blob: 313723cfefa09e4f74a5359eb95a9656ec23861b [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Assembly/Writer.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/Statistic.h"
36#include <algorithm>
Dan Gohman249ddbf2008-03-21 23:51:57 +000037#include <map>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038using namespace llvm;
39
40STATISTIC(NumLinear , "Number of insts linearized");
41STATISTIC(NumChanged, "Number of insts reassociated");
42STATISTIC(NumAnnihil, "Number of expr tree annihilated");
43STATISTIC(NumFactor , "Number of multiplies factored");
44
45namespace {
46 struct VISIBILITY_HIDDEN ValueEntry {
47 unsigned Rank;
48 Value *Op;
49 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
50 };
51 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
52 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
53 }
54}
55
56/// PrintOps - Print out the expression identified in the Ops list.
57///
58static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
59 Module *M = I->getParent()->getParent()->getParent();
60 cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner51216ad2008-08-19 04:45:19 +000061 << *Ops[0].Op->getType();
62 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
63 WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M);
64 cerr << "," << Ops[i].Rank;
65 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000066}
67
Dan Gohman089efff2008-05-13 00:00:25 +000068namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000069 class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
70 std::map<BasicBlock*, unsigned> RankMap;
71 std::map<Value*, unsigned> ValueRankMap;
72 bool MadeChange;
73 public:
74 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000075 Reassociate() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000076
77 bool runOnFunction(Function &F);
78
79 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
80 AU.setPreservesCFG();
81 }
82 private:
83 void BuildRankMap(Function &F);
84 unsigned getRank(Value *V);
85 void ReassociateExpression(BinaryOperator *I);
86 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
87 unsigned Idx = 0);
88 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
89 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
90 void LinearizeExpr(BinaryOperator *I);
91 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
92 void ReassociateBB(BasicBlock *BB);
93
94 void RemoveDeadBinaryOp(Value *V);
95 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +000096}
97
Dan Gohman089efff2008-05-13 00:00:25 +000098char Reassociate::ID = 0;
99static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
100
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000101// Public interface to the Reassociate pass
102FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
103
104void Reassociate::RemoveDeadBinaryOp(Value *V) {
105 Instruction *Op = dyn_cast<Instruction>(V);
106 if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
107 return;
108
109 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
110 RemoveDeadBinaryOp(LHS);
111 RemoveDeadBinaryOp(RHS);
112}
113
114
115static bool isUnmovableInstruction(Instruction *I) {
116 if (I->getOpcode() == Instruction::PHI ||
117 I->getOpcode() == Instruction::Alloca ||
118 I->getOpcode() == Instruction::Load ||
119 I->getOpcode() == Instruction::Malloc ||
120 I->getOpcode() == Instruction::Invoke ||
121 I->getOpcode() == Instruction::Call ||
122 I->getOpcode() == Instruction::UDiv ||
123 I->getOpcode() == Instruction::SDiv ||
124 I->getOpcode() == Instruction::FDiv ||
125 I->getOpcode() == Instruction::URem ||
126 I->getOpcode() == Instruction::SRem ||
127 I->getOpcode() == Instruction::FRem)
128 return true;
129 return false;
130}
131
132void Reassociate::BuildRankMap(Function &F) {
133 unsigned i = 2;
134
135 // Assign distinct ranks to function arguments
136 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
137 ValueRankMap[I] = ++i;
138
139 ReversePostOrderTraversal<Function*> RPOT(&F);
140 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
141 E = RPOT.end(); I != E; ++I) {
142 BasicBlock *BB = *I;
143 unsigned BBRank = RankMap[BB] = ++i << 16;
144
145 // Walk the basic block, adding precomputed ranks for any instructions that
146 // we cannot move. This ensures that the ranks for these instructions are
147 // all different in the block.
148 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
149 if (isUnmovableInstruction(I))
150 ValueRankMap[I] = ++BBRank;
151 }
152}
153
154unsigned Reassociate::getRank(Value *V) {
155 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
156
157 Instruction *I = dyn_cast<Instruction>(V);
158 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
159
160 unsigned &CachedRank = ValueRankMap[I];
161 if (CachedRank) return CachedRank; // Rank already known?
