blob: c33e3206dca0eba6774ebdca855999aef54673bf [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
Chris Lattner081ce942007-12-29 20:36:04 +00005// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007//
8//===----------------------------------------------------------------------===//
9//
10// This pass reassociates commutative expressions in an order that is designed
11// to promote better constant propagation, GCSE, LICM, PRE...
12//
13// For example: 4 + (x + 5) -> x + (4 + 5)
14//
15// In the implementation of this algorithm, constants are assigned rank = 0,
16// function arguments are rank = 1, and other values are assigned ranks
17// corresponding to the reverse post order traversal of current function
18// (starting at 2), which effectively gives values in deep loops higher rank
19// than values not in loops.
20//
21//===----------------------------------------------------------------------===//
22
23#define DEBUG_TYPE "reassociate"
24#include "llvm/Transforms/Scalar.h"
25#include "llvm/Constants.h"
26#include "llvm/DerivedTypes.h"
27#include "llvm/Function.h"
28#include "llvm/Instructions.h"
29#include "llvm/Pass.h"
30#include "llvm/Assembly/Writer.h"
31#include "llvm/Support/CFG.h"
32#include "llvm/Support/Compiler.h"
33#include "llvm/Support/Debug.h"
34#include "llvm/ADT/PostOrderIterator.h"
35#include "llvm/ADT/Statistic.h"
36#include <algorithm>
Dan Gohman249ddbf2008-03-21 23:51:57 +000037#include <map>
Dan Gohmanf17a25c2007-07-18 16:29:46 +000038using namespace llvm;
39
40STATISTIC(NumLinear , "Number of insts linearized");
41STATISTIC(NumChanged, "Number of insts reassociated");
42STATISTIC(NumAnnihil, "Number of expr tree annihilated");
43STATISTIC(NumFactor , "Number of multiplies factored");
44
45namespace {
46 struct VISIBILITY_HIDDEN ValueEntry {
47 unsigned Rank;
48 Value *Op;
49 ValueEntry(unsigned R, Value *O) : Rank(R), Op(O) {}
50 };
51 inline bool operator<(const ValueEntry &LHS, const ValueEntry &RHS) {
52 return LHS.Rank > RHS.Rank; // Sort so that highest rank goes to start.
53 }
54}
55
Devang Patele93afd52008-11-21 21:00:20 +000056#ifndef NDEBUG
Dan Gohmanf17a25c2007-07-18 16:29:46 +000057/// PrintOps - Print out the expression identified in the Ops list.
58///
59static void PrintOps(Instruction *I, const std::vector<ValueEntry> &Ops) {
60 Module *M = I->getParent()->getParent()->getParent();
61 cerr << Instruction::getOpcodeName(I->getOpcode()) << " "
Chris Lattner51216ad2008-08-19 04:45:19 +000062 << *Ops[0].Op->getType();
63 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
64 WriteAsOperand(*cerr.stream() << " ", Ops[i].Op, false, M);
65 cerr << "," << Ops[i].Rank;
66 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +000067}
Devang Patel4354f5c2008-11-21 20:00:59 +000068#endif
Dan Gohmanf17a25c2007-07-18 16:29:46 +000069
Dan Gohman089efff2008-05-13 00:00:25 +000070namespace {
Dan Gohmanf17a25c2007-07-18 16:29:46 +000071 class VISIBILITY_HIDDEN Reassociate : public FunctionPass {
72 std::map<BasicBlock*, unsigned> RankMap;
73 std::map<Value*, unsigned> ValueRankMap;
74 bool MadeChange;
75 public:
76 static char ID; // Pass identification, replacement for typeid
Dan Gohman26f8c272008-09-04 17:05:41 +000077 Reassociate() : FunctionPass(&ID) {}
Dan Gohmanf17a25c2007-07-18 16:29:46 +000078
79 bool runOnFunction(Function &F);
80
81 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
82 AU.setPreservesCFG();
83 }
84 private:
85 void BuildRankMap(Function &F);
86 unsigned getRank(Value *V);
87 void ReassociateExpression(BinaryOperator *I);
88 void RewriteExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops,
89 unsigned Idx = 0);
90 Value *OptimizeExpression(BinaryOperator *I, std::vector<ValueEntry> &Ops);
91 void LinearizeExprTree(BinaryOperator *I, std::vector<ValueEntry> &Ops);
92 void LinearizeExpr(BinaryOperator *I);
93 Value *RemoveFactorFromExpression(Value *V, Value *Factor);
94 void ReassociateBB(BasicBlock *BB);
95
96 void RemoveDeadBinaryOp(Value *V);
97 };
Dan Gohmanf17a25c2007-07-18 16:29:46 +000098}
99
Dan Gohman089efff2008-05-13 00:00:25 +0000100char Reassociate::ID = 0;
101static RegisterPass<Reassociate> X("reassociate", "Reassociate expressions");
102
