blob: 2de64c15ab153a5b2552effaf6d6c2179f3ef424 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- SCCP.cpp - Sparse Conditional Constant Propagation -----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This file implements sparse conditional constant propagation and merging:
11//
12// Specifically, this:
13// * Assumes values are constant unless proven otherwise
14// * Assumes BasicBlocks are dead unless proven otherwise
15// * Proves values to be constant, and replaces them with constants
16// * Proves conditional branches to be unconditional
17//
18// Notice that:
19// * This pass has a habit of making definitions be dead. It is a good idea
20// to to run a DCE pass sometime after running this pass.
21//
22//===----------------------------------------------------------------------===//
23
24#define DEBUG_TYPE "sccp"
25#include "llvm/Transforms/Scalar.h"
26#include "llvm/Transforms/IPO.h"
27#include "llvm/Constants.h"
28#include "llvm/DerivedTypes.h"
29#include "llvm/Instructions.h"
Owen Andersonfa089ab2009-07-03 19:42:02 +000030#include "llvm/LLVMContext.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000031#include "llvm/Pass.h"
32#include "llvm/Analysis/ConstantFolding.h"
Dan Gohman856193b2008-06-20 01:15:44 +000033#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000034#include "llvm/Transforms/Utils/Local.h"
35#include "llvm/Support/CallSite.h"
36#include "llvm/Support/Compiler.h"
37#include "llvm/Support/Debug.h"
Edwin Törökced9ff82009-07-11 13:10:19 +000038#include "llvm/Support/ErrorHandling.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000039#include "llvm/Support/InstVisitor.h"
40#include "llvm/ADT/DenseMap.h"
Chris Lattnerd3123a72008-08-23 23:36:38 +000041#include "llvm/ADT/DenseSet.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000042#include "llvm/ADT/SmallSet.h"
43#include "llvm/ADT/SmallVector.h"
44#include "llvm/ADT/Statistic.h"
45#include "llvm/ADT/STLExtras.h"
46#include <algorithm>
Dan Gohman249ddbf2008-03-21 23:51:57 +000047#include <map>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000048using namespace llvm;
49
50STATISTIC(NumInstRemoved, "Number of instructions removed");
51STATISTIC(NumDeadBlocks , "Number of basic blocks unreachable");
52
Nick Lewyckybbdfc9c2008-03-08 07:48:41 +000053STATISTIC(IPNumInstRemoved, "Number of instructions removed by IPSCCP");
Dan Gohmanf17a25c2007-07-18 16:29:46 +000054STATISTIC(IPNumDeadBlocks , "Number of basic blocks unreachable by IPSCCP");
55STATISTIC(IPNumArgsElimed ,"Number of arguments constant propagated by IPSCCP");
56STATISTIC(IPNumGlobalConst, "Number of globals found to be constant by IPSCCP");
57
58namespace {
59/// LatticeVal class - This class represents the different lattice values that
60/// an LLVM value may occupy. It is a simple class with value semantics.
61///
62class VISIBILITY_HIDDEN LatticeVal {
63 enum {
64 /// undefined - This LLVM Value has no known value yet.
65 undefined,
66
67 /// constant - This LLVM Value has a specific constant value.
68 constant,
69
70 /// forcedconstant - This LLVM Value was thought to be undef until
71 /// ResolvedUndefsIn. This is treated just like 'constant', but if merged
72 /// with another (different) constant, it goes to overdefined, instead of
73 /// asserting.
74 forcedconstant,
75
76 /// overdefined - This instruction is not known to be constant, and we know
77 /// it has a value.
78 overdefined
79 } LatticeValue; // The current lattice position
80
81 Constant *ConstantVal; // If Constant value, the current value
82public:
83 inline LatticeVal() : LatticeValue(undefined), ConstantVal(0) {}
84
85 // markOverdefined - Return true if this is a new status to be in...
86 inline bool markOverdefined() {
87 if (LatticeValue != overdefined) {
88 LatticeValue = overdefined;
89 return true;
90 }
91 return false;
92 }
93
94 // markConstant - Return true if this is a new status for us.
95 inline bool markConstant(Constant *V) {
96 if (LatticeValue != constant) {
97 if (LatticeValue == undefined) {
98 LatticeValue = constant;
99 assert(V && "Marking constant with NULL");
100 ConstantVal = V;
101 } else {
102 assert(LatticeValue == forcedconstant &&
103 "Cannot move from overdefined to constant!");
104 // Stay at forcedconstant if the constant is the same.
105 if (V == ConstantVal) return false;
106
107 // Otherwise, we go to overdefined. Assumptions made based on the
108 // forced value are possibly wrong. Assuming this is another constant
109 // could expose a contradiction.
110 LatticeValue = overdefined;
111 }
112 return true;
113 } else {
114 assert(ConstantVal == V && "Marking constant with different value");
115 }
116 return false;
117 }
118
119 inline void markForcedConstant(Constant *V) {
120 assert(LatticeValue == undefined && "Can't force a defined value!");
121 LatticeValue = forcedconstant;
122 ConstantVal = V;
123 }
124
125 inline bool isUndefined() const { return LatticeValue == undefined; }
126 inline bool isConstant() const {
127 return LatticeValue == constant || LatticeValue == forcedconstant;
128 }
129 inline bool isOverdefined() const { return LatticeValue == overdefined; }
130
131 inline Constant *getConstant() const {
132 assert(isConstant() && "Cannot get the constant of a non-constant!");
133 return ConstantVal;
134 }
135};
136
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000137//===----------------------------------------------------------------------===//
138//
139/// SCCPSolver - This class is a general purpose solver for Sparse Conditional
140/// Constant Propagation.
141///
142class SCCPSolver : public InstVisitor<SCCPSolver> {
Owen Anderson5349f052009-07-06 23:00:19 +0000143 LLVMContext *Context;
Chris Lattnerd3123a72008-08-23 23:36:38 +0000144 DenseSet<BasicBlock*> BBExecutable;// The basic blocks that are executable
Bill Wendling03488ae2008-08-14 23:05:24 +0000145 std::map<Value*, LatticeVal> ValueState; // The state each value is in.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000146
147 /// GlobalValue - If we are tracking any values for the contents of a global
148 /// variable, we keep a mapping from the constant accessor to the element of
149 /// the global, to the currently known value. If the value becomes
150 /// overdefined, it's entry is simply removed from this map.
151 DenseMap<GlobalVariable*, LatticeVal> TrackedGlobals;
152
Devang Pateladd320d2008-03-11 05:46:42 +0000153 /// TrackedRetVals - If we are tracking arguments into and the return
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000154 /// value out of a function, it will have an entry in this map, indicating
155 /// what the known return value for the function is.
Devang Pateladd320d2008-03-11 05:46:42 +0000156 DenseMap<Function*, LatticeVal> TrackedRetVals;
157
158 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
159 /// that return multiple values.
Chris Lattnerd3123a72008-08-23 23:36:38 +0000160 DenseMap<std::pair<Function*, unsigned>, LatticeVal> TrackedMultipleRetVals;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000161
162 // The reason for two worklists is that overdefined is the lowest state
163 // on the lattice, and moving things to overdefined as fast as possible
164 // makes SCCP converge much faster.
165 // By having a separate worklist, we accomplish this because everything
166 // possibly overdefined will become overdefined at the soonest possible
167 // point.
Chris Lattnerd3123a72008-08-23 23:36:38 +0000168 SmallVector<Value*, 64> OverdefinedInstWorkList;
169 SmallVector<Value*, 64> InstWorkList;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000170
171
Chris Lattnerd3123a72008-08-23 23:36:38 +0000172 SmallVector<BasicBlock*, 64> BBWorkList; // The BasicBlock work list
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000173
174 /// UsersOfOverdefinedPHIs - Keep track of any users of PHI nodes that are not
175 /// overdefined, despite the fact that the PHI node is overdefined.
176 std::multimap<PHINode*, Instruction*> UsersOfOverdefinedPHIs;
177
178 /// KnownFeasibleEdges - Entries in this set are edges which have already had
179 /// PHI nodes retriggered.
Chris Lattnerd3123a72008-08-23 23:36:38 +0000180 typedef std::pair<BasicBlock*, BasicBlock*> Edge;
181 DenseSet<Edge> KnownFeasibleEdges;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000182public:
Owen Anderson5349f052009-07-06 23:00:19 +0000183 void setContext(LLVMContext *C) { Context = C; }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000184
185 /// MarkBlockExecutable - This method can be used by clients to mark all of
186 /// the blocks that are known to be intrinsically live in the processed unit.
187 void MarkBlockExecutable(BasicBlock *BB) {
Chris Lattner56bf9a92008-05-11 01:55:59 +0000188 DOUT << "Marking Block Executable: " << BB->getNameStart() << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000189 BBExecutable.insert(BB); // Basic block is executable!
190 BBWorkList.push_back(BB); // Add the block to the work list!
191 }
192
193 /// TrackValueOfGlobalVariable - Clients can use this method to
194 /// inform the SCCPSolver that it should track loads and stores to the
195 /// specified global variable if it can. This is only legal to call if
196 /// performing Interprocedural SCCP.
197 void TrackValueOfGlobalVariable(GlobalVariable *GV) {
198 const Type *ElTy = GV->getType()->getElementType();
199 if (ElTy->isFirstClassType()) {
200 LatticeVal &IV = TrackedGlobals[GV];
201 if (!isa<UndefValue>(GV->getInitializer()))
202 IV.markConstant(GV->getInitializer());
203 }
204 }
205
206 /// AddTrackedFunction - If the SCCP solver is supposed to track calls into
207 /// and out of the specified function (which cannot have its address taken),
208 /// this method must be called.
209 void AddTrackedFunction(Function *F) {
Rafael Espindolaa168fc92009-01-15 20:18:42 +0000210 assert(F->hasLocalLinkage() && "Can only track internal functions!");
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000211 // Add an entry, F -> undef.
Devang Pateladd320d2008-03-11 05:46:42 +0000212 if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
213 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
Chris Lattnercd73be02008-04-23 05:38:20 +0000214 TrackedMultipleRetVals.insert(std::make_pair(std::make_pair(F, i),
215 LatticeVal()));
216 } else
217 TrackedRetVals.insert(std::make_pair(F, LatticeVal()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000218 }
219
220 /// Solve - Solve for constants and executable blocks.
221 ///
222 void Solve();
223
224 /// ResolvedUndefsIn - While solving the dataflow for a function, we assume
225 /// that branches on undef values cannot reach any of their successors.
