blob: c8a68274b15ed0b0a338b2e94652128df8c47601 [file] [log] [blame]
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
Duncan Sands4cd2ad12010-11-23 10:50:08 +000011// that do not require creating new instructions. This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
Duncan Sandsee9a2e32010-12-20 14:47:04 +000014// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
Chris Lattner9f3c25a2009-11-09 22:57:59 +000017//
18//===----------------------------------------------------------------------===//
19
Duncan Sandsa3c44a52010-12-22 09:40:51 +000020#define DEBUG_TYPE "instsimplify"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000021#include "llvm/Analysis/InstructionSimplify.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000022#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/Statistic.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000024#include "llvm/Analysis/ConstantFolding.h"
Duncan Sands18450092010-11-16 12:16:38 +000025#include "llvm/Analysis/Dominators.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000026#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +000027#include "llvm/Analysis/MemoryBuiltins.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000028#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/GlobalAlias.h"
30#include "llvm/IR/Operator.h"
Nick Lewycky3a73e342011-03-04 07:00:57 +000031#include "llvm/Support/ConstantRange.h"
Chandler Carruthfc72ae62012-03-12 11:19:31 +000032#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerd06094f2009-11-10 00:55:12 +000033#include "llvm/Support/PatternMatch.h"
Duncan Sands18450092010-11-16 12:16:38 +000034#include "llvm/Support/ValueHandle.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000035using namespace llvm;
Chris Lattnerd06094f2009-11-10 00:55:12 +000036using namespace llvm::PatternMatch;
Chris Lattner9f3c25a2009-11-09 22:57:59 +000037
Chris Lattner81a0dc92011-02-09 17:15:04 +000038enum { RecursionLimit = 3 };
Duncan Sandsa74a58c2010-11-10 18:23:01 +000039
Duncan Sandsa3c44a52010-12-22 09:40:51 +000040STATISTIC(NumExpand, "Number of expansions");
41STATISTIC(NumFactor , "Number of factorizations");
42STATISTIC(NumReassoc, "Number of reassociations");
43
Duncan Sands0aa85eb2012-03-13 11:42:19 +000044struct Query {
Micah Villmow3574eca2012-10-08 16:38:25 +000045 const DataLayout *TD;
Duncan Sands0aa85eb2012-03-13 11:42:19 +000046 const TargetLibraryInfo *TLI;
47 const DominatorTree *DT;
48
Micah Villmow3574eca2012-10-08 16:38:25 +000049 Query(const DataLayout *td, const TargetLibraryInfo *tli,
Bill Wendling91337832012-05-17 20:27:58 +000050 const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {}
Duncan Sands0aa85eb2012-03-13 11:42:19 +000051};
52
53static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
54static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +000055 unsigned);
Duncan Sands0aa85eb2012-03-13 11:42:19 +000056static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +000057 unsigned);
Duncan Sands0aa85eb2012-03-13 11:42:19 +000058static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
59static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
Duncan Sandsbd0fe562012-03-13 14:07:05 +000060static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
Duncan Sands18450092010-11-16 12:16:38 +000061
Duncan Sandsf56138d2011-07-26 15:03:53 +000062/// getFalse - For a boolean type, or a vector of boolean type, return false, or
63/// a vector with every element false, as appropriate for the type.
64static Constant *getFalse(Type *Ty) {
Nick Lewycky66d004e2011-12-01 02:39:36 +000065 assert(Ty->getScalarType()->isIntegerTy(1) &&
Duncan Sandsf56138d2011-07-26 15:03:53 +000066 "Expected i1 type or a vector of i1!");
67 return Constant::getNullValue(Ty);
68}
69
70/// getTrue - For a boolean type, or a vector of boolean type, return true, or
71/// a vector with every element true, as appropriate for the type.
72static Constant *getTrue(Type *Ty) {
Nick Lewycky66d004e2011-12-01 02:39:36 +000073 assert(Ty->getScalarType()->isIntegerTy(1) &&
Duncan Sandsf56138d2011-07-26 15:03:53 +000074 "Expected i1 type or a vector of i1!");
75 return Constant::getAllOnesValue(Ty);
76}
77
Duncan Sands6dc9e2b2011-10-30 19:56:36 +000078/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
79static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
80 Value *RHS) {
81 CmpInst *Cmp = dyn_cast<CmpInst>(V);
82 if (!Cmp)
83 return false;
84 CmpInst::Predicate CPred = Cmp->getPredicate();
85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
86 if (CPred == Pred && CLHS == LHS && CRHS == RHS)
87 return true;
88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
89 CRHS == LHS;
90}
91
Duncan Sands18450092010-11-16 12:16:38 +000092/// ValueDominatesPHI - Does the given value dominate the specified phi node?
93static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
94 Instruction *I = dyn_cast<Instruction>(V);
95 if (!I)
96 // Arguments and constants dominate all instructions.
97 return true;
98
Chandler Carruthff739c12012-03-21 10:58:47 +000099 // If we are processing instructions (and/or basic blocks) that have not been
100 // fully added to a function, the parent nodes may still be null. Simply
101 // return the conservative answer in these cases.
102 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
103 return false;
104
Duncan Sands18450092010-11-16 12:16:38 +0000105 // If we have a DominatorTree then do a precise test.
Eli Friedman5b8f0dd2012-03-13 01:06:07 +0000106 if (DT) {
107 if (!DT->isReachableFromEntry(P->getParent()))
108 return true;
109 if (!DT->isReachableFromEntry(I->getParent()))
110 return false;
111 return DT->dominates(I, P);
112 }
Duncan Sands18450092010-11-16 12:16:38 +0000113
114 // Otherwise, if the instruction is in the entry block, and is not an invoke,
115 // then it obviously dominates all phi nodes.
116 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
117 !isa<InvokeInst>(I))
118 return true;
119
120 return false;
121}
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000122
Duncan Sands3421d902010-12-21 13:32:22 +0000123/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
124/// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
125/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
126/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
127/// Returns the simplified value, or null if no simplification was performed.
128static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000129 unsigned OpcToExpand, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +0000130 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000131 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000132 // Recursion is always used, so bail out at once if we already hit the limit.
133 if (!MaxRecurse--)
134 return 0;
135
136 // Check whether the expression has the form "(A op' B) op C".
137 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
138 if (Op0->getOpcode() == OpcodeToExpand) {
139 // It does! Try turning it into "(A op C) op' (B op C)".
140 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
141 // Do "A op C" and "B op C" both simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000142 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
143 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000144 // They do! Return "L op' R" if it simplifies or is already available.
145 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000146 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
147 && L == B && R == A)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000148 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000149 return LHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000150 }
Duncan Sands3421d902010-12-21 13:32:22 +0000151 // Otherwise return "L op' R" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000152 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000153 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000154 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000155 }
Duncan Sands3421d902010-12-21 13:32:22 +0000156 }
157 }
158
159 // Check whether the expression has the form "A op (B op' C)".
160 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
161 if (Op1->getOpcode() == OpcodeToExpand) {
162 // It does! Try turning it into "(A op B) op' (A op C)".
163 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
164 // Do "A op B" and "A op C" both simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000165 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
166 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000167 // They do! Return "L op' R" if it simplifies or is already available.
168 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000169 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
170 && L == C && R == B)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000171 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000172 return RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000173 }
Duncan Sands3421d902010-12-21 13:32:22 +0000174 // Otherwise return "L op' R" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000175 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000176 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000177 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000178 }
Duncan Sands3421d902010-12-21 13:32:22 +0000179 }
180 }
181
182 return 0;
183}
184
185/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
186/// using the operation OpCodeToExtract. For example, when Opcode is Add and
187/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
188/// Returns the simplified value, or null if no simplification was performed.
189static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000190 unsigned OpcToExtract, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +0000191 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000192 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
Duncan Sands3421d902010-12-21 13:32:22 +0000193 // Recursion is always used, so bail out at once if we already hit the limit.
194 if (!MaxRecurse--)
195 return 0;
196
197 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
198 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
199
200 if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
201 !Op1 || Op1->getOpcode() != OpcodeToExtract)
202 return 0;
203
204 // The expression has the form "(A op' B) op (C op' D)".
Duncan Sands82fdab32010-12-21 14:00:22 +0000205 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
206 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
Duncan Sands3421d902010-12-21 13:32:22 +0000207
208 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
209 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
210 // commutative case, "(A op' B) op (C op' A)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000211 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
212 Value *DD = A == C ? D : C;
Duncan Sands3421d902010-12-21 13:32:22 +0000213 // Form "A op' (B op DD)" if it simplifies completely.
214 // Does "B op DD" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000215 if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000216 // It does! Return "A op' V" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000217 // If V equals B then "A op' V" is just the LHS. If V equals DD then
218 // "A op' V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000219 if (V == B || V == DD) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000220 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000221 return V == B ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000222 }
Duncan Sands3421d902010-12-21 13:32:22 +0000223 // Otherwise return "A op' V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000224 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000225 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000226 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000227 }
Duncan Sands3421d902010-12-21 13:32:22 +0000228 }
229 }
230
231 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
232 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
233 // commutative case, "(A op' B) op (B op' D)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000234 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
235 Value *CC = B == D ? C : D;
Duncan Sands3421d902010-12-21 13:32:22 +0000236 // Form "(A op CC) op' B" if it simplifies completely..
237 // Does "A op CC" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000238 if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000239 // It does! Return "V op' B" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000240 // If V equals A then "V op' B" is just the LHS. If V equals CC then
241 // "V op' B" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000242 if (V == A || V == CC) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000243 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000244 return V == A ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000245 }
Duncan Sands3421d902010-12-21 13:32:22 +0000246 // Otherwise return "V op' B" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000247 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000248 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000249 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000250 }
Duncan Sands3421d902010-12-21 13:32:22 +0000251 }
252 }
253
254 return 0;
255}
256
257/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
258/// operations. Returns the simpler value, or null if none was found.
Benjamin Kramere21083a2010-12-28 13:52:52 +0000259static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000260 const Query &Q, unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000261 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
Duncan Sands566edb02010-12-21 08:49:00 +0000262 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
263
264 // Recursion is always used, so bail out at once if we already hit the limit.
265 if (!MaxRecurse--)
266 return 0;
267
268 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
269 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
270
271 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
272 if (Op0 && Op0->getOpcode() == Opcode) {
273 Value *A = Op0->getOperand(0);
274 Value *B = Op0->getOperand(1);
275 Value *C = RHS;
276
277 // Does "B op C" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000278 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000279 // It does! Return "A op V" if it simplifies or is already available.
280 // If V equals B then "A op V" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000281 if (V == B) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000282 // Otherwise return "A op V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000283 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000284 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000285 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000286 }
Duncan Sands566edb02010-12-21 08:49:00 +0000287 }
288 }
289
290 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
291 if (Op1 && Op1->getOpcode() == Opcode) {
292 Value *A = LHS;
293 Value *B = Op1->getOperand(0);
294 Value *C = Op1->getOperand(1);
295
296 // Does "A op B" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000297 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000298 // It does! Return "V op C" if it simplifies or is already available.
299 // If V equals B then "V op C" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000300 if (V == B) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000301 // Otherwise return "V op C" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000302 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000303 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000304 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000305 }
Duncan Sands566edb02010-12-21 08:49:00 +0000306 }
307 }
308
309 // The remaining transforms require commutativity as well as associativity.
310 if (!Instruction::isCommutative(Opcode))
311 return 0;
312
313 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
314 if (Op0 && Op0->getOpcode() == Opcode) {
315 Value *A = Op0->getOperand(0);
316 Value *B = Op0->getOperand(1);
317 Value *C = RHS;
318
319 // Does "C op A" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000320 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000321 // It does! Return "V op B" if it simplifies or is already available.