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000103// Public interface to the Reassociate pass
104FunctionPass *llvm::createReassociatePass() { return new Reassociate(); }
105
106void Reassociate::RemoveDeadBinaryOp(Value *V) {
107 Instruction *Op = dyn_cast<Instruction>(V);
108 if (!Op || !isa<BinaryOperator>(Op) || !isa<CmpInst>(Op) || !Op->use_empty())
109 return;
110
111 Value *LHS = Op->getOperand(0), *RHS = Op->getOperand(1);
112 RemoveDeadBinaryOp(LHS);
113 RemoveDeadBinaryOp(RHS);
114}
115
116
117static bool isUnmovableInstruction(Instruction *I) {
118 if (I->getOpcode() == Instruction::PHI ||
119 I->getOpcode() == Instruction::Alloca ||
120 I->getOpcode() == Instruction::Load ||
121 I->getOpcode() == Instruction::Malloc ||
122 I->getOpcode() == Instruction::Invoke ||
123 I->getOpcode() == Instruction::Call ||
124 I->getOpcode() == Instruction::UDiv ||
125 I->getOpcode() == Instruction::SDiv ||
126 I->getOpcode() == Instruction::FDiv ||
127 I->getOpcode() == Instruction::URem ||
128 I->getOpcode() == Instruction::SRem ||
129 I->getOpcode() == Instruction::FRem)
130 return true;
131 return false;
132}
133
134void Reassociate::BuildRankMap(Function &F) {
135 unsigned i = 2;
136
137 // Assign distinct ranks to function arguments
138 for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E; ++I)
139 ValueRankMap[I] = ++i;
140
141 ReversePostOrderTraversal<Function*> RPOT(&F);
142 for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
143 E = RPOT.end(); I != E; ++I) {
144 BasicBlock *BB = *I;
145 unsigned BBRank = RankMap[BB] = ++i << 16;
146
147 // Walk the basic block, adding precomputed ranks for any instructions that
148 // we cannot move. This ensures that the ranks for these instructions are
149 // all different in the block.
150 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
151 if (isUnmovableInstruction(I))
152 ValueRankMap[I] = ++BBRank;
153 }
154}
155
156unsigned Reassociate::getRank(Value *V) {
157 if (isa<Argument>(V)) return ValueRankMap[V]; // Function argument...
158
159 Instruction *I = dyn_cast<Instruction>(V);
160 if (I == 0) return 0; // Otherwise it's a global or constant, rank 0.
161
162 unsigned &CachedRank = ValueRankMap[I];
163 if (CachedRank) return CachedRank; // Rank already known?
164
165 // If this is an expression, return the 1+MAX(rank(LHS), rank(RHS)) so that
166 // we can reassociate expressions for code motion! Since we do not recurse
167 // for PHI nodes, we cannot have infinite recursion here, because there
168 // cannot be loops in the value graph that do not go through PHI nodes.
169 unsigned Rank = 0, MaxRank = RankMap[I->getParent()];
170 for (unsigned i = 0, e = I->getNumOperands();
171 i != e && Rank != MaxRank; ++i)
172 Rank = std::max(Rank, getRank(I->getOperand(i)));
173
174 // If this is a not or neg instruction, do not count it for rank. This
175 // assures us that X and ~X will have the same rank.
176 if (!I->getType()->isInteger() ||
177 (!BinaryOperator::isNot(I) && !BinaryOperator::isNeg(I)))
178 ++Rank;
179
180 //DOUT << "Calculated Rank[" << V->getName() << "] = "
181 // << Rank << "\n";
182
183 return CachedRank = Rank;
184}
185
186/// isReassociableOp - Return true if V is an instruction of the specified
187/// opcode and if it only has one use.
188static BinaryOperator *isReassociableOp(Value *V, unsigned Opcode) {
189 if ((V->hasOneUse() || V->use_empty()) && isa<Instruction>(V) &&
190 cast<Instruction>(V)->getOpcode() == Opcode)
191 return cast<BinaryOperator>(V);
192 return 0;
193}
194
195/// LowerNegateToMultiply - Replace 0-X with X*-1.
196///
197static Instruction *LowerNegateToMultiply(Instruction *Neg) {
198 Constant *Cst = ConstantInt::getAllOnesValue(Neg->getType());
199
Gabor Greifa645dd32008-05-16 19:29:10 +0000200 Instruction *Res = BinaryOperator::CreateMul(Neg->getOperand(1), Cst, "",Neg);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000201 Res->takeName(Neg);
202 Neg->replaceAllUsesWith(Res);
203 Neg->eraseFromParent();
204 return Res;
205}
206
207// Given an expression of the form '(A+B)+(D+C)', turn it into '(((A+B)+C)+D)'.
208// Note that if D is also part of the expression tree that we recurse to
209// linearize it as well. Besides that case, this does not recurse into A,B, or
210// C.
