blob: 9b9e725cde81bb8f45d429408ff8f2ef591ba898 [file] [log] [blame]
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001//===-- DataFlowSanitizer.cpp - dynamic data flow analysis ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9/// \file
10/// This file is a part of DataFlowSanitizer, a generalised dynamic data flow
11/// analysis.
12///
13/// Unlike other Sanitizer tools, this tool is not designed to detect a specific
14/// class of bugs on its own. Instead, it provides a generic dynamic data flow
15/// analysis framework to be used by clients to help detect application-specific
16/// issues within their own code.
17///
18/// The analysis is based on automatic propagation of data flow labels (also
19/// known as taint labels) through a program as it performs computation. Each
20/// byte of application memory is backed by two bytes of shadow memory which
21/// hold the label. On Linux/x86_64, memory is laid out as follows:
22///
23/// +--------------------+ 0x800000000000 (top of memory)
24/// | application memory |
25/// +--------------------+ 0x700000008000 (kAppAddr)
26/// | |
27/// | unused |
28/// | |
29/// +--------------------+ 0x200200000000 (kUnusedAddr)
30/// | union table |
31/// +--------------------+ 0x200000000000 (kUnionTableAddr)
32/// | shadow memory |
33/// +--------------------+ 0x000000010000 (kShadowAddr)
34/// | reserved by kernel |
35/// +--------------------+ 0x000000000000
36///
37/// To derive a shadow memory address from an application memory address,
38/// bits 44-46 are cleared to bring the address into the range
39/// [0x000000008000,0x100000000000). Then the address is shifted left by 1 to
40/// account for the double byte representation of shadow labels and move the
41/// address into the shadow memory range. See the function
42/// DataFlowSanitizer::getShadowAddress below.
43///
44/// For more information, please refer to the design document:
45/// http://clang.llvm.org/docs/DataFlowSanitizerDesign.html
46
47#include "llvm/Transforms/Instrumentation.h"
48#include "llvm/ADT/DenseMap.h"
49#include "llvm/ADT/DenseSet.h"
50#include "llvm/ADT/DepthFirstIterator.h"
Peter Collingbourneffba4c72013-08-27 22:09:06 +000051#include "llvm/ADT/StringExtras.h"
Peter Collingbourne6fa33f52013-08-07 22:47:18 +000052#include "llvm/Analysis/ValueTracking.h"
53#include "llvm/IR/InlineAsm.h"
54#include "llvm/IR/IRBuilder.h"
55#include "llvm/IR/LLVMContext.h"
56#include "llvm/IR/MDBuilder.h"
57#include "llvm/IR/Type.h"
58#include "llvm/IR/Value.h"
59#include "llvm/InstVisitor.h"
60#include "llvm/Pass.h"
61#include "llvm/Support/CommandLine.h"
62#include "llvm/Transforms/Utils/BasicBlockUtils.h"
Peter Collingbourneaaae6e92013-08-09 21:42:53 +000063#include "llvm/Transforms/Utils/Local.h"
Peter Collingbourne6fa33f52013-08-07 22:47:18 +000064#include "llvm/Transforms/Utils/SpecialCaseList.h"
65#include <iterator>
66
67using namespace llvm;
68
69// The -dfsan-preserve-alignment flag controls whether this pass assumes that
70// alignment requirements provided by the input IR are correct. For example,
71// if the input IR contains a load with alignment 8, this flag will cause
72// the shadow load to have alignment 16. This flag is disabled by default as
73// we have unfortunately encountered too much code (including Clang itself;
74// see PR14291) which performs misaligned access.
75static cl::opt<bool> ClPreserveAlignment(
76 "dfsan-preserve-alignment",
77 cl::desc("respect alignment requirements provided by input IR"), cl::Hidden,
78 cl::init(false));
79
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +000080// The ABI list file controls how shadow parameters are passed. The pass treats
81// every function labelled "uninstrumented" in the ABI list file as conforming
82// to the "native" (i.e. unsanitized) ABI. Unless the ABI list contains
83// additional annotations for those functions, a call to one of those functions
84// will produce a warning message, as the labelling behaviour of the function is
85// unknown. The other supported annotations are "functional" and "discard",
86// which are described below under DataFlowSanitizer::WrapperKind.
87static cl::opt<std::string> ClABIListFile(
88 "dfsan-abilist",
89 cl::desc("File listing native ABI functions and how the pass treats them"),
Peter Collingbourne6fa33f52013-08-07 22:47:18 +000090 cl::Hidden);
91
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +000092// Controls whether the pass uses IA_Args or IA_TLS as the ABI for instrumented
93// functions (see DataFlowSanitizer::InstrumentedABI below).
Peter Collingbourne6fa33f52013-08-07 22:47:18 +000094static cl::opt<bool> ClArgsABI(
95 "dfsan-args-abi",
96 cl::desc("Use the argument ABI rather than the TLS ABI"),
97 cl::Hidden);
98
Peter Collingbournea77d9f72013-08-15 18:51:12 +000099static cl::opt<bool> ClDebugNonzeroLabels(
100 "dfsan-debug-nonzero-labels",
101 cl::desc("Insert calls to __dfsan_nonzero_label on observing a parameter, "
102 "load or return with a nonzero label"),
103 cl::Hidden);
104
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000105namespace {
106
107class DataFlowSanitizer : public ModulePass {
108 friend struct DFSanFunction;
109 friend class DFSanVisitor;
110
111 enum {
112 ShadowWidth = 16
113 };
114
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000115 /// Which ABI should be used for instrumented functions?
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000116 enum InstrumentedABI {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000117 /// Argument and return value labels are passed through additional
118 /// arguments and by modifying the return type.
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000119 IA_Args,
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000120
121 /// Argument and return value labels are passed through TLS variables
122 /// __dfsan_arg_tls and __dfsan_retval_tls.
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000123 IA_TLS
124 };
125
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000126 /// How should calls to uninstrumented functions be handled?
127 enum WrapperKind {
128 /// This function is present in an uninstrumented form but we don't know
129 /// how it should be handled. Print a warning and call the function anyway.
130 /// Don't label the return value.
131 WK_Warning,
132
133 /// This function does not write to (user-accessible) memory, and its return
134 /// value is unlabelled.
135 WK_Discard,
136
137 /// This function does not write to (user-accessible) memory, and the label
138 /// of its return value is the union of the label of its arguments.
139 WK_Functional,
140
141 /// Instead of calling the function, a custom wrapper __dfsw_F is called,
142 /// where F is the name of the function. This function may wrap the
143 /// original function or provide its own implementation. This is similar to
144 /// the IA_Args ABI, except that IA_Args uses a struct return type to
145 /// pass the return value shadow in a register, while WK_Custom uses an
146 /// extra pointer argument to return the shadow. This allows the wrapped
147 /// form of the function type to be expressed in C.
