Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1 | //===- SROA.cpp - Scalar Replacement Of Aggregates ------------------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file is distributed under the University of Illinois Open Source |
| 6 | // License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | /// \file |
| 10 | /// This transformation implements the well known scalar replacement of |
| 11 | /// aggregates transformation. It tries to identify promotable elements of an |
| 12 | /// aggregate alloca, and promote them to registers. It will also try to |
| 13 | /// convert uses of an element (or set of elements) of an alloca into a vector |
| 14 | /// or bitfield-style integer scalar if appropriate. |
| 15 | /// |
| 16 | /// It works to do this with minimal slicing of the alloca so that regions |
| 17 | /// which are merely transferred in and out of external memory remain unchanged |
| 18 | /// and are not decomposed to scalar code. |
| 19 | /// |
| 20 | /// Because this also performs alloca promotion, it can be thought of as also |
| 21 | /// serving the purpose of SSA formation. The algorithm iterates on the |
| 22 | /// function until all opportunities for promotion have been realized. |
| 23 | /// |
| 24 | //===----------------------------------------------------------------------===// |
| 25 | |
| 26 | #define DEBUG_TYPE "sroa" |
| 27 | #include "llvm/Transforms/Scalar.h" |
| 28 | #include "llvm/Constants.h" |
| 29 | #include "llvm/DIBuilder.h" |
| 30 | #include "llvm/DebugInfo.h" |
| 31 | #include "llvm/DerivedTypes.h" |
| 32 | #include "llvm/Function.h" |
| 33 | #include "llvm/GlobalVariable.h" |
| 34 | #include "llvm/IRBuilder.h" |
| 35 | #include "llvm/Instructions.h" |
| 36 | #include "llvm/IntrinsicInst.h" |
| 37 | #include "llvm/LLVMContext.h" |
| 38 | #include "llvm/Module.h" |
| 39 | #include "llvm/Operator.h" |
| 40 | #include "llvm/Pass.h" |
| 41 | #include "llvm/ADT/SetVector.h" |
| 42 | #include "llvm/ADT/SmallVector.h" |
| 43 | #include "llvm/ADT/Statistic.h" |
| 44 | #include "llvm/ADT/STLExtras.h" |
| 45 | #include "llvm/ADT/TinyPtrVector.h" |
| 46 | #include "llvm/Analysis/Dominators.h" |
| 47 | #include "llvm/Analysis/Loads.h" |
| 48 | #include "llvm/Analysis/ValueTracking.h" |
| 49 | #include "llvm/Support/CallSite.h" |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 50 | #include "llvm/Support/CommandLine.h" |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 51 | #include "llvm/Support/Debug.h" |
| 52 | #include "llvm/Support/ErrorHandling.h" |
| 53 | #include "llvm/Support/GetElementPtrTypeIterator.h" |
| 54 | #include "llvm/Support/InstVisitor.h" |
| 55 | #include "llvm/Support/MathExtras.h" |
| 56 | #include "llvm/Support/ValueHandle.h" |
| 57 | #include "llvm/Support/raw_ostream.h" |
| 58 | #include "llvm/Target/TargetData.h" |
| 59 | #include "llvm/Transforms/Utils/Local.h" |
| 60 | #include "llvm/Transforms/Utils/PromoteMemToReg.h" |
| 61 | #include "llvm/Transforms/Utils/SSAUpdater.h" |
| 62 | using namespace llvm; |
| 63 | |
| 64 | STATISTIC(NumAllocasAnalyzed, "Number of allocas analyzed for replacement"); |
| 65 | STATISTIC(NumNewAllocas, "Number of new, smaller allocas introduced"); |
| 66 | STATISTIC(NumPromoted, "Number of allocas promoted to SSA values"); |
| 67 | STATISTIC(NumLoadsSpeculated, "Number of loads speculated to allow promotion"); |
| 68 | STATISTIC(NumDeleted, "Number of instructions deleted"); |
| 69 | STATISTIC(NumVectorized, "Number of vectorized aggregates"); |
| 70 | |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 71 | /// Hidden option to force the pass to not use DomTree and mem2reg, instead |
| 72 | /// forming SSA values through the SSAUpdater infrastructure. |
| 73 | static cl::opt<bool> |
| 74 | ForceSSAUpdater("force-ssa-updater", cl::init(false), cl::Hidden); |
| 75 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 76 | namespace { |
| 77 | /// \brief Alloca partitioning representation. |
| 78 | /// |
| 79 | /// This class represents a partitioning of an alloca into slices, and |
| 80 | /// information about the nature of uses of each slice of the alloca. The goal |
| 81 | /// is that this information is sufficient to decide if and how to split the |
| 82 | /// alloca apart and replace slices with scalars. It is also intended that this |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 83 | /// structure can capture the relevant information needed both to decide about |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 84 | /// and to enact these transformations. |
| 85 | class AllocaPartitioning { |
| 86 | public: |
| 87 | /// \brief A common base class for representing a half-open byte range. |
| 88 | struct ByteRange { |
| 89 | /// \brief The beginning offset of the range. |
| 90 | uint64_t BeginOffset; |
| 91 | |
| 92 | /// \brief The ending offset, not included in the range. |
| 93 | uint64_t EndOffset; |
| 94 | |
| 95 | ByteRange() : BeginOffset(), EndOffset() {} |
| 96 | ByteRange(uint64_t BeginOffset, uint64_t EndOffset) |
| 97 | : BeginOffset(BeginOffset), EndOffset(EndOffset) {} |
| 98 | |
| 99 | /// \brief Support for ordering ranges. |
| 100 | /// |
| 101 | /// This provides an ordering over ranges such that start offsets are |
| 102 | /// always increasing, and within equal start offsets, the end offsets are |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 103 | /// decreasing. Thus the spanning range comes first in a cluster with the |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 104 | /// same start position. |
| 105 | bool operator<(const ByteRange &RHS) const { |
| 106 | if (BeginOffset < RHS.BeginOffset) return true; |
| 107 | if (BeginOffset > RHS.BeginOffset) return false; |
| 108 | if (EndOffset > RHS.EndOffset) return true; |
| 109 | return false; |
| 110 | } |
| 111 | |
| 112 | /// \brief Support comparison with a single offset to allow binary searches. |
Benjamin Kramer | 2d1c2a2 | 2012-09-17 16:42:36 +0000 | [diff] [blame] | 113 | friend bool operator<(const ByteRange &LHS, uint64_t RHSOffset) { |
| 114 | return LHS.BeginOffset < RHSOffset; |
| 115 | } |
| 116 | |
| 117 | friend LLVM_ATTRIBUTE_UNUSED bool operator<(uint64_t LHSOffset, |
| 118 | const ByteRange &RHS) { |
| 119 | return LHSOffset < RHS.BeginOffset; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 120 | } |
| 121 | |
| 122 | bool operator==(const ByteRange &RHS) const { |
| 123 | return BeginOffset == RHS.BeginOffset && EndOffset == RHS.EndOffset; |
| 124 | } |
| 125 | bool operator!=(const ByteRange &RHS) const { return !operator==(RHS); } |
| 126 | }; |
| 127 | |
| 128 | /// \brief A partition of an alloca. |
| 129 | /// |
| 130 | /// This structure represents a contiguous partition of the alloca. These are |
| 131 | /// formed by examining the uses of the alloca. During formation, they may |
| 132 | /// overlap but once an AllocaPartitioning is built, the Partitions within it |
| 133 | /// are all disjoint. |
| 134 | struct Partition : public ByteRange { |
| 135 | /// \brief Whether this partition is splittable into smaller partitions. |
| 136 | /// |
| 137 | /// We flag partitions as splittable when they are formed entirely due to |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 138 | /// accesses by trivially splittable operations such as memset and memcpy. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 139 | /// |
| 140 | /// FIXME: At some point we should consider loads and stores of FCAs to be |
| 141 | /// splittable and eagerly split them into scalar values. |
| 142 | bool IsSplittable; |
| 143 | |
| 144 | Partition() : ByteRange(), IsSplittable() {} |
| 145 | Partition(uint64_t BeginOffset, uint64_t EndOffset, bool IsSplittable) |
| 146 | : ByteRange(BeginOffset, EndOffset), IsSplittable(IsSplittable) {} |
| 147 | }; |
| 148 | |
| 149 | /// \brief A particular use of a partition of the alloca. |
| 150 | /// |
| 151 | /// This structure is used to associate uses of a partition with it. They |
| 152 | /// mark the range of bytes which are referenced by a particular instruction, |
| 153 | /// and includes a handle to the user itself and the pointer value in use. |
| 154 | /// The bounds of these uses are determined by intersecting the bounds of the |
| 155 | /// memory use itself with a particular partition. As a consequence there is |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 156 | /// intentionally overlap between various uses of the same partition. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 157 | struct PartitionUse : public ByteRange { |
| 158 | /// \brief The user of this range of the alloca. |
| 159 | AssertingVH<Instruction> User; |
| 160 | |
| 161 | /// \brief The particular pointer value derived from this alloca in use. |
| 162 | AssertingVH<Instruction> Ptr; |
| 163 | |
| 164 | PartitionUse() : ByteRange(), User(), Ptr() {} |
| 165 | PartitionUse(uint64_t BeginOffset, uint64_t EndOffset, |
| 166 | Instruction *User, Instruction *Ptr) |
| 167 | : ByteRange(BeginOffset, EndOffset), User(User), Ptr(Ptr) {} |
| 168 | }; |
| 169 | |
| 170 | /// \brief Construct a partitioning of a particular alloca. |
| 171 | /// |
| 172 | /// Construction does most of the work for partitioning the alloca. This |
| 173 | /// performs the necessary walks of users and builds a partitioning from it. |
| 174 | AllocaPartitioning(const TargetData &TD, AllocaInst &AI); |
| 175 | |
| 176 | /// \brief Test whether a pointer to the allocation escapes our analysis. |
| 177 | /// |
| 178 | /// If this is true, the partitioning is never fully built and should be |
| 179 | /// ignored. |
| 180 | bool isEscaped() const { return PointerEscapingInstr; } |
| 181 | |
| 182 | /// \brief Support for iterating over the partitions. |
| 183 | /// @{ |
| 184 | typedef SmallVectorImpl<Partition>::iterator iterator; |
| 185 | iterator begin() { return Partitions.begin(); } |
| 186 | iterator end() { return Partitions.end(); } |
| 187 | |
| 188 | typedef SmallVectorImpl<Partition>::const_iterator const_iterator; |
| 189 | const_iterator begin() const { return Partitions.begin(); } |
| 190 | const_iterator end() const { return Partitions.end(); } |
| 191 | /// @} |
| 192 | |
| 193 | /// \brief Support for iterating over and manipulating a particular |
| 194 | /// partition's uses. |
| 195 | /// |
| 196 | /// The iteration support provided for uses is more limited, but also |
| 197 | /// includes some manipulation routines to support rewriting the uses of |
| 198 | /// partitions during SROA. |
| 199 | /// @{ |
| 200 | typedef SmallVectorImpl<PartitionUse>::iterator use_iterator; |
| 201 | use_iterator use_begin(unsigned Idx) { return Uses[Idx].begin(); } |
| 202 | use_iterator use_begin(const_iterator I) { return Uses[I - begin()].begin(); } |
| 203 | use_iterator use_end(unsigned Idx) { return Uses[Idx].end(); } |
| 204 | use_iterator use_end(const_iterator I) { return Uses[I - begin()].end(); } |
Chandler Carruth | 72bf29f | 2012-09-25 02:42:03 +0000 | [diff] [blame] | 205 | void use_push_back(unsigned Idx, const PartitionUse &U) { |
| 206 | Uses[Idx].push_back(U); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 207 | } |
Chandler Carruth | 72bf29f | 2012-09-25 02:42:03 +0000 | [diff] [blame] | 208 | void use_push_back(const_iterator I, const PartitionUse &U) { |
| 209 | Uses[I - begin()].push_back(U); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 210 | } |
| 211 | void use_erase(unsigned Idx, use_iterator UI) { Uses[Idx].erase(UI); } |
| 212 | void use_erase(const_iterator I, use_iterator UI) { |
| 213 | Uses[I - begin()].erase(UI); |
| 214 | } |
| 215 | |
| 216 | typedef SmallVectorImpl<PartitionUse>::const_iterator const_use_iterator; |
| 217 | const_use_iterator use_begin(unsigned Idx) const { return Uses[Idx].begin(); } |
| 218 | const_use_iterator use_begin(const_iterator I) const { |
| 219 | return Uses[I - begin()].begin(); |
| 220 | } |
| 221 | const_use_iterator use_end(unsigned Idx) const { return Uses[Idx].end(); } |
| 222 | const_use_iterator use_end(const_iterator I) const { |
| 223 | return Uses[I - begin()].end(); |
| 224 | } |
| 225 | /// @} |
| 226 | |
| 227 | /// \brief Allow iterating the dead users for this alloca. |
| 228 | /// |
| 229 | /// These are instructions which will never actually use the alloca as they |
| 230 | /// are outside the allocated range. They are safe to replace with undef and |
| 231 | /// delete. |
| 232 | /// @{ |
| 233 | typedef SmallVectorImpl<Instruction *>::const_iterator dead_user_iterator; |
| 234 | dead_user_iterator dead_user_begin() const { return DeadUsers.begin(); } |
| 235 | dead_user_iterator dead_user_end() const { return DeadUsers.end(); } |
| 236 | /// @} |
| 237 | |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 238 | /// \brief Allow iterating the dead expressions referring to this alloca. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 239 | /// |
| 240 | /// These are operands which have cannot actually be used to refer to the |
| 241 | /// alloca as they are outside its range and the user doesn't correct for |
| 242 | /// that. These mostly consist of PHI node inputs and the like which we just |
| 243 | /// need to replace with undef. |
| 244 | /// @{ |
| 245 | typedef SmallVectorImpl<Use *>::const_iterator dead_op_iterator; |
| 246 | dead_op_iterator dead_op_begin() const { return DeadOperands.begin(); } |
| 247 | dead_op_iterator dead_op_end() const { return DeadOperands.end(); } |
| 248 | /// @} |
| 249 | |
| 250 | /// \brief MemTransferInst auxiliary data. |
| 251 | /// This struct provides some auxiliary data about memory transfer |
| 252 | /// intrinsics such as memcpy and memmove. These intrinsics can use two |
| 253 | /// different ranges within the same alloca, and provide other challenges to |
| 254 | /// correctly represent. We stash extra data to help us untangle this |
| 255 | /// after the partitioning is complete. |
| 256 | struct MemTransferOffsets { |
| 257 | uint64_t DestBegin, DestEnd; |
| 258 | uint64_t SourceBegin, SourceEnd; |
| 259 | bool IsSplittable; |
| 260 | }; |
| 261 | MemTransferOffsets getMemTransferOffsets(MemTransferInst &II) const { |
| 262 | return MemTransferInstData.lookup(&II); |
| 263 | } |
| 264 | |
| 265 | /// \brief Map from a PHI or select operand back to a partition. |
| 266 | /// |
| 267 | /// When manipulating PHI nodes or selects, they can use more than one |
| 268 | /// partition of an alloca. We store a special mapping to allow finding the |
| 269 | /// partition referenced by each of these operands, if any. |
| 270 | iterator findPartitionForPHIOrSelectOperand(Instruction &I, Value *Op) { |
| 271 | SmallDenseMap<std::pair<Instruction *, Value *>, |
| 272 | std::pair<unsigned, unsigned> >::const_iterator MapIt |
| 273 | = PHIOrSelectOpMap.find(std::make_pair(&I, Op)); |
| 274 | if (MapIt == PHIOrSelectOpMap.end()) |
| 275 | return end(); |
| 276 | |
| 277 | return begin() + MapIt->second.first; |
| 278 | } |
| 279 | |
| 280 | /// \brief Map from a PHI or select operand back to the specific use of |
| 281 | /// a partition. |
| 282 | /// |
| 283 | /// Similar to mapping these operands back to the partitions, this maps |
| 284 | /// directly to the use structure of that partition. |
| 285 | use_iterator findPartitionUseForPHIOrSelectOperand(Instruction &I, |
| 286 | Value *Op) { |
| 287 | SmallDenseMap<std::pair<Instruction *, Value *>, |
| 288 | std::pair<unsigned, unsigned> >::const_iterator MapIt |
| 289 | = PHIOrSelectOpMap.find(std::make_pair(&I, Op)); |
| 290 | assert(MapIt != PHIOrSelectOpMap.end()); |
| 291 | return Uses[MapIt->second.first].begin() + MapIt->second.second; |
| 292 | } |
| 293 | |
| 294 | /// \brief Compute a common type among the uses of a particular partition. |
| 295 | /// |
| 296 | /// This routines walks all of the uses of a particular partition and tries |
| 297 | /// to find a common type between them. Untyped operations such as memset and |
| 298 | /// memcpy are ignored. |
| 299 | Type *getCommonType(iterator I) const; |
| 300 | |
Chandler Carruth | ba13d2e | 2012-09-14 10:18:51 +0000 | [diff] [blame] | 301 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 302 | void print(raw_ostream &OS, const_iterator I, StringRef Indent = " ") const; |
| 303 | void printUsers(raw_ostream &OS, const_iterator I, |
| 304 | StringRef Indent = " ") const; |
| 305 | void print(raw_ostream &OS) const; |
NAKAMURA Takumi | ad9f5b8 | 2012-09-14 10:06:10 +0000 | [diff] [blame] | 306 | void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump(const_iterator I) const; |
| 307 | void LLVM_ATTRIBUTE_NOINLINE LLVM_ATTRIBUTE_USED dump() const; |
Chandler Carruth | ba13d2e | 2012-09-14 10:18:51 +0000 | [diff] [blame] | 308 | #endif |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 309 | |
| 310 | private: |
| 311 | template <typename DerivedT, typename RetT = void> class BuilderBase; |
| 312 | class PartitionBuilder; |
| 313 | friend class AllocaPartitioning::PartitionBuilder; |
| 314 | class UseBuilder; |
| 315 | friend class AllocaPartitioning::UseBuilder; |
| 316 | |
Benjamin Kramer | d080769 | 2012-09-14 13:08:09 +0000 | [diff] [blame] | 317 | #ifndef NDEBUG |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 318 | /// \brief Handle to alloca instruction to simplify method interfaces. |
| 319 | AllocaInst &AI; |
Benjamin Kramer | d080769 | 2012-09-14 13:08:09 +0000 | [diff] [blame] | 320 | #endif |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 321 | |
| 322 | /// \brief The instruction responsible for this alloca having no partitioning. |
| 323 | /// |
| 324 | /// When an instruction (potentially) escapes the pointer to the alloca, we |
| 325 | /// store a pointer to that here and abort trying to partition the alloca. |
| 326 | /// This will be null if the alloca is partitioned successfully. |
| 327 | Instruction *PointerEscapingInstr; |
| 328 | |
| 329 | /// \brief The partitions of the alloca. |
| 330 | /// |
| 331 | /// We store a vector of the partitions over the alloca here. This vector is |
| 332 | /// sorted by increasing begin offset, and then by decreasing end offset. See |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 333 | /// the Partition inner class for more details. Initially (during |
| 334 | /// construction) there are overlaps, but we form a disjoint sequence of |
| 335 | /// partitions while finishing construction and a fully constructed object is |
| 336 | /// expected to always have this as a disjoint space. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 337 | SmallVector<Partition, 8> Partitions; |
| 338 | |
| 339 | /// \brief The uses of the partitions. |
| 340 | /// |
| 341 | /// This is essentially a mapping from each partition to a list of uses of |
| 342 | /// that partition. The mapping is done with a Uses vector that has the exact |
| 343 | /// same number of entries as the partition vector. Each entry is itself |
| 344 | /// a vector of the uses. |
| 345 | SmallVector<SmallVector<PartitionUse, 2>, 8> Uses; |
| 346 | |
| 347 | /// \brief Instructions which will become dead if we rewrite the alloca. |
| 348 | /// |
| 349 | /// Note that these are not separated by partition. This is because we expect |
| 350 | /// a partitioned alloca to be completely rewritten or not rewritten at all. |
| 351 | /// If rewritten, all these instructions can simply be removed and replaced |
| 352 | /// with undef as they come from outside of the allocated space. |
| 353 | SmallVector<Instruction *, 8> DeadUsers; |
| 354 | |
| 355 | /// \brief Operands which will become dead if we rewrite the alloca. |
| 356 | /// |
| 357 | /// These are operands that in their particular use can be replaced with |
| 358 | /// undef when we rewrite the alloca. These show up in out-of-bounds inputs |
| 359 | /// to PHI nodes and the like. They aren't entirely dead (there might be |
| 360 | /// a GEP back into the bounds using it elsewhere) and nor is the PHI, but we |
| 361 | /// want to swap this particular input for undef to simplify the use lists of |
| 362 | /// the alloca. |
| 363 | SmallVector<Use *, 8> DeadOperands; |
| 364 | |
| 365 | /// \brief The underlying storage for auxiliary memcpy and memset info. |
| 366 | SmallDenseMap<MemTransferInst *, MemTransferOffsets, 4> MemTransferInstData; |
| 367 | |
