blob: 7845d997b626f93e55e3040dc2c7549196a0feb2 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
2 "http://www.w3.org/TR/html4/strict.dtd">
3<html>
4<head>
Owen Anderson60f87572009-06-16 17:40:28 +00005 <meta http-equiv="Content-type" content="text/html;charset=UTF-8">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006 <title>LLVM Programmer's Manual</title>
7 <link rel="stylesheet" href="llvm.css" type="text/css">
8</head>
9<body>
10
11<div class="doc_title">
12 LLVM Programmer's Manual
13</div>
14
15<ol>
16 <li><a href="#introduction">Introduction</a></li>
17 <li><a href="#general">General Information</a>
18 <ul>
19 <li><a href="#stl">The C++ Standard Template Library</a></li>
20<!--
21 <li>The <tt>-time-passes</tt> option</li>
22 <li>How to use the LLVM Makefile system</li>
23 <li>How to write a regression test</li>
24
25-->
26 </ul>
27 </li>
28 <li><a href="#apis">Important and useful LLVM APIs</a>
29 <ul>
30 <li><a href="#isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt>
31and <tt>dyn_cast&lt;&gt;</tt> templates</a> </li>
Daniel Dunbare3572ba2009-07-25 04:41:11 +000032 <li><a href="#string_apis">Passing strings (the <tt>StringRef</tt>
Benjamin Kramer7b2136d2009-08-05 15:42:44 +000033and <tt>Twine</tt> classes)</a>
Daniel Dunbare3572ba2009-07-25 04:41:11 +000034 <ul>
35 <li><a href="#StringRef">The <tt>StringRef</tt> class</a> </li>
36 <li><a href="#Twine">The <tt>Twine</tt> class</a> </li>
37 </ul>
Benjamin Kramer7b2136d2009-08-05 15:42:44 +000038 </li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000039 <li><a href="#DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt>
40option</a>
41 <ul>
42 <li><a href="#DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt>
43and the <tt>-debug-only</tt> option</a> </li>
44 </ul>
45 </li>
46 <li><a href="#Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
47option</a></li>
48<!--
49 <li>The <tt>InstVisitor</tt> template
50 <li>The general graph API
51-->
52 <li><a href="#ViewGraph">Viewing graphs while debugging code</a></li>
53 </ul>
54 </li>
55 <li><a href="#datastructure">Picking the Right Data Structure for a Task</a>
56 <ul>
57 <li><a href="#ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
58 <ul>
59 <li><a href="#dss_fixedarrays">Fixed Size Arrays</a></li>
60 <li><a href="#dss_heaparrays">Heap Allocated Arrays</a></li>
61 <li><a href="#dss_smallvector">"llvm/ADT/SmallVector.h"</a></li>
62 <li><a href="#dss_vector">&lt;vector&gt;</a></li>
63 <li><a href="#dss_deque">&lt;deque&gt;</a></li>
64 <li><a href="#dss_list">&lt;list&gt;</a></li>
Gabor Greifbb17f652009-02-27 11:37:41 +000065 <li><a href="#dss_ilist">llvm/ADT/ilist.h</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000066 <li><a href="#dss_other">Other Sequential Container Options</a></li>
67 </ul></li>
68 <li><a href="#ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
69 <ul>
70 <li><a href="#dss_sortedvectorset">A sorted 'vector'</a></li>
71 <li><a href="#dss_smallset">"llvm/ADT/SmallSet.h"</a></li>
72 <li><a href="#dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a></li>
Chris Lattner77ab46d2007-09-30 00:58:59 +000073 <li><a href="#dss_denseset">"llvm/ADT/DenseSet.h"</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000074 <li><a href="#dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a></li>
75 <li><a href="#dss_set">&lt;set&gt;</a></li>
76 <li><a href="#dss_setvector">"llvm/ADT/SetVector.h"</a></li>
77 <li><a href="#dss_uniquevector">"llvm/ADT/UniqueVector.h"</a></li>
78 <li><a href="#dss_otherset">Other Set-Like ContainerOptions</a></li>
79 </ul></li>
80 <li><a href="#ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
81 <ul>
82 <li><a href="#dss_sortedvectormap">A sorted 'vector'</a></li>
83 <li><a href="#dss_stringmap">"llvm/ADT/StringMap.h"</a></li>
84 <li><a href="#dss_indexedmap">"llvm/ADT/IndexedMap.h"</a></li>
85 <li><a href="#dss_densemap">"llvm/ADT/DenseMap.h"</a></li>
Jeffrey Yasskin50e846d2009-10-22 22:11:22 +000086 <li><a href="#dss_valuemap">"llvm/ADT/ValueMap.h"</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000087 <li><a href="#dss_map">&lt;map&gt;</a></li>
88 <li><a href="#dss_othermap">Other Map-Like Container Options</a></li>
89 </ul></li>
Chris Lattnerd8b95b72009-07-25 07:22:20 +000090 <li><a href="#ds_string">String-like containers</a>
Benjamin Kramer7b2136d2009-08-05 15:42:44 +000091 <!--<ul>
92 todo
93 </ul>--></li>
Daniel Berlin7ea44dc2007-09-24 17:52:25 +000094 <li><a href="#ds_bit">BitVector-like containers</a>
95 <ul>
96 <li><a href="#dss_bitvector">A dense bitvector</a></li>
Dan Gohmanc83a2b42010-01-05 18:24:00 +000097 <li><a href="#dss_smallbitvector">A "small" dense bitvector</a></li>
Daniel Berlin7ea44dc2007-09-24 17:52:25 +000098 <li><a href="#dss_sparsebitvector">A sparse bitvector</a></li>
99 </ul></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000100 </ul>
101 </li>
102 <li><a href="#common">Helpful Hints for Common Operations</a>
103 <ul>
104 <li><a href="#inspection">Basic Inspection and Traversal Routines</a>
105 <ul>
106 <li><a href="#iterate_function">Iterating over the <tt>BasicBlock</tt>s
107in a <tt>Function</tt></a> </li>
108 <li><a href="#iterate_basicblock">Iterating over the <tt>Instruction</tt>s
109in a <tt>BasicBlock</tt></a> </li>
110 <li><a href="#iterate_institer">Iterating over the <tt>Instruction</tt>s
111in a <tt>Function</tt></a> </li>
112 <li><a href="#iterate_convert">Turning an iterator into a
113class pointer</a> </li>
114 <li><a href="#iterate_complex">Finding call sites: a more
115complex example</a> </li>
116 <li><a href="#calls_and_invokes">Treating calls and invokes
117the same way</a> </li>
118 <li><a href="#iterate_chains">Iterating over def-use &amp;
119use-def chains</a> </li>
Chris Lattner0665e1f2008-01-03 16:56:04 +0000120 <li><a href="#iterate_preds">Iterating over predecessors &amp;
121successors of blocks</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000122 </ul>
123 </li>
124 <li><a href="#simplechanges">Making simple changes</a>
125 <ul>
126 <li><a href="#schanges_creating">Creating and inserting new
127 <tt>Instruction</tt>s</a> </li>
128 <li><a href="#schanges_deleting">Deleting <tt>Instruction</tt>s</a> </li>
129 <li><a href="#schanges_replacing">Replacing an <tt>Instruction</tt>
130with another <tt>Value</tt></a> </li>
131 <li><a href="#schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a> </li>
132 </ul>
133 </li>
Jeffrey Yasskin7ebb6ac2009-04-30 22:33:41 +0000134 <li><a href="#create_types">How to Create Types</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000135<!--
136 <li>Working with the Control Flow Graph
137 <ul>
138 <li>Accessing predecessors and successors of a <tt>BasicBlock</tt>
139 <li>
140 <li>
141 </ul>
142-->
143 </ul>
144 </li>
145
Owen Andersone8370c02009-06-16 01:17:16 +0000146 <li><a href="#threading">Threads and LLVM</a>
147 <ul>
Owen Andersonb4186902009-06-16 18:04:19 +0000148 <li><a href="#startmultithreaded">Entering and Exiting Multithreaded Mode
149 </a></li>
Owen Andersone8370c02009-06-16 01:17:16 +0000150 <li><a href="#shutdown">Ending execution with <tt>llvm_shutdown()</tt></a></li>
151 <li><a href="#managedstatic">Lazy initialization with <tt>ManagedStatic</tt></a></li>
Owen Anderson3f2da0e2009-08-19 17:58:52 +0000152 <li><a href="#llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a></li>
Owen Andersone8370c02009-06-16 01:17:16 +0000153 </ul>
154 </li>
155
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000156 <li><a href="#advanced">Advanced Topics</a>
157 <ul>
158 <li><a href="#TypeResolve">LLVM Type Resolution</a>
159 <ul>
160 <li><a href="#BuildRecType">Basic Recursive Type Construction</a></li>
161 <li><a href="#refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a></li>
162 <li><a href="#PATypeHolder">The PATypeHolder Class</a></li>
163 <li><a href="#AbstractTypeUser">The AbstractTypeUser Class</a></li>
164 </ul></li>
165
Gabor Greif92e87762008-06-16 21:06:12 +0000166 <li><a href="#SymbolTable">The <tt>ValueSymbolTable</tt> and <tt>TypeSymbolTable</tt> classes</a></li>
167 <li><a href="#UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a></li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000168 </ul></li>
169
170 <li><a href="#coreclasses">The Core LLVM Class Hierarchy Reference</a>
171 <ul>
172 <li><a href="#Type">The <tt>Type</tt> class</a> </li>
173 <li><a href="#Module">The <tt>Module</tt> class</a></li>
174 <li><a href="#Value">The <tt>Value</tt> class</a>
175 <ul>
176 <li><a href="#User">The <tt>User</tt> class</a>
177 <ul>
178 <li><a href="#Instruction">The <tt>Instruction</tt> class</a></li>
179 <li><a href="#Constant">The <tt>Constant</tt> class</a>
180 <ul>
181 <li><a href="#GlobalValue">The <tt>GlobalValue</tt> class</a>
182 <ul>
183 <li><a href="#Function">The <tt>Function</tt> class</a></li>
184 <li><a href="#GlobalVariable">The <tt>GlobalVariable</tt> class</a></li>
185 </ul>
186 </li>
187 </ul>
188 </li>
189 </ul>
190 </li>
191 <li><a href="#BasicBlock">The <tt>BasicBlock</tt> class</a></li>
192 <li><a href="#Argument">The <tt>Argument</tt> class</a></li>
193 </ul>
194 </li>
195 </ul>
196 </li>
197</ol>
198
199<div class="doc_author">
200 <p>Written by <a href="mailto:sabre@nondot.org">Chris Lattner</a>,
201 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a>,
Gabor Greif92e87762008-06-16 21:06:12 +0000202 <a href="mailto:ggreif@gmail.com">Gabor Greif</a>,
Owen Andersone8370c02009-06-16 01:17:16 +0000203 <a href="mailto:jstanley@cs.uiuc.edu">Joel Stanley</a>,
204 <a href="mailto:rspencer@x10sys.com">Reid Spencer</a> and
205 <a href="mailto:owen@apple.com">Owen Anderson</a></p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000206</div>
207
208<!-- *********************************************************************** -->
209<div class="doc_section">
210 <a name="introduction">Introduction </a>
211</div>
212<!-- *********************************************************************** -->
213
214<div class="doc_text">
215
216<p>This document is meant to highlight some of the important classes and
217interfaces available in the LLVM source-base. This manual is not
218intended to explain what LLVM is, how it works, and what LLVM code looks
219like. It assumes that you know the basics of LLVM and are interested
220in writing transformations or otherwise analyzing or manipulating the
221code.</p>
222
223<p>This document should get you oriented so that you can find your
224way in the continuously growing source code that makes up the LLVM
225infrastructure. Note that this manual is not intended to serve as a
226replacement for reading the source code, so if you think there should be
227a method in one of these classes to do something, but it's not listed,
228check the source. Links to the <a href="/doxygen/">doxygen</a> sources
229are provided to make this as easy as possible.</p>
230
231<p>The first section of this document describes general information that is
232useful to know when working in the LLVM infrastructure, and the second describes
233the Core LLVM classes. In the future this manual will be extended with
234information describing how to use extension libraries, such as dominator
235information, CFG traversal routines, and useful utilities like the <tt><a
236href="/doxygen/InstVisitor_8h-source.html">InstVisitor</a></tt> template.</p>
237
238</div>
239
240<!-- *********************************************************************** -->
241<div class="doc_section">
242 <a name="general">General Information</a>
243</div>
244<!-- *********************************************************************** -->
245
246<div class="doc_text">
247
248<p>This section contains general information that is useful if you are working
249in the LLVM source-base, but that isn't specific to any particular API.</p>
250
251</div>
252
253<!-- ======================================================================= -->
254<div class="doc_subsection">
255 <a name="stl">The C++ Standard Template Library</a>
256</div>
257
258<div class="doc_text">
259
260<p>LLVM makes heavy use of the C++ Standard Template Library (STL),
261perhaps much more than you are used to, or have seen before. Because of
262this, you might want to do a little background reading in the
263techniques used and capabilities of the library. There are many good
264pages that discuss the STL, and several books on the subject that you
265can get, so it will not be discussed in this document.</p>
266
267<p>Here are some useful links:</p>
268
269<ol>
270
271<li><a href="http://www.dinkumware.com/refxcpp.html">Dinkumware C++ Library
272reference</a> - an excellent reference for the STL and other parts of the
273standard C++ library.</li>
274
275<li><a href="http://www.tempest-sw.com/cpp/">C++ In a Nutshell</a> - This is an
Gabor Greife39f0e72009-03-12 09:47:03 +0000276O'Reilly book in the making. It has a decent Standard Library
277Reference that rivals Dinkumware's, and is unfortunately no longer free since the
278book has been published.</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000279
280<li><a href="http://www.parashift.com/c++-faq-lite/">C++ Frequently Asked
281Questions</a></li>
282
283<li><a href="http://www.sgi.com/tech/stl/">SGI's STL Programmer's Guide</a> -
284Contains a useful <a
285href="http://www.sgi.com/tech/stl/stl_introduction.html">Introduction to the
286STL</a>.</li>
287
288<li><a href="http://www.research.att.com/%7Ebs/C++.html">Bjarne Stroustrup's C++
289Page</a></li>
290
291<li><a href="http://64.78.49.204/">
292Bruce Eckel's Thinking in C++, 2nd ed. Volume 2 Revision 4.0 (even better, get
293the book).</a></li>
294
295</ol>
296
297<p>You are also encouraged to take a look at the <a
298href="CodingStandards.html">LLVM Coding Standards</a> guide which focuses on how
299to write maintainable code more than where to put your curly braces.</p>
300
301</div>
302
303<!-- ======================================================================= -->
304<div class="doc_subsection">
305 <a name="stl">Other useful references</a>
306</div>
307
308<div class="doc_text">
309
310<ol>
311<li><a href="http://www.psc.edu/%7Esemke/cvs_branches.html">CVS
312Branch and Tag Primer</a></li>
313<li><a href="http://www.fortran-2000.com/ArnaudRecipes/sharedlib.html">Using
314static and shared libraries across platforms</a></li>
315</ol>
316
317</div>
318
319<!-- *********************************************************************** -->
320<div class="doc_section">
321 <a name="apis">Important and useful LLVM APIs</a>
322</div>
323<!-- *********************************************************************** -->
324
325<div class="doc_text">
326
327<p>Here we highlight some LLVM APIs that are generally useful and good to
328know about when writing transformations.</p>
329
330</div>
331
332<!-- ======================================================================= -->
333<div class="doc_subsection">
334 <a name="isa">The <tt>isa&lt;&gt;</tt>, <tt>cast&lt;&gt;</tt> and
335 <tt>dyn_cast&lt;&gt;</tt> templates</a>
336</div>
337
338<div class="doc_text">
339
340<p>The LLVM source-base makes extensive use of a custom form of RTTI.
341These templates have many similarities to the C++ <tt>dynamic_cast&lt;&gt;</tt>
342operator, but they don't have some drawbacks (primarily stemming from
343the fact that <tt>dynamic_cast&lt;&gt;</tt> only works on classes that
344have a v-table). Because they are used so often, you must know what they
345do and how they work. All of these templates are defined in the <a
346 href="/doxygen/Casting_8h-source.html"><tt>llvm/Support/Casting.h</tt></a>
347file (note that you very rarely have to include this file directly).</p>
348
349<dl>
350 <dt><tt>isa&lt;&gt;</tt>: </dt>
351
352 <dd><p>The <tt>isa&lt;&gt;</tt> operator works exactly like the Java
353 "<tt>instanceof</tt>" operator. It returns true or false depending on whether
354 a reference or pointer points to an instance of the specified class. This can
355 be very useful for constraint checking of various sorts (example below).</p>
356 </dd>
357
358 <dt><tt>cast&lt;&gt;</tt>: </dt>
359
360 <dd><p>The <tt>cast&lt;&gt;</tt> operator is a "checked cast" operation. It
Chris Lattner1d5610a2008-06-20 05:03:17 +0000361 converts a pointer or reference from a base class to a derived class, causing
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000362 an assertion failure if it is not really an instance of the right type. This
363 should be used in cases where you have some information that makes you believe
364 that something is of the right type. An example of the <tt>isa&lt;&gt;</tt>
365 and <tt>cast&lt;&gt;</tt> template is:</p>
366
367<div class="doc_code">
368<pre>
369static bool isLoopInvariant(const <a href="#Value">Value</a> *V, const Loop *L) {
370 if (isa&lt;<a href="#Constant">Constant</a>&gt;(V) || isa&lt;<a href="#Argument">Argument</a>&gt;(V) || isa&lt;<a href="#GlobalValue">GlobalValue</a>&gt;(V))
371 return true;
372
373 // <i>Otherwise, it must be an instruction...</i>
374 return !L-&gt;contains(cast&lt;<a href="#Instruction">Instruction</a>&gt;(V)-&gt;getParent());
375}
376</pre>
377</div>
378
379 <p>Note that you should <b>not</b> use an <tt>isa&lt;&gt;</tt> test followed
380 by a <tt>cast&lt;&gt;</tt>, for that use the <tt>dyn_cast&lt;&gt;</tt>
381 operator.</p>
382
383 </dd>
384
385 <dt><tt>dyn_cast&lt;&gt;</tt>:</dt>
386
387 <dd><p>The <tt>dyn_cast&lt;&gt;</tt> operator is a "checking cast" operation.
388 It checks to see if the operand is of the specified type, and if so, returns a
389 pointer to it (this operator does not work with references). If the operand is
390 not of the correct type, a null pointer is returned. Thus, this works very
391 much like the <tt>dynamic_cast&lt;&gt;</tt> operator in C++, and should be
392 used in the same circumstances. Typically, the <tt>dyn_cast&lt;&gt;</tt>
393 operator is used in an <tt>if</tt> statement or some other flow control
394 statement like this:</p>
395
396<div class="doc_code">
397<pre>
398if (<a href="#AllocationInst">AllocationInst</a> *AI = dyn_cast&lt;<a href="#AllocationInst">AllocationInst</a>&gt;(Val)) {
399 // <i>...</i>
400}
401</pre>
402</div>
403
404 <p>This form of the <tt>if</tt> statement effectively combines together a call
405 to <tt>isa&lt;&gt;</tt> and a call to <tt>cast&lt;&gt;</tt> into one
406 statement, which is very convenient.</p>
407
408 <p>Note that the <tt>dyn_cast&lt;&gt;</tt> operator, like C++'s
409 <tt>dynamic_cast&lt;&gt;</tt> or Java's <tt>instanceof</tt> operator, can be
410 abused. In particular, you should not use big chained <tt>if/then/else</tt>
411 blocks to check for lots of different variants of classes. If you find
412 yourself wanting to do this, it is much cleaner and more efficient to use the
413 <tt>InstVisitor</tt> class to dispatch over the instruction type directly.</p>
414
415 </dd>
416
417 <dt><tt>cast_or_null&lt;&gt;</tt>: </dt>
418
419 <dd><p>The <tt>cast_or_null&lt;&gt;</tt> operator works just like the
420 <tt>cast&lt;&gt;</tt> operator, except that it allows for a null pointer as an
421 argument (which it then propagates). This can sometimes be useful, allowing
422 you to combine several null checks into one.</p></dd>
423
424 <dt><tt>dyn_cast_or_null&lt;&gt;</tt>: </dt>
425
426 <dd><p>The <tt>dyn_cast_or_null&lt;&gt;</tt> operator works just like the
427 <tt>dyn_cast&lt;&gt;</tt> operator, except that it allows for a null pointer
428 as an argument (which it then propagates). This can sometimes be useful,
429 allowing you to combine several null checks into one.</p></dd>
430
431</dl>
432
433<p>These five templates can be used with any classes, whether they have a
434v-table or not. To add support for these templates, you simply need to add
435<tt>classof</tt> static methods to the class you are interested casting
436to. Describing this is currently outside the scope of this document, but there
437are lots of examples in the LLVM source base.</p>
438
439</div>
440
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000441
442<!-- ======================================================================= -->
443<div class="doc_subsection">
444 <a name="string_apis">Passing strings (the <tt>StringRef</tt>
445and <tt>Twine</tt> classes)</a>
446</div>
447
448<div class="doc_text">
449
450<p>Although LLVM generally does not do much string manipulation, we do have
Chris Lattnerc00114f2009-07-25 07:16:59 +0000451several important APIs which take strings. Two important examples are the
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000452Value class -- which has names for instructions, functions, etc. -- and the
453StringMap class which is used extensively in LLVM and Clang.</p>
454
455<p>These are generic classes, and they need to be able to accept strings which
456may have embedded null characters. Therefore, they cannot simply take
Chris Lattnerc00114f2009-07-25 07:16:59 +0000457a <tt>const char *</tt>, and taking a <tt>const std::string&amp;</tt> requires
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000458clients to perform a heap allocation which is usually unnecessary. Instead,
Chris Lattnerc00114f2009-07-25 07:16:59 +0000459many LLVM APIs use a <tt>const StringRef&amp;</tt> or a <tt>const
460Twine&amp;</tt> for passing strings efficiently.</p>
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000461
462</div>
463
464<!-- _______________________________________________________________________ -->
465<div class="doc_subsubsection">
466 <a name="StringRef">The <tt>StringRef</tt> class</a>
467</div>
468
469<div class="doc_text">
470
471<p>The <tt>StringRef</tt> data type represents a reference to a constant string
472(a character array and a length) and supports the common operations available
473on <tt>std:string</tt>, but does not require heap allocation.</p>
474
Chris Lattnerc00114f2009-07-25 07:16:59 +0000475<p>It can be implicitly constructed using a C style null-terminated string,
476an <tt>std::string</tt>, or explicitly with a character pointer and length.