148 WK_Custom
149 };
150
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000151 DataLayout *DL;
152 Module *Mod;
153 LLVMContext *Ctx;
154 IntegerType *ShadowTy;
155 PointerType *ShadowPtrTy;
156 IntegerType *IntptrTy;
157 ConstantInt *ZeroShadow;
158 ConstantInt *ShadowPtrMask;
159 ConstantInt *ShadowPtrMul;
160 Constant *ArgTLS;
161 Constant *RetvalTLS;
162 void *(*GetArgTLSPtr)();
163 void *(*GetRetvalTLSPtr)();
164 Constant *GetArgTLS;
165 Constant *GetRetvalTLS;
166 FunctionType *DFSanUnionFnTy;
167 FunctionType *DFSanUnionLoadFnTy;
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000168 FunctionType *DFSanUnimplementedFnTy;
Peter Collingbourneef8136d2013-08-14 20:51:38 +0000169 FunctionType *DFSanSetLabelFnTy;
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000170 FunctionType *DFSanNonzeroLabelFnTy;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000171 Constant *DFSanUnionFn;
172 Constant *DFSanUnionLoadFn;
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000173 Constant *DFSanUnimplementedFn;
Peter Collingbourneef8136d2013-08-14 20:51:38 +0000174 Constant *DFSanSetLabelFn;
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000175 Constant *DFSanNonzeroLabelFn;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000176 MDNode *ColdCallWeights;
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000177 OwningPtr<SpecialCaseList> ABIList;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000178 DenseMap<Value *, Function *> UnwrappedFnMap;
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000179 AttributeSet ReadOnlyNoneAttrs;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000180
181 Value *getShadowAddress(Value *Addr, Instruction *Pos);
182 Value *combineShadows(Value *V1, Value *V2, Instruction *Pos);
Peter Collingbournef1366c52013-08-22 20:08:08 +0000183 bool isInstrumented(const Function *F);
184 bool isInstrumented(const GlobalAlias *GA);
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000185 FunctionType *getArgsFunctionType(FunctionType *T);
Peter Collingbourneffba4c72013-08-27 22:09:06 +0000186 FunctionType *getTrampolineFunctionType(FunctionType *T);
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000187 FunctionType *getCustomFunctionType(FunctionType *T);
188 InstrumentedABI getInstrumentedABI();
189 WrapperKind getWrapperKind(Function *F);
Peter Collingbournef1366c52013-08-22 20:08:08 +0000190 void addGlobalNamePrefix(GlobalValue *GV);
Peter Collingbourne4f68e9e2013-08-22 20:08:11 +0000191 Function *buildWrapperFunction(Function *F, StringRef NewFName,
192 GlobalValue::LinkageTypes NewFLink,
193 FunctionType *NewFT);
Peter Collingbourneffba4c72013-08-27 22:09:06 +0000194 Constant *getOrBuildTrampolineFunction(FunctionType *FT, StringRef FName);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000195
Dmitry Vyukova036a312013-08-13 16:52:41 +0000196 public:
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000197 DataFlowSanitizer(StringRef ABIListFile = StringRef(),
198 void *(*getArgTLS)() = 0, void *(*getRetValTLS)() = 0);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000199 static char ID;
200 bool doInitialization(Module &M);
201 bool runOnModule(Module &M);
202};
203
204struct DFSanFunction {
205 DataFlowSanitizer &DFS;
206 Function *F;
207 DataFlowSanitizer::InstrumentedABI IA;
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000208 bool IsNativeABI;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000209 Value *ArgTLSPtr;
210 Value *RetvalTLSPtr;
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000211 AllocaInst *LabelReturnAlloca;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000212 DenseMap<Value *, Value *> ValShadowMap;
213 DenseMap<AllocaInst *, AllocaInst *> AllocaShadowMap;
214 std::vector<std::pair<PHINode *, PHINode *> > PHIFixups;
215 DenseSet<Instruction *> SkipInsts;
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000216 DenseSet<Value *> NonZeroChecks;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000217
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000218 DFSanFunction(DataFlowSanitizer &DFS, Function *F, bool IsNativeABI)
219 : DFS(DFS), F(F), IA(DFS.getInstrumentedABI()),
220 IsNativeABI(IsNativeABI), ArgTLSPtr(0), RetvalTLSPtr(0),
221 LabelReturnAlloca(0) {}
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000222 Value *getArgTLSPtr();
223 Value *getArgTLS(unsigned Index, Instruction *Pos);
224 Value *getRetvalTLS();
225 Value *getShadow(Value *V);
226 void setShadow(Instruction *I, Value *Shadow);
227 Value *combineOperandShadows(Instruction *Inst);
228 Value *loadShadow(Value *ShadowAddr, uint64_t Size, uint64_t Align,
229 Instruction *Pos);
230 void storeShadow(Value *Addr, uint64_t Size, uint64_t Align, Value *Shadow,
231 Instruction *Pos);
232};
233
234class DFSanVisitor : public InstVisitor<DFSanVisitor> {
Dmitry Vyukova036a312013-08-13 16:52:41 +0000235 public:
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000236 DFSanFunction &DFSF;
237 DFSanVisitor(DFSanFunction &DFSF) : DFSF(DFSF) {}
238
239 void visitOperandShadowInst(Instruction &I);
240
241 void visitBinaryOperator(BinaryOperator &BO);
242 void visitCastInst(CastInst &CI);
243 void visitCmpInst(CmpInst &CI);
244 void visitGetElementPtrInst(GetElementPtrInst &GEPI);
245 void visitLoadInst(LoadInst &LI);
246 void visitStoreInst(StoreInst &SI);
247 void visitReturnInst(ReturnInst &RI);
248 void visitCallSite(CallSite CS);
249 void visitPHINode(PHINode &PN);
250 void visitExtractElementInst(ExtractElementInst &I);
251 void visitInsertElementInst(InsertElementInst &I);
252 void visitShuffleVectorInst(ShuffleVectorInst &I);
253 void visitExtractValueInst(ExtractValueInst &I);
254 void visitInsertValueInst(InsertValueInst &I);
255 void visitAllocaInst(AllocaInst &I);
256 void visitSelectInst(SelectInst &I);
Peter Collingbourneef8136d2013-08-14 20:51:38 +0000257 void visitMemSetInst(MemSetInst &I);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000258 void visitMemTransferInst(MemTransferInst &I);
259};
260
261}
262
263char DataFlowSanitizer::ID;
264INITIALIZE_PASS(DataFlowSanitizer, "dfsan",
265 "DataFlowSanitizer: dynamic data flow analysis.", false, false)
266
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000267ModulePass *llvm::createDataFlowSanitizerPass(StringRef ABIListFile,
268 void *(*getArgTLS)(),
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000269 void *(*getRetValTLS)()) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000270 return new DataFlowSanitizer(ABIListFile, getArgTLS, getRetValTLS);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000271}
272
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000273DataFlowSanitizer::DataFlowSanitizer(StringRef ABIListFile,
274 void *(*getArgTLS)(),
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000275 void *(*getRetValTLS)())
276 : ModulePass(ID), GetArgTLSPtr(getArgTLS), GetRetvalTLSPtr(getRetValTLS),
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000277 ABIList(SpecialCaseList::createOrDie(ABIListFile.empty() ? ClABIListFile
278 : ABIListFile)) {
279}
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000280
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000281FunctionType *DataFlowSanitizer::getArgsFunctionType(FunctionType *T) {
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000282 llvm::SmallVector<Type *, 4> ArgTypes;
283 std::copy(T->param_begin(), T->param_end(), std::back_inserter(ArgTypes));
284 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
285 ArgTypes.push_back(ShadowTy);
286 if (T->isVarArg())
287 ArgTypes.push_back(ShadowPtrTy);
288 Type *RetType = T->getReturnType();
289 if (!RetType->isVoidTy())
290 RetType = StructType::get(RetType, ShadowTy, (Type *)0);
291 return FunctionType::get(RetType, ArgTypes, T->isVarArg());
292}
293
Peter Collingbourneffba4c72013-08-27 22:09:06 +0000294FunctionType *DataFlowSanitizer::getTrampolineFunctionType(FunctionType *T) {
295 assert(!T->isVarArg());
296 llvm::SmallVector<Type *, 4> ArgTypes;
297 ArgTypes.push_back(T->getPointerTo());
298 std::copy(T->param_begin(), T->param_end(), std::back_inserter(ArgTypes));
299 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
300 ArgTypes.push_back(ShadowTy);
301 Type *RetType = T->getReturnType();
302 if (!RetType->isVoidTy())
303 ArgTypes.push_back(ShadowPtrTy);
304 return FunctionType::get(T->getReturnType(), ArgTypes, false);
305}
306
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000307FunctionType *DataFlowSanitizer::getCustomFunctionType(FunctionType *T) {
308 assert(!T->isVarArg());
309 llvm::SmallVector<Type *, 4> ArgTypes;
Alexey Samsonovf1db2a62013-08-28 11:25:12 +0000310 for (FunctionType::param_iterator i = T->param_begin(), e = T->param_end();
311 i != e; ++i) {
Peter Collingbourneffba4c72013-08-27 22:09:06 +0000312 FunctionType *FT;
Alexey Samsonovf1db2a62013-08-28 11:25:12 +0000313 if (isa<PointerType>(*i) && (FT = dyn_cast<FunctionType>(cast<PointerType>(
314 *i)->getElementType()))) {
Peter Collingbourneffba4c72013-08-27 22:09:06 +0000315 ArgTypes.push_back(getTrampolineFunctionType(FT)->getPointerTo());
316 ArgTypes.push_back(Type::getInt8PtrTy(*Ctx));
317 } else {
318 ArgTypes.push_back(*i);
319 }
320 }
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000321 for (unsigned i = 0, e = T->getNumParams(); i != e; ++i)
322 ArgTypes.push_back(ShadowTy);
323 Type *RetType = T->getReturnType();
324 if (!RetType->isVoidTy())
325 ArgTypes.push_back(ShadowPtrTy);
326 return FunctionType::get(T->getReturnType(), ArgTypes, false);
