blob: 759b32b3f426914c4f5a4a86f24ff79751efe2e1 [file] [log] [blame]
Chris Lattnerd12c27c2010-01-05 06:09:35 +00001//===- InstCombineMulDivRem.cpp -------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for mul, fmul, sdiv, udiv, fdiv,
11// srem, urem, frem.
12//
13//===----------------------------------------------------------------------===//
14
15#include "InstCombine.h"
Duncan Sands82fdab32010-12-21 14:00:22 +000016#include "llvm/Analysis/InstructionSimplify.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000017#include "llvm/IR/IntrinsicInst.h"
Chris Lattnerd12c27c2010-01-05 06:09:35 +000018#include "llvm/Support/PatternMatch.h"
19using namespace llvm;
20using namespace PatternMatch;
21
Chris Lattner1add46d2011-05-22 18:18:41 +000022
23/// simplifyValueKnownNonZero - The specific integer value is used in a context
24/// where it is known to be non-zero. If this allows us to simplify the
25/// computation, do so and return the new operand, otherwise return null.
26static Value *simplifyValueKnownNonZero(Value *V, InstCombiner &IC) {
27 // If V has multiple uses, then we would have to do more analysis to determine
28 // if this is safe. For example, the use could be in dynamically unreached
29 // code.
30 if (!V->hasOneUse()) return 0;
31
Chris Lattner613f1a32011-05-23 00:32:19 +000032 bool MadeChange = false;
33
Chris Lattner1add46d2011-05-22 18:18:41 +000034 // ((1 << A) >>u B) --> (1 << (A-B))
35 // Because V cannot be zero, we know that B is less than A.
Chris Lattner6083bb92011-05-23 00:09:55 +000036 Value *A = 0, *B = 0, *PowerOf2 = 0;
37 if (match(V, m_LShr(m_OneUse(m_Shl(m_Value(PowerOf2), m_Value(A))),
Chris Lattner1add46d2011-05-22 18:18:41 +000038 m_Value(B))) &&
39 // The "1" can be any value known to be a power of 2.
Rafael Espindoladbaa2372012-12-13 03:37:24 +000040 isKnownToBeAPowerOfTwo(PowerOf2)) {
Benjamin Kramera9390a42011-09-27 20:39:19 +000041 A = IC.Builder->CreateSub(A, B);
Chris Lattner6083bb92011-05-23 00:09:55 +000042 return IC.Builder->CreateShl(PowerOf2, A);
Chris Lattner1add46d2011-05-22 18:18:41 +000043 }
44
Chris Lattner613f1a32011-05-23 00:32:19 +000045 // (PowerOfTwo >>u B) --> isExact since shifting out the result would make it
46 // inexact. Similarly for <<.
47 if (BinaryOperator *I = dyn_cast<BinaryOperator>(V))
Rafael Espindoladbaa2372012-12-13 03:37:24 +000048 if (I->isLogicalShift() && isKnownToBeAPowerOfTwo(I->getOperand(0))) {
Chris Lattner613f1a32011-05-23 00:32:19 +000049 // We know that this is an exact/nuw shift and that the input is a
50 // non-zero context as well.
51 if (Value *V2 = simplifyValueKnownNonZero(I->getOperand(0), IC)) {
52 I->setOperand(0, V2);
53 MadeChange = true;
54 }
55
56 if (I->getOpcode() == Instruction::LShr && !I->isExact()) {
57 I->setIsExact();
58 MadeChange = true;
59 }
60
61 if (I->getOpcode() == Instruction::Shl && !I->hasNoUnsignedWrap()) {
62 I->setHasNoUnsignedWrap();
63 MadeChange = true;
64 }
65 }
66
Chris Lattner6c9b8d32011-05-22 18:26:48 +000067 // TODO: Lots more we could do here:
Chris Lattner6c9b8d32011-05-22 18:26:48 +000068 // If V is a phi node, we can call this on each of its operands.
69 // "select cond, X, 0" can simplify to "X".
70
Chris Lattner613f1a32011-05-23 00:32:19 +000071 return MadeChange ? V : 0;
Chris Lattner1add46d2011-05-22 18:18:41 +000072}
73
74
Chris Lattnerd12c27c2010-01-05 06:09:35 +000075/// MultiplyOverflows - True if the multiply can not be expressed in an int
76/// this size.