322 // If V equals A then "V op B" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000323 if (V == A) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000324 // Otherwise return "V op B" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000325 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000326 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000327 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000328 }
Duncan Sands566edb02010-12-21 08:49:00 +0000329 }
330 }
331
332 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
333 if (Op1 && Op1->getOpcode() == Opcode) {
334 Value *A = LHS;
335 Value *B = Op1->getOperand(0);
336 Value *C = Op1->getOperand(1);
337
338 // Does "C op A" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000339 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000340 // It does! Return "B op V" if it simplifies or is already available.
341 // If V equals C then "B op V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000342 if (V == C) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000343 // Otherwise return "B op V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000344 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000345 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000346 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000347 }
Duncan Sands566edb02010-12-21 08:49:00 +0000348 }
349 }
350
351 return 0;
352}
353
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000354/// ThreadBinOpOverSelect - In the case of a binary operation with a select
355/// instruction as an operand, try to simplify the binop by seeing whether
356/// evaluating it on both branches of the select results in the same value.
357/// Returns the common value if so, otherwise returns null.
358static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000359 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000360 // Recursion is always used, so bail out at once if we already hit the limit.
361 if (!MaxRecurse--)
362 return 0;
363
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000364 SelectInst *SI;
365 if (isa<SelectInst>(LHS)) {
366 SI = cast<SelectInst>(LHS);
367 } else {
368 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
369 SI = cast<SelectInst>(RHS);
370 }
371
372 // Evaluate the BinOp on the true and false branches of the select.
373 Value *TV;
374 Value *FV;
375 if (SI == LHS) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000376 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
377 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000378 } else {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000379 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
380 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000381 }
382
Duncan Sands7cf85e72011-01-01 16:12:09 +0000383 // If they simplified to the same value, then return the common value.
Duncan Sands124708d2011-01-01 20:08:02 +0000384 // If they both failed to simplify then return null.
385 if (TV == FV)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000386 return TV;
387
388 // If one branch simplified to undef, return the other one.
389 if (TV && isa<UndefValue>(TV))
390 return FV;
391 if (FV && isa<UndefValue>(FV))
392 return TV;
393
394 // If applying the operation did not change the true and false select values,
395 // then the result of the binop is the select itself.
Duncan Sands124708d2011-01-01 20:08:02 +0000396 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000397 return SI;
398
399 // If one branch simplified and the other did not, and the simplified
400 // value is equal to the unsimplified one, return the simplified value.
401 // For example, select (cond, X, X & Z) & Z -> X & Z.
402 if ((FV && !TV) || (TV && !FV)) {
403 // Check that the simplified value has the form "X op Y" where "op" is the
404 // same as the original operation.
405 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
406 if (Simplified && Simplified->getOpcode() == Opcode) {
407 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
408 // We already know that "op" is the same as for the simplified value. See
409 // if the operands match too. If so, return the simplified value.
410 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
411 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
412 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
Duncan Sands124708d2011-01-01 20:08:02 +0000413 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
414 Simplified->getOperand(1) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000415 return Simplified;
416 if (Simplified->isCommutative() &&
Duncan Sands124708d2011-01-01 20:08:02 +0000417 Simplified->getOperand(1) == UnsimplifiedLHS &&
418 Simplified->getOperand(0) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000419 return Simplified;
420 }
421 }
422
423 return 0;
424}
425
426/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
427/// try to simplify the comparison by seeing whether both branches of the select
428/// result in the same value. Returns the common value if so, otherwise returns
429/// null.
430static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000431 Value *RHS, const Query &Q,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000432 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000433 // Recursion is always used, so bail out at once if we already hit the limit.
434 if (!MaxRecurse--)
435 return 0;
436
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000437 // Make sure the select is on the LHS.
438 if (!isa<SelectInst>(LHS)) {
439 std::swap(LHS, RHS);
440 Pred = CmpInst::getSwappedPredicate(Pred);
441 }
442 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
443 SelectInst *SI = cast<SelectInst>(LHS);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000444 Value *Cond = SI->getCondition();
445 Value *TV = SI->getTrueValue();
446 Value *FV = SI->getFalseValue();
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000447
Duncan Sands50ca4d32011-02-03 09:37:39 +0000448 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000449 // Does "cmp TV, RHS" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000450 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000451 if (TCmp == Cond) {
452 // It not only simplified, it simplified to the select condition. Replace
453 // it with 'true'.
454 TCmp = getTrue(Cond->getType());
455 } else if (!TCmp) {
456 // It didn't simplify. However if "cmp TV, RHS" is equal to the select
457 // condition then we can replace it with 'true'. Otherwise give up.
458 if (!isSameCompare(Cond, Pred, TV, RHS))
459 return 0;
460 TCmp = getTrue(Cond->getType());
Duncan Sands50ca4d32011-02-03 09:37:39 +0000461 }
462
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000463 // Does "cmp FV, RHS" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000464 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000465 if (FCmp == Cond) {
466 // It not only simplified, it simplified to the select condition. Replace
467 // it with 'false'.
468 FCmp = getFalse(Cond->getType());
469 } else if (!FCmp) {
470 // It didn't simplify. However if "cmp FV, RHS" is equal to the select
471 // condition then we can replace it with 'false'. Otherwise give up.
472 if (!isSameCompare(Cond, Pred, FV, RHS))
473 return 0;
474 FCmp = getFalse(Cond->getType());
475 }
476
477 // If both sides simplified to the same value, then use it as the result of
478 // the original comparison.
479 if (TCmp == FCmp)
480 return TCmp;
Duncan Sandsaa97bb52012-02-10 14:31:24 +0000481
482 // The remaining cases only make sense if the select condition has the same
483 // type as the result of the comparison, so bail out if this is not so.
484 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
485 return 0;
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000486 // If the false value simplified to false, then the result of the compare
487 // is equal to "Cond && TCmp". This also catches the case when the false
488 // value simplified to false and the true value to true, returning "Cond".
489 if (match(FCmp, m_Zero()))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000490 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000491 return V;
492 // If the true value simplified to true, then the result of the compare
493 // is equal to "Cond || FCmp".
494 if (match(TCmp, m_One()))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000495 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000496 return V;
497 // Finally, if the false value simplified to true and the true value to
498 // false, then the result of the compare is equal to "!Cond".
499 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
500 if (Value *V =
501 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000502 Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000503 return V;
504
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000505 return 0;
506}
507
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000508/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
509/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
510/// it on the incoming phi values yields the same result for every value. If so
511/// returns the common value, otherwise returns null.
512static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000513 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000514 // Recursion is always used, so bail out at once if we already hit the limit.
515 if (!MaxRecurse--)
516 return 0;
517
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000518 PHINode *PI;
519 if (isa<PHINode>(LHS)) {
520 PI = cast<PHINode>(LHS);
Duncan Sands18450092010-11-16 12:16:38 +0000521 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000522 if (!ValueDominatesPHI(RHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000523 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000524 } else {
525 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
526 PI = cast<PHINode>(RHS);
Duncan Sands18450092010-11-16 12:16:38 +0000527 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000528 if (!ValueDominatesPHI(LHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000529 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000530 }
531
532 // Evaluate the BinOp on the incoming phi values.
533 Value *CommonValue = 0;
534 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000535 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000536 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000537 if (Incoming == PI) continue;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000538 Value *V = PI == LHS ?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000539 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
540 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000541 // If the operation failed to simplify, or simplified to a different value
542 // to previously, then give up.
543 if (!V || (CommonValue && V != CommonValue))
544 return 0;
545 CommonValue = V;
546 }
547
548 return CommonValue;
549}
550
551/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
552/// try to simplify the comparison by seeing whether comparing with all of the
553/// incoming phi values yields the same result every time. If so returns the
554/// common result, otherwise returns null.
555static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000556 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000557 // Recursion is always used, so bail out at once if we already hit the limit.
558 if (!MaxRecurse--)
559 return 0;
560
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000561 // Make sure the phi is on the LHS.
562 if (!isa<PHINode>(LHS)) {
563 std::swap(LHS, RHS);
564 Pred = CmpInst::getSwappedPredicate(Pred);
565 }
566 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
567 PHINode *PI = cast<PHINode>(LHS);
568
Duncan Sands18450092010-11-16 12:16:38 +0000569 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000570 if (!ValueDominatesPHI(RHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000571 return 0;
572
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000573 // Evaluate the BinOp on the incoming phi values.
574 Value *CommonValue = 0;
575 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000576 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000577 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000578 if (Incoming == PI) continue;
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000579 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000580 // If the operation failed to simplify, or simplified to a different value
581 // to previously, then give up.
582 if (!V || (CommonValue && V != CommonValue))
583 return 0;
584 CommonValue = V;
585 }
586
587 return CommonValue;
588}
589
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000590/// SimplifyAddInst - Given operands for an Add, see if we can
591/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000592static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000593 const Query &Q, unsigned MaxRecurse) {
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000594 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
595 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
596 Constant *Ops[] = { CLHS, CRHS };
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000597 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
598 Q.TD, Q.TLI);
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000599 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000600
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000601 // Canonicalize the constant to the RHS.
602 std::swap(Op0, Op1);
603 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000604
Duncan Sandsfea3b212010-12-15 14:07:39 +0000605 // X + undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000606 if (match(Op1, m_Undef()))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000607 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000608
Duncan Sandsfea3b212010-12-15 14:07:39 +0000609 // X + 0 -> X
610 if (match(Op1, m_Zero()))
611 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000612
Duncan Sandsfea3b212010-12-15 14:07:39 +0000613 // X + (Y - X) -> Y
614 // (Y - X) + X -> Y
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000615 // Eg: X + -X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000616 Value *Y = 0;
617 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
618 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000619 return Y;
620
621 // X + ~X -> -1 since ~X = -X-1
Duncan Sands124708d2011-01-01 20:08:02 +0000622 if (match(Op0, m_Not(m_Specific(Op1))) ||
623 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000624 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands87689cf2010-11-19 09:20:39 +0000625
Duncan Sands82fdab32010-12-21 14:00:22 +0000626 /// i1 add -> xor.
Duncan Sands75d289e2010-12-21 14:48:48 +0000627 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000628 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000629 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000630
Duncan Sands566edb02010-12-21 08:49:00 +0000631 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000632 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
Duncan Sands566edb02010-12-21 08:49:00 +0000633 MaxRecurse))
634 return V;
635
Duncan Sands3421d902010-12-21 13:32:22 +0000636 // Mul distributes over Add. Try some generic simplifications based on this.
637 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000638 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +0000639 return V;
640
Duncan Sands87689cf2010-11-19 09:20:39 +0000641 // Threading Add over selects and phi nodes is pointless, so don't bother.
642 // Threading over the select in "A + select(cond, B, C)" means evaluating
643 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
644 // only if B and C are equal. If B and C are equal then (since we assume
645 // that operands have already been simplified) "select(cond, B, C)" should
646 // have been simplified to the common value of B and C already. Analysing
647 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
648 // for threading over phi nodes.
649
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000650 return 0;
651}
652
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000653Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Micah Villmow3574eca2012-10-08 16:38:25 +0000654 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +0000655 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000656 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
657 RecursionLimit);
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000658}
659
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000660/// \brief Compute the base pointer and cumulative constant offsets for V.
661///
662/// This strips all constant offsets off of V, leaving it the base pointer, and
663/// accumulates the total constant offset applied in the returned constant. It
664/// returns 0 if V is not a pointer, and returns the constant '0' if there are
665/// no constant offsets applied.
Dan Gohman819f9d62013-01-31 02:45:26 +0000666///
667/// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
668/// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
669/// folding.