| 368 | /// \brief A side datastructure used when building up the partitions and uses. |
| 369 | /// |
| 370 | /// This mapping is only really used during the initial building of the |
| 371 | /// partitioning so that we can retain information about PHI and select nodes |
| 372 | /// processed. |
| 373 | SmallDenseMap<Instruction *, std::pair<uint64_t, bool> > PHIOrSelectSizes; |
| 374 | |
| 375 | /// \brief Auxiliary information for particular PHI or select operands. |
| 376 | SmallDenseMap<std::pair<Instruction *, Value *>, |
| 377 | std::pair<unsigned, unsigned>, 4> PHIOrSelectOpMap; |
| 378 | |
| 379 | /// \brief A utility routine called from the constructor. |
| 380 | /// |
| 381 | /// This does what it says on the tin. It is the key of the alloca partition |
| 382 | /// splitting and merging. After it is called we have the desired disjoint |
| 383 | /// collection of partitions. |
| 384 | void splitAndMergePartitions(); |
| 385 | }; |
| 386 | } |
| 387 | |
| 388 | template <typename DerivedT, typename RetT> |
| 389 | class AllocaPartitioning::BuilderBase |
| 390 | : public InstVisitor<DerivedT, RetT> { |
| 391 | public: |
| 392 | BuilderBase(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P) |
| 393 | : TD(TD), |
| 394 | AllocSize(TD.getTypeAllocSize(AI.getAllocatedType())), |
| 395 | P(P) { |
| 396 | enqueueUsers(AI, 0); |
| 397 | } |
| 398 | |
| 399 | protected: |
| 400 | const TargetData &TD; |
| 401 | const uint64_t AllocSize; |
| 402 | AllocaPartitioning &P; |
| 403 | |
| 404 | struct OffsetUse { |
| 405 | Use *U; |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 406 | int64_t Offset; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 407 | }; |
| 408 | SmallVector<OffsetUse, 8> Queue; |
| 409 | |
| 410 | // The active offset and use while visiting. |
| 411 | Use *U; |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 412 | int64_t Offset; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 413 | |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 414 | void enqueueUsers(Instruction &I, int64_t UserOffset) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 415 | SmallPtrSet<User *, 8> UserSet; |
| 416 | for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); |
| 417 | UI != UE; ++UI) { |
| 418 | if (!UserSet.insert(*UI)) |
| 419 | continue; |
| 420 | |
| 421 | OffsetUse OU = { &UI.getUse(), UserOffset }; |
| 422 | Queue.push_back(OU); |
| 423 | } |
| 424 | } |
| 425 | |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 426 | bool computeConstantGEPOffset(GetElementPtrInst &GEPI, int64_t &GEPOffset) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 427 | GEPOffset = Offset; |
| 428 | for (gep_type_iterator GTI = gep_type_begin(GEPI), GTE = gep_type_end(GEPI); |
| 429 | GTI != GTE; ++GTI) { |
| 430 | ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); |
| 431 | if (!OpC) |
| 432 | return false; |
| 433 | if (OpC->isZero()) |
| 434 | continue; |
| 435 | |
| 436 | // Handle a struct index, which adds its field offset to the pointer. |
| 437 | if (StructType *STy = dyn_cast<StructType>(*GTI)) { |
| 438 | unsigned ElementIdx = OpC->getZExtValue(); |
| 439 | const StructLayout *SL = TD.getStructLayout(STy); |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 440 | uint64_t ElementOffset = SL->getElementOffset(ElementIdx); |
| 441 | // Check that we can continue to model this GEP in a signed 64-bit offset. |
| 442 | if (ElementOffset > INT64_MAX || |
| 443 | (GEPOffset >= 0 && |
| 444 | ((uint64_t)GEPOffset + ElementOffset) > INT64_MAX)) { |
| 445 | DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding " |
| 446 | << "what can be represented in an int64_t!\n" |
| 447 | << " alloca: " << P.AI << "\n"); |
| 448 | return false; |
| 449 | } |
| 450 | if (GEPOffset < 0) |
| 451 | GEPOffset = ElementOffset + (uint64_t)-GEPOffset; |
| 452 | else |
| 453 | GEPOffset += ElementOffset; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 454 | continue; |
| 455 | } |
| 456 | |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 457 | APInt Index = OpC->getValue().sextOrTrunc(TD.getPointerSizeInBits()); |
| 458 | Index *= APInt(Index.getBitWidth(), |
| 459 | TD.getTypeAllocSize(GTI.getIndexedType())); |
| 460 | Index += APInt(Index.getBitWidth(), (uint64_t)GEPOffset, |
| 461 | /*isSigned*/true); |
| 462 | // Check if the result can be stored in our int64_t offset. |
| 463 | if (!Index.isSignedIntN(sizeof(GEPOffset) * 8)) { |
| 464 | DEBUG(dbgs() << "WARNING: Encountered a cumulative offset exceeding " |
| 465 | << "what can be represented in an int64_t!\n" |
| 466 | << " alloca: " << P.AI << "\n"); |
| 467 | return false; |
| 468 | } |
| 469 | |
| 470 | GEPOffset = Index.getSExtValue(); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 471 | } |
| 472 | return true; |
| 473 | } |
| 474 | |
| 475 | Value *foldSelectInst(SelectInst &SI) { |
| 476 | // If the condition being selected on is a constant or the same value is |
| 477 | // being selected between, fold the select. Yes this does (rarely) happen |
| 478 | // early on. |
| 479 | if (ConstantInt *CI = dyn_cast<ConstantInt>(SI.getCondition())) |
| 480 | return SI.getOperand(1+CI->isZero()); |
| 481 | if (SI.getOperand(1) == SI.getOperand(2)) { |
| 482 | assert(*U == SI.getOperand(1)); |
| 483 | return SI.getOperand(1); |
| 484 | } |
| 485 | return 0; |
| 486 | } |
| 487 | }; |
| 488 | |
| 489 | /// \brief Builder for the alloca partitioning. |
| 490 | /// |
| 491 | /// This class builds an alloca partitioning by recursively visiting the uses |
| 492 | /// of an alloca and splitting the partitions for each load and store at each |
| 493 | /// offset. |
| 494 | class AllocaPartitioning::PartitionBuilder |
| 495 | : public BuilderBase<PartitionBuilder, bool> { |
| 496 | friend class InstVisitor<PartitionBuilder, bool>; |
| 497 | |
| 498 | SmallDenseMap<Instruction *, unsigned> MemTransferPartitionMap; |
| 499 | |
| 500 | public: |
| 501 | PartitionBuilder(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P) |
Chandler Carruth | 2a9bf25 | 2012-09-14 09:30:33 +0000 | [diff] [blame] | 502 | : BuilderBase<PartitionBuilder, bool>(TD, AI, P) {} |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 503 | |
| 504 | /// \brief Run the builder over the allocation. |
| 505 | bool operator()() { |
| 506 | // Note that we have to re-evaluate size on each trip through the loop as |
| 507 | // the queue grows at the tail. |
| 508 | for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) { |
| 509 | U = Queue[Idx].U; |
| 510 | Offset = Queue[Idx].Offset; |
| 511 | if (!visit(cast<Instruction>(U->getUser()))) |
| 512 | return false; |
| 513 | } |
| 514 | return true; |
| 515 | } |
| 516 | |
| 517 | private: |
| 518 | bool markAsEscaping(Instruction &I) { |
| 519 | P.PointerEscapingInstr = &I; |
| 520 | return false; |
| 521 | } |
| 522 | |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 523 | void insertUse(Instruction &I, int64_t Offset, uint64_t Size, |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 524 | bool IsSplittable = false) { |
Chandler Carruth | c303463 | 2012-09-25 10:03:40 +0000 | [diff] [blame] | 525 | // Completely skip uses which have a zero size or don't overlap the |
| 526 | // allocation. |
| 527 | if (Size == 0 || |
| 528 | (Offset >= 0 && (uint64_t)Offset >= AllocSize) || |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 529 | (Offset < 0 && (uint64_t)-Offset >= Size)) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 530 | DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte use @" << Offset |
| 531 | << " which starts past the end of the " << AllocSize |
| 532 | << " byte alloca:\n" |
| 533 | << " alloca: " << P.AI << "\n" |
| 534 | << " use: " << I << "\n"); |
| 535 | return; |
| 536 | } |
| 537 | |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 538 | // Clamp the start to the beginning of the allocation. |
| 539 | if (Offset < 0) { |
| 540 | DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset |
| 541 | << " to start at the beginning of the alloca:\n" |
| 542 | << " alloca: " << P.AI << "\n" |
| 543 | << " use: " << I << "\n"); |
| 544 | Size -= (uint64_t)-Offset; |
| 545 | Offset = 0; |
| 546 | } |
| 547 | |
| 548 | uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size; |
| 549 | |
| 550 | // Clamp the end offset to the end of the allocation. Note that this is |
| 551 | // formulated to handle even the case where "BeginOffset + Size" overflows. |
| 552 | assert(AllocSize >= BeginOffset); // Established above. |
| 553 | if (Size > AllocSize - BeginOffset) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 554 | DEBUG(dbgs() << "WARNING: Clamping a " << Size << " byte use @" << Offset |
| 555 | << " to remain within the " << AllocSize << " byte alloca:\n" |
| 556 | << " alloca: " << P.AI << "\n" |
| 557 | << " use: " << I << "\n"); |
| 558 | EndOffset = AllocSize; |
| 559 | } |
| 560 | |
| 561 | // See if we can just add a user onto the last slot currently occupied. |
| 562 | if (!P.Partitions.empty() && |
| 563 | P.Partitions.back().BeginOffset == BeginOffset && |
| 564 | P.Partitions.back().EndOffset == EndOffset) { |
| 565 | P.Partitions.back().IsSplittable &= IsSplittable; |
| 566 | return; |
| 567 | } |
| 568 | |
| 569 | Partition New(BeginOffset, EndOffset, IsSplittable); |
| 570 | P.Partitions.push_back(New); |
| 571 | } |
| 572 | |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 573 | bool handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 574 | uint64_t Size = TD.getTypeStoreSize(Ty); |
| 575 | |
| 576 | // If this memory access can be shown to *statically* extend outside the |
| 577 | // bounds of of the allocation, it's behavior is undefined, so simply |
| 578 | // ignore it. Note that this is more strict than the generic clamping |
| 579 | // behavior of insertUse. We also try to handle cases which might run the |
| 580 | // risk of overflow. |
| 581 | // FIXME: We should instead consider the pointer to have escaped if this |
| 582 | // function is being instrumented for addressing bugs or race conditions. |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 583 | if (Offset < 0 || (uint64_t)Offset >= AllocSize || |
| 584 | Size > (AllocSize - (uint64_t)Offset)) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 585 | DEBUG(dbgs() << "WARNING: Ignoring " << Size << " byte " |
| 586 | << (isa<LoadInst>(I) ? "load" : "store") << " @" << Offset |
| 587 | << " which extends past the end of the " << AllocSize |
| 588 | << " byte alloca:\n" |
| 589 | << " alloca: " << P.AI << "\n" |
| 590 | << " use: " << I << "\n"); |
| 591 | return true; |
| 592 | } |
| 593 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 594 | insertUse(I, Offset, Size); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 595 | return true; |
| 596 | } |
| 597 | |
| 598 | bool visitBitCastInst(BitCastInst &BC) { |
| 599 | enqueueUsers(BC, Offset); |
| 600 | return true; |
| 601 | } |
| 602 | |
| 603 | bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 604 | int64_t GEPOffset; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 605 | if (!computeConstantGEPOffset(GEPI, GEPOffset)) |
| 606 | return markAsEscaping(GEPI); |
| 607 | |
| 608 | enqueueUsers(GEPI, GEPOffset); |
| 609 | return true; |
| 610 | } |
| 611 | |
| 612 | bool visitLoadInst(LoadInst &LI) { |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 613 | assert((!LI.isSimple() || LI.getType()->isSingleValueType()) && |
| 614 | "All simple FCA loads should have been pre-split"); |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 615 | return handleLoadOrStore(LI.getType(), LI, Offset); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 616 | } |
| 617 | |
| 618 | bool visitStoreInst(StoreInst &SI) { |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 619 | Value *ValOp = SI.getValueOperand(); |
| 620 | if (ValOp == *U) |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 621 | return markAsEscaping(SI); |
| 622 | |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 623 | assert((!SI.isSimple() || ValOp->getType()->isSingleValueType()) && |
| 624 | "All simple FCA stores should have been pre-split"); |
| 625 | return handleLoadOrStore(ValOp->getType(), SI, Offset); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 626 | } |
| 627 | |
| 628 | |
| 629 | bool visitMemSetInst(MemSetInst &II) { |
Chandler Carruth | b3dd9a1 | 2012-09-14 10:26:34 +0000 | [diff] [blame] | 630 | assert(II.getRawDest() == *U && "Pointer use is not the destination?"); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 631 | ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 632 | uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset; |
| 633 | insertUse(II, Offset, Size, Length); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 634 | return true; |
| 635 | } |
| 636 | |
| 637 | bool visitMemTransferInst(MemTransferInst &II) { |
| 638 | ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
| 639 | uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset; |
| 640 | if (!Size) |
| 641 | // Zero-length mem transfer intrinsics can be ignored entirely. |
| 642 | return true; |
| 643 | |
| 644 | MemTransferOffsets &Offsets = P.MemTransferInstData[&II]; |
| 645 | |
| 646 | // Only intrinsics with a constant length can be split. |
| 647 | Offsets.IsSplittable = Length; |
| 648 | |
| 649 | if (*U != II.getRawDest()) { |
| 650 | assert(*U == II.getRawSource()); |
| 651 | Offsets.SourceBegin = Offset; |
| 652 | Offsets.SourceEnd = Offset + Size; |
| 653 | } else { |
| 654 | Offsets.DestBegin = Offset; |
| 655 | Offsets.DestEnd = Offset + Size; |
| 656 | } |
| 657 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 658 | insertUse(II, Offset, Size, Offsets.IsSplittable); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 659 | unsigned NewIdx = P.Partitions.size() - 1; |
| 660 | |
| 661 | SmallDenseMap<Instruction *, unsigned>::const_iterator PMI; |
| 662 | bool Inserted = false; |
| 663 | llvm::tie(PMI, Inserted) |
| 664 | = MemTransferPartitionMap.insert(std::make_pair(&II, NewIdx)); |
Chandler Carruth | b3dca3f | 2012-09-26 07:41:40 +0000 | [diff] [blame] | 665 | if (Offsets.IsSplittable && |
| 666 | (!Inserted || II.getRawSource() == II.getRawDest())) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 667 | // We've found a memory transfer intrinsic which refers to the alloca as |
Chandler Carruth | b3dca3f | 2012-09-26 07:41:40 +0000 | [diff] [blame] | 668 | // both a source and dest. This is detected either by direct equality of |
| 669 | // the operand values, or when we visit the intrinsic twice due to two |
| 670 | // different chains of values leading to it. We refuse to split these to |
| 671 | // simplify splitting logic. If possible, SROA will still split them into |
| 672 | // separate allocas and then re-analyze. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 673 | Offsets.IsSplittable = false; |
| 674 | P.Partitions[PMI->second].IsSplittable = false; |
| 675 | P.Partitions[NewIdx].IsSplittable = false; |
| 676 | } |
| 677 | |
| 678 | return true; |
| 679 | } |
| 680 | |
| 681 | // Disable SRoA for any intrinsics except for lifetime invariants. |
Chandler Carruth | 50754f0 | 2012-09-14 10:26:36 +0000 | [diff] [blame] | 682 | // FIXME: What about debug instrinsics? This matches old behavior, but |
| 683 | // doesn't make sense. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 684 | bool visitIntrinsicInst(IntrinsicInst &II) { |
| 685 | if (II.getIntrinsicID() == Intrinsic::lifetime_start || |
| 686 | II.getIntrinsicID() == Intrinsic::lifetime_end) { |
| 687 | ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); |
| 688 | uint64_t Size = std::min(AllocSize - Offset, Length->getLimitedValue()); |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 689 | insertUse(II, Offset, Size, true); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 690 | return true; |
| 691 | } |
| 692 | |
| 693 | return markAsEscaping(II); |
| 694 | } |
| 695 | |
| 696 | Instruction *hasUnsafePHIOrSelectUse(Instruction *Root, uint64_t &Size) { |
| 697 | // We consider any PHI or select that results in a direct load or store of |
| 698 | // the same offset to be a viable use for partitioning purposes. These uses |
| 699 | // are considered unsplittable and the size is the maximum loaded or stored |
| 700 | // size. |
| 701 | SmallPtrSet<Instruction *, 4> Visited; |
| 702 | SmallVector<std::pair<Instruction *, Instruction *>, 4> Uses; |
| 703 | Visited.insert(Root); |
| 704 | Uses.push_back(std::make_pair(cast<Instruction>(*U), Root)); |
Chandler Carruth | c303463 | 2012-09-25 10:03:40 +0000 | [diff] [blame] | 705 | // If there are no loads or stores, the access is dead. We mark that as |
| 706 | // a size zero access. |
| 707 | Size = 0; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 708 | do { |
| 709 | Instruction *I, *UsedI; |
| 710 | llvm::tie(UsedI, I) = Uses.pop_back_val(); |
| 711 | |
| 712 | if (LoadInst *LI = dyn_cast<LoadInst>(I)) { |
| 713 | Size = std::max(Size, TD.getTypeStoreSize(LI->getType())); |
| 714 | continue; |
| 715 | } |
| 716 | if (StoreInst *SI = dyn_cast<StoreInst>(I)) { |
| 717 | Value *Op = SI->getOperand(0); |
| 718 | if (Op == UsedI) |
| 719 | return SI; |
| 720 | Size = std::max(Size, TD.getTypeStoreSize(Op->getType())); |
| 721 | continue; |
| 722 | } |
| 723 | |
| 724 | if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(I)) { |
| 725 | if (!GEP->hasAllZeroIndices()) |
| 726 | return GEP; |
| 727 | } else if (!isa<BitCastInst>(I) && !isa<PHINode>(I) && |
| 728 | !isa<SelectInst>(I)) { |
| 729 | return I; |
| 730 | } |
| 731 | |
| 732 | for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE; |
| 733 | ++UI) |
| 734 | if (Visited.insert(cast<Instruction>(*UI))) |
| 735 | Uses.push_back(std::make_pair(I, cast<Instruction>(*UI))); |
| 736 | } while (!Uses.empty()); |
| 737 | |
| 738 | return 0; |
| 739 | } |
| 740 | |
| 741 | bool visitPHINode(PHINode &PN) { |
| 742 | // See if we already have computed info on this node. |
| 743 | std::pair<uint64_t, bool> &PHIInfo = P.PHIOrSelectSizes[&PN]; |
| 744 | if (PHIInfo.first) { |
| 745 | PHIInfo.second = true; |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 746 | insertUse(PN, Offset, PHIInfo.first); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 747 | return true; |
| 748 | } |
| 749 | |
| 750 | // Check for an unsafe use of the PHI node. |
| 751 | if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&PN, PHIInfo.first)) |
| 752 | return markAsEscaping(*EscapingI); |
| 753 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 754 | insertUse(PN, Offset, PHIInfo.first); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 755 | return true; |
| 756 | } |
| 757 | |
| 758 | bool visitSelectInst(SelectInst &SI) { |
| 759 | if (Value *Result = foldSelectInst(SI)) { |
| 760 | if (Result == *U) |
| 761 | // If the result of the constant fold will be the pointer, recurse |
| 762 | // through the select as if we had RAUW'ed it. |
| 763 | enqueueUsers(SI, Offset); |
| 764 | |
| 765 | return true; |
| 766 | } |
| 767 | |
| 768 | // See if we already have computed info on this node. |
| 769 | std::pair<uint64_t, bool> &SelectInfo = P.PHIOrSelectSizes[&SI]; |
| 770 | if (SelectInfo.first) { |
| 771 | SelectInfo.second = true; |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 772 | insertUse(SI, Offset, SelectInfo.first); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 773 | return true; |
| 774 | } |
| 775 | |
| 776 | // Check for an unsafe use of the PHI node. |
| 777 | if (Instruction *EscapingI = hasUnsafePHIOrSelectUse(&SI, SelectInfo.first)) |
| 778 | return markAsEscaping(*EscapingI); |
| 779 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 780 | insertUse(SI, Offset, SelectInfo.first); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 781 | return true; |
| 782 | } |
| 783 | |
| 784 | /// \brief Disable SROA entirely if there are unhandled users of the alloca. |
| 785 | bool visitInstruction(Instruction &I) { return markAsEscaping(I); } |
| 786 | }; |
| 787 | |
| 788 | |
| 789 | /// \brief Use adder for the alloca partitioning. |
| 790 | /// |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 791 | /// This class adds the uses of an alloca to all of the partitions which they |
