blob: 39163e40504eec1cc14b4a129116bcdee9390c59 [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- SimplifyCFG.cpp - Code to perform CFG simplification ---------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// Peephole optimize the CFG.
11//
12//===----------------------------------------------------------------------===//
13
14#define DEBUG_TYPE "simplifycfg"
15#include "llvm/Transforms/Utils/Local.h"
16#include "llvm/Constants.h"
17#include "llvm/Instructions.h"
18#include "llvm/Type.h"
19#include "llvm/DerivedTypes.h"
20#include "llvm/Support/CFG.h"
21#include "llvm/Support/Debug.h"
22#include "llvm/Analysis/ConstantFolding.h"
23#include "llvm/Transforms/Utils/BasicBlockUtils.h"
24#include "llvm/ADT/SmallVector.h"
25#include "llvm/ADT/SmallPtrSet.h"
Evan Cheng24541a62008-06-12 21:15:59 +000026#include "llvm/ADT/Statistic.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000027#include <algorithm>
28#include <functional>
29#include <set>
30#include <map>
31using namespace llvm;
32
Evan Cheng24541a62008-06-12 21:15:59 +000033STATISTIC(NumSpeculations, "Number of speculative executed instructions");
34
Dan Gohmanf17a25c2007-07-18 16:29:46 +000035/// SafeToMergeTerminators - Return true if it is safe to merge these two
36/// terminator instructions together.
37///
38static bool SafeToMergeTerminators(TerminatorInst *SI1, TerminatorInst *SI2) {
39 if (SI1 == SI2) return false; // Can't merge with self!
40
41 // It is not safe to merge these two switch instructions if they have a common
42 // successor, and if that successor has a PHI node, and if *that* PHI node has
43 // conflicting incoming values from the two switch blocks.
44 BasicBlock *SI1BB = SI1->getParent();
45 BasicBlock *SI2BB = SI2->getParent();
46 SmallPtrSet<BasicBlock*, 16> SI1Succs(succ_begin(SI1BB), succ_end(SI1BB));
47
48 for (succ_iterator I = succ_begin(SI2BB), E = succ_end(SI2BB); I != E; ++I)
49 if (SI1Succs.count(*I))
50 for (BasicBlock::iterator BBI = (*I)->begin();
51 isa<PHINode>(BBI); ++BBI) {
52 PHINode *PN = cast<PHINode>(BBI);
53 if (PN->getIncomingValueForBlock(SI1BB) !=
54 PN->getIncomingValueForBlock(SI2BB))
55 return false;
56 }
57
58 return true;
59}
60
61/// AddPredecessorToBlock - Update PHI nodes in Succ to indicate that there will
62/// now be entries in it from the 'NewPred' block. The values that will be
63/// flowing into the PHI nodes will be the same as those coming in from
64/// ExistPred, an existing predecessor of Succ.
65static void AddPredecessorToBlock(BasicBlock *Succ, BasicBlock *NewPred,
66 BasicBlock *ExistPred) {
67 assert(std::find(succ_begin(ExistPred), succ_end(ExistPred), Succ) !=
68 succ_end(ExistPred) && "ExistPred is not a predecessor of Succ!");
69 if (!isa<PHINode>(Succ->begin())) return; // Quick exit if nothing to do
70
Chris Lattner6339ac32008-07-13 22:23:11 +000071 PHINode *PN;
72 for (BasicBlock::iterator I = Succ->begin();
73 (PN = dyn_cast<PHINode>(I)); ++I)
74 PN->addIncoming(PN->getIncomingValueForBlock(ExistPred), NewPred);
Dan Gohmanf17a25c2007-07-18 16:29:46 +000075}
76
77// CanPropagatePredecessorsForPHIs - Return true if we can fold BB, an
78// almost-empty BB ending in an unconditional branch to Succ, into succ.
79//
80// Assumption: Succ is the single successor for BB.
81//
82static bool CanPropagatePredecessorsForPHIs(BasicBlock *BB, BasicBlock *Succ) {
83 assert(*succ_begin(BB) == Succ && "Succ is not successor of BB!");
84
Matthijs Kooijman8f3c6ca2008-05-23 09:09:41 +000085 DOUT << "Looking to fold " << BB->getNameStart() << " into "
86 << Succ->getNameStart() << "\n";
87 // Shortcut, if there is only a single predecessor is must be BB and merging
88 // is always safe
89 if (Succ->getSinglePredecessor()) return true;
90
91 typedef SmallPtrSet<Instruction*, 16> InstrSet;
92 InstrSet BBPHIs;
93
94 // Make a list of all phi nodes in BB
95 BasicBlock::iterator BBI = BB->begin();
96 while (isa<PHINode>(*BBI)) BBPHIs.insert(BBI++);
97
98 // Make a list of the predecessors of BB
99 typedef SmallPtrSet<BasicBlock*, 16> BlockSet;
100 BlockSet BBPreds(pred_begin(BB), pred_end(BB));
101
102 // Use that list to make another list of common predecessors of BB and Succ
103 BlockSet CommonPreds;
104 for (pred_iterator PI = pred_begin(Succ), PE = pred_end(Succ);
105 PI != PE; ++PI)
106 if (BBPreds.count(*PI))
107 CommonPreds.insert(*PI);
108
109 // Shortcut, if there are no common predecessors, merging is always safe
Dan Gohmanc8424de2008-08-14 18:13:49 +0000110 if (CommonPreds.empty())
Matthijs Kooijman8f3c6ca2008-05-23 09:09:41 +0000111 return true;
112
113 // Look at all the phi nodes in Succ, to see if they present a conflict when
114 // merging these blocks
115 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
116 PHINode *PN = cast<PHINode>(I);
117
118 // If the incoming value from BB is again a PHINode in
119 // BB which has the same incoming value for *PI as PN does, we can
120 // merge the phi nodes and then the blocks can still be merged
121 PHINode *BBPN = dyn_cast<PHINode>(PN->getIncomingValueForBlock(BB));
122 if (BBPN && BBPN->getParent() == BB) {
123 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
124 PI != PE; PI++) {
125 if (BBPN->getIncomingValueForBlock(*PI)
126 != PN->getIncomingValueForBlock(*PI)) {
127 DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
128 << Succ->getNameStart() << " is conflicting with "
129 << BBPN->getNameStart() << " with regard to common predecessor "
130 << (*PI)->getNameStart() << "\n";
131 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000132 }
133 }
Matthijs Kooijman8f3c6ca2008-05-23 09:09:41 +0000134 // Remove this phinode from the list of phis in BB, since it has been
135 // handled.
136 BBPHIs.erase(BBPN);
137 } else {
138 Value* Val = PN->getIncomingValueForBlock(BB);
139 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
140 PI != PE; PI++) {
141 // See if the incoming value for the common predecessor is equal to the
142 // one for BB, in which case this phi node will not prevent the merging
143 // of the block.
144 if (Val != PN->getIncomingValueForBlock(*PI)) {
145 DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
146 << Succ->getNameStart() << " is conflicting with regard to common "
147 << "predecessor " << (*PI)->getNameStart() << "\n";
148 return false;
149 }
150 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000151 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000152 }
Matthijs Kooijman8f3c6ca2008-05-23 09:09:41 +0000153
154 // If there are any other phi nodes in BB that don't have a phi node in Succ
155 // to merge with, they must be moved to Succ completely. However, for any
156 // predecessors of Succ, branches will be added to the phi node that just
157 // point to itself. So, for any common predecessors, this must not cause
158 // conflicts.
159 for (InstrSet::iterator I = BBPHIs.begin(), E = BBPHIs.end();
160 I != E; I++) {
161 PHINode *PN = cast<PHINode>(*I);
162 for (BlockSet::iterator PI = CommonPreds.begin(), PE = CommonPreds.end();
163 PI != PE; PI++)
164 if (PN->getIncomingValueForBlock(*PI) != PN) {
165 DOUT << "Can't fold, phi node " << *PN->getNameStart() << " in "
166 << BB->getNameStart() << " is conflicting with regard to common "
167 << "predecessor " << (*PI)->getNameStart() << "\n";
168 return false;
169 }
170 }
171
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000172 return true;
173}
174
175/// TryToSimplifyUncondBranchFromEmptyBlock - BB contains an unconditional
176/// branch to Succ, and contains no instructions other than PHI nodes and the
177/// branch. If possible, eliminate BB.
178static bool TryToSimplifyUncondBranchFromEmptyBlock(BasicBlock *BB,
179 BasicBlock *Succ) {
Matthijs Kooijman8f3c6ca2008-05-23 09:09:41 +0000180 // Check to see if merging these blocks would cause conflicts for any of the
181 // phi nodes in BB or Succ. If not, we can safely merge.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000182 if (!CanPropagatePredecessorsForPHIs(BB, Succ)) return false;
183
184 DOUT << "Killing Trivial BB: \n" << *BB;
185
186 if (isa<PHINode>(Succ->begin())) {
187 // If there is more than one pred of succ, and there are PHI nodes in
188 // the successor, then we need to add incoming edges for the PHI nodes
189 //
Chris Lattner3b4482022008-02-18 07:42:56 +0000190 const SmallVector<BasicBlock*, 16> BBPreds(pred_begin(BB), pred_end(BB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000191
192 // Loop over all of the PHI nodes in the successor of BB.
193 for (BasicBlock::iterator I = Succ->begin(); isa<PHINode>(I); ++I) {
194 PHINode *PN = cast<PHINode>(I);
195 Value *OldVal = PN->removeIncomingValue(BB, false);
196 assert(OldVal && "No entry in PHI for Pred BB!");
197
198 // If this incoming value is one of the PHI nodes in BB, the new entries
199 // in the PHI node are the entries from the old PHI.
200 if (isa<PHINode>(OldVal) && cast<PHINode>(OldVal)->getParent() == BB) {
201 PHINode *OldValPN = cast<PHINode>(OldVal);
202 for (unsigned i = 0, e = OldValPN->getNumIncomingValues(); i != e; ++i)
Matthijs Kooijman8f3c6ca2008-05-23 09:09:41 +0000203 // Note that, since we are merging phi nodes and BB and Succ might
204 // have common predecessors, we could end up with a phi node with
205 // identical incoming branches. This will be cleaned up later (and
206 // will trigger asserts if we try to clean it up now, without also
207 // simplifying the corresponding conditional branch).
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000208 PN->addIncoming(OldValPN->getIncomingValue(i),
209 OldValPN->getIncomingBlock(i));
210 } else {
Chris Lattner3b4482022008-02-18 07:42:56 +0000211 // Add an incoming value for each of the new incoming values.
212 for (unsigned i = 0, e = BBPreds.size(); i != e; ++i)
213 PN->addIncoming(OldVal, BBPreds[i]);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000214 }
215 }
216 }
217
218 if (isa<PHINode>(&BB->front())) {
Chris Lattner3b4482022008-02-18 07:42:56 +0000219 SmallVector<BasicBlock*, 16>
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000220 OldSuccPreds(pred_begin(Succ), pred_end(Succ));
221
222 // Move all PHI nodes in BB to Succ if they are alive, otherwise
223 // delete them.
224 while (PHINode *PN = dyn_cast<PHINode>(&BB->front()))
225 if (PN->use_empty()) {
226 // Just remove the dead phi. This happens if Succ's PHIs were the only
227 // users of the PHI nodes.
228 PN->eraseFromParent();
229 } else {
Matthijs Kooijman8f3c6ca2008-05-23 09:09:41 +0000230 // The instruction is alive, so this means that BB must dominate all
231 // predecessors of Succ (Since all uses of the PN are after its
232 // definition, so in Succ or a block dominated by Succ. If a predecessor
233 // of Succ would not be dominated by BB, PN would violate the def before
234 // use SSA demand). Therefore, we can simply move the phi node to the
235 // next block.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000236 Succ->getInstList().splice(Succ->begin(),
237 BB->getInstList(), BB->begin());
238
239 // We need to add new entries for the PHI node to account for
240 // predecessors of Succ that the PHI node does not take into
Matthijs Kooijman8f3c6ca2008-05-23 09:09:41 +0000241 // account. At this point, since we know that BB dominated succ and all
242 // of its predecessors, this means that we should any newly added
243 // incoming edges should use the PHI node itself as the value for these
244 // edges, because they are loop back edges.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000245 for (unsigned i = 0, e = OldSuccPreds.size(); i != e; ++i)
246 if (OldSuccPreds[i] != BB)
247 PN->addIncoming(PN, OldSuccPreds[i]);
248 }
249 }
250
251 // Everything that jumped to BB now goes to Succ.