Benjamin Kramerd9f32c22013-02-01 15:21:10 +0000670static Constant *stripAndComputeConstantOffsets(const DataLayout *TD,
671 Value *&V) {
672 assert(V->getType()->getScalarType()->isPointerTy());
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000673
Dan Gohman3e3de562013-01-31 02:50:36 +0000674 // Without DataLayout, just be conservative for now. Theoretically, more could
675 // be done in this case.
676 if (!TD)
677 return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0);
678
Matt Arsenault7eef3bd2013-08-02 00:10:44 +0000679 unsigned AS = V->getType()->getPointerAddressSpace();
680 unsigned IntPtrWidth = TD->getPointerSizeInBits(AS);
Chandler Carruth90c14fc2012-03-13 00:06:15 +0000681 APInt Offset = APInt::getNullValue(IntPtrWidth);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000682
683 // Even though we don't look through PHI nodes, we could be called on an
684 // instruction in an unreachable block, which may be on a cycle.
685 SmallPtrSet<Value *, 4> Visited;
686 Visited.insert(V);
687 do {
688 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Dan Gohman3e3de562013-01-31 02:50:36 +0000689 if (!GEP->isInBounds() || !GEP->accumulateConstantOffset(*TD, Offset))
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000690 break;
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000691 V = GEP->getPointerOperand();
692 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
Matt Arsenault7eef3bd2013-08-02 00:10:44 +0000693 Value *Op0 = cast<Operator>(V)->getOperand(0);
694 assert(TD->getPointerTypeSizeInBits(V->getType()) ==
695 TD->getPointerTypeSizeInBits(Op0->getType()) &&
696 "Bitcasting between pointers from different size address spaces");
697 V = Op0;
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000698 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
699 if (GA->mayBeOverridden())
700 break;
701 V = GA->getAliasee();
702 } else {
703 break;
704 }
Benjamin Kramerd9f32c22013-02-01 15:21:10 +0000705 assert(V->getType()->getScalarType()->isPointerTy() &&
706 "Unexpected operand type!");
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000707 } while (Visited.insert(V));
708
Matt Arsenault7eef3bd2013-08-02 00:10:44 +0000709 Type *IntPtrTy = TD->getIntPtrType(V->getContext(), AS);
Benjamin Kramerd9f32c22013-02-01 15:21:10 +0000710 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
711 if (V->getType()->isVectorTy())
712 return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
713 OffsetIntPtr);
714 return OffsetIntPtr;
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000715}
716
717/// \brief Compute the constant difference between two pointer values.
718/// If the difference is not a constant, returns zero.
Dan Gohman3e3de562013-01-31 02:50:36 +0000719static Constant *computePointerDifference(const DataLayout *TD,
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000720 Value *LHS, Value *RHS) {
721 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000722 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000723
724 // If LHS and RHS are not related via constant offsets to the same base
725 // value, there is nothing we can do here.
726 if (LHS != RHS)
727 return 0;
728
729 // Otherwise, the difference of LHS - RHS can be computed as:
730 // LHS - RHS
731 // = (LHSOffset + Base) - (RHSOffset + Base)
732 // = LHSOffset - RHSOffset
733 return ConstantExpr::getSub(LHSOffset, RHSOffset);
734}
735
Duncan Sandsfea3b212010-12-15 14:07:39 +0000736/// SimplifySubInst - Given operands for a Sub, see if we can
737/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000738static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000739 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsfea3b212010-12-15 14:07:39 +0000740 if (Constant *CLHS = dyn_cast<Constant>(Op0))
741 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
742 Constant *Ops[] = { CLHS, CRHS };
743 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000744 Ops, Q.TD, Q.TLI);
Duncan Sandsfea3b212010-12-15 14:07:39 +0000745 }
746
747 // X - undef -> undef
748 // undef - X -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000749 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000750 return UndefValue::get(Op0->getType());
751
752 // X - 0 -> X
753 if (match(Op1, m_Zero()))
754 return Op0;
755
756 // X - X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000757 if (Op0 == Op1)
Duncan Sandsfea3b212010-12-15 14:07:39 +0000758 return Constant::getNullValue(Op0->getType());
759
Duncan Sandsfe02c692011-01-18 09:24:58 +0000760 // (X*2) - X -> X
761 // (X<<1) - X -> X
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000762 Value *X = 0;
Duncan Sandsfe02c692011-01-18 09:24:58 +0000763 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
764 match(Op0, m_Shl(m_Specific(Op1), m_One())))
765 return Op1;
766
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000767 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
768 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
769 Value *Y = 0, *Z = Op1;
770 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
771 // See if "V === Y - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000772 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000773 // It does! Now see if "X + V" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000774 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000775 // It does, we successfully reassociated!
776 ++NumReassoc;
777 return W;
778 }
779 // See if "V === X - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000780 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000781 // It does! Now see if "Y + V" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000782 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000783 // It does, we successfully reassociated!
784 ++NumReassoc;
785 return W;
786 }
787 }
Duncan Sands82fdab32010-12-21 14:00:22 +0000788
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000789 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
790 // For example, X - (X + 1) -> -1
791 X = Op0;
792 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
793 // See if "V === X - Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000794 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000795 // It does! Now see if "V - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000796 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000797 // It does, we successfully reassociated!
798 ++NumReassoc;
799 return W;
800 }
801 // See if "V === X - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000802 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000803 // It does! Now see if "V - Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000804 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000805 // It does, we successfully reassociated!
806 ++NumReassoc;
807 return W;
808 }
809 }
810
811 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
812 // For example, X - (X - Y) -> Y.
813 Z = Op0;
Duncan Sandsc087e202011-01-14 15:26:10 +0000814 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
815 // See if "V === Z - X" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000816 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000817 // It does! Now see if "V + Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000818 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
Duncan Sandsc087e202011-01-14 15:26:10 +0000819 // It does, we successfully reassociated!
820 ++NumReassoc;
821 return W;
822 }
823
Duncan Sandsbd0fe562012-03-13 14:07:05 +0000824 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
825 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
826 match(Op1, m_Trunc(m_Value(Y))))
827 if (X->getType() == Y->getType())
828 // See if "V === X - Y" simplifies.
829 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
830 // It does! Now see if "trunc V" simplifies.
831 if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
832 // It does, return the simplified "trunc V".
833 return W;
834
835 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
Dan Gohman3e3de562013-01-31 02:50:36 +0000836 if (match(Op0, m_PtrToInt(m_Value(X))) &&
Duncan Sandsbd0fe562012-03-13 14:07:05 +0000837 match(Op1, m_PtrToInt(m_Value(Y))))
Dan Gohman3e3de562013-01-31 02:50:36 +0000838 if (Constant *Result = computePointerDifference(Q.TD, X, Y))
Duncan Sandsbd0fe562012-03-13 14:07:05 +0000839 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
840
Duncan Sands3421d902010-12-21 13:32:22 +0000841 // Mul distributes over Sub. Try some generic simplifications based on this.
842 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000843 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +0000844 return V;
845
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000846 // i1 sub -> xor.
847 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000848 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000849 return V;
850
Duncan Sandsfea3b212010-12-15 14:07:39 +0000851 // Threading Sub over selects and phi nodes is pointless, so don't bother.
852 // Threading over the select in "A - select(cond, B, C)" means evaluating
853 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
854 // only if B and C are equal. If B and C are equal then (since we assume
855 // that operands have already been simplified) "select(cond, B, C)" should
856 // have been simplified to the common value of B and C already. Analysing
857 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
858 // for threading over phi nodes.
859
860 return 0;
861}
862
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000863Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Micah Villmow3574eca2012-10-08 16:38:25 +0000864 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +0000865 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000866 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
867 RecursionLimit);
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000868}
869
Michael Ilseman09ee2502012-12-12 00:27:46 +0000870/// Given operands for an FAdd, see if we can fold the result. If not, this
871/// returns null.
872static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
873 const Query &Q, unsigned MaxRecurse) {
874 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
875 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
876 Constant *Ops[] = { CLHS, CRHS };
877 return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
878 Ops, Q.TD, Q.TLI);
879 }
880
881 // Canonicalize the constant to the RHS.
882 std::swap(Op0, Op1);
883 }
884
885 // fadd X, -0 ==> X
886 if (match(Op1, m_NegZero()))
887 return Op0;
888
889 // fadd X, 0 ==> X, when we know X is not -0
890 if (match(Op1, m_Zero()) &&
891 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
892 return Op0;
893
894 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
895 // where nnan and ninf have to occur at least once somewhere in this
896 // expression
897 Value *SubOp = 0;
898 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
899 SubOp = Op1;
900 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
901 SubOp = Op0;
902 if (SubOp) {
903 Instruction *FSub = cast<Instruction>(SubOp);
904 if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
905 (FMF.noInfs() || FSub->hasNoInfs()))
906 return Constant::getNullValue(Op0->getType());
907 }
908
909 return 0;
910}
911
912/// Given operands for an FSub, see if we can fold the result. If not, this
913/// returns null.
914static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
915 const Query &Q, unsigned MaxRecurse) {
916 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
917 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
918 Constant *Ops[] = { CLHS, CRHS };
919 return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
920 Ops, Q.TD, Q.TLI);
921 }
922 }
923
924 // fsub X, 0 ==> X
925 if (match(Op1, m_Zero()))
926 return Op0;
927
928 // fsub X, -0 ==> X, when we know X is not -0
929 if (match(Op1, m_NegZero()) &&
930 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
931 return Op0;
932
933 // fsub 0, (fsub -0.0, X) ==> X
934 Value *X;
935 if (match(Op0, m_AnyZero())) {
936 if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
937 return X;
938 if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
939 return X;
940 }
941
942 // fsub nnan ninf x, x ==> 0.0
943 if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1)
944 return Constant::getNullValue(Op0->getType());
945
946 return 0;
947}
948
Michael Ilsemaneb61c922012-11-27 00:46:26 +0000949/// Given the operands for an FMul, see if we can fold the result
950static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
951 FastMathFlags FMF,
952 const Query &Q,
953 unsigned MaxRecurse) {
954 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
955 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
956 Constant *Ops[] = { CLHS, CRHS };
957 return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
958 Ops, Q.TD, Q.TLI);
959 }
Michael Ilseman09ee2502012-12-12 00:27:46 +0000960
961 // Canonicalize the constant to the RHS.
962 std::swap(Op0, Op1);
Michael Ilsemaneb61c922012-11-27 00:46:26 +0000963 }
964
Michael Ilseman09ee2502012-12-12 00:27:46 +0000965 // fmul X, 1.0 ==> X
966 if (match(Op1, m_FPOne()))
967 return Op0;
968
969 // fmul nnan nsz X, 0 ==> 0
970 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
971 return Op1;
Michael Ilsemaneb61c922012-11-27 00:46:26 +0000972
973 return 0;
974}
975
Duncan Sands82fdab32010-12-21 14:00:22 +0000976/// SimplifyMulInst - Given operands for a Mul, see if we can
977/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000978static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
979 unsigned MaxRecurse) {
Duncan Sands82fdab32010-12-21 14:00:22 +0000980 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
981 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
982 Constant *Ops[] = { CLHS, CRHS };
983 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000984 Ops, Q.TD, Q.TLI);
Duncan Sands82fdab32010-12-21 14:00:22 +0000985 }
986
987 // Canonicalize the constant to the RHS.
988 std::swap(Op0, Op1);
989 }
990
991 // X * undef -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000992 if (match(Op1, m_Undef()))
Duncan Sands82fdab32010-12-21 14:00:22 +0000993 return Constant::getNullValue(Op0->getType());
994
995 // X * 0 -> 0
996 if (match(Op1, m_Zero()))
997 return Op1;
998
999 // X * 1 -> X
1000 if (match(Op1, m_One()))
1001 return Op0;
1002
Duncan Sands1895e982011-01-30 18:03:50 +00001003 // (X / Y) * Y -> X if the division is exact.