| 792 | /// use. For splittable partitions, this can end up doing essentially a linear |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 793 | /// walk of the partitions, but the number of steps remains bounded by the |
| 794 | /// total result instruction size: |
| 795 | /// - The number of partitions is a result of the number unsplittable |
| 796 | /// instructions using the alloca. |
| 797 | /// - The number of users of each partition is at worst the total number of |
| 798 | /// splittable instructions using the alloca. |
| 799 | /// Thus we will produce N * M instructions in the end, where N are the number |
| 800 | /// of unsplittable uses and M are the number of splittable. This visitor does |
| 801 | /// the exact same number of updates to the partitioning. |
| 802 | /// |
| 803 | /// In the more common case, this visitor will leverage the fact that the |
| 804 | /// partition space is pre-sorted, and do a logarithmic search for the |
| 805 | /// partition needed, making the total visit a classical ((N + M) * log(N)) |
| 806 | /// complexity operation. |
| 807 | class AllocaPartitioning::UseBuilder : public BuilderBase<UseBuilder> { |
| 808 | friend class InstVisitor<UseBuilder>; |
| 809 | |
| 810 | /// \brief Set to de-duplicate dead instructions found in the use walk. |
| 811 | SmallPtrSet<Instruction *, 4> VisitedDeadInsts; |
| 812 | |
| 813 | public: |
| 814 | UseBuilder(const TargetData &TD, AllocaInst &AI, AllocaPartitioning &P) |
Chandler Carruth | 2a9bf25 | 2012-09-14 09:30:33 +0000 | [diff] [blame] | 815 | : BuilderBase<UseBuilder>(TD, AI, P) {} |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 816 | |
| 817 | /// \brief Run the builder over the allocation. |
| 818 | void operator()() { |
| 819 | // Note that we have to re-evaluate size on each trip through the loop as |
| 820 | // the queue grows at the tail. |
| 821 | for (unsigned Idx = 0; Idx < Queue.size(); ++Idx) { |
| 822 | U = Queue[Idx].U; |
| 823 | Offset = Queue[Idx].Offset; |
| 824 | this->visit(cast<Instruction>(U->getUser())); |
| 825 | } |
| 826 | } |
| 827 | |
| 828 | private: |
| 829 | void markAsDead(Instruction &I) { |
| 830 | if (VisitedDeadInsts.insert(&I)) |
| 831 | P.DeadUsers.push_back(&I); |
| 832 | } |
| 833 | |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 834 | void insertUse(Instruction &User, int64_t Offset, uint64_t Size) { |
Chandler Carruth | c303463 | 2012-09-25 10:03:40 +0000 | [diff] [blame] | 835 | // If the use has a zero size or extends outside of the allocation, record |
| 836 | // it as a dead use for elimination later. |
| 837 | if (Size == 0 || (uint64_t)Offset >= AllocSize || |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 838 | (Offset < 0 && (uint64_t)-Offset >= Size)) |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 839 | return markAsDead(User); |
| 840 | |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 841 | // Clamp the start to the beginning of the allocation. |
| 842 | if (Offset < 0) { |
| 843 | Size -= (uint64_t)-Offset; |
| 844 | Offset = 0; |
| 845 | } |
| 846 | |
| 847 | uint64_t BeginOffset = Offset, EndOffset = BeginOffset + Size; |
| 848 | |
| 849 | // Clamp the end offset to the end of the allocation. Note that this is |
| 850 | // formulated to handle even the case where "BeginOffset + Size" overflows. |
| 851 | assert(AllocSize >= BeginOffset); // Established above. |
| 852 | if (Size > AllocSize - BeginOffset) |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 853 | EndOffset = AllocSize; |
| 854 | |
| 855 | // NB: This only works if we have zero overlapping partitions. |
| 856 | iterator B = std::lower_bound(P.begin(), P.end(), BeginOffset); |
| 857 | if (B != P.begin() && llvm::prior(B)->EndOffset > BeginOffset) |
| 858 | B = llvm::prior(B); |
| 859 | for (iterator I = B, E = P.end(); I != E && I->BeginOffset < EndOffset; |
| 860 | ++I) { |
| 861 | PartitionUse NewUse(std::max(I->BeginOffset, BeginOffset), |
| 862 | std::min(I->EndOffset, EndOffset), |
| 863 | &User, cast<Instruction>(*U)); |
Chandler Carruth | 72bf29f | 2012-09-25 02:42:03 +0000 | [diff] [blame] | 864 | P.use_push_back(I, NewUse); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 865 | if (isa<PHINode>(U->getUser()) || isa<SelectInst>(U->getUser())) |
| 866 | P.PHIOrSelectOpMap[std::make_pair(&User, U->get())] |
| 867 | = std::make_pair(I - P.begin(), P.Uses[I - P.begin()].size() - 1); |
| 868 | } |
| 869 | } |
| 870 | |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 871 | void handleLoadOrStore(Type *Ty, Instruction &I, int64_t Offset) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 872 | uint64_t Size = TD.getTypeStoreSize(Ty); |
| 873 | |
| 874 | // If this memory access can be shown to *statically* extend outside the |
| 875 | // bounds of of the allocation, it's behavior is undefined, so simply |
| 876 | // ignore it. Note that this is more strict than the generic clamping |
| 877 | // behavior of insertUse. |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 878 | if (Offset < 0 || (uint64_t)Offset >= AllocSize || |
| 879 | Size > (AllocSize - (uint64_t)Offset)) |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 880 | return markAsDead(I); |
| 881 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 882 | insertUse(I, Offset, Size); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 883 | } |
| 884 | |
| 885 | void visitBitCastInst(BitCastInst &BC) { |
| 886 | if (BC.use_empty()) |
| 887 | return markAsDead(BC); |
| 888 | |
| 889 | enqueueUsers(BC, Offset); |
| 890 | } |
| 891 | |
| 892 | void visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| 893 | if (GEPI.use_empty()) |
| 894 | return markAsDead(GEPI); |
| 895 | |
Chandler Carruth | 02e92a0 | 2012-09-23 11:43:14 +0000 | [diff] [blame] | 896 | int64_t GEPOffset; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 897 | if (!computeConstantGEPOffset(GEPI, GEPOffset)) |
| 898 | llvm_unreachable("Unable to compute constant offset for use"); |
| 899 | |
| 900 | enqueueUsers(GEPI, GEPOffset); |
| 901 | } |
| 902 | |
| 903 | void visitLoadInst(LoadInst &LI) { |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 904 | handleLoadOrStore(LI.getType(), LI, Offset); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 905 | } |
| 906 | |
| 907 | void visitStoreInst(StoreInst &SI) { |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 908 | handleLoadOrStore(SI.getOperand(0)->getType(), SI, Offset); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 909 | } |
| 910 | |
| 911 | void visitMemSetInst(MemSetInst &II) { |
| 912 | ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 913 | uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset; |
| 914 | insertUse(II, Offset, Size); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 915 | } |
| 916 | |
| 917 | void visitMemTransferInst(MemTransferInst &II) { |
| 918 | ConstantInt *Length = dyn_cast<ConstantInt>(II.getLength()); |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 919 | uint64_t Size = Length ? Length->getZExtValue() : AllocSize - Offset; |
| 920 | insertUse(II, Offset, Size); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 921 | } |
| 922 | |
| 923 | void visitIntrinsicInst(IntrinsicInst &II) { |
| 924 | assert(II.getIntrinsicID() == Intrinsic::lifetime_start || |
| 925 | II.getIntrinsicID() == Intrinsic::lifetime_end); |
| 926 | |
| 927 | ConstantInt *Length = cast<ConstantInt>(II.getArgOperand(0)); |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 928 | insertUse(II, Offset, |
| 929 | std::min(AllocSize - Offset, Length->getLimitedValue())); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 930 | } |
| 931 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 932 | void insertPHIOrSelect(Instruction &User, uint64_t Offset) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 933 | uint64_t Size = P.PHIOrSelectSizes.lookup(&User).first; |
| 934 | |
| 935 | // For PHI and select operands outside the alloca, we can't nuke the entire |
| 936 | // phi or select -- the other side might still be relevant, so we special |
| 937 | // case them here and use a separate structure to track the operands |
| 938 | // themselves which should be replaced with undef. |
| 939 | if (Offset >= AllocSize) { |
| 940 | P.DeadOperands.push_back(U); |
| 941 | return; |
| 942 | } |
| 943 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 944 | insertUse(User, Offset, Size); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 945 | } |
| 946 | void visitPHINode(PHINode &PN) { |
| 947 | if (PN.use_empty()) |
| 948 | return markAsDead(PN); |
| 949 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 950 | insertPHIOrSelect(PN, Offset); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 951 | } |
| 952 | void visitSelectInst(SelectInst &SI) { |
| 953 | if (SI.use_empty()) |
| 954 | return markAsDead(SI); |
| 955 | |
| 956 | if (Value *Result = foldSelectInst(SI)) { |
| 957 | if (Result == *U) |
| 958 | // If the result of the constant fold will be the pointer, recurse |
| 959 | // through the select as if we had RAUW'ed it. |
| 960 | enqueueUsers(SI, Offset); |
Chandler Carruth | d54a6b5 | 2012-09-21 23:36:40 +0000 | [diff] [blame] | 961 | else |
| 962 | // Otherwise the operand to the select is dead, and we can replace it |
| 963 | // with undef. |
| 964 | P.DeadOperands.push_back(U); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 965 | |
| 966 | return; |
| 967 | } |
| 968 | |
Chandler Carruth | 63392ea | 2012-09-16 19:39:50 +0000 | [diff] [blame] | 969 | insertPHIOrSelect(SI, Offset); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 970 | } |
| 971 | |
| 972 | /// \brief Unreachable, we've already visited the alloca once. |
| 973 | void visitInstruction(Instruction &I) { |
| 974 | llvm_unreachable("Unhandled instruction in use builder."); |
| 975 | } |
| 976 | }; |
| 977 | |
| 978 | void AllocaPartitioning::splitAndMergePartitions() { |
| 979 | size_t NumDeadPartitions = 0; |
| 980 | |
| 981 | // Track the range of splittable partitions that we pass when accumulating |
| 982 | // overlapping unsplittable partitions. |
| 983 | uint64_t SplitEndOffset = 0ull; |
| 984 | |
| 985 | Partition New(0ull, 0ull, false); |
| 986 | |
| 987 | for (unsigned i = 0, j = i, e = Partitions.size(); i != e; i = j) { |
| 988 | ++j; |
| 989 | |
| 990 | if (!Partitions[i].IsSplittable || New.BeginOffset == New.EndOffset) { |
| 991 | assert(New.BeginOffset == New.EndOffset); |
| 992 | New = Partitions[i]; |
| 993 | } else { |
| 994 | assert(New.IsSplittable); |
| 995 | New.EndOffset = std::max(New.EndOffset, Partitions[i].EndOffset); |
| 996 | } |
| 997 | assert(New.BeginOffset != New.EndOffset); |
| 998 | |
| 999 | // Scan the overlapping partitions. |
| 1000 | while (j != e && New.EndOffset > Partitions[j].BeginOffset) { |
| 1001 | // If the new partition we are forming is splittable, stop at the first |
| 1002 | // unsplittable partition. |
| 1003 | if (New.IsSplittable && !Partitions[j].IsSplittable) |
| 1004 | break; |
| 1005 | |
| 1006 | // Grow the new partition to include any equally splittable range. 'j' is |
| 1007 | // always equally splittable when New is splittable, but when New is not |
| 1008 | // splittable, we may subsume some (or part of some) splitable partition |
| 1009 | // without growing the new one. |
| 1010 | if (New.IsSplittable == Partitions[j].IsSplittable) { |
| 1011 | New.EndOffset = std::max(New.EndOffset, Partitions[j].EndOffset); |
| 1012 | } else { |
| 1013 | assert(!New.IsSplittable); |
| 1014 | assert(Partitions[j].IsSplittable); |
| 1015 | SplitEndOffset = std::max(SplitEndOffset, Partitions[j].EndOffset); |
| 1016 | } |
| 1017 | |
| 1018 | Partitions[j].BeginOffset = Partitions[j].EndOffset = UINT64_MAX; |
| 1019 | ++NumDeadPartitions; |
| 1020 | ++j; |
| 1021 | } |
| 1022 | |
| 1023 | // If the new partition is splittable, chop off the end as soon as the |
| 1024 | // unsplittable subsequent partition starts and ensure we eventually cover |
| 1025 | // the splittable area. |
| 1026 | if (j != e && New.IsSplittable) { |
| 1027 | SplitEndOffset = std::max(SplitEndOffset, New.EndOffset); |
| 1028 | New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset); |
| 1029 | } |
| 1030 | |
| 1031 | // Add the new partition if it differs from the original one and is |
| 1032 | // non-empty. We can end up with an empty partition here if it was |
| 1033 | // splittable but there is an unsplittable one that starts at the same |
| 1034 | // offset. |
| 1035 | if (New != Partitions[i]) { |
| 1036 | if (New.BeginOffset != New.EndOffset) |
| 1037 | Partitions.push_back(New); |
| 1038 | // Mark the old one for removal. |
| 1039 | Partitions[i].BeginOffset = Partitions[i].EndOffset = UINT64_MAX; |
| 1040 | ++NumDeadPartitions; |
| 1041 | } |
| 1042 | |
| 1043 | New.BeginOffset = New.EndOffset; |
| 1044 | if (!New.IsSplittable) { |
| 1045 | New.EndOffset = std::max(New.EndOffset, SplitEndOffset); |
| 1046 | if (j != e && !Partitions[j].IsSplittable) |
| 1047 | New.EndOffset = std::min(New.EndOffset, Partitions[j].BeginOffset); |
| 1048 | New.IsSplittable = true; |
| 1049 | // If there is a trailing splittable partition which won't be fused into |
| 1050 | // the next splittable partition go ahead and add it onto the partitions |
| 1051 | // list. |
| 1052 | if (New.BeginOffset < New.EndOffset && |
| 1053 | (j == e || !Partitions[j].IsSplittable || |
| 1054 | New.EndOffset < Partitions[j].BeginOffset)) { |
| 1055 | Partitions.push_back(New); |
| 1056 | New.BeginOffset = New.EndOffset = 0ull; |
| 1057 | } |
| 1058 | } |
| 1059 | } |
| 1060 | |
| 1061 | // Re-sort the partitions now that they have been split and merged into |
| 1062 | // disjoint set of partitions. Also remove any of the dead partitions we've |
| 1063 | // replaced in the process. |
| 1064 | std::sort(Partitions.begin(), Partitions.end()); |
| 1065 | if (NumDeadPartitions) { |
| 1066 | assert(Partitions.back().BeginOffset == UINT64_MAX); |
| 1067 | assert(Partitions.back().EndOffset == UINT64_MAX); |
| 1068 | assert((ptrdiff_t)NumDeadPartitions == |
| 1069 | std::count(Partitions.begin(), Partitions.end(), Partitions.back())); |
| 1070 | } |
| 1071 | Partitions.erase(Partitions.end() - NumDeadPartitions, Partitions.end()); |
| 1072 | } |
| 1073 | |
| 1074 | AllocaPartitioning::AllocaPartitioning(const TargetData &TD, AllocaInst &AI) |
Benjamin Kramer | d080769 | 2012-09-14 13:08:09 +0000 | [diff] [blame] | 1075 | : |
| 1076 | #ifndef NDEBUG |
| 1077 | AI(AI), |
| 1078 | #endif |
| 1079 | PointerEscapingInstr(0) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1080 | PartitionBuilder PB(TD, AI, *this); |
| 1081 | if (!PB()) |
| 1082 | return; |
| 1083 | |
| 1084 | if (Partitions.size() > 1) { |
| 1085 | // Sort the uses. This arranges for the offsets to be in ascending order, |
| 1086 | // and the sizes to be in descending order. |
| 1087 | std::sort(Partitions.begin(), Partitions.end()); |
| 1088 | |
| 1089 | // Intersect splittability for all partitions with equal offsets and sizes. |
| 1090 | // Then remove all but the first so that we have a sequence of non-equal but |
| 1091 | // potentially overlapping partitions. |
| 1092 | for (iterator I = Partitions.begin(), J = I, E = Partitions.end(); I != E; |
| 1093 | I = J) { |
| 1094 | ++J; |
| 1095 | while (J != E && *I == *J) { |
| 1096 | I->IsSplittable &= J->IsSplittable; |
| 1097 | ++J; |
| 1098 | } |
| 1099 | } |
| 1100 | Partitions.erase(std::unique(Partitions.begin(), Partitions.end()), |
| 1101 | Partitions.end()); |
| 1102 | |
| 1103 | // Split splittable and merge unsplittable partitions into a disjoint set |
| 1104 | // of partitions over the used space of the allocation. |
| 1105 | splitAndMergePartitions(); |
| 1106 | } |
| 1107 | |
| 1108 | // Now build up the user lists for each of these disjoint partitions by |
| 1109 | // re-walking the recursive users of the alloca. |
| 1110 | Uses.resize(Partitions.size()); |
| 1111 | UseBuilder UB(TD, AI, *this); |
| 1112 | UB(); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1113 | } |
| 1114 | |
| 1115 | Type *AllocaPartitioning::getCommonType(iterator I) const { |
| 1116 | Type *Ty = 0; |
| 1117 | for (const_use_iterator UI = use_begin(I), UE = use_end(I); UI != UE; ++UI) { |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 1118 | if (isa<IntrinsicInst>(*UI->User)) |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1119 | continue; |
| 1120 | if (UI->BeginOffset != I->BeginOffset || UI->EndOffset != I->EndOffset) |
Chandler Carruth | 7c8df7a | 2012-09-18 17:49:37 +0000 | [diff] [blame] | 1121 | continue; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1122 | |
| 1123 | Type *UserTy = 0; |
| 1124 | if (LoadInst *LI = dyn_cast<LoadInst>(&*UI->User)) { |
| 1125 | UserTy = LI->getType(); |
| 1126 | } else if (StoreInst *SI = dyn_cast<StoreInst>(&*UI->User)) { |
| 1127 | UserTy = SI->getValueOperand()->getType(); |
| 1128 | } else if (SelectInst *SI = dyn_cast<SelectInst>(&*UI->User)) { |
| 1129 | if (PointerType *PtrTy = dyn_cast<PointerType>(SI->getType())) |
| 1130 | UserTy = PtrTy->getElementType(); |
| 1131 | } else if (PHINode *PN = dyn_cast<PHINode>(&*UI->User)) { |
| 1132 | if (PointerType *PtrTy = dyn_cast<PointerType>(PN->getType())) |
| 1133 | UserTy = PtrTy->getElementType(); |
| 1134 | } |
| 1135 | |
| 1136 | if (Ty && Ty != UserTy) |
| 1137 | return 0; |
| 1138 | |
| 1139 | Ty = UserTy; |
| 1140 | } |
| 1141 | return Ty; |
| 1142 | } |
| 1143 | |
Chandler Carruth | ba13d2e | 2012-09-14 10:18:51 +0000 | [diff] [blame] | 1144 | #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1145 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1146 | void AllocaPartitioning::print(raw_ostream &OS, const_iterator I, |
| 1147 | StringRef Indent) const { |
| 1148 | OS << Indent << "partition #" << (I - begin()) |
| 1149 | << " [" << I->BeginOffset << "," << I->EndOffset << ")" |
| 1150 | << (I->IsSplittable ? " (splittable)" : "") |
| 1151 | << (Uses[I - begin()].empty() ? " (zero uses)" : "") |
| 1152 | << "\n"; |
| 1153 | } |
| 1154 | |
| 1155 | void AllocaPartitioning::printUsers(raw_ostream &OS, const_iterator I, |
| 1156 | StringRef Indent) const { |
| 1157 | for (const_use_iterator UI = use_begin(I), UE = use_end(I); |
| 1158 | UI != UE; ++UI) { |
| 1159 | OS << Indent << " [" << UI->BeginOffset << "," << UI->EndOffset << ") " |
| 1160 | << "used by: " << *UI->User << "\n"; |
| 1161 | if (MemTransferInst *II = dyn_cast<MemTransferInst>(&*UI->User)) { |
| 1162 | const MemTransferOffsets &MTO = MemTransferInstData.lookup(II); |
| 1163 | bool IsDest; |
| 1164 | if (!MTO.IsSplittable) |
| 1165 | IsDest = UI->BeginOffset == MTO.DestBegin; |
| 1166 | else |
| 1167 | IsDest = MTO.DestBegin != 0u; |
| 1168 | OS << Indent << " (original " << (IsDest ? "dest" : "source") << ": " |
| 1169 | << "[" << (IsDest ? MTO.DestBegin : MTO.SourceBegin) |
| 1170 | << "," << (IsDest ? MTO.DestEnd : MTO.SourceEnd) << ")\n"; |
| 1171 | } |
| 1172 | } |
| 1173 | } |
| 1174 | |
| 1175 | void AllocaPartitioning::print(raw_ostream &OS) const { |
| 1176 | if (PointerEscapingInstr) { |
| 1177 | OS << "No partitioning for alloca: " << AI << "\n" |
| 1178 | << " A pointer to this alloca escaped by:\n" |
| 1179 | << " " << *PointerEscapingInstr << "\n"; |
| 1180 | return; |
| 1181 | } |
| 1182 | |
| 1183 | OS << "Partitioning of alloca: " << AI << "\n"; |
| 1184 | unsigned Num = 0; |
| 1185 | for (const_iterator I = begin(), E = end(); I != E; ++I, ++Num) { |
| 1186 | print(OS, I); |
| 1187 | printUsers(OS, I); |
| 1188 | } |
| 1189 | } |
| 1190 | |
| 1191 | void AllocaPartitioning::dump(const_iterator I) const { print(dbgs(), I); } |
| 1192 | void AllocaPartitioning::dump() const { print(dbgs()); } |
| 1193 | |
Chandler Carruth | ba13d2e | 2012-09-14 10:18:51 +0000 | [diff] [blame] | 1194 | #endif // !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) |
| 1195 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1196 | |
| 1197 | namespace { |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 1198 | /// \brief Implementation of LoadAndStorePromoter for promoting allocas. |
| 1199 | /// |
| 1200 | /// This subclass of LoadAndStorePromoter adds overrides to handle promoting |
| 1201 | /// the loads and stores of an alloca instruction, as well as updating its |
