blob: 07c8d94860cdb47c962cb3e33edac36a0b6296de [file] [log] [blame]
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001//===- SimplifyLibCalls.cpp - Optimize specific well-known library calls --===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements a simple pass that applies a variety of small
11// optimizations for calls to specific well-known function calls (e.g. runtime
12// library functions). For example, a call to the function "exit(3)" that
13// occurs within the main() function can be transformed into a simple "return 3"
14// instruction. Any optimization that takes this form (replace call to library
15// function with simpler code that provides the same result) belongs in this
16// file.
17//
18//===----------------------------------------------------------------------===//
19
20#define DEBUG_TYPE "simplify-libcalls"
21#include "llvm/Transforms/Scalar.h"
22#include "llvm/Intrinsics.h"
23#include "llvm/Module.h"
24#include "llvm/Pass.h"
25#include "llvm/Support/IRBuilder.h"
Evan Cheng0ff39b32008-06-30 07:31:25 +000026#include "llvm/Analysis/ValueTracking.h"
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000027#include "llvm/Target/TargetData.h"
28#include "llvm/ADT/SmallPtrSet.h"
29#include "llvm/ADT/StringMap.h"
30#include "llvm/ADT/Statistic.h"
31#include "llvm/Support/Compiler.h"
Chris Lattner56b4f2b2008-05-01 06:39:12 +000032#include "llvm/Support/Debug.h"
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000033#include "llvm/Config/config.h"
34using namespace llvm;
35
36STATISTIC(NumSimplified, "Number of library calls simplified");
37
38//===----------------------------------------------------------------------===//
39// Optimizer Base Class
40//===----------------------------------------------------------------------===//
41
42/// This class is the abstract base class for the set of optimizations that
43/// corresponds to one library call.
44namespace {
45class VISIBILITY_HIDDEN LibCallOptimization {
46protected:
47 Function *Caller;
48 const TargetData *TD;
49public:
50 LibCallOptimization() { }
51 virtual ~LibCallOptimization() {}
52
53 /// CallOptimizer - This pure virtual method is implemented by base classes to
54 /// do various optimizations. If this returns null then no transformation was
55 /// performed. If it returns CI, then it transformed the call and CI is to be
56 /// deleted. If it returns something else, replace CI with the new value and
57 /// delete CI.
Eric Christopher7a61d702008-08-08 19:39:37 +000058 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B)
59 =0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000060
Eric Christopher7a61d702008-08-08 19:39:37 +000061 Value *OptimizeCall(CallInst *CI, const TargetData &TD, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000062 Caller = CI->getParent()->getParent();
63 this->TD = &TD;
64 return CallOptimizer(CI->getCalledFunction(), CI, B);
65 }
66
67 /// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
Eric Christopher7a61d702008-08-08 19:39:37 +000068 Value *CastToCStr(Value *V, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000069
70 /// EmitStrLen - Emit a call to the strlen function to the builder, for the
71 /// specified pointer. Ptr is required to be some pointer type, and the
72 /// return value has 'intptr_t' type.
Eric Christopher7a61d702008-08-08 19:39:37 +000073 Value *EmitStrLen(Value *Ptr, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000074
75 /// EmitMemCpy - Emit a call to the memcpy function to the builder. This
76 /// always expects that the size has type 'intptr_t' and Dst/Src are pointers.
77 Value *EmitMemCpy(Value *Dst, Value *Src, Value *Len,
Eric Christopher7a61d702008-08-08 19:39:37 +000078 unsigned Align, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000079
80 /// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
81 /// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
Eric Christopher7a61d702008-08-08 19:39:37 +000082 Value *EmitMemChr(Value *Ptr, Value *Val, Value *Len, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000083
84 /// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
85 /// 'floor'). This function is known to take a single of type matching 'Op'
86 /// and returns one value with the same type. If 'Op' is a long double, 'l'
87 /// is added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
Eric Christopher7a61d702008-08-08 19:39:37 +000088 Value *EmitUnaryFloatFnCall(Value *Op, const char *Name, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000089
90 /// EmitPutChar - Emit a call to the putchar function. This assumes that Char
91 /// is an integer.
Eric Christopher7a61d702008-08-08 19:39:37 +000092 void EmitPutChar(Value *Char, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000093
94 /// EmitPutS - Emit a call to the puts function. This assumes that Str is
95 /// some pointer.
Eric Christopher7a61d702008-08-08 19:39:37 +000096 void EmitPutS(Value *Str, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +000097
98 /// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
99 /// an i32, and File is a pointer to FILE.
Eric Christopher7a61d702008-08-08 19:39:37 +0000100 void EmitFPutC(Value *Char, Value *File, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000101
102 /// EmitFPutS - Emit a call to the puts function. Str is required to be a
103 /// pointer and File is a pointer to FILE.
Eric Christopher7a61d702008-08-08 19:39:37 +0000104 void EmitFPutS(Value *Str, Value *File, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000105
106 /// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
107 /// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
Eric Christopher7a61d702008-08-08 19:39:37 +0000108 void EmitFWrite(Value *Ptr, Value *Size, Value *File, IRBuilder<> &B);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000109
110};
111} // End anonymous namespace.
112
113/// CastToCStr - Return V if it is an i8*, otherwise cast it to i8*.
Eric Christopher7a61d702008-08-08 19:39:37 +0000114Value *LibCallOptimization::CastToCStr(Value *V, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000115 return B.CreateBitCast(V, PointerType::getUnqual(Type::Int8Ty), "cstr");
116}
117
118/// EmitStrLen - Emit a call to the strlen function to the builder, for the
119/// specified pointer. This always returns an integer value of size intptr_t.
Eric Christopher7a61d702008-08-08 19:39:37 +0000120Value *LibCallOptimization::EmitStrLen(Value *Ptr, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000121 Module *M = Caller->getParent();
122 Constant *StrLen =M->getOrInsertFunction("strlen", TD->getIntPtrType(),
123 PointerType::getUnqual(Type::Int8Ty),
124 NULL);
125 return B.CreateCall(StrLen, CastToCStr(Ptr, B), "strlen");
126}
127
128/// EmitMemCpy - Emit a call to the memcpy function to the builder. This always
129/// expects that the size has type 'intptr_t' and Dst/Src are pointers.
130Value *LibCallOptimization::EmitMemCpy(Value *Dst, Value *Src, Value *Len,
Eric Christopher7a61d702008-08-08 19:39:37 +0000131 unsigned Align, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000132 Module *M = Caller->getParent();
Chris Lattner824b9582008-11-21 16:42:48 +0000133 Intrinsic::ID IID = Intrinsic::memcpy;
134 const Type *Tys[1];
135 Tys[0] = Len->getType();
136 Value *MemCpy = Intrinsic::getDeclaration(M, IID, Tys, 1);
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000137 return B.CreateCall4(MemCpy, CastToCStr(Dst, B), CastToCStr(Src, B), Len,
138 ConstantInt::get(Type::Int32Ty, Align));
139}
140
141/// EmitMemChr - Emit a call to the memchr function. This assumes that Ptr is
142/// a pointer, Val is an i32 value, and Len is an 'intptr_t' value.
143Value *LibCallOptimization::EmitMemChr(Value *Ptr, Value *Val,
Eric Christopher7a61d702008-08-08 19:39:37 +0000144 Value *Len, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000145 Module *M = Caller->getParent();
146 Value *MemChr = M->getOrInsertFunction("memchr",
147 PointerType::getUnqual(Type::Int8Ty),
148 PointerType::getUnqual(Type::Int8Ty),
149 Type::Int32Ty, TD->getIntPtrType(),
150 NULL);
151 return B.CreateCall3(MemChr, CastToCStr(Ptr, B), Val, Len, "memchr");
152}
153
154/// EmitUnaryFloatFnCall - Emit a call to the unary function named 'Name' (e.g.
155/// 'floor'). This function is known to take a single of type matching 'Op' and
156/// returns one value with the same type. If 'Op' is a long double, 'l' is
157/// added as the suffix of name, if 'Op' is a float, we add a 'f' suffix.
158Value *LibCallOptimization::EmitUnaryFloatFnCall(Value *Op, const char *Name,
Eric Christopher7a61d702008-08-08 19:39:37 +0000159 IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000160 char NameBuffer[20];
161 if (Op->getType() != Type::DoubleTy) {
162 // If we need to add a suffix, copy into NameBuffer.