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000477For example, the <tt>StringRef</tt> find function is declared as:</p>
Chris Lattnerc00114f2009-07-25 07:16:59 +0000478
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000479<div class="doc_code">
Chris Lattnerc00114f2009-07-25 07:16:59 +0000480 iterator find(const StringRef &amp;Key);
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000481</div>
482
483<p>and clients can call it using any one of:</p>
484
485<div class="doc_code">
486<pre>
487 Map.find("foo"); <i>// Lookup "foo"</i>
488 Map.find(std::string("bar")); <i>// Lookup "bar"</i>
489 Map.find(StringRef("\0baz", 4)); <i>// Lookup "\0baz"</i>
490</pre>
491</div>
492
493<p>Similarly, APIs which need to return a string may return a <tt>StringRef</tt>
494instance, which can be used directly or converted to an <tt>std::string</tt>
495using the <tt>str</tt> member function. See
496"<tt><a href="/doxygen/classllvm_1_1StringRef_8h-source.html">llvm/ADT/StringRef.h</a></tt>"
497for more information.</p>
498
499<p>You should rarely use the <tt>StringRef</tt> class directly, because it contains
500pointers to external memory it is not generally safe to store an instance of the
Chris Lattnerc00114f2009-07-25 07:16:59 +0000501class (unless you know that the external storage will not be freed).</p>
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000502
503</div>
504
505<!-- _______________________________________________________________________ -->
506<div class="doc_subsubsection">
507 <a name="Twine">The <tt>Twine</tt> class</a>
508</div>
509
510<div class="doc_text">
511
512<p>The <tt>Twine</tt> class is an efficient way for APIs to accept concatenated
513strings. For example, a common LLVM paradigm is to name one instruction based on
514the name of another instruction with a suffix, for example:</p>
515
516<div class="doc_code">
517<pre>
518 New = CmpInst::Create(<i>...</i>, SO->getName() + ".cmp");
519</pre>
520</div>
521
522<p>The <tt>Twine</tt> class is effectively a
523lightweight <a href="http://en.wikipedia.org/wiki/Rope_(computer_science)">rope</a>
524which points to temporary (stack allocated) objects. Twines can be implicitly
525constructed as the result of the plus operator applied to strings (i.e., a C
526strings, an <tt>std::string</tt>, or a <tt>StringRef</tt>). The twine delays the
527actual concatentation of strings until it is actually required, at which point
528it can be efficiently rendered directly into a character array. This avoids
529unnecessary heap allocation involved in constructing the temporary results of
530string concatenation. See
531"<tt><a href="/doxygen/classllvm_1_1Twine_8h-source.html">llvm/ADT/Twine.h</a></tt>"
Benjamin Kramer7b2136d2009-08-05 15:42:44 +0000532for more information.</p>
Daniel Dunbare3572ba2009-07-25 04:41:11 +0000533
534<p>As with a <tt>StringRef</tt>, <tt>Twine</tt> objects point to external memory
535and should almost never be stored or mentioned directly. They are intended
536solely for use when defining a function which should be able to efficiently
537accept concatenated strings.</p>
538
539</div>
540
541
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000542<!-- ======================================================================= -->
543<div class="doc_subsection">
544 <a name="DEBUG">The <tt>DEBUG()</tt> macro and <tt>-debug</tt> option</a>
545</div>
546
547<div class="doc_text">
548
549<p>Often when working on your pass you will put a bunch of debugging printouts
550and other code into your pass. After you get it working, you want to remove
551it, but you may need it again in the future (to work out new bugs that you run
552across).</p>
553
554<p> Naturally, because of this, you don't want to delete the debug printouts,
555but you don't want them to always be noisy. A standard compromise is to comment
556them out, allowing you to enable them if you need them in the future.</p>
557
558<p>The "<tt><a href="/doxygen/Debug_8h-source.html">llvm/Support/Debug.h</a></tt>"
559file provides a macro named <tt>DEBUG()</tt> that is a much nicer solution to
560this problem. Basically, you can put arbitrary code into the argument of the
561<tt>DEBUG</tt> macro, and it is only executed if '<tt>opt</tt>' (or any other
562tool) is run with the '<tt>-debug</tt>' command line argument:</p>
563
564<div class="doc_code">
565<pre>
Daniel Dunbare32f9b22009-07-25 01:55:32 +0000566DEBUG(errs() &lt;&lt; "I am here!\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000567</pre>
568</div>
569
570<p>Then you can run your pass like this:</p>
571
572<div class="doc_code">
573<pre>
574$ opt &lt; a.bc &gt; /dev/null -mypass
575<i>&lt;no output&gt;</i>
576$ opt &lt; a.bc &gt; /dev/null -mypass -debug
577I am here!
578</pre>
579</div>
580
581<p>Using the <tt>DEBUG()</tt> macro instead of a home-brewed solution allows you
582to not have to create "yet another" command line option for the debug output for
583your pass. Note that <tt>DEBUG()</tt> macros are disabled for optimized builds,
584so they do not cause a performance impact at all (for the same reason, they
585should also not contain side-effects!).</p>
586
587<p>One additional nice thing about the <tt>DEBUG()</tt> macro is that you can
588enable or disable it directly in gdb. Just use "<tt>set DebugFlag=0</tt>" or
589"<tt>set DebugFlag=1</tt>" from the gdb if the program is running. If the
590program hasn't been started yet, you can always just run it with
591<tt>-debug</tt>.</p>
592
593</div>
594
595<!-- _______________________________________________________________________ -->
596<div class="doc_subsubsection">
597 <a name="DEBUG_TYPE">Fine grained debug info with <tt>DEBUG_TYPE</tt> and
598 the <tt>-debug-only</tt> option</a>
599</div>
600
601<div class="doc_text">
602
603<p>Sometimes you may find yourself in a situation where enabling <tt>-debug</tt>
604just turns on <b>too much</b> information (such as when working on the code
605generator). If you want to enable debug information with more fine-grained
606control, you define the <tt>DEBUG_TYPE</tt> macro and the <tt>-debug</tt> only
607option as follows:</p>
608
609<div class="doc_code">
610<pre>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000611#undef DEBUG_TYPE
Daniel Dunbare32f9b22009-07-25 01:55:32 +0000612DEBUG(errs() &lt;&lt; "No debug type\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000613#define DEBUG_TYPE "foo"
Daniel Dunbare32f9b22009-07-25 01:55:32 +0000614DEBUG(errs() &lt;&lt; "'foo' debug type\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000615#undef DEBUG_TYPE
616#define DEBUG_TYPE "bar"
Daniel Dunbare32f9b22009-07-25 01:55:32 +0000617DEBUG(errs() &lt;&lt; "'bar' debug type\n"));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000618#undef DEBUG_TYPE
619#define DEBUG_TYPE ""
Daniel Dunbare32f9b22009-07-25 01:55:32 +0000620DEBUG(errs() &lt;&lt; "No debug type (2)\n");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000621</pre>
622</div>
623
624<p>Then you can run your pass like this:</p>
625
626<div class="doc_code">
627<pre>
628$ opt &lt; a.bc &gt; /dev/null -mypass
629<i>&lt;no output&gt;</i>
630$ opt &lt; a.bc &gt; /dev/null -mypass -debug
631No debug type
632'foo' debug type
633'bar' debug type
634No debug type (2)
635$ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=foo
636'foo' debug type
637$ opt &lt; a.bc &gt; /dev/null -mypass -debug-only=bar
638'bar' debug type
639</pre>
640</div>
641
642<p>Of course, in practice, you should only set <tt>DEBUG_TYPE</tt> at the top of
643a file, to specify the debug type for the entire module (if you do this before
644you <tt>#include "llvm/Support/Debug.h"</tt>, you don't have to insert the ugly
645<tt>#undef</tt>'s). Also, you should use names more meaningful than "foo" and
646"bar", because there is no system in place to ensure that names do not
647conflict. If two different modules use the same string, they will all be turned
648on when the name is specified. This allows, for example, all debug information
649for instruction scheduling to be enabled with <tt>-debug-type=InstrSched</tt>,
650even if the source lives in multiple files.</p>
651
Daniel Dunbar83504192009-08-07 23:48:59 +0000652<p>The <tt>DEBUG_WITH_TYPE</tt> macro is also available for situations where you
653would like to set <tt>DEBUG_TYPE</tt>, but only for one specific <tt>DEBUG</tt>
654statement. It takes an additional first parameter, which is the type to use. For
Benjamin Kramer5fb9d7e2009-10-12 14:46:08 +0000655example, the preceding example could be written as:</p>
Daniel Dunbar83504192009-08-07 23:48:59 +0000656
657
658<div class="doc_code">
659<pre>
660DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type\n");
661DEBUG_WITH_TYPE("foo", errs() &lt;&lt; "'foo' debug type\n");
662DEBUG_WITH_TYPE("bar", errs() &lt;&lt; "'bar' debug type\n"));
663DEBUG_WITH_TYPE("", errs() &lt;&lt; "No debug type (2)\n");
664</pre>
665</div>
666
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000667</div>
668
669<!-- ======================================================================= -->
670<div class="doc_subsection">
671 <a name="Statistic">The <tt>Statistic</tt> class &amp; <tt>-stats</tt>
672 option</a>
673</div>
674
675<div class="doc_text">
676
677<p>The "<tt><a
678href="/doxygen/Statistic_8h-source.html">llvm/ADT/Statistic.h</a></tt>" file
679provides a class named <tt>Statistic</tt> that is used as a unified way to
680keep track of what the LLVM compiler is doing and how effective various
681optimizations are. It is useful to see what optimizations are contributing to
682making a particular program run faster.</p>
683
684<p>Often you may run your pass on some big program, and you're interested to see
685how many times it makes a certain transformation. Although you can do this with
686hand inspection, or some ad-hoc method, this is a real pain and not very useful
687for big programs. Using the <tt>Statistic</tt> class makes it very easy to
688keep track of this information, and the calculated information is presented in a
689uniform manner with the rest of the passes being executed.</p>
690
691<p>There are many examples of <tt>Statistic</tt> uses, but the basics of using
692it are as follows:</p>
693
694<ol>
695 <li><p>Define your statistic like this:</p>
696
697<div class="doc_code">
698<pre>
699#define <a href="#DEBUG_TYPE">DEBUG_TYPE</a> "mypassname" <i>// This goes before any #includes.</i>
700STATISTIC(NumXForms, "The # of times I did stuff");
701</pre>
702</div>
703
704 <p>The <tt>STATISTIC</tt> macro defines a static variable, whose name is
705 specified by the first argument. The pass name is taken from the DEBUG_TYPE
706 macro, and the description is taken from the second argument. The variable
707 defined ("NumXForms" in this case) acts like an unsigned integer.</p></li>
708
709 <li><p>Whenever you make a transformation, bump the counter:</p>
710
711<div class="doc_code">
712<pre>
713++NumXForms; // <i>I did stuff!</i>
714</pre>
715</div>
716
717 </li>
718 </ol>
719
720 <p>That's all you have to do. To get '<tt>opt</tt>' to print out the
721 statistics gathered, use the '<tt>-stats</tt>' option:</p>
722
723<div class="doc_code">
724<pre>
725$ opt -stats -mypassname &lt; program.bc &gt; /dev/null
726<i>... statistics output ...</i>
727</pre>
728</div>
729
730 <p> When running <tt>opt</tt> on a C file from the SPEC benchmark
731suite, it gives a report that looks like this:</p>
732
733<div class="doc_code">
734<pre>
735 7646 bitcodewriter - Number of normal instructions
736 725 bitcodewriter - Number of oversized instructions
737 129996 bitcodewriter - Number of bitcode bytes written
738 2817 raise - Number of insts DCEd or constprop'd
739 3213 raise - Number of cast-of-self removed
740 5046 raise - Number of expression trees converted
741 75 raise - Number of other getelementptr's formed
742 138 raise - Number of load/store peepholes
743 42 deadtypeelim - Number of unused typenames removed from symtab
744 392 funcresolve - Number of varargs functions resolved
745 27 globaldce - Number of global variables removed
746 2 adce - Number of basic blocks removed
747 134 cee - Number of branches revectored
748 49 cee - Number of setcc instruction eliminated
749 532 gcse - Number of loads removed
750 2919 gcse - Number of instructions removed
751 86 indvars - Number of canonical indvars added
752 87 indvars - Number of aux indvars removed
753 25 instcombine - Number of dead inst eliminate
754 434 instcombine - Number of insts combined
755 248 licm - Number of load insts hoisted
756 1298 licm - Number of insts hoisted to a loop pre-header
757 3 licm - Number of insts hoisted to multiple loop preds (bad, no loop pre-header)
758 75 mem2reg - Number of alloca's promoted
759 1444 cfgsimplify - Number of blocks simplified
760</pre>
761</div>
762
763<p>Obviously, with so many optimizations, having a unified framework for this
764stuff is very nice. Making your pass fit well into the framework makes it more
765maintainable and useful.</p>
766
767</div>
768
769<!-- ======================================================================= -->
770<div class="doc_subsection">
771 <a name="ViewGraph">Viewing graphs while debugging code</a>
772</div>
773
774<div class="doc_text">
775
776<p>Several of the important data structures in LLVM are graphs: for example
777CFGs made out of LLVM <a href="#BasicBlock">BasicBlock</a>s, CFGs made out of
778LLVM <a href="CodeGenerator.html#machinebasicblock">MachineBasicBlock</a>s, and
779<a href="CodeGenerator.html#selectiondag_intro">Instruction Selection
780DAGs</a>. In many cases, while debugging various parts of the compiler, it is
781nice to instantly visualize these graphs.</p>
782
783<p>LLVM provides several callbacks that are available in a debug build to do
784exactly that. If you call the <tt>Function::viewCFG()</tt> method, for example,
785the current LLVM tool will pop up a window containing the CFG for the function
786where each basic block is a node in the graph, and each node contains the
787instructions in the block. Similarly, there also exists
788<tt>Function::viewCFGOnly()</tt> (does not include the instructions), the
789<tt>MachineFunction::viewCFG()</tt> and <tt>MachineFunction::viewCFGOnly()</tt>,
790and the <tt>SelectionDAG::viewGraph()</tt> methods. Within GDB, for example,
791you can usually use something like <tt>call DAG.viewGraph()</tt> to pop
792up a window. Alternatively, you can sprinkle calls to these functions in your
793code in places you want to debug.</p>
794
795<p>Getting this to work requires a small amount of configuration. On Unix
796systems with X11, install the <a href="http://www.graphviz.org">graphviz</a>
797toolkit, and make sure 'dot' and 'gv' are in your path. If you are running on
798Mac OS/X, download and install the Mac OS/X <a
799href="http://www.pixelglow.com/graphviz/">Graphviz program</a>, and add
800<tt>/Applications/Graphviz.app/Contents/MacOS/</tt> (or wherever you install
801it) to your path. Once in your system and path are set up, rerun the LLVM
802configure script and rebuild LLVM to enable this functionality.</p>
803
804<p><tt>SelectionDAG</tt> has been extended to make it easier to locate
805<i>interesting</i> nodes in large complex graphs. From gdb, if you
806<tt>call DAG.setGraphColor(<i>node</i>, "<i>color</i>")</tt>, then the
807next <tt>call DAG.viewGraph()</tt> would highlight the node in the
808specified color (choices of colors can be found at <a
809href="http://www.graphviz.org/doc/info/colors.html">colors</a>.) More
810complex node attributes can be provided with <tt>call
811DAG.setGraphAttrs(<i>node</i>, "<i>attributes</i>")</tt> (choices can be
812found at <a href="http://www.graphviz.org/doc/info/attrs.html">Graph
813Attributes</a>.) If you want to restart and clear all the current graph
814attributes, then you can <tt>call DAG.clearGraphAttrs()</tt>. </p>
815
816</div>
817
818<!-- *********************************************************************** -->
819<div class="doc_section">
820 <a name="datastructure">Picking the Right Data Structure for a Task</a>
821</div>
822<!-- *********************************************************************** -->
823
824<div class="doc_text">
825
826<p>LLVM has a plethora of data structures in the <tt>llvm/ADT/</tt> directory,
827 and we commonly use STL data structures. This section describes the trade-offs
828 you should consider when you pick one.</p>
829
830<p>
831The first step is a choose your own adventure: do you want a sequential
832container, a set-like container, or a map-like container? The most important
833thing when choosing a container is the algorithmic properties of how you plan to
834access the container. Based on that, you should use:</p>
835
836<ul>
837<li>a <a href="#ds_map">map-like</a> container if you need efficient look-up
838 of an value based on another value. Map-like containers also support
839 efficient queries for containment (whether a key is in the map). Map-like
840 containers generally do not support efficient reverse mapping (values to
841 keys). If you need that, use two maps. Some map-like containers also
842 support efficient iteration through the keys in sorted order. Map-like
843 containers are the most expensive sort, only use them if you need one of
844 these capabilities.</li>
845
846<li>a <a href="#ds_set">set-like</a> container if you need to put a bunch of
847 stuff into a container that automatically eliminates duplicates. Some
848 set-like containers support efficient iteration through the elements in
849 sorted order. Set-like containers are more expensive than sequential
850 containers.
851</li>
852
853<li>a <a href="#ds_sequential">sequential</a> container provides
854 the most efficient way to add elements and keeps track of the order they are
855 added to the collection. They permit duplicates and support efficient
856 iteration, but do not support efficient look-up based on a key.
857</li>
858
Chris Lattnerd8b95b72009-07-25 07:22:20 +0000859<li>a <a href="#ds_string">string</a> container is a specialized sequential
860 container or reference structure that is used for character or byte
861 arrays.</li>
862
Daniel Berlin7ea44dc2007-09-24 17:52:25 +0000863<li>a <a href="#ds_bit">bit</a> container provides an efficient way to store and
864 perform set operations on sets of numeric id's, while automatically
865 eliminating duplicates. Bit containers require a maximum of 1 bit for each
866 identifier you want to store.
867</li>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000868</ul>
869
870<p>
871Once the proper category of container is determined, you can fine tune the
872memory use, constant factors, and cache behaviors of access by intelligently
873picking a member of the category. Note that constant factors and cache behavior
874can be a big deal. If you have a vector that usually only contains a few
875elements (but could contain many), for example, it's much better to use
876<a href="#dss_smallvector">SmallVector</a> than <a href="#dss_vector">vector</a>
877. Doing so avoids (relatively) expensive malloc/free calls, which dwarf the
878cost of adding the elements to the container. </p>
879
880</div>
881
882<!-- ======================================================================= -->
883<div class="doc_subsection">
884 <a name="ds_sequential">Sequential Containers (std::vector, std::list, etc)</a>
885</div>
886
887<div class="doc_text">
888There are a variety of sequential containers available for you, based on your
889needs. Pick the first in this section that will do what you want.
890</div>
891
892<!-- _______________________________________________________________________ -->
893<div class="doc_subsubsection">
894 <a name="dss_fixedarrays">Fixed Size Arrays</a>
895</div>
896
897<div class="doc_text">
898<p>Fixed size arrays are very simple and very fast. They are good if you know
899exactly how many elements you have, or you have a (low) upper bound on how many
900you have.</p>
901</div>
902
903<!-- _______________________________________________________________________ -->
904<div class="doc_subsubsection">
905 <a name="dss_heaparrays">Heap Allocated Arrays</a>
906</div>
907
908<div class="doc_text">
909<p>Heap allocated arrays (new[] + delete[]) are also simple. They are good if
910the number of elements is variable, if you know how many elements you will need
911before the array is allocated, and if the array is usually large (if not,
912consider a <a href="#dss_smallvector">SmallVector</a>). The cost of a heap
913allocated array is the cost of the new/delete (aka malloc/free). Also note that
914if you are allocating an array of a type with a constructor, the constructor and
915destructors will be run for every element in the array (re-sizable vectors only
916construct those elements actually used).</p>
917</div>
918
919<!-- _______________________________________________________________________ -->
920<div class="doc_subsubsection">
921 <a name="dss_smallvector">"llvm/ADT/SmallVector.h"</a>
922</div>
923
924<div class="doc_text">
925<p><tt>SmallVector&lt;Type, N&gt;</tt> is a simple class that looks and smells
926just like <tt>vector&lt;Type&gt;</tt>:
927it supports efficient iteration, lays out elements in memory order (so you can
928do pointer arithmetic between elements), supports efficient push_back/pop_back
929operations, supports efficient random access to its elements, etc.</p>
930
931<p>The advantage of SmallVector is that it allocates space for
932some number of elements (N) <b>in the object itself</b>. Because of this, if
933the SmallVector is dynamically smaller than N, no malloc is performed. This can
934be a big win in cases where the malloc/free call is far more expensive than the
935code that fiddles around with the elements.</p>
936
937<p>This is good for vectors that are "usually small" (e.g. the number of
938predecessors/successors of a block is usually less than 8). On the other hand,
939this makes the size of the SmallVector itself large, so you don't want to
940allocate lots of them (doing so will waste a lot of space). As such,
941SmallVectors are most useful when on the stack.</p>
942
943<p>SmallVector also provides a nice portable and efficient replacement for
944<tt>alloca</tt>.</p>
945
946</div>
947
948<!-- _______________________________________________________________________ -->
949<div class="doc_subsubsection">
950 <a name="dss_vector">&lt;vector&gt;</a>
951</div>
952
953<div class="doc_text">
954<p>
955std::vector is well loved and respected. It is useful when SmallVector isn't:
956when the size of the vector is often large (thus the small optimization will
957rarely be a benefit) or if you will be allocating many instances of the vector
958itself (which would waste space for elements that aren't in the container).
959vector is also useful when interfacing with code that expects vectors :).
960</p>
961
962<p>One worthwhile note about std::vector: avoid code like this:</p>
963
964<div class="doc_code">
965<pre>
966for ( ... ) {
967 std::vector&lt;foo&gt; V;
968 use V;
969}
970</pre>
971</div>
972
973<p>Instead, write this as:</p>
974
975<div class="doc_code">
976<pre>
977std::vector&lt;foo&gt; V;
978for ( ... ) {
979 use V;
980 V.clear();
981}
982</pre>
983</div>
984
985<p>Doing so will save (at least) one heap allocation and free per iteration of
986the loop.</p>
987
988</div>
989
990<!-- _______________________________________________________________________ -->
991<div class="doc_subsubsection">
992 <a name="dss_deque">&lt;deque&gt;</a>
993</div>
994
995<div class="doc_text">
996<p>std::deque is, in some senses, a generalized version of std::vector. Like
997std::vector, it provides constant time random access and other similar
998properties, but it also provides efficient access to the front of the list. It
999does not guarantee continuity of elements within memory.</p>
1000
1001<p>In exchange for this extra flexibility, std::deque has significantly higher
1002constant factor costs than std::vector. If possible, use std::vector or
1003something cheaper.</p>
1004</div>
1005
1006<!-- _______________________________________________________________________ -->
1007<div class="doc_subsubsection">
1008 <a name="dss_list">&lt;list&gt;</a>
1009</div>
1010
1011<div class="doc_text">
1012<p>std::list is an extremely inefficient class that is rarely useful.