211void Reassociate::LinearizeExpr(BinaryOperator *I) {
212 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
213 BinaryOperator *RHS = cast<BinaryOperator>(I->getOperand(1));
214 assert(isReassociableOp(LHS, I->getOpcode()) &&
215 isReassociableOp(RHS, I->getOpcode()) &&
216 "Not an expression that needs linearization?");
217
218 DOUT << "Linear" << *LHS << *RHS << *I;
219
220 // Move the RHS instruction to live immediately before I, avoiding breaking
221 // dominator properties.
222 RHS->moveBefore(I);
223
224 // Move operands around to do the linearization.
225 I->setOperand(1, RHS->getOperand(0));
226 RHS->setOperand(0, LHS);
227 I->setOperand(0, RHS);
228
229 ++NumLinear;
230 MadeChange = true;
231 DOUT << "Linearized: " << *I;
232
233 // If D is part of this expression tree, tail recurse.
234 if (isReassociableOp(I->getOperand(1), I->getOpcode()))
235 LinearizeExpr(I);
236}
237
238
239/// LinearizeExprTree - Given an associative binary expression tree, traverse
240/// all of the uses putting it into canonical form. This forces a left-linear
241/// form of the the expression (((a+b)+c)+d), and collects information about the
242/// rank of the non-tree operands.
243///
244/// NOTE: These intentionally destroys the expression tree operands (turning
245/// them into undef values) to reduce #uses of the values. This means that the
246/// caller MUST use something like RewriteExprTree to put the values back in.
247///
248void Reassociate::LinearizeExprTree(BinaryOperator *I,
249 std::vector<ValueEntry> &Ops) {
250 Value *LHS = I->getOperand(0), *RHS = I->getOperand(1);
251 unsigned Opcode = I->getOpcode();
252
253 // First step, linearize the expression if it is in ((A+B)+(C+D)) form.
254 BinaryOperator *LHSBO = isReassociableOp(LHS, Opcode);
255 BinaryOperator *RHSBO = isReassociableOp(RHS, Opcode);
256
257 // If this is a multiply expression tree and it contains internal negations,
258 // transform them into multiplies by -1 so they can be reassociated.
259 if (I->getOpcode() == Instruction::Mul) {
260 if (!LHSBO && LHS->hasOneUse() && BinaryOperator::isNeg(LHS)) {
261 LHS = LowerNegateToMultiply(cast<Instruction>(LHS));
262 LHSBO = isReassociableOp(LHS, Opcode);
263 }
264 if (!RHSBO && RHS->hasOneUse() && BinaryOperator::isNeg(RHS)) {
265 RHS = LowerNegateToMultiply(cast<Instruction>(RHS));
266 RHSBO = isReassociableOp(RHS, Opcode);
267 }
268 }
269
270 if (!LHSBO) {
271 if (!RHSBO) {
272 // Neither the LHS or RHS as part of the tree, thus this is a leaf. As
273 // such, just remember these operands and their rank.
274 Ops.push_back(ValueEntry(getRank(LHS), LHS));
275 Ops.push_back(ValueEntry(getRank(RHS), RHS));
276
277 // Clear the leaves out.
278 I->setOperand(0, UndefValue::get(I->getType()));
279 I->setOperand(1, UndefValue::get(I->getType()));
280 return;
281 } else {
282 // Turn X+(Y+Z) -> (Y+Z)+X
283 std::swap(LHSBO, RHSBO);
284 std::swap(LHS, RHS);
285 bool Success = !I->swapOperands();
286 assert(Success && "swapOperands failed");
Devang Patel4354f5c2008-11-21 20:00:59 +0000287 Success = false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000288 MadeChange = true;
289 }
290 } else if (RHSBO) {
291 // Turn (A+B)+(C+D) -> (((A+B)+C)+D). This guarantees the the RHS is not
292 // part of the expression tree.
293 LinearizeExpr(I);
294 LHS = LHSBO = cast<BinaryOperator>(I->getOperand(0));
295 RHS = I->getOperand(1);
296 RHSBO = 0;
297 }
298
299 // Okay, now we know that the LHS is a nested expression and that the RHS is
300 // not. Perform reassociation.
301 assert(!isReassociableOp(RHS, Opcode) && "LinearizeExpr failed!");
302
303 // Move LHS right before I to make sure that the tree expression dominates all
304 // values.
305 LHSBO->moveBefore(I);
306
307 // Linearize the expression tree on the LHS.
308 LinearizeExprTree(LHSBO, Ops);
309
310 // Remember the RHS operand and its rank.
311 Ops.push_back(ValueEntry(getRank(RHS), RHS));
312
313 // Clear the RHS leaf out.
314 I->setOperand(1, UndefValue::get(I->getType()));
315}
316
317// RewriteExprTree - Now that the operands for this expression tree are
318// linearized and optimized, emit them in-order. This function is written to be
319// tail recursive.