163 unsigned NameLen = strlen(Name);
164 assert(NameLen < sizeof(NameBuffer)-2);
165 memcpy(NameBuffer, Name, NameLen);
166 if (Op->getType() == Type::FloatTy)
167 NameBuffer[NameLen] = 'f'; // floorf
168 else
169 NameBuffer[NameLen] = 'l'; // floorl
170 NameBuffer[NameLen+1] = 0;
171 Name = NameBuffer;
172 }
173
174 Module *M = Caller->getParent();
175 Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
176 Op->getType(), NULL);
177 return B.CreateCall(Callee, Op, Name);
178}
179
180/// EmitPutChar - Emit a call to the putchar function. This assumes that Char
181/// is an integer.
Eric Christopher7a61d702008-08-08 19:39:37 +0000182void LibCallOptimization::EmitPutChar(Value *Char, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000183 Module *M = Caller->getParent();
184 Value *F = M->getOrInsertFunction("putchar", Type::Int32Ty,
185 Type::Int32Ty, NULL);
186 B.CreateCall(F, B.CreateIntCast(Char, Type::Int32Ty, "chari"), "putchar");
187}
188
189/// EmitPutS - Emit a call to the puts function. This assumes that Str is
190/// some pointer.
Eric Christopher7a61d702008-08-08 19:39:37 +0000191void LibCallOptimization::EmitPutS(Value *Str, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000192 Module *M = Caller->getParent();
193 Value *F = M->getOrInsertFunction("puts", Type::Int32Ty,
194 PointerType::getUnqual(Type::Int8Ty), NULL);
195 B.CreateCall(F, CastToCStr(Str, B), "puts");
196}
197
198/// EmitFPutC - Emit a call to the fputc function. This assumes that Char is
199/// an integer and File is a pointer to FILE.
Eric Christopher7a61d702008-08-08 19:39:37 +0000200void LibCallOptimization::EmitFPutC(Value *Char, Value *File, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000201 Module *M = Caller->getParent();
202 Constant *F = M->getOrInsertFunction("fputc", Type::Int32Ty, Type::Int32Ty,
203 File->getType(), NULL);
204 Char = B.CreateIntCast(Char, Type::Int32Ty, "chari");
205 B.CreateCall2(F, Char, File, "fputc");
206}
207
208/// EmitFPutS - Emit a call to the puts function. Str is required to be a
209/// pointer and File is a pointer to FILE.
Eric Christopher7a61d702008-08-08 19:39:37 +0000210void LibCallOptimization::EmitFPutS(Value *Str, Value *File, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000211 Module *M = Caller->getParent();
212 Constant *F = M->getOrInsertFunction("fputs", Type::Int32Ty,
213 PointerType::getUnqual(Type::Int8Ty),
214 File->getType(), NULL);
215 B.CreateCall2(F, CastToCStr(Str, B), File, "fputs");
216}
217
218/// EmitFWrite - Emit a call to the fwrite function. This assumes that Ptr is
219/// a pointer, Size is an 'intptr_t', and File is a pointer to FILE.
220void LibCallOptimization::EmitFWrite(Value *Ptr, Value *Size, Value *File,
Eric Christopher7a61d702008-08-08 19:39:37 +0000221 IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000222 Module *M = Caller->getParent();
223 Constant *F = M->getOrInsertFunction("fwrite", TD->getIntPtrType(),
224 PointerType::getUnqual(Type::Int8Ty),
225 TD->getIntPtrType(), TD->getIntPtrType(),
226 File->getType(), NULL);
227 B.CreateCall4(F, CastToCStr(Ptr, B), Size,
228 ConstantInt::get(TD->getIntPtrType(), 1), File);
229}
230
231//===----------------------------------------------------------------------===//
232// Helper Functions
233//===----------------------------------------------------------------------===//
234
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000235/// GetStringLengthH - If we can compute the length of the string pointed to by
236/// the specified pointer, return 'len+1'. If we can't, return 0.
237static uint64_t GetStringLengthH(Value *V, SmallPtrSet<PHINode*, 32> &PHIs) {
238 // Look through noop bitcast instructions.
239 if (BitCastInst *BCI = dyn_cast<BitCastInst>(V))
240 return GetStringLengthH(BCI->getOperand(0), PHIs);
241
242 // If this is a PHI node, there are two cases: either we have already seen it
243 // or we haven't.
244 if (PHINode *PN = dyn_cast<PHINode>(V)) {
245 if (!PHIs.insert(PN))
246 return ~0ULL; // already in the set.
247
248 // If it was new, see if all the input strings are the same length.
249 uint64_t LenSoFar = ~0ULL;
250 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
251 uint64_t Len = GetStringLengthH(PN->getIncomingValue(i), PHIs);
252 if (Len == 0) return 0; // Unknown length -> unknown.
253
254 if (Len == ~0ULL) continue;
255
256 if (Len != LenSoFar && LenSoFar != ~0ULL)
257 return 0; // Disagree -> unknown.
258 LenSoFar = Len;
259 }
260
261 // Success, all agree.
262 return LenSoFar;
263 }
264
265 // strlen(select(c,x,y)) -> strlen(x) ^ strlen(y)
266 if (SelectInst *SI = dyn_cast<SelectInst>(V)) {
267 uint64_t Len1 = GetStringLengthH(SI->getTrueValue(), PHIs);
268 if (Len1 == 0) return 0;
269 uint64_t Len2 = GetStringLengthH(SI->getFalseValue(), PHIs);
270 if (Len2 == 0) return 0;
271 if (Len1 == ~0ULL) return Len2;
272 if (Len2 == ~0ULL) return Len1;
273 if (Len1 != Len2) return 0;
274 return Len1;
275 }
276
277 // If the value is not a GEP instruction nor a constant expression with a
278 // GEP instruction, then return unknown.
279 User *GEP = 0;
280 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(V)) {
281 GEP = GEPI;
282 } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
283 if (CE->getOpcode() != Instruction::GetElementPtr)
284 return 0;
285 GEP = CE;
286 } else {
287 return 0;
288 }
289
290 // Make sure the GEP has exactly three arguments.
291 if (GEP->getNumOperands() != 3)
292 return 0;
293
294 // Check to make sure that the first operand of the GEP is an integer and
295 // has value 0 so that we are sure we're indexing into the initializer.
296 if (ConstantInt *Idx = dyn_cast<ConstantInt>(GEP->getOperand(1))) {
297 if (!Idx->isZero())
298 return 0;
299 } else
300 return 0;
301
302 // If the second index isn't a ConstantInt, then this is a variable index
303 // into the array. If this occurs, we can't say anything meaningful about
304 // the string.
305 uint64_t StartIdx = 0;
306 if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP->getOperand(2)))
307 StartIdx = CI->getZExtValue();
308 else
309 return 0;
310
311 // The GEP instruction, constant or instruction, must reference a global
312 // variable that is a constant and is initialized. The referenced constant
313 // initializer is the array that we'll use for optimization.
314 GlobalVariable* GV = dyn_cast<GlobalVariable>(GEP->getOperand(0));
315 if (!GV || !GV->isConstant() || !GV->hasInitializer())
316 return 0;
317 Constant *GlobalInit = GV->getInitializer();
318
319 // Handle the ConstantAggregateZero case, which is a degenerate case. The
320 // initializer is constant zero so the length of the string must be zero.
321 if (isa<ConstantAggregateZero>(GlobalInit))
322 return 1; // Len = 0 offset by 1.
323
324 // Must be a Constant Array
325 ConstantArray *Array = dyn_cast<ConstantArray>(GlobalInit);
326 if (!Array || Array->getType()->getElementType() != Type::Int8Ty)
327 return false;
328
329 // Get the number of elements in the array
330 uint64_t NumElts = Array->getType()->getNumElements();
331
332 // Traverse the constant array from StartIdx (derived above) which is
333 // the place the GEP refers to in the array.
334 for (unsigned i = StartIdx; i != NumElts; ++i) {
335 Constant *Elt = Array->getOperand(i);
336 ConstantInt *CI = dyn_cast<ConstantInt>(Elt);
337 if (!CI) // This array isn't suitable, non-int initializer.
338 return 0;
339 if (CI->isZero())
340 return i-StartIdx+1; // We found end of string, success!