162
163 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
164 // we can reassociate expressions for code motion! Since we do not recurse
165 // for PHI nodes, we cannot have infinite recursion here, because there
166 // cannot be loops in the value graph that do not go through PHI nodes.
167 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
168 for (unsigned i = 0, e = I->getNumOperands();
169 i != e && Rank != MaxRank; ++i)
170 Rank = std::max(Rank, getRank(I->getOperand(i)));
171
172 // If this is a not or neg instruction, do not count it for rank. This
173 // assures us that X and ~X will have the same rank.
174 if (!I->getType()->isInteger() ||
175 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
176 ++Rank;
177
178 //DOUT << "Calculated Rank[" << V->getName() << "] = "
179 // << Rank << "\n";
180
181 return CachedRank = Rank;
182}
183
184/// isReassociableOp - Return true if V is an instruction of the specified
185/// opcode and if it only has one use.
186static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
187 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
188 cast<Instruction>(V)->getOpcode() == Opcode)
189 return cast<BinaryOperator>(V);
190 return 0;
191}
192
193/// LowerNegateToMultiply - Replace 0-X with X*-1.
194///
195static Instruction *LowerNegateToMultiply(Instruction *Neg) {
196 Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
197
Gabor Greifa645dd32008-05-16 19:29:10 +0000198 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000199 Res->takeName(Neg);
200 Neg->replaceAllUsesWith(Res);
201 Neg->eraseFromParent();
202 return Res;
203}
204
205// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
206// Note that if D is also part of the expression tree that we recurse to
207// linearize it as well. Besides that case, this does not recurse into A,B, or
208// C.
209void Reassociate::LinearizeExpr(BinaryOperator *I) {
210 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
211 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
212 assert(isReassociableOp(LHS, I->getOpcode()) &&
213 isReassociableOp(RHS, I->getOpcode()) &&
214 "Not an expression that needs linearization?");
215
216 DOUT << "Linear" << *LHS << *RHS << *I;
217
218 // Move the RHS instruction to live immediately before I, avoiding breaking
219 // dominator properties.
220 RHS->moveBefore(I);
221
222 // Move operands around to do the linearization.
223 I->setOperand(1, RHS->getOperand(0));
224 RHS->setOperand(0, LHS);
225 I->setOperand(0, RHS);
226
227 ++NumLinear;
228 MadeChange = true;
229 DOUT << "Linearized: " << *I;
230
231 // If D is part of this expression tree, tail recurse.
232 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
233 LinearizeExpr(I);
234}
235
236
237/// LinearizeExprTree - Given an associative binary expression tree, traverse
238/// all of the uses putting it into canonical form. This forces a left-linear
239/// form of the the expression (((a+b)+c)+d), and collects information about the
240/// rank of the non-tree operands.
241///
242/// NOTE: These intentionally destroys the expression tree operands (turning
243/// them into undef values) to reduce #uses of the values. This means that the
244/// caller MUST use something like RewriteExprTree to put the values back in.
245///
246void Reassociate::LinearizeExprTree(BinaryOperator *I,
247 std::vector<ValueEntry> &Ops) {
248 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
249 unsigned Opcode = I->getOpcode();
250
251 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
252 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
253 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
254
255 // If this is a multiply expression tree and it contains internal negations,
256 // transform them into multiplies by -1 so they can be reassociated.
257 if (I->getOpcode() == Instruction::Mul) {
258 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
259 LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
260 LHSBO = isReassociableOp(LHS, Opcode);
261 }
262 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
263 RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
264 RHSBO = isReassociableOp(RHS, Opcode);
265 }
266 }
267
268 if (!LHSBO) {
269 if (!RHSBO) {
270 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
271 // such, just remember these operands and their rank.
272 Ops.push_back(ValueEntry(getRank(LHS), LHS));
273 Ops.push_back(ValueEntry(getRank(RHS), RHS));
274
275 // Clear the leaves out.