Benjamin Kramer55c6d572012-01-01 17:55:30 +00001004 Value *X = 0;
1005 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
1006 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y)
1007 return X;
Duncan Sands1895e982011-01-30 18:03:50 +00001008
Nick Lewycky54138802011-01-29 19:55:23 +00001009 // i1 mul -> and.
Duncan Sands75d289e2010-12-21 14:48:48 +00001010 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001011 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sands07f30fb2010-12-21 15:03:43 +00001012 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +00001013
1014 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001015 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +00001016 MaxRecurse))
1017 return V;
1018
1019 // Mul distributes over Add. Try some generic simplifications based on this.
1020 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001021 Q, MaxRecurse))
Duncan Sands82fdab32010-12-21 14:00:22 +00001022 return V;
1023
1024 // If the operation is with the result of a select instruction, check whether
1025 // operating on either branch of the select always yields the same value.
1026 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001027 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +00001028 MaxRecurse))
1029 return V;
1030
1031 // If the operation is with the result of a phi instruction, check whether
1032 // operating on all incoming values of the phi always yields the same value.
1033 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001034 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +00001035 MaxRecurse))
1036 return V;
1037
1038 return 0;
1039}
1040
Michael Ilseman09ee2502012-12-12 00:27:46 +00001041Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1042 const DataLayout *TD, const TargetLibraryInfo *TLI,
1043 const DominatorTree *DT) {
1044 return ::SimplifyFAddInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1045}
1046
1047Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1048 const DataLayout *TD, const TargetLibraryInfo *TLI,
1049 const DominatorTree *DT) {
1050 return ::SimplifyFSubInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1051}
1052
Michael Ilsemaneb61c922012-11-27 00:46:26 +00001053Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
1054 FastMathFlags FMF,
1055 const DataLayout *TD,
1056 const TargetLibraryInfo *TLI,
1057 const DominatorTree *DT) {
1058 return ::SimplifyFMulInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1059}
1060
Micah Villmow3574eca2012-10-08 16:38:25 +00001061Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001062 const TargetLibraryInfo *TLI,
Duncan Sands82fdab32010-12-21 14:00:22 +00001063 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001064 return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands82fdab32010-12-21 14:00:22 +00001065}
1066
Duncan Sands593faa52011-01-28 16:51:11 +00001067/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
1068/// fold the result. If not, this returns null.
Anders Carlsson479b4b92011-02-05 18:33:43 +00001069static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001070 const Query &Q, unsigned MaxRecurse) {
Duncan Sands593faa52011-01-28 16:51:11 +00001071 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1072 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1073 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001074 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sands593faa52011-01-28 16:51:11 +00001075 }
1076 }
1077
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001078 bool isSigned = Opcode == Instruction::SDiv;
1079
Duncan Sands593faa52011-01-28 16:51:11 +00001080 // X / undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001081 if (match(Op1, m_Undef()))
Duncan Sands593faa52011-01-28 16:51:11 +00001082 return Op1;
1083
1084 // undef / X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001085 if (match(Op0, m_Undef()))
Duncan Sands593faa52011-01-28 16:51:11 +00001086 return Constant::getNullValue(Op0->getType());
1087
1088 // 0 / X -> 0, we don't need to preserve faults!
1089 if (match(Op0, m_Zero()))
1090 return Op0;
1091
1092 // X / 1 -> X
1093 if (match(Op1, m_One()))
1094 return Op0;
Duncan Sands593faa52011-01-28 16:51:11 +00001095
1096 if (Op0->getType()->isIntegerTy(1))
1097 // It can't be division by zero, hence it must be division by one.
1098 return Op0;
1099
1100 // X / X -> 1
1101 if (Op0 == Op1)
1102 return ConstantInt::get(Op0->getType(), 1);
1103
1104 // (X * Y) / Y -> X if the multiplication does not overflow.
1105 Value *X = 0, *Y = 0;
1106 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1107 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
Duncan Sands32a43cc2011-10-27 19:16:21 +00001108 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
Duncan Sands4b720712011-02-02 20:52:00 +00001109 // If the Mul knows it does not overflow, then we are good to go.
1110 if ((isSigned && Mul->hasNoSignedWrap()) ||
1111 (!isSigned && Mul->hasNoUnsignedWrap()))
1112 return X;
Duncan Sands593faa52011-01-28 16:51:11 +00001113 // If X has the form X = A / Y then X * Y cannot overflow.
1114 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1115 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1116 return X;
1117 }
1118
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001119 // (X rem Y) / Y -> 0
1120 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1121 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1122 return Constant::getNullValue(Op0->getType());
1123
1124 // If the operation is with the result of a select instruction, check whether
1125 // operating on either branch of the select always yields the same value.
1126 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001127 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001128 return V;
1129
1130 // If the operation is with the result of a phi instruction, check whether
1131 // operating on all incoming values of the phi always yields the same value.
1132 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001133 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001134 return V;
1135
Duncan Sands593faa52011-01-28 16:51:11 +00001136 return 0;
1137}
1138
1139/// SimplifySDivInst - Given operands for an SDiv, see if we can
1140/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001141static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1142 unsigned MaxRecurse) {
1143 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
Duncan Sands593faa52011-01-28 16:51:11 +00001144 return V;
1145
Duncan Sands593faa52011-01-28 16:51:11 +00001146 return 0;
1147}
1148
Micah Villmow3574eca2012-10-08 16:38:25 +00001149Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001150 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001151 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001152 return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands593faa52011-01-28 16:51:11 +00001153}
1154
1155/// SimplifyUDivInst - Given operands for a UDiv, see if we can
1156/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001157static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1158 unsigned MaxRecurse) {
1159 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
Duncan Sands593faa52011-01-28 16:51:11 +00001160 return V;
1161
Duncan Sands593faa52011-01-28 16:51:11 +00001162 return 0;
1163}
1164
Micah Villmow3574eca2012-10-08 16:38:25 +00001165Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001166 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001167 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001168 return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands593faa52011-01-28 16:51:11 +00001169}
1170
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001171static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
1172 unsigned) {
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001173 // undef / X -> undef (the undef could be a snan).
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001174 if (match(Op0, m_Undef()))
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001175 return Op0;
1176
1177 // X / undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001178 if (match(Op1, m_Undef()))
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001179 return Op1;
1180
1181 return 0;
1182}
1183
Micah Villmow3574eca2012-10-08 16:38:25 +00001184Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001185 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001186 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001187 return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001188}
1189
Duncan Sandsf24ed772011-05-02 16:27:02 +00001190/// SimplifyRem - Given operands for an SRem or URem, see if we can
1191/// fold the result. If not, this returns null.
1192static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001193 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsf24ed772011-05-02 16:27:02 +00001194 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1195 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1196 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001197 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001198 }
1199 }
1200
Duncan Sandsf24ed772011-05-02 16:27:02 +00001201 // X % undef -> undef
1202 if (match(Op1, m_Undef()))
1203 return Op1;
1204
1205 // undef % X -> 0
1206 if (match(Op0, m_Undef()))
1207 return Constant::getNullValue(Op0->getType());
1208
1209 // 0 % X -> 0, we don't need to preserve faults!
1210 if (match(Op0, m_Zero()))
1211 return Op0;
1212
1213 // X % 0 -> undef, we don't need to preserve faults!
1214 if (match(Op1, m_Zero()))
1215 return UndefValue::get(Op0->getType());
1216
1217 // X % 1 -> 0
1218 if (match(Op1, m_One()))
1219 return Constant::getNullValue(Op0->getType());
1220
1221 if (Op0->getType()->isIntegerTy(1))
1222 // It can't be remainder by zero, hence it must be remainder by one.
1223 return Constant::getNullValue(Op0->getType());
1224
1225 // X % X -> 0
1226 if (Op0 == Op1)
1227 return Constant::getNullValue(Op0->getType());
1228
1229 // If the operation is with the result of a select instruction, check whether
1230 // operating on either branch of the select always yields the same value.
1231 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001232 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001233 return V;
1234
1235 // If the operation is with the result of a phi instruction, check whether
1236 // operating on all incoming values of the phi always yields the same value.
1237 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001238 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001239 return V;
1240
1241 return 0;
1242}
1243
1244/// SimplifySRemInst - Given operands for an SRem, see if we can
1245/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001246static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1247 unsigned MaxRecurse) {
1248 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001249 return V;
1250
1251 return 0;
1252}
1253
Micah Villmow3574eca2012-10-08 16:38:25 +00001254Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001255 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001256 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001257 return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001258}
1259
1260/// SimplifyURemInst - Given operands for a URem, see if we can
1261/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001262static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +00001263 unsigned MaxRecurse) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001264 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001265 return V;
1266
1267 return 0;
1268}
1269
Micah Villmow3574eca2012-10-08 16:38:25 +00001270Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001271 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001272 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001273 return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001274}
1275
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001276static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +00001277 unsigned) {
Duncan Sandsf24ed772011-05-02 16:27:02 +00001278 // undef % X -> undef (the undef could be a snan).
1279 if (match(Op0, m_Undef()))
1280 return Op0;
1281
1282 // X % undef -> undef
1283 if (match(Op1, m_Undef()))
1284 return Op1;
1285
1286 return 0;
1287}
1288
Micah Villmow3574eca2012-10-08 16:38:25 +00001289Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001290 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001291 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001292 return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001293}
1294
Duncan Sandscf80bc12011-01-14 14:44:12 +00001295/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
Duncan Sandsc43cee32011-01-14 00:37:45 +00001296/// fold the result. If not, this returns null.
Duncan Sandscf80bc12011-01-14 14:44:12 +00001297static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001298 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsc43cee32011-01-14 00:37:45 +00001299 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1300 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1301 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001302 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001303 }
1304 }
1305
Duncan Sandscf80bc12011-01-14 14:44:12 +00001306 // 0 shift by X -> 0
Duncan Sandsc43cee32011-01-14 00:37:45 +00001307 if (match(Op0, m_Zero()))
1308 return Op0;
1309
Duncan Sandscf80bc12011-01-14 14:44:12 +00001310 // X shift by 0 -> X
Duncan Sandsc43cee32011-01-14 00:37:45 +00001311 if (match(Op1, m_Zero()))
1312 return Op0;
1313
Duncan Sandscf80bc12011-01-14 14:44:12 +00001314 // X shift by undef -> undef because it may shift by the bitwidth.
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001315 if (match(Op1, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001316 return Op1;
1317
1318 // Shifting by the bitwidth or more is undefined.
1319 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1320 if (CI->getValue().getLimitedValue() >=
1321 Op0->getType()->getScalarSizeInBits())
1322 return UndefValue::get(Op0->getType());
1323
Duncan Sandscf80bc12011-01-14 14:44:12 +00001324 // If the operation is with the result of a select instruction, check whether
1325 // operating on either branch of the select always yields the same value.
1326 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001327 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001328 return V;
1329
1330 // If the operation is with the result of a phi instruction, check whether
1331 // operating on all incoming values of the phi always yields the same value.