341 }
342
343 return 0; // The array isn't null terminated, conservatively return 'unknown'.
344}
345
346/// GetStringLength - If we can compute the length of the string pointed to by
347/// the specified pointer, return 'len+1'. If we can't, return 0.
348static uint64_t GetStringLength(Value *V) {
349 if (!isa<PointerType>(V->getType())) return 0;
350
351 SmallPtrSet<PHINode*, 32> PHIs;
352 uint64_t Len = GetStringLengthH(V, PHIs);
353 // If Len is ~0ULL, we had an infinite phi cycle: this is dead code, so return
354 // an empty string as a length.
355 return Len == ~0ULL ? 1 : Len;
356}
357
358/// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
359/// value is equal or not-equal to zero.
360static bool IsOnlyUsedInZeroEqualityComparison(Value *V) {
361 for (Value::use_iterator UI = V->use_begin(), E = V->use_end();
362 UI != E; ++UI) {
363 if (ICmpInst *IC = dyn_cast<ICmpInst>(*UI))
364 if (IC->isEquality())
365 if (Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
366 if (C->isNullValue())
367 continue;
368 // Unknown instruction.
369 return false;
370 }
371 return true;
372}
373
374//===----------------------------------------------------------------------===//
375// Miscellaneous LibCall Optimizations
376//===----------------------------------------------------------------------===//
377
Bill Wendlingac178222008-05-05 21:37:59 +0000378namespace {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000379//===---------------------------------------===//
380// 'exit' Optimizations
381
382/// ExitOpt - int main() { exit(4); } --> int main() { return 4; }
383struct VISIBILITY_HIDDEN ExitOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000384 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000385 // Verify we have a reasonable prototype for exit.
386 if (Callee->arg_size() == 0 || !CI->use_empty())
387 return 0;
388
389 // Verify the caller is main, and that the result type of main matches the
390 // argument type of exit.
391 if (!Caller->isName("main") || !Caller->hasExternalLinkage() ||
392 Caller->getReturnType() != CI->getOperand(1)->getType())
393 return 0;
394
395 TerminatorInst *OldTI = CI->getParent()->getTerminator();
396
397 // Create the return after the call.
398 ReturnInst *RI = B.CreateRet(CI->getOperand(1));
399
400 // Drop all successor phi node entries.
401 for (unsigned i = 0, e = OldTI->getNumSuccessors(); i != e; ++i)
402 OldTI->getSuccessor(i)->removePredecessor(CI->getParent());
403
404 // Erase all instructions from after our return instruction until the end of
405 // the block.
406 BasicBlock::iterator FirstDead = RI; ++FirstDead;
407 CI->getParent()->getInstList().erase(FirstDead, CI->getParent()->end());
408 return CI;
409 }
410};
411
412//===----------------------------------------------------------------------===//
413// String and Memory LibCall Optimizations
414//===----------------------------------------------------------------------===//
415
416//===---------------------------------------===//
417// 'strcat' Optimizations
418
419struct VISIBILITY_HIDDEN StrCatOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000420 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000421 // Verify the "strcat" function prototype.
422 const FunctionType *FT = Callee->getFunctionType();
423 if (FT->getNumParams() != 2 ||
424 FT->getReturnType() != PointerType::getUnqual(Type::Int8Ty) ||
425 FT->getParamType(0) != FT->getReturnType() ||
426 FT->getParamType(1) != FT->getReturnType())
427 return 0;
428
429 // Extract some information from the instruction
430 Value *Dst = CI->getOperand(1);
431 Value *Src = CI->getOperand(2);
432
433 // See if we can get the length of the input string.
434 uint64_t Len = GetStringLength(Src);
Chris Lattner56b4f2b2008-05-01 06:39:12 +0000435 if (Len == 0) return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000436 --Len; // Unbias length.
437
438 // Handle the simple, do-nothing case: strcat(x, "") -> x
439 if (Len == 0)
440 return Dst;
441
442 // We need to find the end of the destination string. That's where the
443 // memory is to be moved to. We just generate a call to strlen.
444 Value *DstLen = EmitStrLen(Dst, B);
445
446 // Now that we have the destination's length, we must index into the
447 // destination's pointer to get the actual memcpy destination (end of
448 // the string .. we're concatenating).
449 Dst = B.CreateGEP(Dst, DstLen, "endptr");
450
451 // We have enough information to now generate the memcpy call to do the
452 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
453 EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(), Len+1), 1, B);
454 return Dst;
455 }
456};
457
458//===---------------------------------------===//
459// 'strchr' Optimizations
460
461struct VISIBILITY_HIDDEN StrChrOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000462 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000463 // Verify the "strchr" function prototype.
464 const FunctionType *FT = Callee->getFunctionType();
465 if (FT->getNumParams() != 2 ||
466 FT->getReturnType() != PointerType::getUnqual(Type::Int8Ty) ||
467 FT->getParamType(0) != FT->getReturnType())
468 return 0;
469
470 Value *SrcStr = CI->getOperand(1);
471
472 // If the second operand is non-constant, see if we can compute the length
473 // of the input string and turn this into memchr.
474 ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getOperand(2));
475 if (CharC == 0) {
476 uint64_t Len = GetStringLength(SrcStr);
477 if (Len == 0 || FT->getParamType(1) != Type::Int32Ty) // memchr needs i32.
478 return 0;
479
480 return EmitMemChr(SrcStr, CI->getOperand(2), // include nul.
481 ConstantInt::get(TD->getIntPtrType(), Len), B);
482 }
483
484 // Otherwise, the character is a constant, see if the first argument is
485 // a string literal. If so, we can constant fold.
486 std::string Str;
487 if (!GetConstantStringInfo(SrcStr, Str))
Chris Lattner56b4f2b2008-05-01 06:39:12 +0000488 return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000489
490 // strchr can find the nul character.
491 Str += '\0';
492 char CharValue = CharC->getSExtValue();
493
494 // Compute the offset.
495 uint64_t i = 0;
496 while (1) {
497 if (i == Str.size()) // Didn't find the char. strchr returns null.
498 return Constant::getNullValue(CI->getType());
499 // Did we find our match?
500 if (Str[i] == CharValue)
501 break;
502 ++i;
503 }
504
505 // strchr(s+n,c) -> gep(s+n+i,c)
506 Value *Idx = ConstantInt::get(Type::Int64Ty, i);
507 return B.CreateGEP(SrcStr, Idx, "strchr");
508 }
509};
510
511//===---------------------------------------===//
512// 'strcmp' Optimizations
513
514struct VISIBILITY_HIDDEN StrCmpOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000515 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000516 // Verify the "strcmp" function prototype.
517 const FunctionType *FT = Callee->getFunctionType();
518 if (FT->getNumParams() != 2 || FT->getReturnType() != Type::Int32Ty ||
519 FT->getParamType(0) != FT->getParamType(1) ||
520 FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty))
521 return 0;
522
523 Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
524 if (Str1P == Str2P) // strcmp(x,x) -> 0
525 return ConstantInt::get(CI->getType(), 0);
526
527 std::string Str1, Str2;
528 bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
529 bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
530
531 if (HasStr1 && Str1.empty()) // strcmp("", x) -> *x
532 return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
533
534 if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
535 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
536
537 // strcmp(x, y) -> cnst (if both x and y are constant strings)
538 if (HasStr1 && HasStr2)
539 return ConstantInt::get(CI->getType(), strcmp(Str1.c_str(),Str2.c_str()));
540 return 0;
541 }
542};
543
544//===---------------------------------------===//
545// 'strncmp' Optimizations
546
547struct VISIBILITY_HIDDEN StrNCmpOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000548 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000549 // Verify the "strncmp" function prototype.
550 const FunctionType *FT = Callee->getFunctionType();
551 if (FT->getNumParams() != 3 || FT->getReturnType() != Type::Int32Ty ||
552 FT->getParamType(0) != FT->getParamType(1) ||
553 FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty) ||
554 !isa<IntegerType>(FT->getParamType(2)))
555 return 0;
556
557 Value *Str1P = CI->getOperand(1), *Str2P = CI->getOperand(2);
558 if (Str1P == Str2P) // strncmp(x,x,n) -> 0
559 return ConstantInt::get(CI->getType(), 0);
560
561 // Get the length argument if it is constant.