252 BB->replaceAllUsesWith(Succ);
253 if (!Succ->hasName()) Succ->takeName(BB);
254 BB->eraseFromParent(); // Delete the old basic block.
255 return true;
256}
257
258/// GetIfCondition - Given a basic block (BB) with two predecessors (and
259/// presumably PHI nodes in it), check to see if the merge at this block is due
260/// to an "if condition". If so, return the boolean condition that determines
261/// which entry into BB will be taken. Also, return by references the block
262/// that will be entered from if the condition is true, and the block that will
263/// be entered if the condition is false.
264///
265///
266static Value *GetIfCondition(BasicBlock *BB,
267 BasicBlock *&IfTrue, BasicBlock *&IfFalse) {
268 assert(std::distance(pred_begin(BB), pred_end(BB)) == 2 &&
269 "Function can only handle blocks with 2 predecessors!");
270 BasicBlock *Pred1 = *pred_begin(BB);
271 BasicBlock *Pred2 = *++pred_begin(BB);
272
273 // We can only handle branches. Other control flow will be lowered to
274 // branches if possible anyway.
275 if (!isa<BranchInst>(Pred1->getTerminator()) ||
276 !isa<BranchInst>(Pred2->getTerminator()))
277 return 0;
278 BranchInst *Pred1Br = cast<BranchInst>(Pred1->getTerminator());
279 BranchInst *Pred2Br = cast<BranchInst>(Pred2->getTerminator());
280
281 // Eliminate code duplication by ensuring that Pred1Br is conditional if
282 // either are.
283 if (Pred2Br->isConditional()) {
284 // If both branches are conditional, we don't have an "if statement". In
285 // reality, we could transform this case, but since the condition will be
286 // required anyway, we stand no chance of eliminating it, so the xform is
287 // probably not profitable.
288 if (Pred1Br->isConditional())
289 return 0;
290
291 std::swap(Pred1, Pred2);
292 std::swap(Pred1Br, Pred2Br);
293 }
294
295 if (Pred1Br->isConditional()) {
296 // If we found a conditional branch predecessor, make sure that it branches
297 // to BB and Pred2Br. If it doesn't, this isn't an "if statement".
298 if (Pred1Br->getSuccessor(0) == BB &&
299 Pred1Br->getSuccessor(1) == Pred2) {
300 IfTrue = Pred1;
301 IfFalse = Pred2;
302 } else if (Pred1Br->getSuccessor(0) == Pred2 &&
303 Pred1Br->getSuccessor(1) == BB) {
304 IfTrue = Pred2;
305 IfFalse = Pred1;
306 } else {
307 // We know that one arm of the conditional goes to BB, so the other must
308 // go somewhere unrelated, and this must not be an "if statement".
309 return 0;
310 }
311
312 // The only thing we have to watch out for here is to make sure that Pred2
313 // doesn't have incoming edges from other blocks. If it does, the condition
314 // doesn't dominate BB.
315 if (++pred_begin(Pred2) != pred_end(Pred2))
316 return 0;
317
318 return Pred1Br->getCondition();
319 }
320
321 // Ok, if we got here, both predecessors end with an unconditional branch to
322 // BB. Don't panic! If both blocks only have a single (identical)
323 // predecessor, and THAT is a conditional branch, then we're all ok!
324 if (pred_begin(Pred1) == pred_end(Pred1) ||
325 ++pred_begin(Pred1) != pred_end(Pred1) ||
326 pred_begin(Pred2) == pred_end(Pred2) ||
327 ++pred_begin(Pred2) != pred_end(Pred2) ||
328 *pred_begin(Pred1) != *pred_begin(Pred2))
329 return 0;
330
331 // Otherwise, if this is a conditional branch, then we can use it!
332 BasicBlock *CommonPred = *pred_begin(Pred1);
333 if (BranchInst *BI = dyn_cast<BranchInst>(CommonPred->getTerminator())) {
334 assert(BI->isConditional() && "Two successors but not conditional?");
335 if (BI->getSuccessor(0) == Pred1) {
336 IfTrue = Pred1;
337 IfFalse = Pred2;
338 } else {
339 IfTrue = Pred2;
340 IfFalse = Pred1;
341 }
342 return BI->getCondition();
343 }
344 return 0;
345}
346
347
348// If we have a merge point of an "if condition" as accepted above, return true
349// if the specified value dominates the block. We don't handle the true
350// generality of domination here, just a special case which works well enough
351// for us.
352//
353// If AggressiveInsts is non-null, and if V does not dominate BB, we check to
354// see if V (which must be an instruction) is cheap to compute and is
355// non-trapping. If both are true, the instruction is inserted into the set and
356// true is returned.
357static bool DominatesMergePoint(Value *V, BasicBlock *BB,
358 std::set<Instruction*> *AggressiveInsts) {
359 Instruction *I = dyn_cast<Instruction>(V);
360 if (!I) {
361 // Non-instructions all dominate instructions, but not all constantexprs
362 // can be executed unconditionally.
363 if (ConstantExpr *C = dyn_cast<ConstantExpr>(V))
364 if (C->canTrap())
365 return false;
366 return true;
367 }
368 BasicBlock *PBB = I->getParent();
369
370 // We don't want to allow weird loops that might have the "if condition" in
371 // the bottom of this block.
372 if (PBB == BB) return false;
373
374 // If this instruction is defined in a block that contains an unconditional
375 // branch to BB, then it must be in the 'conditional' part of the "if
376 // statement".
377 if (BranchInst *BI = dyn_cast<BranchInst>(PBB->getTerminator()))
378 if (BI->isUnconditional() && BI->getSuccessor(0) == BB) {
379 if (!AggressiveInsts) return false;
380 // Okay, it looks like the instruction IS in the "condition". Check to
381 // see if its a cheap instruction to unconditionally compute, and if it
382 // only uses stuff defined outside of the condition. If so, hoist it out.
383 switch (I->getOpcode()) {
384 default: return false; // Cannot hoist this out safely.
385 case Instruction::Load:
386 // We can hoist loads that are non-volatile and obviously cannot trap.
387 if (cast<LoadInst>(I)->isVolatile())
388 return false;
389 if (!isa<AllocaInst>(I->getOperand(0)) &&
390 !isa<Constant>(I->getOperand(0)))
391 return false;
392
393 // Finally, we have to check to make sure there are no instructions
394 // before the load in its basic block, as we are going to hoist the loop
395 // out to its predecessor.
396 if (PBB->begin() != BasicBlock::iterator(I))
397 return false;
398 break;
399 case Instruction::Add:
400 case Instruction::Sub:
401 case Instruction::And:
402 case Instruction::Or:
403 case Instruction::Xor:
404 case Instruction::Shl:
405 case Instruction::LShr:
406 case Instruction::AShr:
407 case Instruction::ICmp:
408 case Instruction::FCmp:
Chris Lattner765db1a2008-01-03 07:25:26 +0000409 if (I->getOperand(0)->getType()->isFPOrFPVector())
410 return false; // FP arithmetic might trap.
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000411 break; // These are all cheap and non-trapping instructions.
412 }
413
414 // Okay, we can only really hoist these out if their operands are not
415 // defined in the conditional region.
Gabor Greife477bec2008-06-10 22:03:26 +0000416 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
417 if (!DominatesMergePoint(*i, BB, 0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000418 return false;
419 // Okay, it's safe to do this! Remember this instruction.
420 AggressiveInsts->insert(I);
421 }
422
423 return true;
424}
425
426// GatherConstantSetEQs - Given a potentially 'or'd together collection of
427// icmp_eq instructions that compare a value against a constant, return the
428// value being compared, and stick the constant into the Values vector.
429static Value *GatherConstantSetEQs(Value *V, std::vector<ConstantInt*> &Values){
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +0000430 if (Instruction *Inst = dyn_cast<Instruction>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000431 if (Inst->getOpcode() == Instruction::ICmp &&
432 cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_EQ) {
433 if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
434 Values.push_back(C);
435 return Inst->getOperand(0);
436 } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
437 Values.push_back(C);
438 return Inst->getOperand(1);
439 }
440 } else if (Inst->getOpcode() == Instruction::Or) {
441 if (Value *LHS = GatherConstantSetEQs(Inst->getOperand(0), Values))
442 if (Value *RHS = GatherConstantSetEQs(Inst->getOperand(1), Values))
443 if (LHS == RHS)
444 return LHS;
445 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +0000446 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000447 return 0;
448}
449
450// GatherConstantSetNEs - Given a potentially 'and'd together collection of
451// setne instructions that compare a value against a constant, return the value
452// being compared, and stick the constant into the Values vector.
453static Value *GatherConstantSetNEs(Value *V, std::vector<ConstantInt*> &Values){
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +0000454 if (Instruction *Inst = dyn_cast<Instruction>(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000455 if (Inst->getOpcode() == Instruction::ICmp &&
456 cast<ICmpInst>(Inst)->getPredicate() == ICmpInst::ICMP_NE) {
457 if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(1))) {
458 Values.push_back(C);
459 return Inst->getOperand(0);
460 } else if (ConstantInt *C = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
461 Values.push_back(C);
462 return Inst->getOperand(1);
463 }
464 } else if (Inst->getOpcode() == Instruction::And) {
465 if (Value *LHS = GatherConstantSetNEs(Inst->getOperand(0), Values))
466 if (Value *RHS = GatherConstantSetNEs(Inst->getOperand(1), Values))
467 if (LHS == RHS)
468 return LHS;
469 }
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +0000470 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000471 return 0;
472}
473
474
475
476/// GatherValueComparisons - If the specified Cond is an 'and' or 'or' of a
477/// bunch of comparisons of one value against constants, return the value and
478/// the constants being compared.
479static bool GatherValueComparisons(Instruction *Cond, Value *&CompVal,
480 std::vector<ConstantInt*> &Values) {
481 if (Cond->getOpcode() == Instruction::Or) {
482 CompVal = GatherConstantSetEQs(Cond, Values);
483
484 // Return true to indicate that the condition is true if the CompVal is
485 // equal to one of the constants.
486 return true;
487 } else if (Cond->getOpcode() == Instruction::And) {
488 CompVal = GatherConstantSetNEs(Cond, Values);
489
490 // Return false to indicate that the condition is false if the CompVal is
491 // equal to one of the constants.
492 return false;
493 }
494 return false;
495}
496
497/// ErasePossiblyDeadInstructionTree - If the specified instruction is dead and
498/// has no side effects, nuke it. If it uses any instructions that become dead
499/// because the instruction is now gone, nuke them too.
500static void ErasePossiblyDeadInstructionTree(Instruction *I) {
501 if (!isInstructionTriviallyDead(I)) return;
502
Chris Lattner3b4482022008-02-18 07:42:56 +0000503 SmallVector<Instruction*, 16> InstrsToInspect;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000504 InstrsToInspect.push_back(I);
505
506 while (!InstrsToInspect.empty()) {
507 I = InstrsToInspect.back();
508 InstrsToInspect.pop_back();
509
510 if (!isInstructionTriviallyDead(I)) continue;
511
512 // If I is in the work list multiple times, remove previous instances.
513 for (unsigned i = 0, e = InstrsToInspect.size(); i != e; ++i)
514 if (InstrsToInspect[i] == I) {
515 InstrsToInspect.erase(InstrsToInspect.begin()+i);
516 --i, --e;
517 }
518
519 // Add operands of dead instruction to worklist.
Gabor Greife477bec2008-06-10 22:03:26 +0000520 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i)
521 if (Instruction *OpI = dyn_cast<Instruction>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000522 InstrsToInspect.push_back(OpI);
523
524 // Remove dead instruction.
525 I->eraseFromParent();
526 }
527}
528
529// isValueEqualityComparison - Return true if the specified terminator checks to
530// see if a value is equal to constant integer value.
531static Value *isValueEqualityComparison(TerminatorInst *TI) {
532 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
533 // Do not permit merging of large switch instructions into their
534 // predecessors unless there is only one predecessor.
535 if (SI->getNumSuccessors() * std::distance(pred_begin(SI->getParent()),
536 pred_end(SI->getParent())) > 128)
537 return 0;
538
539 return SI->getCondition();
540 }
541 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
542 if (BI->isConditional() && BI->getCondition()->hasOneUse())
543 if (ICmpInst *ICI = dyn_cast<ICmpInst>(BI->getCondition()))
544 if ((ICI->getPredicate() == ICmpInst::ICMP_EQ ||
545 ICI->getPredicate() == ICmpInst::ICMP_NE) &&
546 isa<ConstantInt>(ICI->getOperand(1)))
547 return ICI->getOperand(0);
548 return 0;
549}
550
551// Given a value comparison instruction, decode all of the 'cases' that it
552// represents and return the 'default' block.