77static bool MultiplyOverflows(ConstantInt *C1, ConstantInt *C2, bool sign) {
78 uint32_t W = C1->getBitWidth();
79 APInt LHSExt = C1->getValue(), RHSExt = C2->getValue();
80 if (sign) {
Jay Foad40f8f622010-12-07 08:25:19 +000081 LHSExt = LHSExt.sext(W * 2);
82 RHSExt = RHSExt.sext(W * 2);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000083 } else {
Jay Foad40f8f622010-12-07 08:25:19 +000084 LHSExt = LHSExt.zext(W * 2);
85 RHSExt = RHSExt.zext(W * 2);
Chris Lattnerd12c27c2010-01-05 06:09:35 +000086 }
87
88 APInt MulExt = LHSExt * RHSExt;
89
90 if (!sign)
91 return MulExt.ugt(APInt::getLowBitsSet(W * 2, W));
92
93 APInt Min = APInt::getSignedMinValue(W).sext(W * 2);
94 APInt Max = APInt::getSignedMaxValue(W).sext(W * 2);
95 return MulExt.slt(Min) || MulExt.sgt(Max);
96}
97
98Instruction *InstCombiner::visitMul(BinaryOperator &I) {
Duncan Sands096aa792010-11-13 15:10:37 +000099 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000100 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
101
Duncan Sands82fdab32010-12-21 14:00:22 +0000102 if (Value *V = SimplifyMulInst(Op0, Op1, TD))
103 return ReplaceInstUsesWith(I, V);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000104
Duncan Sands37bf92b2010-12-22 13:36:08 +0000105 if (Value *V = SimplifyUsingDistributiveLaws(I))
106 return ReplaceInstUsesWith(I, V);
107
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000108 if (match(Op1, m_AllOnes())) // X * -1 == 0 - X
109 return BinaryOperator::CreateNeg(Op0, I.getName());
110
111 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
112
113 // ((X << C1)*C2) == (X * (C2 << C1))
114 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
115 if (SI->getOpcode() == Instruction::Shl)
116 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
117 return BinaryOperator::CreateMul(SI->getOperand(0),
118 ConstantExpr::getShl(CI, ShOp));
119
120 const APInt &Val = CI->getValue();
121 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
122 Constant *NewCst = ConstantInt::get(Op0->getType(), Val.logBase2());
123 BinaryOperator *Shl = BinaryOperator::CreateShl(Op0, NewCst);
124 if (I.hasNoSignedWrap()) Shl->setHasNoSignedWrap();
125 if (I.hasNoUnsignedWrap()) Shl->setHasNoUnsignedWrap();
126 return Shl;
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000127 }
128
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000129 // Canonicalize (X+C1)*CI -> X*CI+C1*CI.
130 { Value *X; ConstantInt *C1;
131 if (Op0->hasOneUse() &&
132 match(Op0, m_Add(m_Value(X), m_ConstantInt(C1)))) {
Benjamin Kramera9390a42011-09-27 20:39:19 +0000133 Value *Add = Builder->CreateMul(X, CI);
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000134 return BinaryOperator::CreateAdd(Add, Builder->CreateMul(C1, CI));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000135 }
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000136 }
Stuart Hastingsacbf1072011-05-30 20:00:33 +0000137
Stuart Hastingsf1002822011-06-01 16:42:47 +0000138 // (Y - X) * (-(2**n)) -> (X - Y) * (2**n), for positive nonzero n
139 // (Y + const) * (-(2**n)) -> (-constY) * (2**n), for positive nonzero n
140 // The "* (2**n)" thus becomes a potential shifting opportunity.
Stuart Hastingsacbf1072011-05-30 20:00:33 +0000141 {
142 const APInt & Val = CI->getValue();
143 const APInt &PosVal = Val.abs();
144 if (Val.isNegative() && PosVal.isPowerOf2()) {
Stuart Hastingsf1002822011-06-01 16:42:47 +0000145 Value *X = 0, *Y = 0;
146 if (Op0->hasOneUse()) {
147 ConstantInt *C1;
148 Value *Sub = 0;
149 if (match(Op0, m_Sub(m_Value(Y), m_Value(X))))
150 Sub = Builder->CreateSub(X, Y, "suba");
151 else if (match(Op0, m_Add(m_Value(Y), m_ConstantInt(C1))))
152 Sub = Builder->CreateSub(Builder->CreateNeg(C1), Y, "subc");
153 if (Sub)
154 return
155 BinaryOperator::CreateMul(Sub,
156 ConstantInt::get(Y->getType(), PosVal));
Stuart Hastingsacbf1072011-05-30 20:00:33 +0000157 }
158 }
159 }
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000160 }
161
162 // Simplify mul instructions with a constant RHS.
163 if (isa<Constant>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000164 // Try to fold constant mul into select arguments.
165 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
166 if (Instruction *R = FoldOpIntoSelect(I, SI))
167 return R;
168
169 if (isa<PHINode>(Op0))
170 if (Instruction *NV = FoldOpIntoPhi(I))
171 return NV;
172 }
173
174 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
175 if (Value *Op1v = dyn_castNegVal(Op1))
176 return BinaryOperator::CreateMul(Op0v, Op1v);
177
178 // (X / Y) * Y = X - (X % Y)
179 // (X / Y) * -Y = (X % Y) - X
180 {
181 Value *Op1C = Op1;
182 BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0);
183 if (!BO ||
184 (BO->getOpcode() != Instruction::UDiv &&
185 BO->getOpcode() != Instruction::SDiv)) {
186 Op1C = Op0;
187 BO = dyn_cast<BinaryOperator>(Op1);
188 }
189 Value *Neg = dyn_castNegVal(Op1C);
190 if (BO && BO->hasOneUse() &&
191 (BO->getOperand(1) == Op1C || BO->getOperand(1) == Neg) &&
192 (BO->getOpcode() == Instruction::UDiv ||
193 BO->getOpcode() == Instruction::SDiv)) {
194 Value *Op0BO = BO->getOperand(0), *Op1BO = BO->getOperand(1);
195
Chris Lattner35bda892011-02-06 21:44:57 +0000196 // If the division is exact, X % Y is zero, so we end up with X or -X.