226 /// However, this is not a safe assumption. After we solve dataflow, this
227 /// method should be use to handle this. If this returns true, the solver
228 /// should be rerun.
229 bool ResolvedUndefsIn(Function &F);
230
Chris Lattner317e6b62008-08-23 23:39:31 +0000231 bool isBlockExecutable(BasicBlock *BB) const {
232 return BBExecutable.count(BB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000233 }
234
235 /// getValueMapping - Once we have solved for constants, return the mapping of
236 /// LLVM values to LatticeVals.
Bill Wendling03488ae2008-08-14 23:05:24 +0000237 std::map<Value*, LatticeVal> &getValueMapping() {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000238 return ValueState;
239 }
240
Devang Pateladd320d2008-03-11 05:46:42 +0000241 /// getTrackedRetVals - Get the inferred return value map.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000242 ///
Devang Pateladd320d2008-03-11 05:46:42 +0000243 const DenseMap<Function*, LatticeVal> &getTrackedRetVals() {
244 return TrackedRetVals;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000245 }
246
247 /// getTrackedGlobals - Get and return the set of inferred initializers for
248 /// global variables.
249 const DenseMap<GlobalVariable*, LatticeVal> &getTrackedGlobals() {
250 return TrackedGlobals;
251 }
252
253 inline void markOverdefined(Value *V) {
254 markOverdefined(ValueState[V], V);
255 }
256
257private:
258 // markConstant - Make a value be marked as "constant". If the value
259 // is not already a constant, add it to the instruction work list so that
260 // the users of the instruction are updated later.
261 //
262 inline void markConstant(LatticeVal &IV, Value *V, Constant *C) {
263 if (IV.markConstant(C)) {
264 DOUT << "markConstant: " << *C << ": " << *V;
265 InstWorkList.push_back(V);
266 }
267 }
268
269 inline void markForcedConstant(LatticeVal &IV, Value *V, Constant *C) {
270 IV.markForcedConstant(C);
271 DOUT << "markForcedConstant: " << *C << ": " << *V;
272 InstWorkList.push_back(V);
273 }
274
275 inline void markConstant(Value *V, Constant *C) {
276 markConstant(ValueState[V], V, C);
277 }
278
279 // markOverdefined - Make a value be marked as "overdefined". If the
280 // value is not already overdefined, add it to the overdefined instruction
281 // work list so that the users of the instruction are updated later.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000282 inline void markOverdefined(LatticeVal &IV, Value *V) {
283 if (IV.markOverdefined()) {
284 DEBUG(DOUT << "markOverdefined: ";
285 if (Function *F = dyn_cast<Function>(V))
286 DOUT << "Function '" << F->getName() << "'\n";
287 else
288 DOUT << *V);
289 // Only instructions go on the work list
290 OverdefinedInstWorkList.push_back(V);
291 }
292 }
293
294 inline void mergeInValue(LatticeVal &IV, Value *V, LatticeVal &MergeWithV) {
295 if (IV.isOverdefined() || MergeWithV.isUndefined())
296 return; // Noop.
297 if (MergeWithV.isOverdefined())
298 markOverdefined(IV, V);
299 else if (IV.isUndefined())
300 markConstant(IV, V, MergeWithV.getConstant());
301 else if (IV.getConstant() != MergeWithV.getConstant())
302 markOverdefined(IV, V);
303 }
304
305 inline void mergeInValue(Value *V, LatticeVal &MergeWithV) {
306 return mergeInValue(ValueState[V], V, MergeWithV);
307 }
308
309
310 // getValueState - Return the LatticeVal object that corresponds to the value.
311 // This function is necessary because not all values should start out in the
312 // underdefined state... Argument's should be overdefined, and
313 // constants should be marked as constants. If a value is not known to be an
314 // Instruction object, then use this accessor to get its value from the map.
315 //
316 inline LatticeVal &getValueState(Value *V) {
Bill Wendling03488ae2008-08-14 23:05:24 +0000317 std::map<Value*, LatticeVal>::iterator I = ValueState.find(V);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000318 if (I != ValueState.end()) return I->second; // Common case, in the map
319
320 if (Constant *C = dyn_cast<Constant>(V)) {
321 if (isa<UndefValue>(V)) {
322 // Nothing to do, remain undefined.
323 } else {
324 LatticeVal &LV = ValueState[C];
325 LV.markConstant(C); // Constants are constant
326 return LV;
327 }
328 }
329 // All others are underdefined by default...
330 return ValueState[V];
331 }
332
333 // markEdgeExecutable - Mark a basic block as executable, adding it to the BB
334 // work list if it is not already executable...
335 //
336 void markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
337 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
338 return; // This edge is already known to be executable!
339
340 if (BBExecutable.count(Dest)) {
Chris Lattner56bf9a92008-05-11 01:55:59 +0000341 DOUT << "Marking Edge Executable: " << Source->getNameStart()
342 << " -> " << Dest->getNameStart() << "\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000343
344 // The destination is already executable, but we just made an edge
345 // feasible that wasn't before. Revisit the PHI nodes in the block
346 // because they have potentially new operands.
347 for (BasicBlock::iterator I = Dest->begin(); isa<PHINode>(I); ++I)
348 visitPHINode(*cast<PHINode>(I));
349
350 } else {
351 MarkBlockExecutable(Dest);
352 }
353 }
354
355 // getFeasibleSuccessors - Return a vector of booleans to indicate which
356 // successors are reachable from a given terminator instruction.
357 //
358 void getFeasibleSuccessors(TerminatorInst &TI, SmallVector<bool, 16> &Succs);
359
360 // isEdgeFeasible - Return true if the control flow edge from the 'From' basic
361 // block to the 'To' basic block is currently feasible...
362 //
363 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To);
364
365 // OperandChangedState - This method is invoked on all of the users of an
366 // instruction that was just changed state somehow.... Based on this
367 // information, we need to update the specified user of this instruction.
368 //
369 void OperandChangedState(User *U) {
370 // Only instructions use other variable values!
371 Instruction &I = cast<Instruction>(*U);
372 if (BBExecutable.count(I.getParent())) // Inst is executable?
373 visit(I);
374 }
375
376private:
377 friend class InstVisitor<SCCPSolver>;
378
379 // visit implementations - Something changed in this instruction... Either an
380 // operand made a transition, or the instruction is newly executable. Change
381 // the value type of I to reflect these changes if appropriate.
382 //
383 void visitPHINode(PHINode &I);
384
385 // Terminators
386 void visitReturnInst(ReturnInst &I);
387 void visitTerminatorInst(TerminatorInst &TI);
388
389 void visitCastInst(CastInst &I);
390 void visitSelectInst(SelectInst &I);
391 void visitBinaryOperator(Instruction &I);
392 void visitCmpInst(CmpInst &I);
393 void visitExtractElementInst(ExtractElementInst &I);
394 void visitInsertElementInst(InsertElementInst &I);
395 void visitShuffleVectorInst(ShuffleVectorInst &I);
Dan Gohman856193b2008-06-20 01:15:44 +0000396 void visitExtractValueInst(ExtractValueInst &EVI);
397 void visitInsertValueInst(InsertValueInst &IVI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000398
399 // Instructions that cannot be folded away...
400 void visitStoreInst (Instruction &I);
401 void visitLoadInst (LoadInst &I);
402 void visitGetElementPtrInst(GetElementPtrInst &I);
403 void visitCallInst (CallInst &I) { visitCallSite(CallSite::get(&I)); }
404 void visitInvokeInst (InvokeInst &II) {
405 visitCallSite(CallSite::get(&II));
406 visitTerminatorInst(II);
407 }
408 void visitCallSite (CallSite CS);
409 void visitUnwindInst (TerminatorInst &I) { /*returns void*/ }
410 void visitUnreachableInst(TerminatorInst &I) { /*returns void*/ }
411 void visitAllocationInst(Instruction &I) { markOverdefined(&I); }
412 void visitVANextInst (Instruction &I) { markOverdefined(&I); }
413 void visitVAArgInst (Instruction &I) { markOverdefined(&I); }
414 void visitFreeInst (Instruction &I) { /*returns void*/ }
415
416 void visitInstruction(Instruction &I) {
417 // If a new instruction is added to LLVM that we don't handle...
418 cerr << "SCCP: Don't know how to handle: " << I;
419 markOverdefined(&I); // Just in case
420 }
421};
422
Duncan Sands40f67972007-07-20 08:56:21 +0000423} // end anonymous namespace
424
425
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000426// getFeasibleSuccessors - Return a vector of booleans to indicate which
427// successors are reachable from a given terminator instruction.
428//
429void SCCPSolver::getFeasibleSuccessors(TerminatorInst &TI,
430 SmallVector<bool, 16> &Succs) {
431 Succs.resize(TI.getNumSuccessors());
432 if (BranchInst *BI = dyn_cast<BranchInst>(&TI)) {
433 if (BI->isUnconditional()) {
434 Succs[0] = true;
435 } else {
436 LatticeVal &BCValue = getValueState(BI->getCondition());
437 if (BCValue.isOverdefined() ||
438 (BCValue.isConstant() && !isa<ConstantInt>(BCValue.getConstant()))) {
439 // Overdefined condition variables, and branches on unfoldable constant
440 // conditions, mean the branch could go either way.
441 Succs[0] = Succs[1] = true;
442 } else if (BCValue.isConstant()) {
443 // Constant condition variables mean the branch can only go a single way
Owen Andersonfa089ab2009-07-03 19:42:02 +0000444 Succs[BCValue.getConstant() == Context->getConstantIntFalse()] = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000445 }
446 }
447 } else if (isa<InvokeInst>(&TI)) {
448 // Invoke instructions successors are always executable.
449 Succs[0] = Succs[1] = true;
450 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(&TI)) {
451 LatticeVal &SCValue = getValueState(SI->getCondition());
452 if (SCValue.isOverdefined() || // Overdefined condition?
453 (SCValue.isConstant() && !isa<ConstantInt>(SCValue.getConstant()))) {
454 // All destinations are executable!
455 Succs.assign(TI.getNumSuccessors(), true);
Chris Lattner81335532008-05-10 23:56:54 +0000456 } else if (SCValue.isConstant())
457 Succs[SI->findCaseValue(cast<ConstantInt>(SCValue.getConstant()))] = true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000458 } else {
459 assert(0 && "SCCP: Don't know how to handle this terminator!");
460 }
461}
462
463
464// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
465// block to the 'To' basic block is currently feasible...
466//
467bool SCCPSolver::isEdgeFeasible(BasicBlock *From, BasicBlock *To) {
468 assert(BBExecutable.count(To) && "Dest should always be alive!");
469
470 // Make sure the source basic block is executable!!
