blob: 6c36ebc2790d4fbb611b7537270b19f7e0ed9edf [file] [log] [blame]
Chris Lattnerc6334b92010-01-05 06:03:12 +00001//===- InstCombineLoadStoreAlloca.cpp -------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for load, store and alloca.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15//#include "llvm/IntrinsicInst.h"
16//#include "llvm/Target/TargetData.h"
17//#include "llvm/Transforms/Utils/BasicBlockUtils.h"
18//#include "llvm/Transforms/Utils/Local.h"
19//#include "llvm/ADT/Statistic.h"
20#include "llvm/Support/PatternMatch.h"
21using namespace llvm;
22using namespace PatternMatch;
23
24/// MatchSelectPattern - Pattern match integer [SU]MIN, [SU]MAX, and ABS idioms,
25/// returning the kind and providing the out parameter results if we
26/// successfully match.
27static SelectPatternFlavor
28MatchSelectPattern(Value *V, Value *&LHS, Value *&RHS) {
29 SelectInst *SI = dyn_cast<SelectInst>(V);
30 if (SI == 0) return SPF_UNKNOWN;
31
32 ICmpInst *ICI = dyn_cast<ICmpInst>(SI->getCondition());
33 if (ICI == 0) return SPF_UNKNOWN;
34
35 LHS = ICI->getOperand(0);
36 RHS = ICI->getOperand(1);
37
38 // (icmp X, Y) ? X : Y
39 if (SI->getTrueValue() == ICI->getOperand(0) &&
40 SI->getFalseValue() == ICI->getOperand(1)) {
41 switch (ICI->getPredicate()) {
42 default: return SPF_UNKNOWN; // Equality.
43 case ICmpInst::ICMP_UGT:
44 case ICmpInst::ICMP_UGE: return SPF_UMAX;
45 case ICmpInst::ICMP_SGT:
46 case ICmpInst::ICMP_SGE: return SPF_SMAX;
47 case ICmpInst::ICMP_ULT:
48 case ICmpInst::ICMP_ULE: return SPF_UMIN;
49 case ICmpInst::ICMP_SLT:
50 case ICmpInst::ICMP_SLE: return SPF_SMIN;
51 }
52 }
53
54 // (icmp X, Y) ? Y : X
55 if (SI->getTrueValue() == ICI->getOperand(1) &&
56 SI->getFalseValue() == ICI->getOperand(0)) {
57 switch (ICI->getPredicate()) {
58 default: return SPF_UNKNOWN; // Equality.
59 case ICmpInst::ICMP_UGT:
60 case ICmpInst::ICMP_UGE: return SPF_UMIN;
61 case ICmpInst::ICMP_SGT:
62 case ICmpInst::ICMP_SGE: return SPF_SMIN;
63 case ICmpInst::ICMP_ULT:
64 case ICmpInst::ICMP_ULE: return SPF_UMAX;
65 case ICmpInst::ICMP_SLT:
66 case ICmpInst::ICMP_SLE: return SPF_SMAX;
67 }
68 }
69
70 // TODO: (X > 4) ? X : 5 --> (X >= 5) ? X : 5 --> MAX(X, 5)
71
72 return SPF_UNKNOWN;
73}
74
75
76/// GetSelectFoldableOperands - We want to turn code that looks like this:
77/// %C = or %A, %B
78/// %D = select %cond, %C, %A
79/// into:
80/// %C = select %cond, %B, 0
81/// %D = or %A, %C
82///
83/// Assuming that the specified instruction is an operand to the select, return
84/// a bitmask indicating which operands of this instruction are foldable if they
85/// equal the other incoming value of the select.
86///
87static unsigned GetSelectFoldableOperands(Instruction *I) {
88 switch (I->getOpcode()) {
89 case Instruction::Add:
90 case Instruction::Mul:
91 case Instruction::And:
92 case Instruction::Or:
93 case Instruction::Xor:
94 return 3; // Can fold through either operand.
95 case Instruction::Sub: // Can only fold on the amount subtracted.
96 case Instruction::Shl: // Can only fold on the shift amount.
