but
631 // this is sufficient to catch some interesting cases.
632 if (P->getNumIncomingValues() == 2) {
633 for (unsigned i = 0; i != 2; ++i) {
634 Value *L = P->getIncomingValue(i);
635 Value *R = P->getIncomingValue(!i);
Dan Gohmanca178902009-07-17 20:47:02 +0000636 Operator *LU = dyn_cast<Operator>(L);
Chris Lattner173234a2008-06-02 01:18:21 +0000637 if (!LU)
638 continue;
Dan Gohmanca178902009-07-17 20:47:02 +0000639 unsigned Opcode = LU->getOpcode();
Chris Lattner173234a2008-06-02 01:18:21 +0000640 // Check for operations that have the property that if
641 // both their operands have low zero bits, the result
642 // will have low zero bits.
643 if (Opcode == Instruction::Add ||
644 Opcode == Instruction::Sub ||
645 Opcode == Instruction::And ||
646 Opcode == Instruction::Or ||
647 Opcode == Instruction::Mul) {
648 Value *LL = LU->getOperand(0);
649 Value *LR = LU->getOperand(1);
650 // Find a recurrence.
651 if (LL == I)
652 L = LR;
653 else if (LR == I)
654 L = LL;
655 else
656 break;
657 // Ok, we have a PHI of the form L op= R. Check for low
658 // zero bits.
659 APInt Mask2 = APInt::getAllOnesValue(BitWidth);
660 ComputeMaskedBits(R, Mask2, KnownZero2, KnownOne2, TD, Depth+1);
661 Mask2 = APInt::getLowBitsSet(BitWidth,
662 KnownZero2.countTrailingOnes());
David Greenec714f132008-10-27 23:24:03 +0000663
664 // We need to take the minimum number of known bits
665 APInt KnownZero3(KnownZero), KnownOne3(KnownOne);
666 ComputeMaskedBits(L, Mask2, KnownZero3, KnownOne3, TD, Depth+1);
667
Chris Lattner173234a2008-06-02 01:18:21 +0000668 KnownZero = Mask &
669 APInt::getLowBitsSet(BitWidth,
David Greenec714f132008-10-27 23:24:03 +0000670 std::min(KnownZero2.countTrailingOnes(),
671 KnownZero3.countTrailingOnes()));
Chris Lattner173234a2008-06-02 01:18:21 +0000672 break;
673 }
674 }
675 }
Dan Gohman9004c8a2009-05-21 02:28:33 +0000676
Nick Lewycky3b739d22011-02-10 23:54:10 +0000677 // Unreachable blocks may have zero-operand PHI nodes.
678 if (P->getNumIncomingValues() == 0)
679 return;
680
Dan Gohman9004c8a2009-05-21 02:28:33 +0000681 // Otherwise take the unions of the known bit sets of the operands,
682 // taking conservative care to avoid excessive recursion.
683 if (Depth < MaxDepth - 1 && !KnownZero && !KnownOne) {
Duncan Sands606199f2011-03-08 12:39:03 +0000684 // Skip if every incoming value references to ourself.
685 if (P->hasConstantValue() == P)
686 break;
687
Dan Gohman9004c8a2009-05-21 02:28:33 +0000688 KnownZero = APInt::getAllOnesValue(BitWidth);
689 KnownOne = APInt::getAllOnesValue(BitWidth);
690 for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i) {
691 // Skip direct self references.
692 if (P->getIncomingValue(i) == P) continue;
693
694 KnownZero2 = APInt(BitWidth, 0);
695 KnownOne2 = APInt(BitWidth, 0);
696 // Recurse, but cap the recursion to one level, because we don't
697 // want to waste time spinning around in loops.
698 ComputeMaskedBits(P->getIncomingValue(i), KnownZero | KnownOne,
699 KnownZero2, KnownOne2, TD, MaxDepth-1);
700 KnownZero &= KnownZero2;
701 KnownOne &= KnownOne2;
702 // If all bits have been ruled out, there's no need to check
703 // more operands.
704 if (!KnownZero && !KnownOne)
705 break;
706 }
707 }
Chris Lattner173234a2008-06-02 01:18:21 +0000708 break;
709 }
710 case Instruction::Call:
711 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) {
712 switch (II->getIntrinsicID()) {
713 default: break;
714 case Intrinsic::ctpop:
715 case Intrinsic::ctlz:
716 case Intrinsic::cttz: {
717 unsigned LowBits = Log2_32(BitWidth)+1;
718 KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
719 break;
720 }
Chad Rosier62660312011-05-26 23:13:19 +0000721 case Intrinsic::x86_sse42_crc32_64_8:
722 case Intrinsic::x86_sse42_crc32_64_64:
Evan Chengcb559c12011-05-22 18:25:30 +0000723 KnownZero = APInt::getHighBitsSet(64, 32);
724 break;
Chris Lattner173234a2008-06-02 01:18:21 +0000725 }
726 }
727 break;
728 }
729}
730
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000731/// ComputeSignBit - Determine whether the sign bit is known to be zero or
732/// one. Convenience wrapper around ComputeMaskedBits.
733void llvm::ComputeSignBit(Value *V, bool &KnownZero, bool &KnownOne,
734 const TargetData *TD, unsigned Depth) {
735 unsigned BitWidth = getBitWidth(V->getType(), TD);
736 if (!BitWidth) {
737 KnownZero = false;
738 KnownOne = false;
739 return;
740 }
741 APInt ZeroBits(BitWidth, 0);
742 APInt OneBits(BitWidth, 0);
743 ComputeMaskedBits(V, APInt::getSignBit(BitWidth), ZeroBits, OneBits, TD,
744 Depth);
745 KnownOne = OneBits[BitWidth - 1];
746 KnownZero = ZeroBits[BitWidth - 1];
747}
748
749/// isPowerOfTwo - Return true if the given value is known to have exactly one
750/// bit set when defined. For vectors return true if every element is known to
751/// be a power of two when defined. Supports values with integer or pointer
752/// types and vectors of integers.
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000753bool llvm::isPowerOfTwo(Value *V, const TargetData *TD, bool OrZero,
754 unsigned Depth) {
755 if (Constant *C = dyn_cast<Constant>(V)) {
756 if (C->isNullValue())
757 return OrZero;
758 if (ConstantInt *CI = dyn_cast<ConstantInt>(C))
759 return CI->getValue().isPowerOf2();
760 // TODO: Handle vector constants.
761 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000762
763 // 1 << X is clearly a power of two if the one is not shifted off the end. If
764 // it is shifted off the end then the result is undefined.
765 if (match(V, m_Shl(m_One(), m_Value())))
766 return true;
767
768 // (signbit) >>l X is clearly a power of two if the one is not shifted off the
769 // bottom. If it is shifted off the bottom then the result is undefined.
Duncan Sands93c78022011-02-01 08:50:33 +0000770 if (match(V, m_LShr(m_SignBit(), m_Value())))
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000771 return true;
772
773 // The remaining tests are all recursive, so bail out if we hit the limit.
774 if (Depth++ == MaxDepth)
775 return false;
776
Duncan Sands4604fc72011-10-28 18:30:05 +0000777 Value *X = 0, *Y = 0;
778 // A shift of a power of two is a power of two or zero.
779 if (OrZero && (match(V, m_Shl(m_Value(X), m_Value())) ||
780 match(V, m_Shr(m_Value(X), m_Value()))))
781 return isPowerOfTwo(X, TD, /*OrZero*/true, Depth);
782
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000783 if (ZExtInst *ZI = dyn_cast<ZExtInst>(V))
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000784 return isPowerOfTwo(ZI->getOperand(0), TD, OrZero, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000785
786 if (SelectInst *SI = dyn_cast<SelectInst>(V))
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000787 return isPowerOfTwo(SI->getTrueValue(), TD, OrZero, Depth) &&
788 isPowerOfTwo(SI->getFalseValue(), TD, OrZero, Depth);
789
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000790 if (OrZero && match(V, m_And(m_Value(X), m_Value(Y)))) {
791 // A power of two and'd with anything is a power of two or zero.