562 uint64_t Length;
563 if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getOperand(3)))
564 Length = LengthArg->getZExtValue();
565 else
566 return 0;
567
568 if (Length == 0) // strncmp(x,y,0) -> 0
569 return ConstantInt::get(CI->getType(), 0);
570
571 std::string Str1, Str2;
572 bool HasStr1 = GetConstantStringInfo(Str1P, Str1);
573 bool HasStr2 = GetConstantStringInfo(Str2P, Str2);
574
575 if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> *x
576 return B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType());
577
578 if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
579 return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());
580
581 // strncmp(x, y) -> cnst (if both x and y are constant strings)
582 if (HasStr1 && HasStr2)
583 return ConstantInt::get(CI->getType(),
584 strncmp(Str1.c_str(), Str2.c_str(), Length));
585 return 0;
586 }
587};
588
589
590//===---------------------------------------===//
591// 'strcpy' Optimizations
592
593struct VISIBILITY_HIDDEN StrCpyOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000594 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000595 // Verify the "strcpy" function prototype.
596 const FunctionType *FT = Callee->getFunctionType();
597 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
598 FT->getParamType(0) != FT->getParamType(1) ||
599 FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty))
600 return 0;
601
602 Value *Dst = CI->getOperand(1), *Src = CI->getOperand(2);
603 if (Dst == Src) // strcpy(x,x) -> x
604 return Src;
605
606 // See if we can get the length of the input string.
607 uint64_t Len = GetStringLength(Src);
Chris Lattner56b4f2b2008-05-01 06:39:12 +0000608 if (Len == 0) return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000609
610 // We have enough information to now generate the memcpy call to do the
611 // concatenation for us. Make a memcpy to copy the nul byte with align = 1.
612 EmitMemCpy(Dst, Src, ConstantInt::get(TD->getIntPtrType(), Len), 1, B);
613 return Dst;
614 }
615};
616
617
618
619//===---------------------------------------===//
620// 'strlen' Optimizations
621
622struct VISIBILITY_HIDDEN StrLenOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000623 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000624 const FunctionType *FT = Callee->getFunctionType();
625 if (FT->getNumParams() != 1 ||
626 FT->getParamType(0) != PointerType::getUnqual(Type::Int8Ty) ||
627 !isa<IntegerType>(FT->getReturnType()))
628 return 0;
629
630 Value *Src = CI->getOperand(1);
631
632 // Constant folding: strlen("xyz") -> 3
633 if (uint64_t Len = GetStringLength(Src))
634 return ConstantInt::get(CI->getType(), Len-1);
635
636 // Handle strlen(p) != 0.
637 if (!IsOnlyUsedInZeroEqualityComparison(CI)) return 0;
638
639 // strlen(x) != 0 --> *x != 0
640 // strlen(x) == 0 --> *x == 0
641 return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());
642 }
643};
644
645//===---------------------------------------===//
646// 'memcmp' Optimizations
647
648struct VISIBILITY_HIDDEN MemCmpOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000649 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000650 const FunctionType *FT = Callee->getFunctionType();
651 if (FT->getNumParams() != 3 || !isa<PointerType>(FT->getParamType(0)) ||
652 !isa<PointerType>(FT->getParamType(1)) ||
653 FT->getReturnType() != Type::Int32Ty)
654 return 0;
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000655
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000656 Value *LHS = CI->getOperand(1), *RHS = CI->getOperand(2);
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000657
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000658 if (LHS == RHS) // memcmp(s,s,x) -> 0
659 return Constant::getNullValue(CI->getType());
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000660
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000661 // Make sure we have a constant length.
662 ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getOperand(3));
Chris Lattner56b4f2b2008-05-01 06:39:12 +0000663 if (!LenC) return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000664 uint64_t Len = LenC->getZExtValue();
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000665
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000666 if (Len == 0) // memcmp(s1,s2,0) -> 0
667 return Constant::getNullValue(CI->getType());
668
669 if (Len == 1) { // memcmp(S1,S2,1) -> *LHS - *RHS
670 Value *LHSV = B.CreateLoad(CastToCStr(LHS, B), "lhsv");
671 Value *RHSV = B.CreateLoad(CastToCStr(RHS, B), "rhsv");
672 return B.CreateZExt(B.CreateSub(LHSV, RHSV, "chardiff"), CI->getType());
673 }
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000674
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000675 // memcmp(S1,S2,2) != 0 -> (*(short*)LHS ^ *(short*)RHS) != 0
676 // memcmp(S1,S2,4) != 0 -> (*(int*)LHS ^ *(int*)RHS) != 0
677 if ((Len == 2 || Len == 4) && IsOnlyUsedInZeroEqualityComparison(CI)) {
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000678 const Type *PTy = PointerType::getUnqual(Len == 2 ?
679 Type::Int16Ty : Type::Int32Ty);
680 LHS = B.CreateBitCast(LHS, PTy, "tmp");
681 RHS = B.CreateBitCast(RHS, PTy, "tmp");
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000682 LoadInst *LHSV = B.CreateLoad(LHS, "lhsv");
683 LoadInst *RHSV = B.CreateLoad(RHS, "rhsv");
684 LHSV->setAlignment(1); RHSV->setAlignment(1); // Unaligned loads.
685 return B.CreateZExt(B.CreateXor(LHSV, RHSV, "shortdiff"), CI->getType());
686 }
Duncan Sandsec00fcb2008-05-19 09:27:24 +0000687
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000688 return 0;
689 }
690};
691
692//===---------------------------------------===//
693// 'memcpy' Optimizations
694
695struct VISIBILITY_HIDDEN MemCpyOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000696 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000697 const FunctionType *FT = Callee->getFunctionType();
698 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
699 !isa<PointerType>(FT->getParamType(0)) ||
700 !isa<PointerType>(FT->getParamType(1)) ||
701 FT->getParamType(2) != TD->getIntPtrType())
702 return 0;
703
704 // memcpy(x, y, n) -> llvm.memcpy(x, y, n, 1)
705 EmitMemCpy(CI->getOperand(1), CI->getOperand(2), CI->getOperand(3), 1, B);
706 return CI->getOperand(1);
707 }
708};
709
Eli Friedmand83ae7d2008-11-30 08:32:11 +0000710//===---------------------------------------===//
711// 'memmove' Optimizations
712
713struct VISIBILITY_HIDDEN MemMoveOpt : public LibCallOptimization {
714 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
715 const FunctionType *FT = Callee->getFunctionType();
716 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
717 !isa<PointerType>(FT->getParamType(0)) ||
718 !isa<PointerType>(FT->getParamType(1)) ||
719 FT->getParamType(2) != TD->getIntPtrType())
720 return 0;
721
722 // memmove(x, y, n) -> llvm.memmove(x, y, n, 1)
723 Module *M = Caller->getParent();
724 Intrinsic::ID IID = Intrinsic::memmove;
725 const Type *Tys[1];
726 Tys[0] = TD->getIntPtrType();
727 Value *MemMove = Intrinsic::getDeclaration(M, IID, Tys, 1);
728 Value *Dst = CastToCStr(CI->getOperand(1), B);
729 Value *Src = CastToCStr(CI->getOperand(2), B);
730 Value *Size = CI->getOperand(3);
731 Value *Align = ConstantInt::get(Type::Int32Ty, 1);
732 B.CreateCall4(MemMove, Dst, Src, Size, Align);
733 return CI->getOperand(1);
734 }
735};
736
737//===---------------------------------------===//
738// 'memset' Optimizations
739
740struct VISIBILITY_HIDDEN MemSetOpt : public LibCallOptimization {
741 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
742 const FunctionType *FT = Callee->getFunctionType();
743 if (FT->getNumParams() != 3 || FT->getReturnType() != FT->getParamType(0) ||
744 !isa<PointerType>(FT->getParamType(0)) ||
745 FT->getParamType(1) != TD->getIntPtrType() ||
746 FT->getParamType(2) != TD->getIntPtrType())
747 return 0;
748
749 // memset(p, v, n) -> llvm.memset(p, v, n, 1)
750 Module *M = Caller->getParent();
751 Intrinsic::ID IID = Intrinsic::memset;
752 const Type *Tys[1];
753 Tys[0] = TD->getIntPtrType();
754 Value *MemSet = Intrinsic::getDeclaration(M, IID, Tys, 1);
755 Value *Dst = CastToCStr(CI->getOperand(1), B);
756 Value *Val = B.CreateTrunc(CI->getOperand(2), Type::Int8Ty);
757 Value *Size = CI->getOperand(3);
758 Value *Align = ConstantInt::get(Type::Int32Ty, 1);
759 B.CreateCall4(MemSet, Dst, Val, Size, Align);
760 return CI->getOperand(1);
761 }
762};
763
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000764//===----------------------------------------------------------------------===//
765// Math Library Optimizations
766//===----------------------------------------------------------------------===//
767
768//===---------------------------------------===//
769// 'pow*' Optimizations
770
771struct VISIBILITY_HIDDEN PowOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000772 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000773 const FunctionType *FT = Callee->getFunctionType();
774 // Just make sure this has 2 arguments of the same FP type, which match the
775 // result type.