97 case Instruction::LShr:
98 case Instruction::AShr:
99 return 1;
100 default:
101 return 0; // Cannot fold
102 }
103}
104
105/// GetSelectFoldableConstant - For the same transformation as the previous
106/// function, return the identity constant that goes into the select.
107static Constant *GetSelectFoldableConstant(Instruction *I) {
108 switch (I->getOpcode()) {
109 default: llvm_unreachable("This cannot happen!");
110 case Instruction::Add:
111 case Instruction::Sub:
112 case Instruction::Or:
113 case Instruction::Xor:
114 case Instruction::Shl:
115 case Instruction::LShr:
116 case Instruction::AShr:
117 return Constant::getNullValue(I->getType());
118 case Instruction::And:
119 return Constant::getAllOnesValue(I->getType());
120 case Instruction::Mul:
121 return ConstantInt::get(I->getType(), 1);
122 }
123}
124
125/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
126/// have the same opcode and only one use each. Try to simplify this.
127Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
128 Instruction *FI) {
129 if (TI->getNumOperands() == 1) {
130 // If this is a non-volatile load or a cast from the same type,
131 // merge.
132 if (TI->isCast()) {
133 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
134 return 0;
135 } else {
136 return 0; // unknown unary op.
137 }
138
139 // Fold this by inserting a select from the input values.
140 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), TI->getOperand(0),
141 FI->getOperand(0), SI.getName()+".v");
142 InsertNewInstBefore(NewSI, SI);
143 return CastInst::Create(Instruction::CastOps(TI->getOpcode()), NewSI,
144 TI->getType());
145 }
146
147 // Only handle binary operators here.
148 if (!isa<BinaryOperator>(TI))
149 return 0;
150
151 // Figure out if the operations have any operands in common.
152 Value *MatchOp, *OtherOpT, *OtherOpF;
153 bool MatchIsOpZero;
154 if (TI->getOperand(0) == FI->getOperand(0)) {
155 MatchOp = TI->getOperand(0);
156 OtherOpT = TI->getOperand(1);
157 OtherOpF = FI->getOperand(1);
158 MatchIsOpZero = true;
159 } else if (TI->getOperand(1) == FI->getOperand(1)) {
160 MatchOp = TI->getOperand(1);
161 OtherOpT = TI->getOperand(0);
162 OtherOpF = FI->getOperand(0);
163 MatchIsOpZero = false;
164 } else if (!TI->isCommutative()) {
165 return 0;
166 } else if (TI->getOperand(0) == FI->getOperand(1)) {
167 MatchOp = TI->getOperand(0);
168 OtherOpT = TI->getOperand(1);
169 OtherOpF = FI->getOperand(0);
170 MatchIsOpZero = true;
171 } else if (TI->getOperand(1) == FI->getOperand(0)) {
172 MatchOp = TI->getOperand(1);
173 OtherOpT = TI->getOperand(0);
174 OtherOpF = FI->getOperand(1);
175 MatchIsOpZero = true;
176 } else {
177 return 0;
178 }
179
180 // If we reach here, they do have operations in common.
181 SelectInst *NewSI = SelectInst::Create(SI.getCondition(), OtherOpT,
182 OtherOpF, SI.getName()+".v");
183 InsertNewInstBefore(NewSI, SI);
184
185 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
186 if (MatchIsOpZero)
187 return BinaryOperator::Create(BO->getOpcode(), MatchOp, NewSI);
188 else
189 return BinaryOperator::Create(BO->getOpcode(), NewSI, MatchOp);
190 }
191 llvm_unreachable("Shouldn't get here");
192 return 0;
193}
194
195static bool isSelect01(Constant *C1, Constant *C2) {
196 ConstantInt *C1I = dyn_cast<ConstantInt>(C1);
197 if (!C1I)
198 return false;
199 ConstantInt *C2I = dyn_cast<ConstantInt>(C2);
200 if (!C2I)
201 return false;
202 return (C1I->isZero() || C1I->isOne()) && (C2I->isZero() || C2I->isOne());
203}
204
205/// FoldSelectIntoOp - Try fold the select into one of the operands to
206/// facilitate further optimization.