276 I->setOperand(0, UndefValue::get(I->getType()));
277 I->setOperand(1, UndefValue::get(I->getType()));
278 return;
279 } else {
280 // Turn X+(Y+Z) -> (Y+Z)+X
281 std::swap(LHSBO, RHSBO);
282 std::swap(LHS, RHS);
283 bool Success = !I->swapOperands();
284 assert(Success && "swapOperands failed");
285 MadeChange = true;
286 }
287 } else if (RHSBO) {
288 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
289 // part of the expression tree.
290 LinearizeExpr(I);
291 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
292 RHS = I->getOperand(1);
293 RHSBO = 0;
294 }
295
296 // Okay, now we know that the LHS is a nested expression and that the RHS is
297 // not. Perform reassociation.
298 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
299
300 // Move LHS right before I to make sure that the tree expression dominates all
301 // values.
302 LHSBO->moveBefore(I);
303
304 // Linearize the expression tree on the LHS.
305 LinearizeExprTree(LHSBO, Ops);
306
307 // Remember the RHS operand and its rank.
308 Ops.push_back(ValueEntry(getRank(RHS), RHS));
309
310 // Clear the RHS leaf out.
311 I->setOperand(1, UndefValue::get(I->getType()));
312}
313
314// RewriteExprTree - Now that the operands for this expression tree are
315// linearized and optimized, emit them in-order. This function is written to be
316// tail recursive.
317void Reassociate::RewriteExprTree(BinaryOperator *I,
318 std::vector<ValueEntry> &Ops,
319 unsigned i) {
320 if (i+2 == Ops.size()) {
321 if (I->getOperand(0) != Ops[i].Op ||
322 I->getOperand(1) != Ops[i+1].Op) {
323 Value *OldLHS = I->getOperand(0);
324 DOUT << "RA: " << *I;
325 I->setOperand(0, Ops[i].Op);
326 I->setOperand(1, Ops[i+1].Op);
327 DOUT << "TO: " << *I;
328 MadeChange = true;
329 ++NumChanged;
330
331 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
332 // delete the extra, now dead, nodes.
333 RemoveDeadBinaryOp(OldLHS);
334 }
335 return;
336 }
337 assert(i+2 < Ops.size() && "Ops index out of range!");
338
339 if (I->getOperand(1) != Ops[i].Op) {
340 DOUT << "RA: " << *I;
341 I->setOperand(1, Ops[i].Op);
342 DOUT << "TO: " << *I;
343 MadeChange = true;
344 ++NumChanged;
345 }
346
347 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
348 assert(LHS->getOpcode() == I->getOpcode() &&
349 "Improper expression tree!");
350
351 // Compactify the tree instructions together with each other to guarantee
352 // that the expression tree is dominated by all of Ops.
353 LHS->moveBefore(I);
354 RewriteExprTree(LHS, Ops, i+1);
355}
356
357
358
359// NegateValue - Insert instructions before the instruction pointed to by BI,
360// that computes the negative version of the value specified. The negative
361// version of the value is returned, and BI is left pointing at the instruction
362// that should be processed next by the reassociation pass.
363//
364static Value *NegateValue(Value *V, Instruction *BI) {
365 // We are trying to expose opportunity for reassociation. One of the things
366 // that we want to do to achieve this is to push a negation as deep into an
367 // expression chain as possible, to expose the add instructions. In practice,
368 // this means that we turn this:
369 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
370 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
371 // the constants. We assume that instcombine will clean up the mess later if
372 // we introduce tons of unnecessary negation instructions...
373 //
374 if (Instruction *I = dyn_cast<Instruction>(V))
375 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
376 // Push the negates through the add.
377 I->setOperand(0, NegateValue(I->getOperand(0), BI));
378 I->setOperand(1, NegateValue(I->getOperand(1), BI));
379
380 // We must move the add instruction here, because the neg instructions do
381 // not dominate the old add instruction in general. By moving it, we are
382 // assured that the neg instructions we just inserted dominate the
383 // instruction we are about to insert after them.