1013It performs a heap allocation for every element inserted into it, thus having an
1014extremely high constant factor, particularly for small data types. std::list
1015also only supports bidirectional iteration, not random access iteration.</p>
1016
1017<p>In exchange for this high cost, std::list supports efficient access to both
1018ends of the list (like std::deque, but unlike std::vector or SmallVector). In
1019addition, the iterator invalidation characteristics of std::list are stronger
1020than that of a vector class: inserting or removing an element into the list does
1021not invalidate iterator or pointers to other elements in the list.</p>
1022</div>
1023
1024<!-- _______________________________________________________________________ -->
1025<div class="doc_subsubsection">
Gabor Greifbb17f652009-02-27 11:37:41 +00001026 <a name="dss_ilist">llvm/ADT/ilist.h</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001027</div>
1028
1029<div class="doc_text">
1030<p><tt>ilist&lt;T&gt;</tt> implements an 'intrusive' doubly-linked list. It is
1031intrusive, because it requires the element to store and provide access to the
1032prev/next pointers for the list.</p>
1033
Gabor Greifb6b21ec2009-02-27 12:02:19 +00001034<p><tt>ilist</tt> has the same drawbacks as <tt>std::list</tt>, and additionally
1035requires an <tt>ilist_traits</tt> implementation for the element type, but it
1036provides some novel characteristics. In particular, it can efficiently store
1037polymorphic objects, the traits class is informed when an element is inserted or
Gabor Greife39f0e72009-03-12 09:47:03 +00001038removed from the list, and <tt>ilist</tt>s are guaranteed to support a
1039constant-time splice operation.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001040
Gabor Greife39f0e72009-03-12 09:47:03 +00001041<p>These properties are exactly what we want for things like
1042<tt>Instruction</tt>s and basic blocks, which is why these are implemented with
1043<tt>ilist</tt>s.</p>
Gabor Greifbb17f652009-02-27 11:37:41 +00001044
1045Related classes of interest are explained in the following subsections:
1046 <ul>
Gabor Greifa17abe12009-02-27 13:28:07 +00001047 <li><a href="#dss_ilist_traits">ilist_traits</a></li>
Gabor Greifb6b21ec2009-02-27 12:02:19 +00001048 <li><a href="#dss_iplist">iplist</a></li>
Gabor Greifbb17f652009-02-27 11:37:41 +00001049 <li><a href="#dss_ilist_node">llvm/ADT/ilist_node.h</a></li>
Gabor Greifd970d692009-03-12 10:30:31 +00001050 <li><a href="#dss_ilist_sentinel">Sentinels</a></li>
Gabor Greifbb17f652009-02-27 11:37:41 +00001051 </ul>
1052</div>
1053
1054<!-- _______________________________________________________________________ -->
1055<div class="doc_subsubsection">
Gabor Greifa17abe12009-02-27 13:28:07 +00001056 <a name="dss_ilist_traits">ilist_traits</a>
1057</div>
1058
1059<div class="doc_text">
1060<p><tt>ilist_traits&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s customization
1061mechanism. <tt>iplist&lt;T&gt;</tt> (and consequently <tt>ilist&lt;T&gt;</tt>)
1062publicly derive from this traits class.</p>
1063</div>
1064
1065<!-- _______________________________________________________________________ -->
1066<div class="doc_subsubsection">
Gabor Greifb6b21ec2009-02-27 12:02:19 +00001067 <a name="dss_iplist">iplist</a>
1068</div>
1069
1070<div class="doc_text">
1071<p><tt>iplist&lt;T&gt;</tt> is <tt>ilist&lt;T&gt;</tt>'s base and as such
Gabor Greife39f0e72009-03-12 09:47:03 +00001072supports a slightly narrower interface. Notably, inserters from
1073<tt>T&amp;</tt> are absent.</p>
Gabor Greifa17abe12009-02-27 13:28:07 +00001074
1075<p><tt>ilist_traits&lt;T&gt;</tt> is a public base of this class and can be
1076used for a wide variety of customizations.</p>
Gabor Greifb6b21ec2009-02-27 12:02:19 +00001077</div>
1078
1079<!-- _______________________________________________________________________ -->
1080<div class="doc_subsubsection">
Gabor Greifbb17f652009-02-27 11:37:41 +00001081 <a name="dss_ilist_node">llvm/ADT/ilist_node.h</a>
1082</div>
1083
1084<div class="doc_text">
1085<p><tt>ilist_node&lt;T&gt;</tt> implements a the forward and backward links
1086that are expected by the <tt>ilist&lt;T&gt;</tt> (and analogous containers)
1087in the default manner.</p>
1088
1089<p><tt>ilist_node&lt;T&gt;</tt>s are meant to be embedded in the node type
Gabor Greife39f0e72009-03-12 09:47:03 +00001090<tt>T</tt>, usually <tt>T</tt> publicly derives from
1091<tt>ilist_node&lt;T&gt;</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001092</div>
1093
1094<!-- _______________________________________________________________________ -->
1095<div class="doc_subsubsection">
Gabor Greifd970d692009-03-12 10:30:31 +00001096 <a name="dss_ilist_sentinel">Sentinels</a>
1097</div>
1098
1099<div class="doc_text">
1100<p><tt>ilist</tt>s have another speciality that must be considered. To be a good
1101citizen in the C++ ecosystem, it needs to support the standard container
1102operations, such as <tt>begin</tt> and <tt>end</tt> iterators, etc. Also, the
1103<tt>operator--</tt> must work correctly on the <tt>end</tt> iterator in the
1104case of non-empty <tt>ilist</tt>s.</p>
1105
1106<p>The only sensible solution to this problem is to allocate a so-called
1107<i>sentinel</i> along with the intrusive list, which serves as the <tt>end</tt>
1108iterator, providing the back-link to the last element. However conforming to the
1109C++ convention it is illegal to <tt>operator++</tt> beyond the sentinel and it
1110also must not be dereferenced.</p>
1111
1112<p>These constraints allow for some implementation freedom to the <tt>ilist</tt>
1113how to allocate and store the sentinel. The corresponding policy is dictated
1114by <tt>ilist_traits&lt;T&gt;</tt>. By default a <tt>T</tt> gets heap-allocated
1115whenever the need for a sentinel arises.</p>
1116
1117<p>While the default policy is sufficient in most cases, it may break down when
1118<tt>T</tt> does not provide a default constructor. Also, in the case of many
1119instances of <tt>ilist</tt>s, the memory overhead of the associated sentinels
1120is wasted. To alleviate the situation with numerous and voluminous
1121<tt>T</tt>-sentinels, sometimes a trick is employed, leading to <i>ghostly
1122sentinels</i>.</p>
1123
1124<p>Ghostly sentinels are obtained by specially-crafted <tt>ilist_traits&lt;T&gt;</tt>
1125which superpose the sentinel with the <tt>ilist</tt> instance in memory. Pointer
1126arithmetic is used to obtain the sentinel, which is relative to the
1127<tt>ilist</tt>'s <tt>this</tt> pointer. The <tt>ilist</tt> is augmented by an
1128extra pointer, which serves as the back-link of the sentinel. This is the only
1129field in the ghostly sentinel which can be legally accessed.</p>
1130</div>
1131
1132<!-- _______________________________________________________________________ -->
1133<div class="doc_subsubsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001134 <a name="dss_other">Other Sequential Container options</a>
1135</div>
1136
1137<div class="doc_text">
1138<p>Other STL containers are available, such as std::string.</p>
1139
1140<p>There are also various STL adapter classes such as std::queue,
1141std::priority_queue, std::stack, etc. These provide simplified access to an
1142underlying container but don't affect the cost of the container itself.</p>
1143
1144</div>
1145
1146
1147<!-- ======================================================================= -->
1148<div class="doc_subsection">
1149 <a name="ds_set">Set-Like Containers (std::set, SmallSet, SetVector, etc)</a>
1150</div>
1151
1152<div class="doc_text">
1153
1154<p>Set-like containers are useful when you need to canonicalize multiple values
1155into a single representation. There are several different choices for how to do
1156this, providing various trade-offs.</p>
1157
1158</div>
1159
1160
1161<!-- _______________________________________________________________________ -->
1162<div class="doc_subsubsection">
1163 <a name="dss_sortedvectorset">A sorted 'vector'</a>
1164</div>
1165
1166<div class="doc_text">
1167
1168<p>If you intend to insert a lot of elements, then do a lot of queries, a
1169great approach is to use a vector (or other sequential container) with
1170std::sort+std::unique to remove duplicates. This approach works really well if
1171your usage pattern has these two distinct phases (insert then query), and can be
1172coupled with a good choice of <a href="#ds_sequential">sequential container</a>.
1173</p>
1174
1175<p>
1176This combination provides the several nice properties: the result data is
1177contiguous in memory (good for cache locality), has few allocations, is easy to
1178address (iterators in the final vector are just indices or pointers), and can be
1179efficiently queried with a standard binary or radix search.</p>
1180
1181</div>
1182
1183<!-- _______________________________________________________________________ -->
1184<div class="doc_subsubsection">
1185 <a name="dss_smallset">"llvm/ADT/SmallSet.h"</a>
1186</div>
1187
1188<div class="doc_text">
1189
1190<p>If you have a set-like data structure that is usually small and whose elements
1191are reasonably small, a <tt>SmallSet&lt;Type, N&gt;</tt> is a good choice. This set
1192has space for N elements in place (thus, if the set is dynamically smaller than
1193N, no malloc traffic is required) and accesses them with a simple linear search.
1194When the set grows beyond 'N' elements, it allocates a more expensive representation that
1195guarantees efficient access (for most types, it falls back to std::set, but for
1196pointers it uses something far better, <a
1197href="#dss_smallptrset">SmallPtrSet</a>).</p>
1198
1199<p>The magic of this class is that it handles small sets extremely efficiently,
1200but gracefully handles extremely large sets without loss of efficiency. The
1201drawback is that the interface is quite small: it supports insertion, queries
1202and erasing, but does not support iteration.</p>
1203
1204</div>
1205
1206<!-- _______________________________________________________________________ -->
1207<div class="doc_subsubsection">
1208 <a name="dss_smallptrset">"llvm/ADT/SmallPtrSet.h"</a>
1209</div>
1210
1211<div class="doc_text">
1212
1213<p>SmallPtrSet has all the advantages of SmallSet (and a SmallSet of pointers is
1214transparently implemented with a SmallPtrSet), but also supports iterators. If
1215more than 'N' insertions are performed, a single quadratically
1216probed hash table is allocated and grows as needed, providing extremely
1217efficient access (constant time insertion/deleting/queries with low constant
1218factors) and is very stingy with malloc traffic.</p>
1219
1220<p>Note that, unlike std::set, the iterators of SmallPtrSet are invalidated
1221whenever an insertion occurs. Also, the values visited by the iterators are not
1222visited in sorted order.</p>
1223
1224</div>
1225
1226<!-- _______________________________________________________________________ -->
1227<div class="doc_subsubsection">
Chris Lattner77ab46d2007-09-30 00:58:59 +00001228 <a name="dss_denseset">"llvm/ADT/DenseSet.h"</a>
1229</div>
1230
1231<div class="doc_text">
1232
1233<p>
1234DenseSet is a simple quadratically probed hash table. It excels at supporting
1235small values: it uses a single allocation to hold all of the pairs that
1236are currently inserted in the set. DenseSet is a great way to unique small
1237values that are not simple pointers (use <a
1238href="#dss_smallptrset">SmallPtrSet</a> for pointers). Note that DenseSet has
1239the same requirements for the value type that <a
1240href="#dss_densemap">DenseMap</a> has.
1241</p>
1242
1243</div>
1244
1245<!-- _______________________________________________________________________ -->
1246<div class="doc_subsubsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001247 <a name="dss_FoldingSet">"llvm/ADT/FoldingSet.h"</a>
1248</div>
1249
1250<div class="doc_text">
1251
1252<p>
1253FoldingSet is an aggregate class that is really good at uniquing
1254expensive-to-create or polymorphic objects. It is a combination of a chained
1255hash table with intrusive links (uniqued objects are required to inherit from
1256FoldingSetNode) that uses <a href="#dss_smallvector">SmallVector</a> as part of
1257its ID process.</p>
1258
1259<p>Consider a case where you want to implement a "getOrCreateFoo" method for
1260a complex object (for example, a node in the code generator). The client has a
1261description of *what* it wants to generate (it knows the opcode and all the
1262operands), but we don't want to 'new' a node, then try inserting it into a set
1263only to find out it already exists, at which point we would have to delete it
1264and return the node that already exists.
1265</p>
1266
1267<p>To support this style of client, FoldingSet perform a query with a
1268FoldingSetNodeID (which wraps SmallVector) that can be used to describe the
1269element that we want to query for. The query either returns the element
1270matching the ID or it returns an opaque ID that indicates where insertion should
1271take place. Construction of the ID usually does not require heap traffic.</p>
1272
1273<p>Because FoldingSet uses intrusive links, it can support polymorphic objects
1274in the set (for example, you can have SDNode instances mixed with LoadSDNodes).
1275Because the elements are individually allocated, pointers to the elements are
1276stable: inserting or removing elements does not invalidate any pointers to other
1277elements.
1278</p>
1279
1280</div>
1281
1282<!-- _______________________________________________________________________ -->
1283<div class="doc_subsubsection">
1284 <a name="dss_set">&lt;set&gt;</a>
1285</div>
1286
1287<div class="doc_text">
1288
1289<p><tt>std::set</tt> is a reasonable all-around set class, which is decent at
1290many things but great at nothing. std::set allocates memory for each element
1291inserted (thus it is very malloc intensive) and typically stores three pointers
1292per element in the set (thus adding a large amount of per-element space
1293overhead). It offers guaranteed log(n) performance, which is not particularly
1294fast from a complexity standpoint (particularly if the elements of the set are
1295expensive to compare, like strings), and has extremely high constant factors for
1296lookup, insertion and removal.</p>
1297
1298<p>The advantages of std::set are that its iterators are stable (deleting or
1299inserting an element from the set does not affect iterators or pointers to other
1300elements) and that iteration over the set is guaranteed to be in sorted order.
1301If the elements in the set are large, then the relative overhead of the pointers
1302and malloc traffic is not a big deal, but if the elements of the set are small,
1303std::set is almost never a good choice.</p>
1304
1305</div>
1306
1307<!-- _______________________________________________________________________ -->
1308<div class="doc_subsubsection">
1309 <a name="dss_setvector">"llvm/ADT/SetVector.h"</a>
1310</div>
1311
1312<div class="doc_text">
1313<p>LLVM's SetVector&lt;Type&gt; is an adapter class that combines your choice of
1314a set-like container along with a <a href="#ds_sequential">Sequential
1315Container</a>. The important property
1316that this provides is efficient insertion with uniquing (duplicate elements are
1317ignored) with iteration support. It implements this by inserting elements into
1318both a set-like container and the sequential container, using the set-like
1319container for uniquing and the sequential container for iteration.
1320</p>
1321
1322<p>The difference between SetVector and other sets is that the order of
1323iteration is guaranteed to match the order of insertion into the SetVector.
1324This property is really important for things like sets of pointers. Because
1325pointer values are non-deterministic (e.g. vary across runs of the program on
1326different machines), iterating over the pointers in the set will
1327not be in a well-defined order.</p>
1328
1329<p>
1330The drawback of SetVector is that it requires twice as much space as a normal
1331set and has the sum of constant factors from the set-like container and the
1332sequential container that it uses. Use it *only* if you need to iterate over
1333the elements in a deterministic order. SetVector is also expensive to delete
1334elements out of (linear time), unless you use it's "pop_back" method, which is
1335faster.
1336</p>
1337
1338<p>SetVector is an adapter class that defaults to using std::vector and std::set
1339for the underlying containers, so it is quite expensive. However,
1340<tt>"llvm/ADT/SetVector.h"</tt> also provides a SmallSetVector class, which
1341defaults to using a SmallVector and SmallSet of a specified size. If you use
1342this, and if your sets are dynamically smaller than N, you will save a lot of
1343heap traffic.</p>
1344
1345</div>
1346
1347<!-- _______________________________________________________________________ -->
1348<div class="doc_subsubsection">
1349 <a name="dss_uniquevector">"llvm/ADT/UniqueVector.h"</a>
1350</div>
1351
1352<div class="doc_text">
1353
1354<p>
1355UniqueVector is similar to <a href="#dss_setvector">SetVector</a>, but it
1356retains a unique ID for each element inserted into the set. It internally
1357contains a map and a vector, and it assigns a unique ID for each value inserted
1358into the set.</p>
1359
1360<p>UniqueVector is very expensive: its cost is the sum of the cost of
1361maintaining both the map and vector, it has high complexity, high constant
1362factors, and produces a lot of malloc traffic. It should be avoided.</p>
1363
1364</div>
1365
1366
1367<!-- _______________________________________________________________________ -->
1368<div class="doc_subsubsection">
1369 <a name="dss_otherset">Other Set-Like Container Options</a>
1370</div>
1371
1372<div class="doc_text">
1373
1374<p>
1375The STL provides several other options, such as std::multiset and the various
Chris Lattner86a63d02009-03-09 05:20:45 +00001376"hash_set" like containers (whether from C++ TR1 or from the SGI library). We
1377never use hash_set and unordered_set because they are generally very expensive
1378(each insertion requires a malloc) and very non-portable.
1379</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001380
1381<p>std::multiset is useful if you're not interested in elimination of
1382duplicates, but has all the drawbacks of std::set. A sorted vector (where you
1383don't delete duplicate entries) or some other approach is almost always
1384better.</p>
1385
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001386</div>
1387
1388<!-- ======================================================================= -->
1389<div class="doc_subsection">
1390 <a name="ds_map">Map-Like Containers (std::map, DenseMap, etc)</a>
1391</div>
1392
1393<div class="doc_text">
1394Map-like containers are useful when you want to associate data to a key. As
1395usual, there are a lot of different ways to do this. :)
1396</div>
1397
1398<!-- _______________________________________________________________________ -->
1399<div class="doc_subsubsection">
1400 <a name="dss_sortedvectormap">A sorted 'vector'</a>
1401</div>
1402
1403<div class="doc_text">
1404
1405<p>
1406If your usage pattern follows a strict insert-then-query approach, you can
1407trivially use the same approach as <a href="#dss_sortedvectorset">sorted vectors
1408for set-like containers</a>. The only difference is that your query function
1409(which uses std::lower_bound to get efficient log(n) lookup) should only compare
1410the key, not both the key and value. This yields the same advantages as sorted
1411vectors for sets.
1412</p>
1413</div>
1414
1415<!-- _______________________________________________________________________ -->
1416<div class="doc_subsubsection">
1417 <a name="dss_stringmap">"llvm/ADT/StringMap.h"</a>
1418</div>
1419
1420<div class="doc_text">
1421
1422<p>
1423Strings are commonly used as keys in maps, and they are difficult to support
1424efficiently: they are variable length, inefficient to hash and compare when
1425long, expensive to copy, etc. StringMap is a specialized container designed to
1426cope with these issues. It supports mapping an arbitrary range of bytes to an
1427arbitrary other object.</p>
1428
1429<p>The StringMap implementation uses a quadratically-probed hash table, where
1430the buckets store a pointer to the heap allocated entries (and some other
1431stuff). The entries in the map must be heap allocated because the strings are
1432variable length. The string data (key) and the element object (value) are
1433stored in the same allocation with the string data immediately after the element
1434object. This container guarantees the "<tt>(char*)(&amp;Value+1)</tt>" points
1435to the key string for a value.</p>
1436
1437<p>The StringMap is very fast for several reasons: quadratic probing is very
1438cache efficient for lookups, the hash value of strings in buckets is not
1439recomputed when lookup up an element, StringMap rarely has to touch the
1440memory for unrelated objects when looking up a value (even when hash collisions
1441happen), hash table growth does not recompute the hash values for strings
1442already in the table, and each pair in the map is store in a single allocation
1443(the string data is stored in the same allocation as the Value of a pair).</p>
1444
1445<p>StringMap also provides query methods that take byte ranges, so it only ever
1446copies a string if a value is inserted into the table.</p>
1447</div>
1448
1449<!-- _______________________________________________________________________ -->
1450<div class="doc_subsubsection">
1451 <a name="dss_indexedmap">"llvm/ADT/IndexedMap.h"</a>
1452</div>
1453
1454<div class="doc_text">
1455<p>
1456IndexedMap is a specialized container for mapping small dense integers (or
1457values that can be mapped to small dense integers) to some other type. It is
1458internally implemented as a vector with a mapping function that maps the keys to
1459the dense integer range.
1460</p>
1461
1462<p>
1463This is useful for cases like virtual registers in the LLVM code generator: they
1464have a dense mapping that is offset by a compile-time constant (the first
1465virtual register ID).</p>
1466
1467</div>
1468
1469<!-- _______________________________________________________________________ -->
1470<div class="doc_subsubsection">
1471 <a name="dss_densemap">"llvm/ADT/DenseMap.h"</a>
1472</div>
1473
1474<div class="doc_text">
1475
1476<p>
1477DenseMap is a simple quadratically probed hash table. It excels at supporting
1478small keys and values: it uses a single allocation to hold all of the pairs that
1479are currently inserted in the map. DenseMap is a great way to map pointers to
1480pointers, or map other small types to each other.