471 if (!BBExecutable.count(From)) return false;
472
473 // Check to make sure this edge itself is actually feasible now...
474 TerminatorInst *TI = From->getTerminator();
475 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
476 if (BI->isUnconditional())
477 return true;
478 else {
479 LatticeVal &BCValue = getValueState(BI->getCondition());
480 if (BCValue.isOverdefined()) {
481 // Overdefined condition variables mean the branch could go either way.
482 return true;
483 } else if (BCValue.isConstant()) {
484 // Not branching on an evaluatable constant?
485 if (!isa<ConstantInt>(BCValue.getConstant())) return true;
486
487 // Constant condition variables mean the branch can only go a single way
488 return BI->getSuccessor(BCValue.getConstant() ==
Owen Andersonfa089ab2009-07-03 19:42:02 +0000489 Context->getConstantIntFalse()) == To;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000490 }
491 return false;
492 }
493 } else if (isa<InvokeInst>(TI)) {
494 // Invoke instructions successors are always executable.
495 return true;
496 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
497 LatticeVal &SCValue = getValueState(SI->getCondition());
498 if (SCValue.isOverdefined()) { // Overdefined condition?
499 // All destinations are executable!
500 return true;
501 } else if (SCValue.isConstant()) {
502 Constant *CPV = SCValue.getConstant();
503 if (!isa<ConstantInt>(CPV))
504 return true; // not a foldable constant?
505
506 // Make sure to skip the "default value" which isn't a value
507 for (unsigned i = 1, E = SI->getNumSuccessors(); i != E; ++i)
508 if (SI->getSuccessorValue(i) == CPV) // Found the taken branch...
509 return SI->getSuccessor(i) == To;
510
511 // Constant value not equal to any of the branches... must execute
512 // default branch then...
513 return SI->getDefaultDest() == To;
514 }
515 return false;
516 } else {
Edwin Törökced9ff82009-07-11 13:10:19 +0000517#ifndef NDEBUG
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000518 cerr << "Unknown terminator instruction: " << *TI;
Edwin Törökced9ff82009-07-11 13:10:19 +0000519#endif
520 llvm_unreachable();
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000521 }
522}
523
524// visit Implementations - Something changed in this instruction... Either an
525// operand made a transition, or the instruction is newly executable. Change
526// the value type of I to reflect these changes if appropriate. This method
527// makes sure to do the following actions:
528//
529// 1. If a phi node merges two constants in, and has conflicting value coming
530// from different branches, or if the PHI node merges in an overdefined
531// value, then the PHI node becomes overdefined.
532// 2. If a phi node merges only constants in, and they all agree on value, the
533// PHI node becomes a constant value equal to that.
534// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
535// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
536// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
537// 6. If a conditional branch has a value that is constant, make the selected
538// destination executable
539// 7. If a conditional branch has a value that is overdefined, make all
540// successors executable.
541//
542void SCCPSolver::visitPHINode(PHINode &PN) {
543 LatticeVal &PNIV = getValueState(&PN);
544 if (PNIV.isOverdefined()) {
545 // There may be instructions using this PHI node that are not overdefined
546 // themselves. If so, make sure that they know that the PHI node operand
547 // changed.
548 std::multimap<PHINode*, Instruction*>::iterator I, E;
549 tie(I, E) = UsersOfOverdefinedPHIs.equal_range(&PN);
550 if (I != E) {
551 SmallVector<Instruction*, 16> Users;
552 for (; I != E; ++I) Users.push_back(I->second);
553 while (!Users.empty()) {
554 visit(Users.back());
555 Users.pop_back();
556 }
557 }
558 return; // Quick exit
559 }
560
561 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
562 // and slow us down a lot. Just mark them overdefined.
563 if (PN.getNumIncomingValues() > 64) {
564 markOverdefined(PNIV, &PN);
565 return;
566 }
567
568 // Look at all of the executable operands of the PHI node. If any of them
569 // are overdefined, the PHI becomes overdefined as well. If they are all
570 // constant, and they agree with each other, the PHI becomes the identical
571 // constant. If they are constant and don't agree, the PHI is overdefined.
572 // If there are no executable operands, the PHI remains undefined.
573 //
574 Constant *OperandVal = 0;
575 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
576 LatticeVal &IV = getValueState(PN.getIncomingValue(i));
577 if (IV.isUndefined()) continue; // Doesn't influence PHI node.
578
579 if (isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent())) {
580 if (IV.isOverdefined()) { // PHI node becomes overdefined!
Chris Lattnerd3123a72008-08-23 23:36:38 +0000581 markOverdefined(&PN);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000582 return;
583 }
584
585 if (OperandVal == 0) { // Grab the first value...
586 OperandVal = IV.getConstant();
587 } else { // Another value is being merged in!
588 // There is already a reachable operand. If we conflict with it,
589 // then the PHI node becomes overdefined. If we agree with it, we
590 // can continue on.
591
592 // Check to see if there are two different constants merging...
593 if (IV.getConstant() != OperandVal) {
594 // Yes there is. This means the PHI node is not constant.
595 // You must be overdefined poor PHI.
596 //
Chris Lattnerd3123a72008-08-23 23:36:38 +0000597 markOverdefined(&PN); // The PHI node now becomes overdefined
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000598 return; // I'm done analyzing you
599 }
600 }
601 }
602 }
603
604 // If we exited the loop, this means that the PHI node only has constant
605 // arguments that agree with each other(and OperandVal is the constant) or
606 // OperandVal is null because there are no defined incoming arguments. If
607 // this is the case, the PHI remains undefined.
608 //
609 if (OperandVal)
Chris Lattnerd3123a72008-08-23 23:36:38 +0000610 markConstant(&PN, OperandVal); // Acquire operand value
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000611}
612
613void SCCPSolver::visitReturnInst(ReturnInst &I) {
614 if (I.getNumOperands() == 0) return; // Ret void
615
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000616 Function *F = I.getParent()->getParent();
Devang Pateladd320d2008-03-11 05:46:42 +0000617 // If we are tracking the return value of this function, merge it in.
Rafael Espindolaa168fc92009-01-15 20:18:42 +0000618 if (!F->hasLocalLinkage())
Devang Pateladd320d2008-03-11 05:46:42 +0000619 return;
620
Chris Lattnercd73be02008-04-23 05:38:20 +0000621 if (!TrackedRetVals.empty() && I.getNumOperands() == 1) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000622 DenseMap<Function*, LatticeVal>::iterator TFRVI =
Devang Pateladd320d2008-03-11 05:46:42 +0000623 TrackedRetVals.find(F);
624 if (TFRVI != TrackedRetVals.end() &&
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000625 !TFRVI->second.isOverdefined()) {
626 LatticeVal &IV = getValueState(I.getOperand(0));
627 mergeInValue(TFRVI->second, F, IV);
Devang Pateladd320d2008-03-11 05:46:42 +0000628 return;
629 }
630 }
631
Chris Lattnercd73be02008-04-23 05:38:20 +0000632 // Handle functions that return multiple values.
633 if (!TrackedMultipleRetVals.empty() && I.getNumOperands() > 1) {
634 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
Chris Lattnerd3123a72008-08-23 23:36:38 +0000635 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
Chris Lattnercd73be02008-04-23 05:38:20 +0000636 It = TrackedMultipleRetVals.find(std::make_pair(F, i));
637 if (It == TrackedMultipleRetVals.end()) break;
638 mergeInValue(It->second, F, getValueState(I.getOperand(i)));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000639 }
Dan Gohman856193b2008-06-20 01:15:44 +0000640 } else if (!TrackedMultipleRetVals.empty() &&
641 I.getNumOperands() == 1 &&
642 isa<StructType>(I.getOperand(0)->getType())) {
643 for (unsigned i = 0, e = I.getOperand(0)->getType()->getNumContainedTypes();
644 i != e; ++i) {
Chris Lattnerd3123a72008-08-23 23:36:38 +0000645 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
Dan Gohman856193b2008-06-20 01:15:44 +0000646 It = TrackedMultipleRetVals.find(std::make_pair(F, i));
647 if (It == TrackedMultipleRetVals.end()) break;
Owen Andersone755b092009-07-06 22:37:39 +0000648 if (Value *Val = FindInsertedValue(I.getOperand(0), i, Context))
Nick Lewycky6ad29e02009-06-06 23:13:08 +0000649 mergeInValue(It->second, F, getValueState(Val));
Dan Gohman856193b2008-06-20 01:15:44 +0000650 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000651 }
652}
653
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000654void SCCPSolver::visitTerminatorInst(TerminatorInst &TI) {
655 SmallVector<bool, 16> SuccFeasible;
656 getFeasibleSuccessors(TI, SuccFeasible);
657
658 BasicBlock *BB = TI.getParent();
659
660 // Mark all feasible successors executable...
661 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
662 if (SuccFeasible[i])
663 markEdgeExecutable(BB, TI.getSuccessor(i));
664}
665
666void SCCPSolver::visitCastInst(CastInst &I) {
667 Value *V = I.getOperand(0);
668 LatticeVal &VState = getValueState(V);
669 if (VState.isOverdefined()) // Inherit overdefinedness of operand
670 markOverdefined(&I);
671 else if (VState.isConstant()) // Propagate constant value
Owen Andersonfa089ab2009-07-03 19:42:02 +0000672 markConstant(&I, Context->getConstantExprCast(I.getOpcode(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000673 VState.getConstant(), I.getType()));
674}
675
Dan Gohman856193b2008-06-20 01:15:44 +0000676void SCCPSolver::visitExtractValueInst(ExtractValueInst &EVI) {
Dan Gohmanaa7b7802008-06-20 16:41:17 +0000677 Value *Aggr = EVI.getAggregateOperand();
Dan Gohman856193b2008-06-20 01:15:44 +0000678
Dan Gohmanaa7b7802008-06-20 16:41:17 +0000679 // If the operand to the extractvalue is an undef, the result is undef.
Dan Gohman856193b2008-06-20 01:15:44 +0000680 if (isa<UndefValue>(Aggr))
681 return;
682
683 // Currently only handle single-index extractvalues.
684 if (EVI.getNumIndices() != 1) {
685 markOverdefined(&EVI);
686 return;
687 }
688
689 Function *F = 0;
690 if (CallInst *CI = dyn_cast<CallInst>(Aggr))
691 F = CI->getCalledFunction();
692 else if (InvokeInst *II = dyn_cast<InvokeInst>(Aggr))
693 F = II->getCalledFunction();
694
695 // TODO: If IPSCCP resolves the callee of this function, we could propagate a
696 // result back!