553static BasicBlock *
554GetValueEqualityComparisonCases(TerminatorInst *TI,
555 std::vector<std::pair<ConstantInt*,
556 BasicBlock*> > &Cases) {
557 if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
558 Cases.reserve(SI->getNumCases());
559 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
560 Cases.push_back(std::make_pair(SI->getCaseValue(i), SI->getSuccessor(i)));
561 return SI->getDefaultDest();
562 }
563
564 BranchInst *BI = cast<BranchInst>(TI);
565 ICmpInst *ICI = cast<ICmpInst>(BI->getCondition());
566 Cases.push_back(std::make_pair(cast<ConstantInt>(ICI->getOperand(1)),
567 BI->getSuccessor(ICI->getPredicate() ==
568 ICmpInst::ICMP_NE)));
569 return BI->getSuccessor(ICI->getPredicate() == ICmpInst::ICMP_EQ);
570}
571
572
573// EliminateBlockCases - Given a vector of bb/value pairs, remove any entries
574// in the list that match the specified block.
575static void EliminateBlockCases(BasicBlock *BB,
576 std::vector<std::pair<ConstantInt*, BasicBlock*> > &Cases) {
577 for (unsigned i = 0, e = Cases.size(); i != e; ++i)
578 if (Cases[i].second == BB) {
579 Cases.erase(Cases.begin()+i);
580 --i; --e;
581 }
582}
583
584// ValuesOverlap - Return true if there are any keys in C1 that exist in C2 as
585// well.
586static bool
587ValuesOverlap(std::vector<std::pair<ConstantInt*, BasicBlock*> > &C1,
588 std::vector<std::pair<ConstantInt*, BasicBlock*> > &C2) {
589 std::vector<std::pair<ConstantInt*, BasicBlock*> > *V1 = &C1, *V2 = &C2;
590
591 // Make V1 be smaller than V2.
592 if (V1->size() > V2->size())
593 std::swap(V1, V2);
594
595 if (V1->size() == 0) return false;
596 if (V1->size() == 1) {
597 // Just scan V2.
598 ConstantInt *TheVal = (*V1)[0].first;
599 for (unsigned i = 0, e = V2->size(); i != e; ++i)
600 if (TheVal == (*V2)[i].first)
601 return true;
602 }
603
604 // Otherwise, just sort both lists and compare element by element.
605 std::sort(V1->begin(), V1->end());
606 std::sort(V2->begin(), V2->end());
607 unsigned i1 = 0, i2 = 0, e1 = V1->size(), e2 = V2->size();
608 while (i1 != e1 && i2 != e2) {
609 if ((*V1)[i1].first == (*V2)[i2].first)
610 return true;
611 if ((*V1)[i1].first < (*V2)[i2].first)
612 ++i1;
613 else
614 ++i2;
615 }
616 return false;
617}
618
619// SimplifyEqualityComparisonWithOnlyPredecessor - If TI is known to be a
620// terminator instruction and its block is known to only have a single
621// predecessor block, check to see if that predecessor is also a value
622// comparison with the same value, and if that comparison determines the outcome
623// of this comparison. If so, simplify TI. This does a very limited form of
624// jump threading.
625static bool SimplifyEqualityComparisonWithOnlyPredecessor(TerminatorInst *TI,
626 BasicBlock *Pred) {
627 Value *PredVal = isValueEqualityComparison(Pred->getTerminator());
628 if (!PredVal) return false; // Not a value comparison in predecessor.
629
630 Value *ThisVal = isValueEqualityComparison(TI);
631 assert(ThisVal && "This isn't a value comparison!!");
632 if (ThisVal != PredVal) return false; // Different predicates.
633
634 // Find out information about when control will move from Pred to TI's block.
635 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
636 BasicBlock *PredDef = GetValueEqualityComparisonCases(Pred->getTerminator(),
637 PredCases);
638 EliminateBlockCases(PredDef, PredCases); // Remove default from cases.
639
640 // Find information about how control leaves this block.
641 std::vector<std::pair<ConstantInt*, BasicBlock*> > ThisCases;
642 BasicBlock *ThisDef = GetValueEqualityComparisonCases(TI, ThisCases);
643 EliminateBlockCases(ThisDef, ThisCases); // Remove default from cases.
644
645 // If TI's block is the default block from Pred's comparison, potentially
646 // simplify TI based on this knowledge.
647 if (PredDef == TI->getParent()) {
648 // If we are here, we know that the value is none of those cases listed in
649 // PredCases. If there are any cases in ThisCases that are in PredCases, we
650 // can simplify TI.
651 if (ValuesOverlap(PredCases, ThisCases)) {
652 if (BranchInst *BTI = dyn_cast<BranchInst>(TI)) {
653 // Okay, one of the successors of this condbr is dead. Convert it to a
654 // uncond br.
655 assert(ThisCases.size() == 1 && "Branch can only have one case!");
656 Value *Cond = BTI->getCondition();
657 // Insert the new branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +0000658 Instruction *NI = BranchInst::Create(ThisDef, TI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000659
660 // Remove PHI node entries for the dead edge.
661 ThisCases[0].second->removePredecessor(TI->getParent());
662
663 DOUT << "Threading pred instr: " << *Pred->getTerminator()
664 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
665
666 TI->eraseFromParent(); // Nuke the old one.
667 // If condition is now dead, nuke it.
668 if (Instruction *CondI = dyn_cast<Instruction>(Cond))
669 ErasePossiblyDeadInstructionTree(CondI);
670 return true;
671
672 } else {
673 SwitchInst *SI = cast<SwitchInst>(TI);
674 // Okay, TI has cases that are statically dead, prune them away.
675 SmallPtrSet<Constant*, 16> DeadCases;
676 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
677 DeadCases.insert(PredCases[i].first);
678
679 DOUT << "Threading pred instr: " << *Pred->getTerminator()
680 << "Through successor TI: " << *TI;
681
682 for (unsigned i = SI->getNumCases()-1; i != 0; --i)
683 if (DeadCases.count(SI->getCaseValue(i))) {
684 SI->getSuccessor(i)->removePredecessor(TI->getParent());
685 SI->removeCase(i);
686 }
687
688 DOUT << "Leaving: " << *TI << "\n";
689 return true;
690 }
691 }
692
693 } else {
694 // Otherwise, TI's block must correspond to some matched value. Find out
695 // which value (or set of values) this is.
696 ConstantInt *TIV = 0;
697 BasicBlock *TIBB = TI->getParent();
698 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +0000699 if (PredCases[i].second == TIBB) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000700 if (TIV == 0)
701 TIV = PredCases[i].first;
702 else
703 return false; // Cannot handle multiple values coming to this block.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +0000704 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000705 assert(TIV && "No edge from pred to succ?");
706
707 // Okay, we found the one constant that our value can be if we get into TI's
708 // BB. Find out which successor will unconditionally be branched to.
709 BasicBlock *TheRealDest = 0;
710 for (unsigned i = 0, e = ThisCases.size(); i != e; ++i)
711 if (ThisCases[i].first == TIV) {
712 TheRealDest = ThisCases[i].second;
713 break;
714 }
715
716 // If not handled by any explicit cases, it is handled by the default case.
717 if (TheRealDest == 0) TheRealDest = ThisDef;
718
719 // Remove PHI node entries for dead edges.
720 BasicBlock *CheckEdge = TheRealDest;
721 for (succ_iterator SI = succ_begin(TIBB), e = succ_end(TIBB); SI != e; ++SI)
722 if (*SI != CheckEdge)
723 (*SI)->removePredecessor(TIBB);
724 else
725 CheckEdge = 0;
726
727 // Insert the new branch.
Gabor Greifd6da1d02008-04-06 20:25:17 +0000728 Instruction *NI = BranchInst::Create(TheRealDest, TI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000729
730 DOUT << "Threading pred instr: " << *Pred->getTerminator()
731 << "Through successor TI: " << *TI << "Leaving: " << *NI << "\n";
732 Instruction *Cond = 0;
733 if (BranchInst *BI = dyn_cast<BranchInst>(TI))
734 Cond = dyn_cast<Instruction>(BI->getCondition());
735 TI->eraseFromParent(); // Nuke the old one.
736
737 if (Cond) ErasePossiblyDeadInstructionTree(Cond);
738 return true;
739 }
740 return false;
741}
742
743// FoldValueComparisonIntoPredecessors - The specified terminator is a value
744// equality comparison instruction (either a switch or a branch on "X == c").
745// See if any of the predecessors of the terminator block are value comparisons
746// on the same value. If so, and if safe to do so, fold them together.
747static bool FoldValueComparisonIntoPredecessors(TerminatorInst *TI) {
748 BasicBlock *BB = TI->getParent();
749 Value *CV = isValueEqualityComparison(TI); // CondVal
750 assert(CV && "Not a comparison?");
751 bool Changed = false;
752
Chris Lattner3b4482022008-02-18 07:42:56 +0000753 SmallVector<BasicBlock*, 16> Preds(pred_begin(BB), pred_end(BB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000754 while (!Preds.empty()) {
755 BasicBlock *Pred = Preds.back();
756 Preds.pop_back();
757
758 // See if the predecessor is a comparison with the same value.
759 TerminatorInst *PTI = Pred->getTerminator();
760 Value *PCV = isValueEqualityComparison(PTI); // PredCondVal
761
762 if (PCV == CV && SafeToMergeTerminators(TI, PTI)) {
763 // Figure out which 'cases' to copy from SI to PSI.
764 std::vector<std::pair<ConstantInt*, BasicBlock*> > BBCases;
765 BasicBlock *BBDefault = GetValueEqualityComparisonCases(TI, BBCases);
766
767 std::vector<std::pair<ConstantInt*, BasicBlock*> > PredCases;
768 BasicBlock *PredDefault = GetValueEqualityComparisonCases(PTI, PredCases);
769
770 // Based on whether the default edge from PTI goes to BB or not, fill in
771 // PredCases and PredDefault with the new switch cases we would like to
772 // build.
Chris Lattner3b4482022008-02-18 07:42:56 +0000773 SmallVector<BasicBlock*, 8> NewSuccessors;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000774
775 if (PredDefault == BB) {
776 // If this is the default destination from PTI, only the edges in TI
777 // that don't occur in PTI, or that branch to BB will be activated.
778 std::set<ConstantInt*> PTIHandled;
779 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
780 if (PredCases[i].second != BB)
781 PTIHandled.insert(PredCases[i].first);
782 else {
783 // The default destination is BB, we don't need explicit targets.
784 std::swap(PredCases[i], PredCases.back());
785 PredCases.pop_back();
786 --i; --e;
787 }
788
789 // Reconstruct the new switch statement we will be building.
790 if (PredDefault != BBDefault) {
791 PredDefault->removePredecessor(Pred);
792 PredDefault = BBDefault;
793 NewSuccessors.push_back(BBDefault);
794 }
795 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
796 if (!PTIHandled.count(BBCases[i].first) &&
797 BBCases[i].second != BBDefault) {
798 PredCases.push_back(BBCases[i]);
799 NewSuccessors.push_back(BBCases[i].second);
800 }
801
802 } else {
803 // If this is not the default destination from PSI, only the edges
804 // in SI that occur in PSI with a destination of BB will be
805 // activated.
806 std::set<ConstantInt*> PTIHandled;
807 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
808 if (PredCases[i].second == BB) {
809 PTIHandled.insert(PredCases[i].first);
810 std::swap(PredCases[i], PredCases.back());
811 PredCases.pop_back();
812 --i; --e;
813 }
814
815 // Okay, now we know which constants were sent to BB from the
816 // predecessor. Figure out where they will all go now.
817 for (unsigned i = 0, e = BBCases.size(); i != e; ++i)
818 if (PTIHandled.count(BBCases[i].first)) {
819 // If this is one we are capable of getting...
820 PredCases.push_back(BBCases[i]);
821 NewSuccessors.push_back(BBCases[i].second);
822 PTIHandled.erase(BBCases[i].first);// This constant is taken care of
823 }
824
825 // If there are any constants vectored to BB that TI doesn't handle,
826 // they must go to the default destination of TI.
827 for (std::set<ConstantInt*>::iterator I = PTIHandled.begin(),
828 E = PTIHandled.end(); I != E; ++I) {
829 PredCases.push_back(std::make_pair(*I, BBDefault));
830 NewSuccessors.push_back(BBDefault);
831 }
832 }
833
834 // Okay, at this point, we know which new successor Pred will get. Make
835 // sure we update the number of entries in the PHI nodes for these
836 // successors.
837 for (unsigned i = 0, e = NewSuccessors.size(); i != e; ++i)
838 AddPredecessorToBlock(NewSuccessors[i], Pred, BB);
839
840 // Now that the successors are updated, create the new Switch instruction.
Gabor Greifb91ea9d2008-05-15 10:04:30 +0000841 SwitchInst *NewSI = SwitchInst::Create(CV, PredDefault,
842 PredCases.size(), PTI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000843 for (unsigned i = 0, e = PredCases.size(); i != e; ++i)
844 NewSI->addCase(PredCases[i].first, PredCases[i].second);
845
846 Instruction *DeadCond = 0;
847 if (BranchInst *BI = dyn_cast<BranchInst>(PTI))
848 // If PTI is a branch, remember the condition.