207Instruction *InstCombiner::FoldSelectIntoOp(SelectInst &SI, Value *TrueVal,
208 Value *FalseVal) {
209 // See the comment above GetSelectFoldableOperands for a description of the
210 // transformation we are doing here.
211 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal)) {
212 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
213 !isa<Constant>(FalseVal)) {
214 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
215 unsigned OpToFold = 0;
216 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
217 OpToFold = 1;
218 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
219 OpToFold = 2;
220 }
221
222 if (OpToFold) {
223 Constant *C = GetSelectFoldableConstant(TVI);
224 Value *OOp = TVI->getOperand(2-OpToFold);
225 // Avoid creating select between 2 constants unless it's selecting
226 // between 0 and 1.
227 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
228 Instruction *NewSel = SelectInst::Create(SI.getCondition(), OOp, C);
229 InsertNewInstBefore(NewSel, SI);
230 NewSel->takeName(TVI);
231 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
232 return BinaryOperator::Create(BO->getOpcode(), FalseVal, NewSel);
233 llvm_unreachable("Unknown instruction!!");
234 }
235 }
236 }
237 }
238 }
239
240 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal)) {
241 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
242 !isa<Constant>(TrueVal)) {
243 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
244 unsigned OpToFold = 0;
245 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
246 OpToFold = 1;
247 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
248 OpToFold = 2;
249 }
250
251 if (OpToFold) {
252 Constant *C = GetSelectFoldableConstant(FVI);
253 Value *OOp = FVI->getOperand(2-OpToFold);
254 // Avoid creating select between 2 constants unless it's selecting
255 // between 0 and 1.
256 if (!isa<Constant>(OOp) || isSelect01(C, cast<Constant>(OOp))) {
257 Instruction *NewSel = SelectInst::Create(SI.getCondition(), C, OOp);
258 InsertNewInstBefore(NewSel, SI);
259 NewSel->takeName(FVI);
260 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
261 return BinaryOperator::Create(BO->getOpcode(), TrueVal, NewSel);
262 llvm_unreachable("Unknown instruction!!");
263 }
264 }
265 }
266 }
267 }
268
269 return 0;
270}
271
272/// visitSelectInstWithICmp - Visit a SelectInst that has an
273/// ICmpInst as its first operand.
274///
275Instruction *InstCombiner::visitSelectInstWithICmp(SelectInst &SI,
276 ICmpInst *ICI) {
277 bool Changed = false;
278 ICmpInst::Predicate Pred = ICI->getPredicate();
279 Value *CmpLHS = ICI->getOperand(0);
280 Value *CmpRHS = ICI->getOperand(1);
281 Value *TrueVal = SI.getTrueValue();
282 Value *FalseVal = SI.getFalseValue();
283
284 // Check cases where the comparison is with a constant that
285 // can be adjusted to fit the min/max idiom. We may edit ICI in
286 // place here, so make sure the select is the only user.
287 if (ICI->hasOneUse())
288 if (ConstantInt *CI = dyn_cast<ConstantInt>(CmpRHS)) {
289 switch (Pred) {
290 default: break;
291 case ICmpInst::ICMP_ULT:
292 case ICmpInst::ICMP_SLT: {
293 // X < MIN ? T : F --> F
294 if (CI->isMinValue(Pred == ICmpInst::ICMP_SLT))
295 return ReplaceInstUsesWith(SI, FalseVal);
296 // X < C ? X : C-1 --> X > C-1 ? C-1 : X
297 Constant *AdjustedRHS =
298 ConstantInt::get(CI->getContext(), CI->getValue()-1);
299 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
300 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
301 Pred = ICmpInst::getSwappedPredicate(Pred);
302 CmpRHS = AdjustedRHS;
303 std::swap(FalseVal, TrueVal);
304 ICI->setPredicate(Pred);