327}
328
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000329bool DataFlowSanitizer::doInitialization(Module &M) {
330 DL = getAnalysisIfAvailable<DataLayout>();
331 if (!DL)
332 return false;
333
334 Mod = &M;
335 Ctx = &M.getContext();
336 ShadowTy = IntegerType::get(*Ctx, ShadowWidth);
337 ShadowPtrTy = PointerType::getUnqual(ShadowTy);
338 IntptrTy = DL->getIntPtrType(*Ctx);
339 ZeroShadow = ConstantInt::getSigned(ShadowTy, 0);
Peter Collingbourne46c72c72013-08-08 00:15:27 +0000340 ShadowPtrMask = ConstantInt::getSigned(IntptrTy, ~0x700000000000LL);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000341 ShadowPtrMul = ConstantInt::getSigned(IntptrTy, ShadowWidth / 8);
342
343 Type *DFSanUnionArgs[2] = { ShadowTy, ShadowTy };
344 DFSanUnionFnTy =
345 FunctionType::get(ShadowTy, DFSanUnionArgs, /*isVarArg=*/ false);
346 Type *DFSanUnionLoadArgs[2] = { ShadowPtrTy, IntptrTy };
347 DFSanUnionLoadFnTy =
348 FunctionType::get(ShadowTy, DFSanUnionLoadArgs, /*isVarArg=*/ false);
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000349 DFSanUnimplementedFnTy = FunctionType::get(
350 Type::getVoidTy(*Ctx), Type::getInt8PtrTy(*Ctx), /*isVarArg=*/false);
Peter Collingbourneef8136d2013-08-14 20:51:38 +0000351 Type *DFSanSetLabelArgs[3] = { ShadowTy, Type::getInt8PtrTy(*Ctx), IntptrTy };
352 DFSanSetLabelFnTy = FunctionType::get(Type::getVoidTy(*Ctx),
353 DFSanSetLabelArgs, /*isVarArg=*/false);
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000354 DFSanNonzeroLabelFnTy = FunctionType::get(
355 Type::getVoidTy(*Ctx), ArrayRef<Type *>(), /*isVarArg=*/false);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000356
357 if (GetArgTLSPtr) {
358 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
359 ArgTLS = 0;
360 GetArgTLS = ConstantExpr::getIntToPtr(
361 ConstantInt::get(IntptrTy, uintptr_t(GetArgTLSPtr)),
362 PointerType::getUnqual(
363 FunctionType::get(PointerType::getUnqual(ArgTLSTy), (Type *)0)));
364 }
365 if (GetRetvalTLSPtr) {
366 RetvalTLS = 0;
367 GetRetvalTLS = ConstantExpr::getIntToPtr(
368 ConstantInt::get(IntptrTy, uintptr_t(GetRetvalTLSPtr)),
369 PointerType::getUnqual(
370 FunctionType::get(PointerType::getUnqual(ShadowTy), (Type *)0)));
371 }
372
373 ColdCallWeights = MDBuilder(*Ctx).createBranchWeights(1, 1000);
374 return true;
375}
376
Peter Collingbournef1366c52013-08-22 20:08:08 +0000377bool DataFlowSanitizer::isInstrumented(const Function *F) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000378 return !ABIList->isIn(*F, "uninstrumented");
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000379}
380
Peter Collingbournef1366c52013-08-22 20:08:08 +0000381bool DataFlowSanitizer::isInstrumented(const GlobalAlias *GA) {
382 return !ABIList->isIn(*GA, "uninstrumented");
383}
384
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000385DataFlowSanitizer::InstrumentedABI DataFlowSanitizer::getInstrumentedABI() {
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000386 return ClArgsABI ? IA_Args : IA_TLS;
387}
388
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000389DataFlowSanitizer::WrapperKind DataFlowSanitizer::getWrapperKind(Function *F) {
390 if (ABIList->isIn(*F, "functional"))
391 return WK_Functional;
392 if (ABIList->isIn(*F, "discard"))
393 return WK_Discard;
394 if (ABIList->isIn(*F, "custom"))
395 return WK_Custom;
396
397 return WK_Warning;
398}
399
Peter Collingbournef1366c52013-08-22 20:08:08 +0000400void DataFlowSanitizer::addGlobalNamePrefix(GlobalValue *GV) {
401 std::string GVName = GV->getName(), Prefix = "dfs$";
402 GV->setName(Prefix + GVName);
403
404 // Try to change the name of the function in module inline asm. We only do
405 // this for specific asm directives, currently only ".symver", to try to avoid
406 // corrupting asm which happens to contain the symbol name as a substring.
407 // Note that the substitution for .symver assumes that the versioned symbol
408 // also has an instrumented name.
409 std::string Asm = GV->getParent()->getModuleInlineAsm();
410 std::string SearchStr = ".symver " + GVName + ",";
411 size_t Pos = Asm.find(SearchStr);
412 if (Pos != std::string::npos) {
413 Asm.replace(Pos, SearchStr.size(),
414 ".symver " + Prefix + GVName + "," + Prefix);
415 GV->getParent()->setModuleInlineAsm(Asm);
416 }
417}
418
Peter Collingbourne4f68e9e2013-08-22 20:08:11 +0000419Function *
420DataFlowSanitizer::buildWrapperFunction(Function *F, StringRef NewFName,
421 GlobalValue::LinkageTypes NewFLink,
422 FunctionType *NewFT) {
423 FunctionType *FT = F->getFunctionType();
424 Function *NewF = Function::Create(NewFT, NewFLink, NewFName,
425 F->getParent());
426 NewF->copyAttributesFrom(F);
427 NewF->removeAttributes(
428 AttributeSet::ReturnIndex,
429 AttributeFuncs::typeIncompatible(NewFT->getReturnType(),
430 AttributeSet::ReturnIndex));
431
432 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", NewF);
433 std::vector<Value *> Args;
434 unsigned n = FT->getNumParams();
435 for (Function::arg_iterator ai = NewF->arg_begin(); n != 0; ++ai, --n)
436 Args.push_back(&*ai);
437 CallInst *CI = CallInst::Create(F, Args, "", BB);
438 if (FT->getReturnType()->isVoidTy())
439 ReturnInst::Create(*Ctx, BB);
440 else
441 ReturnInst::Create(*Ctx, CI, BB);
442
443 return NewF;
444}
445
Peter Collingbourneffba4c72013-08-27 22:09:06 +0000446Constant *DataFlowSanitizer::getOrBuildTrampolineFunction(FunctionType *FT,
447 StringRef FName) {
448 FunctionType *FTT = getTrampolineFunctionType(FT);
449 Constant *C = Mod->getOrInsertFunction(FName, FTT);
450 Function *F = dyn_cast<Function>(C);
451 if (F && F->isDeclaration()) {
452 F->setLinkage(GlobalValue::LinkOnceODRLinkage);
453 BasicBlock *BB = BasicBlock::Create(*Ctx, "entry", F);
454 std::vector<Value *> Args;
455 Function::arg_iterator AI = F->arg_begin(); ++AI;
456 for (unsigned N = FT->getNumParams(); N != 0; ++AI, --N)
457 Args.push_back(&*AI);
458 CallInst *CI =
459 CallInst::Create(&F->getArgumentList().front(), Args, "", BB);
460 ReturnInst *RI;
461 if (FT->getReturnType()->isVoidTy())
462 RI = ReturnInst::Create(*Ctx, BB);
463 else
464 RI = ReturnInst::Create(*Ctx, CI, BB);
465
466 DFSanFunction DFSF(*this, F, /*IsNativeABI=*/true);
467 Function::arg_iterator ValAI = F->arg_begin(), ShadowAI = AI; ++ValAI;
468 for (unsigned N = FT->getNumParams(); N != 0; ++ValAI, ++ShadowAI, --N)
469 DFSF.ValShadowMap[ValAI] = ShadowAI;
470 DFSanVisitor(DFSF).visitCallInst(*CI);
471 if (!FT->getReturnType()->isVoidTy())
472 new StoreInst(DFSF.getShadow(RI->getReturnValue()),
473 &F->getArgumentList().back(), RI);
474 }
475
476 return C;
477}
478
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000479bool DataFlowSanitizer::runOnModule(Module &M) {
480 if (!DL)
481 return false;
482
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000483 if (ABIList->isIn(M, "skip"))
484 return false;
485
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000486 if (!GetArgTLSPtr) {
487 Type *ArgTLSTy = ArrayType::get(ShadowTy, 64);
488 ArgTLS = Mod->getOrInsertGlobal("__dfsan_arg_tls", ArgTLSTy);
489 if (GlobalVariable *G = dyn_cast<GlobalVariable>(ArgTLS))
490 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
491 }
492 if (!GetRetvalTLSPtr) {
493 RetvalTLS = Mod->getOrInsertGlobal("__dfsan_retval_tls", ShadowTy);
494 if (GlobalVariable *G = dyn_cast<GlobalVariable>(RetvalTLS))
495 G->setThreadLocalMode(GlobalVariable::InitialExecTLSModel);
496 }
497
498 DFSanUnionFn = Mod->getOrInsertFunction("__dfsan_union", DFSanUnionFnTy);
499 if (Function *F = dyn_cast<Function>(DFSanUnionFn)) {
500 F->addAttribute(AttributeSet::FunctionIndex, Attribute::ReadNone);
501 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
502 F->addAttribute(1, Attribute::ZExt);
503 F->addAttribute(2, Attribute::ZExt);
504 }
505 DFSanUnionLoadFn =
506 Mod->getOrInsertFunction("__dfsan_union_load", DFSanUnionLoadFnTy);
507 if (Function *F = dyn_cast<Function>(DFSanUnionLoadFn)) {
508 F->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
509 }
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000510 DFSanUnimplementedFn =
511 Mod->getOrInsertFunction("__dfsan_unimplemented", DFSanUnimplementedFnTy);
Peter Collingbourneef8136d2013-08-14 20:51:38 +0000512 DFSanSetLabelFn =
513 Mod->getOrInsertFunction("__dfsan_set_label", DFSanSetLabelFnTy);
514 if (Function *F = dyn_cast<Function>(DFSanSetLabelFn)) {
515 F->addAttribute(1, Attribute::ZExt);
516 }
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000517 DFSanNonzeroLabelFn =
518 Mod->getOrInsertFunction("__dfsan_nonzero_label", DFSanNonzeroLabelFnTy);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000519
520 std::vector<Function *> FnsToInstrument;
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000521 llvm::SmallPtrSet<Function *, 2> FnsWithNativeABI;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000522 for (Module::iterator i = M.begin(), e = M.end(); i != e; ++i) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000523 if (!i->isIntrinsic() &&
524 i != DFSanUnionFn &&
525 i != DFSanUnionLoadFn &&
Peter Collingbourneef8136d2013-08-14 20:51:38 +0000526 i != DFSanUnimplementedFn &&
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000527 i != DFSanSetLabelFn &&
528 i != DFSanNonzeroLabelFn)
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000529 FnsToInstrument.push_back(&*i);
530 }
531
Peter Collingbourne054cec02013-08-22 20:08:15 +0000532 // Give function aliases prefixes when necessary, and build wrappers where the
533 // instrumentedness is inconsistent.