849 DeadCond = dyn_cast<Instruction>(BI->getCondition());
850 Pred->getInstList().erase(PTI);
851
852 // If the condition is dead now, remove the instruction tree.
853 if (DeadCond) ErasePossiblyDeadInstructionTree(DeadCond);
854
855 // Okay, last check. If BB is still a successor of PSI, then we must
856 // have an infinite loop case. If so, add an infinitely looping block
857 // to handle the case to preserve the behavior of the code.
858 BasicBlock *InfLoopBlock = 0;
859 for (unsigned i = 0, e = NewSI->getNumSuccessors(); i != e; ++i)
860 if (NewSI->getSuccessor(i) == BB) {
861 if (InfLoopBlock == 0) {
Chris Lattner6339ac32008-07-13 22:23:11 +0000862 // Insert it at the end of the function, because it's either code,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000863 // or it won't matter if it's hot. :)
Gabor Greifd6da1d02008-04-06 20:25:17 +0000864 InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
865 BranchInst::Create(InfLoopBlock, InfLoopBlock);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000866 }
867 NewSI->setSuccessor(i, InfLoopBlock);
868 }
869
870 Changed = true;
871 }
872 }
873 return Changed;
874}
875
876/// HoistThenElseCodeToIf - Given a conditional branch that goes to BB1 and
877/// BB2, hoist any common code in the two blocks up into the branch block. The
878/// caller of this function guarantees that BI's block dominates BB1 and BB2.
879static bool HoistThenElseCodeToIf(BranchInst *BI) {
880 // This does very trivial matching, with limited scanning, to find identical
881 // instructions in the two blocks. In particular, we don't want to get into
882 // O(M*N) situations here where M and N are the sizes of BB1 and BB2. As
883 // such, we currently just scan for obviously identical instructions in an
884 // identical order.
885 BasicBlock *BB1 = BI->getSuccessor(0); // The true destination.
886 BasicBlock *BB2 = BI->getSuccessor(1); // The false destination
887
888 Instruction *I1 = BB1->begin(), *I2 = BB2->begin();
889 if (I1->getOpcode() != I2->getOpcode() || isa<PHINode>(I1) ||
890 isa<InvokeInst>(I1) || !I1->isIdenticalTo(I2))
891 return false;
892
893 // If we get here, we can hoist at least one instruction.
894 BasicBlock *BIParent = BI->getParent();
895
896 do {
897 // If we are hoisting the terminator instruction, don't move one (making a
898 // broken BB), instead clone it, and remove BI.
899 if (isa<TerminatorInst>(I1))
900 goto HoistTerminator;
901
902 // For a normal instruction, we just move one to right before the branch,
903 // then replace all uses of the other with the first. Finally, we remove
904 // the now redundant second instruction.
905 BIParent->getInstList().splice(BI, BB1->getInstList(), I1);
906 if (!I2->use_empty())
907 I2->replaceAllUsesWith(I1);
908 BB2->getInstList().erase(I2);
909
910 I1 = BB1->begin();
911 I2 = BB2->begin();
912 } while (I1->getOpcode() == I2->getOpcode() && I1->isIdenticalTo(I2));
913
914 return true;
915
916HoistTerminator:
917 // Okay, it is safe to hoist the terminator.
918 Instruction *NT = I1->clone();
919 BIParent->getInstList().insert(BI, NT);
920 if (NT->getType() != Type::VoidTy) {
921 I1->replaceAllUsesWith(NT);
922 I2->replaceAllUsesWith(NT);
923 NT->takeName(I1);
924 }
925
926 // Hoisting one of the terminators from our successor is a great thing.
927 // Unfortunately, the successors of the if/else blocks may have PHI nodes in
928 // them. If they do, all PHI entries for BB1/BB2 must agree for all PHI
929 // nodes, so we insert select instruction to compute the final result.
930 std::map<std::pair<Value*,Value*>, SelectInst*> InsertedSelects;
931 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI) {
932 PHINode *PN;
933 for (BasicBlock::iterator BBI = SI->begin();
934 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
935 Value *BB1V = PN->getIncomingValueForBlock(BB1);
936 Value *BB2V = PN->getIncomingValueForBlock(BB2);
937 if (BB1V != BB2V) {
938 // These values do not agree. Insert a select instruction before NT
939 // that determines the right value.
940 SelectInst *&SI = InsertedSelects[std::make_pair(BB1V, BB2V)];
941 if (SI == 0)
Gabor Greifd6da1d02008-04-06 20:25:17 +0000942 SI = SelectInst::Create(BI->getCondition(), BB1V, BB2V,
943 BB1V->getName()+"."+BB2V->getName(), NT);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000944 // Make the PHI node use the select for all incoming values for BB1/BB2
945 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
946 if (PN->getIncomingBlock(i) == BB1 || PN->getIncomingBlock(i) == BB2)
947 PN->setIncomingValue(i, SI);
948 }
949 }
950 }
951
952 // Update any PHI nodes in our new successors.
953 for (succ_iterator SI = succ_begin(BB1), E = succ_end(BB1); SI != E; ++SI)
954 AddPredecessorToBlock(*SI, BIParent, BB1);
955
956 BI->eraseFromParent();
957 return true;
958}
959
Evan Cheng20a607e2008-06-07 08:52:29 +0000960/// SpeculativelyExecuteBB - Given a conditional branch that goes to BB1
961/// and an BB2 and the only successor of BB1 is BB2, hoist simple code
962/// (for now, restricted to a single instruction that's side effect free) from
963/// the BB1 into the branch block to speculatively execute it.
964static bool SpeculativelyExecuteBB(BranchInst *BI, BasicBlock *BB1) {
965 // Only speculatively execution a single instruction (not counting the
966 // terminator) for now.
Evan Chengd19b6142008-06-25 07:50:12 +0000967 BasicBlock::iterator BBI = BB1->begin();
968 ++BBI; // must have at least a terminator
969 if (BBI == BB1->end()) return false; // only one inst
970 ++BBI;
971 if (BBI != BB1->end()) return false; // more than 2 insts.
Evan Cheng20a607e2008-06-07 08:52:29 +0000972
Evan Chengd2aa7d12008-06-11 19:18:20 +0000973 // Be conservative for now. FP select instruction can often be expensive.
974 Value *BrCond = BI->getCondition();
975 if (isa<Instruction>(BrCond) &&
976 cast<Instruction>(BrCond)->getOpcode() == Instruction::FCmp)
977 return false;
978
Evan Cheng20a607e2008-06-07 08:52:29 +0000979 // If BB1 is actually on the false edge of the conditional branch, remember
980 // to swap the select operands later.
981 bool Invert = false;
982 if (BB1 != BI->getSuccessor(0)) {
983 assert(BB1 == BI->getSuccessor(1) && "No edge from 'if' block?");
984 Invert = true;
985 }
986
987 // Turn
988 // BB:
989 // %t1 = icmp
990 // br i1 %t1, label %BB1, label %BB2
991 // BB1:
992 // %t3 = add %t2, c
993 // br label BB2
994 // BB2:
995 // =>
996 // BB:
997 // %t1 = icmp
998 // %t4 = add %t2, c
999 // %t3 = select i1 %t1, %t2, %t3
1000 Instruction *I = BB1->begin();
1001 switch (I->getOpcode()) {
1002 default: return false; // Not safe / profitable to hoist.
1003 case Instruction::Add:
1004 case Instruction::Sub:
1005 case Instruction::And:
1006 case Instruction::Or:
1007 case Instruction::Xor:
1008 case Instruction::Shl:
1009 case Instruction::LShr:
1010 case Instruction::AShr:
Evan Chengd19b6142008-06-25 07:50:12 +00001011 if (!I->getOperand(0)->getType()->isInteger())
1012 // FP arithmetic might trap. Not worth doing for vector ops.
1013 return false;
Evan Cheng20a607e2008-06-07 08:52:29 +00001014 break; // These are all cheap and non-trapping instructions.
1015 }
1016
1017 // Can we speculatively execute the instruction? And what is the value
1018 // if the condition is false? Consider the phi uses, if the incoming value
1019 // from the "if" block are all the same V, then V is the value of the
1020 // select if the condition is false.
1021 BasicBlock *BIParent = BI->getParent();
1022 SmallVector<PHINode*, 4> PHIUses;
1023 Value *FalseV = NULL;
1024 for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
1025 UI != E; ++UI) {
1026 PHINode *PN = dyn_cast<PHINode>(UI);
1027 if (!PN)
1028 continue;
1029 PHIUses.push_back(PN);
1030 Value *PHIV = PN->getIncomingValueForBlock(BIParent);
1031 if (!FalseV)
1032 FalseV = PHIV;
1033 else if (FalseV != PHIV)
1034 return false; // Don't know the value when condition is false.
1035 }
1036 if (!FalseV) // Can this happen?
1037 return false;
1038
Evan Cheng24541a62008-06-12 21:15:59 +00001039 // Do not hoist the instruction if any of its operands are defined but not
1040 // used in this BB. The transformation will prevent the operand from
1041 // being sunk into the use block.
1042 for (User::op_iterator i = I->op_begin(), e = I->op_end(); i != e; ++i) {
1043 Instruction *OpI = dyn_cast<Instruction>(*i);
1044 if (OpI && OpI->getParent() == BIParent &&
1045 !OpI->isUsedInBasicBlock(BIParent))
1046 return false;
1047 }
1048
Devang Pateldff594e2008-09-17 18:21:49 +00001049 // If we get here, we can hoist the instruction.
1050 BIParent->getInstList().splice(BI, BB1->getInstList(), I);
Evan Cheng20a607e2008-06-07 08:52:29 +00001051
1052 // Create a select whose true value is the speculatively executed value and
1053 // false value is the previously determined FalseV.
1054 SelectInst *SI;
1055 if (Invert)
Evan Chengd2aa7d12008-06-11 19:18:20 +00001056 SI = SelectInst::Create(BrCond, FalseV, I,
Evan Cheng20a607e2008-06-07 08:52:29 +00001057 FalseV->getName() + "." + I->getName(), BI);
1058 else
Evan Chengd2aa7d12008-06-11 19:18:20 +00001059 SI = SelectInst::Create(BrCond, I, FalseV,
Evan Cheng20a607e2008-06-07 08:52:29 +00001060 I->getName() + "." + FalseV->getName(), BI);
1061
1062 // Make the PHI node use the select for all incoming values for "then" and
1063 // "if" blocks.
1064 for (unsigned i = 0, e = PHIUses.size(); i != e; ++i) {
1065 PHINode *PN = PHIUses[i];
1066 for (unsigned j = 0, ee = PN->getNumIncomingValues(); j != ee; ++j)
1067 if (PN->getIncomingBlock(j) == BB1 ||
1068 PN->getIncomingBlock(j) == BIParent)
1069 PN->setIncomingValue(j, SI);
1070 }
1071
Evan Cheng24541a62008-06-12 21:15:59 +00001072 ++NumSpeculations;
Evan Cheng20a607e2008-06-07 08:52:29 +00001073 return true;
1074}
1075
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001076/// BlockIsSimpleEnoughToThreadThrough - Return true if we can thread a branch
1077/// across this block.
1078static bool BlockIsSimpleEnoughToThreadThrough(BasicBlock *BB) {
1079 BranchInst *BI = cast<BranchInst>(BB->getTerminator());
1080 unsigned Size = 0;
1081
1082 // If this basic block contains anything other than a PHI (which controls the
1083 // branch) and branch itself, bail out. FIXME: improve this in the future.
1084 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI, ++Size) {
1085 if (Size > 10) return false; // Don't clone large BB's.
1086
1087 // We can only support instructions that are do not define values that are
1088 // live outside of the current basic block.
1089 for (Value::use_iterator UI = BBI->use_begin(), E = BBI->use_end();
1090 UI != E; ++UI) {
1091 Instruction *U = cast<Instruction>(*UI);
1092 if (U->getParent() != BB || isa<PHINode>(U)) return false;
1093 }
1094
1095 // Looks ok, continue checking.
1096 }
1097
1098 return true;
1099}
1100
1101/// FoldCondBranchOnPHI - If we have a conditional branch on a PHI node value
1102/// that is defined in the same block as the branch and if any PHI entries are
1103/// constants, thread edges corresponding to that entry to be branches to their
1104/// ultimate destination.
1105static bool FoldCondBranchOnPHI(BranchInst *BI) {
1106 BasicBlock *BB = BI->getParent();
1107 PHINode *PN = dyn_cast<PHINode>(BI->getCondition());
1108 // NOTE: we currently cannot transform this case if the PHI node is used
1109 // outside of the block.
1110 if (!PN || PN->getParent() != BB || !PN->hasOneUse())
1111 return false;
1112
1113 // Degenerate case of a single entry PHI.