1332 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001333 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001334 return V;
1335
1336 return 0;
1337}
1338
1339/// SimplifyShlInst - Given operands for an Shl, see if we can
1340/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001341static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001342 const Query &Q, unsigned MaxRecurse) {
1343 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001344 return V;
1345
1346 // undef << X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001347 if (match(Op0, m_Undef()))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001348 return Constant::getNullValue(Op0->getType());
1349
Chris Lattner81a0dc92011-02-09 17:15:04 +00001350 // (X >> A) << A -> X
1351 Value *X;
Benjamin Kramer55c6d572012-01-01 17:55:30 +00001352 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
Chris Lattner81a0dc92011-02-09 17:15:04 +00001353 return X;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001354 return 0;
1355}
1356
Chris Lattner81a0dc92011-02-09 17:15:04 +00001357Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Micah Villmow3574eca2012-10-08 16:38:25 +00001358 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +00001359 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001360 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
1361 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001362}
1363
1364/// SimplifyLShrInst - Given operands for an LShr, see if we can
1365/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001366static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001367 const Query &Q, unsigned MaxRecurse) {
1368 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001369 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001370
David Majnemer8c5c6f02013-07-09 22:01:22 +00001371 // X >> X -> 0
1372 if (Op0 == Op1)
1373 return Constant::getNullValue(Op0->getType());
1374
Duncan Sandsc43cee32011-01-14 00:37:45 +00001375 // undef >>l X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001376 if (match(Op0, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001377 return Constant::getNullValue(Op0->getType());
1378
Chris Lattner81a0dc92011-02-09 17:15:04 +00001379 // (X << A) >> A -> X
1380 Value *X;
1381 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1382 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1383 return X;
Duncan Sands52fb8462011-02-13 17:15:40 +00001384
Duncan Sandsc43cee32011-01-14 00:37:45 +00001385 return 0;
1386}
1387
Chris Lattner81a0dc92011-02-09 17:15:04 +00001388Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
Micah Villmow3574eca2012-10-08 16:38:25 +00001389 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001390 const TargetLibraryInfo *TLI,
1391 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001392 return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1393 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001394}
1395
1396/// SimplifyAShrInst - Given operands for an AShr, see if we can
1397/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001398static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001399 const Query &Q, unsigned MaxRecurse) {
1400 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001401 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001402
David Majnemer8c5c6f02013-07-09 22:01:22 +00001403 // X >> X -> 0
1404 if (Op0 == Op1)
1405 return Constant::getNullValue(Op0->getType());
1406
Duncan Sandsc43cee32011-01-14 00:37:45 +00001407 // all ones >>a X -> all ones
1408 if (match(Op0, m_AllOnes()))
1409 return Op0;
1410
1411 // undef >>a X -> all ones
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001412 if (match(Op0, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001413 return Constant::getAllOnesValue(Op0->getType());
1414
Chris Lattner81a0dc92011-02-09 17:15:04 +00001415 // (X << A) >> A -> X
1416 Value *X;
1417 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1418 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1419 return X;
Duncan Sands52fb8462011-02-13 17:15:40 +00001420
Duncan Sandsc43cee32011-01-14 00:37:45 +00001421 return 0;
1422}
1423
Chris Lattner81a0dc92011-02-09 17:15:04 +00001424Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
Micah Villmow3574eca2012-10-08 16:38:25 +00001425 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001426 const TargetLibraryInfo *TLI,
1427 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001428 return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1429 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001430}
1431
Chris Lattnerd06094f2009-11-10 00:55:12 +00001432/// SimplifyAndInst - Given operands for an And, see if we can
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001433/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001434static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +00001435 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001436 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1437 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1438 Constant *Ops[] = { CLHS, CRHS };
1439 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001440 Ops, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001441 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001442
Chris Lattnerd06094f2009-11-10 00:55:12 +00001443 // Canonicalize the constant to the RHS.
1444 std::swap(Op0, Op1);
1445 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001446
Chris Lattnerd06094f2009-11-10 00:55:12 +00001447 // X & undef -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001448 if (match(Op1, m_Undef()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001449 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001450
Chris Lattnerd06094f2009-11-10 00:55:12 +00001451 // X & X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001452 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001453 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001454
Duncan Sands2b749872010-11-17 18:52:15 +00001455 // X & 0 = 0
1456 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001457 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001458
Duncan Sands2b749872010-11-17 18:52:15 +00001459 // X & -1 = X
1460 if (match(Op1, m_AllOnes()))
1461 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001462
Chris Lattnerd06094f2009-11-10 00:55:12 +00001463 // A & ~A = ~A & A = 0
Chris Lattner81a0dc92011-02-09 17:15:04 +00001464 if (match(Op0, m_Not(m_Specific(Op1))) ||
1465 match(Op1, m_Not(m_Specific(Op0))))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001466 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001467
Chris Lattnerd06094f2009-11-10 00:55:12 +00001468 // (A | ?) & A = A
Chris Lattner81a0dc92011-02-09 17:15:04 +00001469 Value *A = 0, *B = 0;
Chris Lattnerd06094f2009-11-10 00:55:12 +00001470 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001471 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001472 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001473
Chris Lattnerd06094f2009-11-10 00:55:12 +00001474 // A & (A | ?) = A
1475 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001476 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001477 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001478
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001479 // A & (-A) = A if A is a power of two or zero.
1480 if (match(Op0, m_Neg(m_Specific(Op1))) ||
1481 match(Op1, m_Neg(m_Specific(Op0)))) {
Rafael Espindoladbaa2372012-12-13 03:37:24 +00001482 if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true))
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001483 return Op0;
Rafael Espindoladbaa2372012-12-13 03:37:24 +00001484 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true))
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001485 return Op1;
1486 }
1487
Duncan Sands566edb02010-12-21 08:49:00 +00001488 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001489 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1490 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001491 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001492
Duncan Sands3421d902010-12-21 13:32:22 +00001493 // And distributes over Or. Try some generic simplifications based on this.
1494 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001495 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001496 return V;
1497
1498 // And distributes over Xor. Try some generic simplifications based on this.
1499 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001500 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001501 return V;
1502
1503 // Or distributes over And. Try some generic simplifications based on this.
1504 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001505 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001506 return V;
1507
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001508 // If the operation is with the result of a select instruction, check whether
1509 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001510 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001511 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1512 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001513 return V;
1514
1515 // If the operation is with the result of a phi instruction, check whether
1516 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001517 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001518 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
Duncan Sands0312a932010-12-21 09:09:15 +00001519 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001520 return V;
1521
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001522 return 0;
1523}
1524
Micah Villmow3574eca2012-10-08 16:38:25 +00001525Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001526 const TargetLibraryInfo *TLI,
Duncan Sands18450092010-11-16 12:16:38 +00001527 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001528 return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001529}
1530
Chris Lattnerd06094f2009-11-10 00:55:12 +00001531/// SimplifyOrInst - Given operands for an Or, see if we can
1532/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001533static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1534 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001535 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1536 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1537 Constant *Ops[] = { CLHS, CRHS };
1538 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001539 Ops, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001540 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001541
Chris Lattnerd06094f2009-11-10 00:55:12 +00001542 // Canonicalize the constant to the RHS.
1543 std::swap(Op0, Op1);
1544 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001545
Chris Lattnerd06094f2009-11-10 00:55:12 +00001546 // X | undef -> -1
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001547 if (match(Op1, m_Undef()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001548 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001549
Chris Lattnerd06094f2009-11-10 00:55:12 +00001550 // X | X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001551 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001552 return Op0;
1553
Duncan Sands2b749872010-11-17 18:52:15 +00001554 // X | 0 = X
1555 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001556 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001557
Duncan Sands2b749872010-11-17 18:52:15 +00001558 // X | -1 = -1
1559 if (match(Op1, m_AllOnes()))
1560 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001561
Chris Lattnerd06094f2009-11-10 00:55:12 +00001562 // A | ~A = ~A | A = -1
Chris Lattner81a0dc92011-02-09 17:15:04 +00001563 if (match(Op0, m_Not(m_Specific(Op1))) ||
1564 match(Op1, m_Not(m_Specific(Op0))))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001565 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001566
Chris Lattnerd06094f2009-11-10 00:55:12 +00001567 // (A & ?) | A = A
Chris Lattner81a0dc92011-02-09 17:15:04 +00001568 Value *A = 0, *B = 0;
Chris Lattnerd06094f2009-11-10 00:55:12 +00001569 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001570 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001571 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001572
Chris Lattnerd06094f2009-11-10 00:55:12 +00001573 // A | (A & ?) = A
1574 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001575 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001576 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001577
Benjamin Kramer38f7f662011-02-20 15:20:01 +00001578 // ~(A & ?) | A = -1
1579 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1580 (A == Op1 || B == Op1))
1581 return Constant::getAllOnesValue(Op1->getType());
1582
1583 // A | ~(A & ?) = -1
1584 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1585 (A == Op0 || B == Op0))
1586 return Constant::getAllOnesValue(Op0->getType());
1587
Duncan Sands566edb02010-12-21 08:49:00 +00001588 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001589 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1590 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001591 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001592
Duncan Sands3421d902010-12-21 13:32:22 +00001593 // Or distributes over And. Try some generic simplifications based on this.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001594 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1595 MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001596 return V;
1597
1598 // And distributes over Or. Try some generic simplifications based on this.
1599 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001600 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001601 return V;
1602
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001603 // If the operation is with the result of a select instruction, check whether
1604 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001605 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001606 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
Duncan Sands0312a932010-12-21 09:09:15 +00001607 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001608 return V;
1609
1610 // If the operation is with the result of a phi instruction, check whether
1611 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001612 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001613 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001614 return V;
1615
Chris Lattnerd06094f2009-11-10 00:55:12 +00001616 return 0;
1617}
1618
Micah Villmow3574eca2012-10-08 16:38:25 +00001619Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001620 const TargetLibraryInfo *TLI,
Duncan Sands18450092010-11-16 12:16:38 +00001621 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001622 return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001623}
Chris Lattnerd06094f2009-11-10 00:55:12 +00001624
Duncan Sands2b749872010-11-17 18:52:15 +00001625/// SimplifyXorInst - Given operands for a Xor, see if we can
1626/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001627static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1628 unsigned MaxRecurse) {
Duncan Sands2b749872010-11-17 18:52:15 +00001629 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1630 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1631 Constant *Ops[] = { CLHS, CRHS };
1632 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001633 Ops, Q.TD, Q.TLI);
Duncan Sands2b749872010-11-17 18:52:15 +00001634 }
1635
1636 // Canonicalize the constant to the RHS.
1637 std::swap(Op0, Op1);
1638 }
1639
1640 // A ^ undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001641 if (match(Op1, m_Undef()))
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00001642 return Op1;
Duncan Sands2b749872010-11-17 18:52:15 +00001643
1644 // A ^ 0 = A
1645 if (match(Op1, m_Zero()))
1646 return Op0;
1647
Eli Friedmanf23d4ad2011-08-17 19:31:49 +00001648 // A ^ A = 0
1649 if (Op0 == Op1)
1650 return Constant::getNullValue(Op0->getType());
1651
Duncan Sands2b749872010-11-17 18:52:15 +00001652 // A ^ ~A = ~A ^ A = -1
Chris Lattner81a0dc92011-02-09 17:15:04 +00001653 if (match(Op0, m_Not(m_Specific(Op1))) ||
1654 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sands2b749872010-11-17 18:52:15 +00001655 return Constant::getAllOnesValue(Op0->getType());
1656
Duncan Sands566edb02010-12-21 08:49:00 +00001657 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001658 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1659 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001660 return V;
Duncan Sands2b749872010-11-17 18:52:15 +00001661
Duncan Sands3421d902010-12-21 13:32:22 +00001662 // And distributes over Xor. Try some generic simplifications based on this.
1663 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001664 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001665 return V;
1666
Duncan Sands87689cf2010-11-19 09:20:39 +00001667 // Threading Xor over selects and phi nodes is pointless, so don't bother.