197 if (PossiblyExactOperator *SDiv = dyn_cast<PossiblyExactOperator>(BO))
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000198 if (SDiv->isExact()) {
199 if (Op1BO == Op1C)
200 return ReplaceInstUsesWith(I, Op0BO);
201 return BinaryOperator::CreateNeg(Op0BO);
202 }
203
204 Value *Rem;
205 if (BO->getOpcode() == Instruction::UDiv)
206 Rem = Builder->CreateURem(Op0BO, Op1BO);
207 else
208 Rem = Builder->CreateSRem(Op0BO, Op1BO);
209 Rem->takeName(BO);
210
211 if (Op1BO == Op1C)
212 return BinaryOperator::CreateSub(Op0BO, Rem);
213 return BinaryOperator::CreateSub(Rem, Op0BO);
214 }
215 }
216
217 /// i1 mul -> i1 and.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000218 if (I.getType()->isIntegerTy(1))
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000219 return BinaryOperator::CreateAnd(Op0, Op1);
220
221 // X*(1 << Y) --> X << Y
222 // (1 << Y)*X --> X << Y
223 {
224 Value *Y;
225 if (match(Op0, m_Shl(m_One(), m_Value(Y))))
226 return BinaryOperator::CreateShl(Op1, Y);
227 if (match(Op1, m_Shl(m_One(), m_Value(Y))))
228 return BinaryOperator::CreateShl(Op0, Y);
229 }
230
231 // If one of the operands of the multiply is a cast from a boolean value, then
232 // we know the bool is either zero or one, so this is a 'masking' multiply.
233 // X * Y (where Y is 0 or 1) -> X & (0-Y)
Duncan Sands1df98592010-02-16 11:11:14 +0000234 if (!I.getType()->isVectorTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000235 // -2 is "-1 << 1" so it is all bits set except the low one.
236 APInt Negative2(I.getType()->getPrimitiveSizeInBits(), (uint64_t)-2, true);
237
238 Value *BoolCast = 0, *OtherOp = 0;
239 if (MaskedValueIsZero(Op0, Negative2))
240 BoolCast = Op0, OtherOp = Op1;
241 else if (MaskedValueIsZero(Op1, Negative2))
242 BoolCast = Op1, OtherOp = Op0;
243
244 if (BoolCast) {
245 Value *V = Builder->CreateSub(Constant::getNullValue(I.getType()),
Benjamin Kramera9390a42011-09-27 20:39:19 +0000246 BoolCast);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000247 return BinaryOperator::CreateAnd(V, OtherOp);
248 }
249 }
250
251 return Changed ? &I : 0;
252}
253
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000254//
255// Detect pattern:
256//
257// log2(Y*0.5)
258//
259// And check for corresponding fast math flags
260//
261
262static void detectLog2OfHalf(Value *&Op, Value *&Y, IntrinsicInst *&Log2) {
Pedro Artigasef2ef3e2012-11-30 22:47:15 +0000263
264 if (!Op->hasOneUse())
265 return;
266
267 IntrinsicInst *II = dyn_cast<IntrinsicInst>(Op);
268 if (!II)
269 return;
270 if (II->getIntrinsicID() != Intrinsic::log2 || !II->hasUnsafeAlgebra())
271 return;
272 Log2 = II;
273
274 Value *OpLog2Of = II->getArgOperand(0);
275 if (!OpLog2Of->hasOneUse())
276 return;
277
278 Instruction *I = dyn_cast<Instruction>(OpLog2Of);
279 if (!I)
280 return;
281 if (I->getOpcode() != Instruction::FMul || !I->hasUnsafeAlgebra())
282 return;
283
284 ConstantFP *CFP = dyn_cast<ConstantFP>(I->getOperand(0));
285 if (CFP && CFP->isExactlyValue(0.5)) {
286 Y = I->getOperand(1);
287 return;
288 }
289 CFP = dyn_cast<ConstantFP>(I->getOperand(1));
290 if (CFP && CFP->isExactlyValue(0.5))
291 Y = I->getOperand(0);
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000292}
293
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000294/// Helper function of InstCombiner::visitFMul(BinaryOperator(). It returns
295/// true iff the given value is FMul or FDiv with one and only one operand
296/// being a normal constant (i.e. not Zero/NaN/Infinity).
297static bool isFMulOrFDivWithConstant(Value *V) {
298 Instruction *I = dyn_cast<Instruction>(V);
299 if (!I || (I->getOpcode() != Instruction::FMul &&
300 I->getOpcode() != Instruction::FDiv)) {
301 return false;
302 }
303
304 ConstantFP *C0 = dyn_cast<ConstantFP>(I->getOperand(0));
305 ConstantFP *C1 = dyn_cast<ConstantFP>(I->getOperand(1));
306
307 if (C0 && C1)
308 return false;
309
310 return (C0 && C0->getValueAPF().isNormal()) ||
311 (C1 && C1->getValueAPF().isNormal());
312}
313
314static bool isNormalFp(const ConstantFP *C) {
315 const APFloat &Flt = C->getValueAPF();
316 return Flt.isNormal() && !Flt.isDenormal();
317}
318
319/// foldFMulConst() is a helper routine of InstCombiner::visitFMul().
320/// The input \p FMulOrDiv is a FMul/FDiv with one and only one operand
321/// being a constant (i.e. isFMulOrFDivWithConstant(FMulOrDiv) == true).
322/// This function is to simplify "FMulOrDiv * C" and returns the
323/// resulting expression. Note that this function could return NULL in
324/// case the constants cannot be folded into a normal floating-point.