320void Reassociate::RewriteExprTree(BinaryOperator *I,
321 std::vector<ValueEntry> &Ops,
322 unsigned i) {
323 if (i+2 == Ops.size()) {
324 if (I->getOperand(0) != Ops[i].Op ||
325 I->getOperand(1) != Ops[i+1].Op) {
326 Value *OldLHS = I->getOperand(0);
327 DOUT << "RA: " << *I;
328 I->setOperand(0, Ops[i].Op);
329 I->setOperand(1, Ops[i+1].Op);
330 DOUT << "TO: " << *I;
331 MadeChange = true;
332 ++NumChanged;
333
334 // If we reassociated a tree to fewer operands (e.g. (1+a+2) -> (a+3)
335 // delete the extra, now dead, nodes.
336 RemoveDeadBinaryOp(OldLHS);
337 }
338 return;
339 }
340 assert(i+2 < Ops.size() && "Ops index out of range!");
341
342 if (I->getOperand(1) != Ops[i].Op) {
343 DOUT << "RA: " << *I;
344 I->setOperand(1, Ops[i].Op);
345 DOUT << "TO: " << *I;
346 MadeChange = true;
347 ++NumChanged;
348 }
349
350 BinaryOperator *LHS = cast<BinaryOperator>(I->getOperand(0));
351 assert(LHS->getOpcode() == I->getOpcode() &&
352 "Improper expression tree!");
353
354 // Compactify the tree instructions together with each other to guarantee
355 // that the expression tree is dominated by all of Ops.
356 LHS->moveBefore(I);
357 RewriteExprTree(LHS, Ops, i+1);
358}
359
360
361
362// NegateValue - Insert instructions before the instruction pointed to by BI,
363// that computes the negative version of the value specified. The negative
364// version of the value is returned, and BI is left pointing at the instruction
365// that should be processed next by the reassociation pass.
366//
367static Value *NegateValue(Value *V, Instruction *BI) {
368 // We are trying to expose opportunity for reassociation. One of the things
369 // that we want to do to achieve this is to push a negation as deep into an
370 // expression chain as possible, to expose the add instructions. In practice,
371 // this means that we turn this:
372 // X = -(A+12+C+D) into X = -A + -12 + -C + -D = -12 + -A + -C + -D
373 // so that later, a: Y = 12+X could get reassociated with the -12 to eliminate
374 // the constants. We assume that instcombine will clean up the mess later if
375 // we introduce tons of unnecessary negation instructions...
376 //
377 if (Instruction *I = dyn_cast<Instruction>(V))
378 if (I->getOpcode() == Instruction::Add && I->hasOneUse()) {
379 // Push the negates through the add.
380 I->setOperand(0, NegateValue(I->getOperand(0), BI));
381 I->setOperand(1, NegateValue(I->getOperand(1), BI));
382
383 // We must move the add instruction here, because the neg instructions do
384 // not dominate the old add instruction in general. By moving it, we are
385 // assured that the neg instructions we just inserted dominate the
386 // instruction we are about to insert after them.
387 //
388 I->moveBefore(BI);
389 I->setName(I->getName()+".neg");
390 return I;
391 }
392
393 // Insert a 'neg' instruction that subtracts the value from zero to get the
394 // negation.
395 //
Gabor Greifa645dd32008-05-16 19:29:10 +0000396 return BinaryOperator::CreateNeg(V, V->getName() + ".neg", BI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000397}
398
Chris Lattner6cf17172008-02-17 20:44:51 +0000399/// ShouldBreakUpSubtract - Return true if we should break up this subtract of
400/// X-Y into (X + -Y).
401static bool ShouldBreakUpSubtract(Instruction *Sub) {
402 // If this is a negation, we can't split it up!
403 if (BinaryOperator::isNeg(Sub))
404 return false;
405
406 // Don't bother to break this up unless either the LHS is an associable add or
Chris Lattner4846b312008-02-17 20:51:26 +0000407 // subtract or if this is only used by one.
408 if (isReassociableOp(Sub->getOperand(0), Instruction::Add) ||
409 isReassociableOp(Sub->getOperand(0), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000410 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000411 if (isReassociableOp(Sub->getOperand(1), Instruction::Add) ||
Chris Lattner720f2ba2008-02-17 20:54:40 +0000412 isReassociableOp(Sub->getOperand(1), Instruction::Sub))
Chris Lattner6cf17172008-02-17 20:44:51 +0000413 return true;
Chris Lattner4846b312008-02-17 20:51:26 +0000414 if (Sub->hasOneUse() &&
415 (isReassociableOp(Sub->use_back(), Instruction::Add) ||
416 isReassociableOp(Sub->use_back(), Instruction::Sub)))
Chris Lattner6cf17172008-02-17 20:44:51 +0000417 return true;
418
419 return false;
420}
421
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000422/// BreakUpSubtract - If we have (X-Y), and if either X is an add, or if this is
423/// only used by an add, transform this into (X+(0-Y)) to promote better
424/// reassociation.
425static Instruction *BreakUpSubtract(Instruction *Sub) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000426 // Convert a subtract into an add and a neg instruction... so that sub
427 // instructions can be commuted with other add instructions...