1481</p>
1482
1483<p>
1484There are several aspects of DenseMap that you should be aware of, however. The
1485iterators in a densemap are invalidated whenever an insertion occurs, unlike
1486map. Also, because DenseMap allocates space for a large number of key/value
1487pairs (it starts with 64 by default), it will waste a lot of space if your keys
1488or values are large. Finally, you must implement a partial specialization of
Chris Lattner92eea072007-09-17 18:34:04 +00001489DenseMapInfo for the key that you want, if it isn't already supported. This
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001490is required to tell DenseMap about two special marker values (which can never be
1491inserted into the map) that it needs internally.</p>
1492
1493</div>
1494
1495<!-- _______________________________________________________________________ -->
1496<div class="doc_subsubsection">
Jeffrey Yasskin50e846d2009-10-22 22:11:22 +00001497 <a name="dss_valuemap">"llvm/ADT/ValueMap.h"</a>
1498</div>
1499
1500<div class="doc_text">
1501
1502<p>
1503ValueMap is a wrapper around a <a href="#dss_densemap">DenseMap</a> mapping
1504Value*s (or subclasses) to another type. When a Value is deleted or RAUW'ed,
1505ValueMap will update itself so the new version of the key is mapped to the same
1506value, just as if the key were a WeakVH. You can configure exactly how this
1507happens, and what else happens on these two events, by passing
1508a <code>Config</code> parameter to the ValueMap template.</p>
1509
1510</div>
1511
1512<!-- _______________________________________________________________________ -->
1513<div class="doc_subsubsection">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001514 <a name="dss_map">&lt;map&gt;</a>
1515</div>
1516
1517<div class="doc_text">
1518
1519<p>
1520std::map has similar characteristics to <a href="#dss_set">std::set</a>: it uses
1521a single allocation per pair inserted into the map, it offers log(n) lookup with
1522an extremely large constant factor, imposes a space penalty of 3 pointers per
1523pair in the map, etc.</p>
1524
1525<p>std::map is most useful when your keys or values are very large, if you need
1526to iterate over the collection in sorted order, or if you need stable iterators
1527into the map (i.e. they don't get invalidated if an insertion or deletion of
1528another element takes place).</p>
1529
1530</div>
1531
1532<!-- _______________________________________________________________________ -->
1533<div class="doc_subsubsection">
1534 <a name="dss_othermap">Other Map-Like Container Options</a>
1535</div>
1536
1537<div class="doc_text">
1538
1539<p>
1540The STL provides several other options, such as std::multimap and the various
Chris Lattner86a63d02009-03-09 05:20:45 +00001541"hash_map" like containers (whether from C++ TR1 or from the SGI library). We
1542never use hash_set and unordered_set because they are generally very expensive
1543(each insertion requires a malloc) and very non-portable.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001544
1545<p>std::multimap is useful if you want to map a key to multiple values, but has
1546all the drawbacks of std::map. A sorted vector or some other approach is almost
1547always better.</p>
1548
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001549</div>
1550
Daniel Berlin7ea44dc2007-09-24 17:52:25 +00001551<!-- ======================================================================= -->
1552<div class="doc_subsection">
Chris Lattnerd8b95b72009-07-25 07:22:20 +00001553 <a name="ds_string">String-like containers</a>
1554</div>
1555
1556<div class="doc_text">
1557
1558<p>
1559TODO: const char* vs stringref vs smallstring vs std::string. Describe twine,
1560xref to #string_apis.
1561</p>
1562
1563</div>
1564
1565<!-- ======================================================================= -->
1566<div class="doc_subsection">
Daniel Berlin7ea44dc2007-09-24 17:52:25 +00001567 <a name="ds_bit">Bit storage containers (BitVector, SparseBitVector)</a>
1568</div>
1569
1570<div class="doc_text">
Chris Lattner62a4eae2007-09-25 22:37:50 +00001571<p>Unlike the other containers, there are only two bit storage containers, and
1572choosing when to use each is relatively straightforward.</p>
1573
1574<p>One additional option is
1575<tt>std::vector&lt;bool&gt;</tt>: we discourage its use for two reasons 1) the
1576implementation in many common compilers (e.g. commonly available versions of
1577GCC) is extremely inefficient and 2) the C++ standards committee is likely to
1578deprecate this container and/or change it significantly somehow. In any case,
1579please don't use it.</p>
Daniel Berlin7ea44dc2007-09-24 17:52:25 +00001580</div>
1581
1582<!-- _______________________________________________________________________ -->
1583<div class="doc_subsubsection">
1584 <a name="dss_bitvector">BitVector</a>
1585</div>
1586
1587<div class="doc_text">
Dan Gohmanc83a2b42010-01-05 18:24:00 +00001588<p> The BitVector container provides a dynamic size set of bits for manipulation.
Daniel Berlin7ea44dc2007-09-24 17:52:25 +00001589It supports individual bit setting/testing, as well as set operations. The set
1590operations take time O(size of bitvector), but operations are performed one word
1591at a time, instead of one bit at a time. This makes the BitVector very fast for
1592set operations compared to other containers. Use the BitVector when you expect
1593the number of set bits to be high (IE a dense set).
1594</p>
1595</div>
1596
1597<!-- _______________________________________________________________________ -->
1598<div class="doc_subsubsection">
Dan Gohmanc83a2b42010-01-05 18:24:00 +00001599 <a name="dss_smallbitvector">SmallBitVector</a>
1600</div>
1601
1602<div class="doc_text">
1603<p> The SmallBitVector container provides the same interface as BitVector, but
1604it is optimized for the case where only a small number of bits, less than
160525 or so, are needed. It also transparently supports larger bit counts, but
1606slightly less efficiently than a plain BitVector, so SmallBitVector should
1607only be used when larger counts are rare.
1608</p>
1609
1610<p>
1611At this time, SmallBitVector does not support set operations (and, or, xor),
1612and its operator[] does not provide an assignable lvalue.
1613</p>
1614</div>
1615
1616<!-- _______________________________________________________________________ -->
1617<div class="doc_subsubsection">
Daniel Berlin7ea44dc2007-09-24 17:52:25 +00001618 <a name="dss_sparsebitvector">SparseBitVector</a>
1619</div>
1620
1621<div class="doc_text">
1622<p> The SparseBitVector container is much like BitVector, with one major
1623difference: Only the bits that are set, are stored. This makes the
1624SparseBitVector much more space efficient than BitVector when the set is sparse,
1625as well as making set operations O(number of set bits) instead of O(size of
1626universe). The downside to the SparseBitVector is that setting and testing of random bits is O(N), and on large SparseBitVectors, this can be slower than BitVector. In our implementation, setting or testing bits in sorted order
1627(either forwards or reverse) is O(1) worst case. Testing and setting bits within 128 bits (depends on size) of the current bit is also O(1). As a general statement, testing/setting bits in a SparseBitVector is O(distance away from last set bit).
1628</p>
1629</div>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001630
1631<!-- *********************************************************************** -->
1632<div class="doc_section">
1633 <a name="common">Helpful Hints for Common Operations</a>
1634</div>
1635<!-- *********************************************************************** -->
1636
1637<div class="doc_text">
1638
1639<p>This section describes how to perform some very simple transformations of
1640LLVM code. This is meant to give examples of common idioms used, showing the
1641practical side of LLVM transformations. <p> Because this is a "how-to" section,
1642you should also read about the main classes that you will be working with. The
1643<a href="#coreclasses">Core LLVM Class Hierarchy Reference</a> contains details
1644and descriptions of the main classes that you should know about.</p>
1645
1646</div>
1647
1648<!-- NOTE: this section should be heavy on example code -->
1649<!-- ======================================================================= -->
1650<div class="doc_subsection">
1651 <a name="inspection">Basic Inspection and Traversal Routines</a>
1652</div>
1653
1654<div class="doc_text">
1655
1656<p>The LLVM compiler infrastructure have many different data structures that may
1657be traversed. Following the example of the C++ standard template library, the
1658techniques used to traverse these various data structures are all basically the
1659same. For a enumerable sequence of values, the <tt>XXXbegin()</tt> function (or
1660method) returns an iterator to the start of the sequence, the <tt>XXXend()</tt>
1661function returns an iterator pointing to one past the last valid element of the
1662sequence, and there is some <tt>XXXiterator</tt> data type that is common
1663between the two operations.</p>
1664
1665<p>Because the pattern for iteration is common across many different aspects of
1666the program representation, the standard template library algorithms may be used
1667on them, and it is easier to remember how to iterate. First we show a few common
1668examples of the data structures that need to be traversed. Other data
1669structures are traversed in very similar ways.</p>
1670
1671</div>
1672
1673<!-- _______________________________________________________________________ -->
1674<div class="doc_subsubsection">
1675 <a name="iterate_function">Iterating over the </a><a
1676 href="#BasicBlock"><tt>BasicBlock</tt></a>s in a <a
1677 href="#Function"><tt>Function</tt></a>
1678</div>
1679
1680<div class="doc_text">
1681
1682<p>It's quite common to have a <tt>Function</tt> instance that you'd like to
1683transform in some way; in particular, you'd like to manipulate its
1684<tt>BasicBlock</tt>s. To facilitate this, you'll need to iterate over all of
1685the <tt>BasicBlock</tt>s that constitute the <tt>Function</tt>. The following is
1686an example that prints the name of a <tt>BasicBlock</tt> and the number of
1687<tt>Instruction</tt>s it contains:</p>
1688
1689<div class="doc_code">
1690<pre>
1691// <i>func is a pointer to a Function instance</i>
1692for (Function::iterator i = func-&gt;begin(), e = func-&gt;end(); i != e; ++i)
1693 // <i>Print out the name of the basic block if it has one, and then the</i>
1694 // <i>number of instructions that it contains</i>
Chris Lattner599c3922009-09-08 05:15:50 +00001695 errs() &lt;&lt; "Basic block (name=" &lt;&lt; i-&gt;getName() &lt;&lt; ") has "
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001696 &lt;&lt; i-&gt;size() &lt;&lt; " instructions.\n";
1697</pre>
1698</div>
1699
1700<p>Note that i can be used as if it were a pointer for the purposes of
1701invoking member functions of the <tt>Instruction</tt> class. This is
1702because the indirection operator is overloaded for the iterator
1703classes. In the above code, the expression <tt>i-&gt;size()</tt> is
1704exactly equivalent to <tt>(*i).size()</tt> just like you'd expect.</p>
1705
1706</div>
1707
1708<!-- _______________________________________________________________________ -->
1709<div class="doc_subsubsection">
1710 <a name="iterate_basicblock">Iterating over the </a><a
1711 href="#Instruction"><tt>Instruction</tt></a>s in a <a
1712 href="#BasicBlock"><tt>BasicBlock</tt></a>
1713</div>
1714
1715<div class="doc_text">
1716
1717<p>Just like when dealing with <tt>BasicBlock</tt>s in <tt>Function</tt>s, it's
1718easy to iterate over the individual instructions that make up
1719<tt>BasicBlock</tt>s. Here's a code snippet that prints out each instruction in
1720a <tt>BasicBlock</tt>:</p>
1721
1722<div class="doc_code">
1723<pre>
1724// <i>blk is a pointer to a BasicBlock instance</i>
1725for (BasicBlock::iterator i = blk-&gt;begin(), e = blk-&gt;end(); i != e; ++i)
1726 // <i>The next statement works since operator&lt;&lt;(ostream&amp;,...)</i>
1727 // <i>is overloaded for Instruction&amp;</i>
Chris Lattner599c3922009-09-08 05:15:50 +00001728 errs() &lt;&lt; *i &lt;&lt; "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001729</pre>
1730</div>
1731
1732<p>However, this isn't really the best way to print out the contents of a
1733<tt>BasicBlock</tt>! Since the ostream operators are overloaded for virtually
1734anything you'll care about, you could have just invoked the print routine on the
Chris Lattner599c3922009-09-08 05:15:50 +00001735basic block itself: <tt>errs() &lt;&lt; *blk &lt;&lt; "\n";</tt>.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001736
1737</div>
1738
1739<!-- _______________________________________________________________________ -->
1740<div class="doc_subsubsection">
1741 <a name="iterate_institer">Iterating over the </a><a
1742 href="#Instruction"><tt>Instruction</tt></a>s in a <a
1743 href="#Function"><tt>Function</tt></a>
1744</div>
1745
1746<div class="doc_text">
1747
1748<p>If you're finding that you commonly iterate over a <tt>Function</tt>'s
1749<tt>BasicBlock</tt>s and then that <tt>BasicBlock</tt>'s <tt>Instruction</tt>s,
1750<tt>InstIterator</tt> should be used instead. You'll need to include <a
1751href="/doxygen/InstIterator_8h-source.html"><tt>llvm/Support/InstIterator.h</tt></a>,
1752and then instantiate <tt>InstIterator</tt>s explicitly in your code. Here's a
1753small example that shows how to dump all instructions in a function to the standard error stream:<p>
1754
1755<div class="doc_code">
1756<pre>
1757#include "<a href="/doxygen/InstIterator_8h-source.html">llvm/Support/InstIterator.h</a>"
1758
1759// <i>F is a pointer to a Function instance</i>
Chris Lattnerfd62ee72008-06-04 18:20:42 +00001760for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
Chris Lattner599c3922009-09-08 05:15:50 +00001761 errs() &lt;&lt; *I &lt;&lt; "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001762</pre>
1763</div>
1764
1765<p>Easy, isn't it? You can also use <tt>InstIterator</tt>s to fill a
1766work list with its initial contents. For example, if you wanted to
1767initialize a work list to contain all instructions in a <tt>Function</tt>
1768F, all you would need to do is something like:</p>
1769
1770<div class="doc_code">
1771<pre>
1772std::set&lt;Instruction*&gt; worklist;
Chris Lattnerfd62ee72008-06-04 18:20:42 +00001773// or better yet, SmallPtrSet&lt;Instruction*, 64&gt; worklist;
1774
1775for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I)
1776 worklist.insert(&amp;*I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001777</pre>
1778</div>
1779
1780<p>The STL set <tt>worklist</tt> would now contain all instructions in the
1781<tt>Function</tt> pointed to by F.</p>
1782
1783</div>
1784
1785<!-- _______________________________________________________________________ -->
1786<div class="doc_subsubsection">
1787 <a name="iterate_convert">Turning an iterator into a class pointer (and
1788 vice-versa)</a>
1789</div>
1790
1791<div class="doc_text">
1792
1793<p>Sometimes, it'll be useful to grab a reference (or pointer) to a class
1794instance when all you've got at hand is an iterator. Well, extracting
1795a reference or a pointer from an iterator is very straight-forward.
1796Assuming that <tt>i</tt> is a <tt>BasicBlock::iterator</tt> and <tt>j</tt>
1797is a <tt>BasicBlock::const_iterator</tt>:</p>
1798
1799<div class="doc_code">
1800<pre>
1801Instruction&amp; inst = *i; // <i>Grab reference to instruction reference</i>
1802Instruction* pinst = &amp;*i; // <i>Grab pointer to instruction reference</i>
1803const Instruction&amp; inst = *j;
1804</pre>
1805</div>
1806
1807<p>However, the iterators you'll be working with in the LLVM framework are
1808special: they will automatically convert to a ptr-to-instance type whenever they
1809need to. Instead of dereferencing the iterator and then taking the address of
1810the result, you can simply assign the iterator to the proper pointer type and
1811you get the dereference and address-of operation as a result of the assignment
1812(behind the scenes, this is a result of overloading casting mechanisms). Thus
1813the last line of the last example,</p>
1814
1815<div class="doc_code">
1816<pre>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001817Instruction *pinst = &amp;*i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001818</pre>
1819</div>
1820
1821<p>is semantically equivalent to</p>
1822
1823<div class="doc_code">
1824<pre>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001825Instruction *pinst = i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001826</pre>
1827</div>
1828
1829<p>It's also possible to turn a class pointer into the corresponding iterator,
1830and this is a constant time operation (very efficient). The following code
1831snippet illustrates use of the conversion constructors provided by LLVM
1832iterators. By using these, you can explicitly grab the iterator of something
1833without actually obtaining it via iteration over some structure:</p>
1834
1835<div class="doc_code">
1836<pre>
1837void printNextInstruction(Instruction* inst) {
1838 BasicBlock::iterator it(inst);
1839 ++it; // <i>After this line, it refers to the instruction after *inst</i>
Chris Lattner599c3922009-09-08 05:15:50 +00001840 if (it != inst-&gt;getParent()-&gt;end()) errs() &lt;&lt; *it &lt;&lt; "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001841}
1842</pre>
1843</div>
1844
1845</div>
1846
1847<!--_______________________________________________________________________-->
1848<div class="doc_subsubsection">
1849 <a name="iterate_complex">Finding call sites: a slightly more complex
1850 example</a>
1851</div>
1852
1853<div class="doc_text">
1854
1855<p>Say that you're writing a FunctionPass and would like to count all the
1856locations in the entire module (that is, across every <tt>Function</tt>) where a
1857certain function (i.e., some <tt>Function</tt>*) is already in scope. As you'll
1858learn later, you may want to use an <tt>InstVisitor</tt> to accomplish this in a
1859much more straight-forward manner, but this example will allow us to explore how
1860you'd do it if you didn't have <tt>InstVisitor</tt> around. In pseudo-code, this
1861is what we want to do:</p>
1862
1863<div class="doc_code">
1864<pre>
1865initialize callCounter to zero
1866for each Function f in the Module
1867 for each BasicBlock b in f
1868 for each Instruction i in b
1869 if (i is a CallInst and calls the given function)
1870 increment callCounter
1871</pre>
1872</div>
1873
1874<p>And the actual code is (remember, because we're writing a
1875<tt>FunctionPass</tt>, our <tt>FunctionPass</tt>-derived class simply has to
1876override the <tt>runOnFunction</tt> method):</p>
1877
1878<div class="doc_code">
1879<pre>
1880Function* targetFunc = ...;
1881
1882class OurFunctionPass : public FunctionPass {
1883 public:
1884 OurFunctionPass(): callCounter(0) { }
1885
1886 virtual runOnFunction(Function&amp; F) {
1887 for (Function::iterator b = F.begin(), be = F.end(); b != be; ++b) {
Eric Christopher5fbecf72008-11-08 08:20:49 +00001888 for (BasicBlock::iterator i = b-&gt;begin(), ie = b-&gt;end(); i != ie; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001889 if (<a href="#CallInst">CallInst</a>* callInst = <a href="#isa">dyn_cast</a>&lt;<a
1890 href="#CallInst">CallInst</a>&gt;(&amp;*i)) {
1891 // <i>We know we've encountered a call instruction, so we</i>
1892 // <i>need to determine if it's a call to the</i>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001893 // <i>function pointed to by m_func or not.</i>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001894 if (callInst-&gt;getCalledFunction() == targetFunc)
1895 ++callCounter;
1896 }
1897 }
1898 }
1899 }
1900
1901 private:
Chris Lattner0665e1f2008-01-03 16:56:04 +00001902 unsigned callCounter;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001903};
1904</pre>
1905</div>
1906
1907</div>
1908
1909<!--_______________________________________________________________________-->
1910<div class="doc_subsubsection">
1911 <a name="calls_and_invokes">Treating calls and invokes the same way</a>
1912</div>
1913
1914<div class="doc_text">
1915
1916<p>You may have noticed that the previous example was a bit oversimplified in
1917that it did not deal with call sites generated by 'invoke' instructions. In
1918this, and in other situations, you may find that you want to treat
1919<tt>CallInst</tt>s and <tt>InvokeInst</tt>s the same way, even though their
1920most-specific common base class is <tt>Instruction</tt>, which includes lots of
1921less closely-related things. For these cases, LLVM provides a handy wrapper
1922class called <a
1923href="http://llvm.org/doxygen/classllvm_1_1CallSite.html"><tt>CallSite</tt></a>.
1924It is essentially a wrapper around an <tt>Instruction</tt> pointer, with some
1925methods that provide functionality common to <tt>CallInst</tt>s and
1926<tt>InvokeInst</tt>s.</p>
1927
1928<p>This class has "value semantics": it should be passed by value, not by
1929reference and it should not be dynamically allocated or deallocated using
1930<tt>operator new</tt> or <tt>operator delete</tt>. It is efficiently copyable,
1931assignable and constructable, with costs equivalents to that of a bare pointer.
1932If you look at its definition, it has only a single pointer member.</p>
1933
1934</div>
1935
1936<!--_______________________________________________________________________-->
1937<div class="doc_subsubsection">
1938 <a name="iterate_chains">Iterating over def-use &amp; use-def chains</a>
1939</div>
1940
1941<div class="doc_text">
1942
1943<p>Frequently, we might have an instance of the <a
1944href="/doxygen/classllvm_1_1Value.html">Value Class</a> and we want to
1945determine which <tt>User</tt>s use the <tt>Value</tt>. The list of all
1946<tt>User</tt>s of a particular <tt>Value</tt> is called a <i>def-use</i> chain.