325///
326Value *InstCombiner::foldFMulConst
327 (Instruction *FMulOrDiv, ConstantFP *C, Instruction *InsertBefore) {
328 assert(isFMulOrFDivWithConstant(FMulOrDiv) && "V is invalid");
329
330 Value *Opnd0 = FMulOrDiv->getOperand(0);
331 Value *Opnd1 = FMulOrDiv->getOperand(1);
332
333 ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
334 ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
335
336 BinaryOperator *R = 0;
337
338 // (X * C0) * C => X * (C0*C)
339 if (FMulOrDiv->getOpcode() == Instruction::FMul) {
340 Constant *F = ConstantExpr::getFMul(C1 ? C1 : C0, C);
341 if (isNormalFp(cast<ConstantFP>(F)))
342 R = BinaryOperator::CreateFMul(C1 ? Opnd0 : Opnd1, F);
343 } else {
344 if (C0) {
345 // (C0 / X) * C => (C0 * C) / X
346 ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFMul(C0, C));
347 if (isNormalFp(F))
348 R = BinaryOperator::CreateFDiv(F, Opnd1);
349 } else {
350 // (X / C1) * C => X * (C/C1) if C/C1 is not a denormal
351 ConstantFP *F = cast<ConstantFP>(ConstantExpr::getFDiv(C, C1));
352 if (isNormalFp(F)) {
353 R = BinaryOperator::CreateFMul(Opnd0, F);
354 } else {
355 // (X / C1) * C => X / (C1/C)
356 Constant *F = ConstantExpr::getFDiv(C1, C);
357 if (isNormalFp(cast<ConstantFP>(F)))
358 R = BinaryOperator::CreateFDiv(Opnd0, F);
359 }
360 }
361 }
362
363 if (R) {
364 R->setHasUnsafeAlgebra(true);
365 InsertNewInstWith(R, *InsertBefore);
366 }
367
368 return R;
369}
370
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000371Instruction *InstCombiner::visitFMul(BinaryOperator &I) {
Duncan Sands096aa792010-11-13 15:10:37 +0000372 bool Changed = SimplifyAssociativeOrCommutative(I);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000373 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
374
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000375 if (isa<Constant>(Op0))
376 std::swap(Op0, Op1);
377
Michael Ilsemanc244f382012-12-12 00:28:32 +0000378 if (Value *V = SimplifyFMulInst(Op0, Op1, I.getFastMathFlags(), TD))
379 return ReplaceInstUsesWith(I, V);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000380
Michael Ilsemanc244f382012-12-12 00:28:32 +0000381 // Simplify mul instructions with a constant RHS.
382 if (isa<Constant>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000383 // Try to fold constant mul into select arguments.
384 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
385 if (Instruction *R = FoldOpIntoSelect(I, SI))
386 return R;
387
388 if (isa<PHINode>(Op0))
389 if (Instruction *NV = FoldOpIntoPhi(I))
390 return NV;
Shuxin Yangd3ae2862013-01-07 21:39:23 +0000391
392 ConstantFP *C = dyn_cast<ConstantFP>(Op1);
393 if (C && I.hasUnsafeAlgebra() && C->getValueAPF().isNormal()) {
394 // Let MDC denote an expression in one of these forms:
395 // X * C, C/X, X/C, where C is a constant.
396 //
397 // Try to simplify "MDC * Constant"
398 if (isFMulOrFDivWithConstant(Op0)) {
399 Value *V = foldFMulConst(cast<Instruction>(Op0), C, &I);
400 if (V)
401 return ReplaceInstUsesWith(I, V);
402 }
403
404 // (MDC +/- C1) * C2 => (MDC * C2) +/- (C1 * C2)
405 Instruction *FAddSub = dyn_cast<Instruction>(Op0);
406 if (FAddSub &&
407 (FAddSub->getOpcode() == Instruction::FAdd ||
408 FAddSub->getOpcode() == Instruction::FSub)) {
409 Value *Opnd0 = FAddSub->getOperand(0);
410 Value *Opnd1 = FAddSub->getOperand(1);
411 ConstantFP *C0 = dyn_cast<ConstantFP>(Opnd0);
412 ConstantFP *C1 = dyn_cast<ConstantFP>(Opnd1);
413 bool Swap = false;
414 if (C0) {
415 std::swap(C0, C1); std::swap(Opnd0, Opnd1); Swap = true;
416 }
417
418 if (C1 && C1->getValueAPF().isNormal() &&
419 isFMulOrFDivWithConstant(Opnd0)) {
420 Value *M0 = ConstantExpr::getFMul(C1, C);
421 Value *M1 = isNormalFp(cast<ConstantFP>(M0)) ?
422 foldFMulConst(cast<Instruction>(Opnd0), C, &I) :
423 0;
424 if (M0 && M1) {
425 if (Swap && FAddSub->getOpcode() == Instruction::FSub)
426 std::swap(M0, M1);