1114 if (PN->getNumIncomingValues() == 1) {
1115 if (PN->getIncomingValue(0) != PN)
1116 PN->replaceAllUsesWith(PN->getIncomingValue(0));
1117 else
1118 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1119 PN->eraseFromParent();
1120 return true;
1121 }
1122
1123 // Now we know that this block has multiple preds and two succs.
1124 if (!BlockIsSimpleEnoughToThreadThrough(BB)) return false;
1125
1126 // Okay, this is a simple enough basic block. See if any phi values are
1127 // constants.
1128 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
1129 ConstantInt *CB;
1130 if ((CB = dyn_cast<ConstantInt>(PN->getIncomingValue(i))) &&
1131 CB->getType() == Type::Int1Ty) {
1132 // Okay, we now know that all edges from PredBB should be revectored to
1133 // branch to RealDest.
1134 BasicBlock *PredBB = PN->getIncomingBlock(i);
1135 BasicBlock *RealDest = BI->getSuccessor(!CB->getZExtValue());
1136
1137 if (RealDest == BB) continue; // Skip self loops.
1138
1139 // The dest block might have PHI nodes, other predecessors and other
1140 // difficult cases. Instead of being smart about this, just insert a new
1141 // block that jumps to the destination block, effectively splitting
1142 // the edge we are about to create.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001143 BasicBlock *EdgeBB = BasicBlock::Create(RealDest->getName()+".critedge",
1144 RealDest->getParent(), RealDest);
1145 BranchInst::Create(RealDest, EdgeBB);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001146 PHINode *PN;
1147 for (BasicBlock::iterator BBI = RealDest->begin();
1148 (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
1149 Value *V = PN->getIncomingValueForBlock(BB);
1150 PN->addIncoming(V, EdgeBB);
1151 }
1152
1153 // BB may have instructions that are being threaded over. Clone these
1154 // instructions into EdgeBB. We know that there will be no uses of the
1155 // cloned instructions outside of EdgeBB.
1156 BasicBlock::iterator InsertPt = EdgeBB->begin();
1157 std::map<Value*, Value*> TranslateMap; // Track translated values.
1158 for (BasicBlock::iterator BBI = BB->begin(); &*BBI != BI; ++BBI) {
1159 if (PHINode *PN = dyn_cast<PHINode>(BBI)) {
1160 TranslateMap[PN] = PN->getIncomingValueForBlock(PredBB);
1161 } else {
1162 // Clone the instruction.
1163 Instruction *N = BBI->clone();
1164 if (BBI->hasName()) N->setName(BBI->getName()+".c");
1165
1166 // Update operands due to translation.
Gabor Greife477bec2008-06-10 22:03:26 +00001167 for (User::op_iterator i = N->op_begin(), e = N->op_end();
1168 i != e; ++i) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001169 std::map<Value*, Value*>::iterator PI =
Gabor Greife477bec2008-06-10 22:03:26 +00001170 TranslateMap.find(*i);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001171 if (PI != TranslateMap.end())
Gabor Greife477bec2008-06-10 22:03:26 +00001172 *i = PI->second;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001173 }
1174
1175 // Check for trivial simplification.
1176 if (Constant *C = ConstantFoldInstruction(N)) {
1177 TranslateMap[BBI] = C;
1178 delete N; // Constant folded away, don't need actual inst
1179 } else {
1180 // Insert the new instruction into its new home.
1181 EdgeBB->getInstList().insert(InsertPt, N);
1182 if (!BBI->use_empty())
1183 TranslateMap[BBI] = N;
1184 }
1185 }
1186 }
1187
1188 // Loop over all of the edges from PredBB to BB, changing them to branch
1189 // to EdgeBB instead.
1190 TerminatorInst *PredBBTI = PredBB->getTerminator();
1191 for (unsigned i = 0, e = PredBBTI->getNumSuccessors(); i != e; ++i)
1192 if (PredBBTI->getSuccessor(i) == BB) {
1193 BB->removePredecessor(PredBB);
1194 PredBBTI->setSuccessor(i, EdgeBB);
1195 }
1196
1197 // Recurse, simplifying any other constants.
1198 return FoldCondBranchOnPHI(BI) | true;
1199 }
1200 }
1201
1202 return false;
1203}
1204
1205/// FoldTwoEntryPHINode - Given a BB that starts with the specified two-entry
1206/// PHI node, see if we can eliminate it.
1207static bool FoldTwoEntryPHINode(PHINode *PN) {
1208 // Ok, this is a two entry PHI node. Check to see if this is a simple "if
1209 // statement", which has a very simple dominance structure. Basically, we
1210 // are trying to find the condition that is being branched on, which
1211 // subsequently causes this merge to happen. We really want control
1212 // dependence information for this check, but simplifycfg can't keep it up
1213 // to date, and this catches most of the cases we care about anyway.
1214 //
1215 BasicBlock *BB = PN->getParent();
1216 BasicBlock *IfTrue, *IfFalse;
1217 Value *IfCond = GetIfCondition(BB, IfTrue, IfFalse);
1218 if (!IfCond) return false;
1219
1220 // Okay, we found that we can merge this two-entry phi node into a select.
1221 // Doing so would require us to fold *all* two entry phi nodes in this block.
1222 // At some point this becomes non-profitable (particularly if the target
1223 // doesn't support cmov's). Only do this transformation if there are two or
1224 // fewer PHI nodes in this block.
1225 unsigned NumPhis = 0;
1226 for (BasicBlock::iterator I = BB->begin(); isa<PHINode>(I); ++NumPhis, ++I)
1227 if (NumPhis > 2)
1228 return false;
1229
1230 DOUT << "FOUND IF CONDITION! " << *IfCond << " T: "
1231 << IfTrue->getName() << " F: " << IfFalse->getName() << "\n";
1232
1233 // Loop over the PHI's seeing if we can promote them all to select
1234 // instructions. While we are at it, keep track of the instructions
1235 // that need to be moved to the dominating block.
1236 std::set<Instruction*> AggressiveInsts;
1237
1238 BasicBlock::iterator AfterPHIIt = BB->begin();
1239 while (isa<PHINode>(AfterPHIIt)) {
1240 PHINode *PN = cast<PHINode>(AfterPHIIt++);
1241 if (PN->getIncomingValue(0) == PN->getIncomingValue(1)) {
1242 if (PN->getIncomingValue(0) != PN)
1243 PN->replaceAllUsesWith(PN->getIncomingValue(0));
1244 else
1245 PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
1246 } else if (!DominatesMergePoint(PN->getIncomingValue(0), BB,
1247 &AggressiveInsts) ||
1248 !DominatesMergePoint(PN->getIncomingValue(1), BB,
1249 &AggressiveInsts)) {
1250 return false;
1251 }
1252 }
1253
1254 // If we all PHI nodes are promotable, check to make sure that all
1255 // instructions in the predecessor blocks can be promoted as well. If
1256 // not, we won't be able to get rid of the control flow, so it's not
1257 // worth promoting to select instructions.
1258 BasicBlock *DomBlock = 0, *IfBlock1 = 0, *IfBlock2 = 0;
1259 PN = cast<PHINode>(BB->begin());
1260 BasicBlock *Pred = PN->getIncomingBlock(0);
1261 if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1262 IfBlock1 = Pred;
1263 DomBlock = *pred_begin(Pred);
1264 for (BasicBlock::iterator I = Pred->begin();
1265 !isa<TerminatorInst>(I); ++I)
1266 if (!AggressiveInsts.count(I)) {
1267 // This is not an aggressive instruction that we can promote.
1268 // Because of this, we won't be able to get rid of the control
1269 // flow, so the xform is not worth it.
1270 return false;
1271 }
1272 }
1273
1274 Pred = PN->getIncomingBlock(1);
1275 if (cast<BranchInst>(Pred->getTerminator())->isUnconditional()) {
1276 IfBlock2 = Pred;
1277 DomBlock = *pred_begin(Pred);
1278 for (BasicBlock::iterator I = Pred->begin();
1279 !isa<TerminatorInst>(I); ++I)
1280 if (!AggressiveInsts.count(I)) {
1281 // This is not an aggressive instruction that we can promote.
1282 // Because of this, we won't be able to get rid of the control
1283 // flow, so the xform is not worth it.
1284 return false;
1285 }
1286 }
1287
1288 // If we can still promote the PHI nodes after this gauntlet of tests,
1289 // do all of the PHI's now.
1290
1291 // Move all 'aggressive' instructions, which are defined in the
1292 // conditional parts of the if's up to the dominating block.
1293 if (IfBlock1) {
1294 DomBlock->getInstList().splice(DomBlock->getTerminator(),
1295 IfBlock1->getInstList(),
1296 IfBlock1->begin(),
1297 IfBlock1->getTerminator());
1298 }
1299 if (IfBlock2) {
1300 DomBlock->getInstList().splice(DomBlock->getTerminator(),
1301 IfBlock2->getInstList(),
1302 IfBlock2->begin(),
1303 IfBlock2->getTerminator());
1304 }
1305
1306 while (PHINode *PN = dyn_cast<PHINode>(BB->begin())) {
1307 // Change the PHI node into a select instruction.
1308 Value *TrueVal =
1309 PN->getIncomingValue(PN->getIncomingBlock(0) == IfFalse);
1310 Value *FalseVal =
1311 PN->getIncomingValue(PN->getIncomingBlock(0) == IfTrue);
1312
Gabor Greifd6da1d02008-04-06 20:25:17 +00001313 Value *NV = SelectInst::Create(IfCond, TrueVal, FalseVal, "", AfterPHIIt);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001314 PN->replaceAllUsesWith(NV);
1315 NV->takeName(PN);
1316
1317 BB->getInstList().erase(PN);
1318 }
1319 return true;
1320}
1321
Chris Lattnerdc2dc022008-04-24 00:01:19 +00001322/// SimplifyCondBranchToTwoReturns - If we found a conditional branch that goes
1323/// to two returning blocks, try to merge them together into one return,
1324/// introducing a select if the return values disagree.
1325static bool SimplifyCondBranchToTwoReturns(BranchInst *BI) {
1326 assert(BI->isConditional() && "Must be a conditional branch");
1327 BasicBlock *TrueSucc = BI->getSuccessor(0);
1328 BasicBlock *FalseSucc = BI->getSuccessor(1);
1329 ReturnInst *TrueRet = cast<ReturnInst>(TrueSucc->getTerminator());
1330 ReturnInst *FalseRet = cast<ReturnInst>(FalseSucc->getTerminator());
1331
1332 // Check to ensure both blocks are empty (just a return) or optionally empty
1333 // with PHI nodes. If there are other instructions, merging would cause extra
1334 // computation on one path or the other.
1335 BasicBlock::iterator BBI = TrueRet;
1336 if (BBI != TrueSucc->begin() && !isa<PHINode>(--BBI))
1337 return false; // Not empty with optional phi nodes.
1338 BBI = FalseRet;
1339 if (BBI != FalseSucc->begin() && !isa<PHINode>(--BBI))
1340 return false; // Not empty with optional phi nodes.
1341
1342 // Okay, we found a branch that is going to two return nodes. If
1343 // there is no return value for this function, just change the
1344 // branch into a return.
1345 if (FalseRet->getNumOperands() == 0) {
1346 TrueSucc->removePredecessor(BI->getParent());
1347 FalseSucc->removePredecessor(BI->getParent());
1348 ReturnInst::Create(0, BI);
1349 BI->eraseFromParent();
1350 return true;
1351 }
1352
Dan Gohman29474e92008-07-23 00:34:11 +00001353 // Otherwise, figure out what the true and false return values are
1354 // so we can insert a new select instruction.
1355 Value *TrueValue = TrueRet->getReturnValue();
1356 Value *FalseValue = FalseRet->getReturnValue();
Chris Lattnerdc2dc022008-04-24 00:01:19 +00001357
Dan Gohman29474e92008-07-23 00:34:11 +00001358 // Unwrap any PHI nodes in the return blocks.
1359 if (PHINode *TVPN = dyn_cast_or_null<PHINode>(TrueValue))
1360 if (TVPN->getParent() == TrueSucc)
1361 TrueValue = TVPN->getIncomingValueForBlock(BI->getParent());
1362 if (PHINode *FVPN = dyn_cast_or_null<PHINode>(FalseValue))
1363 if (FVPN->getParent() == FalseSucc)
1364 FalseValue = FVPN->getIncomingValueForBlock(BI->getParent());
1365
1366 // In order for this transformation to be safe, we must be able to
1367 // unconditionally execute both operands to the return. This is
1368 // normally the case, but we could have a potentially-trapping
1369 // constant expression that prevents this transformation from being
1370 // safe.