384 //
385 I->moveBefore(BI);
386 I->setName(I->getName()+".neg");
387 return I;
388 }
389
390 // Insert a 'neg' instruction that subtracts the value from zero to get the
391 // negation.
392 //
Gabor Greifa645dd32008-05-16 19:29:10 +0000393 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000394}
395
Chris Lattner6cf17172008-02-17 20:44:51 +0000396/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
397/// X-Y into (X + -Y).
398static bool ShouldBreakUpSubtract(Instruction *Sub) {
399 // If this is a negation, we can't split it up!
400 if (BinaryOperator::isNeg(Sub))
401 return false;
402
403 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner4846b312008-02-17 20:51:26 +0000404 // subtract or if this is only used by one.
405 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
406 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000407 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000408 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner720f2ba2008-02-17 20:54:40 +0000409 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000410 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000411 if (Sub->hasOneUse() &&
412 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
413 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner6cf17172008-02-17 20:44:51 +0000414 return true;
415
416 return false;
417}
418
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000419/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
420/// only used by an add, transform this into (X+(0-Y)) to promote better
421/// reassociation.
422static Instruction *BreakUpSubtract(Instruction *Sub) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000423 // Convert a subtract into an add and a neg instruction... so that sub
424 // instructions can be commuted with other add instructions...
425 //
426 // Calculate the negative value of Operand 1 of the sub instruction...
427 // and set it as the RHS of the add instruction we just made...
428 //
429 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
430 Instruction *New =
Gabor Greifa645dd32008-05-16 19:29:10 +0000431 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000432 New->takeName(Sub);
433
434 // Everyone now refers to the add instruction.
435 Sub->replaceAllUsesWith(New);
436 Sub->eraseFromParent();
437
438 DOUT << "Negated: " << *New;
439 return New;
440}
441
442/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
443/// by one, change this into a multiply by a constant to assist with further
444/// reassociation.
445static Instruction *ConvertShiftToMul(Instruction *Shl) {
446 // If an operand of this shift is a reassociable multiply, or if the shift
447 // is used by a reassociable multiply or add, turn into a multiply.
448 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
449 (Shl->hasOneUse() &&
450 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
451 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
452 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
453 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
454
Gabor Greifa645dd32008-05-16 19:29:10 +0000455 Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000456 "", Shl);
457 Mul->takeName(Shl);
458 Shl->replaceAllUsesWith(Mul);
459 Shl->eraseFromParent();
460 return Mul;
461 }
462 return 0;
463}
464
465// Scan backwards and forwards among values with the same rank as element i to
466// see if X exists. If X does not exist, return i.
467static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
468 Value *X) {
469 unsigned XRank = Ops[i].Rank;
470 unsigned e = Ops.size();
471 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
472 if (Ops[j].Op == X)
473 return j;
474 // Scan backwards
475 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
476 if (Ops[j].Op == X)
477 return j;
478 return i;
479}
480
481/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
482/// and returning the result. Insert the tree before I.
483static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
484 if (Ops.size() == 1) return Ops.back();
485
486 Value *V1 = Ops.back();
487 Ops.pop_back();
488 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greifa645dd32008-05-16 19:29:10 +0000489 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000490}
491
492/// RemoveFactorFromExpression - If V is an expression tree that is a
493/// multiplication sequence, and if this sequence contains a multiply by Factor,
494/// remove Factor from the tree and return the new tree.
495Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
496 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
497 if (!BO) return 0;
498
499 std::vector<ValueEntry> Factors;
500 LinearizeExprTree(BO, Factors);
501
502 bool FoundFactor = false;
503 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
504 if (Factors[i].Op == Factor) {
505 FoundFactor = true;
506 Factors.erase(Factors.begin()+i);
507 break;
508 }
509 if (!FoundFactor) {
510 // Make sure to restore the operands to the expression tree.