305 ICI->setOperand(1, CmpRHS);
306 SI.setOperand(1, TrueVal);
307 SI.setOperand(2, FalseVal);
308 Changed = true;
309 }
310 break;
311 }
312 case ICmpInst::ICMP_UGT:
313 case ICmpInst::ICMP_SGT: {
314 // X > MAX ? T : F --> F
315 if (CI->isMaxValue(Pred == ICmpInst::ICMP_SGT))
316 return ReplaceInstUsesWith(SI, FalseVal);
317 // X > C ? X : C+1 --> X < C+1 ? C+1 : X
318 Constant *AdjustedRHS =
319 ConstantInt::get(CI->getContext(), CI->getValue()+1);
320 if ((CmpLHS == TrueVal && AdjustedRHS == FalseVal) ||
321 (CmpLHS == FalseVal && AdjustedRHS == TrueVal)) {
322 Pred = ICmpInst::getSwappedPredicate(Pred);
323 CmpRHS = AdjustedRHS;
324 std::swap(FalseVal, TrueVal);
325 ICI->setPredicate(Pred);
326 ICI->setOperand(1, CmpRHS);
327 SI.setOperand(1, TrueVal);
328 SI.setOperand(2, FalseVal);
329 Changed = true;
330 }
331 break;
332 }
333 }
334
335 // (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed
336 // (x >s -1) ? -1 : 0 -> ashr x, 31 -> all ones if not signed
337 CmpInst::Predicate Pred = CmpInst::BAD_ICMP_PREDICATE;
338 if (match(TrueVal, m_ConstantInt<-1>()) &&
339 match(FalseVal, m_ConstantInt<0>()))
340 Pred = ICI->getPredicate();
341 else if (match(TrueVal, m_ConstantInt<0>()) &&
342 match(FalseVal, m_ConstantInt<-1>()))
343 Pred = CmpInst::getInversePredicate(ICI->getPredicate());
344
345 if (Pred != CmpInst::BAD_ICMP_PREDICATE) {
346 // If we are just checking for a icmp eq of a single bit and zext'ing it
347 // to an integer, then shift the bit to the appropriate place and then
348 // cast to integer to avoid the comparison.
349 const APInt &Op1CV = CI->getValue();
350
351 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
352 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
353 if ((Pred == ICmpInst::ICMP_SLT && Op1CV == 0) ||
354 (Pred == ICmpInst::ICMP_SGT && Op1CV.isAllOnesValue())) {
355 Value *In = ICI->getOperand(0);
356 Value *Sh = ConstantInt::get(In->getType(),
357 In->getType()->getScalarSizeInBits()-1);
358 In = InsertNewInstBefore(BinaryOperator::CreateAShr(In, Sh,
359 In->getName()+".lobit"),
360 *ICI);
361 if (In->getType() != SI.getType())
362 In = CastInst::CreateIntegerCast(In, SI.getType(),
363 true/*SExt*/, "tmp", ICI);
364
365 if (Pred == ICmpInst::ICMP_SGT)
366 In = InsertNewInstBefore(BinaryOperator::CreateNot(In,
367 In->getName()+".not"), *ICI);
368
369 return ReplaceInstUsesWith(SI, In);
370 }
371 }
372 }
373
374 if (CmpLHS == TrueVal && CmpRHS == FalseVal) {
375 // Transform (X == Y) ? X : Y -> Y
376 if (Pred == ICmpInst::ICMP_EQ)
377 return ReplaceInstUsesWith(SI, FalseVal);
378 // Transform (X != Y) ? X : Y -> X
379 if (Pred == ICmpInst::ICMP_NE)
380 return ReplaceInstUsesWith(SI, TrueVal);
381 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
382
383 } else if (CmpLHS == FalseVal && CmpRHS == TrueVal) {
384 // Transform (X == Y) ? Y : X -> X
385 if (Pred == ICmpInst::ICMP_EQ)
386 return ReplaceInstUsesWith(SI, FalseVal);
387 // Transform (X != Y) ? Y : X -> Y
388 if (Pred == ICmpInst::ICMP_NE)
389 return ReplaceInstUsesWith(SI, TrueVal);
390 /// NOTE: if we wanted to, this is where to detect integer MIN/MAX
391 }
392 return Changed ? &SI : 0;
393}
394
395
396/// CanSelectOperandBeMappingIntoPredBlock - SI is a select whose condition is a
397/// PHI node (but the two may be in different blocks). See if the true/false
398/// values (V) are live in all of the predecessor blocks of the PHI. For
399/// example, cases like this cannot be mapped:
400///
401/// X = phi [ C1, BB1], [C2, BB2]
402/// Y = add
403/// Z = select X, Y, 0
404///
405/// because Y is not live in BB1/BB2.