428 //
429 // Calculate the negative value of Operand 1 of the sub instruction...
430 // and set it as the RHS of the add instruction we just made...
431 //
432 Value *NegVal = NegateValue(Sub->getOperand(1), Sub);
433 Instruction *New =
Gabor Greifa645dd32008-05-16 19:29:10 +0000434 BinaryOperator::CreateAdd(Sub->getOperand(0), NegVal, "", Sub);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000435 New->takeName(Sub);
436
437 // Everyone now refers to the add instruction.
438 Sub->replaceAllUsesWith(New);
439 Sub->eraseFromParent();
440
441 DOUT << "Negated: " << *New;
442 return New;
443}
444
445/// ConvertShiftToMul - If this is a shift of a reassociable multiply or is used
446/// by one, change this into a multiply by a constant to assist with further
447/// reassociation.
448static Instruction *ConvertShiftToMul(Instruction *Shl) {
449 // If an operand of this shift is a reassociable multiply, or if the shift
450 // is used by a reassociable multiply or add, turn into a multiply.
451 if (isReassociableOp(Shl->getOperand(0), Instruction::Mul) ||
452 (Shl->hasOneUse() &&
453 (isReassociableOp(Shl->use_back(), Instruction::Mul) ||
454 isReassociableOp(Shl->use_back(), Instruction::Add)))) {
455 Constant *MulCst = ConstantInt::get(Shl->getType(), 1);
456 MulCst = ConstantExpr::getShl(MulCst, cast<Constant>(Shl->getOperand(1)));
457
Gabor Greifa645dd32008-05-16 19:29:10 +0000458 Instruction *Mul = BinaryOperator::CreateMul(Shl->getOperand(0), MulCst,
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000459 "", Shl);
460 Mul->takeName(Shl);
461 Shl->replaceAllUsesWith(Mul);
462 Shl->eraseFromParent();
463 return Mul;
464 }
465 return 0;
466}
467
468// Scan backwards and forwards among values with the same rank as element i to
469// see if X exists. If X does not exist, return i.
470static unsigned FindInOperandList(std::vector<ValueEntry> &Ops, unsigned i,
471 Value *X) {
472 unsigned XRank = Ops[i].Rank;
473 unsigned e = Ops.size();
474 for (unsigned j = i+1; j != e && Ops[j].Rank == XRank; ++j)
475 if (Ops[j].Op == X)
476 return j;
477 // Scan backwards
478 for (unsigned j = i-1; j != ~0U && Ops[j].Rank == XRank; --j)
479 if (Ops[j].Op == X)
480 return j;
481 return i;
482}
483
484/// EmitAddTreeOfValues - Emit a tree of add instructions, summing Ops together
485/// and returning the result. Insert the tree before I.
486static Value *EmitAddTreeOfValues(Instruction *I, std::vector<Value*> &Ops) {
487 if (Ops.size() == 1) return Ops.back();
488
489 Value *V1 = Ops.back();
490 Ops.pop_back();
491 Value *V2 = EmitAddTreeOfValues(I, Ops);
Gabor Greifa645dd32008-05-16 19:29:10 +0000492 return BinaryOperator::CreateAdd(V2, V1, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000493}
494
495/// RemoveFactorFromExpression - If V is an expression tree that is a
496/// multiplication sequence, and if this sequence contains a multiply by Factor,
497/// remove Factor from the tree and return the new tree.
498Value *Reassociate::RemoveFactorFromExpression(Value *V, Value *Factor) {
499 BinaryOperator *BO = isReassociableOp(V, Instruction::Mul);
500 if (!BO) return 0;
501
502 std::vector<ValueEntry> Factors;
503 LinearizeExprTree(BO, Factors);
504
505 bool FoundFactor = false;
506 for (unsigned i = 0, e = Factors.size(); i != e; ++i)
507 if (Factors[i].Op == Factor) {
508 FoundFactor = true;
509 Factors.erase(Factors.begin()+i);
510 break;
511 }
512 if (!FoundFactor) {
513 // Make sure to restore the operands to the expression tree.
514 RewriteExprTree(BO, Factors);
515 return 0;
516 }
517
518 if (Factors.size() == 1) return Factors[0].Op;
519
520 RewriteExprTree(BO, Factors);
521 return BO;
522}
523
524/// FindSingleUseMultiplyFactors - If V is a single-use multiply, recursively
525/// add its operands as factors, otherwise add V to the list of factors.
526static void FindSingleUseMultiplyFactors(Value *V,
527 std::vector<Value*> &Factors) {
528 BinaryOperator *BO;
529 if ((!V->hasOneUse() && !V->use_empty()) ||
530 !(BO = dyn_cast<BinaryOperator>(V)) ||
531 BO->getOpcode() != Instruction::Mul) {
532 Factors.push_back(V);
533 return;
534 }
535
536 // Otherwise, add the LHS and RHS to the list of factors.