Peter Collingbournef1366c52013-08-22 20:08:08 +0000534 for (Module::alias_iterator i = M.alias_begin(), e = M.alias_end(); i != e;) {
535 GlobalAlias *GA = &*i;
536 ++i;
537 // Don't stop on weak. We assume people aren't playing games with the
538 // instrumentedness of overridden weak aliases.
539 if (Function *F = dyn_cast<Function>(
540 GA->resolveAliasedGlobal(/*stopOnWeak=*/false))) {
541 bool GAInst = isInstrumented(GA), FInst = isInstrumented(F);
542 if (GAInst && FInst) {
543 addGlobalNamePrefix(GA);
Peter Collingbourne054cec02013-08-22 20:08:15 +0000544 } else if (GAInst != FInst) {
545 // Non-instrumented alias of an instrumented function, or vice versa.
546 // Replace the alias with a native-ABI wrapper of the aliasee. The pass
547 // below will take care of instrumenting it.
548 Function *NewF =
549 buildWrapperFunction(F, "", GA->getLinkage(), F->getFunctionType());
550 GA->replaceAllUsesWith(NewF);
551 NewF->takeName(GA);
552 GA->eraseFromParent();
553 FnsToInstrument.push_back(NewF);
Peter Collingbournef1366c52013-08-22 20:08:08 +0000554 }
555 }
556 }
557
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000558 AttrBuilder B;
559 B.addAttribute(Attribute::ReadOnly).addAttribute(Attribute::ReadNone);
560 ReadOnlyNoneAttrs = AttributeSet::get(*Ctx, AttributeSet::FunctionIndex, B);
561
562 // First, change the ABI of every function in the module. ABI-listed
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000563 // functions keep their original ABI and get a wrapper function.
564 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
565 e = FnsToInstrument.end();
566 i != e; ++i) {
567 Function &F = **i;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000568 FunctionType *FT = F.getFunctionType();
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000569
Peter Collingbournef1366c52013-08-22 20:08:08 +0000570 bool IsZeroArgsVoidRet = (FT->getNumParams() == 0 && !FT->isVarArg() &&
571 FT->getReturnType()->isVoidTy());
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000572
573 if (isInstrumented(&F)) {
Peter Collingbournef1366c52013-08-22 20:08:08 +0000574 // Instrumented functions get a 'dfs$' prefix. This allows us to more
575 // easily identify cases of mismatching ABIs.
576 if (getInstrumentedABI() == IA_Args && !IsZeroArgsVoidRet) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000577 FunctionType *NewFT = getArgsFunctionType(FT);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000578 Function *NewF = Function::Create(NewFT, F.getLinkage(), "", &M);
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000579 NewF->copyAttributesFrom(&F);
580 NewF->removeAttributes(
581 AttributeSet::ReturnIndex,
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000582 AttributeFuncs::typeIncompatible(NewFT->getReturnType(),
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000583 AttributeSet::ReturnIndex));
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000584 for (Function::arg_iterator FArg = F.arg_begin(),
585 NewFArg = NewF->arg_begin(),
586 FArgEnd = F.arg_end();
587 FArg != FArgEnd; ++FArg, ++NewFArg) {
588 FArg->replaceAllUsesWith(NewFArg);
589 }
590 NewF->getBasicBlockList().splice(NewF->begin(), F.getBasicBlockList());
591
592 for (Function::use_iterator ui = F.use_begin(), ue = F.use_end();
593 ui != ue;) {
594 BlockAddress *BA = dyn_cast<BlockAddress>(ui.getUse().getUser());
595 ++ui;
596 if (BA) {
597 BA->replaceAllUsesWith(
598 BlockAddress::get(NewF, BA->getBasicBlock()));
599 delete BA;
600 }
601 }
602 F.replaceAllUsesWith(
603 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT)));
604 NewF->takeName(&F);
605 F.eraseFromParent();
606 *i = NewF;
Peter Collingbournef1366c52013-08-22 20:08:08 +0000607 addGlobalNamePrefix(NewF);
608 } else {
609 addGlobalNamePrefix(&F);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000610 }
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000611 // Hopefully, nobody will try to indirectly call a vararg
612 // function... yet.
613 } else if (FT->isVarArg()) {
614 UnwrappedFnMap[&F] = &F;
615 *i = 0;
Peter Collingbournef1366c52013-08-22 20:08:08 +0000616 } else if (!IsZeroArgsVoidRet || getWrapperKind(&F) == WK_Custom) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000617 // Build a wrapper function for F. The wrapper simply calls F, and is
618 // added to FnsToInstrument so that any instrumentation according to its
619 // WrapperKind is done in the second pass below.
620 FunctionType *NewFT = getInstrumentedABI() == IA_Args
621 ? getArgsFunctionType(FT)
622 : FT;
Alexey Samsonovbbe88b72013-08-23 07:42:51 +0000623 Function *NewF = buildWrapperFunction(
624 &F, std::string("dfsw$") + std::string(F.getName()),
625 GlobalValue::LinkOnceODRLinkage, NewFT);
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000626 if (getInstrumentedABI() == IA_TLS)
Peter Collingbourne4f68e9e2013-08-22 20:08:11 +0000627 NewF->removeAttributes(AttributeSet::FunctionIndex, ReadOnlyNoneAttrs);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000628
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000629 Value *WrappedFnCst =
630 ConstantExpr::getBitCast(NewF, PointerType::getUnqual(FT));
631 F.replaceAllUsesWith(WrappedFnCst);
632 UnwrappedFnMap[WrappedFnCst] = &F;
633 *i = NewF;
634
635 if (!F.isDeclaration()) {
636 // This function is probably defining an interposition of an
637 // uninstrumented function and hence needs to keep the original ABI.
638 // But any functions it may call need to use the instrumented ABI, so
639 // we instrument it in a mode which preserves the original ABI.
640 FnsWithNativeABI.insert(&F);
641
642 // This code needs to rebuild the iterators, as they may be invalidated
643 // by the push_back, taking care that the new range does not include
644 // any functions added by this code.
645 size_t N = i - FnsToInstrument.begin(),
646 Count = e - FnsToInstrument.begin();
647 FnsToInstrument.push_back(&F);
648 i = FnsToInstrument.begin() + N;
649 e = FnsToInstrument.begin() + Count;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000650 }
651 }
652 }
653
654 for (std::vector<Function *>::iterator i = FnsToInstrument.begin(),
655 e = FnsToInstrument.end();
656 i != e; ++i) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000657 if (!*i || (*i)->isDeclaration())
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000658 continue;
659
Peter Collingbourneaaae6e92013-08-09 21:42:53 +0000660 removeUnreachableBlocks(**i);
661
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000662 DFSanFunction DFSF(*this, *i, FnsWithNativeABI.count(*i));
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000663
664 // DFSanVisitor may create new basic blocks, which confuses df_iterator.
665 // Build a copy of the list before iterating over it.