406///
407static bool CanSelectOperandBeMappingIntoPredBlock(const Value *V,
408 const SelectInst &SI) {
409 // If the value is a non-instruction value like a constant or argument, it
410 // can always be mapped.
411 const Instruction *I = dyn_cast<Instruction>(V);
412 if (I == 0) return true;
413
414 // If V is a PHI node defined in the same block as the condition PHI, we can
415 // map the arguments.
416 const PHINode *CondPHI = cast<PHINode>(SI.getCondition());
417
418 if (const PHINode *VP = dyn_cast<PHINode>(I))
419 if (VP->getParent() == CondPHI->getParent())
420 return true;
421
422 // Otherwise, if the PHI and select are defined in the same block and if V is
423 // defined in a different block, then we can transform it.
424 if (SI.getParent() == CondPHI->getParent() &&
425 I->getParent() != CondPHI->getParent())
426 return true;
427
428 // Otherwise we have a 'hard' case and we can't tell without doing more
429 // detailed dominator based analysis, punt.
430 return false;
431}
432
433/// FoldSPFofSPF - We have an SPF (e.g. a min or max) of an SPF of the form:
434/// SPF2(SPF1(A, B), C)
435Instruction *InstCombiner::FoldSPFofSPF(Instruction *Inner,
436 SelectPatternFlavor SPF1,
437 Value *A, Value *B,
438 Instruction &Outer,
439 SelectPatternFlavor SPF2, Value *C) {
440 if (C == A || C == B) {
441 // MAX(MAX(A, B), B) -> MAX(A, B)
442 // MIN(MIN(a, b), a) -> MIN(a, b)
443 if (SPF1 == SPF2)
444 return ReplaceInstUsesWith(Outer, Inner);
445
446 // MAX(MIN(a, b), a) -> a
447 // MIN(MAX(a, b), a) -> a
448 if ((SPF1 == SPF_SMIN && SPF2 == SPF_SMAX) ||
449 (SPF1 == SPF_SMAX && SPF2 == SPF_SMIN) ||
450 (SPF1 == SPF_UMIN && SPF2 == SPF_UMAX) ||
451 (SPF1 == SPF_UMAX && SPF2 == SPF_UMIN))
452 return ReplaceInstUsesWith(Outer, C);
453 }
454
455 // TODO: MIN(MIN(A, 23), 97)
456 return 0;
457}
458
459
460
461
462Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
463 Value *CondVal = SI.getCondition();
464 Value *TrueVal = SI.getTrueValue();
465 Value *FalseVal = SI.getFalseValue();
466
467 // select true, X, Y -> X
468 // select false, X, Y -> Y
469 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
470 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
471
472 // select C, X, X -> X
473 if (TrueVal == FalseVal)
474 return ReplaceInstUsesWith(SI, TrueVal);
475
476 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
477 return ReplaceInstUsesWith(SI, FalseVal);
478 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
479 return ReplaceInstUsesWith(SI, TrueVal);
480 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
481 if (isa<Constant>(TrueVal))
482 return ReplaceInstUsesWith(SI, TrueVal);
483 else
484 return ReplaceInstUsesWith(SI, FalseVal);
485 }
486
487 if (SI.getType() == Type::getInt1Ty(SI.getContext())) {
488 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
489 if (C->getZExtValue()) {
490 // Change: A = select B, true, C --> A = or B, C
491 return BinaryOperator::CreateOr(CondVal, FalseVal);
492 } else {
493 // Change: A = select B, false, C --> A = and !B, C
494 Value *NotCond =
495 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
496 "not."+CondVal->getName()), SI);
497 return BinaryOperator::CreateAnd(NotCond, FalseVal);
498 }
499 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
500 if (C->getZExtValue() == false) {
501 // Change: A = select B, C, false --> A = and B, C
502 return BinaryOperator::CreateAnd(CondVal, TrueVal);
503 } else {
504 // Change: A = select B, C, true --> A = or !B, C
505 Value *NotCond =
506 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
507 "not."+CondVal->getName()), SI);
508 return BinaryOperator::CreateOr(NotCond, TrueVal);
509 }
510 }
511
512 // select a, b, a -> a&b
513 // select a, a, b -> a|b
514 if (CondVal == TrueVal)
515 return BinaryOperator::CreateOr(CondVal, FalseVal);
516 else if (CondVal == FalseVal)
517 return BinaryOperator::CreateAnd(CondVal, TrueVal);
518 }
519
520 // Selecting between two integer constants?