792 if (isPowerOfTwo(X, TD, /*OrZero*/true, Depth) ||
793 isPowerOfTwo(Y, TD, /*OrZero*/true, Depth))
794 return true;
795 // X & (-X) is always a power of two or zero.
796 if (match(X, m_Neg(m_Specific(Y))) || match(Y, m_Neg(m_Specific(X))))
797 return true;
798 return false;
799 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000800
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000801 // An exact divide or right shift can only shift off zero bits, so the result
Nick Lewycky1f7bc702011-03-21 21:40:32 +0000802 // is a power of two only if the first operand is a power of two and not
803 // copying a sign bit (sdiv int_min, 2).
804 if (match(V, m_LShr(m_Value(), m_Value())) ||
805 match(V, m_UDiv(m_Value(), m_Value()))) {
Eli Friedman6bdd2612011-04-02 22:11:56 +0000806 PossiblyExactOperator *PEO = cast<PossiblyExactOperator>(V);
807 if (PEO->isExact())
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000808 return isPowerOfTwo(PEO->getOperand(0), TD, OrZero, Depth);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000809 }
810
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000811 return false;
812}
813
814/// isKnownNonZero - Return true if the given value is known to be non-zero
815/// when defined. For vectors return true if every element is known to be
816/// non-zero when defined. Supports values with integer or pointer type and
817/// vectors of integers.
818bool llvm::isKnownNonZero(Value *V, const TargetData *TD, unsigned Depth) {
819 if (Constant *C = dyn_cast<Constant>(V)) {
820 if (C->isNullValue())
821 return false;
822 if (isa<ConstantInt>(C))
823 // Must be non-zero due to null test above.
824 return true;
825 // TODO: Handle vectors
826 return false;
827 }
828
829 // The remaining tests are all recursive, so bail out if we hit the limit.
Duncan Sands32a43cc2011-10-27 19:16:21 +0000830 if (Depth++ >= MaxDepth)
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000831 return false;
832
833 unsigned BitWidth = getBitWidth(V->getType(), TD);
834
835 // X | Y != 0 if X != 0 or Y != 0.
836 Value *X = 0, *Y = 0;
837 if (match(V, m_Or(m_Value(X), m_Value(Y))))
838 return isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth);
839
840 // ext X != 0 if X != 0.
841 if (isa<SExtInst>(V) || isa<ZExtInst>(V))
842 return isKnownNonZero(cast<Instruction>(V)->getOperand(0), TD, Depth);
843
Duncan Sands91367822011-01-29 13:27:00 +0000844 // shl X, Y != 0 if X is odd. Note that the value of the shift is undefined
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000845 // if the lowest bit is shifted off the end.
846 if (BitWidth && match(V, m_Shl(m_Value(X), m_Value(Y)))) {
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000847 // shl nuw can't remove any non-zero bits.
Duncan Sands32a43cc2011-10-27 19:16:21 +0000848 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000849 if (BO->hasNoUnsignedWrap())
850 return isKnownNonZero(X, TD, Depth);
851
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000852 APInt KnownZero(BitWidth, 0);
853 APInt KnownOne(BitWidth, 0);
Duncan Sands91367822011-01-29 13:27:00 +0000854 ComputeMaskedBits(X, APInt(BitWidth, 1), KnownZero, KnownOne, TD, Depth);
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000855 if (KnownOne[0])
856 return true;
857 }
Duncan Sands91367822011-01-29 13:27:00 +0000858 // shr X, Y != 0 if X is negative. Note that the value of the shift is not
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000859 // defined if the sign bit is shifted off the end.
860 else if (match(V, m_Shr(m_Value(X), m_Value(Y)))) {
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000861 // shr exact can only shift out zero bits.
Duncan Sands32a43cc2011-10-27 19:16:21 +0000862 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000863 if (BO->isExact())
864 return isKnownNonZero(X, TD, Depth);
865
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000866 bool XKnownNonNegative, XKnownNegative;
867 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
868 if (XKnownNegative)
869 return true;
870 }
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000871 // div exact can only produce a zero if the dividend is zero.
872 else if (match(V, m_IDiv(m_Value(X), m_Value()))) {
Duncan Sands32a43cc2011-10-27 19:16:21 +0000873 PossiblyExactOperator *BO = cast<PossiblyExactOperator>(V);
Nick Lewycky3dfd9872011-02-28 08:02:21 +0000874 if (BO->isExact())
875 return isKnownNonZero(X, TD, Depth);
876 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000877 // X + Y.
878 else if (match(V, m_Add(m_Value(X), m_Value(Y)))) {
879 bool XKnownNonNegative, XKnownNegative;
880 bool YKnownNonNegative, YKnownNegative;
881 ComputeSignBit(X, XKnownNonNegative, XKnownNegative, TD, Depth);
882 ComputeSignBit(Y, YKnownNonNegative, YKnownNegative, TD, Depth);
883
884 // If X and Y are both non-negative (as signed values) then their sum is not
Duncan Sands227fba12011-01-25 15:14:15 +0000885 // zero unless both X and Y are zero.
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000886 if (XKnownNonNegative && YKnownNonNegative)
Duncan Sands227fba12011-01-25 15:14:15 +0000887 if (isKnownNonZero(X, TD, Depth) || isKnownNonZero(Y, TD, Depth))
888 return true;
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000889
890 // If X and Y are both negative (as signed values) then their sum is not
891 // zero unless both X and Y equal INT_MIN.
892 if (BitWidth && XKnownNegative && YKnownNegative) {
893 APInt KnownZero(BitWidth, 0);
894 APInt KnownOne(BitWidth, 0);
895 APInt Mask = APInt::getSignedMaxValue(BitWidth);
896 // The sign bit of X is set. If some other bit is set then X is not equal
897 // to INT_MIN.
898 ComputeMaskedBits(X, Mask, KnownZero, KnownOne, TD, Depth);
899 if ((KnownOne & Mask) != 0)
900 return true;
901 // The sign bit of Y is set. If some other bit is set then Y is not equal
902 // to INT_MIN.
903 ComputeMaskedBits(Y, Mask, KnownZero, KnownOne, TD, Depth);
904 if ((KnownOne & Mask) != 0)
905 return true;
906 }
907
908 // The sum of a non-negative number and a power of two is not zero.
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000909 if (XKnownNonNegative && isPowerOfTwo(Y, TD, /*OrZero*/false, Depth))
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000910 return true;
Duncan Sandsdd3149d2011-10-26 20:55:21 +0000911 if (YKnownNonNegative && isPowerOfTwo(X, TD, /*OrZero*/false, Depth))
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000912 return true;
913 }
Duncan Sands32a43cc2011-10-27 19:16:21 +0000914 // X * Y.
915 else if (match(V, m_Mul(m_Value(X), m_Value(Y)))) {
916 OverflowingBinaryOperator *BO = cast<OverflowingBinaryOperator>(V);
917 // If X and Y are non-zero then so is X * Y as long as the multiplication
918 // does not overflow.
919 if ((BO->hasNoSignedWrap() || BO->hasNoUnsignedWrap()) &&
920 isKnownNonZero(X, TD, Depth) && isKnownNonZero(Y, TD, Depth))
921 return true;
922 }
Duncan Sandsd70d1a52011-01-25 09:38:29 +0000923 // (C ? X : Y) != 0 if X != 0 and Y != 0.
924 else if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
925 if (isKnownNonZero(SI->getTrueValue(), TD, Depth) &&
926 isKnownNonZero(SI->getFalseValue(), TD, Depth))
927 return true;
928 }
929
930 if (!BitWidth) return false;
931 APInt KnownZero(BitWidth, 0);
932 APInt KnownOne(BitWidth, 0);
933 ComputeMaskedBits(V, APInt::getAllOnesValue(BitWidth), KnownZero, KnownOne,
934 TD, Depth);
935 return KnownOne != 0;
936}
937
Chris Lattner173234a2008-06-02 01:18:21 +0000938/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
939/// this predicate to simplify operations downstream. Mask is known to be zero
940/// for bits that V cannot have.