666 llvm::SmallVector<BasicBlock *, 4> BBList;
667 std::copy(df_begin(&(*i)->getEntryBlock()), df_end(&(*i)->getEntryBlock()),
668 std::back_inserter(BBList));
669
670 for (llvm::SmallVector<BasicBlock *, 4>::iterator i = BBList.begin(),
671 e = BBList.end();
672 i != e; ++i) {
673 Instruction *Inst = &(*i)->front();
674 while (1) {
675 // DFSanVisitor may split the current basic block, changing the current
676 // instruction's next pointer and moving the next instruction to the
677 // tail block from which we should continue.
678 Instruction *Next = Inst->getNextNode();
Peter Collingbournea90d91f2013-08-12 22:38:39 +0000679 // DFSanVisitor may delete Inst, so keep track of whether it was a
680 // terminator.
681 bool IsTerminator = isa<TerminatorInst>(Inst);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000682 if (!DFSF.SkipInsts.count(Inst))
683 DFSanVisitor(DFSF).visit(Inst);
Peter Collingbournea90d91f2013-08-12 22:38:39 +0000684 if (IsTerminator)
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000685 break;
686 Inst = Next;
687 }
688 }
689
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000690 // We will not necessarily be able to compute the shadow for every phi node
691 // until we have visited every block. Therefore, the code that handles phi
692 // nodes adds them to the PHIFixups list so that they can be properly
693 // handled here.
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000694 for (std::vector<std::pair<PHINode *, PHINode *> >::iterator
695 i = DFSF.PHIFixups.begin(),
696 e = DFSF.PHIFixups.end();
697 i != e; ++i) {
698 for (unsigned val = 0, n = i->first->getNumIncomingValues(); val != n;
699 ++val) {
700 i->second->setIncomingValue(
701 val, DFSF.getShadow(i->first->getIncomingValue(val)));
702 }
703 }
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000704
705 // -dfsan-debug-nonzero-labels will split the CFG in all kinds of crazy
706 // places (i.e. instructions in basic blocks we haven't even begun visiting
707 // yet). To make our life easier, do this work in a pass after the main
708 // instrumentation.
709 if (ClDebugNonzeroLabels) {
710 for (DenseSet<Value *>::iterator i = DFSF.NonZeroChecks.begin(),
711 e = DFSF.NonZeroChecks.end();
712 i != e; ++i) {
713 Instruction *Pos;
714 if (Instruction *I = dyn_cast<Instruction>(*i))
715 Pos = I->getNextNode();
716 else
717 Pos = DFSF.F->getEntryBlock().begin();
718 while (isa<PHINode>(Pos) || isa<AllocaInst>(Pos))
719 Pos = Pos->getNextNode();
720 IRBuilder<> IRB(Pos);
721 Instruction *NeInst = cast<Instruction>(
722 IRB.CreateICmpNE(*i, DFSF.DFS.ZeroShadow));
723 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
724 NeInst, /*Unreachable=*/ false, ColdCallWeights));
725 IRBuilder<> ThenIRB(BI);
726 ThenIRB.CreateCall(DFSF.DFS.DFSanNonzeroLabelFn);
727 }
728 }
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000729 }
730
731 return false;
732}
733
734Value *DFSanFunction::getArgTLSPtr() {
735 if (ArgTLSPtr)
736 return ArgTLSPtr;
737 if (DFS.ArgTLS)
738 return ArgTLSPtr = DFS.ArgTLS;
739
740 IRBuilder<> IRB(F->getEntryBlock().begin());
741 return ArgTLSPtr = IRB.CreateCall(DFS.GetArgTLS);
742}
743
744Value *DFSanFunction::getRetvalTLS() {
745 if (RetvalTLSPtr)
746 return RetvalTLSPtr;
747 if (DFS.RetvalTLS)
748 return RetvalTLSPtr = DFS.RetvalTLS;
749
750 IRBuilder<> IRB(F->getEntryBlock().begin());
751 return RetvalTLSPtr = IRB.CreateCall(DFS.GetRetvalTLS);
752}
753
754Value *DFSanFunction::getArgTLS(unsigned Idx, Instruction *Pos) {
755 IRBuilder<> IRB(Pos);
756 return IRB.CreateConstGEP2_64(getArgTLSPtr(), 0, Idx);
757}
758
759Value *DFSanFunction::getShadow(Value *V) {
760 if (!isa<Argument>(V) && !isa<Instruction>(V))
761 return DFS.ZeroShadow;
762 Value *&Shadow = ValShadowMap[V];
763 if (!Shadow) {
764 if (Argument *A = dyn_cast<Argument>(V)) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000765 if (IsNativeABI)
766 return DFS.ZeroShadow;
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000767 switch (IA) {
768 case DataFlowSanitizer::IA_TLS: {
769 Value *ArgTLSPtr = getArgTLSPtr();
770 Instruction *ArgTLSPos =
771 DFS.ArgTLS ? &*F->getEntryBlock().begin()
772 : cast<Instruction>(ArgTLSPtr)->getNextNode();
773 IRBuilder<> IRB(ArgTLSPos);
774 Shadow = IRB.CreateLoad(getArgTLS(A->getArgNo(), ArgTLSPos));
775 break;
776 }
777 case DataFlowSanitizer::IA_Args: {
778 unsigned ArgIdx = A->getArgNo() + F->getArgumentList().size() / 2;
779 Function::arg_iterator i = F->arg_begin();
780 while (ArgIdx--)
781 ++i;
782 Shadow = i;
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +0000783 assert(Shadow->getType() == DFS.ShadowTy);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000784 break;
785 }
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000786 }
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000787 NonZeroChecks.insert(Shadow);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000788 } else {
789 Shadow = DFS.ZeroShadow;
790 }
791 }
792 return Shadow;
793}
794
795void DFSanFunction::setShadow(Instruction *I, Value *Shadow) {
796 assert(!ValShadowMap.count(I));
797 assert(Shadow->getType() == DFS.ShadowTy);
798 ValShadowMap[I] = Shadow;
799}
800
801Value *DataFlowSanitizer::getShadowAddress(Value *Addr, Instruction *Pos) {
802 assert(Addr != RetvalTLS && "Reinstrumenting?");
803 IRBuilder<> IRB(Pos);
804 return IRB.CreateIntToPtr(
805 IRB.CreateMul(
806 IRB.CreateAnd(IRB.CreatePtrToInt(Addr, IntptrTy), ShadowPtrMask),
807 ShadowPtrMul),
808 ShadowPtrTy);
809}
810
811// Generates IR to compute the union of the two given shadows, inserting it
812// before Pos. Returns the computed union Value.
813Value *DataFlowSanitizer::combineShadows(Value *V1, Value *V2,
814 Instruction *Pos) {
815 if (V1 == ZeroShadow)
816 return V2;
817 if (V2 == ZeroShadow)
818 return V1;
819 if (V1 == V2)
820 return V1;
821 IRBuilder<> IRB(Pos);
822 BasicBlock *Head = Pos->getParent();
823 Value *Ne = IRB.CreateICmpNE(V1, V2);
824 Instruction *NeInst = dyn_cast<Instruction>(Ne);
825 if (NeInst) {
826 BranchInst *BI = cast<BranchInst>(SplitBlockAndInsertIfThen(
827 NeInst, /*Unreachable=*/ false, ColdCallWeights));
828 IRBuilder<> ThenIRB(BI);
829 CallInst *Call = ThenIRB.CreateCall2(DFSanUnionFn, V1, V2);
830 Call->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
831 Call->addAttribute(1, Attribute::ZExt);
832 Call->addAttribute(2, Attribute::ZExt);
833
834 BasicBlock *Tail = BI->getSuccessor(0);
835 PHINode *Phi = PHINode::Create(ShadowTy, 2, "", Tail->begin());
836 Phi->addIncoming(Call, Call->getParent());
Peter Collingbournef3c03142013-08-23 18:45:06 +0000837 Phi->addIncoming(V1, Head);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000838 Pos = Phi;
839 return Phi;
840 } else {
841 assert(0 && "todo");
842 return 0;
843 }
844}
845
846// A convenience function which folds the shadows of each of the operands
847// of the provided instruction Inst, inserting the IR before Inst. Returns
848// the computed union Value.
849Value *DFSanFunction::combineOperandShadows(Instruction *Inst) {
850 if (Inst->getNumOperands() == 0)
851 return DFS.ZeroShadow;
852
853 Value *Shadow = getShadow(Inst->getOperand(0));
854 for (unsigned i = 1, n = Inst->getNumOperands(); i != n; ++i) {
855 Shadow = DFS.combineShadows(Shadow, getShadow(Inst->getOperand(i)), Inst);
856 }
857 return Shadow;
858}
859
860void DFSanVisitor::visitOperandShadowInst(Instruction &I) {
861 Value *CombinedShadow = DFSF.combineOperandShadows(&I);
862 DFSF.setShadow(&I, CombinedShadow);
863}
864
865// Generates IR to load shadow corresponding to bytes [Addr, Addr+Size), where
866// Addr has alignment Align, and take the union of each of those shadows.