1371 if (ConstantExpr *TCV = dyn_cast_or_null<ConstantExpr>(TrueValue))
1372 if (TCV->canTrap())
1373 return false;
1374 if (ConstantExpr *FCV = dyn_cast_or_null<ConstantExpr>(FalseValue))
1375 if (FCV->canTrap())
1376 return false;
1377
Chris Lattnerdc2dc022008-04-24 00:01:19 +00001378 // Okay, we collected all the mapped values and checked them for sanity, and
1379 // defined to really do this transformation. First, update the CFG.
1380 TrueSucc->removePredecessor(BI->getParent());
1381 FalseSucc->removePredecessor(BI->getParent());
1382
1383 // Insert select instructions where needed.
1384 Value *BrCond = BI->getCondition();
Dan Gohman29474e92008-07-23 00:34:11 +00001385 if (TrueValue) {
Chris Lattnerdc2dc022008-04-24 00:01:19 +00001386 // Insert a select if the results differ.
Dan Gohman29474e92008-07-23 00:34:11 +00001387 if (TrueValue == FalseValue || isa<UndefValue>(FalseValue)) {
1388 } else if (isa<UndefValue>(TrueValue)) {
1389 TrueValue = FalseValue;
1390 } else {
1391 TrueValue = SelectInst::Create(BrCond, TrueValue,
1392 FalseValue, "retval", BI);
Chris Lattnerdc2dc022008-04-24 00:01:19 +00001393 }
Chris Lattnerdc2dc022008-04-24 00:01:19 +00001394 }
1395
Dan Gohman29474e92008-07-23 00:34:11 +00001396 Value *RI = !TrueValue ?
1397 ReturnInst::Create(BI) :
1398 ReturnInst::Create(TrueValue, BI);
Chris Lattnerdc2dc022008-04-24 00:01:19 +00001399
1400 DOUT << "\nCHANGING BRANCH TO TWO RETURNS INTO SELECT:"
1401 << "\n " << *BI << "NewRet = " << *RI
1402 << "TRUEBLOCK: " << *TrueSucc << "FALSEBLOCK: "<< *FalseSucc;
1403
1404 BI->eraseFromParent();
1405
1406 if (Instruction *BrCondI = dyn_cast<Instruction>(BrCond))
1407 ErasePossiblyDeadInstructionTree(BrCondI);
1408 return true;
1409}
1410
Chris Lattner79e6e6c2008-07-13 21:12:01 +00001411/// FoldBranchToCommonDest - If this basic block is ONLY a setcc and a branch,
1412/// and if a predecessor branches to us and one of our successors, fold the
1413/// setcc into the predecessor and use logical operations to pick the right
1414/// destination.
1415static bool FoldBranchToCommonDest(BranchInst *BI) {
Chris Lattner6339ac32008-07-13 22:23:11 +00001416 BasicBlock *BB = BI->getParent();
Chris Lattner79e6e6c2008-07-13 21:12:01 +00001417 Instruction *Cond = dyn_cast<Instruction>(BI->getCondition());
1418 if (Cond == 0) return false;
1419
Chris Lattner6339ac32008-07-13 22:23:11 +00001420
Chris Lattner79e6e6c2008-07-13 21:12:01 +00001421 // Only allow this if the condition is a simple instruction that can be
1422 // executed unconditionally. It must be in the same block as the branch, and
1423 // must be at the front of the block.
1424 if ((!isa<CmpInst>(Cond) && !isa<BinaryOperator>(Cond)) ||
1425 Cond->getParent() != BB || &BB->front() != Cond || !Cond->hasOneUse())
1426 return false;
1427
1428 // Make sure the instruction after the condition is the cond branch.
1429 BasicBlock::iterator CondIt = Cond; ++CondIt;
1430 if (&*CondIt != BI)
1431 return false;
1432
1433 // Finally, don't infinitely unroll conditional loops.
1434 BasicBlock *TrueDest = BI->getSuccessor(0);
1435 BasicBlock *FalseDest = BI->getSuccessor(1);
1436 if (TrueDest == BB || FalseDest == BB)
1437 return false;
1438
1439 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1440 BasicBlock *PredBlock = *PI;
1441 BranchInst *PBI = dyn_cast<BranchInst>(PredBlock->getTerminator());
Chris Lattner6339ac32008-07-13 22:23:11 +00001442 // Check that we have two conditional branches. If there is a PHI node in
1443 // the common successor, verify that the same value flows in from both
1444 // blocks.
Chris Lattner79e6e6c2008-07-13 21:12:01 +00001445 if (PBI == 0 || PBI->isUnconditional() ||
1446 !SafeToMergeTerminators(BI, PBI))
1447 continue;
1448
Chris Lattner16b3c502008-07-13 21:20:19 +00001449 Instruction::BinaryOps Opc;
1450 bool InvertPredCond = false;
1451
1452 if (PBI->getSuccessor(0) == TrueDest)
1453 Opc = Instruction::Or;
1454 else if (PBI->getSuccessor(1) == FalseDest)
1455 Opc = Instruction::And;
1456 else if (PBI->getSuccessor(0) == FalseDest)
1457 Opc = Instruction::And, InvertPredCond = true;
1458 else if (PBI->getSuccessor(1) == TrueDest)
1459 Opc = Instruction::Or, InvertPredCond = true;
1460 else
1461 continue;
1462
1463 // If we need to invert the condition in the pred block to match, do so now.
1464 if (InvertPredCond) {
Chris Lattner79e6e6c2008-07-13 21:12:01 +00001465 Value *NewCond =
1466 BinaryOperator::CreateNot(PBI->getCondition(),
Chris Lattner16b3c502008-07-13 21:20:19 +00001467 PBI->getCondition()->getName()+".not", PBI);
Chris Lattner79e6e6c2008-07-13 21:12:01 +00001468 PBI->setCondition(NewCond);
1469 BasicBlock *OldTrue = PBI->getSuccessor(0);
1470 BasicBlock *OldFalse = PBI->getSuccessor(1);
1471 PBI->setSuccessor(0, OldFalse);
1472 PBI->setSuccessor(1, OldTrue);
1473 }
Chris Lattner95044472008-07-13 21:15:11 +00001474
Chris Lattner16b3c502008-07-13 21:20:19 +00001475 // Clone Cond into the predecessor basic block, and or/and the
1476 // two conditions together.
1477 Instruction *New = Cond->clone();
1478 PredBlock->getInstList().insert(PBI, New);
1479 New->takeName(Cond);
1480 Cond->setName(New->getName()+".old");
Chris Lattner95044472008-07-13 21:15:11 +00001481
Chris Lattner16b3c502008-07-13 21:20:19 +00001482 Value *NewCond = BinaryOperator::Create(Opc, PBI->getCondition(),
1483 New, "or.cond", PBI);
1484 PBI->setCondition(NewCond);
1485 if (PBI->getSuccessor(0) == BB) {
1486 AddPredecessorToBlock(TrueDest, PredBlock, BB);
1487 PBI->setSuccessor(0, TrueDest);
Chris Lattner79e6e6c2008-07-13 21:12:01 +00001488 }
Chris Lattner16b3c502008-07-13 21:20:19 +00001489 if (PBI->getSuccessor(1) == BB) {
1490 AddPredecessorToBlock(FalseDest, PredBlock, BB);
1491 PBI->setSuccessor(1, FalseDest);
1492 }
1493 return true;
Chris Lattner79e6e6c2008-07-13 21:12:01 +00001494 }
1495 return false;
1496}
1497
Chris Lattnerd0c5d822008-07-13 21:53:26 +00001498/// SimplifyCondBranchToCondBranch - If we have a conditional branch as a
1499/// predecessor of another block, this function tries to simplify it. We know
1500/// that PBI and BI are both conditional branches, and BI is in one of the
1501/// successor blocks of PBI - PBI branches to BI.
1502static bool SimplifyCondBranchToCondBranch(BranchInst *PBI, BranchInst *BI) {
1503 assert(PBI->isConditional() && BI->isConditional());
1504 BasicBlock *BB = BI->getParent();
1505
1506 // If this block ends with a branch instruction, and if there is a
1507 // predecessor that ends on a branch of the same condition, make
1508 // this conditional branch redundant.
1509 if (PBI->getCondition() == BI->getCondition() &&
1510 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1511 // Okay, the outcome of this conditional branch is statically
1512 // knowable. If this block had a single pred, handle specially.
1513 if (BB->getSinglePredecessor()) {
1514 // Turn this into a branch on constant.
1515 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1516 BI->setCondition(ConstantInt::get(Type::Int1Ty, CondIsTrue));
1517 return true; // Nuke the branch on constant.
1518 }
1519
1520 // Otherwise, if there are multiple predecessors, insert a PHI that merges
1521 // in the constant and simplify the block result. Subsequent passes of
1522 // simplifycfg will thread the block.
1523 if (BlockIsSimpleEnoughToThreadThrough(BB)) {
1524 PHINode *NewPN = PHINode::Create(Type::Int1Ty,
1525 BI->getCondition()->getName() + ".pr",
1526 BB->begin());
Chris Lattnerd1042402008-07-13 21:55:46 +00001527 // Okay, we're going to insert the PHI node. Since PBI is not the only
1528 // predecessor, compute the PHI'd conditional value for all of the preds.
1529 // Any predecessor where the condition is not computable we keep symbolic.
Chris Lattnerd0c5d822008-07-13 21:53:26 +00001530 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1531 if ((PBI = dyn_cast<BranchInst>((*PI)->getTerminator())) &&
1532 PBI != BI && PBI->isConditional() &&
1533 PBI->getCondition() == BI->getCondition() &&
1534 PBI->getSuccessor(0) != PBI->getSuccessor(1)) {
1535 bool CondIsTrue = PBI->getSuccessor(0) == BB;
1536 NewPN->addIncoming(ConstantInt::get(Type::Int1Ty,
1537 CondIsTrue), *PI);
1538 } else {
1539 NewPN->addIncoming(BI->getCondition(), *PI);
1540 }
1541
1542 BI->setCondition(NewPN);
Chris Lattnerd0c5d822008-07-13 21:53:26 +00001543 return true;
1544 }
1545 }
1546
1547 // If this is a conditional branch in an empty block, and if any
1548 // predecessors is a conditional branch to one of our destinations,
1549 // fold the conditions into logical ops and one cond br.
Chris Lattner8a9bb1e2008-07-13 22:04:41 +00001550 if (&BB->front() != BI)
1551 return false;
1552
1553 int PBIOp, BIOp;
1554 if (PBI->getSuccessor(0) == BI->getSuccessor(0))
1555 PBIOp = BIOp = 0;
1556 else if (PBI->getSuccessor(0) == BI->getSuccessor(1))
1557 PBIOp = 0, BIOp = 1;
1558 else if (PBI->getSuccessor(1) == BI->getSuccessor(0))
1559 PBIOp = 1, BIOp = 0;
1560 else if (PBI->getSuccessor(1) == BI->getSuccessor(1))
1561 PBIOp = BIOp = 1;
1562 else
1563 return false;
Chris Lattnerd0c5d822008-07-13 21:53:26 +00001564
Chris Lattner8a9bb1e2008-07-13 22:04:41 +00001565 // Check to make sure that the other destination of this branch
1566 // isn't BB itself. If so, this is an infinite loop that will
1567 // keep getting unwound.
1568 if (PBI->getSuccessor(PBIOp) == BB)
1569 return false;
Chris Lattnerd0c5d822008-07-13 21:53:26 +00001570
Chris Lattner8a9bb1e2008-07-13 22:04:41 +00001571 // Do not perform this transformation if it would require
1572 // insertion of a large number of select instructions. For targets
1573 // without predication/cmovs, this is a big pessimization.
1574 BasicBlock *CommonDest = PBI->getSuccessor(PBIOp);
Chris Lattnerd0c5d822008-07-13 21:53:26 +00001575
Chris Lattner8a9bb1e2008-07-13 22:04:41 +00001576 unsigned NumPhis = 0;
1577 for (BasicBlock::iterator II = CommonDest->begin();
1578 isa<PHINode>(II); ++II, ++NumPhis)
1579 if (NumPhis > 2) // Disable this xform.
1580 return false;
Chris Lattnerd0c5d822008-07-13 21:53:26 +00001581
Chris Lattner8a9bb1e2008-07-13 22:04:41 +00001582 // Finally, if everything is ok, fold the branches to logical ops.
1583 BasicBlock *OtherDest = BI->getSuccessor(BIOp ^ 1);
1584
Chris Lattner8a9bb1e2008-07-13 22:04:41 +00001585 DOUT << "FOLDING BRs:" << *PBI->getParent()
1586 << "AND: " << *BI->getParent();
1587
Chris Lattner6339ac32008-07-13 22:23:11 +00001588
1589 // If OtherDest *is* BB, then BB is a basic block with a single conditional
1590 // branch in it, where one edge (OtherDest) goes back to itself but the other
1591 // exits. We don't *know* that the program avoids the infinite loop
1592 // (even though that seems likely). If we do this xform naively, we'll end up
1593 // recursively unpeeling the loop. Since we know that (after the xform is
1594 // done) that the block *is* infinite if reached, we just make it an obviously
1595 // infinite loop with no cond branch.