697 if (F == 0 || TrackedMultipleRetVals.empty()) {
698 markOverdefined(&EVI);
699 return;
700 }
701
Chris Lattnerd3123a72008-08-23 23:36:38 +0000702 // See if we are tracking the result of the callee. If not tracking this
703 // function (for example, it is a declaration) just move to overdefined.
704 if (!TrackedMultipleRetVals.count(std::make_pair(F, *EVI.idx_begin()))) {
Dan Gohman856193b2008-06-20 01:15:44 +0000705 markOverdefined(&EVI);
706 return;
707 }
708
709 // Otherwise, the value will be merged in here as a result of CallSite
710 // handling.
711}
712
713void SCCPSolver::visitInsertValueInst(InsertValueInst &IVI) {
Dan Gohmanaa7b7802008-06-20 16:41:17 +0000714 Value *Aggr = IVI.getAggregateOperand();
715 Value *Val = IVI.getInsertedValueOperand();
Dan Gohman856193b2008-06-20 01:15:44 +0000716
Dan Gohmanaa7b7802008-06-20 16:41:17 +0000717 // If the operands to the insertvalue are undef, the result is undef.
Dan Gohman78b2c392008-06-20 16:39:44 +0000718 if (isa<UndefValue>(Aggr) && isa<UndefValue>(Val))
Dan Gohman856193b2008-06-20 01:15:44 +0000719 return;
720
721 // Currently only handle single-index insertvalues.
722 if (IVI.getNumIndices() != 1) {
723 markOverdefined(&IVI);
724 return;
725 }
Dan Gohman78b2c392008-06-20 16:39:44 +0000726
727 // Currently only handle insertvalue instructions that are in a single-use
728 // chain that builds up a return value.
729 for (const InsertValueInst *TmpIVI = &IVI; ; ) {
730 if (!TmpIVI->hasOneUse()) {
731 markOverdefined(&IVI);
732 return;
733 }
734 const Value *V = *TmpIVI->use_begin();
735 if (isa<ReturnInst>(V))
736 break;
737 TmpIVI = dyn_cast<InsertValueInst>(V);
738 if (!TmpIVI) {
739 markOverdefined(&IVI);
740 return;
741 }
742 }
Dan Gohman856193b2008-06-20 01:15:44 +0000743
744 // See if we are tracking the result of the callee.
745 Function *F = IVI.getParent()->getParent();
Chris Lattnerd3123a72008-08-23 23:36:38 +0000746 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
Dan Gohman856193b2008-06-20 01:15:44 +0000747 It = TrackedMultipleRetVals.find(std::make_pair(F, *IVI.idx_begin()));
748
749 // Merge in the inserted member value.
750 if (It != TrackedMultipleRetVals.end())
751 mergeInValue(It->second, F, getValueState(Val));
752
Dan Gohmanaa7b7802008-06-20 16:41:17 +0000753 // Mark the aggregate result of the IVI overdefined; any tracking that we do
754 // will be done on the individual member values.
Dan Gohman856193b2008-06-20 01:15:44 +0000755 markOverdefined(&IVI);
756}
757
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000758void SCCPSolver::visitSelectInst(SelectInst &I) {
759 LatticeVal &CondValue = getValueState(I.getCondition());
760 if (CondValue.isUndefined())
761 return;
762 if (CondValue.isConstant()) {
763 if (ConstantInt *CondCB = dyn_cast<ConstantInt>(CondValue.getConstant())){
764 mergeInValue(&I, getValueState(CondCB->getZExtValue() ? I.getTrueValue()
765 : I.getFalseValue()));
766 return;
767 }
768 }
769
770 // Otherwise, the condition is overdefined or a constant we can't evaluate.
771 // See if we can produce something better than overdefined based on the T/F
772 // value.
773 LatticeVal &TVal = getValueState(I.getTrueValue());
774 LatticeVal &FVal = getValueState(I.getFalseValue());
775
776 // select ?, C, C -> C.
777 if (TVal.isConstant() && FVal.isConstant() &&
778 TVal.getConstant() == FVal.getConstant()) {
779 markConstant(&I, FVal.getConstant());
780 return;
781 }
782
783 if (TVal.isUndefined()) { // select ?, undef, X -> X.
784 mergeInValue(&I, FVal);
785 } else if (FVal.isUndefined()) { // select ?, X, undef -> X.
786 mergeInValue(&I, TVal);
787 } else {
788 markOverdefined(&I);
789 }
790}
791
792// Handle BinaryOperators and Shift Instructions...
793void SCCPSolver::visitBinaryOperator(Instruction &I) {
794 LatticeVal &IV = ValueState[&I];
795 if (IV.isOverdefined()) return;
796
797 LatticeVal &V1State = getValueState(I.getOperand(0));
798 LatticeVal &V2State = getValueState(I.getOperand(1));
799
800 if (V1State.isOverdefined() || V2State.isOverdefined()) {
801 // If this is an AND or OR with 0 or -1, it doesn't matter that the other
802 // operand is overdefined.
803 if (I.getOpcode() == Instruction::And || I.getOpcode() == Instruction::Or) {
804 LatticeVal *NonOverdefVal = 0;
805 if (!V1State.isOverdefined()) {
806 NonOverdefVal = &V1State;
807 } else if (!V2State.isOverdefined()) {
808 NonOverdefVal = &V2State;
809 }
810
811 if (NonOverdefVal) {
812 if (NonOverdefVal->isUndefined()) {
813 // Could annihilate value.
814 if (I.getOpcode() == Instruction::And)
Owen Andersonfa089ab2009-07-03 19:42:02 +0000815 markConstant(IV, &I, Context->getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000816 else if (const VectorType *PT = dyn_cast<VectorType>(I.getType()))
Owen Andersonfa089ab2009-07-03 19:42:02 +0000817 markConstant(IV, &I, Context->getConstantVectorAllOnesValue(PT));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000818 else
Owen Andersonfa089ab2009-07-03 19:42:02 +0000819 markConstant(IV, &I,
820 Context->getConstantIntAllOnesValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000821 return;
822 } else {
823 if (I.getOpcode() == Instruction::And) {
824 if (NonOverdefVal->getConstant()->isNullValue()) {
825 markConstant(IV, &I, NonOverdefVal->getConstant());
826 return; // X and 0 = 0
827 }
828 } else {
829 if (ConstantInt *CI =
830 dyn_cast<ConstantInt>(NonOverdefVal->getConstant()))
831 if (CI->isAllOnesValue()) {
832 markConstant(IV, &I, NonOverdefVal->getConstant());
833 return; // X or -1 = -1
834 }
835 }
836 }
837 }
838 }
839
840
841 // If both operands are PHI nodes, it is possible that this instruction has
842 // a constant value, despite the fact that the PHI node doesn't. Check for
843 // this condition now.
844 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
845 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
846 if (PN1->getParent() == PN2->getParent()) {
847 // Since the two PHI nodes are in the same basic block, they must have
848 // entries for the same predecessors. Walk the predecessor list, and
849 // if all of the incoming values are constants, and the result of
850 // evaluating this expression with all incoming value pairs is the
851 // same, then this expression is a constant even though the PHI node
852 // is not a constant!
853 LatticeVal Result;
854 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
855 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
856 BasicBlock *InBlock = PN1->getIncomingBlock(i);
857 LatticeVal &In2 =
858 getValueState(PN2->getIncomingValueForBlock(InBlock));
859
860 if (In1.isOverdefined() || In2.isOverdefined()) {
861 Result.markOverdefined();
862 break; // Cannot fold this operation over the PHI nodes!
863 } else if (In1.isConstant() && In2.isConstant()) {
Owen Andersonfa089ab2009-07-03 19:42:02 +0000864 Constant *V =
865 Context->getConstantExpr(I.getOpcode(), In1.getConstant(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000866 In2.getConstant());
867 if (Result.isUndefined())
868 Result.markConstant(V);
869 else if (Result.isConstant() && Result.getConstant() != V) {
870 Result.markOverdefined();
871 break;
872 }
873 }
874 }
875
876 // If we found a constant value here, then we know the instruction is
877 // constant despite the fact that the PHI nodes are overdefined.
878 if (Result.isConstant()) {
879 markConstant(IV, &I, Result.getConstant());
880 // Remember that this instruction is virtually using the PHI node
881 // operands.
882 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
883 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
884 return;
885 } else if (Result.isUndefined()) {
886 return;
887 }
888
889 // Okay, this really is overdefined now. Since we might have
890 // speculatively thought that this was not overdefined before, and
891 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
892 // make sure to clean out any entries that we put there, for
893 // efficiency.
894 std::multimap<PHINode*, Instruction*>::iterator It, E;
895 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
896 while (It != E) {
897 if (It->second == &I) {
898 UsersOfOverdefinedPHIs.erase(It++);
899 } else
900 ++It;
901 }
902 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
903 while (It != E) {
904 if (It->second == &I) {
905 UsersOfOverdefinedPHIs.erase(It++);
906 } else
907 ++It;
908 }
909 }
910
911 markOverdefined(IV, &I);
912 } else if (V1State.isConstant() && V2State.isConstant()) {
Owen Andersonfa089ab2009-07-03 19:42:02 +0000913 markConstant(IV, &I,
914 Context->getConstantExpr(I.getOpcode(), V1State.getConstant(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000915 V2State.getConstant()));
916 }
917}
918
919// Handle ICmpInst instruction...
920void SCCPSolver::visitCmpInst(CmpInst &I) {
921 LatticeVal &IV = ValueState[&I];
922 if (IV.isOverdefined()) return;
923
924 LatticeVal &V1State = getValueState(I.getOperand(0));
925 LatticeVal &V2State = getValueState(I.getOperand(1));
926
927 if (V1State.isOverdefined() || V2State.isOverdefined()) {
928 // If both operands are PHI nodes, it is possible that this instruction has
929 // a constant value, despite the fact that the PHI node doesn't. Check for
930 // this condition now.
931 if (PHINode *PN1 = dyn_cast<PHINode>(I.getOperand(0)))
932 if (PHINode *PN2 = dyn_cast<PHINode>(I.getOperand(1)))
933 if (PN1->getParent() == PN2->getParent()) {
934 // Since the two PHI nodes are in the same basic block, they must have
935 // entries for the same predecessors. Walk the predecessor list, and
936 // if all of the incoming values are constants, and the result of
937 // evaluating this expression with all incoming value pairs is the
938 // same, then this expression is a constant even though the PHI node
939 // is not a constant!