Chris Lattnercf5128e2009-09-08 00:06:16 +0000941///
942/// This function is defined on values with integer type, values with pointer
943/// type (but only if TD is non-null), and vectors of integers. In the case
944/// where V is a vector, the mask, known zero, and known one values are the
945/// same width as the vector element, and the bit is set only if it is true
946/// for all of the elements in the vector.
Chris Lattner173234a2008-06-02 01:18:21 +0000947bool llvm::MaskedValueIsZero(Value *V, const APInt &Mask,
Dan Gohman846a2f22009-08-27 17:51:25 +0000948 const TargetData *TD, unsigned Depth) {
Chris Lattner173234a2008-06-02 01:18:21 +0000949 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
950 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
951 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
952 return (KnownZero & Mask) == Mask;
953}
954
955
956
957/// ComputeNumSignBits - Return the number of times the sign bit of the
958/// register is replicated into the other bits. We know that at least 1 bit
959/// is always equal to the sign bit (itself), but other cases can give us
960/// information. For example, immediately after an "ashr X, 2", we know that
961/// the top 3 bits are all equal to each other, so we return 3.
962///
963/// 'Op' must have a scalar integer type.
964///
Dan Gohman846a2f22009-08-27 17:51:25 +0000965unsigned llvm::ComputeNumSignBits(Value *V, const TargetData *TD,
966 unsigned Depth) {
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000967 assert((TD || V->getType()->isIntOrIntVectorTy()) &&
Dan Gohmanbd5ce522009-06-22 22:02:32 +0000968 "ComputeNumSignBits requires a TargetData object to operate "
969 "on non-integer values!");
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000970 Type *Ty = V->getType();
Dan Gohmanbd5ce522009-06-22 22:02:32 +0000971 unsigned TyBits = TD ? TD->getTypeSizeInBits(V->getType()->getScalarType()) :
972 Ty->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000973 unsigned Tmp, Tmp2;
974 unsigned FirstAnswer = 1;
975
Chris Lattnerd82e5112008-06-02 18:39:07 +0000976 // Note that ConstantInt is handled by the general ComputeMaskedBits case
977 // below.
978
Chris Lattner173234a2008-06-02 01:18:21 +0000979 if (Depth == 6)
980 return 1; // Limit search depth.
981
Dan Gohmanca178902009-07-17 20:47:02 +0000982 Operator *U = dyn_cast<Operator>(V);
983 switch (Operator::getOpcode(V)) {
Chris Lattner173234a2008-06-02 01:18:21 +0000984 default: break;
985 case Instruction::SExt:
Mon P Wang69a00802009-12-02 04:59:58 +0000986 Tmp = TyBits - U->getOperand(0)->getType()->getScalarSizeInBits();
Chris Lattner173234a2008-06-02 01:18:21 +0000987 return ComputeNumSignBits(U->getOperand(0), TD, Depth+1) + Tmp;
988
989 case Instruction::AShr:
990 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
991 // ashr X, C -> adds C sign bits.
992 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
993 Tmp += C->getZExtValue();
994 if (Tmp > TyBits) Tmp = TyBits;
995 }
Nate Begeman9a3dc552010-12-17 23:12:19 +0000996 // vector ashr X, <C, C, C, C> -> adds C sign bits
997 if (ConstantVector *C = dyn_cast<ConstantVector>(U->getOperand(1))) {
998 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
999 Tmp += CI->getZExtValue();
1000 if (Tmp > TyBits) Tmp = TyBits;
1001 }
1002 }
Chris Lattner173234a2008-06-02 01:18:21 +00001003 return Tmp;
1004 case Instruction::Shl:
1005 if (ConstantInt *C = dyn_cast<ConstantInt>(U->getOperand(1))) {
1006 // shl destroys sign bits.
1007 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1008 if (C->getZExtValue() >= TyBits || // Bad shift.
1009 C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
1010 return Tmp - C->getZExtValue();
1011 }
1012 break;
1013 case Instruction::And:
1014 case Instruction::Or:
1015 case Instruction::Xor: // NOT is handled here.
1016 // Logical binary ops preserve the number of sign bits at the worst.
1017 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1018 if (Tmp != 1) {
1019 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1020 FirstAnswer = std::min(Tmp, Tmp2);
1021 // We computed what we know about the sign bits as our first
1022 // answer. Now proceed to the generic code that uses
1023 // ComputeMaskedBits, and pick whichever answer is better.
1024 }
1025 break;
1026
1027 case Instruction::Select:
1028 Tmp = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1029 if (Tmp == 1) return 1; // Early out.
1030 Tmp2 = ComputeNumSignBits(U->getOperand(2), TD, Depth+1);
1031 return std::min(Tmp, Tmp2);
1032
1033 case Instruction::Add:
1034 // Add can have at most one carry bit. Thus we know that the output
1035 // is, at worst, one more bit than the inputs.
1036 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1037 if (Tmp == 1) return 1; // Early out.
1038
1039 // Special case decrementing a value (ADD X, -1):
Dan Gohman0001e562009-02-24 02:00:40 +00001040 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(U->getOperand(1)))
Chris Lattner173234a2008-06-02 01:18:21 +00001041 if (CRHS->isAllOnesValue()) {
1042 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1043 APInt Mask = APInt::getAllOnesValue(TyBits);
1044 ComputeMaskedBits(U->getOperand(0), Mask, KnownZero, KnownOne, TD,
1045 Depth+1);
1046
1047 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1048 // sign bits set.
1049 if ((KnownZero | APInt(TyBits, 1)) == Mask)
1050 return TyBits;
1051
1052 // If we are subtracting one from a positive number, there is no carry
1053 // out of the result.
1054 if (KnownZero.isNegative())
1055 return Tmp;
1056 }
1057
1058 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1059 if (Tmp2 == 1) return 1;
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001060 return std::min(Tmp, Tmp2)-1;
Chris Lattner173234a2008-06-02 01:18:21 +00001061
1062 case Instruction::Sub:
1063 Tmp2 = ComputeNumSignBits(U->getOperand(1), TD, Depth+1);
1064 if (Tmp2 == 1) return 1;
1065
1066 // Handle NEG.
1067 if (ConstantInt *CLHS = dyn_cast<ConstantInt>(U->getOperand(0)))
1068 if (CLHS->isNullValue()) {
1069 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1070 APInt Mask = APInt::getAllOnesValue(TyBits);
1071 ComputeMaskedBits(U->getOperand(1), Mask, KnownZero, KnownOne,
1072 TD, Depth+1);
1073 // If the input is known to be 0 or 1, the output is 0/-1, which is all
1074 // sign bits set.
1075 if ((KnownZero | APInt(TyBits, 1)) == Mask)
1076 return TyBits;
1077
1078 // If the input is known to be positive (the sign bit is known clear),
1079 // the output of the NEG has the same number of sign bits as the input.
1080 if (KnownZero.isNegative())
1081 return Tmp2;
1082
1083 // Otherwise, we treat this like a SUB.
1084 }
1085
1086 // Sub can have at most one carry bit. Thus we know that the output
1087 // is, at worst, one more bit than the inputs.
1088 Tmp = ComputeNumSignBits(U->getOperand(0), TD, Depth+1);
1089 if (Tmp == 1) return 1; // Early out.
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001090 return std::min(Tmp, Tmp2)-1;
1091
1092 case Instruction::PHI: {
1093 PHINode *PN = cast<PHINode>(U);
1094 // Don't analyze large in-degree PHIs.
1095 if (PN->getNumIncomingValues() > 4) break;
1096
1097 // Take the minimum of all incoming values. This can't infinitely loop
1098 // because of our depth threshold.
1099 Tmp = ComputeNumSignBits(PN->getIncomingValue(0), TD, Depth+1);
1100 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
1101 if (Tmp == 1) return Tmp;
1102 Tmp = std::min(Tmp,
Evan Cheng0af20d82010-03-13 02:20:29 +00001103 ComputeNumSignBits(PN->getIncomingValue(i), TD, Depth+1));
Chris Lattner8d10f9d2010-01-07 23:44:37 +00001104 }
1105 return Tmp;
1106 }
1107
Chris Lattner173234a2008-06-02 01:18:21 +00001108 case Instruction::Trunc:
1109 // FIXME: it's tricky to do anything useful for this, but it is an important
1110 // case for targets like X86.