1596 if (OtherDest == BB) {
1597 // Insert it at the end of the function, because it's either code,
1598 // or it won't matter if it's hot. :)
1599 BasicBlock *InfLoopBlock = BasicBlock::Create("infloop", BB->getParent());
1600 BranchInst::Create(InfLoopBlock, InfLoopBlock);
1601 OtherDest = InfLoopBlock;
1602 }
1603
Chris Lattner8a9bb1e2008-07-13 22:04:41 +00001604 DOUT << *PBI->getParent()->getParent();
1605
1606 // BI may have other predecessors. Because of this, we leave
1607 // it alone, but modify PBI.
1608
1609 // Make sure we get to CommonDest on True&True directions.
1610 Value *PBICond = PBI->getCondition();
1611 if (PBIOp)
1612 PBICond = BinaryOperator::CreateNot(PBICond,
1613 PBICond->getName()+".not",
1614 PBI);
1615 Value *BICond = BI->getCondition();
1616 if (BIOp)
1617 BICond = BinaryOperator::CreateNot(BICond,
1618 BICond->getName()+".not",
1619 PBI);
1620 // Merge the conditions.
1621 Value *Cond = BinaryOperator::CreateOr(PBICond, BICond, "brmerge", PBI);
1622
1623 // Modify PBI to branch on the new condition to the new dests.
1624 PBI->setCondition(Cond);
1625 PBI->setSuccessor(0, CommonDest);
1626 PBI->setSuccessor(1, OtherDest);
1627
1628 // OtherDest may have phi nodes. If so, add an entry from PBI's
1629 // block that are identical to the entries for BI's block.
1630 PHINode *PN;
1631 for (BasicBlock::iterator II = OtherDest->begin();
1632 (PN = dyn_cast<PHINode>(II)); ++II) {
1633 Value *V = PN->getIncomingValueForBlock(BB);
1634 PN->addIncoming(V, PBI->getParent());
1635 }
1636
1637 // We know that the CommonDest already had an edge from PBI to
1638 // it. If it has PHIs though, the PHIs may have different
1639 // entries for BB and PBI's BB. If so, insert a select to make
1640 // them agree.
1641 for (BasicBlock::iterator II = CommonDest->begin();
1642 (PN = dyn_cast<PHINode>(II)); ++II) {
1643 Value *BIV = PN->getIncomingValueForBlock(BB);
1644 unsigned PBBIdx = PN->getBasicBlockIndex(PBI->getParent());
1645 Value *PBIV = PN->getIncomingValue(PBBIdx);
1646 if (BIV != PBIV) {
1647 // Insert a select in PBI to pick the right value.
1648 Value *NV = SelectInst::Create(PBICond, PBIV, BIV,
1649 PBIV->getName()+".mux", PBI);
1650 PN->setIncomingValue(PBBIdx, NV);
Chris Lattnerd0c5d822008-07-13 21:53:26 +00001651 }
1652 }
Chris Lattner8a9bb1e2008-07-13 22:04:41 +00001653
1654 DOUT << "INTO: " << *PBI->getParent();
1655
1656 DOUT << *PBI->getParent()->getParent();
1657
1658 // This basic block is probably dead. We know it has at least
1659 // one fewer predecessor.
1660 return true;
Chris Lattnerd0c5d822008-07-13 21:53:26 +00001661}
1662
Chris Lattnerdc2dc022008-04-24 00:01:19 +00001663
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001664namespace {
1665 /// ConstantIntOrdering - This class implements a stable ordering of constant
1666 /// integers that does not depend on their address. This is important for
1667 /// applications that sort ConstantInt's to ensure uniqueness.
1668 struct ConstantIntOrdering {
1669 bool operator()(const ConstantInt *LHS, const ConstantInt *RHS) const {
1670 return LHS->getValue().ult(RHS->getValue());
1671 }
1672 };
1673}
1674
1675// SimplifyCFG - This function is used to do simplification of a CFG. For
1676// example, it adjusts branches to branches to eliminate the extra hop, it
1677// eliminates unreachable basic blocks, and does other "peephole" optimization
1678// of the CFG. It returns true if a modification was made.
1679//
1680// WARNING: The entry node of a function may not be simplified.
1681//
1682bool llvm::SimplifyCFG(BasicBlock *BB) {
1683 bool Changed = false;
1684 Function *M = BB->getParent();
1685
1686 assert(BB && BB->getParent() && "Block not embedded in function!");
1687 assert(BB->getTerminator() && "Degenerate basic block encountered!");
1688 assert(&BB->getParent()->getEntryBlock() != BB &&
1689 "Can't Simplify entry block!");
1690
1691 // Remove basic blocks that have no predecessors... which are unreachable.
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00001692 if ((pred_begin(BB) == pred_end(BB)) ||
1693 (*pred_begin(BB) == BB && ++pred_begin(BB) == pred_end(BB))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001694 DOUT << "Removing BB: \n" << *BB;
1695
1696 // Loop through all of our successors and make sure they know that one
1697 // of their predecessors is going away.
1698 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
1699 SI->removePredecessor(BB);
1700
1701 while (!BB->empty()) {
1702 Instruction &I = BB->back();
1703 // If this instruction is used, replace uses with an arbitrary
1704 // value. Because control flow can't get here, we don't care
1705 // what we replace the value with. Note that since this block is
1706 // unreachable, and all values contained within it must dominate their
1707 // uses, that all uses will eventually be removed.
1708 if (!I.use_empty())
1709 // Make all users of this instruction use undef instead
1710 I.replaceAllUsesWith(UndefValue::get(I.getType()));
1711
1712 // Remove the instruction from the basic block
1713 BB->getInstList().pop_back();
1714 }
1715 M->getBasicBlockList().erase(BB);
1716 return true;
1717 }
1718
1719 // Check to see if we can constant propagate this terminator instruction
1720 // away...
1721 Changed |= ConstantFoldTerminator(BB);
1722
Dan Gohmanb1b81812008-03-11 21:53:06 +00001723 // If there is a trivial two-entry PHI node in this basic block, and we can
1724 // eliminate it, do so now.
1725 if (PHINode *PN = dyn_cast<PHINode>(BB->begin()))
1726 if (PN->getNumIncomingValues() == 2)
1727 Changed |= FoldTwoEntryPHINode(PN);
1728
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001729 // If this is a returning block with only PHI nodes in it, fold the return
1730 // instruction into any unconditional branch predecessors.
1731 //
1732 // If any predecessor is a conditional branch that just selects among
1733 // different return values, fold the replace the branch/return with a select
1734 // and return.
1735 if (ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator())) {
1736 BasicBlock::iterator BBI = BB->getTerminator();
1737 if (BBI == BB->begin() || isa<PHINode>(--BBI)) {
1738 // Find predecessors that end with branches.
Chris Lattner3b4482022008-02-18 07:42:56 +00001739 SmallVector<BasicBlock*, 8> UncondBranchPreds;
1740 SmallVector<BranchInst*, 8> CondBranchPreds;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001741 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) {
1742 TerminatorInst *PTI = (*PI)->getTerminator();
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00001743 if (BranchInst *BI = dyn_cast<BranchInst>(PTI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001744 if (BI->isUnconditional())
1745 UncondBranchPreds.push_back(*PI);
1746 else
1747 CondBranchPreds.push_back(BI);
Anton Korobeynikov8522e1c2008-02-20 11:26:25 +00001748 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001749 }
1750
1751 // If we found some, do the transformation!
1752 if (!UncondBranchPreds.empty()) {
1753 while (!UncondBranchPreds.empty()) {
1754 BasicBlock *Pred = UncondBranchPreds.back();
1755 DOUT << "FOLDING: " << *BB
1756 << "INTO UNCOND BRANCH PRED: " << *Pred;
1757 UncondBranchPreds.pop_back();
1758 Instruction *UncondBranch = Pred->getTerminator();
1759 // Clone the return and add it to the end of the predecessor.
1760 Instruction *NewRet = RI->clone();
1761 Pred->getInstList().push_back(NewRet);
1762
1763 // If the return instruction returns a value, and if the value was a
1764 // PHI node in "BB", propagate the right value into the return.
Gabor Greife477bec2008-06-10 22:03:26 +00001765 for (User::op_iterator i = NewRet->op_begin(), e = NewRet->op_end();
1766 i != e; ++i)
1767 if (PHINode *PN = dyn_cast<PHINode>(*i))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001768 if (PN->getParent() == BB)
Gabor Greife477bec2008-06-10 22:03:26 +00001769 *i = PN->getIncomingValueForBlock(Pred);
Chris Lattnerb2718272008-04-28 00:19:07 +00001770
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001771 // Update any PHI nodes in the returning block to realize that we no
1772 // longer branch to them.
1773 BB->removePredecessor(Pred);
1774 Pred->getInstList().erase(UncondBranch);
1775 }
1776
1777 // If we eliminated all predecessors of the block, delete the block now.
1778 if (pred_begin(BB) == pred_end(BB))
1779 // We know there are no successors, so just nuke the block.
1780 M->getBasicBlockList().erase(BB);
1781
1782 return true;
1783 }
1784
1785 // Check out all of the conditional branches going to this return
1786 // instruction. If any of them just select between returns, change the
1787 // branch itself into a select/return pair.
1788 while (!CondBranchPreds.empty()) {
1789 BranchInst *BI = CondBranchPreds.back();
1790 CondBranchPreds.pop_back();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001791
1792 // Check to see if the non-BB successor is also a return block.
Chris Lattnerdc2dc022008-04-24 00:01:19 +00001793 if (isa<ReturnInst>(BI->getSuccessor(0)->getTerminator()) &&
1794 isa<ReturnInst>(BI->getSuccessor(1)->getTerminator()) &&
1795 SimplifyCondBranchToTwoReturns(BI))
1796 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001797 }
1798 }
1799 } else if (isa<UnwindInst>(BB->begin())) {
1800 // Check to see if the first instruction in this block is just an unwind.
1801 // If so, replace any invoke instructions which use this as an exception
1802 // destination with call instructions, and any unconditional branch
1803 // predecessor with an unwind.
1804 //
Chris Lattner3b4482022008-02-18 07:42:56 +00001805 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001806 while (!Preds.empty()) {
1807 BasicBlock *Pred = Preds.back();
1808 if (BranchInst *BI = dyn_cast<BranchInst>(Pred->getTerminator())) {
Nick Lewyckyd8aa33a2008-04-25 16:53:59 +00001809 if (BI->isUnconditional()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001810 Pred->getInstList().pop_back(); // nuke uncond branch
1811 new UnwindInst(Pred); // Use unwind.
1812 Changed = true;
1813 }
Nick Lewyckye5f162c2008-03-09 07:50:37 +00001814 } else if (InvokeInst *II = dyn_cast<InvokeInst>(Pred->getTerminator()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001815 if (II->getUnwindDest() == BB) {
1816 // Insert a new branch instruction before the invoke, because this
1817 // is now a fall through...
Gabor Greifd6da1d02008-04-06 20:25:17 +00001818 BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001819 Pred->getInstList().remove(II); // Take out of symbol table
1820
1821 // Insert the call now...
1822 SmallVector<Value*,8> Args(II->op_begin()+3, II->op_end());
Gabor Greifd6da1d02008-04-06 20:25:17 +00001823 CallInst *CI = CallInst::Create(II->getCalledValue(),
Gabor Greife477bec2008-06-10 22:03:26 +00001824 Args.begin(), Args.end(),
1825 II->getName(), BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001826 CI->setCallingConv(II->getCallingConv());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00001827 CI->setParamAttrs(II->getParamAttrs());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001828 // If the invoke produced a value, the Call now does instead
1829 II->replaceAllUsesWith(CI);
1830 delete II;
1831 Changed = true;
1832 }
1833
1834 Preds.pop_back();
1835 }
1836
1837 // If this block is now dead, remove it.
1838 if (pred_begin(BB) == pred_end(BB)) {
1839 // We know there are no successors, so just nuke the block.
1840 M->getBasicBlockList().erase(BB);
1841 return true;
1842 }
1843
1844 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
1845 if (isValueEqualityComparison(SI)) {
1846 // If we only have one predecessor, and if it is a branch on this value,
1847 // see if that predecessor totally determines the outcome of this switch.
1848 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1849 if (SimplifyEqualityComparisonWithOnlyPredecessor(SI, OnlyPred))
1850 return SimplifyCFG(BB) || 1;
1851
1852 // If the block only contains the switch, see if we can fold the block
1853 // away into any preds.