537 FindSingleUseMultiplyFactors(BO->getOperand(1), Factors);
538 FindSingleUseMultiplyFactors(BO->getOperand(0), Factors);
539}
540
541
542
543Value *Reassociate::OptimizeExpression(BinaryOperator *I,
544 std::vector<ValueEntry> &Ops) {
545 // Now that we have the linearized expression tree, try to optimize it.
546 // Start by folding any constants that we found.
547 bool IterateOptimization = false;
548 if (Ops.size() == 1) return Ops[0].Op;
549
550 unsigned Opcode = I->getOpcode();
551
552 if (Constant *V1 = dyn_cast<Constant>(Ops[Ops.size()-2].Op))
553 if (Constant *V2 = dyn_cast<Constant>(Ops.back().Op)) {
554 Ops.pop_back();
555 Ops.back().Op = ConstantExpr::get(Opcode, V1, V2);
556 return OptimizeExpression(I, Ops);
557 }
558
559 // Check for destructive annihilation due to a constant being used.
560 if (ConstantInt *CstVal = dyn_cast<ConstantInt>(Ops.back().Op))
561 switch (Opcode) {
562 default: break;
563 case Instruction::And:
564 if (CstVal->isZero()) { // ... & 0 -> 0
565 ++NumAnnihil;
566 return CstVal;
567 } else if (CstVal->isAllOnesValue()) { // ... & -1 -> ...
568 Ops.pop_back();
569 }
570 break;
571 case Instruction::Mul:
572 if (CstVal->isZero()) { // ... * 0 -> 0
573 ++NumAnnihil;
574 return CstVal;
575 } else if (cast<ConstantInt>(CstVal)->isOne()) {
576 Ops.pop_back(); // ... * 1 -> ...
577 }
578 break;
579 case Instruction::Or:
580 if (CstVal->isAllOnesValue()) { // ... | -1 -> -1
581 ++NumAnnihil;
582 return CstVal;
583 }
584 // FALLTHROUGH!
585 case Instruction::Add:
586 case Instruction::Xor:
587 if (CstVal->isZero()) // ... [|^+] 0 -> ...
588 Ops.pop_back();
589 break;
590 }
591 if (Ops.size() == 1) return Ops[0].Op;
592
593 // Handle destructive annihilation do to identities between elements in the
594 // argument list here.
595 switch (Opcode) {
596 default: break;
597 case Instruction::And:
598 case Instruction::Or:
599 case Instruction::Xor:
600 // Scan the operand lists looking for X and ~X pairs, along with X,X pairs.
601 // If we find any, we can simplify the expression. X&~X == 0, X|~X == -1.
602 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
603 // First, check for X and ~X in the operand list.
604 assert(i < Ops.size());
605 if (BinaryOperator::isNot(Ops[i].Op)) { // Cannot occur for ^.
606 Value *X = BinaryOperator::getNotArgument(Ops[i].Op);
607 unsigned FoundX = FindInOperandList(Ops, i, X);
608 if (FoundX != i) {
609 if (Opcode == Instruction::And) { // ...&X&~X = 0
610 ++NumAnnihil;
611 return Constant::getNullValue(X->getType());
612 } else if (Opcode == Instruction::Or) { // ...|X|~X = -1
613 ++NumAnnihil;
614 return ConstantInt::getAllOnesValue(X->getType());
615 }
616 }
617 }
618
619 // Next, check for duplicate pairs of values, which we assume are next to
620 // each other, due to our sorting criteria.
621 assert(i < Ops.size());
622 if (i+1 != Ops.size() && Ops[i+1].Op == Ops[i].Op) {
623 if (Opcode == Instruction::And || Opcode == Instruction::Or) {
624 // Drop duplicate values.
625 Ops.erase(Ops.begin()+i);
626 --i; --e;
627 IterateOptimization = true;
628 ++NumAnnihil;
629 } else {
630 assert(Opcode == Instruction::Xor);
631 if (e == 2) {
632 ++NumAnnihil;
633 return Constant::getNullValue(Ops[0].Op->getType());
634 }
635 // ... X^X -> ...
636 Ops.erase(Ops.begin()+i, Ops.begin()+i+2);
637 i -= 1; e -= 2;
638 IterateOptimization = true;
639 ++NumAnnihil;
640 }
641 }
642 }
643 break;
644
645 case Instruction::Add:
646 // Scan the operand lists looking for X and -X pairs. If we find any, we
647 // can simplify the expression. X+-X == 0.
648 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
649 assert(i < Ops.size());
650 // Check for X and -X in the operand list.
651 if (BinaryOperator::isNeg(Ops[i].Op)) {
652 Value *X = BinaryOperator::getNegArgument(Ops[i].Op);
653 unsigned FoundX = FindInOperandList(Ops, i, X);
654 if (FoundX != i) {
655 // Remove X and -X from the operand list.