1947For example, let's say we have a <tt>Function*</tt> named <tt>F</tt> to a
1948particular function <tt>foo</tt>. Finding all of the instructions that
1949<i>use</i> <tt>foo</tt> is as simple as iterating over the <i>def-use</i> chain
1950of <tt>F</tt>:</p>
1951
1952<div class="doc_code">
1953<pre>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001954Function *F = ...;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001955
1956for (Value::use_iterator i = F-&gt;use_begin(), e = F-&gt;use_end(); i != e; ++i)
1957 if (Instruction *Inst = dyn_cast&lt;Instruction&gt;(*i)) {
Chris Lattner599c3922009-09-08 05:15:50 +00001958 errs() &lt;&lt; "F is used in instruction:\n";
1959 errs() &lt;&lt; *Inst &lt;&lt; "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001960 }
1961</pre>
1962</div>
1963
1964<p>Alternately, it's common to have an instance of the <a
1965href="/doxygen/classllvm_1_1User.html">User Class</a> and need to know what
1966<tt>Value</tt>s are used by it. The list of all <tt>Value</tt>s used by a
1967<tt>User</tt> is known as a <i>use-def</i> chain. Instances of class
1968<tt>Instruction</tt> are common <tt>User</tt>s, so we might want to iterate over
1969all of the values that a particular instruction uses (that is, the operands of
1970the particular <tt>Instruction</tt>):</p>
1971
1972<div class="doc_code">
1973<pre>
Chris Lattner0665e1f2008-01-03 16:56:04 +00001974Instruction *pi = ...;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001975
1976for (User::op_iterator i = pi-&gt;op_begin(), e = pi-&gt;op_end(); i != e; ++i) {
Chris Lattner0665e1f2008-01-03 16:56:04 +00001977 Value *v = *i;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001978 // <i>...</i>
1979}
1980</pre>
1981</div>
1982
1983<!--
1984 def-use chains ("finding all users of"): Value::use_begin/use_end
1985 use-def chains ("finding all values used"): User::op_begin/op_end [op=operand]
1986-->
1987
1988</div>
1989
Chris Lattner0665e1f2008-01-03 16:56:04 +00001990<!--_______________________________________________________________________-->
1991<div class="doc_subsubsection">
1992 <a name="iterate_preds">Iterating over predecessors &amp;
1993successors of blocks</a>
1994</div>
1995
1996<div class="doc_text">
1997
1998<p>Iterating over the predecessors and successors of a block is quite easy
1999with the routines defined in <tt>"llvm/Support/CFG.h"</tt>. Just use code like
2000this to iterate over all predecessors of BB:</p>
2001
2002<div class="doc_code">
2003<pre>
2004#include "llvm/Support/CFG.h"
2005BasicBlock *BB = ...;
2006
2007for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
2008 BasicBlock *Pred = *PI;
2009 // <i>...</i>
2010}
2011</pre>
2012</div>
2013
2014<p>Similarly, to iterate over successors use
2015succ_iterator/succ_begin/succ_end.</p>
2016
2017</div>
2018
2019
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002020<!-- ======================================================================= -->
2021<div class="doc_subsection">
2022 <a name="simplechanges">Making simple changes</a>
2023</div>
2024
2025<div class="doc_text">
2026
2027<p>There are some primitive transformation operations present in the LLVM
2028infrastructure that are worth knowing about. When performing
2029transformations, it's fairly common to manipulate the contents of basic
2030blocks. This section describes some of the common methods for doing so
2031and gives example code.</p>
2032
2033</div>
2034
2035<!--_______________________________________________________________________-->
2036<div class="doc_subsubsection">
2037 <a name="schanges_creating">Creating and inserting new
2038 <tt>Instruction</tt>s</a>
2039</div>
2040
2041<div class="doc_text">
2042
2043<p><i>Instantiating Instructions</i></p>
2044
2045<p>Creation of <tt>Instruction</tt>s is straight-forward: simply call the
2046constructor for the kind of instruction to instantiate and provide the necessary
2047parameters. For example, an <tt>AllocaInst</tt> only <i>requires</i> a
2048(const-ptr-to) <tt>Type</tt>. Thus:</p>
2049
2050<div class="doc_code">
2051<pre>
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00002052AllocaInst* ai = new AllocaInst(Type::Int32Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002053</pre>
2054</div>
2055
2056<p>will create an <tt>AllocaInst</tt> instance that represents the allocation of
2057one integer in the current stack frame, at run time. Each <tt>Instruction</tt>
2058subclass is likely to have varying default parameters which change the semantics
2059of the instruction, so refer to the <a
2060href="/doxygen/classllvm_1_1Instruction.html">doxygen documentation for the subclass of
2061Instruction</a> that you're interested in instantiating.</p>
2062
2063<p><i>Naming values</i></p>
2064
2065<p>It is very useful to name the values of instructions when you're able to, as
2066this facilitates the debugging of your transformations. If you end up looking
2067at generated LLVM machine code, you definitely want to have logical names
2068associated with the results of instructions! By supplying a value for the
2069<tt>Name</tt> (default) parameter of the <tt>Instruction</tt> constructor, you
2070associate a logical name with the result of the instruction's execution at
2071run time. For example, say that I'm writing a transformation that dynamically
2072allocates space for an integer on the stack, and that integer is going to be
2073used as some kind of index by some other code. To accomplish this, I place an
2074<tt>AllocaInst</tt> at the first point in the first <tt>BasicBlock</tt> of some
2075<tt>Function</tt>, and I'm intending to use it within the same
2076<tt>Function</tt>. I might do:</p>
2077
2078<div class="doc_code">
2079<pre>
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00002080AllocaInst* pa = new AllocaInst(Type::Int32Ty, 0, "indexLoc");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002081</pre>
2082</div>
2083
2084<p>where <tt>indexLoc</tt> is now the logical name of the instruction's
2085execution value, which is a pointer to an integer on the run time stack.</p>
2086
2087<p><i>Inserting instructions</i></p>
2088
2089<p>There are essentially two ways to insert an <tt>Instruction</tt>
2090into an existing sequence of instructions that form a <tt>BasicBlock</tt>:</p>
2091
2092<ul>
2093 <li>Insertion into an explicit instruction list
2094
2095 <p>Given a <tt>BasicBlock* pb</tt>, an <tt>Instruction* pi</tt> within that
2096 <tt>BasicBlock</tt>, and a newly-created instruction we wish to insert
2097 before <tt>*pi</tt>, we do the following: </p>
2098
2099<div class="doc_code">
2100<pre>
2101BasicBlock *pb = ...;
2102Instruction *pi = ...;
2103Instruction *newInst = new Instruction(...);
2104
2105pb-&gt;getInstList().insert(pi, newInst); // <i>Inserts newInst before pi in pb</i>
2106</pre>
2107</div>
2108
2109 <p>Appending to the end of a <tt>BasicBlock</tt> is so common that
2110 the <tt>Instruction</tt> class and <tt>Instruction</tt>-derived
2111 classes provide constructors which take a pointer to a
2112 <tt>BasicBlock</tt> to be appended to. For example code that
2113 looked like: </p>
2114
2115<div class="doc_code">
2116<pre>
2117BasicBlock *pb = ...;
2118Instruction *newInst = new Instruction(...);
2119
2120pb-&gt;getInstList().push_back(newInst); // <i>Appends newInst to pb</i>
2121</pre>
2122</div>
2123
2124 <p>becomes: </p>
2125
2126<div class="doc_code">
2127<pre>
2128BasicBlock *pb = ...;
2129Instruction *newInst = new Instruction(..., pb);
2130</pre>
2131</div>
2132
2133 <p>which is much cleaner, especially if you are creating
2134 long instruction streams.</p></li>
2135
2136 <li>Insertion into an implicit instruction list
2137
2138 <p><tt>Instruction</tt> instances that are already in <tt>BasicBlock</tt>s
2139 are implicitly associated with an existing instruction list: the instruction
2140 list of the enclosing basic block. Thus, we could have accomplished the same
2141 thing as the above code without being given a <tt>BasicBlock</tt> by doing:
2142 </p>
2143
2144<div class="doc_code">
2145<pre>
2146Instruction *pi = ...;
2147Instruction *newInst = new Instruction(...);
2148
2149pi-&gt;getParent()-&gt;getInstList().insert(pi, newInst);
2150</pre>
2151</div>
2152
2153 <p>In fact, this sequence of steps occurs so frequently that the
2154 <tt>Instruction</tt> class and <tt>Instruction</tt>-derived classes provide
2155 constructors which take (as a default parameter) a pointer to an
2156 <tt>Instruction</tt> which the newly-created <tt>Instruction</tt> should
2157 precede. That is, <tt>Instruction</tt> constructors are capable of
2158 inserting the newly-created instance into the <tt>BasicBlock</tt> of a
2159 provided instruction, immediately before that instruction. Using an
2160 <tt>Instruction</tt> constructor with a <tt>insertBefore</tt> (default)
2161 parameter, the above code becomes:</p>
2162
2163<div class="doc_code">
2164<pre>
2165Instruction* pi = ...;
2166Instruction* newInst = new Instruction(..., pi);
2167</pre>
2168</div>
2169
2170 <p>which is much cleaner, especially if you're creating a lot of
2171 instructions and adding them to <tt>BasicBlock</tt>s.</p></li>
2172</ul>
2173
2174</div>
2175
2176<!--_______________________________________________________________________-->
2177<div class="doc_subsubsection">
2178 <a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a>
2179</div>
2180
2181<div class="doc_text">
2182
2183<p>Deleting an instruction from an existing sequence of instructions that form a
2184<a href="#BasicBlock"><tt>BasicBlock</tt></a> is very straight-forward. First,
2185you must have a pointer to the instruction that you wish to delete. Second, you
2186need to obtain the pointer to that instruction's basic block. You use the
2187pointer to the basic block to get its list of instructions and then use the
2188erase function to remove your instruction. For example:</p>
2189
2190<div class="doc_code">
2191<pre>
2192<a href="#Instruction">Instruction</a> *I = .. ;
Chris Lattner3db8f772008-02-15 22:57:17 +00002193I-&gt;eraseFromParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002194</pre>
2195</div>
2196
2197</div>
2198
2199<!--_______________________________________________________________________-->
2200<div class="doc_subsubsection">
2201 <a name="schanges_replacing">Replacing an <tt>Instruction</tt> with another
2202 <tt>Value</tt></a>
2203</div>
2204
2205<div class="doc_text">
2206
2207<p><i>Replacing individual instructions</i></p>
2208
2209<p>Including "<a href="/doxygen/BasicBlockUtils_8h-source.html">llvm/Transforms/Utils/BasicBlockUtils.h</a>"
2210permits use of two very useful replace functions: <tt>ReplaceInstWithValue</tt>
2211and <tt>ReplaceInstWithInst</tt>.</p>
2212
2213<h4><a name="schanges_deleting">Deleting <tt>Instruction</tt>s</a></h4>
2214
2215<ul>
2216 <li><tt>ReplaceInstWithValue</tt>
2217
Nick Lewycky48d4b032008-09-15 06:31:52 +00002218 <p>This function replaces all uses of a given instruction with a value,
2219 and then removes the original instruction. The following example
2220 illustrates the replacement of the result of a particular
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002221 <tt>AllocaInst</tt> that allocates memory for a single integer with a null
2222 pointer to an integer.</p>
2223
2224<div class="doc_code">
2225<pre>
2226AllocaInst* instToReplace = ...;
2227BasicBlock::iterator ii(instToReplace);
2228
2229ReplaceInstWithValue(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
Daniel Dunbar8ce79622008-10-03 22:17:25 +00002230 Constant::getNullValue(PointerType::getUnqual(Type::Int32Ty)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002231</pre></div></li>
2232
2233 <li><tt>ReplaceInstWithInst</tt>
2234
2235 <p>This function replaces a particular instruction with another
Nick Lewycky48d4b032008-09-15 06:31:52 +00002236 instruction, inserting the new instruction into the basic block at the
2237 location where the old instruction was, and replacing any uses of the old
2238 instruction with the new instruction. The following example illustrates
2239 the replacement of one <tt>AllocaInst</tt> with another.</p>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002240
2241<div class="doc_code">
2242<pre>
2243AllocaInst* instToReplace = ...;
2244BasicBlock::iterator ii(instToReplace);
2245
2246ReplaceInstWithInst(instToReplace-&gt;getParent()-&gt;getInstList(), ii,
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00002247 new AllocaInst(Type::Int32Ty, 0, "ptrToReplacedInt"));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002248</pre></div></li>
2249</ul>
2250
2251<p><i>Replacing multiple uses of <tt>User</tt>s and <tt>Value</tt>s</i></p>
2252
2253<p>You can use <tt>Value::replaceAllUsesWith</tt> and
2254<tt>User::replaceUsesOfWith</tt> to change more than one use at a time. See the
2255doxygen documentation for the <a href="/doxygen/classllvm_1_1Value.html">Value Class</a>
2256and <a href="/doxygen/classllvm_1_1User.html">User Class</a>, respectively, for more
2257information.</p>
2258
2259<!-- Value::replaceAllUsesWith User::replaceUsesOfWith Point out:
2260include/llvm/Transforms/Utils/ especially BasicBlockUtils.h with:
2261ReplaceInstWithValue, ReplaceInstWithInst -->
2262
2263</div>
2264
2265<!--_______________________________________________________________________-->
2266<div class="doc_subsubsection">
2267 <a name="schanges_deletingGV">Deleting <tt>GlobalVariable</tt>s</a>
2268</div>
2269
2270<div class="doc_text">
2271
2272<p>Deleting a global variable from a module is just as easy as deleting an
2273Instruction. First, you must have a pointer to the global variable that you wish
2274 to delete. You use this pointer to erase it from its parent, the module.
2275 For example:</p>
2276
2277<div class="doc_code">
2278<pre>
2279<a href="#GlobalVariable">GlobalVariable</a> *GV = .. ;
2280
2281GV-&gt;eraseFromParent();
2282</pre>
2283</div>
2284
2285</div>
2286
Jeffrey Yasskin7ebb6ac2009-04-30 22:33:41 +00002287<!-- ======================================================================= -->
2288<div class="doc_subsection">
2289 <a name="create_types">How to Create Types</a>
2290</div>
2291
2292<div class="doc_text">
2293
2294<p>In generating IR, you may need some complex types. If you know these types
Misha Brukman06725132009-05-01 20:40:51 +00002295statically, you can use <tt>TypeBuilder&lt;...&gt;::get()</tt>, defined
Jeffrey Yasskin7ebb6ac2009-04-30 22:33:41 +00002296in <tt>llvm/Support/TypeBuilder.h</tt>, to retrieve them. <tt>TypeBuilder</tt>
2297has two forms depending on whether you're building types for cross-compilation
Misha Brukman06725132009-05-01 20:40:51 +00002298or native library use. <tt>TypeBuilder&lt;T, true&gt;</tt> requires
Jeffrey Yasskin7ebb6ac2009-04-30 22:33:41 +00002299that <tt>T</tt> be independent of the host environment, meaning that it's built
2300out of types from
2301the <a href="/doxygen/namespacellvm_1_1types.html"><tt>llvm::types</tt></a>
2302namespace and pointers, functions, arrays, etc. built of
Misha Brukman06725132009-05-01 20:40:51 +00002303those. <tt>TypeBuilder&lt;T, false&gt;</tt> additionally allows native C types
Jeffrey Yasskin7ebb6ac2009-04-30 22:33:41 +00002304whose size may depend on the host compiler. For example,</p>
2305
2306<div class="doc_code">
2307<pre>
Misha Brukman06725132009-05-01 20:40:51 +00002308FunctionType *ft = TypeBuilder&lt;types::i&lt;8&gt;(types::i&lt;32&gt;*), true&gt;::get();
Jeffrey Yasskin7ebb6ac2009-04-30 22:33:41 +00002309</pre>
2310</div>
2311
2312<p>is easier to read and write than the equivalent</p>
2313
2314<div class="doc_code">
2315<pre>
Owen Anderson60f87572009-06-16 17:40:28 +00002316std::vector&lt;const Type*&gt; params;
Jeffrey Yasskin7ebb6ac2009-04-30 22:33:41 +00002317params.push_back(PointerType::getUnqual(Type::Int32Ty));
2318FunctionType *ft = FunctionType::get(Type::Int8Ty, params, false);
2319</pre>
2320</div>
2321
2322<p>See the <a href="/doxygen/TypeBuilder_8h-source.html#l00001">class
2323comment</a> for more details.</p>
2324
2325</div>
2326
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002327<!-- *********************************************************************** -->
2328<div class="doc_section">
Owen Andersone8370c02009-06-16 01:17:16 +00002329 <a name="threading">Threads and LLVM</a>
2330</div>
2331<!-- *********************************************************************** -->
2332
2333<div class="doc_text">
2334<p>
2335This section describes the interaction of the LLVM APIs with multithreading,
2336both on the part of client applications, and in the JIT, in the hosted
2337application.
2338</p>
2339
2340<p>
2341Note that LLVM's support for multithreading is still relatively young. Up
2342through version 2.5, the execution of threaded hosted applications was
2343supported, but not threaded client access to the APIs. While this use case is
2344now supported, clients <em>must</em> adhere to the guidelines specified below to
2345ensure proper operation in multithreaded mode.
2346</p>
2347
2348<p>
2349Note that, on Unix-like platforms, LLVM requires the presence of GCC's atomic
2350intrinsics in order to support threaded operation. If you need a
2351multhreading-capable LLVM on a platform without a suitably modern system
2352compiler, consider compiling LLVM and LLVM-GCC in single-threaded mode, and
2353using the resultant compiler to build a copy of LLVM with multithreading
2354support.
2355</p>
2356</div>
2357
2358<!-- ======================================================================= -->
2359<div class="doc_subsection">
Owen Andersonb4186902009-06-16 18:04:19 +00002360 <a name="startmultithreaded">Entering and Exiting Multithreaded Mode</a>
Owen Andersone8370c02009-06-16 01:17:16 +00002361</div>
2362
2363<div class="doc_text">
2364
2365<p>
2366In order to properly protect its internal data structures while avoiding
Owen Andersonb4186902009-06-16 18:04:19 +00002367excessive locking overhead in the single-threaded case, the LLVM must intialize
2368certain data structures necessary to provide guards around its internals. To do
2369so, the client program must invoke <tt>llvm_start_multithreaded()</tt> before
2370making any concurrent LLVM API calls. To subsequently tear down these
2371structures, use the <tt>llvm_stop_multithreaded()</tt> call. You can also use
2372the <tt>llvm_is_multithreaded()</tt> call to check the status of multithreaded
2373mode.
Owen Andersone8370c02009-06-16 01:17:16 +00002374</p>
2375
2376<p>
Owen Andersonb4186902009-06-16 18:04:19 +00002377Note that both of these calls must be made <em>in isolation</em>. That is to
2378say that no other LLVM API calls may be executing at any time during the
2379execution of <tt>llvm_start_multithreaded()</tt> or <tt>llvm_stop_multithreaded
2380</tt>. It's is the client's responsibility to enforce this isolation.
2381</p>
2382
2383<p>
2384The return value of <tt>llvm_start_multithreaded()</tt> indicates the success or
2385failure of the initialization. Failure typically indicates that your copy of
2386LLVM was built without multithreading support, typically because GCC atomic
2387intrinsics were not found in your system compiler. In this case, the LLVM API
2388will not be safe for concurrent calls. However, it <em>will</em> be safe for
2389hosting threaded applications in the JIT, though care must be taken to ensure
2390that side exits and the like do not accidentally result in concurrent LLVM API
2391calls.
Owen Andersone8370c02009-06-16 01:17:16 +00002392</p>
2393</div>
2394
2395<!-- ======================================================================= -->
2396<div class="doc_subsection">
2397 <a name="shutdown">Ending Execution with <tt>llvm_shutdown()</tt></a>
2398</div>
2399
2400<div class="doc_text">
2401<p>
2402When you are done using the LLVM APIs, you should call <tt>llvm_shutdown()</tt>
Owen Andersonb4186902009-06-16 18:04:19 +00002403to deallocate memory used for internal structures. This will also invoke
2404<tt>llvm_stop_multithreaded()</tt> if LLVM is operating in multithreaded mode.
2405As such, <tt>llvm_shutdown()</tt> requires the same isolation guarantees as
2406<tt>llvm_stop_multithreaded()</tt>.
Owen Andersone8370c02009-06-16 01:17:16 +00002407</p>
2408
2409<p>
2410Note that, if you use scope-based shutdown, you can use the
2411<tt>llvm_shutdown_obj</tt> class, which calls <tt>llvm_shutdown()</tt> in its
2412destructor.
2413</div>
2414
2415<!-- ======================================================================= -->
2416<div class="doc_subsection">
2417 <a name="managedstatic">Lazy Initialization with <tt>ManagedStatic</tt></a>
2418</div>
2419
2420<div class="doc_text">
2421<p>
2422<tt>ManagedStatic</tt> is a utility class in LLVM used to implement static
2423initialization of static resources, such as the global type tables. Before the
2424invocation of <tt>llvm_shutdown()</tt>, it implements a simple lazy
2425initialization scheme. Once <tt>llvm_start_multithreaded()</tt> returns,
2426however, it uses double-checked locking to implement thread-safe lazy
2427initialization.
2428</p>
2429
2430<p>
2431Note that, because no other threads are allowed to issue LLVM API calls before
2432<tt>llvm_start_multithreaded()</tt> returns, it is possible to have
2433<tt>ManagedStatic</tt>s of <tt>llvm::sys::Mutex</tt>s.
2434</p>
Owen Andersonb4186902009-06-16 18:04:19 +00002435
2436<p>
2437The <tt>llvm_acquire_global_lock()</tt> and <tt>llvm_release_global_lock</tt>
2438APIs provide access to the global lock used to implement the double-checked
2439locking for lazy initialization. These should only be used internally to LLVM,
2440and only if you know what you're doing!
2441</p>
Owen Andersone8370c02009-06-16 01:17:16 +00002442</div>
2443
Owen Anderson3f2da0e2009-08-19 17:58:52 +00002444<!-- ======================================================================= -->
2445<div class="doc_subsection">
2446 <a name="llvmcontext">Achieving Isolation with <tt>LLVMContext</tt></a>
2447</div>
2448
2449<div class="doc_text">
2450<p>
2451<tt>LLVMContext</tt> is an opaque class in the LLVM API which clients can use
2452to operate multiple, isolated instances of LLVM concurrently within the same
2453address space. For instance, in a hypothetical compile-server, the compilation
2454of an individual translation unit is conceptually independent from all the
2455others, and it would be desirable to be able to compile incoming translation
2456units concurrently on independent server threads. Fortunately,
2457<tt>LLVMContext</tt> exists to enable just this kind of scenario!
2458</p>
2459
2460<p>
2461Conceptually, <tt>LLVMContext</tt> provides isolation. Every LLVM entity
2462(<tt>Module</tt>s, <tt>Value</tt>s, <tt>Type</tt>s, <tt>Constant</tt>s, etc.)
Chris Lattner9ca98ce2009-08-20 03:10:14 +00002463in LLVM's in-memory IR belongs to an <tt>LLVMContext</tt>. Entities in
Owen Anderson3f2da0e2009-08-19 17:58:52 +00002464different contexts <em>cannot</em> interact with each other: <tt>Module</tt>s in
2465different contexts cannot be linked together, <tt>Function</tt>s cannot be added
2466to <tt>Module</tt>s in different contexts, etc. What this means is that is is
2467safe to compile on multiple threads simultaneously, as long as no two threads
2468operate on entities within the same context.
2469</p>
2470
2471<p>
2472In practice, very few places in the API require the explicit specification of a
2473<tt>LLVMContext</tt>, other than the <tt>Type</tt> creation/lookup APIs.
2474Because every <tt>Type</tt> carries a reference to its owning context, most
2475other entities can determine what context they belong to by looking at their
2476own <tt>Type</tt>. If you are adding new entities to LLVM IR, please try to
2477maintain this interface design.
2478</p>
2479
2480<p>
2481For clients that do <em>not</em> require the benefits of isolation, LLVM
2482provides a convenience API <tt>getGlobalContext()</tt>. This returns a global,
2483lazily initialized <tt>LLVMContext</tt> that may be used in situations where
2484isolation is not a concern.
2485</p>
2486</div>
2487
Owen Andersone8370c02009-06-16 01:17:16 +00002488<!-- *********************************************************************** -->
2489<div class="doc_section">
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002490 <a name="advanced">Advanced Topics</a>
2491</div>
2492<!-- *********************************************************************** -->
2493
2494<div class="doc_text">
2495<p>
2496This section describes some of the advanced or obscure API's that most clients
2497do not need to be aware of. These API's tend manage the inner workings of the
2498LLVM system, and only need to be accessed in unusual circumstances.
2499</p>
2500</div>
2501
2502<!-- ======================================================================= -->
2503<div class="doc_subsection">
2504 <a name="TypeResolve">LLVM Type Resolution</a>
2505</div>
2506
2507<div class="doc_text">
2508
2509<p>
2510The LLVM type system has a very simple goal: allow clients to compare types for
2511structural equality with a simple pointer comparison (aka a shallow compare).