1111 break;
1112 }
1113
1114 // Finally, if we can prove that the top bits of the result are 0's or 1's,
1115 // use this information.
1116 APInt KnownZero(TyBits, 0), KnownOne(TyBits, 0);
1117 APInt Mask = APInt::getAllOnesValue(TyBits);
1118 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, TD, Depth);
1119
1120 if (KnownZero.isNegative()) { // sign bit is 0
1121 Mask = KnownZero;
1122 } else if (KnownOne.isNegative()) { // sign bit is 1;
1123 Mask = KnownOne;
1124 } else {
1125 // Nothing known.
1126 return FirstAnswer;
1127 }
1128
1129 // Okay, we know that the sign bit in Mask is set. Use CLZ to determine
1130 // the number of identical bits in the top of the input value.
1131 Mask = ~Mask;
1132 Mask <<= Mask.getBitWidth()-TyBits;
1133 // Return # leading zeros. We use 'min' here in case Val was zero before
1134 // shifting. We don't want to return '64' as for an i32 "0".
1135 return std::max(FirstAnswer, std::min(TyBits, Mask.countLeadingZeros()));
1136}
Chris Lattner833f25d2008-06-02 01:29:46 +00001137
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001138/// ComputeMultiple - This function computes the integer multiple of Base that
1139/// equals V. If successful, it returns true and returns the multiple in
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001140/// Multiple. If unsuccessful, it returns false. It looks
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001141/// through SExt instructions only if LookThroughSExt is true.
1142bool llvm::ComputeMultiple(Value *V, unsigned Base, Value *&Multiple,
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001143 bool LookThroughSExt, unsigned Depth) {
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001144 const unsigned MaxDepth = 6;
1145
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001146 assert(V && "No Value?");
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001147 assert(Depth <= MaxDepth && "Limit Search Depth");
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001148 assert(V->getType()->isIntegerTy() && "Not integer or pointer type!");
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001149
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001150 Type *T = V->getType();
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001151
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001152 ConstantInt *CI = dyn_cast<ConstantInt>(V);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001153
1154 if (Base == 0)
1155 return false;
1156
1157 if (Base == 1) {
1158 Multiple = V;
1159 return true;
1160 }
1161
1162 ConstantExpr *CO = dyn_cast<ConstantExpr>(V);
1163 Constant *BaseVal = ConstantInt::get(T, Base);
1164 if (CO && CO == BaseVal) {
1165 // Multiple is 1.
1166 Multiple = ConstantInt::get(T, 1);
1167 return true;
1168 }
1169
1170 if (CI && CI->getZExtValue() % Base == 0) {
1171 Multiple = ConstantInt::get(T, CI->getZExtValue() / Base);
1172 return true;
1173 }
1174
1175 if (Depth == MaxDepth) return false; // Limit search depth.
1176
1177 Operator *I = dyn_cast<Operator>(V);
1178 if (!I) return false;
1179
1180 switch (I->getOpcode()) {
1181 default: break;
Chris Lattner11fe7262009-11-26 01:50:12 +00001182 case Instruction::SExt:
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001183 if (!LookThroughSExt) return false;
1184 // otherwise fall through to ZExt
Chris Lattner11fe7262009-11-26 01:50:12 +00001185 case Instruction::ZExt:
Dan Gohman3dbb9e62009-11-18 00:58:27 +00001186 return ComputeMultiple(I->getOperand(0), Base, Multiple,
1187 LookThroughSExt, Depth+1);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001188 case Instruction::Shl:
1189 case Instruction::Mul: {
1190 Value *Op0 = I->getOperand(0);
1191 Value *Op1 = I->getOperand(1);
1192
1193 if (I->getOpcode() == Instruction::Shl) {
1194 ConstantInt *Op1CI = dyn_cast<ConstantInt>(Op1);
1195 if (!Op1CI) return false;
1196 // Turn Op0 << Op1 into Op0 * 2^Op1
1197 APInt Op1Int = Op1CI->getValue();
1198 uint64_t BitToSet = Op1Int.getLimitedValue(Op1Int.getBitWidth() - 1);
Jay Foada99793c2010-11-30 09:02:01 +00001199 APInt API(Op1Int.getBitWidth(), 0);
Jay Foad7a874dd2010-12-01 08:53:58 +00001200 API.setBit(BitToSet);
Jay Foada99793c2010-11-30 09:02:01 +00001201 Op1 = ConstantInt::get(V->getContext(), API);
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001202 }
1203
1204 Value *Mul0 = NULL;
Chris Lattnere9711312010-09-05 17:20:46 +00001205 if (ComputeMultiple(Op0, Base, Mul0, LookThroughSExt, Depth+1)) {
1206 if (Constant *Op1C = dyn_cast<Constant>(Op1))
1207 if (Constant *MulC = dyn_cast<Constant>(Mul0)) {
1208 if (Op1C->getType()->getPrimitiveSizeInBits() <
1209 MulC->getType()->getPrimitiveSizeInBits())
1210 Op1C = ConstantExpr::getZExt(Op1C, MulC->getType());
1211 if (Op1C->getType()->getPrimitiveSizeInBits() >
1212 MulC->getType()->getPrimitiveSizeInBits())
1213 MulC = ConstantExpr::getZExt(MulC, Op1C->getType());
1214
1215 // V == Base * (Mul0 * Op1), so return (Mul0 * Op1)
1216 Multiple = ConstantExpr::getMul(MulC, Op1C);
1217 return true;
1218 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001219
1220 if (ConstantInt *Mul0CI = dyn_cast<ConstantInt>(Mul0))
1221 if (Mul0CI->getValue() == 1) {
1222 // V == Base * Op1, so return Op1
1223 Multiple = Op1;
1224 return true;
1225 }
1226 }
1227
Chris Lattnere9711312010-09-05 17:20:46 +00001228 Value *Mul1 = NULL;
1229 if (ComputeMultiple(Op1, Base, Mul1, LookThroughSExt, Depth+1)) {
1230 if (Constant *Op0C = dyn_cast<Constant>(Op0))
1231 if (Constant *MulC = dyn_cast<Constant>(Mul1)) {
1232 if (Op0C->getType()->getPrimitiveSizeInBits() <
1233 MulC->getType()->getPrimitiveSizeInBits())
1234 Op0C = ConstantExpr::getZExt(Op0C, MulC->getType());
1235 if (Op0C->getType()->getPrimitiveSizeInBits() >
1236 MulC->getType()->getPrimitiveSizeInBits())
1237 MulC = ConstantExpr::getZExt(MulC, Op0C->getType());
1238
1239 // V == Base * (Mul1 * Op0), so return (Mul1 * Op0)
1240 Multiple = ConstantExpr::getMul(MulC, Op0C);
1241 return true;
1242 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001243
1244 if (ConstantInt *Mul1CI = dyn_cast<ConstantInt>(Mul1))
1245 if (Mul1CI->getValue() == 1) {
1246 // V == Base * Op0, so return Op0
1247 Multiple = Op0;
1248 return true;
1249 }
1250 }
Victor Hernandez2b6705f2009-11-10 08:28:35 +00001251 }
1252 }
1253
1254 // We could not determine if V is a multiple of Base.
1255 return false;
1256}
1257
Chris Lattner833f25d2008-06-02 01:29:46 +00001258/// CannotBeNegativeZero - Return true if we can prove that the specified FP
1259/// value is never equal to -0.0.
1260///
1261/// NOTE: this function will need to be revisited when we support non-default
1262/// rounding modes!
1263///
1264bool llvm::CannotBeNegativeZero(const Value *V, unsigned Depth) {
1265 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
1266 return !CFP->getValueAPF().isNegZero();
1267
1268 if (Depth == 6)
1269 return 1; // Limit search depth.