656 if (Ops.size() == 2) {
657 ++NumAnnihil;
658 return Constant::getNullValue(X->getType());
659 } else {
660 Ops.erase(Ops.begin()+i);
661 if (i < FoundX)
662 --FoundX;
663 else
664 --i; // Need to back up an extra one.
665 Ops.erase(Ops.begin()+FoundX);
666 IterateOptimization = true;
667 ++NumAnnihil;
668 --i; // Revisit element.
669 e -= 2; // Removed two elements.
670 }
671 }
672 }
673 }
674
675
676 // Scan the operand list, checking to see if there are any common factors
677 // between operands. Consider something like A*A+A*B*C+D. We would like to
678 // reassociate this to A*(A+B*C)+D, which reduces the number of multiplies.
679 // To efficiently find this, we count the number of times a factor occurs
680 // for any ADD operands that are MULs.
681 std::map<Value*, unsigned> FactorOccurrences;
682 unsigned MaxOcc = 0;
683 Value *MaxOccVal = 0;
684 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
685 if (BinaryOperator *BOp = dyn_cast<BinaryOperator>(Ops[i].Op)) {
686 if (BOp->getOpcode() == Instruction::Mul && BOp->use_empty()) {
687 // Compute all of the factors of this added value.
688 std::vector<Value*> Factors;
689 FindSingleUseMultiplyFactors(BOp, Factors);
690 assert(Factors.size() > 1 && "Bad linearize!");
691
692 // Add one to FactorOccurrences for each unique factor in this op.
693 if (Factors.size() == 2) {
694 unsigned Occ = ++FactorOccurrences[Factors[0]];
695 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[0]; }
696 if (Factors[0] != Factors[1]) { // Don't double count A*A.
697 Occ = ++FactorOccurrences[Factors[1]];
698 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[1]; }
699 }
700 } else {
701 std::set<Value*> Duplicates;
702 for (unsigned i = 0, e = Factors.size(); i != e; ++i) {
703 if (Duplicates.insert(Factors[i]).second) {
704 unsigned Occ = ++FactorOccurrences[Factors[i]];
705 if (Occ > MaxOcc) { MaxOcc = Occ; MaxOccVal = Factors[i]; }
706 }
707 }
708 }
709 }
710 }
711 }
712
713 // If any factor occurred more than one time, we can pull it out.
714 if (MaxOcc > 1) {
715 DOUT << "\nFACTORING [" << MaxOcc << "]: " << *MaxOccVal << "\n";
716
717 // Create a new instruction that uses the MaxOccVal twice. If we don't do
718 // this, we could otherwise run into situations where removing a factor
719 // from an expression will drop a use of maxocc, and this can cause
720 // RemoveFactorFromExpression on successive values to behave differently.
Gabor Greifa645dd32008-05-16 19:29:10 +0000721 Instruction *DummyInst = BinaryOperator::CreateAdd(MaxOccVal, MaxOccVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000722 std::vector<Value*> NewMulOps;
723 for (unsigned i = 0, e = Ops.size(); i != e; ++i) {
724 if (Value *V = RemoveFactorFromExpression(Ops[i].Op, MaxOccVal)) {
725 NewMulOps.push_back(V);
726 Ops.erase(Ops.begin()+i);
727 --i; --e;
728 }
729 }
730
731 // No need for extra uses anymore.
732 delete DummyInst;
733
734 unsigned NumAddedValues = NewMulOps.size();
735 Value *V = EmitAddTreeOfValues(I, NewMulOps);
Gabor Greifa645dd32008-05-16 19:29:10 +0000736 Value *V2 = BinaryOperator::CreateMul(V, MaxOccVal, "tmp", I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000737
738 // Now that we have inserted V and its sole use, optimize it. This allows
739 // us to handle cases that require multiple factoring steps, such as this:
740 // A*A*B + A*A*C --> A*(A*B+A*C) --> A*(A*(B+C))
741 if (NumAddedValues > 1)
742 ReassociateExpression(cast<BinaryOperator>(V));
743
744 ++NumFactor;
745
Dan Gohman301f4052008-01-29 13:02:09 +0000746 if (Ops.empty())
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000747 return V2;
748
749 // Add the new value to the list of things being added.
750 Ops.insert(Ops.begin(), ValueEntry(getRank(V2), V2));
751
752 // Rewrite the tree so that there is now a use of V.
753 RewriteExprTree(I, Ops);
754 return OptimizeExpression(I, Ops);
755 }
756 break;
757 //case Instruction::Mul:
758 }
759
760 if (IterateOptimization)
761 return OptimizeExpression(I, Ops);
762 return 0;
763}
764
765
766/// ReassociateBB - Inspect all of the instructions in this basic block,
767/// reassociating them as we go.