511 RewriteExprTree(BO, Factors);
512 return 0;
513 }
514
515 if (Factors.size() == 1) return Factors[0].Op;
516
517 RewriteExprTree(BO, Factors);
518 return BO;
519}
520
521/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
522/// add its operands as factors, otherwise add V to the list of factors.
523static void FindSingleUseMultiplyFactors(Value *V,
524 std::vector<Value*> &Factors) {
525 BinaryOperator *BO;
526 if ((!V->hasOneUse() && !V->use_empty()) ||
527 !(BO = dyn_cast<BinaryOperator>(V)) ||
528 BO->getOpcode() != Instruction::Mul) {
529 Factors.push_back(V);
530 return;
531 }
532
533 // Otherwise, add the LHS and RHS to the list of factors.
534 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
535 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
536}
537
538
539
540Value *Reassociate::OptimizeExpression(BinaryOperator *I,
541 std::vector<ValueEntry> &Ops) {
542 // Now that we have the linearized expression tree, try to optimize it.
543 // Start by folding any constants that we found.
544 bool IterateOptimization = false;
545 if (Ops.size() == 1) return Ops[0].Op;
546
547 unsigned Opcode = I->getOpcode();
548
549 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
550 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
551 Ops.pop_back();
552 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
553 return OptimizeExpression(I, Ops);
554 }
555
556 // Check for destructive annihilation due to a constant being used.
557 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
558 switch (Opcode) {
559 default: break;
560 case Instruction::And:
561 if (CstVal->isZero()) { // ... & 0 -> 0
562 ++NumAnnihil;
563 return CstVal;
564 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
565 Ops.pop_back();
566 }
567 break;
568 case Instruction::Mul:
569 if (CstVal->isZero()) { // ... * 0 -> 0
570 ++NumAnnihil;
571 return CstVal;
572 } else if (cast<ConstantInt>(CstVal)->isOne()) {
573 Ops.pop_back(); // ... * 1 -> ...
574 }
575 break;
576 case Instruction::Or:
577 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
578 ++NumAnnihil;
579 return CstVal;
580 }
581 // FALLTHROUGH!
582 case Instruction::Add:
583 case Instruction::Xor:
584 if (CstVal->isZero()) // ... [|^+] 0 -> ...
585 Ops.pop_back();
586 break;
587 }
588 if (Ops.size() == 1) return Ops[0].Op;
589
590 // Handle destructive annihilation do to identities between elements in the
591 // argument list here.
592 switch (Opcode) {
593 default: break;
594 case Instruction::And:
595 case Instruction::Or:
596 case Instruction::Xor:
597 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
598 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
599 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
600 // First, check for X and ~X in the operand list.
601 assert(i < Ops.size());
602 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
603 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
604 unsigned FoundX = FindInOperandList(Ops, i, X);
605 if (FoundX != i) {
606 if (Opcode == Instruction::And) { // ...&X&~X = 0
607 ++NumAnnihil;
608 return Constant::getNullValue(X->getType());
609 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
610 ++NumAnnihil;
611 return ConstantInt::getAllOnesValue(X->getType());
612 }
613 }
614 }
615
616 // Next, check for duplicate pairs of values, which we assume are next to
617 // each other, due to our sorting criteria.
618 assert(i < Ops.size());
619 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
620 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
621 // Drop duplicate values.
622 Ops.erase(Ops.begin()+i);
623 --i; --e;
624 IterateOptimization = true;
625 ++NumAnnihil;
626 } else {
627 assert(Opcode == Instruction::Xor);
628 if (e == 2) {
629 ++NumAnnihil;
630 return Constant::getNullValue(Ops[0].Op->getType());
631 }
632 // ... X^X -> ...
633 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
634 i -= 1; e -= 2;
635 IterateOptimization = true;
636 ++NumAnnihil;
637 }
638 }
639 }
640 break;
641
642 case Instruction::Add:
643 // Scan the operand lists looking for X and -X pairs. If we find any, we
644 // can simplify the expression. X+-X == 0.
645 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
646 assert(i < Ops.size());
647 // Check for X and -X in the operand list.