1270
Dan Gohmanca178902009-07-17 20:47:02 +00001271 const Operator *I = dyn_cast<Operator>(V);
Chris Lattner833f25d2008-06-02 01:29:46 +00001272 if (I == 0) return false;
1273
1274 // (add x, 0.0) is guaranteed to return +0.0, not -0.0.
Dan Gohmanae3a0be2009-06-04 22:49:04 +00001275 if (I->getOpcode() == Instruction::FAdd &&
Chris Lattner833f25d2008-06-02 01:29:46 +00001276 isa<ConstantFP>(I->getOperand(1)) &&
1277 cast<ConstantFP>(I->getOperand(1))->isNullValue())
1278 return true;
1279
1280 // sitofp and uitofp turn into +0.0 for zero.
1281 if (isa<SIToFPInst>(I) || isa<UIToFPInst>(I))
1282 return true;
1283
1284 if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(I))
1285 // sqrt(-0.0) = -0.0, no other negative results are possible.
1286 if (II->getIntrinsicID() == Intrinsic::sqrt)
Gabor Greif71339c92010-06-23 23:38:07 +00001287 return CannotBeNegativeZero(II->getArgOperand(0), Depth+1);
Chris Lattner833f25d2008-06-02 01:29:46 +00001288
1289 if (const CallInst *CI = dyn_cast<CallInst>(I))
1290 if (const Function *F = CI->getCalledFunction()) {
1291 if (F->isDeclaration()) {
Daniel Dunbarf0443c12009-07-26 08:34:35 +00001292 // abs(x) != -0.0
1293 if (F->getName() == "abs") return true;
Dale Johannesen9d061752009-09-25 20:54:50 +00001294 // fabs[lf](x) != -0.0
1295 if (F->getName() == "fabs") return true;
1296 if (F->getName() == "fabsf") return true;
1297 if (F->getName() == "fabsl") return true;
1298 if (F->getName() == "sqrt" || F->getName() == "sqrtf" ||
1299 F->getName() == "sqrtl")
Gabor Greif71339c92010-06-23 23:38:07 +00001300 return CannotBeNegativeZero(CI->getArgOperand(0), Depth+1);
Chris Lattner833f25d2008-06-02 01:29:46 +00001301 }
1302 }
1303
1304 return false;
1305}
1306
Chris Lattnerbb897102010-12-26 20:15:01 +00001307/// isBytewiseValue - If the specified value can be set by repeating the same
1308/// byte in memory, return the i8 value that it is represented with. This is
1309/// true for all i8 values obviously, but is also true for i32 0, i32 -1,
1310/// i16 0xF0F0, double 0.0 etc. If the value can't be handled with a repeated
1311/// byte store (e.g. i16 0x1234), return null.
1312Value *llvm::isBytewiseValue(Value *V) {
1313 // All byte-wide stores are splatable, even of arbitrary variables.
1314 if (V->getType()->isIntegerTy(8)) return V;
Chris Lattner41bfbb02011-02-19 19:35:49 +00001315
1316 // Handle 'null' ConstantArrayZero etc.
1317 if (Constant *C = dyn_cast<Constant>(V))
1318 if (C->isNullValue())
1319 return Constant::getNullValue(Type::getInt8Ty(V->getContext()));
Chris Lattnerbb897102010-12-26 20:15:01 +00001320
1321 // Constant float and double values can be handled as integer values if the
1322 // corresponding integer value is "byteable". An important case is 0.0.
1323 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1324 if (CFP->getType()->isFloatTy())
1325 V = ConstantExpr::getBitCast(CFP, Type::getInt32Ty(V->getContext()));
1326 if (CFP->getType()->isDoubleTy())
1327 V = ConstantExpr::getBitCast(CFP, Type::getInt64Ty(V->getContext()));
1328 // Don't handle long double formats, which have strange constraints.
1329 }
1330
1331 // We can handle constant integers that are power of two in size and a
1332 // multiple of 8 bits.
1333 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1334 unsigned Width = CI->getBitWidth();
1335 if (isPowerOf2_32(Width) && Width > 8) {
1336 // We can handle this value if the recursive binary decomposition is the
1337 // same at all levels.
1338 APInt Val = CI->getValue();
1339 APInt Val2;
1340 while (Val.getBitWidth() != 8) {
1341 unsigned NextWidth = Val.getBitWidth()/2;
1342 Val2 = Val.lshr(NextWidth);
1343 Val2 = Val2.trunc(Val.getBitWidth()/2);
1344 Val = Val.trunc(Val.getBitWidth()/2);
1345
1346 // If the top/bottom halves aren't the same, reject it.
1347 if (Val != Val2)
1348 return 0;
1349 }
1350 return ConstantInt::get(V->getContext(), Val);
1351 }
1352 }
1353
1354 // A ConstantArray is splatable if all its members are equal and also
1355 // splatable.
1356 if (ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1357 if (CA->getNumOperands() == 0)
1358 return 0;
1359
1360 Value *Val = isBytewiseValue(CA->getOperand(0));
1361 if (!Val)
1362 return 0;
1363
1364 for (unsigned I = 1, E = CA->getNumOperands(); I != E; ++I)
1365 if (CA->getOperand(I-1) != CA->getOperand(I))
1366 return 0;
1367
1368 return Val;
1369 }
1370
1371 // Conceptually, we could handle things like:
1372 // %a = zext i8 %X to i16
1373 // %b = shl i16 %a, 8
1374 // %c = or i16 %a, %b
1375 // but until there is an example that actually needs this, it doesn't seem
1376 // worth worrying about.
1377 return 0;
1378}
1379
1380
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001381// This is the recursive version of BuildSubAggregate. It takes a few different
1382// arguments. Idxs is the index within the nested struct From that we are
1383// looking at now (which is of type IndexedType). IdxSkip is the number of
1384// indices from Idxs that should be left out when inserting into the resulting
1385// struct. To is the result struct built so far, new insertvalue instructions
1386// build on that.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001387static Value *BuildSubAggregate(Value *From, Value* To, Type *IndexedType,
Dan Gohman7db949d2009-08-07 01:32:21 +00001388 SmallVector<unsigned, 10> &Idxs,
1389 unsigned IdxSkip,
Dan Gohman7db949d2009-08-07 01:32:21 +00001390 Instruction *InsertBefore) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001391 llvm::StructType *STy = llvm::dyn_cast<llvm::StructType>(IndexedType);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001392 if (STy) {
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001393 // Save the original To argument so we can modify it
1394 Value *OrigTo = To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001395 // General case, the type indexed by Idxs is a struct
1396 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1397 // Process each struct element recursively
1398 Idxs.push_back(i);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001399 Value *PrevTo = To;
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001400 To = BuildSubAggregate(From, To, STy->getElementType(i), Idxs, IdxSkip,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001401 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001402 Idxs.pop_back();
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001403 if (!To) {
1404 // Couldn't find any inserted value for this index? Cleanup
1405 while (PrevTo != OrigTo) {
1406 InsertValueInst* Del = cast<InsertValueInst>(PrevTo);
1407 PrevTo = Del->getAggregateOperand();
1408 Del->eraseFromParent();
1409 }
1410 // Stop processing elements
1411 break;
1412 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001413 }
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001414 // If we successfully found a value for each of our subaggregates
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001415 if (To)
1416 return To;
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001417 }
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001418 // Base case, the type indexed by SourceIdxs is not a struct, or not all of
1419 // the struct's elements had a value that was inserted directly. In the latter
1420 // case, perhaps we can't determine each of the subelements individually, but
1421 // we might be able to find the complete struct somewhere.
1422
1423 // Find the value that is at that particular spot
Jay Foadfc6d3a42011-07-13 10:26:04 +00001424 Value *V = FindInsertedValue(From, Idxs);
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001425
1426 if (!V)
1427 return NULL;
1428
1429 // Insert the value in the new (sub) aggregrate
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001430 return llvm::InsertValueInst::Create(To, V, makeArrayRef(Idxs).slice(IdxSkip),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001431 "tmp", InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001432}
1433
1434// This helper takes a nested struct and extracts a part of it (which is again a
1435// struct) into a new value. For example, given the struct:
1436// { a, { b, { c, d }, e } }
1437// and the indices "1, 1" this returns
1438// { c, d }.