427
428 Value *R = (FAddSub->getOpcode() == Instruction::FAdd) ?
429 BinaryOperator::CreateFAdd(M0, M1) :
430 BinaryOperator::CreateFSub(M0, M1);
431 Instruction *RI = cast<Instruction>(R);
432 RI->setHasUnsafeAlgebra(true);
433 return RI;
434 }
435 }
436 }
437 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000438 }
439
440 if (Value *Op0v = dyn_castFNegVal(Op0)) // -X * -Y = X*Y
441 if (Value *Op1v = dyn_castFNegVal(Op1))
442 return BinaryOperator::CreateFMul(Op0v, Op1v);
443
Pedro Artigas84030dc2012-11-30 19:09:41 +0000444 // Under unsafe algebra do:
445 // X * log2(0.5*Y) = X*log2(Y) - X
446 if (I.hasUnsafeAlgebra()) {
447 Value *OpX = NULL;
448 Value *OpY = NULL;
449 IntrinsicInst *Log2;
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000450 detectLog2OfHalf(Op0, OpY, Log2);
451 if (OpY) {
452 OpX = Op1;
453 } else {
454 detectLog2OfHalf(Op1, OpY, Log2);
455 if (OpY) {
456 OpX = Op0;
Pedro Artigas84030dc2012-11-30 19:09:41 +0000457 }
458 }
459 // if pattern detected emit alternate sequence
460 if (OpX && OpY) {
461 Log2->setArgOperand(0, OpY);
462 Value *FMulVal = Builder->CreateFMul(OpX, Log2);
Pedro Artigasc2a08d22012-11-30 22:07:05 +0000463 Instruction *FMul = cast<Instruction>(FMulVal);
Pedro Artigas84030dc2012-11-30 19:09:41 +0000464 FMul->copyFastMathFlags(Log2);
465 Instruction *FSub = BinaryOperator::CreateFSub(FMulVal, OpX);
466 FSub->copyFastMathFlags(Log2);
467 return FSub;
468 }
469 }
470
Shuxin Yanga5ed0312012-12-14 18:46:06 +0000471 // X * cond ? 1.0 : 0.0 => cond ? X : 0.0
472 if (I.hasNoNaNs() && I.hasNoSignedZeros()) {
473 Value *V0 = I.getOperand(0);
474 Value *V1 = I.getOperand(1);
475 Value *Cond, *SLHS, *SRHS;
476 bool Match = false;
477
478 if (match(V0, m_Select(m_Value(Cond), m_Value(SLHS), m_Value(SRHS)))) {
479 Match = true;
480 } else if (match(V1, m_Select(m_Value(Cond), m_Value(SLHS),
481 m_Value(SRHS)))) {
482 Match = true;
483 std::swap(V0, V1);
484 }
485
486 if (Match) {
487 ConstantFP *C0 = dyn_cast<ConstantFP>(SLHS);
488 ConstantFP *C1 = dyn_cast<ConstantFP>(SRHS);
489
490 if (C0 && C1 &&
491 ((C0->isZero() && C1->isExactlyValue(1.0)) ||
492 (C1->isZero() && C0->isExactlyValue(1.0)))) {
493 Value *T;
494 if (C0->isZero())
495 T = Builder->CreateSelect(Cond, SLHS, V1);
496 else
497 T = Builder->CreateSelect(Cond, V1, SRHS);
498 return ReplaceInstUsesWith(I, T);
499 }
500 }
501 }
502
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000503 return Changed ? &I : 0;
504}
505
506/// SimplifyDivRemOfSelect - Try to fold a divide or remainder of a select
507/// instruction.
508bool InstCombiner::SimplifyDivRemOfSelect(BinaryOperator &I) {
509 SelectInst *SI = cast<SelectInst>(I.getOperand(1));
510
511 // div/rem X, (Cond ? 0 : Y) -> div/rem X, Y
512 int NonNullOperand = -1;
513 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
514 if (ST->isNullValue())
515 NonNullOperand = 2;
516 // div/rem X, (Cond ? Y : 0) -> div/rem X, Y
517 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
518 if (ST->isNullValue())
519 NonNullOperand = 1;
520
521 if (NonNullOperand == -1)
522 return false;
523
524 Value *SelectCond = SI->getOperand(0);
525
526 // Change the div/rem to use 'Y' instead of the select.
527 I.setOperand(1, SI->getOperand(NonNullOperand));
528
529 // Okay, we know we replace the operand of the div/rem with 'Y' with no
530 // problem. However, the select, or the condition of the select may have
531 // multiple uses. Based on our knowledge that the operand must be non-zero,
532 // propagate the known value for the select into other uses of it, and
533 // propagate a known value of the condition into its other users.
534
535 // If the select and condition only have a single use, don't bother with this,
536 // early exit.
537 if (SI->use_empty() && SelectCond->hasOneUse())
538 return true;
539
540 // Scan the current block backward, looking for other uses of SI.
541 BasicBlock::iterator BBI = &I, BBFront = I.getParent()->begin();
542
543 while (BBI != BBFront) {
544 --BBI;
545 // If we found a call to a function, we can't assume it will return, so
546 // information from below it cannot be propagated above it.
547 if (isa<CallInst>(BBI) && !isa<IntrinsicInst>(BBI))
548 break;
549
550 // Replace uses of the select or its condition with the known values.
551 for (Instruction::op_iterator I = BBI->op_begin(), E = BBI->op_end();
552 I != E; ++I) {
553 if (*I == SI) {
554 *I = SI->getOperand(NonNullOperand);
555 Worklist.Add(BBI);
556 } else if (*I == SelectCond) {
557 *I = NonNullOperand == 1 ? ConstantInt::getTrue(BBI->getContext()) :
558 ConstantInt::getFalse(BBI->getContext());
559 Worklist.Add(BBI);
560 }
561 }
562
563 // If we past the instruction, quit looking for it.
564 if (&*BBI == SI)
565 SI = 0;
566 if (&*BBI == SelectCond)
567 SelectCond = 0;
568
569 // If we ran out of things to eliminate, break out of the loop.
570 if (SelectCond == 0 && SI == 0)
571 break;
572
573 }
574 return true;
575}
576
577
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000578/// This function implements the transforms common to both integer division
579/// instructions (udiv and sdiv). It is called by the visitors to those integer
580/// division instructions.
581/// @brief Common integer divide transforms
582Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
583 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
584
Chris Lattner1add46d2011-05-22 18:18:41 +0000585 // The RHS is known non-zero.
586 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
587 I.setOperand(1, V);
588 return &I;
589 }
590
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000591 // Handle cases involving: [su]div X, (select Cond, Y, Z)
592 // This does not apply for fdiv.