2512This goal makes clients much simpler and faster, and is used throughout the LLVM
2513system.
2514</p>
2515
2516<p>
2517Unfortunately achieving this goal is not a simple matter. In particular,
2518recursive types and late resolution of opaque types makes the situation very
2519difficult to handle. Fortunately, for the most part, our implementation makes
2520most clients able to be completely unaware of the nasty internal details. The
2521primary case where clients are exposed to the inner workings of it are when
2522building a recursive type. In addition to this case, the LLVM bitcode reader,
2523assembly parser, and linker also have to be aware of the inner workings of this
2524system.
2525</p>
2526
2527<p>
2528For our purposes below, we need three concepts. First, an "Opaque Type" is
2529exactly as defined in the <a href="LangRef.html#t_opaque">language
2530reference</a>. Second an "Abstract Type" is any type which includes an
2531opaque type as part of its type graph (for example "<tt>{ opaque, i32 }</tt>").
2532Third, a concrete type is a type that is not an abstract type (e.g. "<tt>{ i32,
2533float }</tt>").
2534</p>
2535
2536</div>
2537
2538<!-- ______________________________________________________________________ -->
2539<div class="doc_subsubsection">
2540 <a name="BuildRecType">Basic Recursive Type Construction</a>
2541</div>
2542
2543<div class="doc_text">
2544
2545<p>
2546Because the most common question is "how do I build a recursive type with LLVM",
2547we answer it now and explain it as we go. Here we include enough to cause this
2548to be emitted to an output .ll file:
2549</p>
2550
2551<div class="doc_code">
2552<pre>
2553%mylist = type { %mylist*, i32 }
2554</pre>
2555</div>
2556
2557<p>
2558To build this, use the following LLVM APIs:
2559</p>
2560
2561<div class="doc_code">
2562<pre>
2563// <i>Create the initial outer struct</i>
2564<a href="#PATypeHolder">PATypeHolder</a> StructTy = OpaqueType::get();
2565std::vector&lt;const Type*&gt; Elts;
Daniel Dunbar8ce79622008-10-03 22:17:25 +00002566Elts.push_back(PointerType::getUnqual(StructTy));
Nick Lewyckyc004e5b2007-12-03 01:52:52 +00002567Elts.push_back(Type::Int32Ty);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002568StructType *NewSTy = StructType::get(Elts);
2569
2570// <i>At this point, NewSTy = "{ opaque*, i32 }". Tell VMCore that</i>
2571// <i>the struct and the opaque type are actually the same.</i>
2572cast&lt;OpaqueType&gt;(StructTy.get())-&gt;<a href="#refineAbstractTypeTo">refineAbstractTypeTo</a>(NewSTy);
2573
2574// <i>NewSTy is potentially invalidated, but StructTy (a <a href="#PATypeHolder">PATypeHolder</a>) is</i>
2575// <i>kept up-to-date</i>
2576NewSTy = cast&lt;StructType&gt;(StructTy.get());
2577
2578// <i>Add a name for the type to the module symbol table (optional)</i>
2579MyModule-&gt;addTypeName("mylist", NewSTy);
2580</pre>
2581</div>
2582
2583<p>
2584This code shows the basic approach used to build recursive types: build a
2585non-recursive type using 'opaque', then use type unification to close the cycle.
2586The type unification step is performed by the <tt><a
2587href="#refineAbstractTypeTo">refineAbstractTypeTo</a></tt> method, which is
2588described next. After that, we describe the <a
2589href="#PATypeHolder">PATypeHolder class</a>.
2590</p>
2591
2592</div>
2593
2594<!-- ______________________________________________________________________ -->
2595<div class="doc_subsubsection">
2596 <a name="refineAbstractTypeTo">The <tt>refineAbstractTypeTo</tt> method</a>
2597</div>
2598
2599<div class="doc_text">
2600<p>
2601The <tt>refineAbstractTypeTo</tt> method starts the type unification process.
2602While this method is actually a member of the DerivedType class, it is most
2603often used on OpaqueType instances. Type unification is actually a recursive
2604process. After unification, types can become structurally isomorphic to
2605existing types, and all duplicates are deleted (to preserve pointer equality).
2606</p>
2607
2608<p>
2609In the example above, the OpaqueType object is definitely deleted.
2610Additionally, if there is an "{ \2*, i32}" type already created in the system,
2611the pointer and struct type created are <b>also</b> deleted. Obviously whenever
2612a type is deleted, any "Type*" pointers in the program are invalidated. As
2613such, it is safest to avoid having <i>any</i> "Type*" pointers to abstract types
2614live across a call to <tt>refineAbstractTypeTo</tt> (note that non-abstract
2615types can never move or be deleted). To deal with this, the <a
2616href="#PATypeHolder">PATypeHolder</a> class is used to maintain a stable
2617reference to a possibly refined type, and the <a
2618href="#AbstractTypeUser">AbstractTypeUser</a> class is used to update more
2619complex datastructures.
2620</p>
2621
2622</div>
2623
2624<!-- ______________________________________________________________________ -->
2625<div class="doc_subsubsection">
2626 <a name="PATypeHolder">The PATypeHolder Class</a>
2627</div>
2628
2629<div class="doc_text">
2630<p>
2631PATypeHolder is a form of a "smart pointer" for Type objects. When VMCore
2632happily goes about nuking types that become isomorphic to existing types, it
2633automatically updates all PATypeHolder objects to point to the new type. In the
2634example above, this allows the code to maintain a pointer to the resultant
2635resolved recursive type, even though the Type*'s are potentially invalidated.
2636</p>
2637
2638<p>
2639PATypeHolder is an extremely light-weight object that uses a lazy union-find
2640implementation to update pointers. For example the pointer from a Value to its
2641Type is maintained by PATypeHolder objects.
2642</p>
2643
2644</div>
2645
2646<!-- ______________________________________________________________________ -->
2647<div class="doc_subsubsection">
2648 <a name="AbstractTypeUser">The AbstractTypeUser Class</a>
2649</div>
2650
2651<div class="doc_text">
2652
2653<p>
2654Some data structures need more to perform more complex updates when types get
2655resolved. To support this, a class can derive from the AbstractTypeUser class.
2656This class
2657allows it to get callbacks when certain types are resolved. To register to get
2658callbacks for a particular type, the DerivedType::{add/remove}AbstractTypeUser
2659methods can be called on a type. Note that these methods only work for <i>
2660 abstract</i> types. Concrete types (those that do not include any opaque
2661objects) can never be refined.
2662</p>
2663</div>
2664
2665
2666<!-- ======================================================================= -->
2667<div class="doc_subsection">
2668 <a name="SymbolTable">The <tt>ValueSymbolTable</tt> and
2669 <tt>TypeSymbolTable</tt> classes</a>
2670</div>
2671
2672<div class="doc_text">
2673<p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1ValueSymbolTable.html">
2674ValueSymbolTable</a></tt> class provides a symbol table that the <a
2675href="#Function"><tt>Function</tt></a> and <a href="#Module">
2676<tt>Module</tt></a> classes use for naming value definitions. The symbol table
2677can provide a name for any <a href="#Value"><tt>Value</tt></a>.
2678The <tt><a href="http://llvm.org/doxygen/classllvm_1_1TypeSymbolTable.html">
2679TypeSymbolTable</a></tt> class is used by the <tt>Module</tt> class to store
2680names for types.</p>
2681
2682<p>Note that the <tt>SymbolTable</tt> class should not be directly accessed
2683by most clients. It should only be used when iteration over the symbol table
2684names themselves are required, which is very special purpose. Note that not
2685all LLVM
Gabor Greif92e87762008-06-16 21:06:12 +00002686<tt><a href="#Value">Value</a></tt>s have names, and those without names (i.e. they have
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002687an empty name) do not exist in the symbol table.
2688</p>
2689
2690<p>These symbol tables support iteration over the values/types in the symbol
2691table with <tt>begin/end/iterator</tt> and supports querying to see if a
2692specific name is in the symbol table (with <tt>lookup</tt>). The
2693<tt>ValueSymbolTable</tt> class exposes no public mutator methods, instead,
2694simply call <tt>setName</tt> on a value, which will autoinsert it into the
2695appropriate symbol table. For types, use the Module::addTypeName method to
2696insert entries into the symbol table.</p>
2697
2698</div>
2699
2700
2701
Gabor Greif92e87762008-06-16 21:06:12 +00002702<!-- ======================================================================= -->
2703<div class="doc_subsection">
2704 <a name="UserLayout">The <tt>User</tt> and owned <tt>Use</tt> classes' memory layout</a>
2705</div>
2706
2707<div class="doc_text">
2708<p>The <tt><a href="http://llvm.org/doxygen/classllvm_1_1User.html">
Gabor Greif50626fc2009-01-05 16:05:32 +00002709User</a></tt> class provides a basis for expressing the ownership of <tt>User</tt>
Gabor Greif92e87762008-06-16 21:06:12 +00002710towards other <tt><a href="http://llvm.org/doxygen/classllvm_1_1Value.html">
2711Value</a></tt>s. The <tt><a href="http://llvm.org/doxygen/classllvm_1_1Use.html">
Gabor Greif93b462b2008-06-18 13:44:57 +00002712Use</a></tt> helper class is employed to do the bookkeeping and to facilitate <i>O(1)</i>
Gabor Greif92e87762008-06-16 21:06:12 +00002713addition and removal.</p>
2714
Gabor Greif93b462b2008-06-18 13:44:57 +00002715<!-- ______________________________________________________________________ -->
2716<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00002717 <a name="Use2User">Interaction and relationship between <tt>User</tt> and <tt>Use</tt> objects</a>
Gabor Greif93b462b2008-06-18 13:44:57 +00002718</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002719
Gabor Greif93b462b2008-06-18 13:44:57 +00002720<div class="doc_text">
2721<p>
2722A subclass of <tt>User</tt> can choose between incorporating its <tt>Use</tt> objects
Gabor Greif92e87762008-06-16 21:06:12 +00002723or refer to them out-of-line by means of a pointer. A mixed variant
Gabor Greif93b462b2008-06-18 13:44:57 +00002724(some <tt>Use</tt>s inline others hung off) is impractical and breaks the invariant
2725that the <tt>Use</tt> objects belonging to the same <tt>User</tt> form a contiguous array.
2726</p>
2727</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002728
Gabor Greif93b462b2008-06-18 13:44:57 +00002729<p>
2730We have 2 different layouts in the <tt>User</tt> (sub)classes:
2731<ul>
2732<li><p>Layout a)
2733The <tt>Use</tt> object(s) are inside (resp. at fixed offset) of the <tt>User</tt>
2734object and there are a fixed number of them.</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002735
Gabor Greif93b462b2008-06-18 13:44:57 +00002736<li><p>Layout b)
2737The <tt>Use</tt> object(s) are referenced by a pointer to an
2738array from the <tt>User</tt> object and there may be a variable
2739number of them.</p>
2740</ul>
2741<p>
Gabor Greife247e362008-06-25 00:10:22 +00002742As of v2.4 each layout still possesses a direct pointer to the
Gabor Greif93b462b2008-06-18 13:44:57 +00002743start of the array of <tt>Use</tt>s. Though not mandatory for layout a),
Gabor Greif92e87762008-06-16 21:06:12 +00002744we stick to this redundancy for the sake of simplicity.
Gabor Greife247e362008-06-25 00:10:22 +00002745The <tt>User</tt> object also stores the number of <tt>Use</tt> objects it
Gabor Greif92e87762008-06-16 21:06:12 +00002746has. (Theoretically this information can also be calculated
Gabor Greif93b462b2008-06-18 13:44:57 +00002747given the scheme presented below.)</p>
2748<p>
2749Special forms of allocation operators (<tt>operator new</tt>)
Gabor Greife247e362008-06-25 00:10:22 +00002750enforce the following memory layouts:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002751
Gabor Greif93b462b2008-06-18 13:44:57 +00002752<ul>
Gabor Greife247e362008-06-25 00:10:22 +00002753<li><p>Layout a) is modelled by prepending the <tt>User</tt> object by the <tt>Use[]</tt> array.</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002754
Gabor Greif93b462b2008-06-18 13:44:57 +00002755<pre>
2756...---.---.---.---.-------...
2757 | P | P | P | P | User
2758'''---'---'---'---'-------'''
2759</pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002760
Gabor Greife247e362008-06-25 00:10:22 +00002761<li><p>Layout b) is modelled by pointing at the <tt>Use[]</tt> array.</p>
Gabor Greif93b462b2008-06-18 13:44:57 +00002762<pre>
2763.-------...
2764| User
2765'-------'''
2766 |
2767 v
2768 .---.---.---.---...
2769 | P | P | P | P |
2770 '---'---'---'---'''
2771</pre>
2772</ul>
2773<i>(In the above figures '<tt>P</tt>' stands for the <tt>Use**</tt> that
2774 is stored in each <tt>Use</tt> object in the member <tt>Use::Prev</tt>)</i>
Gabor Greif92e87762008-06-16 21:06:12 +00002775
Gabor Greif93b462b2008-06-18 13:44:57 +00002776<!-- ______________________________________________________________________ -->
2777<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00002778 <a name="Waymarking">The waymarking algorithm</a>
Gabor Greif93b462b2008-06-18 13:44:57 +00002779</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002780
Gabor Greif93b462b2008-06-18 13:44:57 +00002781<div class="doc_text">
2782<p>
Gabor Greife247e362008-06-25 00:10:22 +00002783Since the <tt>Use</tt> objects are deprived of the direct (back)pointer to
Gabor Greif93b462b2008-06-18 13:44:57 +00002784their <tt>User</tt> objects, there must be a fast and exact method to
2785recover it. This is accomplished by the following scheme:</p>
2786</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002787
Gabor Greife247e362008-06-25 00:10:22 +00002788A bit-encoding in the 2 LSBits (least significant bits) of the <tt>Use::Prev</tt> allows to find the
Gabor Greif93b462b2008-06-18 13:44:57 +00002789start of the <tt>User</tt> object:
2790<ul>
2791<li><tt>00</tt> &mdash;&gt; binary digit 0</li>
2792<li><tt>01</tt> &mdash;&gt; binary digit 1</li>
2793<li><tt>10</tt> &mdash;&gt; stop and calculate (<tt>s</tt>)</li>
2794<li><tt>11</tt> &mdash;&gt; full stop (<tt>S</tt>)</li>
2795</ul>
2796<p>
2797Given a <tt>Use*</tt>, all we have to do is to walk till we get
2798a stop and we either have a <tt>User</tt> immediately behind or
Gabor Greif92e87762008-06-16 21:06:12 +00002799we have to walk to the next stop picking up digits
Gabor Greif93b462b2008-06-18 13:44:57 +00002800and calculating the offset:</p>
2801<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002802.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.----------------
2803| 1 | s | 1 | 0 | 1 | 0 | s | 1 | 1 | 0 | s | 1 | 1 | s | 1 | S | User (or User*)
2804'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'---'----------------
2805 |+15 |+10 |+6 |+3 |+1
2806 | | | | |__>
2807 | | | |__________>
2808 | | |______________________>
2809 | |______________________________________>
2810 |__________________________________________________________>
Gabor Greif93b462b2008-06-18 13:44:57 +00002811</pre>
2812<p>
Gabor Greif92e87762008-06-16 21:06:12 +00002813Only the significant number of bits need to be stored between the
Gabor Greif93b462b2008-06-18 13:44:57 +00002814stops, so that the <i>worst case is 20 memory accesses</i> when there are
28151000 <tt>Use</tt> objects associated with a <tt>User</tt>.</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002816
Gabor Greif93b462b2008-06-18 13:44:57 +00002817<!-- ______________________________________________________________________ -->
2818<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00002819 <a name="ReferenceImpl">Reference implementation</a>
Gabor Greif93b462b2008-06-18 13:44:57 +00002820</div>
Gabor Greif92e87762008-06-16 21:06:12 +00002821
Gabor Greif93b462b2008-06-18 13:44:57 +00002822<div class="doc_text">
2823<p>
2824The following literate Haskell fragment demonstrates the concept:</p>
2825</div>
2826
2827<div class="doc_code">
2828<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002829> import Test.QuickCheck
2830>
2831> digits :: Int -> [Char] -> [Char]
2832> digits 0 acc = '0' : acc
2833> digits 1 acc = '1' : acc
2834> digits n acc = digits (n `div` 2) $ digits (n `mod` 2) acc
2835>
2836> dist :: Int -> [Char] -> [Char]
2837> dist 0 [] = ['S']
2838> dist 0 acc = acc
2839> dist 1 acc = let r = dist 0 acc in 's' : digits (length r) r
2840> dist n acc = dist (n - 1) $ dist 1 acc
2841>
2842> takeLast n ss = reverse $ take n $ reverse ss
2843>
2844> test = takeLast 40 $ dist 20 []
2845>
Gabor Greif93b462b2008-06-18 13:44:57 +00002846</pre>
2847</div>
2848<p>
2849Printing &lt;test&gt; gives: <tt>"1s100000s11010s10100s1111s1010s110s11s1S"</tt></p>
2850<p>
2851The reverse algorithm computes the length of the string just by examining
2852a certain prefix:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002853
Gabor Greif93b462b2008-06-18 13:44:57 +00002854<div class="doc_code">
2855<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002856> pref :: [Char] -> Int
2857> pref "S" = 1
2858> pref ('s':'1':rest) = decode 2 1 rest
2859> pref (_:rest) = 1 + pref rest
2860>
2861> decode walk acc ('0':rest) = decode (walk + 1) (acc * 2) rest
2862> decode walk acc ('1':rest) = decode (walk + 1) (acc * 2 + 1) rest
2863> decode walk acc _ = walk + acc
2864>
Gabor Greif93b462b2008-06-18 13:44:57 +00002865</pre>
2866</div>
2867<p>
2868Now, as expected, printing &lt;pref test&gt; gives <tt>40</tt>.</p>
2869<p>
2870We can <i>quickCheck</i> this with following property:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002871
Gabor Greif93b462b2008-06-18 13:44:57 +00002872<div class="doc_code">
2873<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002874> testcase = dist 2000 []
2875> testcaseLength = length testcase
2876>
2877> identityProp n = n > 0 && n <= testcaseLength ==> length arr == pref arr
2878> where arr = takeLast n testcase
Gabor Greif93b462b2008-06-18 13:44:57 +00002879>
2880</pre>
2881</div>
2882<p>
2883As expected &lt;quickCheck identityProp&gt; gives:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002884
Gabor Greif93b462b2008-06-18 13:44:57 +00002885<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002886*Main> quickCheck identityProp
2887OK, passed 100 tests.
Gabor Greif93b462b2008-06-18 13:44:57 +00002888</pre>
2889<p>
2890Let's be a bit more exhaustive:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002891
Gabor Greif93b462b2008-06-18 13:44:57 +00002892<div class="doc_code">
2893<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002894>
2895> deepCheck p = check (defaultConfig { configMaxTest = 500 }) p
2896>
Gabor Greif93b462b2008-06-18 13:44:57 +00002897</pre>
2898</div>
2899<p>
2900And here is the result of &lt;deepCheck identityProp&gt;:</p>
Gabor Greif92e87762008-06-16 21:06:12 +00002901
Gabor Greif93b462b2008-06-18 13:44:57 +00002902<pre>
Gabor Greif92e87762008-06-16 21:06:12 +00002903*Main> deepCheck identityProp
2904OK, passed 500 tests.
Gabor Greif92e87762008-06-16 21:06:12 +00002905</pre>
2906
Gabor Greif93b462b2008-06-18 13:44:57 +00002907<!-- ______________________________________________________________________ -->
2908<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00002909 <a name="Tagging">Tagging considerations</a>
Gabor Greif93b462b2008-06-18 13:44:57 +00002910</div>
2911
2912<p>
2913To maintain the invariant that the 2 LSBits of each <tt>Use**</tt> in <tt>Use</tt>
2914never change after being set up, setters of <tt>Use::Prev</tt> must re-tag the
2915new <tt>Use**</tt> on every modification. Accordingly getters must strip the
2916tag bits.</p>
2917<p>
Gabor Greife247e362008-06-25 00:10:22 +00002918For layout b) instead of the <tt>User</tt> we find a pointer (<tt>User*</tt> with LSBit set).
2919Following this pointer brings us to the <tt>User</tt>. A portable trick ensures
2920that the first bytes of <tt>User</tt> (if interpreted as a pointer) never has
Gabor Greif50626fc2009-01-05 16:05:32 +00002921the LSBit set. (Portability is relying on the fact that all known compilers place the
2922<tt>vptr</tt> in the first word of the instances.)</p>
Gabor Greif93b462b2008-06-18 13:44:57 +00002923
Gabor Greif92e87762008-06-16 21:06:12 +00002924</div>
2925
2926 <!-- *********************************************************************** -->
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002927<div class="doc_section">
2928 <a name="coreclasses">The Core LLVM Class Hierarchy Reference </a>
2929</div>
2930<!-- *********************************************************************** -->
2931
2932<div class="doc_text">
2933<p><tt>#include "<a href="/doxygen/Type_8h-source.html">llvm/Type.h</a>"</tt>
2934<br>doxygen info: <a href="/doxygen/classllvm_1_1Type.html">Type Class</a></p>
2935
2936<p>The Core LLVM classes are the primary means of representing the program
2937being inspected or transformed. The core LLVM classes are defined in
2938header files in the <tt>include/llvm/</tt> directory, and implemented in
2939the <tt>lib/VMCore</tt> directory.</p>
2940
2941</div>
2942
2943<!-- ======================================================================= -->
2944<div class="doc_subsection">
2945 <a name="Type">The <tt>Type</tt> class and Derived Types</a>
2946</div>
2947
2948<div class="doc_text">
2949
2950 <p><tt>Type</tt> is a superclass of all type classes. Every <tt>Value</tt> has
2951 a <tt>Type</tt>. <tt>Type</tt> cannot be instantiated directly but only
2952 through its subclasses. Certain primitive types (<tt>VoidType</tt>,
2953 <tt>LabelType</tt>, <tt>FloatType</tt> and <tt>DoubleType</tt>) have hidden
2954 subclasses. They are hidden because they offer no useful functionality beyond
2955 what the <tt>Type</tt> class offers except to distinguish themselves from
2956 other subclasses of <tt>Type</tt>.</p>
2957 <p>All other types are subclasses of <tt>DerivedType</tt>. Types can be
2958 named, but this is not a requirement. There exists exactly
2959 one instance of a given shape at any one time. This allows type equality to
2960 be performed with address equality of the Type Instance. That is, given two
2961 <tt>Type*</tt> values, the types are identical if the pointers are identical.