1439//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001440// It does this by inserting an insertvalue for each element in the resulting
1441// struct, as opposed to just inserting a single struct. This will only work if
1442// each of the elements of the substruct are known (ie, inserted into From by an
1443// insertvalue instruction somewhere).
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001444//
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001445// All inserted insertvalue instructions are inserted before InsertBefore
Jay Foadfc6d3a42011-07-13 10:26:04 +00001446static Value *BuildSubAggregate(Value *From, ArrayRef<unsigned> idx_range,
Dan Gohman7db949d2009-08-07 01:32:21 +00001447 Instruction *InsertBefore) {
Matthijs Kooijman97728912008-06-16 13:28:31 +00001448 assert(InsertBefore && "Must have someplace to insert!");
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001449 Type *IndexedType = ExtractValueInst::getIndexedType(From->getType(),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001450 idx_range);
Owen Anderson9e9a0d52009-07-30 23:03:37 +00001451 Value *To = UndefValue::get(IndexedType);
Jay Foadfc6d3a42011-07-13 10:26:04 +00001452 SmallVector<unsigned, 10> Idxs(idx_range.begin(), idx_range.end());
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001453 unsigned IdxSkip = Idxs.size();
1454
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001455 return BuildSubAggregate(From, To, IndexedType, Idxs, IdxSkip, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001456}
1457
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001458/// FindInsertedValue - Given an aggregrate and an sequence of indices, see if
1459/// the scalar value indexed is already around as a register, for example if it
1460/// were inserted directly into the aggregrate.
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001461///
1462/// If InsertBefore is not null, this function will duplicate (modified)
1463/// insertvalues when a part of a nested struct is extracted.
Jay Foadfc6d3a42011-07-13 10:26:04 +00001464Value *llvm::FindInsertedValue(Value *V, ArrayRef<unsigned> idx_range,
1465 Instruction *InsertBefore) {
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001466 // Nothing to index? Just return V then (this is useful at the end of our
1467 // recursion)
Jay Foadfc6d3a42011-07-13 10:26:04 +00001468 if (idx_range.empty())
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001469 return V;
1470 // We have indices, so V should have an indexable type
Duncan Sands1df98592010-02-16 11:11:14 +00001471 assert((V->getType()->isStructTy() || V->getType()->isArrayTy())
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001472 && "Not looking at a struct or array?");
Jay Foadfc6d3a42011-07-13 10:26:04 +00001473 assert(ExtractValueInst::getIndexedType(V->getType(), idx_range)
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001474 && "Invalid indices for type?");
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001475 CompositeType *PTy = cast<CompositeType>(V->getType());
Owen Anderson76f600b2009-07-06 22:37:39 +00001476
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001477 if (isa<UndefValue>(V))
Owen Anderson9e9a0d52009-07-30 23:03:37 +00001478 return UndefValue::get(ExtractValueInst::getIndexedType(PTy,
Jay Foadfc6d3a42011-07-13 10:26:04 +00001479 idx_range));
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001480 else if (isa<ConstantAggregateZero>(V))
Owen Andersona7235ea2009-07-31 20:28:14 +00001481 return Constant::getNullValue(ExtractValueInst::getIndexedType(PTy,
Jay Foadfc6d3a42011-07-13 10:26:04 +00001482 idx_range));
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001483 else if (Constant *C = dyn_cast<Constant>(V)) {
1484 if (isa<ConstantArray>(C) || isa<ConstantStruct>(C))
1485 // Recursively process this constant
Jay Foadfc6d3a42011-07-13 10:26:04 +00001486 return FindInsertedValue(C->getOperand(idx_range[0]), idx_range.slice(1),
1487 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001488 } else if (InsertValueInst *I = dyn_cast<InsertValueInst>(V)) {
1489 // Loop the indices for the insertvalue instruction in parallel with the
1490 // requested indices
Jay Foadfc6d3a42011-07-13 10:26:04 +00001491 const unsigned *req_idx = idx_range.begin();
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001492 for (const unsigned *i = I->idx_begin(), *e = I->idx_end();
1493 i != e; ++i, ++req_idx) {
Jay Foadfc6d3a42011-07-13 10:26:04 +00001494 if (req_idx == idx_range.end()) {
Matthijs Kooijman97728912008-06-16 13:28:31 +00001495 if (InsertBefore)
Matthijs Kooijman0a9aaf42008-06-16 14:13:46 +00001496 // The requested index identifies a part of a nested aggregate. Handle
1497 // this specially. For example,
1498 // %A = insertvalue { i32, {i32, i32 } } undef, i32 10, 1, 0
1499 // %B = insertvalue { i32, {i32, i32 } } %A, i32 11, 1, 1
1500 // %C = extractvalue {i32, { i32, i32 } } %B, 1
1501 // This can be changed into
1502 // %A = insertvalue {i32, i32 } undef, i32 10, 0
1503 // %C = insertvalue {i32, i32 } %A, i32 11, 1
1504 // which allows the unused 0,0 element from the nested struct to be
1505 // removed.
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001506 return BuildSubAggregate(V, makeArrayRef(idx_range.begin(), req_idx),
Jay Foadfc6d3a42011-07-13 10:26:04 +00001507 InsertBefore);
Matthijs Kooijman97728912008-06-16 13:28:31 +00001508 else
1509 // We can't handle this without inserting insertvalues
1510 return 0;
Duncan Sands9954c762008-06-19 08:47:31 +00001511 }
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001512
1513 // This insert value inserts something else than what we are looking for.
1514 // See if the (aggregrate) value inserted into has the value we are
1515 // looking for, then.
1516 if (*req_idx != *i)
Jay Foadfc6d3a42011-07-13 10:26:04 +00001517 return FindInsertedValue(I->getAggregateOperand(), idx_range,
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001518 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001519 }
1520 // If we end up here, the indices of the insertvalue match with those
1521 // requested (though possibly only partially). Now we recursively look at
1522 // the inserted value, passing any remaining indices.
Jay Foadfc6d3a42011-07-13 10:26:04 +00001523 return FindInsertedValue(I->getInsertedValueOperand(),
Frits van Bommel39b5abf2011-07-18 12:00:32 +00001524 makeArrayRef(req_idx, idx_range.end()),
Nick Lewyckyae3d8022009-11-23 03:29:18 +00001525 InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001526 } else if (ExtractValueInst *I = dyn_cast<ExtractValueInst>(V)) {
1527 // If we're extracting a value from an aggregrate that was extracted from
1528 // something else, we can extract from that something else directly instead.
1529 // However, we will need to chain I's indices with the requested indices.
1530
1531 // Calculate the number of indices required
Jay Foadfc6d3a42011-07-13 10:26:04 +00001532 unsigned size = I->getNumIndices() + idx_range.size();
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001533 // Allocate some space to put the new indices in
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001534 SmallVector<unsigned, 5> Idxs;
1535 Idxs.reserve(size);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001536 // Add indices from the extract value instruction
Jay Foadfc6d3a42011-07-13 10:26:04 +00001537 Idxs.append(I->idx_begin(), I->idx_end());
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001538
1539 // Add requested indices
Jay Foadfc6d3a42011-07-13 10:26:04 +00001540 Idxs.append(idx_range.begin(), idx_range.end());
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001541
Matthijs Kooijman3faf9df2008-06-17 08:24:37 +00001542 assert(Idxs.size() == size
Matthijs Kooijman710eb232008-06-16 12:57:37 +00001543 && "Number of indices added not correct?");
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001544
Jay Foadfc6d3a42011-07-13 10:26:04 +00001545 return FindInsertedValue(I->getAggregateOperand(), Idxs, InsertBefore);
Matthijs Kooijmanb23d5ad2008-06-16 12:48:21 +00001546 }
1547 // Otherwise, we don't know (such as, extracting from a function return value
1548 // or load instruction)
1549 return 0;
1550}
Evan Cheng0ff39b32008-06-30 07:31:25 +00001551
Chris Lattnered58a6f2010-11-30 22:25:26 +00001552/// GetPointerBaseWithConstantOffset - Analyze the specified pointer to see if
1553/// it can be expressed as a base pointer plus a constant offset. Return the
1554/// base and offset to the caller.