940 LatticeVal Result;
941 for (unsigned i = 0, e = PN1->getNumIncomingValues(); i != e; ++i) {
942 LatticeVal &In1 = getValueState(PN1->getIncomingValue(i));
943 BasicBlock *InBlock = PN1->getIncomingBlock(i);
944 LatticeVal &In2 =
945 getValueState(PN2->getIncomingValueForBlock(InBlock));
946
947 if (In1.isOverdefined() || In2.isOverdefined()) {
948 Result.markOverdefined();
949 break; // Cannot fold this operation over the PHI nodes!
950 } else if (In1.isConstant() && In2.isConstant()) {
Owen Andersonfa089ab2009-07-03 19:42:02 +0000951 Constant *V = Context->getConstantExprCompare(I.getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000952 In1.getConstant(),
953 In2.getConstant());
954 if (Result.isUndefined())
955 Result.markConstant(V);
956 else if (Result.isConstant() && Result.getConstant() != V) {
957 Result.markOverdefined();
958 break;
959 }
960 }
961 }
962
963 // If we found a constant value here, then we know the instruction is
964 // constant despite the fact that the PHI nodes are overdefined.
965 if (Result.isConstant()) {
966 markConstant(IV, &I, Result.getConstant());
967 // Remember that this instruction is virtually using the PHI node
968 // operands.
969 UsersOfOverdefinedPHIs.insert(std::make_pair(PN1, &I));
970 UsersOfOverdefinedPHIs.insert(std::make_pair(PN2, &I));
971 return;
972 } else if (Result.isUndefined()) {
973 return;
974 }
975
976 // Okay, this really is overdefined now. Since we might have
977 // speculatively thought that this was not overdefined before, and
978 // added ourselves to the UsersOfOverdefinedPHIs list for the PHIs,
979 // make sure to clean out any entries that we put there, for
980 // efficiency.
981 std::multimap<PHINode*, Instruction*>::iterator It, E;
982 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN1);
983 while (It != E) {
984 if (It->second == &I) {
985 UsersOfOverdefinedPHIs.erase(It++);
986 } else
987 ++It;
988 }
989 tie(It, E) = UsersOfOverdefinedPHIs.equal_range(PN2);
990 while (It != E) {
991 if (It->second == &I) {
992 UsersOfOverdefinedPHIs.erase(It++);
993 } else
994 ++It;
995 }
996 }
997
998 markOverdefined(IV, &I);
999 } else if (V1State.isConstant() && V2State.isConstant()) {
Owen Andersonfa089ab2009-07-03 19:42:02 +00001000 markConstant(IV, &I, Context->getConstantExprCompare(I.getPredicate(),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001001 V1State.getConstant(),
1002 V2State.getConstant()));
1003 }
1004}
1005
1006void SCCPSolver::visitExtractElementInst(ExtractElementInst &I) {
1007 // FIXME : SCCP does not handle vectors properly.
1008 markOverdefined(&I);
1009 return;
1010
1011#if 0
1012 LatticeVal &ValState = getValueState(I.getOperand(0));
1013 LatticeVal &IdxState = getValueState(I.getOperand(1));
1014
1015 if (ValState.isOverdefined() || IdxState.isOverdefined())
1016 markOverdefined(&I);
1017 else if(ValState.isConstant() && IdxState.isConstant())
1018 markConstant(&I, ConstantExpr::getExtractElement(ValState.getConstant(),
1019 IdxState.getConstant()));
1020#endif
1021}
1022
1023void SCCPSolver::visitInsertElementInst(InsertElementInst &I) {
1024 // FIXME : SCCP does not handle vectors properly.
1025 markOverdefined(&I);
1026 return;
1027#if 0
1028 LatticeVal &ValState = getValueState(I.getOperand(0));
1029 LatticeVal &EltState = getValueState(I.getOperand(1));
1030 LatticeVal &IdxState = getValueState(I.getOperand(2));
1031
1032 if (ValState.isOverdefined() || EltState.isOverdefined() ||
1033 IdxState.isOverdefined())
1034 markOverdefined(&I);
1035 else if(ValState.isConstant() && EltState.isConstant() &&
1036 IdxState.isConstant())
1037 markConstant(&I, ConstantExpr::getInsertElement(ValState.getConstant(),
1038 EltState.getConstant(),
1039 IdxState.getConstant()));
1040 else if (ValState.isUndefined() && EltState.isConstant() &&
1041 IdxState.isConstant())
1042 markConstant(&I,ConstantExpr::getInsertElement(UndefValue::get(I.getType()),
1043 EltState.getConstant(),
1044 IdxState.getConstant()));
1045#endif
1046}
1047
1048void SCCPSolver::visitShuffleVectorInst(ShuffleVectorInst &I) {
1049 // FIXME : SCCP does not handle vectors properly.
1050 markOverdefined(&I);
1051 return;
1052#if 0
1053 LatticeVal &V1State = getValueState(I.getOperand(0));
1054 LatticeVal &V2State = getValueState(I.getOperand(1));
1055 LatticeVal &MaskState = getValueState(I.getOperand(2));
1056
1057 if (MaskState.isUndefined() ||
1058 (V1State.isUndefined() && V2State.isUndefined()))
1059 return; // Undefined output if mask or both inputs undefined.
1060
1061 if (V1State.isOverdefined() || V2State.isOverdefined() ||
1062 MaskState.isOverdefined()) {
1063 markOverdefined(&I);
1064 } else {
1065 // A mix of constant/undef inputs.
1066 Constant *V1 = V1State.isConstant() ?
1067 V1State.getConstant() : UndefValue::get(I.getType());
1068 Constant *V2 = V2State.isConstant() ?
1069 V2State.getConstant() : UndefValue::get(I.getType());
1070 Constant *Mask = MaskState.isConstant() ?
1071 MaskState.getConstant() : UndefValue::get(I.getOperand(2)->getType());
1072 markConstant(&I, ConstantExpr::getShuffleVector(V1, V2, Mask));
1073 }
1074#endif
1075}
1076
1077// Handle getelementptr instructions... if all operands are constants then we
1078// can turn this into a getelementptr ConstantExpr.
1079//
1080void SCCPSolver::visitGetElementPtrInst(GetElementPtrInst &I) {
1081 LatticeVal &IV = ValueState[&I];
1082 if (IV.isOverdefined()) return;
1083
1084 SmallVector<Constant*, 8> Operands;
1085 Operands.reserve(I.getNumOperands());
1086
1087 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1088 LatticeVal &State = getValueState(I.getOperand(i));
1089 if (State.isUndefined())
1090 return; // Operands are not resolved yet...
1091 else if (State.isOverdefined()) {
1092 markOverdefined(IV, &I);
1093 return;
1094 }
1095 assert(State.isConstant() && "Unknown state!");
1096 Operands.push_back(State.getConstant());
1097 }
1098
1099 Constant *Ptr = Operands[0];
1100 Operands.erase(Operands.begin()); // Erase the pointer from idx list...
1101
Owen Andersonfa089ab2009-07-03 19:42:02 +00001102 markConstant(IV, &I, Context->getConstantExprGetElementPtr(Ptr, &Operands[0],
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001103 Operands.size()));
1104}
1105
1106void SCCPSolver::visitStoreInst(Instruction &SI) {
1107 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1108 return;
1109 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1110 DenseMap<GlobalVariable*, LatticeVal>::iterator I = TrackedGlobals.find(GV);
1111 if (I == TrackedGlobals.end() || I->second.isOverdefined()) return;
1112
1113 // Get the value we are storing into the global.
1114 LatticeVal &PtrVal = getValueState(SI.getOperand(0));
1115
1116 mergeInValue(I->second, GV, PtrVal);
1117 if (I->second.isOverdefined())
1118 TrackedGlobals.erase(I); // No need to keep tracking this!
1119}
1120
1121
1122// Handle load instructions. If the operand is a constant pointer to a constant
1123// global, we can replace the load with the loaded constant value!
1124void SCCPSolver::visitLoadInst(LoadInst &I) {
1125 LatticeVal &IV = ValueState[&I];
1126 if (IV.isOverdefined()) return;
1127
1128 LatticeVal &PtrVal = getValueState(I.getOperand(0));
1129 if (PtrVal.isUndefined()) return; // The pointer is not resolved yet!
1130 if (PtrVal.isConstant() && !I.isVolatile()) {
1131 Value *Ptr = PtrVal.getConstant();
Christopher Lamb2c175392007-12-29 07:56:53 +00001132 // TODO: Consider a target hook for valid address spaces for this xform.
1133 if (isa<ConstantPointerNull>(Ptr) &&
1134 cast<PointerType>(Ptr->getType())->getAddressSpace() == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001135 // load null -> null
Owen Andersonfa089ab2009-07-03 19:42:02 +00001136 markConstant(IV, &I, Context->getNullValue(I.getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001137 return;
1138 }
1139
1140 // Transform load (constant global) into the value loaded.
1141 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr)) {
1142 if (GV->isConstant()) {
Duncan Sands54e70f62009-03-21 21:27:31 +00001143 if (GV->hasDefinitiveInitializer()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001144 markConstant(IV, &I, GV->getInitializer());
1145 return;
1146 }
1147 } else if (!TrackedGlobals.empty()) {
1148 // If we are tracking this global, merge in the known value for it.
1149 DenseMap<GlobalVariable*, LatticeVal>::iterator It =
1150 TrackedGlobals.find(GV);
1151 if (It != TrackedGlobals.end()) {
1152 mergeInValue(IV, &I, It->second);
1153 return;
1154 }
1155 }
1156 }
1157
1158 // Transform load (constantexpr_GEP global, 0, ...) into the value loaded.
1159 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
1160 if (CE->getOpcode() == Instruction::GetElementPtr)
1161 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
Duncan Sands54e70f62009-03-21 21:27:31 +00001162 if (GV->isConstant() && GV->hasDefinitiveInitializer())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001163 if (Constant *V =
Owen Andersond4d90a02009-07-06 18:42:36 +00001164 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE,
1165 Context)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001166 markConstant(IV, &I, V);
1167 return;
1168 }
1169 }
1170
1171 // Otherwise we cannot say for certain what value this load will produce.
1172 // Bail out.
1173 markOverdefined(IV, &I);
1174}
1175
1176void SCCPSolver::visitCallSite(CallSite CS) {
1177 Function *F = CS.getCalledFunction();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001178 Instruction *I = CS.getInstruction();
Chris Lattnercd73be02008-04-23 05:38:20 +00001179
1180 // The common case is that we aren't tracking the callee, either because we
1181 // are not doing interprocedural analysis or the callee is indirect, or is
1182 // external. Handle these cases first.