867Value *DFSanFunction::loadShadow(Value *Addr, uint64_t Size, uint64_t Align,
868 Instruction *Pos) {
869 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
870 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i =
871 AllocaShadowMap.find(AI);
872 if (i != AllocaShadowMap.end()) {
873 IRBuilder<> IRB(Pos);
874 return IRB.CreateLoad(i->second);
875 }
876 }
877
878 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
879 SmallVector<Value *, 2> Objs;
880 GetUnderlyingObjects(Addr, Objs, DFS.DL);
881 bool AllConstants = true;
882 for (SmallVector<Value *, 2>::iterator i = Objs.begin(), e = Objs.end();
883 i != e; ++i) {
884 if (isa<Function>(*i) || isa<BlockAddress>(*i))
885 continue;
886 if (isa<GlobalVariable>(*i) && cast<GlobalVariable>(*i)->isConstant())
887 continue;
888
889 AllConstants = false;
890 break;
891 }
892 if (AllConstants)
893 return DFS.ZeroShadow;
894
895 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
896 switch (Size) {
897 case 0:
898 return DFS.ZeroShadow;
899 case 1: {
900 LoadInst *LI = new LoadInst(ShadowAddr, "", Pos);
901 LI->setAlignment(ShadowAlign);
902 return LI;
903 }
904 case 2: {
905 IRBuilder<> IRB(Pos);
906 Value *ShadowAddr1 =
907 IRB.CreateGEP(ShadowAddr, ConstantInt::get(DFS.IntptrTy, 1));
908 return DFS.combineShadows(IRB.CreateAlignedLoad(ShadowAddr, ShadowAlign),
909 IRB.CreateAlignedLoad(ShadowAddr1, ShadowAlign),
910 Pos);
911 }
912 }
913 if (Size % (64 / DFS.ShadowWidth) == 0) {
914 // Fast path for the common case where each byte has identical shadow: load
915 // shadow 64 bits at a time, fall out to a __dfsan_union_load call if any
916 // shadow is non-equal.
917 BasicBlock *FallbackBB = BasicBlock::Create(*DFS.Ctx, "", F);
918 IRBuilder<> FallbackIRB(FallbackBB);
919 CallInst *FallbackCall = FallbackIRB.CreateCall2(
920 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size));
921 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
922
923 // Compare each of the shadows stored in the loaded 64 bits to each other,
924 // by computing (WideShadow rotl ShadowWidth) == WideShadow.
925 IRBuilder<> IRB(Pos);
926 Value *WideAddr =
927 IRB.CreateBitCast(ShadowAddr, Type::getInt64PtrTy(*DFS.Ctx));
928 Value *WideShadow = IRB.CreateAlignedLoad(WideAddr, ShadowAlign);
929 Value *TruncShadow = IRB.CreateTrunc(WideShadow, DFS.ShadowTy);
930 Value *ShlShadow = IRB.CreateShl(WideShadow, DFS.ShadowWidth);
931 Value *ShrShadow = IRB.CreateLShr(WideShadow, 64 - DFS.ShadowWidth);
932 Value *RotShadow = IRB.CreateOr(ShlShadow, ShrShadow);
933 Value *ShadowsEq = IRB.CreateICmpEQ(WideShadow, RotShadow);
934
935 BasicBlock *Head = Pos->getParent();
936 BasicBlock *Tail = Head->splitBasicBlock(Pos);
937 // In the following code LastBr will refer to the previous basic block's
938 // conditional branch instruction, whose true successor is fixed up to point
939 // to the next block during the loop below or to the tail after the final
940 // iteration.
941 BranchInst *LastBr = BranchInst::Create(FallbackBB, FallbackBB, ShadowsEq);
942 ReplaceInstWithInst(Head->getTerminator(), LastBr);
943
944 for (uint64_t Ofs = 64 / DFS.ShadowWidth; Ofs != Size;
945 Ofs += 64 / DFS.ShadowWidth) {
946 BasicBlock *NextBB = BasicBlock::Create(*DFS.Ctx, "", F);
947 IRBuilder<> NextIRB(NextBB);
948 WideAddr = NextIRB.CreateGEP(WideAddr, ConstantInt::get(DFS.IntptrTy, 1));
949 Value *NextWideShadow = NextIRB.CreateAlignedLoad(WideAddr, ShadowAlign);
950 ShadowsEq = NextIRB.CreateICmpEQ(WideShadow, NextWideShadow);
951 LastBr->setSuccessor(0, NextBB);
952 LastBr = NextIRB.CreateCondBr(ShadowsEq, FallbackBB, FallbackBB);
953 }
954
955 LastBr->setSuccessor(0, Tail);
956 FallbackIRB.CreateBr(Tail);
957 PHINode *Shadow = PHINode::Create(DFS.ShadowTy, 2, "", &Tail->front());
958 Shadow->addIncoming(FallbackCall, FallbackBB);
959 Shadow->addIncoming(TruncShadow, LastBr->getParent());
960 return Shadow;
961 }
962
963 IRBuilder<> IRB(Pos);
964 CallInst *FallbackCall = IRB.CreateCall2(
965 DFS.DFSanUnionLoadFn, ShadowAddr, ConstantInt::get(DFS.IntptrTy, Size));
966 FallbackCall->addAttribute(AttributeSet::ReturnIndex, Attribute::ZExt);
967 return FallbackCall;
968}
969
970void DFSanVisitor::visitLoadInst(LoadInst &LI) {
971 uint64_t Size = DFSF.DFS.DL->getTypeStoreSize(LI.getType());
972 uint64_t Align;
973 if (ClPreserveAlignment) {
974 Align = LI.getAlignment();
975 if (Align == 0)
976 Align = DFSF.DFS.DL->getABITypeAlignment(LI.getType());
977 } else {
978 Align = 1;
979 }
980 IRBuilder<> IRB(&LI);
981 Value *LoadedShadow =
982 DFSF.loadShadow(LI.getPointerOperand(), Size, Align, &LI);
983 Value *PtrShadow = DFSF.getShadow(LI.getPointerOperand());
Peter Collingbournea77d9f72013-08-15 18:51:12 +0000984 Value *CombinedShadow = DFSF.DFS.combineShadows(LoadedShadow, PtrShadow, &LI);
985 if (CombinedShadow != DFSF.DFS.ZeroShadow)
986 DFSF.NonZeroChecks.insert(CombinedShadow);
987
988 DFSF.setShadow(&LI, CombinedShadow);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +0000989}
990
991void DFSanFunction::storeShadow(Value *Addr, uint64_t Size, uint64_t Align,
992 Value *Shadow, Instruction *Pos) {
993 if (AllocaInst *AI = dyn_cast<AllocaInst>(Addr)) {
994 llvm::DenseMap<AllocaInst *, AllocaInst *>::iterator i =
995 AllocaShadowMap.find(AI);
996 if (i != AllocaShadowMap.end()) {
997 IRBuilder<> IRB(Pos);
998 IRB.CreateStore(Shadow, i->second);
999 return;
1000 }
1001 }
1002
1003 uint64_t ShadowAlign = Align * DFS.ShadowWidth / 8;
1004 IRBuilder<> IRB(Pos);
1005 Value *ShadowAddr = DFS.getShadowAddress(Addr, Pos);
1006 if (Shadow == DFS.ZeroShadow) {
1007 IntegerType *ShadowTy = IntegerType::get(*DFS.Ctx, Size * DFS.ShadowWidth);
1008 Value *ExtZeroShadow = ConstantInt::get(ShadowTy, 0);
1009 Value *ExtShadowAddr =
1010 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowTy));
1011 IRB.CreateAlignedStore(ExtZeroShadow, ExtShadowAddr, ShadowAlign);
1012 return;
1013 }
1014
1015 const unsigned ShadowVecSize = 128 / DFS.ShadowWidth;
1016 uint64_t Offset = 0;
1017 if (Size >= ShadowVecSize) {
1018 VectorType *ShadowVecTy = VectorType::get(DFS.ShadowTy, ShadowVecSize);
1019 Value *ShadowVec = UndefValue::get(ShadowVecTy);
1020 for (unsigned i = 0; i != ShadowVecSize; ++i) {
1021 ShadowVec = IRB.CreateInsertElement(
1022 ShadowVec, Shadow, ConstantInt::get(Type::getInt32Ty(*DFS.Ctx), i));
1023 }
1024 Value *ShadowVecAddr =
1025 IRB.CreateBitCast(ShadowAddr, PointerType::getUnqual(ShadowVecTy));
1026 do {
1027 Value *CurShadowVecAddr = IRB.CreateConstGEP1_32(ShadowVecAddr, Offset);
1028 IRB.CreateAlignedStore(ShadowVec, CurShadowVecAddr, ShadowAlign);
1029 Size -= ShadowVecSize;
1030 ++Offset;
1031 } while (Size >= ShadowVecSize);
1032 Offset *= ShadowVecSize;