1555Value *llvm::GetPointerBaseWithConstantOffset(Value *Ptr, int64_t &Offset,
1556 const TargetData &TD) {
1557 Operator *PtrOp = dyn_cast<Operator>(Ptr);
1558 if (PtrOp == 0) return Ptr;
1559
1560 // Just look through bitcasts.
1561 if (PtrOp->getOpcode() == Instruction::BitCast)
1562 return GetPointerBaseWithConstantOffset(PtrOp->getOperand(0), Offset, TD);
1563
1564 // If this is a GEP with constant indices, we can look through it.
1565 GEPOperator *GEP = dyn_cast<GEPOperator>(PtrOp);
1566 if (GEP == 0 || !GEP->hasAllConstantIndices()) return Ptr;
1567
1568 gep_type_iterator GTI = gep_type_begin(GEP);
1569 for (User::op_iterator I = GEP->idx_begin(), E = GEP->idx_end(); I != E;
1570 ++I, ++GTI) {
1571 ConstantInt *OpC = cast<ConstantInt>(*I);
1572 if (OpC->isZero()) continue;
1573
1574 // Handle a struct and array indices which add their offset to the pointer.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001575 if (StructType *STy = dyn_cast<StructType>(*GTI)) {
Chris Lattnered58a6f2010-11-30 22:25:26 +00001576 Offset += TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
1577 } else {
1578 uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
1579 Offset += OpC->getSExtValue()*Size;
1580 }
1581 }
1582
1583 // Re-sign extend from the pointer size if needed to get overflow edge cases
1584 // right.
1585 unsigned PtrSize = TD.getPointerSizeInBits();
1586 if (PtrSize < 64)
1587 Offset = (Offset << (64-PtrSize)) >> (64-PtrSize);
1588
1589 return GetPointerBaseWithConstantOffset(GEP->getPointerOperand(), Offset, TD);
1590}
1591
1592
Evan Cheng0ff39b32008-06-30 07:31:25 +00001593/// GetConstantStringInfo - This function computes the length of a
1594/// null-terminated C string pointed to by V. If successful, it returns true
1595/// and returns the string in Str. If unsuccessful, it returns false.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001596bool llvm::GetConstantStringInfo(const Value *V, std::string &Str,
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001597 uint64_t Offset, bool StopAtNul) {
Bill Wendling0582ae92009-03-13 04:39:26 +00001598 // If V is NULL then return false;
1599 if (V == NULL) return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001600
1601 // Look through bitcast instructions.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001602 if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
Bill Wendling0582ae92009-03-13 04:39:26 +00001603 return GetConstantStringInfo(BCI->getOperand(0), Str, Offset, StopAtNul);
1604
Evan Cheng0ff39b32008-06-30 07:31:25 +00001605 // If the value is not a GEP instruction nor a constant expression with a
1606 // GEP instruction, then return false because ConstantArray can't occur
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001607 // any other way.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001608 const User *GEP = 0;
1609 if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001610 GEP = GEPI;
Dan Gohman0a60fa32010-04-14 22:20:45 +00001611 } else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001612 if (CE->getOpcode() == Instruction::BitCast)
Bill Wendling0582ae92009-03-13 04:39:26 +00001613 return GetConstantStringInfo(CE->getOperand(0), Str, Offset, StopAtNul);
1614 if (CE->getOpcode() != Instruction::GetElementPtr)
1615 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001616 GEP = CE;
1617 }
1618
1619 if (GEP) {
1620 // Make sure the GEP has exactly three arguments.
Bill Wendling0582ae92009-03-13 04:39:26 +00001621 if (GEP->getNumOperands() != 3)
1622 return false;
1623
Evan Cheng0ff39b32008-06-30 07:31:25 +00001624 // Make sure the index-ee is a pointer to array of i8.
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001625 PointerType *PT = cast<PointerType>(GEP->getOperand(0)->getType());
1626 ArrayType *AT = dyn_cast<ArrayType>(PT->getElementType());
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001627 if (AT == 0 || !AT->getElementType()->isIntegerTy(8))
Bill Wendling0582ae92009-03-13 04:39:26 +00001628 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001629
1630 // Check to make sure that the first operand of the GEP is an integer and
1631 // has value 0 so that we are sure we're indexing into the initializer.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001632 const ConstantInt *FirstIdx = dyn_cast<ConstantInt>(GEP->getOperand(1));
Bill Wendling0582ae92009-03-13 04:39:26 +00001633 if (FirstIdx == 0 || !FirstIdx->isZero())
1634 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001635
1636 // If the second index isn't a ConstantInt, then this is a variable index
1637 // into the array. If this occurs, we can't say anything meaningful about
1638 // the string.
1639 uint64_t StartIdx = 0;
Dan Gohman0a60fa32010-04-14 22:20:45 +00001640 if (const ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
Evan Cheng0ff39b32008-06-30 07:31:25 +00001641 StartIdx = CI->getZExtValue();
Bill Wendling0582ae92009-03-13 04:39:26 +00001642 else
1643 return false;
1644 return GetConstantStringInfo(GEP->getOperand(0), Str, StartIdx+Offset,
Evan Cheng0ff39b32008-06-30 07:31:25 +00001645 StopAtNul);
1646 }
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001647
Evan Cheng0ff39b32008-06-30 07:31:25 +00001648 // The GEP instruction, constant or instruction, must reference a global
1649 // variable that is a constant and is initialized. The referenced constant
1650 // initializer is the array that we'll use for optimization.
Dan Gohman0a60fa32010-04-14 22:20:45 +00001651 const GlobalVariable* GV = dyn_cast<GlobalVariable>(V);
Dan Gohman82555732009-08-19 18:20:44 +00001652 if (!GV || !GV->isConstant() || !GV->hasDefinitiveInitializer())
Bill Wendling0582ae92009-03-13 04:39:26 +00001653 return false;
Dan Gohman0a60fa32010-04-14 22:20:45 +00001654 const Constant *GlobalInit = GV->getInitializer();
Evan Cheng0ff39b32008-06-30 07:31:25 +00001655
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001656 // Handle the all-zeros case
1657 if (GlobalInit->isNullValue()) {
Evan Cheng0ff39b32008-06-30 07:31:25 +00001658 // This is a degenerate case. The initializer is constant zero so the
1659 // length of the string must be zero.
Bill Wendling0582ae92009-03-13 04:39:26 +00001660 Str.clear();
1661 return true;
1662 }
Evan Cheng0ff39b32008-06-30 07:31:25 +00001663
1664 // Must be a Constant Array
Dan Gohman0a60fa32010-04-14 22:20:45 +00001665 const ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
Duncan Sandsb0bc6c32010-02-15 16:12:20 +00001666 if (Array == 0 || !Array->getType()->getElementType()->isIntegerTy(8))
Bill Wendling0582ae92009-03-13 04:39:26 +00001667 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001668
1669 // Get the number of elements in the array
1670 uint64_t NumElts = Array->getType()->getNumElements();
1671
Bill Wendling0582ae92009-03-13 04:39:26 +00001672 if (Offset > NumElts)
1673 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001674
1675 // Traverse the constant array from 'Offset' which is the place the GEP refers
1676 // to in the array.
Bill Wendling0582ae92009-03-13 04:39:26 +00001677 Str.reserve(NumElts-Offset);
Evan Cheng0ff39b32008-06-30 07:31:25 +00001678 for (unsigned i = Offset; i != NumElts; ++i) {
Dan Gohman0a60fa32010-04-14 22:20:45 +00001679 const Constant *Elt = Array->getOperand(i);
1680 const ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
Bill Wendling0582ae92009-03-13 04:39:26 +00001681 if (!CI) // This array isn't suitable, non-int initializer.