| 1202 | /// debug information. This is used when a domtree is unavailable and thus |
| 1203 | /// mem2reg in its full form can't be used to handle promotion of allocas to |
| 1204 | /// scalar values. |
| 1205 | class AllocaPromoter : public LoadAndStorePromoter { |
| 1206 | AllocaInst &AI; |
| 1207 | DIBuilder &DIB; |
| 1208 | |
| 1209 | SmallVector<DbgDeclareInst *, 4> DDIs; |
| 1210 | SmallVector<DbgValueInst *, 4> DVIs; |
| 1211 | |
| 1212 | public: |
| 1213 | AllocaPromoter(const SmallVectorImpl<Instruction*> &Insts, SSAUpdater &S, |
| 1214 | AllocaInst &AI, DIBuilder &DIB) |
| 1215 | : LoadAndStorePromoter(Insts, S), AI(AI), DIB(DIB) {} |
| 1216 | |
| 1217 | void run(const SmallVectorImpl<Instruction*> &Insts) { |
| 1218 | // Remember which alloca we're promoting (for isInstInList). |
| 1219 | if (MDNode *DebugNode = MDNode::getIfExists(AI.getContext(), &AI)) { |
| 1220 | for (Value::use_iterator UI = DebugNode->use_begin(), |
| 1221 | UE = DebugNode->use_end(); |
| 1222 | UI != UE; ++UI) |
| 1223 | if (DbgDeclareInst *DDI = dyn_cast<DbgDeclareInst>(*UI)) |
| 1224 | DDIs.push_back(DDI); |
| 1225 | else if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(*UI)) |
| 1226 | DVIs.push_back(DVI); |
| 1227 | } |
| 1228 | |
| 1229 | LoadAndStorePromoter::run(Insts); |
| 1230 | AI.eraseFromParent(); |
| 1231 | while (!DDIs.empty()) |
| 1232 | DDIs.pop_back_val()->eraseFromParent(); |
| 1233 | while (!DVIs.empty()) |
| 1234 | DVIs.pop_back_val()->eraseFromParent(); |
| 1235 | } |
| 1236 | |
| 1237 | virtual bool isInstInList(Instruction *I, |
| 1238 | const SmallVectorImpl<Instruction*> &Insts) const { |
| 1239 | if (LoadInst *LI = dyn_cast<LoadInst>(I)) |
| 1240 | return LI->getOperand(0) == &AI; |
| 1241 | return cast<StoreInst>(I)->getPointerOperand() == &AI; |
| 1242 | } |
| 1243 | |
| 1244 | virtual void updateDebugInfo(Instruction *Inst) const { |
| 1245 | for (SmallVector<DbgDeclareInst *, 4>::const_iterator I = DDIs.begin(), |
| 1246 | E = DDIs.end(); I != E; ++I) { |
| 1247 | DbgDeclareInst *DDI = *I; |
| 1248 | if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) |
| 1249 | ConvertDebugDeclareToDebugValue(DDI, SI, DIB); |
| 1250 | else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) |
| 1251 | ConvertDebugDeclareToDebugValue(DDI, LI, DIB); |
| 1252 | } |
| 1253 | for (SmallVector<DbgValueInst *, 4>::const_iterator I = DVIs.begin(), |
| 1254 | E = DVIs.end(); I != E; ++I) { |
| 1255 | DbgValueInst *DVI = *I; |
| 1256 | Value *Arg = NULL; |
| 1257 | if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) { |
| 1258 | // If an argument is zero extended then use argument directly. The ZExt |
| 1259 | // may be zapped by an optimization pass in future. |
| 1260 | if (ZExtInst *ZExt = dyn_cast<ZExtInst>(SI->getOperand(0))) |
| 1261 | Arg = dyn_cast<Argument>(ZExt->getOperand(0)); |
| 1262 | if (SExtInst *SExt = dyn_cast<SExtInst>(SI->getOperand(0))) |
| 1263 | Arg = dyn_cast<Argument>(SExt->getOperand(0)); |
| 1264 | if (!Arg) |
| 1265 | Arg = SI->getOperand(0); |
| 1266 | } else if (LoadInst *LI = dyn_cast<LoadInst>(Inst)) { |
| 1267 | Arg = LI->getOperand(0); |
| 1268 | } else { |
| 1269 | continue; |
| 1270 | } |
| 1271 | Instruction *DbgVal = |
| 1272 | DIB.insertDbgValueIntrinsic(Arg, 0, DIVariable(DVI->getVariable()), |
| 1273 | Inst); |
| 1274 | DbgVal->setDebugLoc(DVI->getDebugLoc()); |
| 1275 | } |
| 1276 | } |
| 1277 | }; |
| 1278 | } // end anon namespace |
| 1279 | |
| 1280 | |
| 1281 | namespace { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1282 | /// \brief An optimization pass providing Scalar Replacement of Aggregates. |
| 1283 | /// |
| 1284 | /// This pass takes allocations which can be completely analyzed (that is, they |
| 1285 | /// don't escape) and tries to turn them into scalar SSA values. There are |
| 1286 | /// a few steps to this process. |
| 1287 | /// |
| 1288 | /// 1) It takes allocations of aggregates and analyzes the ways in which they |
| 1289 | /// are used to try to split them into smaller allocations, ideally of |
| 1290 | /// a single scalar data type. It will split up memcpy and memset accesses |
| 1291 | /// as necessary and try to isolate invidual scalar accesses. |
| 1292 | /// 2) It will transform accesses into forms which are suitable for SSA value |
| 1293 | /// promotion. This can be replacing a memset with a scalar store of an |
| 1294 | /// integer value, or it can involve speculating operations on a PHI or |
| 1295 | /// select to be a PHI or select of the results. |
| 1296 | /// 3) Finally, this will try to detect a pattern of accesses which map cleanly |
| 1297 | /// onto insert and extract operations on a vector value, and convert them to |
| 1298 | /// this form. By doing so, it will enable promotion of vector aggregates to |
| 1299 | /// SSA vector values. |
| 1300 | class SROA : public FunctionPass { |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 1301 | const bool RequiresDomTree; |
| 1302 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1303 | LLVMContext *C; |
| 1304 | const TargetData *TD; |
| 1305 | DominatorTree *DT; |
| 1306 | |
| 1307 | /// \brief Worklist of alloca instructions to simplify. |
| 1308 | /// |
| 1309 | /// Each alloca in the function is added to this. Each new alloca formed gets |
| 1310 | /// added to it as well to recursively simplify unless that alloca can be |
| 1311 | /// directly promoted. Finally, each time we rewrite a use of an alloca other |
| 1312 | /// the one being actively rewritten, we add it back onto the list if not |
| 1313 | /// already present to ensure it is re-visited. |
| 1314 | SetVector<AllocaInst *, SmallVector<AllocaInst *, 16> > Worklist; |
| 1315 | |
| 1316 | /// \brief A collection of instructions to delete. |
| 1317 | /// We try to batch deletions to simplify code and make things a bit more |
| 1318 | /// efficient. |
| 1319 | SmallVector<Instruction *, 8> DeadInsts; |
| 1320 | |
| 1321 | /// \brief A set to prevent repeatedly marking an instruction split into many |
| 1322 | /// uses as dead. Only used to guard insertion into DeadInsts. |
| 1323 | SmallPtrSet<Instruction *, 4> DeadSplitInsts; |
| 1324 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1325 | /// \brief A collection of alloca instructions we can directly promote. |
| 1326 | std::vector<AllocaInst *> PromotableAllocas; |
| 1327 | |
| 1328 | public: |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 1329 | SROA(bool RequiresDomTree = true) |
| 1330 | : FunctionPass(ID), RequiresDomTree(RequiresDomTree), |
| 1331 | C(0), TD(0), DT(0) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1332 | initializeSROAPass(*PassRegistry::getPassRegistry()); |
| 1333 | } |
| 1334 | bool runOnFunction(Function &F); |
| 1335 | void getAnalysisUsage(AnalysisUsage &AU) const; |
| 1336 | |
| 1337 | const char *getPassName() const { return "SROA"; } |
| 1338 | static char ID; |
| 1339 | |
| 1340 | private: |
| 1341 | friend class AllocaPartitionRewriter; |
| 1342 | friend class AllocaPartitionVectorRewriter; |
| 1343 | |
| 1344 | bool rewriteAllocaPartition(AllocaInst &AI, |
| 1345 | AllocaPartitioning &P, |
| 1346 | AllocaPartitioning::iterator PI); |
| 1347 | bool splitAlloca(AllocaInst &AI, AllocaPartitioning &P); |
| 1348 | bool runOnAlloca(AllocaInst &AI); |
Chandler Carruth | 8615cd2 | 2012-09-14 10:26:38 +0000 | [diff] [blame] | 1349 | void deleteDeadInstructions(SmallPtrSet<AllocaInst *, 4> &DeletedAllocas); |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 1350 | bool promoteAllocas(Function &F); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1351 | }; |
| 1352 | } |
| 1353 | |
| 1354 | char SROA::ID = 0; |
| 1355 | |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 1356 | FunctionPass *llvm::createSROAPass(bool RequiresDomTree) { |
| 1357 | return new SROA(RequiresDomTree); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1358 | } |
| 1359 | |
| 1360 | INITIALIZE_PASS_BEGIN(SROA, "sroa", "Scalar Replacement Of Aggregates", |
| 1361 | false, false) |
| 1362 | INITIALIZE_PASS_DEPENDENCY(DominatorTree) |
| 1363 | INITIALIZE_PASS_END(SROA, "sroa", "Scalar Replacement Of Aggregates", |
| 1364 | false, false) |
| 1365 | |
| 1366 | /// \brief Accumulate the constant offsets in a GEP into a single APInt offset. |
| 1367 | /// |
| 1368 | /// If the provided GEP is all-constant, the total byte offset formed by the |
| 1369 | /// GEP is computed and Offset is set to it. If the GEP has any non-constant |
| 1370 | /// operands, the function returns false and the value of Offset is unmodified. |
| 1371 | static bool accumulateGEPOffsets(const TargetData &TD, GEPOperator &GEP, |
| 1372 | APInt &Offset) { |
| 1373 | APInt GEPOffset(Offset.getBitWidth(), 0); |
| 1374 | for (gep_type_iterator GTI = gep_type_begin(GEP), GTE = gep_type_end(GEP); |
| 1375 | GTI != GTE; ++GTI) { |
| 1376 | ConstantInt *OpC = dyn_cast<ConstantInt>(GTI.getOperand()); |
| 1377 | if (!OpC) |
| 1378 | return false; |
| 1379 | if (OpC->isZero()) continue; |
| 1380 | |
| 1381 | // Handle a struct index, which adds its field offset to the pointer. |
| 1382 | if (StructType *STy = dyn_cast<StructType>(*GTI)) { |
| 1383 | unsigned ElementIdx = OpC->getZExtValue(); |
| 1384 | const StructLayout *SL = TD.getStructLayout(STy); |
| 1385 | GEPOffset += APInt(Offset.getBitWidth(), |
| 1386 | SL->getElementOffset(ElementIdx)); |
| 1387 | continue; |
| 1388 | } |
| 1389 | |
| 1390 | APInt TypeSize(Offset.getBitWidth(), |
| 1391 | TD.getTypeAllocSize(GTI.getIndexedType())); |
| 1392 | if (VectorType *VTy = dyn_cast<VectorType>(*GTI)) { |
| 1393 | assert((VTy->getScalarSizeInBits() % 8) == 0 && |
| 1394 | "vector element size is not a multiple of 8, cannot GEP over it"); |
| 1395 | TypeSize = VTy->getScalarSizeInBits() / 8; |
| 1396 | } |
| 1397 | |
| 1398 | GEPOffset += OpC->getValue().sextOrTrunc(Offset.getBitWidth()) * TypeSize; |
| 1399 | } |
| 1400 | Offset = GEPOffset; |
| 1401 | return true; |
| 1402 | } |
| 1403 | |
| 1404 | /// \brief Build a GEP out of a base pointer and indices. |
| 1405 | /// |
| 1406 | /// This will return the BasePtr if that is valid, or build a new GEP |
| 1407 | /// instruction using the IRBuilder if GEP-ing is needed. |
| 1408 | static Value *buildGEP(IRBuilder<> &IRB, Value *BasePtr, |
| 1409 | SmallVectorImpl<Value *> &Indices, |
| 1410 | const Twine &Prefix) { |
| 1411 | if (Indices.empty()) |
| 1412 | return BasePtr; |
| 1413 | |
| 1414 | // A single zero index is a no-op, so check for this and avoid building a GEP |
| 1415 | // in that case. |
| 1416 | if (Indices.size() == 1 && cast<ConstantInt>(Indices.back())->isZero()) |
| 1417 | return BasePtr; |
| 1418 | |
| 1419 | return IRB.CreateInBoundsGEP(BasePtr, Indices, Prefix + ".idx"); |
| 1420 | } |
| 1421 | |
| 1422 | /// \brief Get a natural GEP off of the BasePtr walking through Ty toward |
| 1423 | /// TargetTy without changing the offset of the pointer. |
| 1424 | /// |
| 1425 | /// This routine assumes we've already established a properly offset GEP with |
| 1426 | /// Indices, and arrived at the Ty type. The goal is to continue to GEP with |
| 1427 | /// zero-indices down through type layers until we find one the same as |
| 1428 | /// TargetTy. If we can't find one with the same type, we at least try to use |
| 1429 | /// one with the same size. If none of that works, we just produce the GEP as |
| 1430 | /// indicated by Indices to have the correct offset. |
| 1431 | static Value *getNaturalGEPWithType(IRBuilder<> &IRB, const TargetData &TD, |
| 1432 | Value *BasePtr, Type *Ty, Type *TargetTy, |
| 1433 | SmallVectorImpl<Value *> &Indices, |
| 1434 | const Twine &Prefix) { |
| 1435 | if (Ty == TargetTy) |
| 1436 | return buildGEP(IRB, BasePtr, Indices, Prefix); |
| 1437 | |
| 1438 | // See if we can descend into a struct and locate a field with the correct |
| 1439 | // type. |
| 1440 | unsigned NumLayers = 0; |
| 1441 | Type *ElementTy = Ty; |
| 1442 | do { |
| 1443 | if (ElementTy->isPointerTy()) |
| 1444 | break; |
| 1445 | if (SequentialType *SeqTy = dyn_cast<SequentialType>(ElementTy)) { |
| 1446 | ElementTy = SeqTy->getElementType(); |
| 1447 | Indices.push_back(IRB.getInt(APInt(TD.getPointerSizeInBits(), 0))); |
| 1448 | } else if (StructType *STy = dyn_cast<StructType>(ElementTy)) { |
| 1449 | ElementTy = *STy->element_begin(); |
| 1450 | Indices.push_back(IRB.getInt32(0)); |
| 1451 | } else { |
| 1452 | break; |
| 1453 | } |
| 1454 | ++NumLayers; |
| 1455 | } while (ElementTy != TargetTy); |
| 1456 | if (ElementTy != TargetTy) |
| 1457 | Indices.erase(Indices.end() - NumLayers, Indices.end()); |
| 1458 | |
| 1459 | return buildGEP(IRB, BasePtr, Indices, Prefix); |
| 1460 | } |
| 1461 | |
| 1462 | /// \brief Recursively compute indices for a natural GEP. |
| 1463 | /// |
| 1464 | /// This is the recursive step for getNaturalGEPWithOffset that walks down the |
| 1465 | /// element types adding appropriate indices for the GEP. |
| 1466 | static Value *getNaturalGEPRecursively(IRBuilder<> &IRB, const TargetData &TD, |
| 1467 | Value *Ptr, Type *Ty, APInt &Offset, |
| 1468 | Type *TargetTy, |
| 1469 | SmallVectorImpl<Value *> &Indices, |
| 1470 | const Twine &Prefix) { |
| 1471 | if (Offset == 0) |
| 1472 | return getNaturalGEPWithType(IRB, TD, Ptr, Ty, TargetTy, Indices, Prefix); |
| 1473 | |
| 1474 | // We can't recurse through pointer types. |
| 1475 | if (Ty->isPointerTy()) |
| 1476 | return 0; |
| 1477 | |
Chandler Carruth | 8ed1ed8 | 2012-09-14 10:30:40 +0000 | [diff] [blame] | 1478 | // We try to analyze GEPs over vectors here, but note that these GEPs are |
| 1479 | // extremely poorly defined currently. The long-term goal is to remove GEPing |
| 1480 | // over a vector from the IR completely. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1481 | if (VectorType *VecTy = dyn_cast<VectorType>(Ty)) { |
| 1482 | unsigned ElementSizeInBits = VecTy->getScalarSizeInBits(); |
| 1483 | if (ElementSizeInBits % 8) |
Chandler Carruth | 8ed1ed8 | 2012-09-14 10:30:40 +0000 | [diff] [blame] | 1484 | return 0; // GEPs over non-multiple of 8 size vector elements are invalid. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1485 | APInt ElementSize(Offset.getBitWidth(), ElementSizeInBits / 8); |
| 1486 | APInt NumSkippedElements = Offset.udiv(ElementSize); |
| 1487 | if (NumSkippedElements.ugt(VecTy->getNumElements())) |
| 1488 | return 0; |
| 1489 | Offset -= NumSkippedElements * ElementSize; |
| 1490 | Indices.push_back(IRB.getInt(NumSkippedElements)); |
| 1491 | return getNaturalGEPRecursively(IRB, TD, Ptr, VecTy->getElementType(), |
| 1492 | Offset, TargetTy, Indices, Prefix); |
| 1493 | } |
| 1494 | |
| 1495 | if (ArrayType *ArrTy = dyn_cast<ArrayType>(Ty)) { |
| 1496 | Type *ElementTy = ArrTy->getElementType(); |
| 1497 | APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy)); |
| 1498 | APInt NumSkippedElements = Offset.udiv(ElementSize); |
| 1499 | if (NumSkippedElements.ugt(ArrTy->getNumElements())) |
| 1500 | return 0; |
| 1501 | |
| 1502 | Offset -= NumSkippedElements * ElementSize; |
| 1503 | Indices.push_back(IRB.getInt(NumSkippedElements)); |
| 1504 | return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, |
| 1505 | Indices, Prefix); |
| 1506 | } |
| 1507 | |
| 1508 | StructType *STy = dyn_cast<StructType>(Ty); |
| 1509 | if (!STy) |
| 1510 | return 0; |
| 1511 | |
| 1512 | const StructLayout *SL = TD.getStructLayout(STy); |
| 1513 | uint64_t StructOffset = Offset.getZExtValue(); |
Chandler Carruth | ad41dcf | 2012-09-14 10:30:42 +0000 | [diff] [blame] | 1514 | if (StructOffset >= SL->getSizeInBytes()) |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1515 | return 0; |
| 1516 | unsigned Index = SL->getElementContainingOffset(StructOffset); |
| 1517 | Offset -= APInt(Offset.getBitWidth(), SL->getElementOffset(Index)); |
| 1518 | Type *ElementTy = STy->getElementType(Index); |
| 1519 | if (Offset.uge(TD.getTypeAllocSize(ElementTy))) |
| 1520 | return 0; // The offset points into alignment padding. |
| 1521 | |
| 1522 | Indices.push_back(IRB.getInt32(Index)); |
| 1523 | return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, |
| 1524 | Indices, Prefix); |
| 1525 | } |
| 1526 | |
| 1527 | /// \brief Get a natural GEP from a base pointer to a particular offset and |
| 1528 | /// resulting in a particular type. |
| 1529 | /// |
| 1530 | /// The goal is to produce a "natural" looking GEP that works with the existing |
| 1531 | /// composite types to arrive at the appropriate offset and element type for |
| 1532 | /// a pointer. TargetTy is the element type the returned GEP should point-to if |
| 1533 | /// possible. We recurse by decreasing Offset, adding the appropriate index to |
| 1534 | /// Indices, and setting Ty to the result subtype. |
| 1535 | /// |
Chandler Carruth | 7f5bede | 2012-09-14 10:18:49 +0000 | [diff] [blame] | 1536 | /// If no natural GEP can be constructed, this function returns null. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1537 | static Value *getNaturalGEPWithOffset(IRBuilder<> &IRB, const TargetData &TD, |
| 1538 | Value *Ptr, APInt Offset, Type *TargetTy, |
| 1539 | SmallVectorImpl<Value *> &Indices, |
| 1540 | const Twine &Prefix) { |
| 1541 | PointerType *Ty = cast<PointerType>(Ptr->getType()); |
| 1542 | |
| 1543 | // Don't consider any GEPs through an i8* as natural unless the TargetTy is |
| 1544 | // an i8. |
| 1545 | if (Ty == IRB.getInt8PtrTy() && TargetTy->isIntegerTy(8)) |
| 1546 | return 0; |
| 1547 | |
| 1548 | Type *ElementTy = Ty->getElementType(); |
Chandler Carruth | 38f35fd | 2012-09-18 22:37:19 +0000 | [diff] [blame] | 1549 | if (!ElementTy->isSized()) |
| 1550 | return 0; // We can't GEP through an unsized element. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1551 | APInt ElementSize(Offset.getBitWidth(), TD.getTypeAllocSize(ElementTy)); |
| 1552 | if (ElementSize == 0) |
| 1553 | return 0; // Zero-length arrays can't help us build a natural GEP. |
| 1554 | APInt NumSkippedElements = Offset.udiv(ElementSize); |
| 1555 | |
| 1556 | Offset -= NumSkippedElements * ElementSize; |
| 1557 | Indices.push_back(IRB.getInt(NumSkippedElements)); |
| 1558 | return getNaturalGEPRecursively(IRB, TD, Ptr, ElementTy, Offset, TargetTy, |
| 1559 | Indices, Prefix); |
| 1560 | } |
| 1561 | |
| 1562 | /// \brief Compute an adjusted pointer from Ptr by Offset bytes where the |
| 1563 | /// resulting pointer has PointerTy. |
| 1564 | /// |
| 1565 | /// This tries very hard to compute a "natural" GEP which arrives at the offset |
| 1566 | /// and produces the pointer type desired. Where it cannot, it will try to use |
| 1567 | /// the natural GEP to arrive at the offset and bitcast to the type. Where that |
| 1568 | /// fails, it will try to use an existing i8* and GEP to the byte offset and |
| 1569 | /// bitcast to the type. |
| 1570 | /// |
| 1571 | /// The strategy for finding the more natural GEPs is to peel off layers of the |
| 1572 | /// pointer, walking back through bit casts and GEPs, searching for a base |
| 1573 | /// pointer from which we can compute a natural GEP with the desired |
| 1574 | /// properities. The algorithm tries to fold as many constant indices into |
| 1575 | /// a single GEP as possible, thus making each GEP more independent of the |
| 1576 | /// surrounding code. |
| 1577 | static Value *getAdjustedPtr(IRBuilder<> &IRB, const TargetData &TD, |
| 1578 | Value *Ptr, APInt Offset, Type *PointerTy, |
| 1579 | const Twine &Prefix) { |
| 1580 | // Even though we don't look through PHI nodes, we could be called on an |
| 1581 | // instruction in an unreachable block, which may be on a cycle. |
| 1582 | SmallPtrSet<Value *, 4> Visited; |
| 1583 | Visited.insert(Ptr); |
| 1584 | SmallVector<Value *, 4> Indices; |
| 1585 | |
| 1586 | // We may end up computing an offset pointer that has the wrong type. If we |
| 1587 | // never are able to compute one directly that has the correct type, we'll |
| 1588 | // fall back to it, so keep it around here. |
| 1589 | Value *OffsetPtr = 0; |
| 1590 | |
| 1591 | // Remember any i8 pointer we come across to re-use if we need to do a raw |
| 1592 | // byte offset. |
| 1593 | Value *Int8Ptr = 0; |
| 1594 | APInt Int8PtrOffset(Offset.getBitWidth(), 0); |
| 1595 | |
| 1596 | Type *TargetTy = PointerTy->getPointerElementType(); |
| 1597 | |