776 if (FT->getNumParams() != 2 || FT->getReturnType() != FT->getParamType(0) ||
777 FT->getParamType(0) != FT->getParamType(1) ||
778 !FT->getParamType(0)->isFloatingPoint())
779 return 0;
780
781 Value *Op1 = CI->getOperand(1), *Op2 = CI->getOperand(2);
782 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
783 if (Op1C->isExactlyValue(1.0)) // pow(1.0, x) -> 1.0
784 return Op1C;
785 if (Op1C->isExactlyValue(2.0)) // pow(2.0, x) -> exp2(x)
786 return EmitUnaryFloatFnCall(Op2, "exp2", B);
787 }
788
789 ConstantFP *Op2C = dyn_cast<ConstantFP>(Op2);
790 if (Op2C == 0) return 0;
791
792 if (Op2C->getValueAPF().isZero()) // pow(x, 0.0) -> 1.0
793 return ConstantFP::get(CI->getType(), 1.0);
794
795 if (Op2C->isExactlyValue(0.5)) {
796 // FIXME: This is not safe for -0.0 and -inf. This can only be done when
797 // 'unsafe' math optimizations are allowed.
798 // x pow(x, 0.5) sqrt(x)
799 // ---------------------------------------------
800 // -0.0 +0.0 -0.0
801 // -inf +inf NaN
802#if 0
803 // pow(x, 0.5) -> sqrt(x)
804 return B.CreateCall(get_sqrt(), Op1, "sqrt");
805#endif
806 }
807
808 if (Op2C->isExactlyValue(1.0)) // pow(x, 1.0) -> x
809 return Op1;
810 if (Op2C->isExactlyValue(2.0)) // pow(x, 2.0) -> x*x
811 return B.CreateMul(Op1, Op1, "pow2");
812 if (Op2C->isExactlyValue(-1.0)) // pow(x, -1.0) -> 1.0/x
813 return B.CreateFDiv(ConstantFP::get(CI->getType(), 1.0), Op1, "powrecip");
814 return 0;
815 }
816};
817
818//===---------------------------------------===//
Chris Lattnere818f772008-05-02 18:43:35 +0000819// 'exp2' Optimizations
820
821struct VISIBILITY_HIDDEN Exp2Opt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000822 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnere818f772008-05-02 18:43:35 +0000823 const FunctionType *FT = Callee->getFunctionType();
824 // Just make sure this has 1 argument of FP type, which matches the
825 // result type.
826 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
827 !FT->getParamType(0)->isFloatingPoint())
828 return 0;
829
830 Value *Op = CI->getOperand(1);
831 // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x)) if sizeof(x) <= 32
832 // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x)) if sizeof(x) < 32
833 Value *LdExpArg = 0;
834 if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
835 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
836 LdExpArg = B.CreateSExt(OpC->getOperand(0), Type::Int32Ty, "tmp");
837 } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
838 if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
839 LdExpArg = B.CreateZExt(OpC->getOperand(0), Type::Int32Ty, "tmp");
840 }
841
842 if (LdExpArg) {
843 const char *Name;
844 if (Op->getType() == Type::FloatTy)
845 Name = "ldexpf";
846 else if (Op->getType() == Type::DoubleTy)
847 Name = "ldexp";
848 else
849 Name = "ldexpl";
850
851 Constant *One = ConstantFP::get(APFloat(1.0f));
852 if (Op->getType() != Type::FloatTy)
853 One = ConstantExpr::getFPExtend(One, Op->getType());
854
855 Module *M = Caller->getParent();
856 Value *Callee = M->getOrInsertFunction(Name, Op->getType(),
857 Op->getType(), Type::Int32Ty,NULL);
858 return B.CreateCall2(Callee, One, LdExpArg);
859 }
860 return 0;
861 }
862};
863
864
865//===---------------------------------------===//
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000866// Double -> Float Shrinking Optimizations for Unary Functions like 'floor'
867
868struct VISIBILITY_HIDDEN UnaryDoubleFPOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000869 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000870 const FunctionType *FT = Callee->getFunctionType();
871 if (FT->getNumParams() != 1 || FT->getReturnType() != Type::DoubleTy ||
872 FT->getParamType(0) != Type::DoubleTy)
873 return 0;
874
875 // If this is something like 'floor((double)floatval)', convert to floorf.
876 FPExtInst *Cast = dyn_cast<FPExtInst>(CI->getOperand(1));
877 if (Cast == 0 || Cast->getOperand(0)->getType() != Type::FloatTy)
878 return 0;
879
880 // floor((double)floatval) -> (double)floorf(floatval)
881 Value *V = Cast->getOperand(0);
882 V = EmitUnaryFloatFnCall(V, Callee->getNameStart(), B);
883 return B.CreateFPExt(V, Type::DoubleTy);
884 }
885};
886
887//===----------------------------------------------------------------------===//
888// Integer Optimizations
889//===----------------------------------------------------------------------===//
890
891//===---------------------------------------===//
892// 'ffs*' Optimizations
893
894struct VISIBILITY_HIDDEN FFSOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000895 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000896 const FunctionType *FT = Callee->getFunctionType();
897 // Just make sure this has 2 arguments of the same FP type, which match the
898 // result type.
899 if (FT->getNumParams() != 1 || FT->getReturnType() != Type::Int32Ty ||
900 !isa<IntegerType>(FT->getParamType(0)))
901 return 0;
902
903 Value *Op = CI->getOperand(1);
904
905 // Constant fold.
906 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
907 if (CI->getValue() == 0) // ffs(0) -> 0.
908 return Constant::getNullValue(CI->getType());
909 return ConstantInt::get(Type::Int32Ty, // ffs(c) -> cttz(c)+1
910 CI->getValue().countTrailingZeros()+1);
911 }
912
913 // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
914 const Type *ArgType = Op->getType();
915 Value *F = Intrinsic::getDeclaration(Callee->getParent(),
916 Intrinsic::cttz, &ArgType, 1);
917 Value *V = B.CreateCall(F, Op, "cttz");
918 V = B.CreateAdd(V, ConstantInt::get(Type::Int32Ty, 1), "tmp");
919 V = B.CreateIntCast(V, Type::Int32Ty, false, "tmp");
920
921 Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType), "tmp");
922 return B.CreateSelect(Cond, V, ConstantInt::get(Type::Int32Ty, 0));
923 }
924};
925
926//===---------------------------------------===//
927// 'isdigit' Optimizations
928
929struct VISIBILITY_HIDDEN IsDigitOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000930 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000931 const FunctionType *FT = Callee->getFunctionType();
932 // We require integer(i32)
933 if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
934 FT->getParamType(0) != Type::Int32Ty)
935 return 0;
936
937 // isdigit(c) -> (c-'0') <u 10
938 Value *Op = CI->getOperand(1);
939 Op = B.CreateSub(Op, ConstantInt::get(Type::Int32Ty, '0'), "isdigittmp");
940 Op = B.CreateICmpULT(Op, ConstantInt::get(Type::Int32Ty, 10), "isdigit");
941 return B.CreateZExt(Op, CI->getType());
942 }
943};
944
945//===---------------------------------------===//
946// 'isascii' Optimizations
947
948struct VISIBILITY_HIDDEN IsAsciiOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000949 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000950 const FunctionType *FT = Callee->getFunctionType();
951 // We require integer(i32)
952 if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
953 FT->getParamType(0) != Type::Int32Ty)
954 return 0;
955
956 // isascii(c) -> c <u 128
957 Value *Op = CI->getOperand(1);
958 Op = B.CreateICmpULT(Op, ConstantInt::get(Type::Int32Ty, 128), "isascii");
959 return B.CreateZExt(Op, CI->getType());
960 }
961};
Chris Lattner313f0e62008-06-09 08:26:51 +0000962
963//===---------------------------------------===//
964// 'abs', 'labs', 'llabs' Optimizations
965
966struct VISIBILITY_HIDDEN AbsOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000967 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattner313f0e62008-06-09 08:26:51 +0000968 const FunctionType *FT = Callee->getFunctionType();
969 // We require integer(integer) where the types agree.