2962 </p>
2963</div>
2964
2965<!-- _______________________________________________________________________ -->
2966<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00002967 <a name="m_Type">Important Public Methods</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002968</div>
2969
2970<div class="doc_text">
2971
2972<ul>
2973 <li><tt>bool isInteger() const</tt>: Returns true for any integer type.</li>
2974
2975 <li><tt>bool isFloatingPoint()</tt>: Return true if this is one of the two
2976 floating point types.</li>
2977
2978 <li><tt>bool isAbstract()</tt>: Return true if the type is abstract (contains
2979 an OpaqueType anywhere in its definition).</li>
2980
2981 <li><tt>bool isSized()</tt>: Return true if the type has known size. Things
2982 that don't have a size are abstract types, labels and void.</li>
2983
2984</ul>
2985</div>
2986
2987<!-- _______________________________________________________________________ -->
2988<div class="doc_subsubsection">
Gabor Greif50626fc2009-01-05 16:05:32 +00002989 <a name="derivedtypes">Important Derived Types</a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002990</div>
2991<div class="doc_text">
2992<dl>
2993 <dt><tt>IntegerType</tt></dt>
2994 <dd>Subclass of DerivedType that represents integer types of any bit width.
2995 Any bit width between <tt>IntegerType::MIN_INT_BITS</tt> (1) and
2996 <tt>IntegerType::MAX_INT_BITS</tt> (~8 million) can be represented.
2997 <ul>
2998 <li><tt>static const IntegerType* get(unsigned NumBits)</tt>: get an integer
2999 type of a specific bit width.</li>
3000 <li><tt>unsigned getBitWidth() const</tt>: Get the bit width of an integer
3001 type.</li>
3002 </ul>
3003 </dd>
3004 <dt><tt>SequentialType</tt></dt>
3005 <dd>This is subclassed by ArrayType and PointerType
3006 <ul>
3007 <li><tt>const Type * getElementType() const</tt>: Returns the type of each
3008 of the elements in the sequential type. </li>
3009 </ul>
3010 </dd>
3011 <dt><tt>ArrayType</tt></dt>
3012 <dd>This is a subclass of SequentialType and defines the interface for array
3013 types.
3014 <ul>
3015 <li><tt>unsigned getNumElements() const</tt>: Returns the number of
3016 elements in the array. </li>
3017 </ul>
3018 </dd>
3019 <dt><tt>PointerType</tt></dt>
3020 <dd>Subclass of SequentialType for pointer types.</dd>
3021 <dt><tt>VectorType</tt></dt>
3022 <dd>Subclass of SequentialType for vector types. A
3023 vector type is similar to an ArrayType but is distinguished because it is
Benjamin Kramer5fb9d7e2009-10-12 14:46:08 +00003024 a first class type whereas ArrayType is not. Vector types are used for
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003025 vector operations and are usually small vectors of of an integer or floating
3026 point type.</dd>
3027 <dt><tt>StructType</tt></dt>
3028 <dd>Subclass of DerivedTypes for struct types.</dd>
3029 <dt><tt><a name="FunctionType">FunctionType</a></tt></dt>
3030 <dd>Subclass of DerivedTypes for function types.
3031 <ul>
3032 <li><tt>bool isVarArg() const</tt>: Returns true if its a vararg
3033 function</li>
3034 <li><tt> const Type * getReturnType() const</tt>: Returns the
3035 return type of the function.</li>
3036 <li><tt>const Type * getParamType (unsigned i)</tt>: Returns
3037 the type of the ith parameter.</li>
3038 <li><tt> const unsigned getNumParams() const</tt>: Returns the
3039 number of formal parameters.</li>
3040 </ul>
3041 </dd>
3042 <dt><tt>OpaqueType</tt></dt>
3043 <dd>Sublcass of DerivedType for abstract types. This class
3044 defines no content and is used as a placeholder for some other type. Note
3045 that OpaqueType is used (temporarily) during type resolution for forward
3046 references of types. Once the referenced type is resolved, the OpaqueType
3047 is replaced with the actual type. OpaqueType can also be used for data
3048 abstraction. At link time opaque types can be resolved to actual types
3049 of the same name.</dd>
3050</dl>
3051</div>
3052
3053
3054
3055<!-- ======================================================================= -->
3056<div class="doc_subsection">
3057 <a name="Module">The <tt>Module</tt> class</a>
3058</div>
3059
3060<div class="doc_text">
3061
3062<p><tt>#include "<a
3063href="/doxygen/Module_8h-source.html">llvm/Module.h</a>"</tt><br> doxygen info:
3064<a href="/doxygen/classllvm_1_1Module.html">Module Class</a></p>
3065
3066<p>The <tt>Module</tt> class represents the top level structure present in LLVM
3067programs. An LLVM module is effectively either a translation unit of the
3068original program or a combination of several translation units merged by the
3069linker. The <tt>Module</tt> class keeps track of a list of <a
3070href="#Function"><tt>Function</tt></a>s, a list of <a
3071href="#GlobalVariable"><tt>GlobalVariable</tt></a>s, and a <a
3072href="#SymbolTable"><tt>SymbolTable</tt></a>. Additionally, it contains a few
3073helpful member functions that try to make common operations easy.</p>
3074
3075</div>
3076
3077<!-- _______________________________________________________________________ -->
3078<div class="doc_subsubsection">
3079 <a name="m_Module">Important Public Members of the <tt>Module</tt> class</a>
3080</div>
3081
3082<div class="doc_text">
3083
3084<ul>
3085 <li><tt>Module::Module(std::string name = "")</tt></li>
3086</ul>
3087
3088<p>Constructing a <a href="#Module">Module</a> is easy. You can optionally
3089provide a name for it (probably based on the name of the translation unit).</p>
3090
3091<ul>
3092 <li><tt>Module::iterator</tt> - Typedef for function list iterator<br>
3093 <tt>Module::const_iterator</tt> - Typedef for const_iterator.<br>
3094
3095 <tt>begin()</tt>, <tt>end()</tt>
3096 <tt>size()</tt>, <tt>empty()</tt>
3097
3098 <p>These are forwarding methods that make it easy to access the contents of
3099 a <tt>Module</tt> object's <a href="#Function"><tt>Function</tt></a>
3100 list.</p></li>
3101
3102 <li><tt>Module::FunctionListType &amp;getFunctionList()</tt>
3103
3104 <p> Returns the list of <a href="#Function"><tt>Function</tt></a>s. This is
3105 necessary to use when you need to update the list or perform a complex
3106 action that doesn't have a forwarding method.</p>
3107
3108 <p><!-- Global Variable --></p></li>
3109</ul>
3110
3111<hr>
3112
3113<ul>
3114 <li><tt>Module::global_iterator</tt> - Typedef for global variable list iterator<br>
3115
3116 <tt>Module::const_global_iterator</tt> - Typedef for const_iterator.<br>
3117
3118 <tt>global_begin()</tt>, <tt>global_end()</tt>
3119 <tt>global_size()</tt>, <tt>global_empty()</tt>
3120
3121 <p> These are forwarding methods that make it easy to access the contents of
3122 a <tt>Module</tt> object's <a
3123 href="#GlobalVariable"><tt>GlobalVariable</tt></a> list.</p></li>
3124
3125 <li><tt>Module::GlobalListType &amp;getGlobalList()</tt>
3126
3127 <p>Returns the list of <a
3128 href="#GlobalVariable"><tt>GlobalVariable</tt></a>s. This is necessary to
3129 use when you need to update the list or perform a complex action that
3130 doesn't have a forwarding method.</p>
3131
3132 <p><!-- Symbol table stuff --> </p></li>
3133</ul>
3134
3135<hr>
3136
3137<ul>
3138 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3139
3140 <p>Return a reference to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3141 for this <tt>Module</tt>.</p>
3142
3143 <p><!-- Convenience methods --></p></li>
3144</ul>
3145
3146<hr>
3147
3148<ul>
3149 <li><tt><a href="#Function">Function</a> *getFunction(const std::string
3150 &amp;Name, const <a href="#FunctionType">FunctionType</a> *Ty)</tt>
3151
3152 <p>Look up the specified function in the <tt>Module</tt> <a
3153 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, return
3154 <tt>null</tt>.</p></li>
3155
3156 <li><tt><a href="#Function">Function</a> *getOrInsertFunction(const
3157 std::string &amp;Name, const <a href="#FunctionType">FunctionType</a> *T)</tt>
3158
3159 <p>Look up the specified function in the <tt>Module</tt> <a
3160 href="#SymbolTable"><tt>SymbolTable</tt></a>. If it does not exist, add an
3161 external declaration for the function and return it.</p></li>
3162
3163 <li><tt>std::string getTypeName(const <a href="#Type">Type</a> *Ty)</tt>
3164
3165 <p>If there is at least one entry in the <a
3166 href="#SymbolTable"><tt>SymbolTable</tt></a> for the specified <a
3167 href="#Type"><tt>Type</tt></a>, return it. Otherwise return the empty
3168 string.</p></li>
3169
3170 <li><tt>bool addTypeName(const std::string &amp;Name, const <a
3171 href="#Type">Type</a> *Ty)</tt>
3172
3173 <p>Insert an entry in the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3174 mapping <tt>Name</tt> to <tt>Ty</tt>. If there is already an entry for this
3175 name, true is returned and the <a
3176 href="#SymbolTable"><tt>SymbolTable</tt></a> is not modified.</p></li>
3177</ul>
3178
3179</div>
3180
3181
3182<!-- ======================================================================= -->
3183<div class="doc_subsection">
3184 <a name="Value">The <tt>Value</tt> class</a>
3185</div>
3186
3187<div class="doc_text">
3188
3189<p><tt>#include "<a href="/doxygen/Value_8h-source.html">llvm/Value.h</a>"</tt>
3190<br>
3191doxygen info: <a href="/doxygen/classllvm_1_1Value.html">Value Class</a></p>
3192
3193<p>The <tt>Value</tt> class is the most important class in the LLVM Source
3194base. It represents a typed value that may be used (among other things) as an
3195operand to an instruction. There are many different types of <tt>Value</tt>s,
3196such as <a href="#Constant"><tt>Constant</tt></a>s,<a
3197href="#Argument"><tt>Argument</tt></a>s. Even <a
3198href="#Instruction"><tt>Instruction</tt></a>s and <a
3199href="#Function"><tt>Function</tt></a>s are <tt>Value</tt>s.</p>
3200
3201<p>A particular <tt>Value</tt> may be used many times in the LLVM representation
3202for a program. For example, an incoming argument to a function (represented
3203with an instance of the <a href="#Argument">Argument</a> class) is "used" by
3204every instruction in the function that references the argument. To keep track
3205of this relationship, the <tt>Value</tt> class keeps a list of all of the <a
3206href="#User"><tt>User</tt></a>s that is using it (the <a
3207href="#User"><tt>User</tt></a> class is a base class for all nodes in the LLVM
3208graph that can refer to <tt>Value</tt>s). This use list is how LLVM represents
3209def-use information in the program, and is accessible through the <tt>use_</tt>*
3210methods, shown below.</p>
3211
3212<p>Because LLVM is a typed representation, every LLVM <tt>Value</tt> is typed,
3213and this <a href="#Type">Type</a> is available through the <tt>getType()</tt>
3214method. In addition, all LLVM values can be named. The "name" of the
3215<tt>Value</tt> is a symbolic string printed in the LLVM code:</p>
3216
3217<div class="doc_code">
3218<pre>
3219%<b>foo</b> = add i32 1, 2
3220</pre>
3221</div>
3222
3223<p><a name="nameWarning">The name of this instruction is "foo".</a> <b>NOTE</b>
3224that the name of any value may be missing (an empty string), so names should
3225<b>ONLY</b> be used for debugging (making the source code easier to read,
3226debugging printouts), they should not be used to keep track of values or map
3227between them. For this purpose, use a <tt>std::map</tt> of pointers to the
3228<tt>Value</tt> itself instead.</p>
3229
3230<p>One important aspect of LLVM is that there is no distinction between an SSA
3231variable and the operation that produces it. Because of this, any reference to
3232the value produced by an instruction (or the value available as an incoming
3233argument, for example) is represented as a direct pointer to the instance of
3234the class that
3235represents this value. Although this may take some getting used to, it
3236simplifies the representation and makes it easier to manipulate.</p>
3237
3238</div>
3239
3240<!-- _______________________________________________________________________ -->
3241<div class="doc_subsubsection">
3242 <a name="m_Value">Important Public Members of the <tt>Value</tt> class</a>
3243</div>
3244
3245<div class="doc_text">
3246
3247<ul>
3248 <li><tt>Value::use_iterator</tt> - Typedef for iterator over the
3249use-list<br>
3250 <tt>Value::use_const_iterator</tt> - Typedef for const_iterator over
3251the use-list<br>
3252 <tt>unsigned use_size()</tt> - Returns the number of users of the
3253value.<br>
3254 <tt>bool use_empty()</tt> - Returns true if there are no users.<br>
3255 <tt>use_iterator use_begin()</tt> - Get an iterator to the start of
3256the use-list.<br>
3257 <tt>use_iterator use_end()</tt> - Get an iterator to the end of the
3258use-list.<br>
3259 <tt><a href="#User">User</a> *use_back()</tt> - Returns the last
3260element in the list.
3261 <p> These methods are the interface to access the def-use
3262information in LLVM. As with all other iterators in LLVM, the naming
3263conventions follow the conventions defined by the <a href="#stl">STL</a>.</p>
3264 </li>
3265 <li><tt><a href="#Type">Type</a> *getType() const</tt>
3266 <p>This method returns the Type of the Value.</p>
3267 </li>
3268 <li><tt>bool hasName() const</tt><br>
3269 <tt>std::string getName() const</tt><br>
3270 <tt>void setName(const std::string &amp;Name)</tt>
3271 <p> This family of methods is used to access and assign a name to a <tt>Value</tt>,
3272be aware of the <a href="#nameWarning">precaution above</a>.</p>
3273 </li>
3274 <li><tt>void replaceAllUsesWith(Value *V)</tt>
3275
3276 <p>This method traverses the use list of a <tt>Value</tt> changing all <a
3277 href="#User"><tt>User</tt>s</a> of the current value to refer to
3278 "<tt>V</tt>" instead. For example, if you detect that an instruction always
3279 produces a constant value (for example through constant folding), you can
3280 replace all uses of the instruction with the constant like this:</p>
3281
3282<div class="doc_code">
3283<pre>
3284Inst-&gt;replaceAllUsesWith(ConstVal);
3285</pre>
3286</div>
3287
3288</ul>
3289
3290</div>
3291
3292<!-- ======================================================================= -->
3293<div class="doc_subsection">
3294 <a name="User">The <tt>User</tt> class</a>
3295</div>
3296
3297<div class="doc_text">
3298
3299<p>
3300<tt>#include "<a href="/doxygen/User_8h-source.html">llvm/User.h</a>"</tt><br>
3301doxygen info: <a href="/doxygen/classllvm_1_1User.html">User Class</a><br>
3302Superclass: <a href="#Value"><tt>Value</tt></a></p>
3303
3304<p>The <tt>User</tt> class is the common base class of all LLVM nodes that may
3305refer to <a href="#Value"><tt>Value</tt></a>s. It exposes a list of "Operands"
3306that are all of the <a href="#Value"><tt>Value</tt></a>s that the User is
3307referring to. The <tt>User</tt> class itself is a subclass of
3308<tt>Value</tt>.</p>
3309
3310<p>The operands of a <tt>User</tt> point directly to the LLVM <a
3311href="#Value"><tt>Value</tt></a> that it refers to. Because LLVM uses Static
3312Single Assignment (SSA) form, there can only be one definition referred to,
3313allowing this direct connection. This connection provides the use-def
3314information in LLVM.</p>
3315
3316</div>
3317
3318<!-- _______________________________________________________________________ -->
3319<div class="doc_subsubsection">
3320 <a name="m_User">Important Public Members of the <tt>User</tt> class</a>
3321</div>
3322
3323<div class="doc_text">
3324
3325<p>The <tt>User</tt> class exposes the operand list in two ways: through
3326an index access interface and through an iterator based interface.</p>
3327
3328<ul>
3329 <li><tt>Value *getOperand(unsigned i)</tt><br>
3330 <tt>unsigned getNumOperands()</tt>
3331 <p> These two methods expose the operands of the <tt>User</tt> in a
3332convenient form for direct access.</p></li>
3333
3334 <li><tt>User::op_iterator</tt> - Typedef for iterator over the operand
3335list<br>
3336 <tt>op_iterator op_begin()</tt> - Get an iterator to the start of
3337the operand list.<br>
3338 <tt>op_iterator op_end()</tt> - Get an iterator to the end of the
3339operand list.
3340 <p> Together, these methods make up the iterator based interface to
3341the operands of a <tt>User</tt>.</p></li>
3342</ul>
3343
3344</div>
3345
3346<!-- ======================================================================= -->
3347<div class="doc_subsection">
3348 <a name="Instruction">The <tt>Instruction</tt> class</a>
3349</div>
3350
3351<div class="doc_text">
3352
3353<p><tt>#include "</tt><tt><a
3354href="/doxygen/Instruction_8h-source.html">llvm/Instruction.h</a>"</tt><br>
3355doxygen info: <a href="/doxygen/classllvm_1_1Instruction.html">Instruction Class</a><br>
3356Superclasses: <a href="#User"><tt>User</tt></a>, <a
3357href="#Value"><tt>Value</tt></a></p>
3358
3359<p>The <tt>Instruction</tt> class is the common base class for all LLVM
3360instructions. It provides only a few methods, but is a very commonly used
3361class. The primary data tracked by the <tt>Instruction</tt> class itself is the
3362opcode (instruction type) and the parent <a
3363href="#BasicBlock"><tt>BasicBlock</tt></a> the <tt>Instruction</tt> is embedded
3364into. To represent a specific type of instruction, one of many subclasses of
3365<tt>Instruction</tt> are used.</p>
3366
3367<p> Because the <tt>Instruction</tt> class subclasses the <a
3368href="#User"><tt>User</tt></a> class, its operands can be accessed in the same
3369way as for other <a href="#User"><tt>User</tt></a>s (with the
3370<tt>getOperand()</tt>/<tt>getNumOperands()</tt> and
3371<tt>op_begin()</tt>/<tt>op_end()</tt> methods).</p> <p> An important file for
3372the <tt>Instruction</tt> class is the <tt>llvm/Instruction.def</tt> file. This
3373file contains some meta-data about the various different types of instructions
3374in LLVM. It describes the enum values that are used as opcodes (for example
3375<tt>Instruction::Add</tt> and <tt>Instruction::ICmp</tt>), as well as the
3376concrete sub-classes of <tt>Instruction</tt> that implement the instruction (for
3377example <tt><a href="#BinaryOperator">BinaryOperator</a></tt> and <tt><a
3378href="#CmpInst">CmpInst</a></tt>). Unfortunately, the use of macros in
3379this file confuses doxygen, so these enum values don't show up correctly in the
3380<a href="/doxygen/classllvm_1_1Instruction.html">doxygen output</a>.</p>
3381
3382</div>
3383
3384<!-- _______________________________________________________________________ -->
3385<div class="doc_subsubsection">
3386 <a name="s_Instruction">Important Subclasses of the <tt>Instruction</tt>
3387 class</a>
3388</div>
3389<div class="doc_text">
3390 <ul>
3391 <li><tt><a name="BinaryOperator">BinaryOperator</a></tt>
3392 <p>This subclasses represents all two operand instructions whose operands
3393 must be the same type, except for the comparison instructions.</p></li>
3394 <li><tt><a name="CastInst">CastInst</a></tt>
3395 <p>This subclass is the parent of the 12 casting instructions. It provides
3396 common operations on cast instructions.</p>
3397 <li><tt><a name="CmpInst">CmpInst</a></tt>
3398 <p>This subclass respresents the two comparison instructions,
3399 <a href="LangRef.html#i_icmp">ICmpInst</a> (integer opreands), and
3400 <a href="LangRef.html#i_fcmp">FCmpInst</a> (floating point operands).</p>
3401 <li><tt><a name="TerminatorInst">TerminatorInst</a></tt>
3402 <p>This subclass is the parent of all terminator instructions (those which
3403 can terminate a block).</p>
3404 </ul>
3405 </div>
3406
3407<!-- _______________________________________________________________________ -->
3408<div class="doc_subsubsection">
3409 <a name="m_Instruction">Important Public Members of the <tt>Instruction</tt>
3410 class</a>
3411</div>
3412
3413<div class="doc_text">
3414
3415<ul>
3416 <li><tt><a href="#BasicBlock">BasicBlock</a> *getParent()</tt>
3417 <p>Returns the <a href="#BasicBlock"><tt>BasicBlock</tt></a> that
3418this <tt>Instruction</tt> is embedded into.</p></li>
3419 <li><tt>bool mayWriteToMemory()</tt>
3420 <p>Returns true if the instruction writes to memory, i.e. it is a
3421 <tt>call</tt>,<tt>free</tt>,<tt>invoke</tt>, or <tt>store</tt>.</p></li>
3422 <li><tt>unsigned getOpcode()</tt>
3423 <p>Returns the opcode for the <tt>Instruction</tt>.</p></li>
3424 <li><tt><a href="#Instruction">Instruction</a> *clone() const</tt>
3425 <p>Returns another instance of the specified instruction, identical
3426in all ways to the original except that the instruction has no parent
3427(ie it's not embedded into a <a href="#BasicBlock"><tt>BasicBlock</tt></a>),
3428and it has no name</p></li>
3429</ul>
3430
3431</div>
3432
3433<!-- ======================================================================= -->
3434<div class="doc_subsection">
3435 <a name="Constant">The <tt>Constant</tt> class and subclasses</a>
3436</div>
3437
3438<div class="doc_text">
3439
3440<p>Constant represents a base class for different types of constants. It
3441is subclassed by ConstantInt, ConstantArray, etc. for representing
3442the various types of Constants. <a href="#GlobalValue">GlobalValue</a> is also
3443a subclass, which represents the address of a global variable or function.
3444</p>
3445
3446</div>
3447
3448<!-- _______________________________________________________________________ -->
3449<div class="doc_subsubsection">Important Subclasses of Constant </div>
3450<div class="doc_text">
3451<ul>
3452 <li>ConstantInt : This subclass of Constant represents an integer constant of
3453 any width.
3454 <ul>
3455 <li><tt>const APInt&amp; getValue() const</tt>: Returns the underlying
3456 value of this constant, an APInt value.</li>
3457 <li><tt>int64_t getSExtValue() const</tt>: Converts the underlying APInt
3458 value to an int64_t via sign extension. If the value (not the bit width)
3459 of the APInt is too large to fit in an int64_t, an assertion will result.