| 1598 | do { |
| 1599 | // First fold any existing GEPs into the offset. |
| 1600 | while (GEPOperator *GEP = dyn_cast<GEPOperator>(Ptr)) { |
| 1601 | APInt GEPOffset(Offset.getBitWidth(), 0); |
| 1602 | if (!accumulateGEPOffsets(TD, *GEP, GEPOffset)) |
| 1603 | break; |
| 1604 | Offset += GEPOffset; |
| 1605 | Ptr = GEP->getPointerOperand(); |
| 1606 | if (!Visited.insert(Ptr)) |
| 1607 | break; |
| 1608 | } |
| 1609 | |
| 1610 | // See if we can perform a natural GEP here. |
| 1611 | Indices.clear(); |
| 1612 | if (Value *P = getNaturalGEPWithOffset(IRB, TD, Ptr, Offset, TargetTy, |
| 1613 | Indices, Prefix)) { |
| 1614 | if (P->getType() == PointerTy) { |
| 1615 | // Zap any offset pointer that we ended up computing in previous rounds. |
| 1616 | if (OffsetPtr && OffsetPtr->use_empty()) |
| 1617 | if (Instruction *I = dyn_cast<Instruction>(OffsetPtr)) |
| 1618 | I->eraseFromParent(); |
| 1619 | return P; |
| 1620 | } |
| 1621 | if (!OffsetPtr) { |
| 1622 | OffsetPtr = P; |
| 1623 | } |
| 1624 | } |
| 1625 | |
| 1626 | // Stash this pointer if we've found an i8*. |
| 1627 | if (Ptr->getType()->isIntegerTy(8)) { |
| 1628 | Int8Ptr = Ptr; |
| 1629 | Int8PtrOffset = Offset; |
| 1630 | } |
| 1631 | |
| 1632 | // Peel off a layer of the pointer and update the offset appropriately. |
| 1633 | if (Operator::getOpcode(Ptr) == Instruction::BitCast) { |
| 1634 | Ptr = cast<Operator>(Ptr)->getOperand(0); |
| 1635 | } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(Ptr)) { |
| 1636 | if (GA->mayBeOverridden()) |
| 1637 | break; |
| 1638 | Ptr = GA->getAliasee(); |
| 1639 | } else { |
| 1640 | break; |
| 1641 | } |
| 1642 | assert(Ptr->getType()->isPointerTy() && "Unexpected operand type!"); |
| 1643 | } while (Visited.insert(Ptr)); |
| 1644 | |
| 1645 | if (!OffsetPtr) { |
| 1646 | if (!Int8Ptr) { |
| 1647 | Int8Ptr = IRB.CreateBitCast(Ptr, IRB.getInt8PtrTy(), |
| 1648 | Prefix + ".raw_cast"); |
| 1649 | Int8PtrOffset = Offset; |
| 1650 | } |
| 1651 | |
| 1652 | OffsetPtr = Int8PtrOffset == 0 ? Int8Ptr : |
| 1653 | IRB.CreateInBoundsGEP(Int8Ptr, IRB.getInt(Int8PtrOffset), |
| 1654 | Prefix + ".raw_idx"); |
| 1655 | } |
| 1656 | Ptr = OffsetPtr; |
| 1657 | |
| 1658 | // On the off chance we were targeting i8*, guard the bitcast here. |
| 1659 | if (Ptr->getType() != PointerTy) |
| 1660 | Ptr = IRB.CreateBitCast(Ptr, PointerTy, Prefix + ".cast"); |
| 1661 | |
| 1662 | return Ptr; |
| 1663 | } |
| 1664 | |
| 1665 | /// \brief Test whether the given alloca partition can be promoted to a vector. |
| 1666 | /// |
| 1667 | /// This is a quick test to check whether we can rewrite a particular alloca |
| 1668 | /// partition (and its newly formed alloca) into a vector alloca with only |
| 1669 | /// whole-vector loads and stores such that it could be promoted to a vector |
| 1670 | /// SSA value. We only can ensure this for a limited set of operations, and we |
| 1671 | /// don't want to do the rewrites unless we are confident that the result will |
| 1672 | /// be promotable, so we have an early test here. |
| 1673 | static bool isVectorPromotionViable(const TargetData &TD, |
| 1674 | Type *AllocaTy, |
| 1675 | AllocaPartitioning &P, |
| 1676 | uint64_t PartitionBeginOffset, |
| 1677 | uint64_t PartitionEndOffset, |
| 1678 | AllocaPartitioning::const_use_iterator I, |
| 1679 | AllocaPartitioning::const_use_iterator E) { |
| 1680 | VectorType *Ty = dyn_cast<VectorType>(AllocaTy); |
| 1681 | if (!Ty) |
| 1682 | return false; |
| 1683 | |
| 1684 | uint64_t VecSize = TD.getTypeSizeInBits(Ty); |
| 1685 | uint64_t ElementSize = Ty->getScalarSizeInBits(); |
| 1686 | |
| 1687 | // While the definition of LLVM vectors is bitpacked, we don't support sizes |
| 1688 | // that aren't byte sized. |
| 1689 | if (ElementSize % 8) |
| 1690 | return false; |
| 1691 | assert((VecSize % 8) == 0 && "vector size not a multiple of element size?"); |
| 1692 | VecSize /= 8; |
| 1693 | ElementSize /= 8; |
| 1694 | |
| 1695 | for (; I != E; ++I) { |
| 1696 | uint64_t BeginOffset = I->BeginOffset - PartitionBeginOffset; |
| 1697 | uint64_t BeginIndex = BeginOffset / ElementSize; |
| 1698 | if (BeginIndex * ElementSize != BeginOffset || |
| 1699 | BeginIndex >= Ty->getNumElements()) |
| 1700 | return false; |
| 1701 | uint64_t EndOffset = I->EndOffset - PartitionBeginOffset; |
| 1702 | uint64_t EndIndex = EndOffset / ElementSize; |
| 1703 | if (EndIndex * ElementSize != EndOffset || |
| 1704 | EndIndex > Ty->getNumElements()) |
| 1705 | return false; |
| 1706 | |
| 1707 | // FIXME: We should build shuffle vector instructions to handle |
| 1708 | // non-element-sized accesses. |
| 1709 | if ((EndOffset - BeginOffset) != ElementSize && |
| 1710 | (EndOffset - BeginOffset) != VecSize) |
| 1711 | return false; |
| 1712 | |
| 1713 | if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&*I->User)) { |
| 1714 | if (MI->isVolatile()) |
| 1715 | return false; |
| 1716 | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(&*I->User)) { |
| 1717 | const AllocaPartitioning::MemTransferOffsets &MTO |
| 1718 | = P.getMemTransferOffsets(*MTI); |
| 1719 | if (!MTO.IsSplittable) |
| 1720 | return false; |
| 1721 | } |
| 1722 | } else if (I->Ptr->getType()->getPointerElementType()->isStructTy()) { |
| 1723 | // Disable vector promotion when there are loads or stores of an FCA. |
| 1724 | return false; |
| 1725 | } else if (!isa<LoadInst>(*I->User) && !isa<StoreInst>(*I->User)) { |
| 1726 | return false; |
| 1727 | } |
| 1728 | } |
| 1729 | return true; |
| 1730 | } |
| 1731 | |
Chandler Carruth | bc4021f | 2012-09-24 00:34:20 +0000 | [diff] [blame] | 1732 | /// \brief Test whether the given alloca partition can be promoted to an int. |
| 1733 | /// |
| 1734 | /// This is a quick test to check whether we can rewrite a particular alloca |
| 1735 | /// partition (and its newly formed alloca) into an integer alloca suitable for |
| 1736 | /// promotion to an SSA value. We only can ensure this for a limited set of |
| 1737 | /// operations, and we don't want to do the rewrites unless we are confident |
| 1738 | /// that the result will be promotable, so we have an early test here. |
| 1739 | static bool isIntegerPromotionViable(const TargetData &TD, |
| 1740 | Type *AllocaTy, |
| 1741 | AllocaPartitioning &P, |
| 1742 | AllocaPartitioning::const_use_iterator I, |
| 1743 | AllocaPartitioning::const_use_iterator E) { |
| 1744 | IntegerType *Ty = dyn_cast<IntegerType>(AllocaTy); |
| 1745 | if (!Ty) |
| 1746 | return false; |
| 1747 | |
| 1748 | // Check the uses to ensure the uses are (likely) promoteable integer uses. |
| 1749 | // Also ensure that the alloca has a covering load or store. We don't want |
| 1750 | // promote because of some other unsplittable entry (which we may make |
| 1751 | // splittable later) and lose the ability to promote each element access. |
| 1752 | bool WholeAllocaOp = false; |
| 1753 | for (; I != E; ++I) { |
| 1754 | if (LoadInst *LI = dyn_cast<LoadInst>(&*I->User)) { |
| 1755 | if (LI->isVolatile() || !LI->getType()->isIntegerTy()) |
| 1756 | return false; |
| 1757 | if (LI->getType() == Ty) |
| 1758 | WholeAllocaOp = true; |
| 1759 | } else if (StoreInst *SI = dyn_cast<StoreInst>(&*I->User)) { |
| 1760 | if (SI->isVolatile() || !SI->getValueOperand()->getType()->isIntegerTy()) |
| 1761 | return false; |
| 1762 | if (SI->getValueOperand()->getType() == Ty) |
| 1763 | WholeAllocaOp = true; |
| 1764 | } else if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(&*I->User)) { |
| 1765 | if (MI->isVolatile()) |
| 1766 | return false; |
| 1767 | if (MemTransferInst *MTI = dyn_cast<MemTransferInst>(&*I->User)) { |
| 1768 | const AllocaPartitioning::MemTransferOffsets &MTO |
| 1769 | = P.getMemTransferOffsets(*MTI); |
| 1770 | if (!MTO.IsSplittable) |
| 1771 | return false; |
| 1772 | } |
| 1773 | } else { |
| 1774 | return false; |
| 1775 | } |
| 1776 | } |
| 1777 | return WholeAllocaOp; |
| 1778 | } |
| 1779 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1780 | namespace { |
| 1781 | /// \brief Visitor to rewrite instructions using a partition of an alloca to |
| 1782 | /// use a new alloca. |
| 1783 | /// |
| 1784 | /// Also implements the rewriting to vector-based accesses when the partition |
| 1785 | /// passes the isVectorPromotionViable predicate. Most of the rewriting logic |
| 1786 | /// lives here. |
| 1787 | class AllocaPartitionRewriter : public InstVisitor<AllocaPartitionRewriter, |
| 1788 | bool> { |
| 1789 | // Befriend the base class so it can delegate to private visit methods. |
| 1790 | friend class llvm::InstVisitor<AllocaPartitionRewriter, bool>; |
| 1791 | |
| 1792 | const TargetData &TD; |
| 1793 | AllocaPartitioning &P; |
| 1794 | SROA &Pass; |
| 1795 | AllocaInst &OldAI, &NewAI; |
| 1796 | const uint64_t NewAllocaBeginOffset, NewAllocaEndOffset; |
| 1797 | |
| 1798 | // If we are rewriting an alloca partition which can be written as pure |
| 1799 | // vector operations, we stash extra information here. When VecTy is |
| 1800 | // non-null, we have some strict guarantees about the rewriten alloca: |
| 1801 | // - The new alloca is exactly the size of the vector type here. |
| 1802 | // - The accesses all either map to the entire vector or to a single |
| 1803 | // element. |
| 1804 | // - The set of accessing instructions is only one of those handled above |
| 1805 | // in isVectorPromotionViable. Generally these are the same access kinds |
| 1806 | // which are promotable via mem2reg. |
| 1807 | VectorType *VecTy; |
| 1808 | Type *ElementTy; |
| 1809 | uint64_t ElementSize; |
| 1810 | |
Chandler Carruth | bc4021f | 2012-09-24 00:34:20 +0000 | [diff] [blame] | 1811 | // This is a convenience and flag variable that will be null unless the new |
| 1812 | // alloca has a promotion-targeted integer type due to passing |
| 1813 | // isIntegerPromotionViable above. If it is non-null does, the desired |
| 1814 | // integer type will be stored here for easy access during rewriting. |
| 1815 | IntegerType *IntPromotionTy; |
| 1816 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1817 | // The offset of the partition user currently being rewritten. |
| 1818 | uint64_t BeginOffset, EndOffset; |
| 1819 | Instruction *OldPtr; |
| 1820 | |
| 1821 | // The name prefix to use when rewriting instructions for this alloca. |
| 1822 | std::string NamePrefix; |
| 1823 | |
| 1824 | public: |
| 1825 | AllocaPartitionRewriter(const TargetData &TD, AllocaPartitioning &P, |
| 1826 | AllocaPartitioning::iterator PI, |
| 1827 | SROA &Pass, AllocaInst &OldAI, AllocaInst &NewAI, |
| 1828 | uint64_t NewBeginOffset, uint64_t NewEndOffset) |
| 1829 | : TD(TD), P(P), Pass(Pass), |
| 1830 | OldAI(OldAI), NewAI(NewAI), |
| 1831 | NewAllocaBeginOffset(NewBeginOffset), |
| 1832 | NewAllocaEndOffset(NewEndOffset), |
Chandler Carruth | bc4021f | 2012-09-24 00:34:20 +0000 | [diff] [blame] | 1833 | VecTy(), ElementTy(), ElementSize(), IntPromotionTy(), |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1834 | BeginOffset(), EndOffset() { |
| 1835 | } |
| 1836 | |
| 1837 | /// \brief Visit the users of the alloca partition and rewrite them. |
| 1838 | bool visitUsers(AllocaPartitioning::const_use_iterator I, |
| 1839 | AllocaPartitioning::const_use_iterator E) { |
| 1840 | if (isVectorPromotionViable(TD, NewAI.getAllocatedType(), P, |
| 1841 | NewAllocaBeginOffset, NewAllocaEndOffset, |
| 1842 | I, E)) { |
| 1843 | ++NumVectorized; |
| 1844 | VecTy = cast<VectorType>(NewAI.getAllocatedType()); |
| 1845 | ElementTy = VecTy->getElementType(); |
| 1846 | assert((VecTy->getScalarSizeInBits() % 8) == 0 && |
| 1847 | "Only multiple-of-8 sized vector elements are viable"); |
| 1848 | ElementSize = VecTy->getScalarSizeInBits() / 8; |
Chandler Carruth | bc4021f | 2012-09-24 00:34:20 +0000 | [diff] [blame] | 1849 | } else if (isIntegerPromotionViable(TD, NewAI.getAllocatedType(), |
| 1850 | P, I, E)) { |
| 1851 | IntPromotionTy = cast<IntegerType>(NewAI.getAllocatedType()); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1852 | } |
| 1853 | bool CanSROA = true; |
| 1854 | for (; I != E; ++I) { |
| 1855 | BeginOffset = I->BeginOffset; |
| 1856 | EndOffset = I->EndOffset; |
| 1857 | OldPtr = I->Ptr; |
| 1858 | NamePrefix = (Twine(NewAI.getName()) + "." + Twine(BeginOffset)).str(); |
| 1859 | CanSROA &= visit(I->User); |
| 1860 | } |
| 1861 | if (VecTy) { |
| 1862 | assert(CanSROA); |
| 1863 | VecTy = 0; |
| 1864 | ElementTy = 0; |
| 1865 | ElementSize = 0; |
| 1866 | } |
| 1867 | return CanSROA; |
| 1868 | } |
| 1869 | |
| 1870 | private: |
| 1871 | // Every instruction which can end up as a user must have a rewrite rule. |
| 1872 | bool visitInstruction(Instruction &I) { |
| 1873 | DEBUG(dbgs() << " !!!! Cannot rewrite: " << I << "\n"); |
| 1874 | llvm_unreachable("No rewrite rule for this instruction!"); |
| 1875 | } |
| 1876 | |
| 1877 | Twine getName(const Twine &Suffix) { |
| 1878 | return NamePrefix + Suffix; |
| 1879 | } |
| 1880 | |
| 1881 | Value *getAdjustedAllocaPtr(IRBuilder<> &IRB, Type *PointerTy) { |
| 1882 | assert(BeginOffset >= NewAllocaBeginOffset); |
| 1883 | APInt Offset(TD.getPointerSizeInBits(), BeginOffset - NewAllocaBeginOffset); |
| 1884 | return getAdjustedPtr(IRB, TD, &NewAI, Offset, PointerTy, getName("")); |
| 1885 | } |
| 1886 | |
| 1887 | ConstantInt *getIndex(IRBuilder<> &IRB, uint64_t Offset) { |
| 1888 | assert(VecTy && "Can only call getIndex when rewriting a vector"); |
| 1889 | uint64_t RelOffset = Offset - NewAllocaBeginOffset; |
| 1890 | assert(RelOffset / ElementSize < UINT32_MAX && "Index out of bounds"); |
| 1891 | uint32_t Index = RelOffset / ElementSize; |
| 1892 | assert(Index * ElementSize == RelOffset); |
| 1893 | return IRB.getInt32(Index); |
| 1894 | } |
| 1895 | |
Chandler Carruth | bc4021f | 2012-09-24 00:34:20 +0000 | [diff] [blame] | 1896 | Value *extractInteger(IRBuilder<> &IRB, IntegerType *TargetTy, |
| 1897 | uint64_t Offset) { |
| 1898 | assert(IntPromotionTy && "Alloca is not an integer we can extract from"); |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 1899 | Value *V = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| 1900 | getName(".load")); |
Chandler Carruth | bc4021f | 2012-09-24 00:34:20 +0000 | [diff] [blame] | 1901 | assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset"); |
| 1902 | uint64_t RelOffset = Offset - NewAllocaBeginOffset; |
| 1903 | if (RelOffset) |
| 1904 | V = IRB.CreateLShr(V, RelOffset*8, getName(".shift")); |
| 1905 | if (TargetTy != IntPromotionTy) { |
| 1906 | assert(TargetTy->getBitWidth() < IntPromotionTy->getBitWidth() && |
| 1907 | "Cannot extract to a larger integer!"); |
| 1908 | V = IRB.CreateTrunc(V, TargetTy, getName(".trunc")); |
| 1909 | } |
| 1910 | return V; |
| 1911 | } |
| 1912 | |
| 1913 | StoreInst *insertInteger(IRBuilder<> &IRB, Value *V, uint64_t Offset) { |
| 1914 | IntegerType *Ty = cast<IntegerType>(V->getType()); |
| 1915 | if (Ty == IntPromotionTy) |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 1916 | return IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); |
Chandler Carruth | bc4021f | 2012-09-24 00:34:20 +0000 | [diff] [blame] | 1917 | |
| 1918 | assert(Ty->getBitWidth() < IntPromotionTy->getBitWidth() && |
| 1919 | "Cannot insert a larger integer!"); |
| 1920 | V = IRB.CreateZExt(V, IntPromotionTy, getName(".ext")); |
| 1921 | assert(Offset >= NewAllocaBeginOffset && "Out of bounds offset"); |
| 1922 | uint64_t RelOffset = Offset - NewAllocaBeginOffset; |
| 1923 | if (RelOffset) |
| 1924 | V = IRB.CreateShl(V, RelOffset*8, getName(".shift")); |
| 1925 | |
| 1926 | APInt Mask = ~Ty->getMask().zext(IntPromotionTy->getBitWidth()) |
| 1927 | .shl(RelOffset*8); |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 1928 | Value *Old = IRB.CreateAnd(IRB.CreateAlignedLoad(&NewAI, |
| 1929 | NewAI.getAlignment(), |
| 1930 | getName(".oldload")), |
Chandler Carruth | bc4021f | 2012-09-24 00:34:20 +0000 | [diff] [blame] | 1931 | Mask, getName(".mask")); |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 1932 | return IRB.CreateAlignedStore(IRB.CreateOr(Old, V, getName(".insert")), |
| 1933 | &NewAI, NewAI.getAlignment()); |
Chandler Carruth | bc4021f | 2012-09-24 00:34:20 +0000 | [diff] [blame] | 1934 | } |
| 1935 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1936 | void deleteIfTriviallyDead(Value *V) { |
| 1937 | Instruction *I = cast<Instruction>(V); |
| 1938 | if (isInstructionTriviallyDead(I)) |
| 1939 | Pass.DeadInsts.push_back(I); |
| 1940 | } |
| 1941 | |
| 1942 | Value *getValueCast(IRBuilder<> &IRB, Value *V, Type *Ty) { |
| 1943 | if (V->getType()->isIntegerTy() && Ty->isPointerTy()) |
| 1944 | return IRB.CreateIntToPtr(V, Ty); |
| 1945 | if (V->getType()->isPointerTy() && Ty->isIntegerTy()) |
| 1946 | return IRB.CreatePtrToInt(V, Ty); |
| 1947 | |
| 1948 | return IRB.CreateBitCast(V, Ty); |
| 1949 | } |
| 1950 | |
| 1951 | bool rewriteVectorizedLoadInst(IRBuilder<> &IRB, LoadInst &LI, Value *OldOp) { |
| 1952 | Value *Result; |
| 1953 | if (LI.getType() == VecTy->getElementType() || |
| 1954 | BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) { |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 1955 | Result = IRB.CreateExtractElement( |
| 1956 | IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")), |
| 1957 | getIndex(IRB, BeginOffset), getName(".extract")); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1958 | } else { |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 1959 | Result = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| 1960 | getName(".load")); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1961 | } |
| 1962 | if (Result->getType() != LI.getType()) |
| 1963 | Result = getValueCast(IRB, Result, LI.getType()); |
| 1964 | LI.replaceAllUsesWith(Result); |
| 1965 | Pass.DeadInsts.push_back(&LI); |
| 1966 | |
| 1967 | DEBUG(dbgs() << " to: " << *Result << "\n"); |
| 1968 | return true; |
| 1969 | } |
| 1970 | |
Chandler Carruth | bc4021f | 2012-09-24 00:34:20 +0000 | [diff] [blame] | 1971 | bool rewriteIntegerLoad(IRBuilder<> &IRB, LoadInst &LI) { |
| 1972 | assert(!LI.isVolatile()); |
| 1973 | Value *Result = extractInteger(IRB, cast<IntegerType>(LI.getType()), |
| 1974 | BeginOffset); |
| 1975 | LI.replaceAllUsesWith(Result); |
| 1976 | Pass.DeadInsts.push_back(&LI); |
| 1977 | DEBUG(dbgs() << " to: " << *Result << "\n"); |
| 1978 | return true; |
| 1979 | } |
| 1980 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1981 | bool visitLoadInst(LoadInst &LI) { |
| 1982 | DEBUG(dbgs() << " original: " << LI << "\n"); |
| 1983 | Value *OldOp = LI.getOperand(0); |
| 1984 | assert(OldOp == OldPtr); |
| 1985 | IRBuilder<> IRB(&LI); |
| 1986 | |
| 1987 | if (VecTy) |
| 1988 | return rewriteVectorizedLoadInst(IRB, LI, OldOp); |
Chandler Carruth | bc4021f | 2012-09-24 00:34:20 +0000 | [diff] [blame] | 1989 | if (IntPromotionTy) |
| 1990 | return rewriteIntegerLoad(IRB, LI); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1991 | |
| 1992 | Value *NewPtr = getAdjustedAllocaPtr(IRB, |
| 1993 | LI.getPointerOperand()->getType()); |
| 1994 | LI.setOperand(0, NewPtr); |
Chandler Carruth | 238fd15 | 2012-09-26 10:45:28 +0000 | [diff] [blame] | 1995 | if (LI.getAlignment()) |
| 1996 | LI.setAlignment(MinAlign(NewAI.getAlignment(), |
| 1997 | BeginOffset - NewAllocaBeginOffset)); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 1998 | DEBUG(dbgs() << " to: " << LI << "\n"); |
| 1999 | |
| 2000 | deleteIfTriviallyDead(OldOp); |
| 2001 | return NewPtr == &NewAI && !LI.isVolatile(); |
| 2002 | } |
| 2003 | |
| 2004 | bool rewriteVectorizedStoreInst(IRBuilder<> &IRB, StoreInst &SI, |
| 2005 | Value *OldOp) { |
| 2006 | Value *V = SI.getValueOperand(); |
| 2007 | if (V->getType() == ElementTy || |
| 2008 | BeginOffset > NewAllocaBeginOffset || EndOffset < NewAllocaEndOffset) { |
| 2009 | if (V->getType() != ElementTy) |
| 2010 | V = getValueCast(IRB, V, ElementTy); |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 2011 | LoadInst *LI = IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), |
| 2012 | getName(".load")); |
| 2013 | V = IRB.CreateInsertElement(LI, V, getIndex(IRB, BeginOffset), |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2014 | getName(".insert")); |
| 2015 | } else if (V->getType() != VecTy) { |
| 2016 | V = getValueCast(IRB, V, VecTy); |