1668 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1669 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1670 // only if B and C are equal. If B and C are equal then (since we assume
1671 // that operands have already been simplified) "select(cond, B, C)" should
1672 // have been simplified to the common value of B and C already. Analysing
1673 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
1674 // for threading over phi nodes.
Duncan Sands2b749872010-11-17 18:52:15 +00001675
1676 return 0;
1677}
1678
Micah Villmow3574eca2012-10-08 16:38:25 +00001679Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001680 const TargetLibraryInfo *TLI,
Duncan Sands2b749872010-11-17 18:52:15 +00001681 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001682 return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands2b749872010-11-17 18:52:15 +00001683}
1684
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001685static Type *GetCompareTy(Value *Op) {
Chris Lattner210c5d42009-11-09 23:55:12 +00001686 return CmpInst::makeCmpResultType(Op->getType());
1687}
1688
Duncan Sandse864b5b2011-05-07 16:56:49 +00001689/// ExtractEquivalentCondition - Rummage around inside V looking for something
1690/// equivalent to the comparison "LHS Pred RHS". Return such a value if found,
1691/// otherwise return null. Helper function for analyzing max/min idioms.
1692static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1693 Value *LHS, Value *RHS) {
1694 SelectInst *SI = dyn_cast<SelectInst>(V);
1695 if (!SI)
1696 return 0;
1697 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1698 if (!Cmp)
1699 return 0;
1700 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1701 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1702 return Cmp;
1703 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1704 LHS == CmpRHS && RHS == CmpLHS)
1705 return Cmp;
1706 return 0;
1707}
1708
Dan Gohman901261d2013-02-01 00:49:06 +00001709// A significant optimization not implemented here is assuming that alloca
1710// addresses are not equal to incoming argument values. They don't *alias*,
1711// as we say, but that doesn't mean they aren't equal, so we take a
1712// conservative approach.
1713//
1714// This is inspired in part by C++11 5.10p1:
1715// "Two pointers of the same type compare equal if and only if they are both
1716// null, both point to the same function, or both represent the same
1717// address."
1718//
1719// This is pretty permissive.
1720//
1721// It's also partly due to C11 6.5.9p6:
1722// "Two pointers compare equal if and only if both are null pointers, both are
1723// pointers to the same object (including a pointer to an object and a
1724// subobject at its beginning) or function, both are pointers to one past the
1725// last element of the same array object, or one is a pointer to one past the
1726// end of one array object and the other is a pointer to the start of a
NAKAMURA Takumi92c37422013-04-08 23:05:21 +00001727// different array object that happens to immediately follow the first array
Dan Gohman901261d2013-02-01 00:49:06 +00001728// object in the address space.)
1729//
1730// C11's version is more restrictive, however there's no reason why an argument
1731// couldn't be a one-past-the-end value for a stack object in the caller and be
1732// equal to the beginning of a stack object in the callee.
1733//
1734// If the C and C++ standards are ever made sufficiently restrictive in this
1735// area, it may be possible to update LLVM's semantics accordingly and reinstate
1736// this optimization.
Dan Gohman3e3de562013-01-31 02:50:36 +00001737static Constant *computePointerICmp(const DataLayout *TD,
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001738 const TargetLibraryInfo *TLI,
Chandler Carruth58725a62012-03-25 21:28:14 +00001739 CmpInst::Predicate Pred,
1740 Value *LHS, Value *RHS) {
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001741 // First, skip past any trivial no-ops.
1742 LHS = LHS->stripPointerCasts();
1743 RHS = RHS->stripPointerCasts();
1744
1745 // A non-null pointer is not equal to a null pointer.
1746 if (llvm::isKnownNonNull(LHS) && isa<ConstantPointerNull>(RHS) &&
1747 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
1748 return ConstantInt::get(GetCompareTy(LHS),
1749 !CmpInst::isTrueWhenEqual(Pred));
1750
Chandler Carruth58725a62012-03-25 21:28:14 +00001751 // We can only fold certain predicates on pointer comparisons.
1752 switch (Pred) {
1753 default:
1754 return 0;
1755
1756 // Equality comaprisons are easy to fold.
1757 case CmpInst::ICMP_EQ:
1758 case CmpInst::ICMP_NE:
1759 break;
1760
1761 // We can only handle unsigned relational comparisons because 'inbounds' on
1762 // a GEP only protects against unsigned wrapping.
1763 case CmpInst::ICMP_UGT:
1764 case CmpInst::ICMP_UGE:
1765 case CmpInst::ICMP_ULT:
1766 case CmpInst::ICMP_ULE:
1767 // However, we have to switch them to their signed variants to handle
1768 // negative indices from the base pointer.
1769 Pred = ICmpInst::getSignedPredicate(Pred);
1770 break;
1771 }
1772
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001773 // Strip off any constant offsets so that we can reason about them.
1774 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
1775 // here and compare base addresses like AliasAnalysis does, however there are
1776 // numerous hazards. AliasAnalysis and its utilities rely on special rules
1777 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
1778 // doesn't need to guarantee pointer inequality when it says NoAlias.
Benjamin Kramerd9f32c22013-02-01 15:21:10 +00001779 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
1780 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
Chandler Carruth58725a62012-03-25 21:28:14 +00001781
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001782 // If LHS and RHS are related via constant offsets to the same base
1783 // value, we can replace it with an icmp which just compares the offsets.
1784 if (LHS == RHS)
1785 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
Chandler Carruth58725a62012-03-25 21:28:14 +00001786
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001787 // Various optimizations for (in)equality comparisons.
1788 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1789 // Different non-empty allocations that exist at the same time have
1790 // different addresses (if the program can tell). Global variables always
1791 // exist, so they always exist during the lifetime of each other and all
1792 // allocas. Two different allocas usually have different addresses...
1793 //
1794 // However, if there's an @llvm.stackrestore dynamically in between two
1795 // allocas, they may have the same address. It's tempting to reduce the
1796 // scope of the problem by only looking at *static* allocas here. That would
1797 // cover the majority of allocas while significantly reducing the likelihood
1798 // of having an @llvm.stackrestore pop up in the middle. However, it's not
1799 // actually impossible for an @llvm.stackrestore to pop up in the middle of
1800 // an entry block. Also, if we have a block that's not attached to a
1801 // function, we can't tell if it's "static" under the current definition.
1802 // Theoretically, this problem could be fixed by creating a new kind of
1803 // instruction kind specifically for static allocas. Such a new instruction
1804 // could be required to be at the top of the entry block, thus preventing it
1805 // from being subject to a @llvm.stackrestore. Instcombine could even
1806 // convert regular allocas into these special allocas. It'd be nifty.
1807 // However, until then, this problem remains open.
1808 //
1809 // So, we'll assume that two non-empty allocas have different addresses
1810 // for now.
1811 //
1812 // With all that, if the offsets are within the bounds of their allocations
1813 // (and not one-past-the-end! so we can't use inbounds!), and their
1814 // allocations aren't the same, the pointers are not equal.
1815 //
1816 // Note that it's not necessary to check for LHS being a global variable
1817 // address, due to canonicalization and constant folding.
1818 if (isa<AllocaInst>(LHS) &&
1819 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
Benjamin Kramerd9f32c22013-02-01 15:21:10 +00001820 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
1821 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001822 uint64_t LHSSize, RHSSize;
Benjamin Kramerd9f32c22013-02-01 15:21:10 +00001823 if (LHSOffsetCI && RHSOffsetCI &&
1824 getObjectSize(LHS, LHSSize, TD, TLI) &&
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001825 getObjectSize(RHS, RHSSize, TD, TLI)) {
Benjamin Kramerd9f32c22013-02-01 15:21:10 +00001826 const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
1827 const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001828 if (!LHSOffsetValue.isNegative() &&
1829 !RHSOffsetValue.isNegative() &&
1830 LHSOffsetValue.ult(LHSSize) &&
1831 RHSOffsetValue.ult(RHSSize)) {
1832 return ConstantInt::get(GetCompareTy(LHS),
1833 !CmpInst::isTrueWhenEqual(Pred));
1834 }
1835 }
1836
1837 // Repeat the above check but this time without depending on DataLayout
1838 // or being able to compute a precise size.
1839 if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
1840 !cast<PointerType>(RHS->getType())->isEmptyTy() &&
1841 LHSOffset->isNullValue() &&
1842 RHSOffset->isNullValue())
1843 return ConstantInt::get(GetCompareTy(LHS),
1844 !CmpInst::isTrueWhenEqual(Pred));
1845 }
1846 }
1847
1848 // Otherwise, fail.
1849 return 0;
Chandler Carruth58725a62012-03-25 21:28:14 +00001850}
Chris Lattner009e2652012-02-24 19:01:58 +00001851
Chris Lattner9dbb4292009-11-09 23:28:39 +00001852/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1853/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001854static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001855 const Query &Q, unsigned MaxRecurse) {
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001856 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
Chris Lattner9dbb4292009-11-09 23:28:39 +00001857 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
Duncan Sands12a86f52010-11-14 11:23:23 +00001858
Chris Lattnerd06094f2009-11-10 00:55:12 +00001859 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner8f73dea2009-11-09 23:06:58 +00001860 if (Constant *CRHS = dyn_cast<Constant>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001861 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001862
1863 // If we have a constant, make sure it is on the RHS.
1864 std::swap(LHS, RHS);
1865 Pred = CmpInst::getSwappedPredicate(Pred);
1866 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001867
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001868 Type *ITy = GetCompareTy(LHS); // The return type.
1869 Type *OpTy = LHS->getType(); // The operand type.
Duncan Sands12a86f52010-11-14 11:23:23 +00001870
Chris Lattner210c5d42009-11-09 23:55:12 +00001871 // icmp X, X -> true/false
Chris Lattnerc8e14b32010-03-03 19:46:03 +00001872 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
1873 // because X could be 0.
Duncan Sands124708d2011-01-01 20:08:02 +00001874 if (LHS == RHS || isa<UndefValue>(RHS))
Chris Lattner210c5d42009-11-09 23:55:12 +00001875 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
Duncan Sands12a86f52010-11-14 11:23:23 +00001876
Duncan Sands6dc91252011-01-13 08:56:29 +00001877 // Special case logic when the operands have i1 type.
Nick Lewycky66d004e2011-12-01 02:39:36 +00001878 if (OpTy->getScalarType()->isIntegerTy(1)) {
Duncan Sands6dc91252011-01-13 08:56:29 +00001879 switch (Pred) {
1880 default: break;
1881 case ICmpInst::ICMP_EQ:
1882 // X == 1 -> X
1883 if (match(RHS, m_One()))
1884 return LHS;
1885 break;
1886 case ICmpInst::ICMP_NE:
1887 // X != 0 -> X
1888 if (match(RHS, m_Zero()))
1889 return LHS;
1890 break;
1891 case ICmpInst::ICMP_UGT:
1892 // X >u 0 -> X
1893 if (match(RHS, m_Zero()))
1894 return LHS;
1895 break;
1896 case ICmpInst::ICMP_UGE:
1897 // X >=u 1 -> X
1898 if (match(RHS, m_One()))
1899 return LHS;
1900 break;
1901 case ICmpInst::ICMP_SLT:
1902 // X <s 0 -> X
1903 if (match(RHS, m_Zero()))
1904 return LHS;
1905 break;
1906 case ICmpInst::ICMP_SLE:
1907 // X <=s -1 -> X
1908 if (match(RHS, m_One()))
1909 return LHS;
1910 break;
1911 }
1912 }
1913
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001914 // If we are comparing with zero then try hard since this is a common case.