648 if (BinaryOperator::isNeg(Ops[i].Op)) {
649 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
650 unsigned FoundX = FindInOperandList(Ops, i, X);
651 if (FoundX != i) {
652 // Remove X and -X from the operand list.
653 if (Ops.size() == 2) {
654 ++NumAnnihil;
655 return Constant::getNullValue(X->getType());
656 } else {
657 Ops.erase(Ops.begin()+i);
658 if (i < FoundX)
659 --FoundX;
660 else
661 --i; // Need to back up an extra one.
662 Ops.erase(Ops.begin()+FoundX);
663 IterateOptimization = true;
664 ++NumAnnihil;
665 --i; // Revisit element.
666 e -= 2; // Removed two elements.
667 }
668 }
669 }
670 }
671
672
673 // Scan the operand list, checking to see if there are any common factors
674 // between operands. Consider something like A*A+A*B*C+D. We would like to
675 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
676 // To efficiently find this, we count the number of times a factor occurs
677 // for any ADD operands that are MULs.
678 std::map<Value*, unsigned> FactorOccurrences;
679 unsigned MaxOcc = 0;
680 Value *MaxOccVal = 0;
681 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
682 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
683 if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
684 // Compute all of the factors of this added value.
685 std::vector<Value*> Factors;
686 FindSingleUseMultiplyFactors(BOp, Factors);
687 assert(Factors.size() > 1 && "Bad linearize!");
688
689 // Add one to FactorOccurrences for each unique factor in this op.
690 if (Factors.size() == 2) {
691 unsigned Occ = ++FactorOccurrences[Factors[0]];
692 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
693 if (Factors[0] != Factors[1]) { // Don't double count A*A.
694 Occ = ++FactorOccurrences[Factors[1]];
695 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
696 }
697 } else {
698 std::set<Value*> Duplicates;
699 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
700 if (Duplicates.insert(Factors[i]).second) {
701 unsigned Occ = ++FactorOccurrences[Factors[i]];
702 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
703 }
704 }
705 }
706 }
707 }
708 }
709
710 // If any factor occurred more than one time, we can pull it out.
711 if (MaxOcc > 1) {
712 DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
713
714 // Create a new instruction that uses the MaxOccVal twice. If we don't do
715 // this, we could otherwise run into situations where removing a factor
716 // from an expression will drop a use of maxocc, and this can cause
717 // RemoveFactorFromExpression on successive values to behave differently.
Gabor Greifa645dd32008-05-16 19:29:10 +0000718 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000719 std::vector<Value*> NewMulOps;
720 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
721 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
722 NewMulOps.push_back(V);
723 Ops.erase(Ops.begin()+i);
724 --i; --e;
725 }
726 }
727
728 // No need for extra uses anymore.
729 delete DummyInst;
730
731 unsigned NumAddedValues = NewMulOps.size();
732 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Gabor Greifa645dd32008-05-16 19:29:10 +0000733 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000734
735 // Now that we have inserted V and its sole use, optimize it. This allows
736 // us to handle cases that require multiple factoring steps, such as this:
737 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
738 if (NumAddedValues > 1)
739 ReassociateExpression(cast<BinaryOperator>(V));
740
741 ++NumFactor;
742
Dan Gohman301f4052008-01-29 13:02:09 +0000743 if (Ops.empty())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000744 return V2;
745
746 // Add the new value to the list of things being added.
747 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
748
749 // Rewrite the tree so that there is now a use of V.
750 RewriteExprTree(I, Ops);
751 return OptimizeExpression(I, Ops);
752 }
753 break;
754 //case Instruction::Mul:
755 }
756
757 if (IterateOptimization)
758 return OptimizeExpression(I, Ops);
759 return 0;
760}
761
762
763/// ReassociateBB - Inspect all of the instructions in this basic block,
764/// reassociating them as we go.
765void Reassociate::ReassociateBB(BasicBlock *BB) {
766 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
767 Instruction *BI = BBI++;
768 if (BI->getOpcode() == Instruction::Shl &&
769 isa<ConstantInt>(BI->getOperand(1)))
770 if (Instruction *NI = ConvertShiftToMul(BI)) {
771 MadeChange = true;
772 BI = NI;
773 }
774
775 // Reject cases where it is pointless to do this.