| 2017 | } |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 2018 | StoreInst *Store = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment()); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2019 | Pass.DeadInsts.push_back(&SI); |
| 2020 | |
| 2021 | (void)Store; |
| 2022 | DEBUG(dbgs() << " to: " << *Store << "\n"); |
| 2023 | return true; |
| 2024 | } |
| 2025 | |
Chandler Carruth | bc4021f | 2012-09-24 00:34:20 +0000 | [diff] [blame] | 2026 | bool rewriteIntegerStore(IRBuilder<> &IRB, StoreInst &SI) { |
| 2027 | assert(!SI.isVolatile()); |
| 2028 | StoreInst *Store = insertInteger(IRB, SI.getValueOperand(), BeginOffset); |
| 2029 | Pass.DeadInsts.push_back(&SI); |
| 2030 | (void)Store; |
| 2031 | DEBUG(dbgs() << " to: " << *Store << "\n"); |
| 2032 | return true; |
| 2033 | } |
| 2034 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2035 | bool visitStoreInst(StoreInst &SI) { |
| 2036 | DEBUG(dbgs() << " original: " << SI << "\n"); |
| 2037 | Value *OldOp = SI.getOperand(1); |
| 2038 | assert(OldOp == OldPtr); |
| 2039 | IRBuilder<> IRB(&SI); |
| 2040 | |
| 2041 | if (VecTy) |
| 2042 | return rewriteVectorizedStoreInst(IRB, SI, OldOp); |
Chandler Carruth | bc4021f | 2012-09-24 00:34:20 +0000 | [diff] [blame] | 2043 | if (IntPromotionTy) |
| 2044 | return rewriteIntegerStore(IRB, SI); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2045 | |
| 2046 | Value *NewPtr = getAdjustedAllocaPtr(IRB, |
| 2047 | SI.getPointerOperand()->getType()); |
| 2048 | SI.setOperand(1, NewPtr); |
Chandler Carruth | 238fd15 | 2012-09-26 10:45:28 +0000 | [diff] [blame] | 2049 | if (SI.getAlignment()) |
| 2050 | SI.setAlignment(MinAlign(NewAI.getAlignment(), |
| 2051 | BeginOffset - NewAllocaBeginOffset)); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2052 | DEBUG(dbgs() << " to: " << SI << "\n"); |
| 2053 | |
| 2054 | deleteIfTriviallyDead(OldOp); |
| 2055 | return NewPtr == &NewAI && !SI.isVolatile(); |
| 2056 | } |
| 2057 | |
| 2058 | bool visitMemSetInst(MemSetInst &II) { |
| 2059 | DEBUG(dbgs() << " original: " << II << "\n"); |
| 2060 | IRBuilder<> IRB(&II); |
| 2061 | assert(II.getRawDest() == OldPtr); |
| 2062 | |
| 2063 | // If the memset has a variable size, it cannot be split, just adjust the |
| 2064 | // pointer to the new alloca. |
| 2065 | if (!isa<Constant>(II.getLength())) { |
| 2066 | II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType())); |
Chandler Carruth | d0ac06d | 2012-09-26 10:59:22 +0000 | [diff] [blame^] | 2067 | |
| 2068 | Type *CstTy = II.getAlignmentCst()->getType(); |
| 2069 | if (!NewAI.getAlignment()) |
| 2070 | II.setAlignment(ConstantInt::get(CstTy, 0)); |
| 2071 | else |
| 2072 | II.setAlignment( |
| 2073 | ConstantInt::get(CstTy, MinAlign(NewAI.getAlignment(), |
| 2074 | BeginOffset - NewAllocaBeginOffset))); |
| 2075 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2076 | deleteIfTriviallyDead(OldPtr); |
| 2077 | return false; |
| 2078 | } |
| 2079 | |
| 2080 | // Record this instruction for deletion. |
| 2081 | if (Pass.DeadSplitInsts.insert(&II)) |
| 2082 | Pass.DeadInsts.push_back(&II); |
| 2083 | |
| 2084 | Type *AllocaTy = NewAI.getAllocatedType(); |
| 2085 | Type *ScalarTy = AllocaTy->getScalarType(); |
| 2086 | |
| 2087 | // If this doesn't map cleanly onto the alloca type, and that type isn't |
| 2088 | // a single value type, just emit a memset. |
| 2089 | if (!VecTy && (BeginOffset != NewAllocaBeginOffset || |
| 2090 | EndOffset != NewAllocaEndOffset || |
| 2091 | !AllocaTy->isSingleValueType() || |
| 2092 | !TD.isLegalInteger(TD.getTypeSizeInBits(ScalarTy)))) { |
| 2093 | Type *SizeTy = II.getLength()->getType(); |
| 2094 | Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset); |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 2095 | unsigned Align = 1; |
| 2096 | if (NewAI.getAlignment()) |
| 2097 | Align = MinAlign(NewAI.getAlignment(), |
| 2098 | BeginOffset - NewAllocaBeginOffset); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2099 | |
| 2100 | CallInst *New |
| 2101 | = IRB.CreateMemSet(getAdjustedAllocaPtr(IRB, |
| 2102 | II.getRawDest()->getType()), |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 2103 | II.getValue(), Size, Align, |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2104 | II.isVolatile()); |
| 2105 | (void)New; |
| 2106 | DEBUG(dbgs() << " to: " << *New << "\n"); |
| 2107 | return false; |
| 2108 | } |
| 2109 | |
| 2110 | // If we can represent this as a simple value, we have to build the actual |
| 2111 | // value to store, which requires expanding the byte present in memset to |
| 2112 | // a sensible representation for the alloca type. This is essentially |
| 2113 | // splatting the byte to a sufficiently wide integer, bitcasting to the |
| 2114 | // desired scalar type, and splatting it across any desired vector type. |
| 2115 | Value *V = II.getValue(); |
| 2116 | IntegerType *VTy = cast<IntegerType>(V->getType()); |
| 2117 | Type *IntTy = Type::getIntNTy(VTy->getContext(), |
| 2118 | TD.getTypeSizeInBits(ScalarTy)); |
| 2119 | if (TD.getTypeSizeInBits(ScalarTy) > VTy->getBitWidth()) |
| 2120 | V = IRB.CreateMul(IRB.CreateZExt(V, IntTy, getName(".zext")), |
| 2121 | ConstantExpr::getUDiv( |
| 2122 | Constant::getAllOnesValue(IntTy), |
| 2123 | ConstantExpr::getZExt( |
| 2124 | Constant::getAllOnesValue(V->getType()), |
| 2125 | IntTy)), |
| 2126 | getName(".isplat")); |
| 2127 | if (V->getType() != ScalarTy) { |
| 2128 | if (ScalarTy->isPointerTy()) |
| 2129 | V = IRB.CreateIntToPtr(V, ScalarTy); |
| 2130 | else if (ScalarTy->isPrimitiveType() || ScalarTy->isVectorTy()) |
| 2131 | V = IRB.CreateBitCast(V, ScalarTy); |
| 2132 | else if (ScalarTy->isIntegerTy()) |
| 2133 | llvm_unreachable("Computed different integer types with equal widths"); |
| 2134 | else |
| 2135 | llvm_unreachable("Invalid scalar type"); |
| 2136 | } |
| 2137 | |
| 2138 | // If this is an element-wide memset of a vectorizable alloca, insert it. |
| 2139 | if (VecTy && (BeginOffset > NewAllocaBeginOffset || |
| 2140 | EndOffset < NewAllocaEndOffset)) { |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 2141 | StoreInst *Store = IRB.CreateAlignedStore( |
| 2142 | IRB.CreateInsertElement(IRB.CreateAlignedLoad(&NewAI, |
| 2143 | NewAI.getAlignment(), |
| 2144 | getName(".load")), |
| 2145 | V, getIndex(IRB, BeginOffset), |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2146 | getName(".insert")), |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 2147 | &NewAI, NewAI.getAlignment()); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2148 | (void)Store; |
| 2149 | DEBUG(dbgs() << " to: " << *Store << "\n"); |
| 2150 | return true; |
| 2151 | } |
| 2152 | |
| 2153 | // Splat to a vector if needed. |
| 2154 | if (VectorType *VecTy = dyn_cast<VectorType>(AllocaTy)) { |
| 2155 | VectorType *SplatSourceTy = VectorType::get(V->getType(), 1); |
| 2156 | V = IRB.CreateShuffleVector( |
| 2157 | IRB.CreateInsertElement(UndefValue::get(SplatSourceTy), V, |
| 2158 | IRB.getInt32(0), getName(".vsplat.insert")), |
| 2159 | UndefValue::get(SplatSourceTy), |
| 2160 | ConstantVector::getSplat(VecTy->getNumElements(), IRB.getInt32(0)), |
| 2161 | getName(".vsplat.shuffle")); |
| 2162 | assert(V->getType() == VecTy); |
| 2163 | } |
| 2164 | |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 2165 | Value *New = IRB.CreateAlignedStore(V, &NewAI, NewAI.getAlignment(), |
| 2166 | II.isVolatile()); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2167 | (void)New; |
| 2168 | DEBUG(dbgs() << " to: " << *New << "\n"); |
| 2169 | return !II.isVolatile(); |
| 2170 | } |
| 2171 | |
| 2172 | bool visitMemTransferInst(MemTransferInst &II) { |
| 2173 | // Rewriting of memory transfer instructions can be a bit tricky. We break |
| 2174 | // them into two categories: split intrinsics and unsplit intrinsics. |
| 2175 | |
| 2176 | DEBUG(dbgs() << " original: " << II << "\n"); |
| 2177 | IRBuilder<> IRB(&II); |
| 2178 | |
| 2179 | assert(II.getRawSource() == OldPtr || II.getRawDest() == OldPtr); |
| 2180 | bool IsDest = II.getRawDest() == OldPtr; |
| 2181 | |
| 2182 | const AllocaPartitioning::MemTransferOffsets &MTO |
| 2183 | = P.getMemTransferOffsets(II); |
| 2184 | |
| 2185 | // For unsplit intrinsics, we simply modify the source and destination |
| 2186 | // pointers in place. This isn't just an optimization, it is a matter of |
| 2187 | // correctness. With unsplit intrinsics we may be dealing with transfers |
| 2188 | // within a single alloca before SROA ran, or with transfers that have |
| 2189 | // a variable length. We may also be dealing with memmove instead of |
| 2190 | // memcpy, and so simply updating the pointers is the necessary for us to |
| 2191 | // update both source and dest of a single call. |
| 2192 | if (!MTO.IsSplittable) { |
| 2193 | Value *OldOp = IsDest ? II.getRawDest() : II.getRawSource(); |
| 2194 | if (IsDest) |
| 2195 | II.setDest(getAdjustedAllocaPtr(IRB, II.getRawDest()->getType())); |
| 2196 | else |
| 2197 | II.setSource(getAdjustedAllocaPtr(IRB, II.getRawSource()->getType())); |
| 2198 | |
Chandler Carruth | d0ac06d | 2012-09-26 10:59:22 +0000 | [diff] [blame^] | 2199 | Type *CstTy = II.getAlignmentCst()->getType(); |
| 2200 | if (II.getAlignment() > 1) |
| 2201 | II.setAlignment(ConstantInt::get( |
| 2202 | CstTy, MinAlign(II.getAlignment(), |
| 2203 | MinAlign(NewAI.getAlignment(), |
| 2204 | BeginOffset - NewAllocaBeginOffset)))); |
| 2205 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2206 | DEBUG(dbgs() << " to: " << II << "\n"); |
| 2207 | deleteIfTriviallyDead(OldOp); |
| 2208 | return false; |
| 2209 | } |
| 2210 | // For split transfer intrinsics we have an incredibly useful assurance: |
| 2211 | // the source and destination do not reside within the same alloca, and at |
| 2212 | // least one of them does not escape. This means that we can replace |
| 2213 | // memmove with memcpy, and we don't need to worry about all manner of |
| 2214 | // downsides to splitting and transforming the operations. |
| 2215 | |
| 2216 | // Compute the relative offset within the transfer. |
| 2217 | unsigned IntPtrWidth = TD.getPointerSizeInBits(); |
| 2218 | APInt RelOffset(IntPtrWidth, BeginOffset - (IsDest ? MTO.DestBegin |
| 2219 | : MTO.SourceBegin)); |
| 2220 | |
| 2221 | // If this doesn't map cleanly onto the alloca type, and that type isn't |
| 2222 | // a single value type, just emit a memcpy. |
| 2223 | bool EmitMemCpy |
| 2224 | = !VecTy && (BeginOffset != NewAllocaBeginOffset || |
| 2225 | EndOffset != NewAllocaEndOffset || |
| 2226 | !NewAI.getAllocatedType()->isSingleValueType()); |
| 2227 | |
| 2228 | // If we're just going to emit a memcpy, the alloca hasn't changed, and the |
| 2229 | // size hasn't been shrunk based on analysis of the viable range, this is |
| 2230 | // a no-op. |
| 2231 | if (EmitMemCpy && &OldAI == &NewAI) { |
| 2232 | uint64_t OrigBegin = IsDest ? MTO.DestBegin : MTO.SourceBegin; |
| 2233 | uint64_t OrigEnd = IsDest ? MTO.DestEnd : MTO.SourceEnd; |
| 2234 | // Ensure the start lines up. |
| 2235 | assert(BeginOffset == OrigBegin); |
Benjamin Kramer | d080769 | 2012-09-14 13:08:09 +0000 | [diff] [blame] | 2236 | (void)OrigBegin; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2237 | |
| 2238 | // Rewrite the size as needed. |
| 2239 | if (EndOffset != OrigEnd) |
| 2240 | II.setLength(ConstantInt::get(II.getLength()->getType(), |
| 2241 | EndOffset - BeginOffset)); |
| 2242 | return false; |
| 2243 | } |
| 2244 | // Record this instruction for deletion. |
| 2245 | if (Pass.DeadSplitInsts.insert(&II)) |
| 2246 | Pass.DeadInsts.push_back(&II); |
| 2247 | |
| 2248 | bool IsVectorElement = VecTy && (BeginOffset > NewAllocaBeginOffset || |
| 2249 | EndOffset < NewAllocaEndOffset); |
| 2250 | |
| 2251 | Type *OtherPtrTy = IsDest ? II.getRawSource()->getType() |
| 2252 | : II.getRawDest()->getType(); |
| 2253 | if (!EmitMemCpy) |
| 2254 | OtherPtrTy = IsVectorElement ? VecTy->getElementType()->getPointerTo() |
| 2255 | : NewAI.getType(); |
| 2256 | |
| 2257 | // Compute the other pointer, folding as much as possible to produce |
| 2258 | // a single, simple GEP in most cases. |
| 2259 | Value *OtherPtr = IsDest ? II.getRawSource() : II.getRawDest(); |
| 2260 | OtherPtr = getAdjustedPtr(IRB, TD, OtherPtr, RelOffset, OtherPtrTy, |
| 2261 | getName("." + OtherPtr->getName())); |
| 2262 | |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 2263 | unsigned Align = II.getAlignment(); |
| 2264 | if (Align > 1) |
| 2265 | Align = MinAlign(RelOffset.zextOrTrunc(64).getZExtValue(), |
| 2266 | MinAlign(II.getAlignment(), NewAI.getAlignment())); |
| 2267 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2268 | // Strip all inbounds GEPs and pointer casts to try to dig out any root |
| 2269 | // alloca that should be re-examined after rewriting this instruction. |
| 2270 | if (AllocaInst *AI |
| 2271 | = dyn_cast<AllocaInst>(OtherPtr->stripInBoundsOffsets())) |
Chandler Carruth | b3dca3f | 2012-09-26 07:41:40 +0000 | [diff] [blame] | 2272 | Pass.Worklist.insert(AI); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2273 | |
| 2274 | if (EmitMemCpy) { |
| 2275 | Value *OurPtr |
| 2276 | = getAdjustedAllocaPtr(IRB, IsDest ? II.getRawDest()->getType() |
| 2277 | : II.getRawSource()->getType()); |
| 2278 | Type *SizeTy = II.getLength()->getType(); |
| 2279 | Constant *Size = ConstantInt::get(SizeTy, EndOffset - BeginOffset); |
| 2280 | |
| 2281 | CallInst *New = IRB.CreateMemCpy(IsDest ? OurPtr : OtherPtr, |
| 2282 | IsDest ? OtherPtr : OurPtr, |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 2283 | Size, Align, II.isVolatile()); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2284 | (void)New; |
| 2285 | DEBUG(dbgs() << " to: " << *New << "\n"); |
| 2286 | return false; |
| 2287 | } |
| 2288 | |
| 2289 | Value *SrcPtr = OtherPtr; |
| 2290 | Value *DstPtr = &NewAI; |
| 2291 | if (!IsDest) |
| 2292 | std::swap(SrcPtr, DstPtr); |
| 2293 | |
| 2294 | Value *Src; |
| 2295 | if (IsVectorElement && !IsDest) { |
| 2296 | // We have to extract rather than load. |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 2297 | Src = IRB.CreateExtractElement( |
| 2298 | IRB.CreateAlignedLoad(SrcPtr, Align, getName(".copyload")), |
| 2299 | getIndex(IRB, BeginOffset), |
| 2300 | getName(".copyextract")); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2301 | } else { |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 2302 | Src = IRB.CreateAlignedLoad(SrcPtr, Align, II.isVolatile(), |
| 2303 | getName(".copyload")); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2304 | } |
| 2305 | |
| 2306 | if (IsVectorElement && IsDest) { |
| 2307 | // We have to insert into a loaded copy before storing. |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 2308 | Src = IRB.CreateInsertElement( |
| 2309 | IRB.CreateAlignedLoad(&NewAI, NewAI.getAlignment(), getName(".load")), |
| 2310 | Src, getIndex(IRB, BeginOffset), |
| 2311 | getName(".insert")); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2312 | } |
| 2313 | |
Chandler Carruth | 81b001a | 2012-09-26 10:27:46 +0000 | [diff] [blame] | 2314 | StoreInst *Store = cast<StoreInst>( |
| 2315 | IRB.CreateAlignedStore(Src, DstPtr, Align, II.isVolatile())); |
| 2316 | (void)Store; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2317 | DEBUG(dbgs() << " to: " << *Store << "\n"); |
| 2318 | return !II.isVolatile(); |
| 2319 | } |
| 2320 | |
| 2321 | bool visitIntrinsicInst(IntrinsicInst &II) { |
| 2322 | assert(II.getIntrinsicID() == Intrinsic::lifetime_start || |
| 2323 | II.getIntrinsicID() == Intrinsic::lifetime_end); |
| 2324 | DEBUG(dbgs() << " original: " << II << "\n"); |
| 2325 | IRBuilder<> IRB(&II); |
| 2326 | assert(II.getArgOperand(1) == OldPtr); |
| 2327 | |
| 2328 | // Record this instruction for deletion. |
| 2329 | if (Pass.DeadSplitInsts.insert(&II)) |
| 2330 | Pass.DeadInsts.push_back(&II); |
| 2331 | |
| 2332 | ConstantInt *Size |
| 2333 | = ConstantInt::get(cast<IntegerType>(II.getArgOperand(0)->getType()), |
| 2334 | EndOffset - BeginOffset); |
| 2335 | Value *Ptr = getAdjustedAllocaPtr(IRB, II.getArgOperand(1)->getType()); |
| 2336 | Value *New; |
| 2337 | if (II.getIntrinsicID() == Intrinsic::lifetime_start) |
| 2338 | New = IRB.CreateLifetimeStart(Ptr, Size); |
| 2339 | else |
| 2340 | New = IRB.CreateLifetimeEnd(Ptr, Size); |
| 2341 | |
| 2342 | DEBUG(dbgs() << " to: " << *New << "\n"); |
| 2343 | return true; |
| 2344 | } |
| 2345 | |
| 2346 | /// PHI instructions that use an alloca and are subsequently loaded can be |
| 2347 | /// rewritten to load both input pointers in the pred blocks and then PHI the |
| 2348 | /// results, allowing the load of the alloca to be promoted. |
| 2349 | /// From this: |
| 2350 | /// %P2 = phi [i32* %Alloca, i32* %Other] |
| 2351 | /// %V = load i32* %P2 |
| 2352 | /// to: |
| 2353 | /// %V1 = load i32* %Alloca -> will be mem2reg'd |
| 2354 | /// ... |
| 2355 | /// %V2 = load i32* %Other |
| 2356 | /// ... |
| 2357 | /// %V = phi [i32 %V1, i32 %V2] |
| 2358 | /// |
| 2359 | /// We can do this to a select if its only uses are loads and if the operand |
| 2360 | /// to the select can be loaded unconditionally. |
| 2361 | /// |
| 2362 | /// FIXME: This should be hoisted into a generic utility, likely in |
| 2363 | /// Transforms/Util/Local.h |
| 2364 | bool isSafePHIToSpeculate(PHINode &PN, SmallVectorImpl<LoadInst *> &Loads) { |
| 2365 | // For now, we can only do this promotion if the load is in the same block |
| 2366 | // as the PHI, and if there are no stores between the phi and load. |
| 2367 | // TODO: Allow recursive phi users. |
| 2368 | // TODO: Allow stores. |
| 2369 | BasicBlock *BB = PN.getParent(); |
| 2370 | unsigned MaxAlign = 0; |
| 2371 | for (Value::use_iterator UI = PN.use_begin(), UE = PN.use_end(); |
| 2372 | UI != UE; ++UI) { |
| 2373 | LoadInst *LI = dyn_cast<LoadInst>(*UI); |
| 2374 | if (LI == 0 || !LI->isSimple()) return false; |
| 2375 | |
| 2376 | // For now we only allow loads in the same block as the PHI. This is |
| 2377 | // a common case that happens when instcombine merges two loads through |
| 2378 | // a PHI. |
| 2379 | if (LI->getParent() != BB) return false; |
| 2380 | |
| 2381 | // Ensure that there are no instructions between the PHI and the load that |
| 2382 | // could store. |
| 2383 | for (BasicBlock::iterator BBI = &PN; &*BBI != LI; ++BBI) |
| 2384 | if (BBI->mayWriteToMemory()) |
| 2385 | return false; |
| 2386 | |
| 2387 | MaxAlign = std::max(MaxAlign, LI->getAlignment()); |
| 2388 | Loads.push_back(LI); |
| 2389 | } |
| 2390 | |
| 2391 | // We can only transform this if it is safe to push the loads into the |
| 2392 | // predecessor blocks. The only thing to watch out for is that we can't put |
| 2393 | // a possibly trapping load in the predecessor if it is a critical edge. |
| 2394 | for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; |
| 2395 | ++Idx) { |
| 2396 | TerminatorInst *TI = PN.getIncomingBlock(Idx)->getTerminator(); |
| 2397 | Value *InVal = PN.getIncomingValue(Idx); |
| 2398 | |
| 2399 | // If the value is produced by the terminator of the predecessor (an |
| 2400 | // invoke) or it has side-effects, there is no valid place to put a load |
| 2401 | // in the predecessor. |
| 2402 | if (TI == InVal || TI->mayHaveSideEffects()) |
| 2403 | return false; |
| 2404 | |
| 2405 | // If the predecessor has a single successor, then the edge isn't |
| 2406 | // critical. |
| 2407 | if (TI->getNumSuccessors() == 1) |
| 2408 | continue; |
| 2409 | |
| 2410 | // If this pointer is always safe to load, or if we can prove that there |
| 2411 | // is already a load in the block, then we can move the load to the pred |
| 2412 | // block. |
| 2413 | if (InVal->isDereferenceablePointer() || |
| 2414 | isSafeToLoadUnconditionally(InVal, TI, MaxAlign, &TD)) |
| 2415 | continue; |
| 2416 | |
| 2417 | return false; |
| 2418 | } |
| 2419 | |
| 2420 | return true; |
| 2421 | } |
| 2422 | |
| 2423 | bool visitPHINode(PHINode &PN) { |
| 2424 | DEBUG(dbgs() << " original: " << PN << "\n"); |
| 2425 | // We would like to compute a new pointer in only one place, but have it be |
| 2426 | // as local as possible to the PHI. To do that, we re-use the location of |
| 2427 | // the old pointer, which necessarily must be in the right position to |