1915 if (match(RHS, m_Zero())) {
1916 bool LHSKnownNonNegative, LHSKnownNegative;
1917 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00001918 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001919 case ICmpInst::ICMP_ULT:
Duncan Sandsf56138d2011-07-26 15:03:53 +00001920 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001921 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00001922 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001923 case ICmpInst::ICMP_EQ:
1924 case ICmpInst::ICMP_ULE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001925 if (isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001926 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001927 break;
1928 case ICmpInst::ICMP_NE:
1929 case ICmpInst::ICMP_UGT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001930 if (isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001931 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001932 break;
1933 case ICmpInst::ICMP_SLT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001934 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001935 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001936 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001937 if (LHSKnownNonNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001938 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001939 break;
1940 case ICmpInst::ICMP_SLE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001941 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001942 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001943 return getTrue(ITy);
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001944 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001945 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001946 break;
1947 case ICmpInst::ICMP_SGE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001948 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001949 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001950 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001951 if (LHSKnownNonNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001952 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001953 break;
1954 case ICmpInst::ICMP_SGT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001955 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001956 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001957 return getFalse(ITy);
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001958 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001959 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001960 break;
1961 }
1962 }
1963
1964 // See if we are doing a comparison with a constant integer.
Duncan Sands6dc91252011-01-13 08:56:29 +00001965 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
Nick Lewycky3a73e342011-03-04 07:00:57 +00001966 // Rule out tautological comparisons (eg., ult 0 or uge 0).
1967 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1968 if (RHS_CR.isEmptySet())
1969 return ConstantInt::getFalse(CI->getContext());
1970 if (RHS_CR.isFullSet())
1971 return ConstantInt::getTrue(CI->getContext());
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00001972
Nick Lewycky3a73e342011-03-04 07:00:57 +00001973 // Many binary operators with constant RHS have easy to compute constant
1974 // range. Use them to check whether the comparison is a tautology.
1975 uint32_t Width = CI->getBitWidth();
1976 APInt Lower = APInt(Width, 0);
1977 APInt Upper = APInt(Width, 0);
1978 ConstantInt *CI2;
1979 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1980 // 'urem x, CI2' produces [0, CI2).
1981 Upper = CI2->getValue();
1982 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1983 // 'srem x, CI2' produces (-|CI2|, |CI2|).
1984 Upper = CI2->getValue().abs();
1985 Lower = (-Upper) + 1;
Duncan Sandsc65c7472011-10-28 18:17:44 +00001986 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1987 // 'udiv CI2, x' produces [0, CI2].
Eli Friedman7781ae52011-11-08 21:08:02 +00001988 Upper = CI2->getValue() + 1;
Nick Lewycky3a73e342011-03-04 07:00:57 +00001989 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1990 // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1991 APInt NegOne = APInt::getAllOnesValue(Width);
1992 if (!CI2->isZero())
1993 Upper = NegOne.udiv(CI2->getValue()) + 1;
1994 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
1995 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
1996 APInt IntMin = APInt::getSignedMinValue(Width);
1997 APInt IntMax = APInt::getSignedMaxValue(Width);
1998 APInt Val = CI2->getValue().abs();
1999 if (!Val.isMinValue()) {
2000 Lower = IntMin.sdiv(Val);
2001 Upper = IntMax.sdiv(Val) + 1;
2002 }
2003 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
2004 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
2005 APInt NegOne = APInt::getAllOnesValue(Width);
2006 if (CI2->getValue().ult(Width))
2007 Upper = NegOne.lshr(CI2->getValue()) + 1;
2008 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
2009 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
2010 APInt IntMin = APInt::getSignedMinValue(Width);
2011 APInt IntMax = APInt::getSignedMaxValue(Width);
2012 if (CI2->getValue().ult(Width)) {
2013 Lower = IntMin.ashr(CI2->getValue());
2014 Upper = IntMax.ashr(CI2->getValue()) + 1;
2015 }
2016 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
2017 // 'or x, CI2' produces [CI2, UINT_MAX].
2018 Lower = CI2->getValue();
2019 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
2020 // 'and x, CI2' produces [0, CI2].
2021 Upper = CI2->getValue() + 1;
2022 }
2023 if (Lower != Upper) {
2024 ConstantRange LHS_CR = ConstantRange(Lower, Upper);
2025 if (RHS_CR.contains(LHS_CR))
2026 return ConstantInt::getTrue(RHS->getContext());
2027 if (RHS_CR.inverse().contains(LHS_CR))
2028 return ConstantInt::getFalse(RHS->getContext());
2029 }
Duncan Sands6dc91252011-01-13 08:56:29 +00002030 }
2031
Duncan Sands9d32f602011-01-20 13:21:55 +00002032 // Compare of cast, for example (zext X) != 0 -> X != 0
2033 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
2034 Instruction *LI = cast<CastInst>(LHS);
2035 Value *SrcOp = LI->getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002036 Type *SrcTy = SrcOp->getType();
2037 Type *DstTy = LI->getType();
Duncan Sands9d32f602011-01-20 13:21:55 +00002038
2039 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
2040 // if the integer type is the same size as the pointer type.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002041 if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
Matt Arsenault7eef3bd2013-08-02 00:10:44 +00002042 Q.TD->getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
Duncan Sands9d32f602011-01-20 13:21:55 +00002043 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2044 // Transfer the cast to the constant.
2045 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
2046 ConstantExpr::getIntToPtr(RHSC, SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002047 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002048 return V;
2049 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
2050 if (RI->getOperand(0)->getType() == SrcTy)
2051 // Compare without the cast.
2052 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002053 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002054 return V;
2055 }
2056 }
2057
2058 if (isa<ZExtInst>(LHS)) {
2059 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
2060 // same type.
2061 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
2062 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2063 // Compare X and Y. Note that signed predicates become unsigned.
2064 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002065 SrcOp, RI->getOperand(0), Q,
Duncan Sands9d32f602011-01-20 13:21:55 +00002066 MaxRecurse-1))
2067 return V;
2068 }
2069 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
2070 // too. If not, then try to deduce the result of the comparison.
2071 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2072 // Compute the constant that would happen if we truncated to SrcTy then
2073 // reextended to DstTy.
2074 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2075 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
2076
2077 // If the re-extended constant didn't change then this is effectively
2078 // also a case of comparing two zero-extended values.
2079 if (RExt == CI && MaxRecurse)
2080 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002081 SrcOp, Trunc, Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002082 return V;
2083
2084 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
2085 // there. Use this to work out the result of the comparison.
2086 if (RExt != CI) {
2087 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00002088 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sands9d32f602011-01-20 13:21:55 +00002089 // LHS <u RHS.
2090 case ICmpInst::ICMP_EQ:
2091 case ICmpInst::ICMP_UGT:
2092 case ICmpInst::ICMP_UGE:
2093 return ConstantInt::getFalse(CI->getContext());
2094
2095 case ICmpInst::ICMP_NE:
2096 case ICmpInst::ICMP_ULT:
2097 case ICmpInst::ICMP_ULE:
2098 return ConstantInt::getTrue(CI->getContext());
2099
2100 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
2101 // is non-negative then LHS <s RHS.
2102 case ICmpInst::ICMP_SGT:
2103 case ICmpInst::ICMP_SGE:
2104 return CI->getValue().isNegative() ?
2105 ConstantInt::getTrue(CI->getContext()) :
2106 ConstantInt::getFalse(CI->getContext());
2107
2108 case ICmpInst::ICMP_SLT:
2109 case ICmpInst::ICMP_SLE:
2110 return CI->getValue().isNegative() ?
2111 ConstantInt::getFalse(CI->getContext()) :
2112 ConstantInt::getTrue(CI->getContext());
2113 }
2114 }
2115 }
2116 }
2117
2118 if (isa<SExtInst>(LHS)) {
2119 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
2120 // same type.
2121 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
2122 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2123 // Compare X and Y. Note that the predicate does not change.
2124 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002125 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002126 return V;
2127 }
2128 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
2129 // too. If not, then try to deduce the result of the comparison.
2130 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2131 // Compute the constant that would happen if we truncated to SrcTy then
2132 // reextended to DstTy.
2133 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2134 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
2135
2136 // If the re-extended constant didn't change then this is effectively
2137 // also a case of comparing two sign-extended values.
2138 if (RExt == CI && MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002139 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002140 return V;
2141
2142 // Otherwise the upper bits of LHS are all equal, while RHS has varying
2143 // bits there. Use this to work out the result of the comparison.
2144 if (RExt != CI) {
2145 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00002146 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sands9d32f602011-01-20 13:21:55 +00002147 case ICmpInst::ICMP_EQ:
2148 return ConstantInt::getFalse(CI->getContext());
2149 case ICmpInst::ICMP_NE:
2150 return ConstantInt::getTrue(CI->getContext());
2151
2152 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
2153 // LHS >s RHS.
2154 case ICmpInst::ICMP_SGT:
2155 case ICmpInst::ICMP_SGE:
2156 return CI->getValue().isNegative() ?
2157 ConstantInt::getTrue(CI->getContext()) :
2158 ConstantInt::getFalse(CI->getContext());
2159 case ICmpInst::ICMP_SLT:
2160 case ICmpInst::ICMP_SLE:
2161 return CI->getValue().isNegative() ?
2162 ConstantInt::getFalse(CI->getContext()) :
2163 ConstantInt::getTrue(CI->getContext());
2164
2165 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
2166 // LHS >u RHS.
2167 case ICmpInst::ICMP_UGT:
2168 case ICmpInst::ICMP_UGE:
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002169 // Comparison is true iff the LHS <s 0.
Duncan Sands9d32f602011-01-20 13:21:55 +00002170 if (MaxRecurse)
2171 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2172 Constant::getNullValue(SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002173 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002174 return V;
2175 break;
2176 case ICmpInst::ICMP_ULT:
2177 case ICmpInst::ICMP_ULE:
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002178 // Comparison is true iff the LHS >=s 0.
Duncan Sands9d32f602011-01-20 13:21:55 +00002179 if (MaxRecurse)
2180 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2181 Constant::getNullValue(SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002182 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002183 return V;
2184 break;
2185 }
2186 }
2187 }
2188 }
2189 }
2190
Duncan Sands52fb8462011-02-13 17:15:40 +00002191 // Special logic for binary operators.
2192 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2193 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2194 if (MaxRecurse && (LBO || RBO)) {
Duncan Sands52fb8462011-02-13 17:15:40 +00002195 // Analyze the case when either LHS or RHS is an add instruction.
2196 Value *A = 0, *B = 0, *C = 0, *D = 0;
2197 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2198 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2199 if (LBO && LBO->getOpcode() == Instruction::Add) {
2200 A = LBO->getOperand(0); B = LBO->getOperand(1);
2201 NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2202 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2203 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2204 }
2205 if (RBO && RBO->getOpcode() == Instruction::Add) {
2206 C = RBO->getOperand(0); D = RBO->getOperand(1);
2207 NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2208 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2209 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2210 }
2211
2212 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2213 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2214 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2215 Constant::getNullValue(RHS->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002216 Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002217 return V;
2218
2219 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2220 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2221 if (Value *V = SimplifyICmpInst(Pred,
2222 Constant::getNullValue(LHS->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002223 C == LHS ? D : C, Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002224 return V;
2225
2226 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2227 if (A && C && (A == C || A == D || B == C || B == D) &&
2228 NoLHSWrapProblem && NoRHSWrapProblem) {
2229 // Determine Y and Z in the form icmp (X+Y), (X+Z).