970 if (FT->getNumParams() != 1 || !isa<IntegerType>(FT->getReturnType()) ||
971 FT->getParamType(0) != FT->getReturnType())
972 return 0;
973
974 // abs(x) -> x >s -1 ? x : -x
975 Value *Op = CI->getOperand(1);
976 Value *Pos = B.CreateICmpSGT(Op,ConstantInt::getAllOnesValue(Op->getType()),
977 "ispos");
978 Value *Neg = B.CreateNeg(Op, "neg");
979 return B.CreateSelect(Pos, Op, Neg);
980 }
981};
982
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000983
984//===---------------------------------------===//
985// 'toascii' Optimizations
986
987struct VISIBILITY_HIDDEN ToAsciiOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +0000988 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +0000989 const FunctionType *FT = Callee->getFunctionType();
990 // We require i32(i32)
991 if (FT->getNumParams() != 1 || FT->getReturnType() != FT->getParamType(0) ||
992 FT->getParamType(0) != Type::Int32Ty)
993 return 0;
994
995 // isascii(c) -> c & 0x7f
996 return B.CreateAnd(CI->getOperand(1), ConstantInt::get(CI->getType(),0x7F));
997 }
998};
999
1000//===----------------------------------------------------------------------===//
1001// Formatting and IO Optimizations
1002//===----------------------------------------------------------------------===//
1003
1004//===---------------------------------------===//
1005// 'printf' Optimizations
1006
1007struct VISIBILITY_HIDDEN PrintFOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +00001008 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001009 // Require one fixed pointer argument and an integer/void result.
1010 const FunctionType *FT = Callee->getFunctionType();
1011 if (FT->getNumParams() < 1 || !isa<PointerType>(FT->getParamType(0)) ||
1012 !(isa<IntegerType>(FT->getReturnType()) ||
1013 FT->getReturnType() == Type::VoidTy))
1014 return 0;
1015
1016 // Check for a fixed format string.
1017 std::string FormatStr;
1018 if (!GetConstantStringInfo(CI->getOperand(1), FormatStr))
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001019 return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001020
1021 // Empty format string -> noop.
1022 if (FormatStr.empty()) // Tolerate printf's declared void.
1023 return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 0);
1024
1025 // printf("x") -> putchar('x'), even for '%'.
1026 if (FormatStr.size() == 1) {
1027 EmitPutChar(ConstantInt::get(Type::Int32Ty, FormatStr[0]), B);
1028 return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 1);
1029 }
1030
1031 // printf("foo\n") --> puts("foo")
1032 if (FormatStr[FormatStr.size()-1] == '\n' &&
1033 FormatStr.find('%') == std::string::npos) { // no format characters.
1034 // Create a string literal with no \n on it. We expect the constant merge
1035 // pass to be run after this pass, to merge duplicate strings.
1036 FormatStr.erase(FormatStr.end()-1);
1037 Constant *C = ConstantArray::get(FormatStr, true);
1038 C = new GlobalVariable(C->getType(), true,GlobalVariable::InternalLinkage,
1039 C, "str", Callee->getParent());
1040 EmitPutS(C, B);
1041 return CI->use_empty() ? (Value*)CI :
1042 ConstantInt::get(CI->getType(), FormatStr.size()+1);
1043 }
1044
1045 // Optimize specific format strings.
1046 // printf("%c", chr) --> putchar(*(i8*)dst)
1047 if (FormatStr == "%c" && CI->getNumOperands() > 2 &&
1048 isa<IntegerType>(CI->getOperand(2)->getType())) {
1049 EmitPutChar(CI->getOperand(2), B);
1050 return CI->use_empty() ? (Value*)CI : ConstantInt::get(CI->getType(), 1);
1051 }
1052
1053 // printf("%s\n", str) --> puts(str)
1054 if (FormatStr == "%s\n" && CI->getNumOperands() > 2 &&
1055 isa<PointerType>(CI->getOperand(2)->getType()) &&
1056 CI->use_empty()) {
1057 EmitPutS(CI->getOperand(2), B);
1058 return CI;
1059 }
1060 return 0;
1061 }
1062};
1063
1064//===---------------------------------------===//
1065// 'sprintf' Optimizations
1066
1067struct VISIBILITY_HIDDEN SPrintFOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +00001068 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001069 // Require two fixed pointer arguments and an integer result.
1070 const FunctionType *FT = Callee->getFunctionType();
1071 if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
1072 !isa<PointerType>(FT->getParamType(1)) ||
1073 !isa<IntegerType>(FT->getReturnType()))
1074 return 0;
1075
1076 // Check for a fixed format string.
1077 std::string FormatStr;
1078 if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001079 return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001080
1081 // If we just have a format string (nothing else crazy) transform it.
1082 if (CI->getNumOperands() == 3) {
1083 // Make sure there's no % in the constant array. We could try to handle
1084 // %% -> % in the future if we cared.
1085 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1086 if (FormatStr[i] == '%')
1087 return 0; // we found a format specifier, bail out.
1088
1089 // sprintf(str, fmt) -> llvm.memcpy(str, fmt, strlen(fmt)+1, 1)
1090 EmitMemCpy(CI->getOperand(1), CI->getOperand(2), // Copy the nul byte.
1091 ConstantInt::get(TD->getIntPtrType(), FormatStr.size()+1),1,B);
1092 return ConstantInt::get(CI->getType(), FormatStr.size());
1093 }
1094
1095 // The remaining optimizations require the format string to be "%s" or "%c"
1096 // and have an extra operand.
1097 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4)
1098 return 0;
1099
1100 // Decode the second character of the format string.
1101 if (FormatStr[1] == 'c') {
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001102 // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001103 if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0;
1104 Value *V = B.CreateTrunc(CI->getOperand(3), Type::Int8Ty, "char");
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001105 Value *Ptr = CastToCStr(CI->getOperand(1), B);
1106 B.CreateStore(V, Ptr);
1107 Ptr = B.CreateGEP(Ptr, ConstantInt::get(Type::Int32Ty, 1), "nul");
1108 B.CreateStore(Constant::getNullValue(Type::Int8Ty), Ptr);
1109
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001110 return ConstantInt::get(CI->getType(), 1);
1111 }
1112
1113 if (FormatStr[1] == 's') {
1114 // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
1115 if (!isa<PointerType>(CI->getOperand(3)->getType())) return 0;
1116
1117 Value *Len = EmitStrLen(CI->getOperand(3), B);
1118 Value *IncLen = B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1),
1119 "leninc");
1120 EmitMemCpy(CI->getOperand(1), CI->getOperand(3), IncLen, 1, B);
1121
1122 // The sprintf result is the unincremented number of bytes in the string.
1123 return B.CreateIntCast(Len, CI->getType(), false);
1124 }
1125 return 0;
1126 }
1127};
1128
1129//===---------------------------------------===//
1130// 'fwrite' Optimizations
1131
1132struct VISIBILITY_HIDDEN FWriteOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +00001133 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001134 // Require a pointer, an integer, an integer, a pointer, returning integer.
1135 const FunctionType *FT = Callee->getFunctionType();
1136 if (FT->getNumParams() != 4 || !isa<PointerType>(FT->getParamType(0)) ||
1137 !isa<IntegerType>(FT->getParamType(1)) ||
1138 !isa<IntegerType>(FT->getParamType(2)) ||
1139 !isa<PointerType>(FT->getParamType(3)) ||
1140 !isa<IntegerType>(FT->getReturnType()))
1141 return 0;
1142
1143 // Get the element size and count.
1144 ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getOperand(2));
1145 ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getOperand(3));
1146 if (!SizeC || !CountC) return 0;
1147 uint64_t Bytes = SizeC->getZExtValue()*CountC->getZExtValue();
1148
1149 // If this is writing zero records, remove the call (it's a noop).