593 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
594 return &I;
595
596 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000597 // (X / C1) / C2 -> X / (C1*C2)
598 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
599 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
600 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
601 if (MultiplyOverflows(RHS, LHSRHS,
602 I.getOpcode()==Instruction::SDiv))
603 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000604 return BinaryOperator::Create(I.getOpcode(), LHS->getOperand(0),
605 ConstantExpr::getMul(RHS, LHSRHS));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000606 }
607
608 if (!RHS->isZero()) { // avoid X udiv 0
609 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
610 if (Instruction *R = FoldOpIntoSelect(I, SI))
611 return R;
612 if (isa<PHINode>(Op0))
613 if (Instruction *NV = FoldOpIntoPhi(I))
614 return NV;
615 }
616 }
617
Benjamin Kramer23b02cd2011-04-30 18:16:00 +0000618 // See if we can fold away this div instruction.
619 if (SimplifyDemandedInstructionBits(I))
620 return &I;
621
Duncan Sands593faa52011-01-28 16:51:11 +0000622 // (X - (X rem Y)) / Y -> X / Y; usually originates as ((X / Y) * Y) / Y
623 Value *X = 0, *Z = 0;
624 if (match(Op0, m_Sub(m_Value(X), m_Value(Z)))) { // (X - Z) / Y; Y = Op1
625 bool isSigned = I.getOpcode() == Instruction::SDiv;
626 if ((isSigned && match(Z, m_SRem(m_Specific(X), m_Specific(Op1)))) ||
627 (!isSigned && match(Z, m_URem(m_Specific(X), m_Specific(Op1)))))
628 return BinaryOperator::Create(I.getOpcode(), X, Op1);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000629 }
630
631 return 0;
632}
633
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000634/// dyn_castZExtVal - Checks if V is a zext or constant that can
635/// be truncated to Ty without losing bits.
Chris Lattnerdb125cf2011-07-18 04:54:35 +0000636static Value *dyn_castZExtVal(Value *V, Type *Ty) {
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000637 if (ZExtInst *Z = dyn_cast<ZExtInst>(V)) {
638 if (Z->getSrcTy() == Ty)
639 return Z->getOperand(0);
640 } else if (ConstantInt *C = dyn_cast<ConstantInt>(V)) {
641 if (C->getValue().getActiveBits() <= cast<IntegerType>(Ty)->getBitWidth())
642 return ConstantExpr::getTrunc(C, Ty);
643 }
644 return 0;
645}
646
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000647Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
648 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
649
Duncan Sands593faa52011-01-28 16:51:11 +0000650 if (Value *V = SimplifyUDivInst(Op0, Op1, TD))
651 return ReplaceInstUsesWith(I, V);
652
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000653 // Handle the integer div common cases
654 if (Instruction *Common = commonIDivTransforms(I))
655 return Common;
Pete Coopera29fc802011-11-07 23:04:49 +0000656
657 {
Owen Anderson5b396202010-01-17 06:49:03 +0000658 // X udiv 2^C -> X >> C
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000659 // Check to see if this is an unsigned division with an exact power of 2,
660 // if so, convert to a right shift.
Pete Coopera29fc802011-11-07 23:04:49 +0000661 const APInt *C;
662 if (match(Op1, m_Power2(C))) {
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000663 BinaryOperator *LShr =
Pete Coopera29fc802011-11-07 23:04:49 +0000664 BinaryOperator::CreateLShr(Op0,
665 ConstantInt::get(Op0->getType(),
666 C->logBase2()));
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000667 if (I.isExact()) LShr->setIsExact();
668 return LShr;
669 }
Pete Coopera29fc802011-11-07 23:04:49 +0000670 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000671
Pete Coopera29fc802011-11-07 23:04:49 +0000672 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000673 // X udiv C, where C >= signbit
674 if (C->getValue().isNegative()) {
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000675 Value *IC = Builder->CreateICmpULT(Op0, C);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000676 return SelectInst::Create(IC, Constant::getNullValue(I.getType()),
677 ConstantInt::get(I.getType(), 1));
678 }
679 }
680
Benjamin Kramerc81fe9c2012-08-30 15:07:40 +0000681 // (x lshr C1) udiv C2 --> x udiv (C2 << C1)
Nadav Rotema694e2a2012-08-28 12:23:22 +0000682 if (ConstantInt *C2 = dyn_cast<ConstantInt>(Op1)) {
Benjamin Krameraac7c652012-08-28 13:08:13 +0000683 Value *X;
684 ConstantInt *C1;
685 if (match(Op0, m_LShr(m_Value(X), m_ConstantInt(C1)))) {
Benjamin Kramer37dca632012-08-28 13:59:23 +0000686 APInt NC = C2->getValue().shl(C1->getLimitedValue(C1->getBitWidth()-1));
Benjamin Krameraac7c652012-08-28 13:08:13 +0000687 return BinaryOperator::CreateUDiv(X, Builder->getInt(NC));
Nadav Rotem9753f0b2012-08-28 10:01:43 +0000688 }
689 }
690
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000691 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000692 { const APInt *CI; Value *N;
Evan Cheng2a5422b2012-06-21 22:52:49 +0000693 if (match(Op1, m_Shl(m_Power2(CI), m_Value(N))) ||
694 match(Op1, m_ZExt(m_Shl(m_Power2(CI), m_Value(N))))) {
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000695 if (*CI != 1)
Benjamin Kramere5bd3cf2012-09-21 16:26:41 +0000696 N = Builder->CreateAdd(N,
697 ConstantInt::get(N->getType(), CI->logBase2()));
Evan Cheng2a5422b2012-06-21 22:52:49 +0000698 if (ZExtInst *Z = dyn_cast<ZExtInst>(Op1))
699 N = Builder->CreateZExt(N, Z->getDestTy());
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000700 if (I.isExact())
701 return BinaryOperator::CreateExactLShr(Op0, N);
702 return BinaryOperator::CreateLShr(Op0, N);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000703 }
704 }
705
706 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
707 // where C1&C2 are powers of two.