1033 }
1034 while (Size > 0) {
1035 Value *CurShadowAddr = IRB.CreateConstGEP1_32(ShadowAddr, Offset);
1036 IRB.CreateAlignedStore(Shadow, CurShadowAddr, ShadowAlign);
1037 --Size;
1038 ++Offset;
1039 }
1040}
1041
1042void DFSanVisitor::visitStoreInst(StoreInst &SI) {
1043 uint64_t Size =
1044 DFSF.DFS.DL->getTypeStoreSize(SI.getValueOperand()->getType());
1045 uint64_t Align;
1046 if (ClPreserveAlignment) {
1047 Align = SI.getAlignment();
1048 if (Align == 0)
1049 Align = DFSF.DFS.DL->getABITypeAlignment(SI.getValueOperand()->getType());
1050 } else {
1051 Align = 1;
1052 }
1053 DFSF.storeShadow(SI.getPointerOperand(), Size, Align,
1054 DFSF.getShadow(SI.getValueOperand()), &SI);
1055}
1056
1057void DFSanVisitor::visitBinaryOperator(BinaryOperator &BO) {
1058 visitOperandShadowInst(BO);
1059}
1060
1061void DFSanVisitor::visitCastInst(CastInst &CI) { visitOperandShadowInst(CI); }
1062
1063void DFSanVisitor::visitCmpInst(CmpInst &CI) { visitOperandShadowInst(CI); }
1064
1065void DFSanVisitor::visitGetElementPtrInst(GetElementPtrInst &GEPI) {
1066 visitOperandShadowInst(GEPI);
1067}
1068
1069void DFSanVisitor::visitExtractElementInst(ExtractElementInst &I) {
1070 visitOperandShadowInst(I);
1071}
1072
1073void DFSanVisitor::visitInsertElementInst(InsertElementInst &I) {
1074 visitOperandShadowInst(I);
1075}
1076
1077void DFSanVisitor::visitShuffleVectorInst(ShuffleVectorInst &I) {
1078 visitOperandShadowInst(I);
1079}
1080
1081void DFSanVisitor::visitExtractValueInst(ExtractValueInst &I) {
1082 visitOperandShadowInst(I);
1083}
1084
1085void DFSanVisitor::visitInsertValueInst(InsertValueInst &I) {
1086 visitOperandShadowInst(I);
1087}
1088
1089void DFSanVisitor::visitAllocaInst(AllocaInst &I) {
1090 bool AllLoadsStores = true;
1091 for (Instruction::use_iterator i = I.use_begin(), e = I.use_end(); i != e;
1092 ++i) {
1093 if (isa<LoadInst>(*i))
1094 continue;
1095
1096 if (StoreInst *SI = dyn_cast<StoreInst>(*i)) {
1097 if (SI->getPointerOperand() == &I)
1098 continue;
1099 }
1100
1101 AllLoadsStores = false;
1102 break;
1103 }
1104 if (AllLoadsStores) {
1105 IRBuilder<> IRB(&I);
1106 DFSF.AllocaShadowMap[&I] = IRB.CreateAlloca(DFSF.DFS.ShadowTy);
1107 }
1108 DFSF.setShadow(&I, DFSF.DFS.ZeroShadow);
1109}
1110
1111void DFSanVisitor::visitSelectInst(SelectInst &I) {
1112 Value *CondShadow = DFSF.getShadow(I.getCondition());
1113 Value *TrueShadow = DFSF.getShadow(I.getTrueValue());
1114 Value *FalseShadow = DFSF.getShadow(I.getFalseValue());
1115
1116 if (isa<VectorType>(I.getCondition()->getType())) {
1117 DFSF.setShadow(
1118 &I, DFSF.DFS.combineShadows(
1119 CondShadow,
1120 DFSF.DFS.combineShadows(TrueShadow, FalseShadow, &I), &I));
1121 } else {
1122 Value *ShadowSel;
1123 if (TrueShadow == FalseShadow) {
1124 ShadowSel = TrueShadow;
1125 } else {
1126 ShadowSel =
1127 SelectInst::Create(I.getCondition(), TrueShadow, FalseShadow, "", &I);
1128 }
1129 DFSF.setShadow(&I, DFSF.DFS.combineShadows(CondShadow, ShadowSel, &I));
1130 }
1131}
1132
Peter Collingbourneef8136d2013-08-14 20:51:38 +00001133void DFSanVisitor::visitMemSetInst(MemSetInst &I) {
1134 IRBuilder<> IRB(&I);
1135 Value *ValShadow = DFSF.getShadow(I.getValue());
1136 IRB.CreateCall3(
1137 DFSF.DFS.DFSanSetLabelFn, ValShadow,
1138 IRB.CreateBitCast(I.getDest(), Type::getInt8PtrTy(*DFSF.DFS.Ctx)),
1139 IRB.CreateZExtOrTrunc(I.getLength(), DFSF.DFS.IntptrTy));
1140}
1141
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001142void DFSanVisitor::visitMemTransferInst(MemTransferInst &I) {
1143 IRBuilder<> IRB(&I);
1144 Value *DestShadow = DFSF.DFS.getShadowAddress(I.getDest(), &I);
1145 Value *SrcShadow = DFSF.DFS.getShadowAddress(I.getSource(), &I);
1146 Value *LenShadow = IRB.CreateMul(
1147 I.getLength(),
1148 ConstantInt::get(I.getLength()->getType(), DFSF.DFS.ShadowWidth / 8));
1149 Value *AlignShadow;
1150 if (ClPreserveAlignment) {
1151 AlignShadow = IRB.CreateMul(I.getAlignmentCst(),
1152 ConstantInt::get(I.getAlignmentCst()->getType(),
1153 DFSF.DFS.ShadowWidth / 8));
1154 } else {
1155 AlignShadow = ConstantInt::get(I.getAlignmentCst()->getType(),
1156 DFSF.DFS.ShadowWidth / 8);
1157 }
1158 Type *Int8Ptr = Type::getInt8PtrTy(*DFSF.DFS.Ctx);
1159 DestShadow = IRB.CreateBitCast(DestShadow, Int8Ptr);
1160 SrcShadow = IRB.CreateBitCast(SrcShadow, Int8Ptr);
1161 IRB.CreateCall5(I.getCalledValue(), DestShadow, SrcShadow, LenShadow,
1162 AlignShadow, I.getVolatileCst());
1163}
1164
1165void DFSanVisitor::visitReturnInst(ReturnInst &RI) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +00001166 if (!DFSF.IsNativeABI && RI.getReturnValue()) {
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001167 switch (DFSF.IA) {
1168 case DataFlowSanitizer::IA_TLS: {
1169 Value *S = DFSF.getShadow(RI.getReturnValue());
1170 IRBuilder<> IRB(&RI);
1171 IRB.CreateStore(S, DFSF.getRetvalTLS());
1172 break;
1173 }
1174 case DataFlowSanitizer::IA_Args: {
1175 IRBuilder<> IRB(&RI);
1176 Type *RT = DFSF.F->getFunctionType()->getReturnType();
1177 Value *InsVal =
1178 IRB.CreateInsertValue(UndefValue::get(RT), RI.getReturnValue(), 0);
1179 Value *InsShadow =
1180 IRB.CreateInsertValue(InsVal, DFSF.getShadow(RI.getReturnValue()), 1);
1181 RI.setOperand(0, InsShadow);
1182 break;
1183 }
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001184 }
1185 }
1186}
1187
1188void DFSanVisitor::visitCallSite(CallSite CS) {
1189 Function *F = CS.getCalledFunction();
1190 if ((F && F->isIntrinsic()) || isa<InlineAsm>(CS.getCalledValue())) {
1191 visitOperandShadowInst(*CS.getInstruction());
1192 return;
1193 }
1194
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +00001195 IRBuilder<> IRB(CS.getInstruction());
1196
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001197 DenseMap<Value *, Function *>::iterator i =
1198 DFSF.DFS.UnwrappedFnMap.find(CS.getCalledValue());
1199 if (i != DFSF.DFS.UnwrappedFnMap.end()) {
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +00001200 Function *F = i->second;
1201 switch (DFSF.DFS.getWrapperKind(F)) {
1202 case DataFlowSanitizer::WK_Warning: {
1203 CS.setCalledFunction(F);
1204 IRB.CreateCall(DFSF.DFS.DFSanUnimplementedFn,
1205 IRB.CreateGlobalStringPtr(F->getName()));
1206 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1207 return;
1208 }
1209 case DataFlowSanitizer::WK_Discard: {
1210 CS.setCalledFunction(F);
1211 DFSF.setShadow(CS.getInstruction(), DFSF.DFS.ZeroShadow);
1212 return;
1213 }
1214 case DataFlowSanitizer::WK_Functional: {
1215 CS.setCalledFunction(F);
1216 visitOperandShadowInst(*CS.getInstruction());
1217 return;
1218 }
1219 case DataFlowSanitizer::WK_Custom: {
1220 // Don't try to handle invokes of custom functions, it's too complicated.