Rafael Espindolaa168fc92009-01-15 20:18:42 +00001183 if (F == 0 || !F->hasLocalLinkage()) {
Chris Lattnercd73be02008-04-23 05:38:20 +00001184CallOverdefined:
1185 // Void return and not tracking callee, just bail.
1186 if (I->getType() == Type::VoidTy) return;
1187
1188 // Otherwise, if we have a single return value case, and if the function is
1189 // a declaration, maybe we can constant fold it.
1190 if (!isa<StructType>(I->getType()) && F && F->isDeclaration() &&
1191 canConstantFoldCallTo(F)) {
1192
1193 SmallVector<Constant*, 8> Operands;
1194 for (CallSite::arg_iterator AI = CS.arg_begin(), E = CS.arg_end();
1195 AI != E; ++AI) {
1196 LatticeVal &State = getValueState(*AI);
1197 if (State.isUndefined())
1198 return; // Operands are not resolved yet.
1199 else if (State.isOverdefined()) {
1200 markOverdefined(I);
1201 return;
1202 }
1203 assert(State.isConstant() && "Unknown state!");
1204 Operands.push_back(State.getConstant());
1205 }
1206
1207 // If we can constant fold this, mark the result of the call as a
1208 // constant.
Nick Lewyckye9279352009-05-28 04:08:10 +00001209 if (Constant *C = ConstantFoldCall(F, Operands.data(), Operands.size())) {
Chris Lattnercd73be02008-04-23 05:38:20 +00001210 markConstant(I, C);
1211 return;
1212 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001213 }
Chris Lattnercd73be02008-04-23 05:38:20 +00001214
1215 // Otherwise, we don't know anything about this call, mark it overdefined.
1216 markOverdefined(I);
1217 return;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001218 }
1219
Chris Lattnercd73be02008-04-23 05:38:20 +00001220 // If this is a single/zero retval case, see if we're tracking the function.
Dan Gohman856193b2008-06-20 01:15:44 +00001221 DenseMap<Function*, LatticeVal>::iterator TFRVI = TrackedRetVals.find(F);
1222 if (TFRVI != TrackedRetVals.end()) {
Chris Lattnercd73be02008-04-23 05:38:20 +00001223 // If so, propagate the return value of the callee into this call result.
1224 mergeInValue(I, TFRVI->second);
Dan Gohman856193b2008-06-20 01:15:44 +00001225 } else if (isa<StructType>(I->getType())) {
Chris Lattnercd73be02008-04-23 05:38:20 +00001226 // Check to see if we're tracking this callee, if not, handle it in the
1227 // common path above.
Chris Lattnerd3123a72008-08-23 23:36:38 +00001228 DenseMap<std::pair<Function*, unsigned>, LatticeVal>::iterator
1229 TMRVI = TrackedMultipleRetVals.find(std::make_pair(F, 0));
Chris Lattnercd73be02008-04-23 05:38:20 +00001230 if (TMRVI == TrackedMultipleRetVals.end())
1231 goto CallOverdefined;
1232
1233 // If we are tracking this callee, propagate the return values of the call
Dan Gohman856193b2008-06-20 01:15:44 +00001234 // into this call site. We do this by walking all the uses. Single-index
1235 // ExtractValueInst uses can be tracked; anything more complicated is
1236 // currently handled conservatively.
Chris Lattnercd73be02008-04-23 05:38:20 +00001237 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1238 UI != E; ++UI) {
Dan Gohman856193b2008-06-20 01:15:44 +00001239 if (ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(*UI)) {
1240 if (EVI->getNumIndices() == 1) {
1241 mergeInValue(EVI,
Dan Gohmanaa7b7802008-06-20 16:41:17 +00001242 TrackedMultipleRetVals[std::make_pair(F, *EVI->idx_begin())]);
Dan Gohman856193b2008-06-20 01:15:44 +00001243 continue;
1244 }
1245 }
1246 // The aggregate value is used in a way not handled here. Assume nothing.
1247 markOverdefined(*UI);
Chris Lattnercd73be02008-04-23 05:38:20 +00001248 }
Dan Gohman856193b2008-06-20 01:15:44 +00001249 } else {
1250 // Otherwise we're not tracking this callee, so handle it in the
1251 // common path above.
1252 goto CallOverdefined;
Chris Lattnercd73be02008-04-23 05:38:20 +00001253 }
1254
1255 // Finally, if this is the first call to the function hit, mark its entry
1256 // block executable.
1257 if (!BBExecutable.count(F->begin()))
1258 MarkBlockExecutable(F->begin());
1259
1260 // Propagate information from this call site into the callee.
1261 CallSite::arg_iterator CAI = CS.arg_begin();
1262 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1263 AI != E; ++AI, ++CAI) {
1264 LatticeVal &IV = ValueState[AI];
1265 if (!IV.isOverdefined())
1266 mergeInValue(IV, AI, getValueState(*CAI));
1267 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001268}
1269
1270
1271void SCCPSolver::Solve() {
1272 // Process the work lists until they are empty!
1273 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1274 !OverdefinedInstWorkList.empty()) {
1275 // Process the instruction work list...
1276 while (!OverdefinedInstWorkList.empty()) {
1277 Value *I = OverdefinedInstWorkList.back();
1278 OverdefinedInstWorkList.pop_back();
1279
1280 DOUT << "\nPopped off OI-WL: " << *I;
1281
1282 // "I" got into the work list because it either made the transition from
1283 // bottom to constant
1284 //
1285 // Anything on this worklist that is overdefined need not be visited
1286 // since all of its users will have already been marked as overdefined
1287 // Update all of the users of this instruction's value...
1288 //
1289 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1290 UI != E; ++UI)
1291 OperandChangedState(*UI);
1292 }
1293 // Process the instruction work list...
1294 while (!InstWorkList.empty()) {
1295 Value *I = InstWorkList.back();
1296 InstWorkList.pop_back();
1297
1298 DOUT << "\nPopped off I-WL: " << *I;
1299
1300 // "I" got into the work list because it either made the transition from
1301 // bottom to constant
1302 //
1303 // Anything on this worklist that is overdefined need not be visited
1304 // since all of its users will have already been marked as overdefined.
1305 // Update all of the users of this instruction's value...
1306 //
1307 if (!getValueState(I).isOverdefined())
1308 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1309 UI != E; ++UI)
1310 OperandChangedState(*UI);
1311 }
1312
1313 // Process the basic block work list...
1314 while (!BBWorkList.empty()) {
1315 BasicBlock *BB = BBWorkList.back();
1316 BBWorkList.pop_back();
1317
1318 DOUT << "\nPopped off BBWL: " << *BB;
1319
1320 // Notify all instructions in this basic block that they are newly
1321 // executable.
1322 visit(BB);
1323 }
1324 }
1325}
1326
1327/// ResolvedUndefsIn - While solving the dataflow for a function, we assume
1328/// that branches on undef values cannot reach any of their successors.
1329/// However, this is not a safe assumption. After we solve dataflow, this
1330/// method should be use to handle this. If this returns true, the solver
1331/// should be rerun.
1332///
1333/// This method handles this by finding an unresolved branch and marking it one
1334/// of the edges from the block as being feasible, even though the condition
1335/// doesn't say it would otherwise be. This allows SCCP to find the rest of the
1336/// CFG and only slightly pessimizes the analysis results (by marking one,
1337/// potentially infeasible, edge feasible). This cannot usefully modify the
1338/// constraints on the condition of the branch, as that would impact other users
1339/// of the value.
1340///
1341/// This scan also checks for values that use undefs, whose results are actually
1342/// defined. For example, 'zext i8 undef to i32' should produce all zeros
1343/// conservatively, as "(zext i8 X -> i32) & 0xFF00" must always return zero,
1344/// even if X isn't defined.
1345bool SCCPSolver::ResolvedUndefsIn(Function &F) {
1346 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1347 if (!BBExecutable.count(BB))
1348 continue;
1349
1350 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
1351 // Look for instructions which produce undef values.
1352 if (I->getType() == Type::VoidTy) continue;
1353
1354 LatticeVal &LV = getValueState(I);
1355 if (!LV.isUndefined()) continue;
1356
1357 // Get the lattice values of the first two operands for use below.
1358 LatticeVal &Op0LV = getValueState(I->getOperand(0));
1359 LatticeVal Op1LV;
1360 if (I->getNumOperands() == 2) {
1361 // If this is a two-operand instruction, and if both operands are
1362 // undefs, the result stays undef.
1363 Op1LV = getValueState(I->getOperand(1));
1364 if (Op0LV.isUndefined() && Op1LV.isUndefined())
1365 continue;
1366 }
1367
1368 // If this is an instructions whose result is defined even if the input is
1369 // not fully defined, propagate the information.
1370 const Type *ITy = I->getType();
1371 switch (I->getOpcode()) {
1372 default: break; // Leave the instruction as an undef.
1373 case Instruction::ZExt:
1374 // After a zero extend, we know the top part is zero. SExt doesn't have
1375 // to be handled here, because we don't know whether the top part is 1's
1376 // or 0's.
1377 assert(Op0LV.isUndefined());
Owen Andersonfa089ab2009-07-03 19:42:02 +00001378 markForcedConstant(LV, I, Context->getNullValue(ITy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001379 return true;
1380 case Instruction::Mul:
1381 case Instruction::And:
1382 // undef * X -> 0. X could be zero.
1383 // undef & X -> 0. X could be zero.
Owen Andersonfa089ab2009-07-03 19:42:02 +00001384 markForcedConstant(LV, I, Context->getNullValue(ITy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001385 return true;
1386
1387 case Instruction::Or:
1388 // undef | X -> -1. X could be -1.
1389 if (const VectorType *PTy = dyn_cast<VectorType>(ITy))
Owen Andersonfa089ab2009-07-03 19:42:02 +00001390 markForcedConstant(LV, I,
1391 Context->getConstantVectorAllOnesValue(PTy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001392 else
Owen Andersonfa089ab2009-07-03 19:42:02 +00001393 markForcedConstant(LV, I, Context->getConstantIntAllOnesValue(ITy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001394 return true;
1395
1396 case Instruction::SDiv:
1397 case Instruction::UDiv:
1398 case Instruction::SRem:
1399 case Instruction::URem:
1400 // X / undef -> undef. No change.
1401 // X % undef -> undef. No change.
1402 if (Op1LV.isUndefined()) break;
1403
1404 // undef / X -> 0. X could be maxint.
1405 // undef % X -> 0. X could be 1.
Owen Andersonfa089ab2009-07-03 19:42:02 +00001406 markForcedConstant(LV, I, Context->getNullValue(ITy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001407 return true;
1408
1409 case Instruction::AShr:
1410 // undef >>s X -> undef. No change.