1150 if (Bytes == 0)
1151 return ConstantInt::get(CI->getType(), 0);
1152
1153 // If this is writing one byte, turn it into fputc.
1154 if (Bytes == 1) { // fwrite(S,1,1,F) -> fputc(S[0],F)
1155 Value *Char = B.CreateLoad(CastToCStr(CI->getOperand(1), B), "char");
1156 EmitFPutC(Char, CI->getOperand(4), B);
1157 return ConstantInt::get(CI->getType(), 1);
1158 }
1159
1160 return 0;
1161 }
1162};
1163
1164//===---------------------------------------===//
1165// 'fputs' Optimizations
1166
1167struct VISIBILITY_HIDDEN FPutsOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +00001168 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001169 // Require two pointers. Also, we can't optimize if return value is used.
1170 const FunctionType *FT = Callee->getFunctionType();
1171 if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
1172 !isa<PointerType>(FT->getParamType(1)) ||
1173 !CI->use_empty())
1174 return 0;
1175
1176 // fputs(s,F) --> fwrite(s,1,strlen(s),F)
1177 uint64_t Len = GetStringLength(CI->getOperand(1));
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001178 if (!Len) return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001179 EmitFWrite(CI->getOperand(1), ConstantInt::get(TD->getIntPtrType(), Len-1),
1180 CI->getOperand(2), B);
1181 return CI; // Known to have no uses (see above).
1182 }
1183};
1184
1185//===---------------------------------------===//
1186// 'fprintf' Optimizations
1187
1188struct VISIBILITY_HIDDEN FPrintFOpt : public LibCallOptimization {
Eric Christopher7a61d702008-08-08 19:39:37 +00001189 virtual Value *CallOptimizer(Function *Callee, CallInst *CI, IRBuilder<> &B) {
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001190 // Require two fixed paramters as pointers and integer result.
1191 const FunctionType *FT = Callee->getFunctionType();
1192 if (FT->getNumParams() != 2 || !isa<PointerType>(FT->getParamType(0)) ||
1193 !isa<PointerType>(FT->getParamType(1)) ||
1194 !isa<IntegerType>(FT->getReturnType()))
1195 return 0;
1196
1197 // All the optimizations depend on the format string.
1198 std::string FormatStr;
1199 if (!GetConstantStringInfo(CI->getOperand(2), FormatStr))
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001200 return 0;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001201
1202 // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
1203 if (CI->getNumOperands() == 3) {
1204 for (unsigned i = 0, e = FormatStr.size(); i != e; ++i)
1205 if (FormatStr[i] == '%') // Could handle %% -> % if we cared.
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001206 return 0; // We found a format specifier.
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001207
1208 EmitFWrite(CI->getOperand(2), ConstantInt::get(TD->getIntPtrType(),
1209 FormatStr.size()),
1210 CI->getOperand(1), B);
1211 return ConstantInt::get(CI->getType(), FormatStr.size());
1212 }
1213
1214 // The remaining optimizations require the format string to be "%s" or "%c"
1215 // and have an extra operand.
1216 if (FormatStr.size() != 2 || FormatStr[0] != '%' || CI->getNumOperands() <4)
1217 return 0;
1218
1219 // Decode the second character of the format string.
1220 if (FormatStr[1] == 'c') {
1221 // fprintf(F, "%c", chr) --> *(i8*)dst = chr
1222 if (!isa<IntegerType>(CI->getOperand(3)->getType())) return 0;
1223 EmitFPutC(CI->getOperand(3), CI->getOperand(1), B);
1224 return ConstantInt::get(CI->getType(), 1);
1225 }
1226
1227 if (FormatStr[1] == 's') {
1228 // fprintf(F, "%s", str) -> fputs(str, F)
1229 if (!isa<PointerType>(CI->getOperand(3)->getType()) || !CI->use_empty())
1230 return 0;
1231 EmitFPutS(CI->getOperand(3), CI->getOperand(1), B);
1232 return CI;
1233 }
1234 return 0;
1235 }
1236};
1237
Bill Wendlingac178222008-05-05 21:37:59 +00001238} // end anonymous namespace.
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001239
1240//===----------------------------------------------------------------------===//
1241// SimplifyLibCalls Pass Implementation
1242//===----------------------------------------------------------------------===//
1243
1244namespace {
1245 /// This pass optimizes well known library functions from libc and libm.
1246 ///
1247 class VISIBILITY_HIDDEN SimplifyLibCalls : public FunctionPass {
1248 StringMap<LibCallOptimization*> Optimizations;
1249 // Miscellaneous LibCall Optimizations
1250 ExitOpt Exit;
1251 // String and Memory LibCall Optimizations
1252 StrCatOpt StrCat; StrChrOpt StrChr; StrCmpOpt StrCmp; StrNCmpOpt StrNCmp;
1253 StrCpyOpt StrCpy; StrLenOpt StrLen; MemCmpOpt MemCmp; MemCpyOpt MemCpy;
Eli Friedmand83ae7d2008-11-30 08:32:11 +00001254 MemMoveOpt MemMove; MemSetOpt MemSet;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001255 // Math Library Optimizations
Chris Lattnere818f772008-05-02 18:43:35 +00001256 PowOpt Pow; Exp2Opt Exp2; UnaryDoubleFPOpt UnaryDoubleFP;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001257 // Integer Optimizations
Chris Lattner313f0e62008-06-09 08:26:51 +00001258 FFSOpt FFS; AbsOpt Abs; IsDigitOpt IsDigit; IsAsciiOpt IsAscii;
1259 ToAsciiOpt ToAscii;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001260 // Formatting and IO Optimizations
1261 SPrintFOpt SPrintF; PrintFOpt PrintF;
1262 FWriteOpt FWrite; FPutsOpt FPuts; FPrintFOpt FPrintF;
1263 public:
1264 static char ID; // Pass identification
Dan Gohmanae73dc12008-09-04 17:05:41 +00001265 SimplifyLibCalls() : FunctionPass(&ID) {}
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001266
1267 void InitOptimizations();
1268 bool runOnFunction(Function &F);
1269
1270 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
1271 AU.addRequired<TargetData>();
1272 }
1273 };
1274 char SimplifyLibCalls::ID = 0;
1275} // end anonymous namespace.
1276
1277static RegisterPass<SimplifyLibCalls>
1278X("simplify-libcalls", "Simplify well-known library calls");
1279
1280// Public interface to the Simplify LibCalls pass.
1281FunctionPass *llvm::createSimplifyLibCallsPass() {
1282 return new SimplifyLibCalls();
1283}
1284
1285/// Optimizations - Populate the Optimizations map with all the optimizations
1286/// we know.