3460 For this reason, use of this method is discouraged.</li>
3461 <li><tt>uint64_t getZExtValue() const</tt>: Converts the underlying APInt
3462 value to a uint64_t via zero extension. IF the value (not the bit width)
3463 of the APInt is too large to fit in a uint64_t, an assertion will result.
3464 For this reason, use of this method is discouraged.</li>
3465 <li><tt>static ConstantInt* get(const APInt&amp; Val)</tt>: Returns the
3466 ConstantInt object that represents the value provided by <tt>Val</tt>.
3467 The type is implied as the IntegerType that corresponds to the bit width
3468 of <tt>Val</tt>.</li>
3469 <li><tt>static ConstantInt* get(const Type *Ty, uint64_t Val)</tt>:
3470 Returns the ConstantInt object that represents the value provided by
3471 <tt>Val</tt> for integer type <tt>Ty</tt>.</li>
3472 </ul>
3473 </li>
3474 <li>ConstantFP : This class represents a floating point constant.
3475 <ul>
3476 <li><tt>double getValue() const</tt>: Returns the underlying value of
3477 this constant. </li>
3478 </ul>
3479 </li>
3480 <li>ConstantArray : This represents a constant array.
3481 <ul>
3482 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
3483 a vector of component constants that makeup this array. </li>
3484 </ul>
3485 </li>
3486 <li>ConstantStruct : This represents a constant struct.
3487 <ul>
3488 <li><tt>const std::vector&lt;Use&gt; &amp;getValues() const</tt>: Returns
3489 a vector of component constants that makeup this array. </li>
3490 </ul>
3491 </li>
3492 <li>GlobalValue : This represents either a global variable or a function. In
3493 either case, the value is a constant fixed address (after linking).
3494 </li>
3495</ul>
3496</div>
3497
3498
3499<!-- ======================================================================= -->
3500<div class="doc_subsection">
3501 <a name="GlobalValue">The <tt>GlobalValue</tt> class</a>
3502</div>
3503
3504<div class="doc_text">
3505
3506<p><tt>#include "<a
3507href="/doxygen/GlobalValue_8h-source.html">llvm/GlobalValue.h</a>"</tt><br>
3508doxygen info: <a href="/doxygen/classllvm_1_1GlobalValue.html">GlobalValue
3509Class</a><br>
3510Superclasses: <a href="#Constant"><tt>Constant</tt></a>,
3511<a href="#User"><tt>User</tt></a>, <a href="#Value"><tt>Value</tt></a></p>
3512
3513<p>Global values (<a href="#GlobalVariable"><tt>GlobalVariable</tt></a>s or <a
3514href="#Function"><tt>Function</tt></a>s) are the only LLVM values that are
3515visible in the bodies of all <a href="#Function"><tt>Function</tt></a>s.
3516Because they are visible at global scope, they are also subject to linking with
3517other globals defined in different translation units. To control the linking
3518process, <tt>GlobalValue</tt>s know their linkage rules. Specifically,
3519<tt>GlobalValue</tt>s know whether they have internal or external linkage, as
3520defined by the <tt>LinkageTypes</tt> enumeration.</p>
3521
3522<p>If a <tt>GlobalValue</tt> has internal linkage (equivalent to being
3523<tt>static</tt> in C), it is not visible to code outside the current translation
3524unit, and does not participate in linking. If it has external linkage, it is
3525visible to external code, and does participate in linking. In addition to
3526linkage information, <tt>GlobalValue</tt>s keep track of which <a
3527href="#Module"><tt>Module</tt></a> they are currently part of.</p>
3528
3529<p>Because <tt>GlobalValue</tt>s are memory objects, they are always referred to
3530by their <b>address</b>. As such, the <a href="#Type"><tt>Type</tt></a> of a
3531global is always a pointer to its contents. It is important to remember this
3532when using the <tt>GetElementPtrInst</tt> instruction because this pointer must
3533be dereferenced first. For example, if you have a <tt>GlobalVariable</tt> (a
3534subclass of <tt>GlobalValue)</tt> that is an array of 24 ints, type <tt>[24 x
3535i32]</tt>, then the <tt>GlobalVariable</tt> is a pointer to that array. Although
3536the address of the first element of this array and the value of the
3537<tt>GlobalVariable</tt> are the same, they have different types. The
3538<tt>GlobalVariable</tt>'s type is <tt>[24 x i32]</tt>. The first element's type
3539is <tt>i32.</tt> Because of this, accessing a global value requires you to
3540dereference the pointer with <tt>GetElementPtrInst</tt> first, then its elements
3541can be accessed. This is explained in the <a href="LangRef.html#globalvars">LLVM
3542Language Reference Manual</a>.</p>
3543
3544</div>
3545
3546<!-- _______________________________________________________________________ -->
3547<div class="doc_subsubsection">
3548 <a name="m_GlobalValue">Important Public Members of the <tt>GlobalValue</tt>
3549 class</a>
3550</div>
3551
3552<div class="doc_text">
3553
3554<ul>
3555 <li><tt>bool hasInternalLinkage() const</tt><br>
3556 <tt>bool hasExternalLinkage() const</tt><br>
3557 <tt>void setInternalLinkage(bool HasInternalLinkage)</tt>
3558 <p> These methods manipulate the linkage characteristics of the <tt>GlobalValue</tt>.</p>
3559 <p> </p>
3560 </li>
3561 <li><tt><a href="#Module">Module</a> *getParent()</tt>
3562 <p> This returns the <a href="#Module"><tt>Module</tt></a> that the
3563GlobalValue is currently embedded into.</p></li>
3564</ul>
3565
3566</div>
3567
3568<!-- ======================================================================= -->
3569<div class="doc_subsection">
3570 <a name="Function">The <tt>Function</tt> class</a>
3571</div>
3572
3573<div class="doc_text">
3574
3575<p><tt>#include "<a
3576href="/doxygen/Function_8h-source.html">llvm/Function.h</a>"</tt><br> doxygen
3577info: <a href="/doxygen/classllvm_1_1Function.html">Function Class</a><br>
3578Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>,
3579<a href="#Constant"><tt>Constant</tt></a>,
3580<a href="#User"><tt>User</tt></a>,
3581<a href="#Value"><tt>Value</tt></a></p>
3582
3583<p>The <tt>Function</tt> class represents a single procedure in LLVM. It is
Edwin Törökb26e2792009-10-12 13:37:29 +00003584actually one of the more complex classes in the LLVM hierarchy because it must
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003585keep track of a large amount of data. The <tt>Function</tt> class keeps track
3586of a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, a list of formal
3587<a href="#Argument"><tt>Argument</tt></a>s, and a
3588<a href="#SymbolTable"><tt>SymbolTable</tt></a>.</p>
3589
3590<p>The list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s is the most
3591commonly used part of <tt>Function</tt> objects. The list imposes an implicit
3592ordering of the blocks in the function, which indicate how the code will be
Benjamin Kramer5fb9d7e2009-10-12 14:46:08 +00003593laid out by the backend. Additionally, the first <a
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003594href="#BasicBlock"><tt>BasicBlock</tt></a> is the implicit entry node for the
3595<tt>Function</tt>. It is not legal in LLVM to explicitly branch to this initial
3596block. There are no implicit exit nodes, and in fact there may be multiple exit
3597nodes from a single <tt>Function</tt>. If the <a
3598href="#BasicBlock"><tt>BasicBlock</tt></a> list is empty, this indicates that
3599the <tt>Function</tt> is actually a function declaration: the actual body of the
3600function hasn't been linked in yet.</p>
3601
3602<p>In addition to a list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s, the
3603<tt>Function</tt> class also keeps track of the list of formal <a
3604href="#Argument"><tt>Argument</tt></a>s that the function receives. This
3605container manages the lifetime of the <a href="#Argument"><tt>Argument</tt></a>
3606nodes, just like the <a href="#BasicBlock"><tt>BasicBlock</tt></a> list does for
3607the <a href="#BasicBlock"><tt>BasicBlock</tt></a>s.</p>
3608
3609<p>The <a href="#SymbolTable"><tt>SymbolTable</tt></a> is a very rarely used
3610LLVM feature that is only used when you have to look up a value by name. Aside
3611from that, the <a href="#SymbolTable"><tt>SymbolTable</tt></a> is used
3612internally to make sure that there are not conflicts between the names of <a
3613href="#Instruction"><tt>Instruction</tt></a>s, <a
3614href="#BasicBlock"><tt>BasicBlock</tt></a>s, or <a
3615href="#Argument"><tt>Argument</tt></a>s in the function body.</p>
3616
3617<p>Note that <tt>Function</tt> is a <a href="#GlobalValue">GlobalValue</a>
3618and therefore also a <a href="#Constant">Constant</a>. The value of the function
3619is its address (after linking) which is guaranteed to be constant.</p>
3620</div>
3621
3622<!-- _______________________________________________________________________ -->
3623<div class="doc_subsubsection">
3624 <a name="m_Function">Important Public Members of the <tt>Function</tt>
3625 class</a>
3626</div>
3627
3628<div class="doc_text">
3629
3630<ul>
3631 <li><tt>Function(const </tt><tt><a href="#FunctionType">FunctionType</a>
3632 *Ty, LinkageTypes Linkage, const std::string &amp;N = "", Module* Parent = 0)</tt>
3633
3634 <p>Constructor used when you need to create new <tt>Function</tt>s to add
3635 the the program. The constructor must specify the type of the function to
3636 create and what type of linkage the function should have. The <a
3637 href="#FunctionType"><tt>FunctionType</tt></a> argument
3638 specifies the formal arguments and return value for the function. The same
3639 <a href="#FunctionType"><tt>FunctionType</tt></a> value can be used to
3640 create multiple functions. The <tt>Parent</tt> argument specifies the Module
3641 in which the function is defined. If this argument is provided, the function
3642 will automatically be inserted into that module's list of
3643 functions.</p></li>
3644
Chris Lattner5e709572008-11-25 18:34:50 +00003645 <li><tt>bool isDeclaration()</tt>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003646
3647 <p>Return whether or not the <tt>Function</tt> has a body defined. If the
3648 function is "external", it does not have a body, and thus must be resolved
3649 by linking with a function defined in a different translation unit.</p></li>
3650
3651 <li><tt>Function::iterator</tt> - Typedef for basic block list iterator<br>
3652 <tt>Function::const_iterator</tt> - Typedef for const_iterator.<br>
3653
3654 <tt>begin()</tt>, <tt>end()</tt>
3655 <tt>size()</tt>, <tt>empty()</tt>
3656
3657 <p>These are forwarding methods that make it easy to access the contents of
3658 a <tt>Function</tt> object's <a href="#BasicBlock"><tt>BasicBlock</tt></a>
3659 list.</p></li>
3660
3661 <li><tt>Function::BasicBlockListType &amp;getBasicBlockList()</tt>
3662
3663 <p>Returns the list of <a href="#BasicBlock"><tt>BasicBlock</tt></a>s. This
3664 is necessary to use when you need to update the list or perform a complex
3665 action that doesn't have a forwarding method.</p></li>
3666
3667 <li><tt>Function::arg_iterator</tt> - Typedef for the argument list
3668iterator<br>
3669 <tt>Function::const_arg_iterator</tt> - Typedef for const_iterator.<br>
3670
3671 <tt>arg_begin()</tt>, <tt>arg_end()</tt>
3672 <tt>arg_size()</tt>, <tt>arg_empty()</tt>
3673
3674 <p>These are forwarding methods that make it easy to access the contents of
3675 a <tt>Function</tt> object's <a href="#Argument"><tt>Argument</tt></a>
3676 list.</p></li>
3677
3678 <li><tt>Function::ArgumentListType &amp;getArgumentList()</tt>
3679
3680 <p>Returns the list of <a href="#Argument"><tt>Argument</tt></a>s. This is
3681 necessary to use when you need to update the list or perform a complex
3682 action that doesn't have a forwarding method.</p></li>
3683
3684 <li><tt><a href="#BasicBlock">BasicBlock</a> &amp;getEntryBlock()</tt>
3685
3686 <p>Returns the entry <a href="#BasicBlock"><tt>BasicBlock</tt></a> for the
3687 function. Because the entry block for the function is always the first
3688 block, this returns the first block of the <tt>Function</tt>.</p></li>
3689
3690 <li><tt><a href="#Type">Type</a> *getReturnType()</tt><br>
3691 <tt><a href="#FunctionType">FunctionType</a> *getFunctionType()</tt>
3692
3693 <p>This traverses the <a href="#Type"><tt>Type</tt></a> of the
3694 <tt>Function</tt> and returns the return type of the function, or the <a
3695 href="#FunctionType"><tt>FunctionType</tt></a> of the actual
3696 function.</p></li>
3697
3698 <li><tt><a href="#SymbolTable">SymbolTable</a> *getSymbolTable()</tt>
3699
3700 <p> Return a pointer to the <a href="#SymbolTable"><tt>SymbolTable</tt></a>
3701 for this <tt>Function</tt>.</p></li>
3702</ul>
3703
3704</div>
3705
3706<!-- ======================================================================= -->
3707<div class="doc_subsection">
3708 <a name="GlobalVariable">The <tt>GlobalVariable</tt> class</a>
3709</div>
3710
3711<div class="doc_text">
3712
3713<p><tt>#include "<a
3714href="/doxygen/GlobalVariable_8h-source.html">llvm/GlobalVariable.h</a>"</tt>
3715<br>
3716doxygen info: <a href="/doxygen/classllvm_1_1GlobalVariable.html">GlobalVariable
3717 Class</a><br>
3718Superclasses: <a href="#GlobalValue"><tt>GlobalValue</tt></a>,
3719<a href="#Constant"><tt>Constant</tt></a>,
3720<a href="#User"><tt>User</tt></a>,
3721<a href="#Value"><tt>Value</tt></a></p>
3722
Benjamin Kramer5fb9d7e2009-10-12 14:46:08 +00003723<p>Global variables are represented with the (surprise surprise)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003724<tt>GlobalVariable</tt> class. Like functions, <tt>GlobalVariable</tt>s are also
3725subclasses of <a href="#GlobalValue"><tt>GlobalValue</tt></a>, and as such are
3726always referenced by their address (global values must live in memory, so their
3727"name" refers to their constant address). See
3728<a href="#GlobalValue"><tt>GlobalValue</tt></a> for more on this. Global
3729variables may have an initial value (which must be a
3730<a href="#Constant"><tt>Constant</tt></a>), and if they have an initializer,
3731they may be marked as "constant" themselves (indicating that their contents
3732never change at runtime).</p>
3733</div>
3734
3735<!-- _______________________________________________________________________ -->
3736<div class="doc_subsubsection">
3737 <a name="m_GlobalVariable">Important Public Members of the
3738 <tt>GlobalVariable</tt> class</a>
3739</div>
3740
3741<div class="doc_text">
3742
3743<ul>
3744 <li><tt>GlobalVariable(const </tt><tt><a href="#Type">Type</a> *Ty, bool
3745 isConstant, LinkageTypes&amp; Linkage, <a href="#Constant">Constant</a>
3746 *Initializer = 0, const std::string &amp;Name = "", Module* Parent = 0)</tt>
3747
3748 <p>Create a new global variable of the specified type. If
3749 <tt>isConstant</tt> is true then the global variable will be marked as
3750 unchanging for the program. The Linkage parameter specifies the type of
Duncan Sands19d161f2009-03-07 15:45:40 +00003751 linkage (internal, external, weak, linkonce, appending) for the variable.
3752 If the linkage is InternalLinkage, WeakAnyLinkage, WeakODRLinkage,
3753 LinkOnceAnyLinkage or LinkOnceODRLinkage,&nbsp; then the resultant
3754 global variable will have internal linkage. AppendingLinkage concatenates
3755 together all instances (in different translation units) of the variable
3756 into a single variable but is only applicable to arrays. &nbsp;See
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003757 the <a href="LangRef.html#modulestructure">LLVM Language Reference</a> for
3758 further details on linkage types. Optionally an initializer, a name, and the
3759 module to put the variable into may be specified for the global variable as
3760 well.</p></li>
3761
3762 <li><tt>bool isConstant() const</tt>
3763
3764 <p>Returns true if this is a global variable that is known not to
3765 be modified at runtime.</p></li>
3766
3767 <li><tt>bool hasInitializer()</tt>
3768
3769 <p>Returns true if this <tt>GlobalVariable</tt> has an intializer.</p></li>
3770
3771 <li><tt><a href="#Constant">Constant</a> *getInitializer()</tt>
3772
Benjamin Kramer5fb9d7e2009-10-12 14:46:08 +00003773 <p>Returns the initial value for a <tt>GlobalVariable</tt>. It is not legal
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003774 to call this method if there is no initializer.</p></li>
3775</ul>
3776
3777</div>
3778
3779
3780<!-- ======================================================================= -->
3781<div class="doc_subsection">
3782 <a name="BasicBlock">The <tt>BasicBlock</tt> class</a>
3783</div>
3784
3785<div class="doc_text">
3786
3787<p><tt>#include "<a
3788href="/doxygen/BasicBlock_8h-source.html">llvm/BasicBlock.h</a>"</tt><br>
Stefanus Du Toitf017c852009-06-17 21:12:26 +00003789doxygen info: <a href="/doxygen/classllvm_1_1BasicBlock.html">BasicBlock
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003790Class</a><br>
3791Superclass: <a href="#Value"><tt>Value</tt></a></p>
3792
3793<p>This class represents a single entry multiple exit section of the code,
3794commonly known as a basic block by the compiler community. The
3795<tt>BasicBlock</tt> class maintains a list of <a
3796href="#Instruction"><tt>Instruction</tt></a>s, which form the body of the block.
3797Matching the language definition, the last element of this list of instructions
3798is always a terminator instruction (a subclass of the <a
3799href="#TerminatorInst"><tt>TerminatorInst</tt></a> class).</p>
3800
3801<p>In addition to tracking the list of instructions that make up the block, the
3802<tt>BasicBlock</tt> class also keeps track of the <a
3803href="#Function"><tt>Function</tt></a> that it is embedded into.</p>
3804
3805<p>Note that <tt>BasicBlock</tt>s themselves are <a
3806href="#Value"><tt>Value</tt></a>s, because they are referenced by instructions
3807like branches and can go in the switch tables. <tt>BasicBlock</tt>s have type
3808<tt>label</tt>.</p>
3809
3810</div>
3811
3812<!-- _______________________________________________________________________ -->
3813<div class="doc_subsubsection">
3814 <a name="m_BasicBlock">Important Public Members of the <tt>BasicBlock</tt>
3815 class</a>
3816</div>
3817
3818<div class="doc_text">
3819<ul>
3820
3821<li><tt>BasicBlock(const std::string &amp;Name = "", </tt><tt><a
3822 href="#Function">Function</a> *Parent = 0)</tt>
3823
3824<p>The <tt>BasicBlock</tt> constructor is used to create new basic blocks for
3825insertion into a function. The constructor optionally takes a name for the new
3826block, and a <a href="#Function"><tt>Function</tt></a> to insert it into. If
3827the <tt>Parent</tt> parameter is specified, the new <tt>BasicBlock</tt> is
3828automatically inserted at the end of the specified <a
3829href="#Function"><tt>Function</tt></a>, if not specified, the BasicBlock must be
3830manually inserted into the <a href="#Function"><tt>Function</tt></a>.</p></li>
3831
3832<li><tt>BasicBlock::iterator</tt> - Typedef for instruction list iterator<br>
3833<tt>BasicBlock::const_iterator</tt> - Typedef for const_iterator.<br>
3834<tt>begin()</tt>, <tt>end()</tt>, <tt>front()</tt>, <tt>back()</tt>,
3835<tt>size()</tt>, <tt>empty()</tt>
3836STL-style functions for accessing the instruction list.
3837
3838<p>These methods and typedefs are forwarding functions that have the same
3839semantics as the standard library methods of the same names. These methods
3840expose the underlying instruction list of a basic block in a way that is easy to
3841manipulate. To get the full complement of container operations (including
3842operations to update the list), you must use the <tt>getInstList()</tt>
3843method.</p></li>
3844
3845<li><tt>BasicBlock::InstListType &amp;getInstList()</tt>
3846
3847<p>This method is used to get access to the underlying container that actually
3848holds the Instructions. This method must be used when there isn't a forwarding
3849function in the <tt>BasicBlock</tt> class for the operation that you would like
3850to perform. Because there are no forwarding functions for "updating"
3851operations, you need to use this if you want to update the contents of a
3852<tt>BasicBlock</tt>.</p></li>
3853
3854<li><tt><a href="#Function">Function</a> *getParent()</tt>
3855
3856<p> Returns a pointer to <a href="#Function"><tt>Function</tt></a> the block is
3857embedded into, or a null pointer if it is homeless.</p></li>
3858
3859<li><tt><a href="#TerminatorInst">TerminatorInst</a> *getTerminator()</tt>
3860
3861<p> Returns a pointer to the terminator instruction that appears at the end of
3862the <tt>BasicBlock</tt>. If there is no terminator instruction, or if the last
3863instruction in the block is not a terminator, then a null pointer is
3864returned.</p></li>
3865
3866</ul>
3867
3868</div>
3869
3870
3871<!-- ======================================================================= -->
3872<div class="doc_subsection">
3873 <a name="Argument">The <tt>Argument</tt> class</a>
3874</div>
3875
3876<div class="doc_text">
3877
3878<p>This subclass of Value defines the interface for incoming formal
3879arguments to a function. A Function maintains a list of its formal
3880arguments. An argument has a pointer to the parent Function.</p>
3881
3882</div>
3883
3884<!-- *********************************************************************** -->
3885<hr>
3886<address>
3887 <a href="http://jigsaw.w3.org/css-validator/check/referer"><img
Misha Brukman947321d2008-12-11 17:34:48 +00003888 src="http://jigsaw.w3.org/css-validator/images/vcss-blue" alt="Valid CSS"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003889 <a href="http://validator.w3.org/check/referer"><img
Gabor Greif7dabe382008-06-18 14:05:31 +00003890 src="http://www.w3.org/Icons/valid-html401" alt="Valid HTML 4.01 Strict"></a>
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003891
3892 <a href="mailto:dhurjati@cs.uiuc.edu">Dinakar Dhurjati</a> and
3893 <a href="mailto:sabre@nondot.org">Chris Lattner</a><br>
3894 <a href="http://llvm.org">The LLVM Compiler Infrastructure</a><br>
3895 Last modified: $Date$
3896</address>
3897
3898</body>
3899</html>