1411 if (Op0LV.isUndefined()) break;
1412
1413 // X >>s undef -> X. X could be 0, X could have the high-bit known set.
1414 if (Op0LV.isConstant())
1415 markForcedConstant(LV, I, Op0LV.getConstant());
1416 else
1417 markOverdefined(LV, I);
1418 return true;
1419 case Instruction::LShr:
1420 case Instruction::Shl:
1421 // undef >> X -> undef. No change.
1422 // undef << X -> undef. No change.
1423 if (Op0LV.isUndefined()) break;
1424
1425 // X >> undef -> 0. X could be 0.
1426 // X << undef -> 0. X could be 0.
Owen Andersonfa089ab2009-07-03 19:42:02 +00001427 markForcedConstant(LV, I, Context->getNullValue(ITy));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001428 return true;
1429 case Instruction::Select:
1430 // undef ? X : Y -> X or Y. There could be commonality between X/Y.
1431 if (Op0LV.isUndefined()) {
1432 if (!Op1LV.isConstant()) // Pick the constant one if there is any.
1433 Op1LV = getValueState(I->getOperand(2));
1434 } else if (Op1LV.isUndefined()) {
1435 // c ? undef : undef -> undef. No change.
1436 Op1LV = getValueState(I->getOperand(2));
1437 if (Op1LV.isUndefined())
1438 break;
1439 // Otherwise, c ? undef : x -> x.
1440 } else {
1441 // Leave Op1LV as Operand(1)'s LatticeValue.
1442 }
1443
1444 if (Op1LV.isConstant())
1445 markForcedConstant(LV, I, Op1LV.getConstant());
1446 else
1447 markOverdefined(LV, I);
1448 return true;
Chris Lattner9110ac92008-05-24 03:59:33 +00001449 case Instruction::Call:
1450 // If a call has an undef result, it is because it is constant foldable
1451 // but one of the inputs was undef. Just force the result to
1452 // overdefined.
1453 markOverdefined(LV, I);
1454 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001455 }
1456 }
1457
1458 TerminatorInst *TI = BB->getTerminator();
1459 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1460 if (!BI->isConditional()) continue;
1461 if (!getValueState(BI->getCondition()).isUndefined())
1462 continue;
1463 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
Dale Johannesenfb06d0c2008-05-23 01:01:31 +00001464 if (SI->getNumSuccessors()<2) // no cases
1465 continue;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001466 if (!getValueState(SI->getCondition()).isUndefined())
1467 continue;
1468 } else {
1469 continue;
1470 }
1471
Chris Lattner6186e8c2008-01-28 00:32:30 +00001472 // If the edge to the second successor isn't thought to be feasible yet,
1473 // mark it so now. We pick the second one so that this goes to some
1474 // enumerated value in a switch instead of going to the default destination.
1475 if (KnownFeasibleEdges.count(Edge(BB, TI->getSuccessor(1))))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001476 continue;
1477
1478 // Otherwise, it isn't already thought to be feasible. Mark it as such now
1479 // and return. This will make other blocks reachable, which will allow new
1480 // values to be discovered and existing ones to be moved in the lattice.
Chris Lattner6186e8c2008-01-28 00:32:30 +00001481 markEdgeExecutable(BB, TI->getSuccessor(1));
1482
1483 // This must be a conditional branch of switch on undef. At this point,
1484 // force the old terminator to branch to the first successor. This is
1485 // required because we are now influencing the dataflow of the function with
1486 // the assumption that this edge is taken. If we leave the branch condition
1487 // as undef, then further analysis could think the undef went another way
1488 // leading to an inconsistent set of conclusions.
1489 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
Owen Andersonfa089ab2009-07-03 19:42:02 +00001490 BI->setCondition(Context->getConstantIntFalse());
Chris Lattner6186e8c2008-01-28 00:32:30 +00001491 } else {
1492 SwitchInst *SI = cast<SwitchInst>(TI);
1493 SI->setCondition(SI->getCaseValue(1));
1494 }
1495
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001496 return true;
1497 }
1498
1499 return false;
1500}
1501
1502
1503namespace {
1504 //===--------------------------------------------------------------------===//
1505 //
1506 /// SCCP Class - This class uses the SCCPSolver to implement a per-function
1507 /// Sparse Conditional Constant Propagator.
1508 ///
1509 struct VISIBILITY_HIDDEN SCCP : public FunctionPass {
1510 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +00001511 SCCP() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001512
1513 // runOnFunction - Run the Sparse Conditional Constant Propagation
1514 // algorithm, and return true if the function was modified.
1515 //
1516 bool runOnFunction(Function &F);
1517
1518 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1519 AU.setPreservesCFG();
1520 }
1521 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001522} // end anonymous namespace
1523
Dan Gohman089efff2008-05-13 00:00:25 +00001524char SCCP::ID = 0;
1525static RegisterPass<SCCP>
1526X("sccp", "Sparse Conditional Constant Propagation");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001527
1528// createSCCPPass - This is the public interface to this file...
1529FunctionPass *llvm::createSCCPPass() {
1530 return new SCCP();
1531}
1532
1533
1534// runOnFunction() - Run the Sparse Conditional Constant Propagation algorithm,
1535// and return true if the function was modified.
1536//
1537bool SCCP::runOnFunction(Function &F) {
Chris Lattner56bf9a92008-05-11 01:55:59 +00001538 DOUT << "SCCP on function '" << F.getNameStart() << "'\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001539 SCCPSolver Solver;
Owen Andersonfa089ab2009-07-03 19:42:02 +00001540 Solver.setContext(Context);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001541
1542 // Mark the first block of the function as being executable.
1543 Solver.MarkBlockExecutable(F.begin());
1544
1545 // Mark all arguments to the function as being overdefined.
1546 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); AI != E;++AI)
1547 Solver.markOverdefined(AI);
1548
1549 // Solve for constants.
1550 bool ResolvedUndefs = true;
1551 while (ResolvedUndefs) {
1552 Solver.Solve();
1553 DOUT << "RESOLVING UNDEFs\n";
1554 ResolvedUndefs = Solver.ResolvedUndefsIn(F);
1555 }
1556
1557 bool MadeChanges = false;
1558
1559 // If we decided that there are basic blocks that are dead in this function,
1560 // delete their contents now. Note that we cannot actually delete the blocks,
1561 // as we cannot modify the CFG of the function.
1562 //
Chris Lattnerd3123a72008-08-23 23:36:38 +00001563 SmallVector<Instruction*, 512> Insts;
Bill Wendling03488ae2008-08-14 23:05:24 +00001564 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001565
1566 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
Chris Lattner317e6b62008-08-23 23:39:31 +00001567 if (!Solver.isBlockExecutable(BB)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001568 DOUT << " BasicBlock Dead:" << *BB;
1569 ++NumDeadBlocks;
1570
1571 // Delete the instructions backwards, as it has a reduced likelihood of
1572 // having to update as many def-use and use-def chains.
1573 for (BasicBlock::iterator I = BB->begin(), E = BB->getTerminator();
1574 I != E; ++I)
1575 Insts.push_back(I);
1576 while (!Insts.empty()) {
1577 Instruction *I = Insts.back();
1578 Insts.pop_back();
1579 if (!I->use_empty())
Owen Andersonfa089ab2009-07-03 19:42:02 +00001580 I->replaceAllUsesWith(Context->getUndef(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001581 BB->getInstList().erase(I);
1582 MadeChanges = true;
1583 ++NumInstRemoved;
1584 }
1585 } else {
1586 // Iterate over all of the instructions in a function, replacing them with
1587 // constants if we have found them to be of constant values.
1588 //
1589 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1590 Instruction *Inst = BI++;
Chris Lattner204cfde2008-04-24 00:19:54 +00001591 if (Inst->getType() == Type::VoidTy ||
Chris Lattnerb6f89362008-04-24 00:16:28 +00001592 isa<TerminatorInst>(Inst))
1593 continue;
1594
1595 LatticeVal &IV = Values[Inst];
1596 if (!IV.isConstant() && !IV.isUndefined())
1597 continue;
1598
1599 Constant *Const = IV.isConstant()
Owen Andersonfa089ab2009-07-03 19:42:02 +00001600 ? IV.getConstant() : Context->getUndef(Inst->getType());
Chris Lattnerb6f89362008-04-24 00:16:28 +00001601 DOUT << " Constant: " << *Const << " = " << *Inst;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001602
Chris Lattnerb6f89362008-04-24 00:16:28 +00001603 // Replaces all of the uses of a variable with uses of the constant.
1604 Inst->replaceAllUsesWith(Const);
1605
1606 // Delete the instruction.
1607 Inst->eraseFromParent();
1608
1609 // Hey, we just changed something!
1610 MadeChanges = true;
1611 ++NumInstRemoved;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001612 }
1613 }
1614
1615 return MadeChanges;
1616}
1617
1618namespace {
1619 //===--------------------------------------------------------------------===//
1620 //
1621 /// IPSCCP Class - This class implements interprocedural Sparse Conditional
1622 /// Constant Propagation.
1623 ///
1624 struct VISIBILITY_HIDDEN IPSCCP : public ModulePass {
1625 static char ID;
Dan Gohman26f8c272008-09-04 17:05:41 +00001626 IPSCCP() : ModulePass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001627 bool runOnModule(Module &M);
1628 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001629} // end anonymous namespace
1630
Dan Gohman089efff2008-05-13 00:00:25 +00001631char IPSCCP::ID = 0;
1632static RegisterPass<IPSCCP>
1633Y("ipsccp", "Interprocedural Sparse Conditional Constant Propagation");
1634
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001635// createIPSCCPPass - This is the public interface to this file...
1636ModulePass *llvm::createIPSCCPPass() {
1637 return new IPSCCP();
1638}
1639
1640
1641static bool AddressIsTaken(GlobalValue *GV) {
1642 // Delete any dead constantexpr klingons.
1643 GV->removeDeadConstantUsers();
1644
1645 for (Value::use_iterator UI = GV->use_begin(), E = GV->use_end();
1646 UI != E; ++UI)
1647 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
1648 if (SI->getOperand(0) == GV || SI->isVolatile())
1649 return true; // Storing addr of GV.
1650 } else if (isa<InvokeInst>(*UI) || isa<CallInst>(*UI)) {
1651 // Make sure we are calling the function, not passing the address.