776 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
777 isa<VectorType>(BI->getType()))
778 continue; // Floating point ops are not associative.
779
780 // If this is a subtract instruction which is not already in negate form,
781 // see if we can convert it to X+-Y.
782 if (BI->getOpcode() == Instruction::Sub) {
Chris Lattner6cf17172008-02-17 20:44:51 +0000783 if (ShouldBreakUpSubtract(BI)) {
Chris Lattnerb0cd25e2008-02-18 02:18:25 +0000784 BI = BreakUpSubtract(BI);
785 MadeChange = true;
Chris Lattner6cf17172008-02-17 20:44:51 +0000786 } else if (BinaryOperator::isNeg(BI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000787 // Otherwise, this is a negation. See if the operand is a multiply tree
788 // and if this is not an inner node of a multiply tree.
789 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
790 (!BI->hasOneUse() ||
791 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
792 BI = LowerNegateToMultiply(BI);
793 MadeChange = true;
794 }
795 }
796 }
797
798 // If this instruction is a commutative binary operator, process it.
799 if (!BI->isAssociative()) continue;
800 BinaryOperator *I = cast<BinaryOperator>(BI);
801
802 // If this is an interior node of a reassociable tree, ignore it until we
803 // get to the root of the tree, to avoid N^2 analysis.
804 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
805 continue;
806
807 // If this is an add tree that is used by a sub instruction, ignore it
808 // until we process the subtract.
809 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
810 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
811 continue;
812
813 ReassociateExpression(I);
814 }
815}
816
817void Reassociate::ReassociateExpression(BinaryOperator *I) {
818
819 // First, walk the expression tree, linearizing the tree, collecting
820 std::vector<ValueEntry> Ops;
821 LinearizeExprTree(I, Ops);
822
823 DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
824
825 // Now that we have linearized the tree to a list and have gathered all of
826 // the operands and their ranks, sort the operands by their rank. Use a
827 // stable_sort so that values with equal ranks will have their relative
828 // positions maintained (and so the compiler is deterministic). Note that
829 // this sorts so that the highest ranking values end up at the beginning of
830 // the vector.
831 std::stable_sort(Ops.begin(), Ops.end());
832
833 // OptimizeExpression - Now that we have the expression tree in a convenient
834 // sorted form, optimize it globally if possible.
835 if (Value *V = OptimizeExpression(I, Ops)) {
836 // This expression tree simplified to something that isn't a tree,
837 // eliminate it.
838 DOUT << "Reassoc to scalar: " << *V << "\n";
839 I->replaceAllUsesWith(V);
840 RemoveDeadBinaryOp(I);
841 return;
842 }
843
844 // We want to sink immediates as deeply as possible except in the case where
845 // this is a multiply tree used only by an add, and the immediate is a -1.
846 // In this case we reassociate to put the negation on the outside so that we
847 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
848 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
849 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
850 isa<ConstantInt>(Ops.back().Op) &&
851 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
852 Ops.insert(Ops.begin(), Ops.back());
853 Ops.pop_back();
854 }
855
856 DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
857
858 if (Ops.size() == 1) {
859 // This expression tree simplified to something that isn't a tree,
860 // eliminate it.
861 I->replaceAllUsesWith(Ops[0].Op);
862 RemoveDeadBinaryOp(I);
863 } else {
864 // Now that we ordered and optimized the expressions, splat them back into
865 // the expression tree, removing any unneeded nodes.
866 RewriteExprTree(I, Ops);
867 }
868}
869
870
871bool Reassociate::runOnFunction(Function &F) {
872 // Recalculate the rank map for F
873 BuildRankMap(F);
874
875 MadeChange = false;
876 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
877 ReassociateBB(FI);
878
879 // We are done with the rank map...
880 RankMap.clear();
881 ValueRankMap.clear();
882 return MadeChange;
883}
884