1682 return false;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001683 if (StopAtNul && CI->isZero())
Bill Wendling0582ae92009-03-13 04:39:26 +00001684 return true; // we found end of string, success!
1685 Str += (char)CI->getZExtValue();
Evan Cheng0ff39b32008-06-30 07:31:25 +00001686 }
Bill Wendling0582ae92009-03-13 04:39:26 +00001687
Evan Cheng0ff39b32008-06-30 07:31:25 +00001688 // The array isn't null terminated, but maybe this is a memcpy, not a strcpy.
Bill Wendling0582ae92009-03-13 04:39:26 +00001689 return true;
Evan Cheng0ff39b32008-06-30 07:31:25 +00001690}
Eric Christopher25ec4832010-03-05 06:58:57 +00001691
1692// These next two are very similar to the above, but also look through PHI
1693// nodes.
1694// TODO: See if we can integrate these two together.
1695
1696/// GetStringLengthH - If we can compute the length of the string pointed to by
1697/// the specified pointer, return 'len+1'. If we can't, return 0.
1698static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
1699 // Look through noop bitcast instructions.
1700 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
1701 return GetStringLengthH(BCI->getOperand(0), PHIs);
1702
1703 // If this is a PHI node, there are two cases: either we have already seen it
1704 // or we haven't.
1705 if (PHINode *PN = dyn_cast<PHINode>(V)) {
1706 if (!PHIs.insert(PN))
1707 return ~0ULL; // already in the set.
1708
1709 // If it was new, see if all the input strings are the same length.
1710 uint64_t LenSoFar = ~0ULL;
1711 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1712 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
1713 if (Len == 0) return 0; // Unknown length -> unknown.
1714
1715 if (Len == ~0ULL) continue;
1716
1717 if (Len != LenSoFar && LenSoFar != ~0ULL)
1718 return 0; // Disagree -> unknown.
1719 LenSoFar = Len;
1720 }
1721
1722 // Success, all agree.
1723 return LenSoFar;
1724 }
1725
1726 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
1727 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
1728 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
1729 if (Len1 == 0) return 0;
1730 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
1731 if (Len2 == 0) return 0;
1732 if (Len1 == ~0ULL) return Len2;
1733 if (Len2 == ~0ULL) return Len1;
1734 if (Len1 != Len2) return 0;
1735 return Len1;
1736 }
1737
Nick Lewycky0cd0fee2011-10-20 00:34:35 +00001738 // As a special-case, "@string = constant i8 0" is also a string with zero
1739 // length, not wrapped in a bitcast or GEP.
1740 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
1741 if (GV->isConstant() && GV->hasDefinitiveInitializer())
1742 if (GV->getInitializer()->isNullValue()) return 1;
1743 return 0;
1744 }
1745
Eric Christopher25ec4832010-03-05 06:58:57 +00001746 // If the value is not a GEP instruction nor a constant expression with a
1747 // GEP instruction, then return unknown.
1748 User *GEP = 0;
1749 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
1750 GEP = GEPI;
1751 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1752 if (CE->getOpcode() != Instruction::GetElementPtr)
1753 return 0;
1754 GEP = CE;
1755 } else {
1756 return 0;
1757 }
1758
1759 // Make sure the GEP has exactly three arguments.
1760 if (GEP->getNumOperands() != 3)
1761 return 0;
1762
1763 // Check to make sure that the first operand of the GEP is an integer and
1764 // has value 0 so that we are sure we're indexing into the initializer.
1765 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
1766 if (!Idx->isZero())
1767 return 0;
1768 } else
1769 return 0;
1770
1771 // If the second index isn't a ConstantInt, then this is a variable index
1772 // into the array. If this occurs, we can't say anything meaningful about
1773 // the string.
1774 uint64_t StartIdx = 0;
1775 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
1776 StartIdx = CI->getZExtValue();
1777 else
1778 return 0;
1779
1780 // The GEP instruction, constant or instruction, must reference a global
1781 // variable that is a constant and is initialized. The referenced constant
1782 // initializer is the array that we'll use for optimization.
1783 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
1784 if (!GV || !GV->isConstant() || !GV->hasInitializer() ||
1785 GV->mayBeOverridden())
1786 return 0;
1787 Constant *GlobalInit = GV->getInitializer();
1788
1789 // Handle the ConstantAggregateZero case, which is a degenerate case. The
1790 // initializer is constant zero so the length of the string must be zero.
1791 if (isa<ConstantAggregateZero>(GlobalInit))
1792 return 1; // Len = 0 offset by 1.
1793
1794 // Must be a Constant Array
1795 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
1796 if (!Array || !Array->getType()->getElementType()->isIntegerTy(8))
1797 return false;
1798
1799 // Get the number of elements in the array
1800 uint64_t NumElts = Array->getType()->getNumElements();
1801
1802 // Traverse the constant array from StartIdx (derived above) which is
1803 // the place the GEP refers to in the array.
1804 for (unsigned i = StartIdx; i != NumElts; ++i) {
1805 Constant *Elt = Array->getOperand(i);
1806 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
1807 if (!CI) // This array isn't suitable, non-int initializer.
1808 return 0;
1809 if (CI->isZero())
1810 return i-StartIdx+1; // We found end of string, success!
1811 }
1812
1813 return 0; // The array isn't null terminated, conservatively return 'unknown'.
1814}
1815
1816/// GetStringLength - If we can compute the length of the string pointed to by
1817/// the specified pointer, return 'len+1'. If we can't, return 0.
1818uint64_t llvm::GetStringLength(Value *V) {
1819 if (!V->getType()->isPointerTy()) return 0;
1820
1821 SmallPtrSet<PHINode*, 32> PHIs;
1822 uint64_t Len = GetStringLengthH(V, PHIs);
1823 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
1824 // an empty string as a length.
1825 return Len == ~0ULL ? 1 : Len;
1826}
Dan Gohman5034dd32010-12-15 20:02:24 +00001827
Dan Gohmanbd1801b2011-01-24 18:53:32 +00001828Value *
1829llvm::GetUnderlyingObject(Value *V, const TargetData *TD, unsigned MaxLookup) {
Dan Gohman5034dd32010-12-15 20:02:24 +00001830 if (!V->getType()->isPointerTy())
1831 return V;
1832 for (unsigned Count = 0; MaxLookup == 0 || Count < MaxLookup; ++Count) {
1833 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
1834 V = GEP->getPointerOperand();
1835 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
1836 V = cast<Operator>(V)->getOperand(0);
1837 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
1838 if (GA->mayBeOverridden())
1839 return V;
1840 V = GA->getAliasee();
1841 } else {
Dan Gohmanc01895c2010-12-15 20:49:55 +00001842 // See if InstructionSimplify knows any relevant tricks.
1843 if (Instruction *I = dyn_cast<Instruction>(V))
Chris Lattner7a2bdde2011-04-15 05:18:47 +00001844 // TODO: Acquire a DominatorTree and use it.
Dan Gohmanbd1801b2011-01-24 18:53:32 +00001845 if (Value *Simplified = SimplifyInstruction(I, TD, 0)) {
Dan Gohmanc01895c2010-12-15 20:49:55 +00001846 V = Simplified;
1847 continue;
1848 }
1849
Dan Gohman5034dd32010-12-15 20:02:24 +00001850 return V;
1851 }
1852 assert(V->getType()->isPointerTy() && "Unexpected operand type!");
1853 }
1854 return V;
1855}
Nick Lewycky99e0b2a2011-06-27 04:20:45 +00001856
1857/// onlyUsedByLifetimeMarkers - Return true if the only users of this pointer
1858/// are lifetime markers.
1859///
1860bool llvm::onlyUsedByLifetimeMarkers(const Value *V) {
1861 for (Value::const_use_iterator UI = V->use_begin(), UE = V->use_end();
1862 UI != UE; ++UI) {
1863 const IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI);
1864 if (!II) return false;
1865
1866 if (II->getIntrinsicID() != Intrinsic::lifetime_start &&
1867 II->getIntrinsicID() != Intrinsic::lifetime_end)
1868 return false;
1869 }
1870 return true;
1871}