768void Reassociate::ReassociateBB(BasicBlock *BB) {
769 for (BasicBlock::iterator BBI = BB->begin(); BBI != BB->end(); ) {
770 Instruction *BI = BBI++;
771 if (BI->getOpcode() == Instruction::Shl &&
772 isa<ConstantInt>(BI->getOperand(1)))
773 if (Instruction *NI = ConvertShiftToMul(BI)) {
774 MadeChange = true;
775 BI = NI;
776 }
777
778 // Reject cases where it is pointless to do this.
779 if (!isa<BinaryOperator>(BI) || BI->getType()->isFloatingPoint() ||
780 isa<VectorType>(BI->getType()))
781 continue; // Floating point ops are not associative.
782
783 // If this is a subtract instruction which is not already in negate form,
784 // see if we can convert it to X+-Y.
785 if (BI->getOpcode() == Instruction::Sub) {
Chris Lattner6cf17172008-02-17 20:44:51 +0000786 if (ShouldBreakUpSubtract(BI)) {
Chris Lattnerb0cd25e2008-02-18 02:18:25 +0000787 BI = BreakUpSubtract(BI);
788 MadeChange = true;
Chris Lattner6cf17172008-02-17 20:44:51 +0000789 } else if (BinaryOperator::isNeg(BI)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000790 // Otherwise, this is a negation. See if the operand is a multiply tree
791 // and if this is not an inner node of a multiply tree.
792 if (isReassociableOp(BI->getOperand(1), Instruction::Mul) &&
793 (!BI->hasOneUse() ||
794 !isReassociableOp(BI->use_back(), Instruction::Mul))) {
795 BI = LowerNegateToMultiply(BI);
796 MadeChange = true;
797 }
798 }
799 }
800
801 // If this instruction is a commutative binary operator, process it.
802 if (!BI->isAssociative()) continue;
803 BinaryOperator *I = cast<BinaryOperator>(BI);
804
805 // If this is an interior node of a reassociable tree, ignore it until we
806 // get to the root of the tree, to avoid N^2 analysis.
807 if (I->hasOneUse() && isReassociableOp(I->use_back(), I->getOpcode()))
808 continue;
809
810 // If this is an add tree that is used by a sub instruction, ignore it
811 // until we process the subtract.
812 if (I->hasOneUse() && I->getOpcode() == Instruction::Add &&
813 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Sub)
814 continue;
815
816 ReassociateExpression(I);
817 }
818}
819
820void Reassociate::ReassociateExpression(BinaryOperator *I) {
821
822 // First, walk the expression tree, linearizing the tree, collecting
823 std::vector<ValueEntry> Ops;
824 LinearizeExprTree(I, Ops);
825
826 DOUT << "RAIn:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
827
828 // Now that we have linearized the tree to a list and have gathered all of
829 // the operands and their ranks, sort the operands by their rank. Use a
830 // stable_sort so that values with equal ranks will have their relative
831 // positions maintained (and so the compiler is deterministic). Note that
832 // this sorts so that the highest ranking values end up at the beginning of
833 // the vector.
834 std::stable_sort(Ops.begin(), Ops.end());
835
836 // OptimizeExpression - Now that we have the expression tree in a convenient
837 // sorted form, optimize it globally if possible.
838 if (Value *V = OptimizeExpression(I, Ops)) {
839 // This expression tree simplified to something that isn't a tree,
840 // eliminate it.
841 DOUT << "Reassoc to scalar: " << *V << "\n";
842 I->replaceAllUsesWith(V);
843 RemoveDeadBinaryOp(I);
844 return;
845 }
846
847 // We want to sink immediates as deeply as possible except in the case where
848 // this is a multiply tree used only by an add, and the immediate is a -1.
849 // In this case we reassociate to put the negation on the outside so that we
850 // can fold the negation into the add: (-X)*Y + Z -> Z-X*Y
851 if (I->getOpcode() == Instruction::Mul && I->hasOneUse() &&
852 cast<Instruction>(I->use_back())->getOpcode() == Instruction::Add &&
853 isa<ConstantInt>(Ops.back().Op) &&
854 cast<ConstantInt>(Ops.back().Op)->isAllOnesValue()) {
855 Ops.insert(Ops.begin(), Ops.back());
856 Ops.pop_back();
857 }
858
859 DOUT << "RAOut:\t"; DEBUG(PrintOps(I, Ops)); DOUT << "\n";
860
861 if (Ops.size() == 1) {
862 // This expression tree simplified to something that isn't a tree,
863 // eliminate it.
864 I->replaceAllUsesWith(Ops[0].Op);
865 RemoveDeadBinaryOp(I);
866 } else {
867 // Now that we ordered and optimized the expressions, splat them back into
868 // the expression tree, removing any unneeded nodes.
869 RewriteExprTree(I, Ops);
870 }
871}
872
873
874bool Reassociate::runOnFunction(Function &F) {
875 // Recalculate the rank map for F
876 BuildRankMap(F);
877
878 MadeChange = false;
879 for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
880 ReassociateBB(FI);
881
882 // We are done with the rank map...
883 RankMap.clear();
884 ValueRankMap.clear();
885 return MadeChange;
886}
887