1652 CallSite CS = CallSite::get(cast<Instruction>(*UI));
Nick Lewycky1cc2e102008-11-03 03:49:14 +00001653 if (CS.hasArgument(GV))
1654 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001655 } else if (LoadInst *LI = dyn_cast<LoadInst>(*UI)) {
1656 if (LI->isVolatile())
1657 return true;
1658 } else {
1659 return true;
1660 }
1661 return false;
1662}
1663
1664bool IPSCCP::runOnModule(Module &M) {
1665 SCCPSolver Solver;
1666
1667 // Loop over all functions, marking arguments to those with their addresses
1668 // taken or that are external as overdefined.
1669 //
1670 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
Rafael Espindolaa168fc92009-01-15 20:18:42 +00001671 if (!F->hasLocalLinkage() || AddressIsTaken(F)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001672 if (!F->isDeclaration())
1673 Solver.MarkBlockExecutable(F->begin());
1674 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1675 AI != E; ++AI)
1676 Solver.markOverdefined(AI);
1677 } else {
1678 Solver.AddTrackedFunction(F);
1679 }
1680
1681 // Loop over global variables. We inform the solver about any internal global
1682 // variables that do not have their 'addresses taken'. If they don't have
1683 // their addresses taken, we can propagate constants through them.
1684 for (Module::global_iterator G = M.global_begin(), E = M.global_end();
1685 G != E; ++G)
Rafael Espindolaa168fc92009-01-15 20:18:42 +00001686 if (!G->isConstant() && G->hasLocalLinkage() && !AddressIsTaken(G))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001687 Solver.TrackValueOfGlobalVariable(G);
1688
1689 // Solve for constants.
1690 bool ResolvedUndefs = true;
1691 while (ResolvedUndefs) {
1692 Solver.Solve();
1693
1694 DOUT << "RESOLVING UNDEFS\n";
1695 ResolvedUndefs = false;
1696 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F)
1697 ResolvedUndefs |= Solver.ResolvedUndefsIn(*F);
1698 }
1699
1700 bool MadeChanges = false;
1701
1702 // Iterate over all of the instructions in the module, replacing them with
1703 // constants if we have found them to be of constant values.
1704 //
Chris Lattnerd3123a72008-08-23 23:36:38 +00001705 SmallVector<Instruction*, 512> Insts;
1706 SmallVector<BasicBlock*, 512> BlocksToErase;
Bill Wendling03488ae2008-08-14 23:05:24 +00001707 std::map<Value*, LatticeVal> &Values = Solver.getValueMapping();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001708
1709 for (Module::iterator F = M.begin(), E = M.end(); F != E; ++F) {
1710 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end();
1711 AI != E; ++AI)
1712 if (!AI->use_empty()) {
1713 LatticeVal &IV = Values[AI];
1714 if (IV.isConstant() || IV.isUndefined()) {
1715 Constant *CST = IV.isConstant() ?
Owen Andersonfa089ab2009-07-03 19:42:02 +00001716 IV.getConstant() : Context->getUndef(AI->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001717 DOUT << "*** Arg " << *AI << " = " << *CST <<"\n";
1718
1719 // Replaces all of the uses of a variable with uses of the
1720 // constant.
1721 AI->replaceAllUsesWith(CST);
1722 ++IPNumArgsElimed;
1723 }
1724 }
1725
1726 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
Chris Lattner317e6b62008-08-23 23:39:31 +00001727 if (!Solver.isBlockExecutable(BB)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001728 DOUT << " BasicBlock Dead:" << *BB;
1729 ++IPNumDeadBlocks;
1730
1731 // Delete the instructions backwards, as it has a reduced likelihood of
1732 // having to update as many def-use and use-def chains.
1733 TerminatorInst *TI = BB->getTerminator();
1734 for (BasicBlock::iterator I = BB->begin(), E = TI; I != E; ++I)
1735 Insts.push_back(I);
1736
1737 while (!Insts.empty()) {
1738 Instruction *I = Insts.back();
1739 Insts.pop_back();
1740 if (!I->use_empty())
Owen Andersonfa089ab2009-07-03 19:42:02 +00001741 I->replaceAllUsesWith(Context->getUndef(I->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001742 BB->getInstList().erase(I);
1743 MadeChanges = true;
1744 ++IPNumInstRemoved;
1745 }
1746
1747 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
1748 BasicBlock *Succ = TI->getSuccessor(i);
Dan Gohman3f7d94b2007-10-03 19:26:29 +00001749 if (!Succ->empty() && isa<PHINode>(Succ->begin()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001750 TI->getSuccessor(i)->removePredecessor(BB);
1751 }
1752 if (!TI->use_empty())
Owen Andersonfa089ab2009-07-03 19:42:02 +00001753 TI->replaceAllUsesWith(Context->getUndef(TI->getType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001754 BB->getInstList().erase(TI);
1755
1756 if (&*BB != &F->front())
1757 BlocksToErase.push_back(BB);
1758 else
1759 new UnreachableInst(BB);
1760
1761 } else {
1762 for (BasicBlock::iterator BI = BB->begin(), E = BB->end(); BI != E; ) {
1763 Instruction *Inst = BI++;
Chris Lattnerc27ce6d2009-01-14 21:01:16 +00001764 if (Inst->getType() == Type::VoidTy)
Chris Lattner50846cf2008-04-24 00:21:50 +00001765 continue;
1766
1767 LatticeVal &IV = Values[Inst];
1768 if (!IV.isConstant() && !IV.isUndefined())
1769 continue;
1770
1771 Constant *Const = IV.isConstant()
Owen Andersonfa089ab2009-07-03 19:42:02 +00001772 ? IV.getConstant() : Context->getUndef(Inst->getType());
Chris Lattner50846cf2008-04-24 00:21:50 +00001773 DOUT << " Constant: " << *Const << " = " << *Inst;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001774
Chris Lattner50846cf2008-04-24 00:21:50 +00001775 // Replaces all of the uses of a variable with uses of the
1776 // constant.
1777 Inst->replaceAllUsesWith(Const);
1778
1779 // Delete the instruction.
Chris Lattnerc27ce6d2009-01-14 21:01:16 +00001780 if (!isa<CallInst>(Inst) && !isa<TerminatorInst>(Inst))
Chris Lattner50846cf2008-04-24 00:21:50 +00001781 Inst->eraseFromParent();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001782
Chris Lattner50846cf2008-04-24 00:21:50 +00001783 // Hey, we just changed something!
1784 MadeChanges = true;
1785 ++IPNumInstRemoved;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001786 }
1787 }
1788
1789 // Now that all instructions in the function are constant folded, erase dead
1790 // blocks, because we can now use ConstantFoldTerminator to get rid of
1791 // in-edges.
1792 for (unsigned i = 0, e = BlocksToErase.size(); i != e; ++i) {
1793 // If there are any PHI nodes in this successor, drop entries for BB now.
1794 BasicBlock *DeadBB = BlocksToErase[i];
1795 while (!DeadBB->use_empty()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001796 Instruction *I = cast<Instruction>(DeadBB->use_back());
1797 bool Folded = ConstantFoldTerminator(I->getParent());
1798 if (!Folded) {
1799 // The constant folder may not have been able to fold the terminator
1800 // if this is a branch or switch on undef. Fold it manually as a
1801 // branch to the first successor.
Devang Patele92c16d2008-11-21 01:52:59 +00001802#ifndef NDEBUG
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001803 if (BranchInst *BI = dyn_cast<BranchInst>(I)) {
1804 assert(BI->isConditional() && isa<UndefValue>(BI->getCondition()) &&
1805 "Branch should be foldable!");
1806 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(I)) {
1807 assert(isa<UndefValue>(SI->getCondition()) && "Switch should fold");
1808 } else {
1809 assert(0 && "Didn't fold away reference to block!");
1810 }
Devang Patele92c16d2008-11-21 01:52:59 +00001811#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001812
1813 // Make this an uncond branch to the first successor.
1814 TerminatorInst *TI = I->getParent()->getTerminator();
Gabor Greifd6da1d02008-04-06 20:25:17 +00001815 BranchInst::Create(TI->getSuccessor(0), TI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001816
1817 // Remove entries in successor phi nodes to remove edges.
1818 for (unsigned i = 1, e = TI->getNumSuccessors(); i != e; ++i)
1819 TI->getSuccessor(i)->removePredecessor(TI->getParent());
1820
1821 // Remove the old terminator.
1822 TI->eraseFromParent();
1823 }
1824 }
1825
1826 // Finally, delete the basic block.
1827 F->getBasicBlockList().erase(DeadBB);
1828 }
1829 BlocksToErase.clear();
1830 }
1831
1832 // If we inferred constant or undef return values for a function, we replaced
1833 // all call uses with the inferred value. This means we don't need to bother
1834 // actually returning anything from the function. Replace all return
1835 // instructions with return undef.
Devang Pateld04d42b2008-03-11 17:32:05 +00001836 // TODO: Process multiple value ret instructions also.
Devang Pateladd320d2008-03-11 05:46:42 +00001837 const DenseMap<Function*, LatticeVal> &RV = Solver.getTrackedRetVals();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001838 for (DenseMap<Function*, LatticeVal>::const_iterator I = RV.begin(),
1839 E = RV.end(); I != E; ++I)
1840 if (!I->second.isOverdefined() &&
1841 I->first->getReturnType() != Type::VoidTy) {
1842 Function *F = I->first;
1843 for (Function::iterator BB = F->begin(), E = F->end(); BB != E; ++BB)
1844 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()))
1845 if (!isa<UndefValue>(RI->getOperand(0)))
Owen Andersonfa089ab2009-07-03 19:42:02 +00001846 RI->setOperand(0, Context->getUndef(F->getReturnType()));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001847 }
1848
1849 // If we infered constant or undef values for globals variables, we can delete
1850 // the global and any stores that remain to it.
1851 const DenseMap<GlobalVariable*, LatticeVal> &TG = Solver.getTrackedGlobals();
1852 for (DenseMap<GlobalVariable*, LatticeVal>::const_iterator I = TG.begin(),
1853 E = TG.end(); I != E; ++I) {
1854 GlobalVariable *GV = I->first;
1855 assert(!I->second.isOverdefined() &&
1856 "Overdefined values should have been taken out of the map!");
Chris Lattner56bf9a92008-05-11 01:55:59 +00001857 DOUT << "Found that GV '" << GV->getNameStart() << "' is constant!\n";
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001858 while (!GV->use_empty()) {
1859 StoreInst *SI = cast<StoreInst>(GV->use_back());
1860 SI->eraseFromParent();
1861 }
1862 M.getGlobalList().erase(GV);
1863 ++IPNumGlobalConst;
1864 }
1865
1866 return MadeChanges;
1867}