521 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
522 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
523 // select C, 1, 0 -> zext C to int
524 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
525 return CastInst::Create(Instruction::ZExt, CondVal, SI.getType());
526 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
527 // select C, 0, 1 -> zext !C to int
528 Value *NotCond =
529 InsertNewInstBefore(BinaryOperator::CreateNot(CondVal,
530 "not."+CondVal->getName()), SI);
531 return CastInst::Create(Instruction::ZExt, NotCond, SI.getType());
532 }
533
534 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
535 // If one of the constants is zero (we know they can't both be) and we
536 // have an icmp instruction with zero, and we have an 'and' with the
537 // non-constant value, eliminate this whole mess. This corresponds to
538 // cases like this: ((X & 27) ? 27 : 0)
539 if (TrueValC->isZero() || FalseValC->isZero())
540 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
541 cast<Constant>(IC->getOperand(1))->isNullValue())
542 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
543 if (ICA->getOpcode() == Instruction::And &&
544 isa<ConstantInt>(ICA->getOperand(1)) &&
545 (ICA->getOperand(1) == TrueValC ||
546 ICA->getOperand(1) == FalseValC) &&
547 cast<ConstantInt>(ICA->getOperand(1))->getValue().isPowerOf2()) {
548 // Okay, now we know that everything is set up, we just don't
549 // know whether we have a icmp_ne or icmp_eq and whether the
550 // true or false val is the zero.
551 bool ShouldNotVal = !TrueValC->isZero();
552 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
553 Value *V = ICA;
554 if (ShouldNotVal)
555 V = InsertNewInstBefore(BinaryOperator::Create(
556 Instruction::Xor, V, ICA->getOperand(1)), SI);
557 return ReplaceInstUsesWith(SI, V);
558 }
559 }
560 }
561
562 // See if we are selecting two values based on a comparison of the two values.
563 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
564 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
565 // Transform (X == Y) ? X : Y -> Y
566 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
567 // This is not safe in general for floating point:
568 // consider X== -0, Y== +0.
569 // It becomes safe if either operand is a nonzero constant.
570 ConstantFP *CFPt, *CFPf;
571 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
572 !CFPt->getValueAPF().isZero()) ||
573 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
574 !CFPf->getValueAPF().isZero()))
575 return ReplaceInstUsesWith(SI, FalseVal);
576 }
577 // Transform (X != Y) ? X : Y -> X
578 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
579 return ReplaceInstUsesWith(SI, TrueVal);
580 // NOTE: if we wanted to, this is where to detect MIN/MAX
581
582 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
583 // Transform (X == Y) ? Y : X -> X
584 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
585 // This is not safe in general for floating point:
586 // consider X== -0, Y== +0.
587 // It becomes safe if either operand is a nonzero constant.
588 ConstantFP *CFPt, *CFPf;
589 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
590 !CFPt->getValueAPF().isZero()) ||
591 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
592 !CFPf->getValueAPF().isZero()))
593 return ReplaceInstUsesWith(SI, FalseVal);
594 }
595 // Transform (X != Y) ? Y : X -> Y
596 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
597 return ReplaceInstUsesWith(SI, TrueVal);
598 // NOTE: if we wanted to, this is where to detect MIN/MAX
599 }
600 // NOTE: if we wanted to, this is where to detect ABS
601 }
602
603 // See if we are selecting two values based on a comparison of the two values.