1287void SimplifyLibCalls::InitOptimizations() {
1288 // Miscellaneous LibCall Optimizations
1289 Optimizations["exit"] = &Exit;
1290
1291 // String and Memory LibCall Optimizations
1292 Optimizations["strcat"] = &StrCat;
1293 Optimizations["strchr"] = &StrChr;
1294 Optimizations["strcmp"] = &StrCmp;
1295 Optimizations["strncmp"] = &StrNCmp;
1296 Optimizations["strcpy"] = &StrCpy;
1297 Optimizations["strlen"] = &StrLen;
1298 Optimizations["memcmp"] = &MemCmp;
1299 Optimizations["memcpy"] = &MemCpy;
Eli Friedmand83ae7d2008-11-30 08:32:11 +00001300 Optimizations["memmove"] = &MemMove;
1301 Optimizations["memset"] = &MemSet;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001302
1303 // Math Library Optimizations
1304 Optimizations["powf"] = &Pow;
1305 Optimizations["pow"] = &Pow;
1306 Optimizations["powl"] = &Pow;
Dale Johannesen53bfbbc2008-09-04 18:30:46 +00001307 Optimizations["llvm.pow.f32"] = &Pow;
1308 Optimizations["llvm.pow.f64"] = &Pow;
1309 Optimizations["llvm.pow.f80"] = &Pow;
1310 Optimizations["llvm.pow.f128"] = &Pow;
1311 Optimizations["llvm.pow.ppcf128"] = &Pow;
Chris Lattnere818f772008-05-02 18:43:35 +00001312 Optimizations["exp2l"] = &Exp2;
1313 Optimizations["exp2"] = &Exp2;
1314 Optimizations["exp2f"] = &Exp2;
Dale Johannesen53bfbbc2008-09-04 18:30:46 +00001315 Optimizations["llvm.exp2.ppcf128"] = &Exp2;
1316 Optimizations["llvm.exp2.f128"] = &Exp2;
1317 Optimizations["llvm.exp2.f80"] = &Exp2;
1318 Optimizations["llvm.exp2.f64"] = &Exp2;
1319 Optimizations["llvm.exp2.f32"] = &Exp2;
Chris Lattnere818f772008-05-02 18:43:35 +00001320
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001321#ifdef HAVE_FLOORF
1322 Optimizations["floor"] = &UnaryDoubleFP;
1323#endif
1324#ifdef HAVE_CEILF
1325 Optimizations["ceil"] = &UnaryDoubleFP;
1326#endif
1327#ifdef HAVE_ROUNDF
1328 Optimizations["round"] = &UnaryDoubleFP;
1329#endif
1330#ifdef HAVE_RINTF
1331 Optimizations["rint"] = &UnaryDoubleFP;
1332#endif
1333#ifdef HAVE_NEARBYINTF
1334 Optimizations["nearbyint"] = &UnaryDoubleFP;
1335#endif
1336
1337 // Integer Optimizations
1338 Optimizations["ffs"] = &FFS;
1339 Optimizations["ffsl"] = &FFS;
1340 Optimizations["ffsll"] = &FFS;
Chris Lattner313f0e62008-06-09 08:26:51 +00001341 Optimizations["abs"] = &Abs;
1342 Optimizations["labs"] = &Abs;
1343 Optimizations["llabs"] = &Abs;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001344 Optimizations["isdigit"] = &IsDigit;
1345 Optimizations["isascii"] = &IsAscii;
1346 Optimizations["toascii"] = &ToAscii;
1347
1348 // Formatting and IO Optimizations
1349 Optimizations["sprintf"] = &SPrintF;
1350 Optimizations["printf"] = &PrintF;
1351 Optimizations["fwrite"] = &FWrite;
1352 Optimizations["fputs"] = &FPuts;
1353 Optimizations["fprintf"] = &FPrintF;
1354}
1355
1356
1357/// runOnFunction - Top level algorithm.
1358///
1359bool SimplifyLibCalls::runOnFunction(Function &F) {
1360 if (Optimizations.empty())
1361 InitOptimizations();
1362
1363 const TargetData &TD = getAnalysis<TargetData>();
1364
Eric Christopher7a61d702008-08-08 19:39:37 +00001365 IRBuilder<> Builder;
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001366
1367 bool Changed = false;
1368 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
1369 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ) {
1370 // Ignore non-calls.
1371 CallInst *CI = dyn_cast<CallInst>(I++);
1372 if (!CI) continue;
1373
1374 // Ignore indirect calls and calls to non-external functions.
1375 Function *Callee = CI->getCalledFunction();
1376 if (Callee == 0 || !Callee->isDeclaration() ||
1377 !(Callee->hasExternalLinkage() || Callee->hasDLLImportLinkage()))
1378 continue;
1379
1380 // Ignore unknown calls.
1381 const char *CalleeName = Callee->getNameStart();
1382 StringMap<LibCallOptimization*>::iterator OMI =
1383 Optimizations.find(CalleeName, CalleeName+Callee->getNameLen());
1384 if (OMI == Optimizations.end()) continue;
1385
1386 // Set the builder to the instruction after the call.
1387 Builder.SetInsertPoint(BB, I);
1388
1389 // Try to optimize this call.
1390 Value *Result = OMI->second->OptimizeCall(CI, TD, Builder);
1391 if (Result == 0) continue;
1392
Chris Lattner56b4f2b2008-05-01 06:39:12 +00001393 DEBUG(DOUT << "SimplifyLibCalls simplified: " << *CI;
1394 DOUT << " into: " << *Result << "\n");
1395
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001396 // Something changed!
1397 Changed = true;
1398 ++NumSimplified;
1399
1400 // Inspect the instruction after the call (which was potentially just
1401 // added) next.
1402 I = CI; ++I;
1403
1404 if (CI != Result && !CI->use_empty()) {
1405 CI->replaceAllUsesWith(Result);
1406 if (!Result->hasName())
1407 Result->takeName(CI);
1408 }
1409 CI->eraseFromParent();
1410 }
1411 }
1412 return Changed;
1413}
1414
1415
1416// TODO:
1417// Additional cases that we need to add to this file:
1418//
1419// cbrt:
1420// * cbrt(expN(X)) -> expN(x/3)
1421// * cbrt(sqrt(x)) -> pow(x,1/6)
1422// * cbrt(sqrt(x)) -> pow(x,1/9)
1423//
1424// cos, cosf, cosl:
1425// * cos(-x) -> cos(x)
1426//
1427// exp, expf, expl:
1428// * exp(log(x)) -> x
1429//
1430// log, logf, logl:
1431// * log(exp(x)) -> x
1432// * log(x**y) -> y*log(x)
1433// * log(exp(y)) -> y*log(e)
1434// * log(exp2(y)) -> y*log(2)
1435// * log(exp10(y)) -> y*log(10)
1436// * log(sqrt(x)) -> 0.5*log(x)
1437// * log(pow(x,y)) -> y*log(x)
1438//
1439// lround, lroundf, lroundl:
1440// * lround(cnst) -> cnst'
1441//
1442// memcmp:
1443// * memcmp(x,y,l) -> cnst
1444// (if all arguments are constant and strlen(x) <= l and strlen(y) <= l)
1445//
Chris Lattnerfd1cbbe2008-05-01 06:25:24 +00001446// pow, powf, powl:
1447// * pow(exp(x),y) -> exp(x*y)
1448// * pow(sqrt(x),y) -> pow(x,y*0.5)
1449// * pow(pow(x,y),z)-> pow(x,y*z)
1450//
1451// puts:
1452// * puts("") -> putchar("\n")
1453//
1454// round, roundf, roundl:
1455// * round(cnst) -> cnst'
1456//
1457// signbit:
1458// * signbit(cnst) -> cnst'
1459// * signbit(nncst) -> 0 (if pstv is a non-negative constant)
1460//
1461// sqrt, sqrtf, sqrtl:
1462// * sqrt(expN(x)) -> expN(x*0.5)
1463// * sqrt(Nroot(x)) -> pow(x,1/(2*N))
1464// * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
1465//
1466// stpcpy:
1467// * stpcpy(str, "literal") ->
1468// llvm.memcpy(str,"literal",strlen("literal")+1,1)
1469// strrchr:
1470// * strrchr(s,c) -> reverse_offset_of_in(c,s)
1471// (if c is a constant integer and s is a constant string)
1472// * strrchr(s1,0) -> strchr(s1,0)
1473//
1474// strncat:
1475// * strncat(x,y,0) -> x
1476// * strncat(x,y,0) -> x (if strlen(y) = 0)
1477// * strncat(x,y,l) -> strcat(x,y) (if y and l are constants an l > strlen(y))
1478//
1479// strncpy:
1480// * strncpy(d,s,0) -> d
1481// * strncpy(d,s,l) -> memcpy(d,s,l,1)
1482// (if s and l are constants)
1483//
1484// strpbrk:
1485// * strpbrk(s,a) -> offset_in_for(s,a)
1486// (if s and a are both constant strings)
1487// * strpbrk(s,"") -> 0
1488// * strpbrk(s,a) -> strchr(s,a[0]) (if a is constant string of length 1)
1489//
1490// strspn, strcspn:
1491// * strspn(s,a) -> const_int (if both args are constant)
1492// * strspn("",a) -> 0
1493// * strspn(s,"") -> 0
1494// * strcspn(s,a) -> const_int (if both args are constant)
1495// * strcspn("",a) -> 0
1496// * strcspn(s,"") -> strlen(a)
1497//
1498// strstr:
1499// * strstr(x,x) -> x
1500// * strstr(s1,s2) -> offset_of_s2_in(s1)
1501// (if s1 and s2 are constant strings)
1502//
1503// tan, tanf, tanl:
1504// * tan(atan(x)) -> x
1505//
1506// trunc, truncf, truncl:
1507// * trunc(cnst) -> cnst'
1508//
1509//