| 2428 | // dominate the PHI. |
| 2429 | IRBuilder<> PtrBuilder(cast<Instruction>(OldPtr)); |
| 2430 | |
| 2431 | SmallVector<LoadInst *, 4> Loads; |
| 2432 | if (!isSafePHIToSpeculate(PN, Loads)) { |
| 2433 | Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType()); |
| 2434 | // Replace the operands which were using the old pointer. |
| 2435 | User::op_iterator OI = PN.op_begin(), OE = PN.op_end(); |
| 2436 | for (; OI != OE; ++OI) |
| 2437 | if (*OI == OldPtr) |
| 2438 | *OI = NewPtr; |
| 2439 | |
| 2440 | DEBUG(dbgs() << " to: " << PN << "\n"); |
| 2441 | deleteIfTriviallyDead(OldPtr); |
| 2442 | return false; |
| 2443 | } |
| 2444 | assert(!Loads.empty()); |
| 2445 | |
| 2446 | Type *LoadTy = cast<PointerType>(PN.getType())->getElementType(); |
| 2447 | IRBuilder<> PHIBuilder(&PN); |
| 2448 | PHINode *NewPN = PHIBuilder.CreatePHI(LoadTy, PN.getNumIncomingValues()); |
| 2449 | NewPN->takeName(&PN); |
| 2450 | |
| 2451 | // Get the TBAA tag and alignment to use from one of the loads. It doesn't |
| 2452 | // matter which one we get and if any differ, it doesn't matter. |
| 2453 | LoadInst *SomeLoad = cast<LoadInst>(Loads.back()); |
| 2454 | MDNode *TBAATag = SomeLoad->getMetadata(LLVMContext::MD_tbaa); |
| 2455 | unsigned Align = SomeLoad->getAlignment(); |
| 2456 | Value *NewPtr = getAdjustedAllocaPtr(PtrBuilder, OldPtr->getType()); |
| 2457 | |
| 2458 | // Rewrite all loads of the PN to use the new PHI. |
| 2459 | do { |
| 2460 | LoadInst *LI = Loads.pop_back_val(); |
| 2461 | LI->replaceAllUsesWith(NewPN); |
| 2462 | Pass.DeadInsts.push_back(LI); |
| 2463 | } while (!Loads.empty()); |
| 2464 | |
| 2465 | // Inject loads into all of the pred blocks. |
| 2466 | for (unsigned Idx = 0, Num = PN.getNumIncomingValues(); Idx != Num; ++Idx) { |
| 2467 | BasicBlock *Pred = PN.getIncomingBlock(Idx); |
| 2468 | TerminatorInst *TI = Pred->getTerminator(); |
| 2469 | Value *InVal = PN.getIncomingValue(Idx); |
| 2470 | IRBuilder<> PredBuilder(TI); |
| 2471 | |
| 2472 | // Map the value to the new alloca pointer if this was the old alloca |
| 2473 | // pointer. |
| 2474 | bool ThisOperand = InVal == OldPtr; |
| 2475 | if (ThisOperand) |
| 2476 | InVal = NewPtr; |
| 2477 | |
| 2478 | LoadInst *Load |
| 2479 | = PredBuilder.CreateLoad(InVal, getName(".sroa.speculate." + |
| 2480 | Pred->getName())); |
| 2481 | ++NumLoadsSpeculated; |
| 2482 | Load->setAlignment(Align); |
| 2483 | if (TBAATag) |
| 2484 | Load->setMetadata(LLVMContext::MD_tbaa, TBAATag); |
| 2485 | NewPN->addIncoming(Load, Pred); |
| 2486 | |
| 2487 | if (ThisOperand) |
| 2488 | continue; |
| 2489 | Instruction *OtherPtr = dyn_cast<Instruction>(InVal); |
| 2490 | if (!OtherPtr) |
| 2491 | // No uses to rewrite. |
| 2492 | continue; |
| 2493 | |
| 2494 | // Try to lookup and rewrite any partition uses corresponding to this phi |
| 2495 | // input. |
| 2496 | AllocaPartitioning::iterator PI |
| 2497 | = P.findPartitionForPHIOrSelectOperand(PN, OtherPtr); |
| 2498 | if (PI != P.end()) { |
| 2499 | // If the other pointer is within the partitioning, replace the PHI in |
| 2500 | // its uses with the load we just speculated, or add another load for |
| 2501 | // it to rewrite if we've already replaced the PHI. |
| 2502 | AllocaPartitioning::use_iterator UI |
| 2503 | = P.findPartitionUseForPHIOrSelectOperand(PN, OtherPtr); |
| 2504 | if (isa<PHINode>(*UI->User)) |
| 2505 | UI->User = Load; |
| 2506 | else { |
| 2507 | AllocaPartitioning::PartitionUse OtherUse = *UI; |
| 2508 | OtherUse.User = Load; |
Chandler Carruth | 72bf29f | 2012-09-25 02:42:03 +0000 | [diff] [blame] | 2509 | P.use_push_back(PI, OtherUse); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2510 | } |
| 2511 | } |
| 2512 | } |
| 2513 | DEBUG(dbgs() << " speculated to: " << *NewPN << "\n"); |
| 2514 | return NewPtr == &NewAI; |
| 2515 | } |
| 2516 | |
| 2517 | /// Select instructions that use an alloca and are subsequently loaded can be |
| 2518 | /// rewritten to load both input pointers and then select between the result, |
| 2519 | /// allowing the load of the alloca to be promoted. |
| 2520 | /// From this: |
| 2521 | /// %P2 = select i1 %cond, i32* %Alloca, i32* %Other |
| 2522 | /// %V = load i32* %P2 |
| 2523 | /// to: |
| 2524 | /// %V1 = load i32* %Alloca -> will be mem2reg'd |
| 2525 | /// %V2 = load i32* %Other |
| 2526 | /// %V = select i1 %cond, i32 %V1, i32 %V2 |
| 2527 | /// |
| 2528 | /// We can do this to a select if its only uses are loads and if the operand |
| 2529 | /// to the select can be loaded unconditionally. |
| 2530 | bool isSafeSelectToSpeculate(SelectInst &SI, |
| 2531 | SmallVectorImpl<LoadInst *> &Loads) { |
| 2532 | Value *TValue = SI.getTrueValue(); |
| 2533 | Value *FValue = SI.getFalseValue(); |
| 2534 | bool TDerefable = TValue->isDereferenceablePointer(); |
| 2535 | bool FDerefable = FValue->isDereferenceablePointer(); |
| 2536 | |
| 2537 | for (Value::use_iterator UI = SI.use_begin(), UE = SI.use_end(); |
| 2538 | UI != UE; ++UI) { |
| 2539 | LoadInst *LI = dyn_cast<LoadInst>(*UI); |
| 2540 | if (LI == 0 || !LI->isSimple()) return false; |
| 2541 | |
| 2542 | // Both operands to the select need to be dereferencable, either |
| 2543 | // absolutely (e.g. allocas) or at this point because we can see other |
| 2544 | // accesses to it. |
| 2545 | if (!TDerefable && !isSafeToLoadUnconditionally(TValue, LI, |
| 2546 | LI->getAlignment(), &TD)) |
| 2547 | return false; |
| 2548 | if (!FDerefable && !isSafeToLoadUnconditionally(FValue, LI, |
| 2549 | LI->getAlignment(), &TD)) |
| 2550 | return false; |
| 2551 | Loads.push_back(LI); |
| 2552 | } |
| 2553 | |
| 2554 | return true; |
| 2555 | } |
| 2556 | |
| 2557 | bool visitSelectInst(SelectInst &SI) { |
| 2558 | DEBUG(dbgs() << " original: " << SI << "\n"); |
| 2559 | IRBuilder<> IRB(&SI); |
| 2560 | |
| 2561 | // Find the operand we need to rewrite here. |
| 2562 | bool IsTrueVal = SI.getTrueValue() == OldPtr; |
| 2563 | if (IsTrueVal) |
| 2564 | assert(SI.getFalseValue() != OldPtr && "Pointer is both operands!"); |
| 2565 | else |
| 2566 | assert(SI.getFalseValue() == OldPtr && "Pointer isn't an operand!"); |
| 2567 | Value *NewPtr = getAdjustedAllocaPtr(IRB, OldPtr->getType()); |
| 2568 | |
| 2569 | // If the select isn't safe to speculate, just use simple logic to emit it. |
| 2570 | SmallVector<LoadInst *, 4> Loads; |
| 2571 | if (!isSafeSelectToSpeculate(SI, Loads)) { |
| 2572 | SI.setOperand(IsTrueVal ? 1 : 2, NewPtr); |
| 2573 | DEBUG(dbgs() << " to: " << SI << "\n"); |
| 2574 | deleteIfTriviallyDead(OldPtr); |
| 2575 | return false; |
| 2576 | } |
| 2577 | |
| 2578 | Value *OtherPtr = IsTrueVal ? SI.getFalseValue() : SI.getTrueValue(); |
| 2579 | AllocaPartitioning::iterator PI |
| 2580 | = P.findPartitionForPHIOrSelectOperand(SI, OtherPtr); |
| 2581 | AllocaPartitioning::PartitionUse OtherUse; |
| 2582 | if (PI != P.end()) { |
| 2583 | // If the other pointer is within the partitioning, remove the select |
| 2584 | // from its uses. We'll add in the new loads below. |
| 2585 | AllocaPartitioning::use_iterator UI |
| 2586 | = P.findPartitionUseForPHIOrSelectOperand(SI, OtherPtr); |
| 2587 | OtherUse = *UI; |
| 2588 | P.use_erase(PI, UI); |
| 2589 | } |
| 2590 | |
| 2591 | Value *TV = IsTrueVal ? NewPtr : SI.getTrueValue(); |
| 2592 | Value *FV = IsTrueVal ? SI.getFalseValue() : NewPtr; |
| 2593 | // Replace the loads of the select with a select of two loads. |
| 2594 | while (!Loads.empty()) { |
| 2595 | LoadInst *LI = Loads.pop_back_val(); |
| 2596 | |
| 2597 | IRB.SetInsertPoint(LI); |
| 2598 | LoadInst *TL = |
| 2599 | IRB.CreateLoad(TV, getName("." + LI->getName() + ".true")); |
| 2600 | LoadInst *FL = |
| 2601 | IRB.CreateLoad(FV, getName("." + LI->getName() + ".false")); |
| 2602 | NumLoadsSpeculated += 2; |
| 2603 | if (PI != P.end()) { |
| 2604 | LoadInst *OtherLoad = IsTrueVal ? FL : TL; |
| 2605 | assert(OtherUse.Ptr == OtherLoad->getOperand(0)); |
| 2606 | OtherUse.User = OtherLoad; |
Chandler Carruth | 72bf29f | 2012-09-25 02:42:03 +0000 | [diff] [blame] | 2607 | P.use_push_back(PI, OtherUse); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2608 | } |
| 2609 | |
| 2610 | // Transfer alignment and TBAA info if present. |
| 2611 | TL->setAlignment(LI->getAlignment()); |
| 2612 | FL->setAlignment(LI->getAlignment()); |
| 2613 | if (MDNode *Tag = LI->getMetadata(LLVMContext::MD_tbaa)) { |
| 2614 | TL->setMetadata(LLVMContext::MD_tbaa, Tag); |
| 2615 | FL->setMetadata(LLVMContext::MD_tbaa, Tag); |
| 2616 | } |
| 2617 | |
| 2618 | Value *V = IRB.CreateSelect(SI.getCondition(), TL, FL); |
| 2619 | V->takeName(LI); |
| 2620 | DEBUG(dbgs() << " speculated to: " << *V << "\n"); |
| 2621 | LI->replaceAllUsesWith(V); |
| 2622 | Pass.DeadInsts.push_back(LI); |
| 2623 | } |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2624 | |
| 2625 | deleteIfTriviallyDead(OldPtr); |
| 2626 | return NewPtr == &NewAI; |
| 2627 | } |
| 2628 | |
| 2629 | }; |
| 2630 | } |
| 2631 | |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2632 | namespace { |
| 2633 | /// \brief Visitor to rewrite aggregate loads and stores as scalar. |
| 2634 | /// |
| 2635 | /// This pass aggressively rewrites all aggregate loads and stores on |
| 2636 | /// a particular pointer (or any pointer derived from it which we can identify) |
| 2637 | /// with scalar loads and stores. |
| 2638 | class AggLoadStoreRewriter : public InstVisitor<AggLoadStoreRewriter, bool> { |
| 2639 | // Befriend the base class so it can delegate to private visit methods. |
| 2640 | friend class llvm::InstVisitor<AggLoadStoreRewriter, bool>; |
| 2641 | |
| 2642 | const TargetData &TD; |
| 2643 | |
| 2644 | /// Queue of pointer uses to analyze and potentially rewrite. |
| 2645 | SmallVector<Use *, 8> Queue; |
| 2646 | |
| 2647 | /// Set to prevent us from cycling with phi nodes and loops. |
| 2648 | SmallPtrSet<User *, 8> Visited; |
| 2649 | |
| 2650 | /// The current pointer use being rewritten. This is used to dig up the used |
| 2651 | /// value (as opposed to the user). |
| 2652 | Use *U; |
| 2653 | |
| 2654 | public: |
| 2655 | AggLoadStoreRewriter(const TargetData &TD) : TD(TD) {} |
| 2656 | |
| 2657 | /// Rewrite loads and stores through a pointer and all pointers derived from |
| 2658 | /// it. |
| 2659 | bool rewrite(Instruction &I) { |
| 2660 | DEBUG(dbgs() << " Rewriting FCA loads and stores...\n"); |
| 2661 | enqueueUsers(I); |
| 2662 | bool Changed = false; |
| 2663 | while (!Queue.empty()) { |
| 2664 | U = Queue.pop_back_val(); |
| 2665 | Changed |= visit(cast<Instruction>(U->getUser())); |
| 2666 | } |
| 2667 | return Changed; |
| 2668 | } |
| 2669 | |
| 2670 | private: |
| 2671 | /// Enqueue all the users of the given instruction for further processing. |
| 2672 | /// This uses a set to de-duplicate users. |
| 2673 | void enqueueUsers(Instruction &I) { |
| 2674 | for (Value::use_iterator UI = I.use_begin(), UE = I.use_end(); UI != UE; |
| 2675 | ++UI) |
| 2676 | if (Visited.insert(*UI)) |
| 2677 | Queue.push_back(&UI.getUse()); |
| 2678 | } |
| 2679 | |
| 2680 | // Conservative default is to not rewrite anything. |
| 2681 | bool visitInstruction(Instruction &I) { return false; } |
| 2682 | |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2683 | /// \brief Generic recursive split emission class. |
Benjamin Kramer | 371d5d8 | 2012-09-18 17:06:32 +0000 | [diff] [blame] | 2684 | template <typename Derived> |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2685 | class OpSplitter { |
| 2686 | protected: |
| 2687 | /// The builder used to form new instructions. |
| 2688 | IRBuilder<> IRB; |
| 2689 | /// The indices which to be used with insert- or extractvalue to select the |
| 2690 | /// appropriate value within the aggregate. |
| 2691 | SmallVector<unsigned, 4> Indices; |
| 2692 | /// The indices to a GEP instruction which will move Ptr to the correct slot |
| 2693 | /// within the aggregate. |
| 2694 | SmallVector<Value *, 4> GEPIndices; |
| 2695 | /// The base pointer of the original op, used as a base for GEPing the |
| 2696 | /// split operations. |
| 2697 | Value *Ptr; |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2698 | |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2699 | /// Initialize the splitter with an insertion point, Ptr and start with a |
| 2700 | /// single zero GEP index. |
| 2701 | OpSplitter(Instruction *InsertionPoint, Value *Ptr) |
Benjamin Kramer | 371d5d8 | 2012-09-18 17:06:32 +0000 | [diff] [blame] | 2702 | : IRB(InsertionPoint), GEPIndices(1, IRB.getInt32(0)), Ptr(Ptr) {} |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2703 | |
| 2704 | public: |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2705 | /// \brief Generic recursive split emission routine. |
| 2706 | /// |
| 2707 | /// This method recursively splits an aggregate op (load or store) into |
| 2708 | /// scalar or vector ops. It splits recursively until it hits a single value |
| 2709 | /// and emits that single value operation via the template argument. |
| 2710 | /// |
| 2711 | /// The logic of this routine relies on GEPs and insertvalue and |
| 2712 | /// extractvalue all operating with the same fundamental index list, merely |
| 2713 | /// formatted differently (GEPs need actual values). |
| 2714 | /// |
| 2715 | /// \param Ty The type being split recursively into smaller ops. |
| 2716 | /// \param Agg The aggregate value being built up or stored, depending on |
| 2717 | /// whether this is splitting a load or a store respectively. |
| 2718 | void emitSplitOps(Type *Ty, Value *&Agg, const Twine &Name) { |
| 2719 | if (Ty->isSingleValueType()) |
Benjamin Kramer | 371d5d8 | 2012-09-18 17:06:32 +0000 | [diff] [blame] | 2720 | return static_cast<Derived *>(this)->emitFunc(Ty, Agg, Name); |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2721 | |
| 2722 | if (ArrayType *ATy = dyn_cast<ArrayType>(Ty)) { |
| 2723 | unsigned OldSize = Indices.size(); |
| 2724 | (void)OldSize; |
| 2725 | for (unsigned Idx = 0, Size = ATy->getNumElements(); Idx != Size; |
| 2726 | ++Idx) { |
| 2727 | assert(Indices.size() == OldSize && "Did not return to the old size"); |
| 2728 | Indices.push_back(Idx); |
| 2729 | GEPIndices.push_back(IRB.getInt32(Idx)); |
| 2730 | emitSplitOps(ATy->getElementType(), Agg, Name + "." + Twine(Idx)); |
| 2731 | GEPIndices.pop_back(); |
| 2732 | Indices.pop_back(); |
| 2733 | } |
| 2734 | return; |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2735 | } |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2736 | |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2737 | if (StructType *STy = dyn_cast<StructType>(Ty)) { |
| 2738 | unsigned OldSize = Indices.size(); |
| 2739 | (void)OldSize; |
| 2740 | for (unsigned Idx = 0, Size = STy->getNumElements(); Idx != Size; |
| 2741 | ++Idx) { |
| 2742 | assert(Indices.size() == OldSize && "Did not return to the old size"); |
| 2743 | Indices.push_back(Idx); |
| 2744 | GEPIndices.push_back(IRB.getInt32(Idx)); |
| 2745 | emitSplitOps(STy->getElementType(Idx), Agg, Name + "." + Twine(Idx)); |
| 2746 | GEPIndices.pop_back(); |
| 2747 | Indices.pop_back(); |
| 2748 | } |
| 2749 | return; |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2750 | } |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2751 | |
| 2752 | llvm_unreachable("Only arrays and structs are aggregate loadable types"); |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2753 | } |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2754 | }; |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2755 | |
Benjamin Kramer | 371d5d8 | 2012-09-18 17:06:32 +0000 | [diff] [blame] | 2756 | struct LoadOpSplitter : public OpSplitter<LoadOpSplitter> { |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2757 | LoadOpSplitter(Instruction *InsertionPoint, Value *Ptr) |
Benjamin Kramer | 3b682bd | 2012-09-18 17:11:47 +0000 | [diff] [blame] | 2758 | : OpSplitter<LoadOpSplitter>(InsertionPoint, Ptr) {} |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2759 | |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2760 | /// Emit a leaf load of a single value. This is called at the leaves of the |
| 2761 | /// recursive emission to actually load values. |
Benjamin Kramer | 371d5d8 | 2012-09-18 17:06:32 +0000 | [diff] [blame] | 2762 | void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2763 | assert(Ty->isSingleValueType()); |
| 2764 | // Load the single value and insert it using the indices. |
| 2765 | Value *Load = IRB.CreateLoad(IRB.CreateInBoundsGEP(Ptr, GEPIndices, |
| 2766 | Name + ".gep"), |
| 2767 | Name + ".load"); |
| 2768 | Agg = IRB.CreateInsertValue(Agg, Load, Indices, Name + ".insert"); |
| 2769 | DEBUG(dbgs() << " to: " << *Load << "\n"); |
| 2770 | } |
| 2771 | }; |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2772 | |
| 2773 | bool visitLoadInst(LoadInst &LI) { |
| 2774 | assert(LI.getPointerOperand() == *U); |
| 2775 | if (!LI.isSimple() || LI.getType()->isSingleValueType()) |
| 2776 | return false; |
| 2777 | |
| 2778 | // We have an aggregate being loaded, split it apart. |
| 2779 | DEBUG(dbgs() << " original: " << LI << "\n"); |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2780 | LoadOpSplitter Splitter(&LI, *U); |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2781 | Value *V = UndefValue::get(LI.getType()); |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2782 | Splitter.emitSplitOps(LI.getType(), V, LI.getName() + ".fca"); |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2783 | LI.replaceAllUsesWith(V); |
| 2784 | LI.eraseFromParent(); |
| 2785 | return true; |
| 2786 | } |
| 2787 | |
Benjamin Kramer | 371d5d8 | 2012-09-18 17:06:32 +0000 | [diff] [blame] | 2788 | struct StoreOpSplitter : public OpSplitter<StoreOpSplitter> { |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2789 | StoreOpSplitter(Instruction *InsertionPoint, Value *Ptr) |
Benjamin Kramer | 3b682bd | 2012-09-18 17:11:47 +0000 | [diff] [blame] | 2790 | : OpSplitter<StoreOpSplitter>(InsertionPoint, Ptr) {} |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2791 | |
| 2792 | /// Emit a leaf store of a single value. This is called at the leaves of the |
| 2793 | /// recursive emission to actually produce stores. |
Benjamin Kramer | 371d5d8 | 2012-09-18 17:06:32 +0000 | [diff] [blame] | 2794 | void emitFunc(Type *Ty, Value *&Agg, const Twine &Name) { |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2795 | assert(Ty->isSingleValueType()); |
| 2796 | // Extract the single value and store it using the indices. |
| 2797 | Value *Store = IRB.CreateStore( |
| 2798 | IRB.CreateExtractValue(Agg, Indices, Name + ".extract"), |
| 2799 | IRB.CreateInBoundsGEP(Ptr, GEPIndices, Name + ".gep")); |
| 2800 | (void)Store; |
| 2801 | DEBUG(dbgs() << " to: " << *Store << "\n"); |
| 2802 | } |
| 2803 | }; |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2804 | |
| 2805 | bool visitStoreInst(StoreInst &SI) { |
| 2806 | if (!SI.isSimple() || SI.getPointerOperand() != *U) |
| 2807 | return false; |
| 2808 | Value *V = SI.getValueOperand(); |
| 2809 | if (V->getType()->isSingleValueType()) |
| 2810 | return false; |
| 2811 | |
| 2812 | // We have an aggregate being stored, split it apart. |
| 2813 | DEBUG(dbgs() << " original: " << SI << "\n"); |
Benjamin Kramer | 6e67b25 | 2012-09-18 16:20:46 +0000 | [diff] [blame] | 2814 | StoreOpSplitter Splitter(&SI, *U); |
| 2815 | Splitter.emitSplitOps(V->getType(), V, V->getName() + ".fca"); |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 2816 | SI.eraseFromParent(); |
| 2817 | return true; |
| 2818 | } |
| 2819 | |
| 2820 | bool visitBitCastInst(BitCastInst &BC) { |
| 2821 | enqueueUsers(BC); |
| 2822 | return false; |
| 2823 | } |
| 2824 | |
| 2825 | bool visitGetElementPtrInst(GetElementPtrInst &GEPI) { |
| 2826 | enqueueUsers(GEPI); |
| 2827 | return false; |
| 2828 | } |
| 2829 | |
| 2830 | bool visitPHINode(PHINode &PN) { |
| 2831 | enqueueUsers(PN); |
| 2832 | return false; |
| 2833 | } |
| 2834 | |
| 2835 | bool visitSelectInst(SelectInst &SI) { |
| 2836 | enqueueUsers(SI); |
| 2837 | return false; |
| 2838 | } |
| 2839 | }; |
| 2840 | } |
| 2841 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2842 | /// \brief Try to find a partition of the aggregate type passed in for a given |
| 2843 | /// offset and size. |