1221 // Instead, invoke the dfsw$ wrapper, which will in turn call the __dfsw_
1222 // wrapper.
1223 if (CallInst *CI = dyn_cast<CallInst>(CS.getInstruction())) {
1224 FunctionType *FT = F->getFunctionType();
1225 FunctionType *CustomFT = DFSF.DFS.getCustomFunctionType(FT);
1226 std::string CustomFName = "__dfsw_";
1227 CustomFName += F->getName();
1228 Constant *CustomF =
1229 DFSF.DFS.Mod->getOrInsertFunction(CustomFName, CustomFT);
1230 if (Function *CustomFn = dyn_cast<Function>(CustomF)) {
1231 CustomFn->copyAttributesFrom(F);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001232
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +00001233 // Custom functions returning non-void will write to the return label.
1234 if (!FT->getReturnType()->isVoidTy()) {
1235 CustomFn->removeAttributes(AttributeSet::FunctionIndex,
1236 DFSF.DFS.ReadOnlyNoneAttrs);
1237 }
1238 }
1239
1240 std::vector<Value *> Args;
1241
1242 CallSite::arg_iterator i = CS.arg_begin();
Peter Collingbourneffba4c72013-08-27 22:09:06 +00001243 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n) {
1244 Type *T = (*i)->getType();
1245 FunctionType *ParamFT;
1246 if (isa<PointerType>(T) &&
1247 (ParamFT = dyn_cast<FunctionType>(
1248 cast<PointerType>(T)->getElementType()))) {
1249 std::string TName = "dfst";
1250 TName += utostr(FT->getNumParams() - n);
1251 TName += "$";
1252 TName += F->getName();
1253 Constant *T = DFSF.DFS.getOrBuildTrampolineFunction(ParamFT, TName);
1254 Args.push_back(T);
1255 Args.push_back(
1256 IRB.CreateBitCast(*i, Type::getInt8PtrTy(*DFSF.DFS.Ctx)));
1257 } else {
1258 Args.push_back(*i);
1259 }
1260 }
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +00001261
1262 i = CS.arg_begin();
1263 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1264 Args.push_back(DFSF.getShadow(*i));
1265
1266 if (!FT->getReturnType()->isVoidTy()) {
1267 if (!DFSF.LabelReturnAlloca) {
1268 DFSF.LabelReturnAlloca =
1269 new AllocaInst(DFSF.DFS.ShadowTy, "labelreturn",
1270 DFSF.F->getEntryBlock().begin());
1271 }
1272 Args.push_back(DFSF.LabelReturnAlloca);
1273 }
1274
1275 CallInst *CustomCI = IRB.CreateCall(CustomF, Args);
1276 CustomCI->setCallingConv(CI->getCallingConv());
1277 CustomCI->setAttributes(CI->getAttributes());
1278
1279 if (!FT->getReturnType()->isVoidTy()) {
1280 LoadInst *LabelLoad = IRB.CreateLoad(DFSF.LabelReturnAlloca);
1281 DFSF.setShadow(CustomCI, LabelLoad);
1282 }
1283
1284 CI->replaceAllUsesWith(CustomCI);
1285 CI->eraseFromParent();
1286 return;
1287 }
1288 break;
1289 }
1290 }
1291 }
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001292
1293 FunctionType *FT = cast<FunctionType>(
1294 CS.getCalledValue()->getType()->getPointerElementType());
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +00001295 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001296 for (unsigned i = 0, n = FT->getNumParams(); i != n; ++i) {
1297 IRB.CreateStore(DFSF.getShadow(CS.getArgument(i)),
1298 DFSF.getArgTLS(i, CS.getInstruction()));
1299 }
1300 }
1301
1302 Instruction *Next = 0;
1303 if (!CS.getType()->isVoidTy()) {
1304 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1305 if (II->getNormalDest()->getSinglePredecessor()) {
1306 Next = II->getNormalDest()->begin();
1307 } else {
1308 BasicBlock *NewBB =
1309 SplitEdge(II->getParent(), II->getNormalDest(), &DFSF.DFS);
1310 Next = NewBB->begin();
1311 }
1312 } else {
1313 Next = CS->getNextNode();
1314 }
1315
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +00001316 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_TLS) {
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001317 IRBuilder<> NextIRB(Next);
1318 LoadInst *LI = NextIRB.CreateLoad(DFSF.getRetvalTLS());
1319 DFSF.SkipInsts.insert(LI);
1320 DFSF.setShadow(CS.getInstruction(), LI);
Peter Collingbournea77d9f72013-08-15 18:51:12 +00001321 DFSF.NonZeroChecks.insert(LI);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001322 }
1323 }
1324
1325 // Do all instrumentation for IA_Args down here to defer tampering with the
1326 // CFG in a way that SplitEdge may be able to detect.
Peter Collingbournefdb1a6c2013-08-14 18:54:12 +00001327 if (DFSF.DFS.getInstrumentedABI() == DataFlowSanitizer::IA_Args) {
1328 FunctionType *NewFT = DFSF.DFS.getArgsFunctionType(FT);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001329 Value *Func =
1330 IRB.CreateBitCast(CS.getCalledValue(), PointerType::getUnqual(NewFT));
1331 std::vector<Value *> Args;
1332
1333 CallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
1334 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1335 Args.push_back(*i);
1336
1337 i = CS.arg_begin();
1338 for (unsigned n = FT->getNumParams(); n != 0; ++i, --n)
1339 Args.push_back(DFSF.getShadow(*i));
1340
1341 if (FT->isVarArg()) {
1342 unsigned VarArgSize = CS.arg_size() - FT->getNumParams();
1343 ArrayType *VarArgArrayTy = ArrayType::get(DFSF.DFS.ShadowTy, VarArgSize);
1344 AllocaInst *VarArgShadow =
1345 new AllocaInst(VarArgArrayTy, "", DFSF.F->getEntryBlock().begin());
1346 Args.push_back(IRB.CreateConstGEP2_32(VarArgShadow, 0, 0));
1347 for (unsigned n = 0; i != e; ++i, ++n) {
1348 IRB.CreateStore(DFSF.getShadow(*i),
1349 IRB.CreateConstGEP2_32(VarArgShadow, 0, n));
1350 Args.push_back(*i);
1351 }
1352 }
1353
1354 CallSite NewCS;
1355 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
1356 NewCS = IRB.CreateInvoke(Func, II->getNormalDest(), II->getUnwindDest(),
1357 Args);
1358 } else {
1359 NewCS = IRB.CreateCall(Func, Args);
1360 }
1361 NewCS.setCallingConv(CS.getCallingConv());
1362 NewCS.setAttributes(CS.getAttributes().removeAttributes(
1363 *DFSF.DFS.Ctx, AttributeSet::ReturnIndex,
1364 AttributeFuncs::typeIncompatible(NewCS.getInstruction()->getType(),
1365 AttributeSet::ReturnIndex)));
1366
1367 if (Next) {
1368 ExtractValueInst *ExVal =
1369 ExtractValueInst::Create(NewCS.getInstruction(), 0, "", Next);
1370 DFSF.SkipInsts.insert(ExVal);
1371 ExtractValueInst *ExShadow =
1372 ExtractValueInst::Create(NewCS.getInstruction(), 1, "", Next);
1373 DFSF.SkipInsts.insert(ExShadow);
1374 DFSF.setShadow(ExVal, ExShadow);
Peter Collingbournea77d9f72013-08-15 18:51:12 +00001375 DFSF.NonZeroChecks.insert(ExShadow);
Peter Collingbourne6fa33f52013-08-07 22:47:18 +00001376
1377 CS.getInstruction()->replaceAllUsesWith(ExVal);
1378 }
1379
1380 CS.getInstruction()->eraseFromParent();
1381 }
1382}
1383
1384void DFSanVisitor::visitPHINode(PHINode &PN) {
1385 PHINode *ShadowPN =
1386 PHINode::Create(DFSF.DFS.ShadowTy, PN.getNumIncomingValues(), "", &PN);
1387
1388 // Give the shadow phi node valid predecessors to fool SplitEdge into working.
1389 Value *UndefShadow = UndefValue::get(DFSF.DFS.ShadowTy);
1390 for (PHINode::block_iterator i = PN.block_begin(), e = PN.block_end(); i != e;
1391 ++i) {
1392 ShadowPN->addIncoming(UndefShadow, *i);
1393 }
1394
1395 DFSF.PHIFixups.push_back(std::make_pair(&PN, ShadowPN));
1396 DFSF.setShadow(&PN, ShadowPN);
1397}