604 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal))
605 if (Instruction *Result = visitSelectInstWithICmp(SI, ICI))
606 return Result;
607
608 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
609 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
610 if (TI->hasOneUse() && FI->hasOneUse()) {
611 Instruction *AddOp = 0, *SubOp = 0;
612
613 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
614 if (TI->getOpcode() == FI->getOpcode())
615 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
616 return IV;
617
618 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
619 // even legal for FP.
620 if ((TI->getOpcode() == Instruction::Sub &&
621 FI->getOpcode() == Instruction::Add) ||
622 (TI->getOpcode() == Instruction::FSub &&
623 FI->getOpcode() == Instruction::FAdd)) {
624 AddOp = FI; SubOp = TI;
625 } else if ((FI->getOpcode() == Instruction::Sub &&
626 TI->getOpcode() == Instruction::Add) ||
627 (FI->getOpcode() == Instruction::FSub &&
628 TI->getOpcode() == Instruction::FAdd)) {
629 AddOp = TI; SubOp = FI;
630 }
631
632 if (AddOp) {
633 Value *OtherAddOp = 0;
634 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
635 OtherAddOp = AddOp->getOperand(1);
636 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
637 OtherAddOp = AddOp->getOperand(0);
638 }
639
640 if (OtherAddOp) {
641 // So at this point we know we have (Y -> OtherAddOp):
642 // select C, (add X, Y), (sub X, Z)
643 Value *NegVal; // Compute -Z
644 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
645 NegVal = ConstantExpr::getNeg(C);
646 } else {
647 NegVal = InsertNewInstBefore(
648 BinaryOperator::CreateNeg(SubOp->getOperand(1),
649 "tmp"), SI);
650 }
651
652 Value *NewTrueOp = OtherAddOp;
653 Value *NewFalseOp = NegVal;
654 if (AddOp != TI)
655 std::swap(NewTrueOp, NewFalseOp);
656 Instruction *NewSel =
657 SelectInst::Create(CondVal, NewTrueOp,
658 NewFalseOp, SI.getName() + ".p");
659
660 NewSel = InsertNewInstBefore(NewSel, SI);
661 return BinaryOperator::CreateAdd(SubOp->getOperand(0), NewSel);
662 }
663 }
664 }
665
666 // See if we can fold the select into one of our operands.
667 if (SI.getType()->isInteger()) {
668 if (Instruction *FoldI = FoldSelectIntoOp(SI, TrueVal, FalseVal))
669 return FoldI;
670
671 // MAX(MAX(a, b), a) -> MAX(a, b)
672 // MIN(MIN(a, b), a) -> MIN(a, b)
673 // MAX(MIN(a, b), a) -> a
674 // MIN(MAX(a, b), a) -> a
675 Value *LHS, *RHS, *LHS2, *RHS2;
676 if (SelectPatternFlavor SPF = MatchSelectPattern(&SI, LHS, RHS)) {
677 if (SelectPatternFlavor SPF2 = MatchSelectPattern(LHS, LHS2, RHS2))
678 if (Instruction *R = FoldSPFofSPF(cast<Instruction>(LHS),SPF2,LHS2,RHS2,
679 SI, SPF, RHS))
680 return R;
681 if (SelectPatternFlavor SPF2 = MatchSelectPattern(RHS, LHS2, RHS2))
682 if (Instruction *R = FoldSPFofSPF(cast<Instruction>(RHS),SPF2,LHS2,RHS2,
683 SI, SPF, LHS))
684 return R;
685 }
686
687 // TODO.
688 // ABS(-X) -> ABS(X)
689 // ABS(ABS(X)) -> ABS(X)
690 }
691
692 // See if we can fold the select into a phi node if the condition is a select.
693 if (isa<PHINode>(SI.getCondition()))
694 // The true/false values have to be live in the PHI predecessor's blocks.
695 if (CanSelectOperandBeMappingIntoPredBlock(TrueVal, SI) &&
696 CanSelectOperandBeMappingIntoPredBlock(FalseVal, SI))
697 if (Instruction *NV = FoldOpIntoPhi(SI))
698 return NV;
699
700 if (BinaryOperator::isNot(CondVal)) {
701 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
702 SI.setOperand(1, FalseVal);
703 SI.setOperand(2, TrueVal);
704 return &SI;
705 }
706
707 return 0;
708}