| 2844 | /// |
| 2845 | /// This recurses through the aggregate type and tries to compute a subtype |
| 2846 | /// based on the offset and size. When the offset and size span a sub-section |
Chandler Carruth | 6b547a2 | 2012-09-14 11:08:31 +0000 | [diff] [blame] | 2847 | /// of an array, it will even compute a new array type for that sub-section, |
| 2848 | /// and the same for structs. |
| 2849 | /// |
| 2850 | /// Note that this routine is very strict and tries to find a partition of the |
| 2851 | /// type which produces the *exact* right offset and size. It is not forgiving |
| 2852 | /// when the size or offset cause either end of type-based partition to be off. |
| 2853 | /// Also, this is a best-effort routine. It is reasonable to give up and not |
| 2854 | /// return a type if necessary. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2855 | static Type *getTypePartition(const TargetData &TD, Type *Ty, |
| 2856 | uint64_t Offset, uint64_t Size) { |
| 2857 | if (Offset == 0 && TD.getTypeAllocSize(Ty) == Size) |
| 2858 | return Ty; |
| 2859 | |
| 2860 | if (SequentialType *SeqTy = dyn_cast<SequentialType>(Ty)) { |
| 2861 | // We can't partition pointers... |
| 2862 | if (SeqTy->isPointerTy()) |
| 2863 | return 0; |
| 2864 | |
| 2865 | Type *ElementTy = SeqTy->getElementType(); |
| 2866 | uint64_t ElementSize = TD.getTypeAllocSize(ElementTy); |
| 2867 | uint64_t NumSkippedElements = Offset / ElementSize; |
| 2868 | if (ArrayType *ArrTy = dyn_cast<ArrayType>(SeqTy)) |
| 2869 | if (NumSkippedElements >= ArrTy->getNumElements()) |
| 2870 | return 0; |
| 2871 | if (VectorType *VecTy = dyn_cast<VectorType>(SeqTy)) |
| 2872 | if (NumSkippedElements >= VecTy->getNumElements()) |
| 2873 | return 0; |
| 2874 | Offset -= NumSkippedElements * ElementSize; |
| 2875 | |
| 2876 | // First check if we need to recurse. |
| 2877 | if (Offset > 0 || Size < ElementSize) { |
| 2878 | // Bail if the partition ends in a different array element. |
| 2879 | if ((Offset + Size) > ElementSize) |
| 2880 | return 0; |
| 2881 | // Recurse through the element type trying to peel off offset bytes. |
| 2882 | return getTypePartition(TD, ElementTy, Offset, Size); |
| 2883 | } |
| 2884 | assert(Offset == 0); |
| 2885 | |
| 2886 | if (Size == ElementSize) |
| 2887 | return ElementTy; |
| 2888 | assert(Size > ElementSize); |
| 2889 | uint64_t NumElements = Size / ElementSize; |
| 2890 | if (NumElements * ElementSize != Size) |
| 2891 | return 0; |
| 2892 | return ArrayType::get(ElementTy, NumElements); |
| 2893 | } |
| 2894 | |
| 2895 | StructType *STy = dyn_cast<StructType>(Ty); |
| 2896 | if (!STy) |
| 2897 | return 0; |
| 2898 | |
| 2899 | const StructLayout *SL = TD.getStructLayout(STy); |
Chandler Carruth | 6b547a2 | 2012-09-14 11:08:31 +0000 | [diff] [blame] | 2900 | if (Offset >= SL->getSizeInBytes()) |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2901 | return 0; |
| 2902 | uint64_t EndOffset = Offset + Size; |
| 2903 | if (EndOffset > SL->getSizeInBytes()) |
| 2904 | return 0; |
| 2905 | |
| 2906 | unsigned Index = SL->getElementContainingOffset(Offset); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2907 | Offset -= SL->getElementOffset(Index); |
| 2908 | |
| 2909 | Type *ElementTy = STy->getElementType(Index); |
| 2910 | uint64_t ElementSize = TD.getTypeAllocSize(ElementTy); |
| 2911 | if (Offset >= ElementSize) |
| 2912 | return 0; // The offset points into alignment padding. |
| 2913 | |
| 2914 | // See if any partition must be contained by the element. |
| 2915 | if (Offset > 0 || Size < ElementSize) { |
| 2916 | if ((Offset + Size) > ElementSize) |
| 2917 | return 0; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2918 | return getTypePartition(TD, ElementTy, Offset, Size); |
| 2919 | } |
| 2920 | assert(Offset == 0); |
| 2921 | |
| 2922 | if (Size == ElementSize) |
| 2923 | return ElementTy; |
| 2924 | |
| 2925 | StructType::element_iterator EI = STy->element_begin() + Index, |
| 2926 | EE = STy->element_end(); |
| 2927 | if (EndOffset < SL->getSizeInBytes()) { |
| 2928 | unsigned EndIndex = SL->getElementContainingOffset(EndOffset); |
| 2929 | if (Index == EndIndex) |
| 2930 | return 0; // Within a single element and its padding. |
Chandler Carruth | 6b547a2 | 2012-09-14 11:08:31 +0000 | [diff] [blame] | 2931 | |
| 2932 | // Don't try to form "natural" types if the elements don't line up with the |
| 2933 | // expected size. |
| 2934 | // FIXME: We could potentially recurse down through the last element in the |
| 2935 | // sub-struct to find a natural end point. |
| 2936 | if (SL->getElementOffset(EndIndex) != EndOffset) |
| 2937 | return 0; |
| 2938 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2939 | assert(Index < EndIndex); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2940 | EE = STy->element_begin() + EndIndex; |
| 2941 | } |
| 2942 | |
| 2943 | // Try to build up a sub-structure. |
| 2944 | SmallVector<Type *, 4> ElementTys; |
| 2945 | do { |
| 2946 | ElementTys.push_back(*EI++); |
| 2947 | } while (EI != EE); |
| 2948 | StructType *SubTy = StructType::get(STy->getContext(), ElementTys, |
| 2949 | STy->isPacked()); |
| 2950 | const StructLayout *SubSL = TD.getStructLayout(SubTy); |
Chandler Carruth | 6b547a2 | 2012-09-14 11:08:31 +0000 | [diff] [blame] | 2951 | if (Size != SubSL->getSizeInBytes()) |
| 2952 | return 0; // The sub-struct doesn't have quite the size needed. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2953 | |
Chandler Carruth | 6b547a2 | 2012-09-14 11:08:31 +0000 | [diff] [blame] | 2954 | return SubTy; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2955 | } |
| 2956 | |
| 2957 | /// \brief Rewrite an alloca partition's users. |
| 2958 | /// |
| 2959 | /// This routine drives both of the rewriting goals of the SROA pass. It tries |
| 2960 | /// to rewrite uses of an alloca partition to be conducive for SSA value |
| 2961 | /// promotion. If the partition needs a new, more refined alloca, this will |
| 2962 | /// build that new alloca, preserving as much type information as possible, and |
| 2963 | /// rewrite the uses of the old alloca to point at the new one and have the |
| 2964 | /// appropriate new offsets. It also evaluates how successful the rewrite was |
| 2965 | /// at enabling promotion and if it was successful queues the alloca to be |
| 2966 | /// promoted. |
| 2967 | bool SROA::rewriteAllocaPartition(AllocaInst &AI, |
| 2968 | AllocaPartitioning &P, |
| 2969 | AllocaPartitioning::iterator PI) { |
| 2970 | uint64_t AllocaSize = PI->EndOffset - PI->BeginOffset; |
| 2971 | if (P.use_begin(PI) == P.use_end(PI)) |
| 2972 | return false; // No live uses left of this partition. |
| 2973 | |
| 2974 | // Try to compute a friendly type for this partition of the alloca. This |
| 2975 | // won't always succeed, in which case we fall back to a legal integer type |
| 2976 | // or an i8 array of an appropriate size. |
| 2977 | Type *AllocaTy = 0; |
| 2978 | if (Type *PartitionTy = P.getCommonType(PI)) |
| 2979 | if (TD->getTypeAllocSize(PartitionTy) >= AllocaSize) |
| 2980 | AllocaTy = PartitionTy; |
| 2981 | if (!AllocaTy) |
| 2982 | if (Type *PartitionTy = getTypePartition(*TD, AI.getAllocatedType(), |
| 2983 | PI->BeginOffset, AllocaSize)) |
| 2984 | AllocaTy = PartitionTy; |
| 2985 | if ((!AllocaTy || |
| 2986 | (AllocaTy->isArrayTy() && |
| 2987 | AllocaTy->getArrayElementType()->isIntegerTy())) && |
| 2988 | TD->isLegalInteger(AllocaSize * 8)) |
| 2989 | AllocaTy = Type::getIntNTy(*C, AllocaSize * 8); |
| 2990 | if (!AllocaTy) |
| 2991 | AllocaTy = ArrayType::get(Type::getInt8Ty(*C), AllocaSize); |
Chandler Carruth | b3dd9a1 | 2012-09-14 10:26:34 +0000 | [diff] [blame] | 2992 | assert(TD->getTypeAllocSize(AllocaTy) >= AllocaSize); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 2993 | |
| 2994 | // Check for the case where we're going to rewrite to a new alloca of the |
| 2995 | // exact same type as the original, and with the same access offsets. In that |
| 2996 | // case, re-use the existing alloca, but still run through the rewriter to |
| 2997 | // performe phi and select speculation. |
| 2998 | AllocaInst *NewAI; |
| 2999 | if (AllocaTy == AI.getAllocatedType()) { |
| 3000 | assert(PI->BeginOffset == 0 && |
| 3001 | "Non-zero begin offset but same alloca type"); |
| 3002 | assert(PI == P.begin() && "Begin offset is zero on later partition"); |
| 3003 | NewAI = &AI; |
| 3004 | } else { |
| 3005 | // FIXME: The alignment here is overly conservative -- we could in many |
| 3006 | // cases get away with much weaker alignment constraints. |
| 3007 | NewAI = new AllocaInst(AllocaTy, 0, AI.getAlignment(), |
| 3008 | AI.getName() + ".sroa." + Twine(PI - P.begin()), |
| 3009 | &AI); |
| 3010 | ++NumNewAllocas; |
| 3011 | } |
| 3012 | |
| 3013 | DEBUG(dbgs() << "Rewriting alloca partition " |
| 3014 | << "[" << PI->BeginOffset << "," << PI->EndOffset << ") to: " |
| 3015 | << *NewAI << "\n"); |
| 3016 | |
| 3017 | AllocaPartitionRewriter Rewriter(*TD, P, PI, *this, AI, *NewAI, |
| 3018 | PI->BeginOffset, PI->EndOffset); |
| 3019 | DEBUG(dbgs() << " rewriting "); |
| 3020 | DEBUG(P.print(dbgs(), PI, "")); |
| 3021 | if (Rewriter.visitUsers(P.use_begin(PI), P.use_end(PI))) { |
| 3022 | DEBUG(dbgs() << " and queuing for promotion\n"); |
| 3023 | PromotableAllocas.push_back(NewAI); |
| 3024 | } else if (NewAI != &AI) { |
| 3025 | // If we can't promote the alloca, iterate on it to check for new |
| 3026 | // refinements exposed by splitting the current alloca. Don't iterate on an |
| 3027 | // alloca which didn't actually change and didn't get promoted. |
| 3028 | Worklist.insert(NewAI); |
| 3029 | } |
| 3030 | return true; |
| 3031 | } |
| 3032 | |
| 3033 | /// \brief Walks the partitioning of an alloca rewriting uses of each partition. |
| 3034 | bool SROA::splitAlloca(AllocaInst &AI, AllocaPartitioning &P) { |
| 3035 | bool Changed = false; |
| 3036 | for (AllocaPartitioning::iterator PI = P.begin(), PE = P.end(); PI != PE; |
| 3037 | ++PI) |
| 3038 | Changed |= rewriteAllocaPartition(AI, P, PI); |
| 3039 | |
| 3040 | return Changed; |
| 3041 | } |
| 3042 | |
| 3043 | /// \brief Analyze an alloca for SROA. |
| 3044 | /// |
| 3045 | /// This analyzes the alloca to ensure we can reason about it, builds |
| 3046 | /// a partitioning of the alloca, and then hands it off to be split and |
| 3047 | /// rewritten as needed. |
| 3048 | bool SROA::runOnAlloca(AllocaInst &AI) { |
| 3049 | DEBUG(dbgs() << "SROA alloca: " << AI << "\n"); |
| 3050 | ++NumAllocasAnalyzed; |
| 3051 | |
| 3052 | // Special case dead allocas, as they're trivial. |
| 3053 | if (AI.use_empty()) { |
| 3054 | AI.eraseFromParent(); |
| 3055 | return true; |
| 3056 | } |
| 3057 | |
| 3058 | // Skip alloca forms that this analysis can't handle. |
| 3059 | if (AI.isArrayAllocation() || !AI.getAllocatedType()->isSized() || |
| 3060 | TD->getTypeAllocSize(AI.getAllocatedType()) == 0) |
| 3061 | return false; |
| 3062 | |
| 3063 | // First check if this is a non-aggregate type that we should simply promote. |
| 3064 | if (!AI.getAllocatedType()->isAggregateType() && isAllocaPromotable(&AI)) { |
| 3065 | DEBUG(dbgs() << " Trivially scalar type, queuing for promotion...\n"); |
| 3066 | PromotableAllocas.push_back(&AI); |
| 3067 | return false; |
| 3068 | } |
| 3069 | |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 3070 | bool Changed = false; |
| 3071 | |
| 3072 | // First, split any FCA loads and stores touching this alloca to promote |
| 3073 | // better splitting and promotion opportunities. |
| 3074 | AggLoadStoreRewriter AggRewriter(*TD); |
| 3075 | Changed |= AggRewriter.rewrite(AI); |
| 3076 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 3077 | // Build the partition set using a recursive instruction-visiting builder. |
| 3078 | AllocaPartitioning P(*TD, AI); |
| 3079 | DEBUG(P.print(dbgs())); |
| 3080 | if (P.isEscaped()) |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 3081 | return Changed; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 3082 | |
| 3083 | // No partitions to split. Leave the dead alloca for a later pass to clean up. |
| 3084 | if (P.begin() == P.end()) |
Chandler Carruth | c370acd | 2012-09-18 12:57:43 +0000 | [diff] [blame] | 3085 | return Changed; |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 3086 | |
| 3087 | // Delete all the dead users of this alloca before splitting and rewriting it. |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 3088 | for (AllocaPartitioning::dead_user_iterator DI = P.dead_user_begin(), |
| 3089 | DE = P.dead_user_end(); |
| 3090 | DI != DE; ++DI) { |
| 3091 | Changed = true; |
| 3092 | (*DI)->replaceAllUsesWith(UndefValue::get((*DI)->getType())); |
| 3093 | DeadInsts.push_back(*DI); |
| 3094 | } |
| 3095 | for (AllocaPartitioning::dead_op_iterator DO = P.dead_op_begin(), |
| 3096 | DE = P.dead_op_end(); |
| 3097 | DO != DE; ++DO) { |
| 3098 | Value *OldV = **DO; |
| 3099 | // Clobber the use with an undef value. |
| 3100 | **DO = UndefValue::get(OldV->getType()); |
| 3101 | if (Instruction *OldI = dyn_cast<Instruction>(OldV)) |
| 3102 | if (isInstructionTriviallyDead(OldI)) { |
| 3103 | Changed = true; |
| 3104 | DeadInsts.push_back(OldI); |
| 3105 | } |
| 3106 | } |
| 3107 | |
| 3108 | return splitAlloca(AI, P) || Changed; |
| 3109 | } |
| 3110 | |
Chandler Carruth | 8615cd2 | 2012-09-14 10:26:38 +0000 | [diff] [blame] | 3111 | /// \brief Delete the dead instructions accumulated in this run. |
| 3112 | /// |
| 3113 | /// Recursively deletes the dead instructions we've accumulated. This is done |
| 3114 | /// at the very end to maximize locality of the recursive delete and to |
| 3115 | /// minimize the problems of invalidated instruction pointers as such pointers |
| 3116 | /// are used heavily in the intermediate stages of the algorithm. |
| 3117 | /// |
| 3118 | /// We also record the alloca instructions deleted here so that they aren't |
| 3119 | /// subsequently handed to mem2reg to promote. |
| 3120 | void SROA::deleteDeadInstructions(SmallPtrSet<AllocaInst*, 4> &DeletedAllocas) { |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 3121 | DeadSplitInsts.clear(); |
| 3122 | while (!DeadInsts.empty()) { |
| 3123 | Instruction *I = DeadInsts.pop_back_val(); |
| 3124 | DEBUG(dbgs() << "Deleting dead instruction: " << *I << "\n"); |
| 3125 | |
| 3126 | for (User::op_iterator OI = I->op_begin(), E = I->op_end(); OI != E; ++OI) |
| 3127 | if (Instruction *U = dyn_cast<Instruction>(*OI)) { |
| 3128 | // Zero out the operand and see if it becomes trivially dead. |
| 3129 | *OI = 0; |
| 3130 | if (isInstructionTriviallyDead(U)) |
| 3131 | DeadInsts.push_back(U); |
| 3132 | } |
| 3133 | |
| 3134 | if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) |
| 3135 | DeletedAllocas.insert(AI); |
| 3136 | |
| 3137 | ++NumDeleted; |
| 3138 | I->eraseFromParent(); |
| 3139 | } |
| 3140 | } |
| 3141 | |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 3142 | /// \brief Promote the allocas, using the best available technique. |
| 3143 | /// |
| 3144 | /// This attempts to promote whatever allocas have been identified as viable in |
| 3145 | /// the PromotableAllocas list. If that list is empty, there is nothing to do. |
| 3146 | /// If there is a domtree available, we attempt to promote using the full power |
| 3147 | /// of mem2reg. Otherwise, we build and use the AllocaPromoter above which is |
| 3148 | /// based on the SSAUpdater utilities. This function returns whether any |
| 3149 | /// promotion occured. |
| 3150 | bool SROA::promoteAllocas(Function &F) { |
| 3151 | if (PromotableAllocas.empty()) |
| 3152 | return false; |
| 3153 | |
| 3154 | NumPromoted += PromotableAllocas.size(); |
| 3155 | |
| 3156 | if (DT && !ForceSSAUpdater) { |
| 3157 | DEBUG(dbgs() << "Promoting allocas with mem2reg...\n"); |
| 3158 | PromoteMemToReg(PromotableAllocas, *DT); |
| 3159 | PromotableAllocas.clear(); |
| 3160 | return true; |
| 3161 | } |
| 3162 | |
| 3163 | DEBUG(dbgs() << "Promoting allocas with SSAUpdater...\n"); |
| 3164 | SSAUpdater SSA; |
| 3165 | DIBuilder DIB(*F.getParent()); |
| 3166 | SmallVector<Instruction*, 64> Insts; |
| 3167 | |
| 3168 | for (unsigned Idx = 0, Size = PromotableAllocas.size(); Idx != Size; ++Idx) { |
| 3169 | AllocaInst *AI = PromotableAllocas[Idx]; |
| 3170 | for (Value::use_iterator UI = AI->use_begin(), UE = AI->use_end(); |
| 3171 | UI != UE;) { |
| 3172 | Instruction *I = cast<Instruction>(*UI++); |
| 3173 | // FIXME: Currently the SSAUpdater infrastructure doesn't reason about |
| 3174 | // lifetime intrinsics and so we strip them (and the bitcasts+GEPs |
| 3175 | // leading to them) here. Eventually it should use them to optimize the |
| 3176 | // scalar values produced. |
| 3177 | if (isa<BitCastInst>(I) || isa<GetElementPtrInst>(I)) { |
| 3178 | assert(onlyUsedByLifetimeMarkers(I) && |
| 3179 | "Found a bitcast used outside of a lifetime marker."); |
| 3180 | while (!I->use_empty()) |
| 3181 | cast<Instruction>(*I->use_begin())->eraseFromParent(); |
| 3182 | I->eraseFromParent(); |
| 3183 | continue; |
| 3184 | } |
| 3185 | if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(I)) { |
| 3186 | assert(II->getIntrinsicID() == Intrinsic::lifetime_start || |
| 3187 | II->getIntrinsicID() == Intrinsic::lifetime_end); |
| 3188 | II->eraseFromParent(); |
| 3189 | continue; |
| 3190 | } |
| 3191 | |
| 3192 | Insts.push_back(I); |
| 3193 | } |
| 3194 | AllocaPromoter(Insts, SSA, *AI, DIB).run(Insts); |
| 3195 | Insts.clear(); |
| 3196 | } |
| 3197 | |
| 3198 | PromotableAllocas.clear(); |
| 3199 | return true; |
| 3200 | } |
| 3201 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 3202 | namespace { |
| 3203 | /// \brief A predicate to test whether an alloca belongs to a set. |
| 3204 | class IsAllocaInSet { |
| 3205 | typedef SmallPtrSet<AllocaInst *, 4> SetType; |
| 3206 | const SetType &Set; |
| 3207 | |
| 3208 | public: |
| 3209 | IsAllocaInSet(const SetType &Set) : Set(Set) {} |
| 3210 | bool operator()(AllocaInst *AI) { return Set.count(AI); } |
| 3211 | }; |
| 3212 | } |
| 3213 | |
| 3214 | bool SROA::runOnFunction(Function &F) { |
| 3215 | DEBUG(dbgs() << "SROA function: " << F.getName() << "\n"); |
| 3216 | C = &F.getContext(); |
| 3217 | TD = getAnalysisIfAvailable<TargetData>(); |
| 3218 | if (!TD) { |
| 3219 | DEBUG(dbgs() << " Skipping SROA -- no target data!\n"); |
| 3220 | return false; |
| 3221 | } |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 3222 | DT = getAnalysisIfAvailable<DominatorTree>(); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 3223 | |
| 3224 | BasicBlock &EntryBB = F.getEntryBlock(); |
| 3225 | for (BasicBlock::iterator I = EntryBB.begin(), E = llvm::prior(EntryBB.end()); |
| 3226 | I != E; ++I) |
| 3227 | if (AllocaInst *AI = dyn_cast<AllocaInst>(I)) |
| 3228 | Worklist.insert(AI); |
| 3229 | |
| 3230 | bool Changed = false; |
Chandler Carruth | 8615cd2 | 2012-09-14 10:26:38 +0000 | [diff] [blame] | 3231 | // A set of deleted alloca instruction pointers which should be removed from |
| 3232 | // the list of promotable allocas. |
| 3233 | SmallPtrSet<AllocaInst *, 4> DeletedAllocas; |
| 3234 | |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 3235 | while (!Worklist.empty()) { |
| 3236 | Changed |= runOnAlloca(*Worklist.pop_back_val()); |
Chandler Carruth | 8615cd2 | 2012-09-14 10:26:38 +0000 | [diff] [blame] | 3237 | deleteDeadInstructions(DeletedAllocas); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 3238 | if (!DeletedAllocas.empty()) { |
| 3239 | PromotableAllocas.erase(std::remove_if(PromotableAllocas.begin(), |
| 3240 | PromotableAllocas.end(), |
| 3241 | IsAllocaInSet(DeletedAllocas)), |
| 3242 | PromotableAllocas.end()); |
| 3243 | DeletedAllocas.clear(); |
| 3244 | } |
| 3245 | } |
| 3246 | |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 3247 | Changed |= promoteAllocas(F); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 3248 | |
| 3249 | return Changed; |
| 3250 | } |
| 3251 | |
| 3252 | void SROA::getAnalysisUsage(AnalysisUsage &AU) const { |
Chandler Carruth | 1c8db50 | 2012-09-15 11:43:14 +0000 | [diff] [blame] | 3253 | if (RequiresDomTree) |
| 3254 | AU.addRequired<DominatorTree>(); |
Chandler Carruth | 713aa94 | 2012-09-14 09:22:59 +0000 | [diff] [blame] | 3255 | AU.setPreservesCFG(); |
| 3256 | } |