1854 if (SI == &BB->front())
1855 if (FoldValueComparisonIntoPredecessors(SI))
1856 return SimplifyCFG(BB) || 1;
1857 }
1858 } else if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
1859 if (BI->isUnconditional()) {
Dan Gohman514277c2008-05-23 21:05:58 +00001860 BasicBlock::iterator BBI = BB->getFirstNonPHI();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001861
1862 BasicBlock *Succ = BI->getSuccessor(0);
1863 if (BBI->isTerminator() && // Terminator is the only non-phi instruction!
1864 Succ != BB) // Don't hurt infinite loops!
1865 if (TryToSimplifyUncondBranchFromEmptyBlock(BB, Succ))
Chris Lattner79e6e6c2008-07-13 21:12:01 +00001866 return true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001867
1868 } else { // Conditional branch
1869 if (isValueEqualityComparison(BI)) {
1870 // If we only have one predecessor, and if it is a branch on this value,
1871 // see if that predecessor totally determines the outcome of this
1872 // switch.
1873 if (BasicBlock *OnlyPred = BB->getSinglePredecessor())
1874 if (SimplifyEqualityComparisonWithOnlyPredecessor(BI, OnlyPred))
1875 return SimplifyCFG(BB) || 1;
1876
1877 // This block must be empty, except for the setcond inst, if it exists.
1878 BasicBlock::iterator I = BB->begin();
1879 if (&*I == BI ||
1880 (&*I == cast<Instruction>(BI->getCondition()) &&
1881 &*++I == BI))
1882 if (FoldValueComparisonIntoPredecessors(BI))
1883 return SimplifyCFG(BB) | true;
1884 }
1885
1886 // If this is a branch on a phi node in the current block, thread control
1887 // through this block if any PHI node entries are constants.
1888 if (PHINode *PN = dyn_cast<PHINode>(BI->getCondition()))
1889 if (PN->getParent() == BI->getParent())
1890 if (FoldCondBranchOnPHI(BI))
1891 return SimplifyCFG(BB) | true;
1892
1893 // If this basic block is ONLY a setcc and a branch, and if a predecessor
1894 // branches to us and one of our successors, fold the setcc into the
1895 // predecessor and use logical operations to pick the right destination.
Chris Lattner79e6e6c2008-07-13 21:12:01 +00001896 if (FoldBranchToCommonDest(BI))
1897 return SimplifyCFG(BB) | 1;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001898
Chris Lattnerd0c5d822008-07-13 21:53:26 +00001899
1900 // Scan predecessor blocks for conditional branches.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001901 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
1902 if (BranchInst *PBI = dyn_cast<BranchInst>((*PI)->getTerminator()))
Chris Lattnerd0c5d822008-07-13 21:53:26 +00001903 if (PBI != BI && PBI->isConditional())
1904 if (SimplifyCondBranchToCondBranch(PBI, BI))
1905 return SimplifyCFG(BB) | true;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001906 }
1907 } else if (isa<UnreachableInst>(BB->getTerminator())) {
1908 // If there are any instructions immediately before the unreachable that can
1909 // be removed, do so.
1910 Instruction *Unreachable = BB->getTerminator();
1911 while (Unreachable != BB->begin()) {
1912 BasicBlock::iterator BBI = Unreachable;
1913 --BBI;
1914 if (isa<CallInst>(BBI)) break;
1915 // Delete this instruction
1916 BB->getInstList().erase(BBI);
1917 Changed = true;
1918 }
1919
1920 // If the unreachable instruction is the first in the block, take a gander
1921 // at all of the predecessors of this instruction, and simplify them.
1922 if (&BB->front() == Unreachable) {
Chris Lattner3b4482022008-02-18 07:42:56 +00001923 SmallVector<BasicBlock*, 8> Preds(pred_begin(BB), pred_end(BB));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001924 for (unsigned i = 0, e = Preds.size(); i != e; ++i) {
1925 TerminatorInst *TI = Preds[i]->getTerminator();
1926
1927 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
1928 if (BI->isUnconditional()) {
1929 if (BI->getSuccessor(0) == BB) {
1930 new UnreachableInst(TI);
1931 TI->eraseFromParent();
1932 Changed = true;
1933 }
1934 } else {
1935 if (BI->getSuccessor(0) == BB) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00001936 BranchInst::Create(BI->getSuccessor(1), BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001937 BI->eraseFromParent();
1938 } else if (BI->getSuccessor(1) == BB) {
Gabor Greifd6da1d02008-04-06 20:25:17 +00001939 BranchInst::Create(BI->getSuccessor(0), BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001940 BI->eraseFromParent();
1941 Changed = true;
1942 }
1943 }
1944 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
1945 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1946 if (SI->getSuccessor(i) == BB) {
1947 BB->removePredecessor(SI->getParent());
1948 SI->removeCase(i);
1949 --i; --e;
1950 Changed = true;
1951 }
1952 // If the default value is unreachable, figure out the most popular
1953 // destination and make it the default.
1954 if (SI->getSuccessor(0) == BB) {
1955 std::map<BasicBlock*, unsigned> Popularity;
1956 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1957 Popularity[SI->getSuccessor(i)]++;
1958
1959 // Find the most popular block.
1960 unsigned MaxPop = 0;
1961 BasicBlock *MaxBlock = 0;
1962 for (std::map<BasicBlock*, unsigned>::iterator
1963 I = Popularity.begin(), E = Popularity.end(); I != E; ++I) {
1964 if (I->second > MaxPop) {
1965 MaxPop = I->second;
1966 MaxBlock = I->first;
1967 }
1968 }
1969 if (MaxBlock) {
1970 // Make this the new default, allowing us to delete any explicit
1971 // edges to it.
1972 SI->setSuccessor(0, MaxBlock);
1973 Changed = true;
1974
1975 // If MaxBlock has phinodes in it, remove MaxPop-1 entries from
1976 // it.
1977 if (isa<PHINode>(MaxBlock->begin()))
1978 for (unsigned i = 0; i != MaxPop-1; ++i)
1979 MaxBlock->removePredecessor(SI->getParent());
1980
1981 for (unsigned i = 1, e = SI->getNumCases(); i != e; ++i)
1982 if (SI->getSuccessor(i) == MaxBlock) {
1983 SI->removeCase(i);
1984 --i; --e;
1985 }
1986 }
1987 }
1988 } else if (InvokeInst *II = dyn_cast<InvokeInst>(TI)) {
1989 if (II->getUnwindDest() == BB) {
1990 // Convert the invoke to a call instruction. This would be a good
1991 // place to note that the call does not throw though.
Gabor Greifd6da1d02008-04-06 20:25:17 +00001992 BranchInst *BI = BranchInst::Create(II->getNormalDest(), II);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001993 II->removeFromParent(); // Take out of symbol table
1994
1995 // Insert the call now...
1996 SmallVector<Value*, 8> Args(II->op_begin()+3, II->op_end());
Gabor Greifd6da1d02008-04-06 20:25:17 +00001997 CallInst *CI = CallInst::Create(II->getCalledValue(),
1998 Args.begin(), Args.end(),
1999 II->getName(), BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002000 CI->setCallingConv(II->getCallingConv());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00002001 CI->setParamAttrs(II->getParamAttrs());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002002 // If the invoke produced a value, the Call does now instead.
2003 II->replaceAllUsesWith(CI);
2004 delete II;
2005 Changed = true;
2006 }
2007 }
2008 }
2009
2010 // If this block is now dead, remove it.
2011 if (pred_begin(BB) == pred_end(BB)) {
2012 // We know there are no successors, so just nuke the block.
2013 M->getBasicBlockList().erase(BB);
2014 return true;
2015 }
2016 }
2017 }
2018
2019 // Merge basic blocks into their predecessor if there is only one distinct
2020 // pred, and if there is only one distinct successor of the predecessor, and
2021 // if there are no PHI nodes.
2022 //
Owen Anderson28e94b72008-07-18 17:49:43 +00002023 if (MergeBlockIntoPredecessor(BB))
2024 return true;
2025
2026 // Otherwise, if this block only has a single predecessor, and if that block
2027 // is a conditional branch, see if we can hoist any code from this block up
2028 // into our predecessor.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002029 pred_iterator PI(pred_begin(BB)), PE(pred_end(BB));
2030 BasicBlock *OnlyPred = *PI++;
2031 for (; PI != PE; ++PI) // Search all predecessors, see if they are all same
2032 if (*PI != OnlyPred) {
2033 OnlyPred = 0; // There are multiple different predecessors...
2034 break;
2035 }
Owen Anderson28e94b72008-07-18 17:49:43 +00002036
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002037 if (OnlyPred)
2038 if (BranchInst *BI = dyn_cast<BranchInst>(OnlyPred->getTerminator()))
2039 if (BI->isConditional()) {
2040 // Get the other block.
2041 BasicBlock *OtherBB = BI->getSuccessor(BI->getSuccessor(0) == BB);
2042 PI = pred_begin(OtherBB);
2043 ++PI;
Owen Anderson28e94b72008-07-18 17:49:43 +00002044
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002045 if (PI == pred_end(OtherBB)) {
2046 // We have a conditional branch to two blocks that are only reachable
2047 // from the condbr. We know that the condbr dominates the two blocks,
2048 // so see if there is any identical code in the "then" and "else"
2049 // blocks. If so, we can hoist it up to the branching block.
2050 Changed |= HoistThenElseCodeToIf(BI);
Evan Cheng20a607e2008-06-07 08:52:29 +00002051 } else {
Owen Anderson28e94b72008-07-18 17:49:43 +00002052 BasicBlock* OnlySucc = NULL;
Evan Cheng20a607e2008-06-07 08:52:29 +00002053 for (succ_iterator SI = succ_begin(BB), SE = succ_end(BB);
2054 SI != SE; ++SI) {
2055 if (!OnlySucc)
2056 OnlySucc = *SI;
2057 else if (*SI != OnlySucc) {
2058 OnlySucc = 0; // There are multiple distinct successors!
2059 break;
2060 }
2061 }
2062
2063 if (OnlySucc == OtherBB) {
2064 // If BB's only successor is the other successor of the predecessor,
2065 // i.e. a triangle, see if we can hoist any code from this block up
2066 // to the "if" block.
2067 Changed |= SpeculativelyExecuteBB(BI, BB);
2068 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002069 }
2070 }
2071
2072 for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
2073 if (BranchInst *BI = dyn_cast<BranchInst>((*PI)->getTerminator()))
2074 // Change br (X == 0 | X == 1), T, F into a switch instruction.
2075 if (BI->isConditional() && isa<Instruction>(BI->getCondition())) {
2076 Instruction *Cond = cast<Instruction>(BI->getCondition());
2077 // If this is a bunch of seteq's or'd together, or if it's a bunch of
2078 // 'setne's and'ed together, collect them.
2079 Value *CompVal = 0;
2080 std::vector<ConstantInt*> Values;
2081 bool TrueWhenEqual = GatherValueComparisons(Cond, CompVal, Values);
2082 if (CompVal && CompVal->getType()->isInteger()) {
2083 // There might be duplicate constants in the list, which the switch
2084 // instruction can't handle, remove them now.
2085 std::sort(Values.begin(), Values.end(), ConstantIntOrdering());
2086 Values.erase(std::unique(Values.begin(), Values.end()), Values.end());
2087
2088 // Figure out which block is which destination.
2089 BasicBlock *DefaultBB = BI->getSuccessor(1);
2090 BasicBlock *EdgeBB = BI->getSuccessor(0);
2091 if (!TrueWhenEqual) std::swap(DefaultBB, EdgeBB);
2092
2093 // Create the new switch instruction now.
Gabor Greifb91ea9d2008-05-15 10:04:30 +00002094 SwitchInst *New = SwitchInst::Create(CompVal, DefaultBB,
2095 Values.size(), BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002096
2097 // Add all of the 'cases' to the switch instruction.
2098 for (unsigned i = 0, e = Values.size(); i != e; ++i)
2099 New->addCase(Values[i], EdgeBB);
2100
2101 // We added edges from PI to the EdgeBB. As such, if there were any
2102 // PHI nodes in EdgeBB, they need entries to be added corresponding to
2103 // the number of edges added.
2104 for (BasicBlock::iterator BBI = EdgeBB->begin();
2105 isa<PHINode>(BBI); ++BBI) {
2106 PHINode *PN = cast<PHINode>(BBI);
2107 Value *InVal = PN->getIncomingValueForBlock(*PI);
2108 for (unsigned i = 0, e = Values.size()-1; i != e; ++i)
2109 PN->addIncoming(InVal, *PI);
2110 }
2111
2112 // Erase the old branch instruction.
2113 (*PI)->getInstList().erase(BI);
2114
2115 // Erase the potentially condition tree that was used to computed the
2116 // branch condition.
2117 ErasePossiblyDeadInstructionTree(Cond);
2118 return true;
2119 }
2120 }
2121
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002122 return Changed;
2123}