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000708 { Value *Cond; const APInt *C1, *C2;
709 if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
710 // Construct the "on true" case of the select
711 Value *TSI = Builder->CreateLShr(Op0, C1->logBase2(), Op1->getName()+".t",
712 I.isExact());
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000713
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000714 // Construct the "on false" case of the select
715 Value *FSI = Builder->CreateLShr(Op0, C2->logBase2(), Op1->getName()+".f",
716 I.isExact());
717
718 // construct the select instruction and return it.
719 return SelectInst::Create(Cond, TSI, FSI);
720 }
721 }
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000722
723 // (zext A) udiv (zext B) --> zext (A udiv B)
724 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
725 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
726 return new ZExtInst(Builder->CreateUDiv(ZOp0->getOperand(0), ZOp1, "div",
727 I.isExact()),
728 I.getType());
729
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000730 return 0;
731}
732
733Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
734 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
735
Duncan Sands593faa52011-01-28 16:51:11 +0000736 if (Value *V = SimplifySDivInst(Op0, Op1, TD))
737 return ReplaceInstUsesWith(I, V);
738
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000739 // Handle the integer div common cases
740 if (Instruction *Common = commonIDivTransforms(I))
741 return Common;
742
743 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
744 // sdiv X, -1 == -X
745 if (RHS->isAllOnesValue())
746 return BinaryOperator::CreateNeg(Op0);
747
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000748 // sdiv X, C --> ashr exact X, log2(C)
749 if (I.isExact() && RHS->getValue().isNonNegative() &&
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000750 RHS->getValue().isPowerOf2()) {
751 Value *ShAmt = llvm::ConstantInt::get(RHS->getType(),
752 RHS->getValue().exactLogBase2());
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000753 return BinaryOperator::CreateExactAShr(Op0, ShAmt, I.getName());
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000754 }
755
756 // -X/C --> X/-C provided the negation doesn't overflow.
757 if (SubOperator *Sub = dyn_cast<SubOperator>(Op0))
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000758 if (match(Sub->getOperand(0), m_Zero()) && Sub->hasNoSignedWrap())
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000759 return BinaryOperator::CreateSDiv(Sub->getOperand(1),
760 ConstantExpr::getNeg(RHS));
761 }
762
763 // If the sign bits of both operands are zero (i.e. we can prove they are
764 // unsigned inputs), turn this into a udiv.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000765 if (I.getType()->isIntegerTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000766 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
767 if (MaskedValueIsZero(Op0, Mask)) {
768 if (MaskedValueIsZero(Op1, Mask)) {
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000769 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000770 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
771 }
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000772
773 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000774 // X sdiv (1 << Y) -> X udiv (1 << Y) ( -> X u>> Y)
775 // Safe because the only negative value (1 << Y) can take on is
776 // INT_MIN, and X sdiv INT_MIN == X udiv INT_MIN == 0 if X doesn't have
777 // the sign bit set.
778 return BinaryOperator::CreateUDiv(Op0, Op1, I.getName());
779 }
780 }
781 }
782
783 return 0;
784}
785
Frits van Bommel31726c12011-01-29 17:50:27 +0000786Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
787 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
788
789 if (Value *V = SimplifyFDivInst(Op0, Op1, TD))
790 return ReplaceInstUsesWith(I, V);
791
Benjamin Kramer54673962011-03-30 15:42:35 +0000792 if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
793 const APFloat &Op1F = Op1C->getValueAPF();
794
795 // If the divisor has an exact multiplicative inverse we can turn the fdiv
796 // into a cheaper fmul.
797 APFloat Reciprocal(Op1F.getSemantics());
798 if (Op1F.getExactInverse(&Reciprocal)) {
799 ConstantFP *RFP = ConstantFP::get(Builder->getContext(), Reciprocal);
800 return BinaryOperator::CreateFMul(Op0, RFP);
801 }
802 }
803
Frits van Bommel31726c12011-01-29 17:50:27 +0000804 return 0;
805}
806
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000807/// This function implements the transforms common to both integer remainder
808/// instructions (urem and srem). It is called by the visitors to those integer
809/// remainder instructions.
810/// @brief Common integer remainder transforms
811Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
812 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
813
Chris Lattner1add46d2011-05-22 18:18:41 +0000814 // The RHS is known non-zero.
815 if (Value *V = simplifyValueKnownNonZero(I.getOperand(1), *this)) {
816 I.setOperand(1, V);
817 return &I;
818 }
819
Duncan Sandsf24ed772011-05-02 16:27:02 +0000820 // Handle cases involving: rem X, (select Cond, Y, Z)
821 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
822 return &I;
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000823
Duncan Sands00676a62011-05-02 18:41:29 +0000824 if (isa<ConstantInt>(Op1)) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000825 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
826 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
827 if (Instruction *R = FoldOpIntoSelect(I, SI))
828 return R;
829 } else if (isa<PHINode>(Op0I)) {
830 if (Instruction *NV = FoldOpIntoPhi(I))
831 return NV;
832 }
833
834 // See if we can fold away this rem instruction.
835 if (SimplifyDemandedInstructionBits(I))
836 return &I;
837 }
838 }
839
840 return 0;
841}
842
843Instruction *InstCombiner::visitURem(BinaryOperator &I) {
844 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
845
Duncan Sandsf24ed772011-05-02 16:27:02 +0000846 if (Value *V = SimplifyURemInst(Op0, Op1, TD))
847 return ReplaceInstUsesWith(I, V);
848
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000849 if (Instruction *common = commonIRemTransforms(I))
850 return common;
851
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000852 // X urem C^2 -> X and C-1
853 { const APInt *C;
854 if (match(Op1, m_Power2(C)))
855 return BinaryOperator::CreateAnd(Op0,
856 ConstantInt::get(I.getType(), *C-1));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000857 }
858
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000859 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
860 if (match(Op1, m_Shl(m_Power2(), m_Value()))) {
861 Constant *N1 = Constant::getAllOnesValue(I.getType());
Benjamin Kramera9390a42011-09-27 20:39:19 +0000862 Value *Add = Builder->CreateAdd(Op1, N1);
Chris Lattner7a6aa1a2011-02-10 05:36:31 +0000863 return BinaryOperator::CreateAnd(Op0, Add);
864 }
865
866 // urem X, (select Cond, 2^C1, 2^C2) -->
867 // select Cond, (and X, C1-1), (and X, C2-1)
868 // when C1&C2 are powers of two.
869 { Value *Cond; const APInt *C1, *C2;
870 if (match(Op1, m_Select(m_Value(Cond), m_Power2(C1), m_Power2(C2)))) {
871 Value *TrueAnd = Builder->CreateAnd(Op0, *C1-1, Op1->getName()+".t");
872 Value *FalseAnd = Builder->CreateAnd(Op0, *C2-1, Op1->getName()+".f");
873 return SelectInst::Create(Cond, TrueAnd, FalseAnd);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000874 }
875 }
Benjamin Kramer7d6eb5a2011-04-30 18:16:07 +0000876
877 // (zext A) urem (zext B) --> zext (A urem B)
878 if (ZExtInst *ZOp0 = dyn_cast<ZExtInst>(Op0))
879 if (Value *ZOp1 = dyn_castZExtVal(Op1, ZOp0->getSrcTy()))
880 return new ZExtInst(Builder->CreateURem(ZOp0->getOperand(0), ZOp1),
881 I.getType());
882
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000883 return 0;
884}
885
886Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
887 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
888
Duncan Sandsf24ed772011-05-02 16:27:02 +0000889 if (Value *V = SimplifySRemInst(Op0, Op1, TD))
890 return ReplaceInstUsesWith(I, V);
891
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000892 // Handle the integer rem common cases
893 if (Instruction *Common = commonIRemTransforms(I))
894 return Common;
895
896 if (Value *RHSNeg = dyn_castNegVal(Op1))
897 if (!isa<Constant>(RHSNeg) ||
898 (isa<ConstantInt>(RHSNeg) &&
899 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive())) {
900 // X % -Y -> X % Y
901 Worklist.AddValue(I.getOperand(1));
902 I.setOperand(1, RHSNeg);
903 return &I;
904 }
905
906 // If the sign bits of both operands are zero (i.e. we can prove they are
907 // unsigned inputs), turn this into a urem.
Duncan Sandsb0bc6c32010-02-15 16:12:20 +0000908 if (I.getType()->isIntegerTy()) {
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000909 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
910 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Sylvestre Ledru94c22712012-09-27 10:14:43 +0000911 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000912 return BinaryOperator::CreateURem(Op0, Op1, I.getName());
913 }
914 }
915
916 // If it's a constant vector, flip any negative values positive.
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000917 if (isa<ConstantVector>(Op1) || isa<ConstantDataVector>(Op1)) {
918 Constant *C = cast<Constant>(Op1);
919 unsigned VWidth = C->getType()->getVectorNumElements();
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000920
921 bool hasNegative = false;
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000922 bool hasMissing = false;
923 for (unsigned i = 0; i != VWidth; ++i) {
924 Constant *Elt = C->getAggregateElement(i);
925 if (Elt == 0) {
926 hasMissing = true;
927 break;
928 }
929
930 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elt))
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000931 if (RHS->isNegative())
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000932 hasNegative = true;
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000933 }
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000934
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000935 if (hasNegative && !hasMissing) {
Chris Lattner4ca829e2012-01-25 06:02:56 +0000936 SmallVector<Constant *, 16> Elts(VWidth);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000937 for (unsigned i = 0; i != VWidth; ++i) {
Chris Lattner7302d802012-02-06 21:56:39 +0000938 Elts[i] = C->getAggregateElement(i); // Handle undef, etc.
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000939 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Elts[i])) {
Chris Lattnerc73b24d2011-07-15 06:08:15 +0000940 if (RHS->isNegative())
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000941 Elts[i] = cast<ConstantInt>(ConstantExpr::getNeg(RHS));
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000942 }
943 }
944
945 Constant *NewRHSV = ConstantVector::get(Elts);
Chris Lattnera78fa8c2012-01-27 03:08:05 +0000946 if (NewRHSV != C) { // Don't loop on -MININT
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000947 Worklist.AddValue(I.getOperand(1));
948 I.setOperand(1, NewRHSV);
949 return &I;
950 }
951 }
952 }
953
954 return 0;
955}
956
957Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
Duncan Sandsf24ed772011-05-02 16:27:02 +0000958 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
Chris Lattnerd12c27c2010-01-05 06:09:35 +0000959
Duncan Sandsf24ed772011-05-02 16:27:02 +0000960 if (Value *V = SimplifyFRemInst(Op0, Op1, TD))
961 return ReplaceInstUsesWith(I, V);
962
963 // Handle cases involving: rem X, (select Cond, Y, Z)
964 if (isa<SelectInst>(Op1) && SimplifyDivRemOfSelect(I))
965 return &I;
966
967 return 0;
968}