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002230 Value *Y, *Z;
2231 if (A == C) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002232 // C + B == C + D -> B == D
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002233 Y = B;
2234 Z = D;
2235 } else if (A == D) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002236 // D + B == C + D -> B == C
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002237 Y = B;
2238 Z = C;
2239 } else if (B == C) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002240 // A + C == C + D -> A == D
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002241 Y = A;
2242 Z = D;
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002243 } else {
2244 assert(B == D);
2245 // A + D == C + D -> A == C
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002246 Y = A;
2247 Z = C;
2248 }
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002249 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002250 return V;
2251 }
2252 }
2253
Nick Lewycky8a232702013-07-12 23:42:57 +00002254 // icmp pred (urem X, Y), Y
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002255 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
Nick Lewycky78679272011-03-04 10:06:52 +00002256 bool KnownNonNegative, KnownNegative;
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002257 switch (Pred) {
2258 default:
2259 break;
Nick Lewycky78679272011-03-04 10:06:52 +00002260 case ICmpInst::ICMP_SGT:
2261 case ICmpInst::ICMP_SGE:
Nick Lewycky8a232702013-07-12 23:42:57 +00002262 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky78679272011-03-04 10:06:52 +00002263 if (!KnownNonNegative)
2264 break;
2265 // fall-through
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002266 case ICmpInst::ICMP_EQ:
2267 case ICmpInst::ICMP_UGT:
2268 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002269 return getFalse(ITy);
Nick Lewycky78679272011-03-04 10:06:52 +00002270 case ICmpInst::ICMP_SLT:
2271 case ICmpInst::ICMP_SLE:
Nick Lewycky8a232702013-07-12 23:42:57 +00002272 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky78679272011-03-04 10:06:52 +00002273 if (!KnownNonNegative)
2274 break;
2275 // fall-through
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002276 case ICmpInst::ICMP_NE:
2277 case ICmpInst::ICMP_ULT:
2278 case ICmpInst::ICMP_ULE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002279 return getTrue(ITy);
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002280 }
2281 }
Nick Lewycky8a232702013-07-12 23:42:57 +00002282
2283 // icmp pred X, (urem Y, X)
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002284 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2285 bool KnownNonNegative, KnownNegative;
2286 switch (Pred) {
2287 default:
2288 break;
2289 case ICmpInst::ICMP_SGT:
2290 case ICmpInst::ICMP_SGE:
Nick Lewycky8a232702013-07-12 23:42:57 +00002291 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002292 if (!KnownNonNegative)
2293 break;
2294 // fall-through
Nick Lewyckya0e2f382011-03-09 08:20:06 +00002295 case ICmpInst::ICMP_NE:
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002296 case ICmpInst::ICMP_UGT:
2297 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002298 return getTrue(ITy);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002299 case ICmpInst::ICMP_SLT:
2300 case ICmpInst::ICMP_SLE:
Nick Lewycky8a232702013-07-12 23:42:57 +00002301 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002302 if (!KnownNonNegative)
2303 break;
2304 // fall-through
Nick Lewyckya0e2f382011-03-09 08:20:06 +00002305 case ICmpInst::ICMP_EQ:
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002306 case ICmpInst::ICMP_ULT:
2307 case ICmpInst::ICMP_ULE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002308 return getFalse(ITy);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002309 }
2310 }
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002311
Duncan Sandsc65c7472011-10-28 18:17:44 +00002312 // x udiv y <=u x.
2313 if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2314 // icmp pred (X /u Y), X
2315 if (Pred == ICmpInst::ICMP_UGT)
2316 return getFalse(ITy);
2317 if (Pred == ICmpInst::ICMP_ULE)
2318 return getTrue(ITy);
2319 }
2320
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002321 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2322 LBO->getOperand(1) == RBO->getOperand(1)) {
2323 switch (LBO->getOpcode()) {
2324 default: break;
2325 case Instruction::UDiv:
2326 case Instruction::LShr:
2327 if (ICmpInst::isSigned(Pred))
2328 break;
2329 // fall-through
2330 case Instruction::SDiv:
2331 case Instruction::AShr:
Eli Friedmanb6e7cd62011-05-05 21:59:18 +00002332 if (!LBO->isExact() || !RBO->isExact())
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002333 break;
2334 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002335 RBO->getOperand(0), Q, MaxRecurse-1))
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002336 return V;
2337 break;
2338 case Instruction::Shl: {
Duncan Sandsc9d904e2011-08-04 10:02:21 +00002339 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002340 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2341 if (!NUW && !NSW)
2342 break;
2343 if (!NSW && ICmpInst::isSigned(Pred))
2344 break;
2345 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002346 RBO->getOperand(0), Q, MaxRecurse-1))
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002347 return V;
2348 break;
2349 }
2350 }
2351 }
2352
Duncan Sandsad206812011-05-03 19:53:10 +00002353 // Simplify comparisons involving max/min.
2354 Value *A, *B;
2355 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002356 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
Duncan Sandsad206812011-05-03 19:53:10 +00002357
Duncan Sands8140ad32011-05-04 16:05:05 +00002358 // Signed variants on "max(a,b)>=a -> true".
Duncan Sandsad206812011-05-03 19:53:10 +00002359 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2360 if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002361 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002362 // We analyze this as smax(A, B) pred A.
2363 P = Pred;
2364 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2365 (A == LHS || B == LHS)) {
2366 if (A != LHS) std::swap(A, B); // A pred smax(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002367 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002368 // We analyze this as smax(A, B) swapped-pred A.
2369 P = CmpInst::getSwappedPredicate(Pred);
2370 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2371 (A == RHS || B == RHS)) {
2372 if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002373 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
Duncan Sandsad206812011-05-03 19:53:10 +00002374 // We analyze this as smax(-A, -B) swapped-pred -A.
2375 // Note that we do not need to actually form -A or -B thanks to EqP.
2376 P = CmpInst::getSwappedPredicate(Pred);
2377 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2378 (A == LHS || B == LHS)) {
2379 if (A != LHS) std::swap(A, B); // A pred smin(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002380 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
Duncan Sandsad206812011-05-03 19:53:10 +00002381 // We analyze this as smax(-A, -B) pred -A.
2382 // Note that we do not need to actually form -A or -B thanks to EqP.
2383 P = Pred;
2384 }
2385 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2386 // Cases correspond to "max(A, B) p A".
2387 switch (P) {
2388 default:
2389 break;
2390 case CmpInst::ICMP_EQ:
2391 case CmpInst::ICMP_SLE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002392 // Equivalent to "A EqP B". This may be the same as the condition tested
2393 // in the max/min; if so, we can just return that.
2394 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2395 return V;
2396 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2397 return V;
2398 // Otherwise, see if "A EqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002399 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002400 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002401 return V;
2402 break;
2403 case CmpInst::ICMP_NE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002404 case CmpInst::ICMP_SGT: {
2405 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2406 // Equivalent to "A InvEqP B". This may be the same as the condition
2407 // tested in the max/min; if so, we can just return that.
2408 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2409 return V;
2410 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2411 return V;
2412 // Otherwise, see if "A InvEqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002413 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002414 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002415 return V;
2416 break;
Duncan Sandse864b5b2011-05-07 16:56:49 +00002417 }
Duncan Sandsad206812011-05-03 19:53:10 +00002418 case CmpInst::ICMP_SGE:
2419 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002420 return getTrue(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002421 case CmpInst::ICMP_SLT:
2422 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002423 return getFalse(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002424 }
2425 }
2426
Duncan Sands8140ad32011-05-04 16:05:05 +00002427 // Unsigned variants on "max(a,b)>=a -> true".
Duncan Sandsad206812011-05-03 19:53:10 +00002428 P = CmpInst::BAD_ICMP_PREDICATE;
2429 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2430 if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002431 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002432 // We analyze this as umax(A, B) pred A.
2433 P = Pred;
2434 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2435 (A == LHS || B == LHS)) {
2436 if (A != LHS) std::swap(A, B); // A pred umax(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002437 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002438 // We analyze this as umax(A, B) swapped-pred A.
2439 P = CmpInst::getSwappedPredicate(Pred);
2440 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2441 (A == RHS || B == RHS)) {
2442 if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002443 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
Duncan Sandsad206812011-05-03 19:53:10 +00002444 // We analyze this as umax(-A, -B) swapped-pred -A.
2445 // Note that we do not need to actually form -A or -B thanks to EqP.
2446 P = CmpInst::getSwappedPredicate(Pred);
2447 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2448 (A == LHS || B == LHS)) {
2449 if (A != LHS) std::swap(A, B); // A pred umin(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002450 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
Duncan Sandsad206812011-05-03 19:53:10 +00002451 // We analyze this as umax(-A, -B) pred -A.
2452 // Note that we do not need to actually form -A or -B thanks to EqP.
2453 P = Pred;
2454 }
2455 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2456 // Cases correspond to "max(A, B) p A".
2457 switch (P) {
2458 default:
2459 break;
2460 case CmpInst::ICMP_EQ:
2461 case CmpInst::ICMP_ULE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002462 // Equivalent to "A EqP B". This may be the same as the condition tested
2463 // in the max/min; if so, we can just return that.
2464 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2465 return V;
2466 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2467 return V;
2468 // Otherwise, see if "A EqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002469 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002470 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002471 return V;
2472 break;
2473 case CmpInst::ICMP_NE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002474 case CmpInst::ICMP_UGT: {
2475 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2476 // Equivalent to "A InvEqP B". This may be the same as the condition
2477 // tested in the max/min; if so, we can just return that.
2478 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2479 return V;
2480 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2481 return V;
2482 // Otherwise, see if "A InvEqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002483 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002484 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002485 return V;
2486 break;
Duncan Sandse864b5b2011-05-07 16:56:49 +00002487 }
Duncan Sandsad206812011-05-03 19:53:10 +00002488 case CmpInst::ICMP_UGE:
2489 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002490 return getTrue(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002491 case CmpInst::ICMP_ULT:
2492 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002493 return getFalse(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002494 }
2495 }
2496
Duncan Sands8140ad32011-05-04 16:05:05 +00002497 // Variants on "max(x,y) >= min(x,z)".
2498 Value *C, *D;
2499 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2500 match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2501 (A == C || A == D || B == C || B == D)) {
2502 // max(x, ?) pred min(x, ?).
2503 if (Pred == CmpInst::ICMP_SGE)
2504 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002505 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002506 if (Pred == CmpInst::ICMP_SLT)
2507 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002508 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002509 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2510 match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2511 (A == C || A == D || B == C || B == D)) {
2512 // min(x, ?) pred max(x, ?).
2513 if (Pred == CmpInst::ICMP_SLE)
2514 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002515 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002516 if (Pred == CmpInst::ICMP_SGT)
2517 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002518 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002519 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2520 match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2521 (A == C || A == D || B == C || B == D)) {
2522 // max(x, ?) pred min(x, ?).
2523 if (Pred == CmpInst::ICMP_UGE)
2524 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002525 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002526 if (Pred == CmpInst::ICMP_ULT)
2527 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002528 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002529 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2530 match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2531 (A == C || A == D || B == C || B == D)) {
2532 // min(x, ?) pred max(x, ?).
2533 if (Pred == CmpInst::ICMP_ULE)
2534 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002535 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002536 if (Pred == CmpInst::ICMP_UGT)
2537 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002538 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002539 }
2540
Chandler Carruth58725a62012-03-25 21:28:14 +00002541 // Simplify comparisons of related pointers using a powerful, recursive
2542 // GEP-walk when we have target data available..
Dan Gohman3e3de562013-01-31 02:50:36 +00002543 if (LHS->getType()->isPointerTy())
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00002544 if (Constant *C = computePointerICmp(Q.TD, Q.TLI, Pred, LHS, RHS))
Chandler Carruth58725a62012-03-25 21:28:14 +00002545 return C;
2546
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00002547 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
2548 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
2549 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
2550 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
2551 (ICmpInst::isEquality(Pred) ||
2552 (GLHS->isInBounds() && GRHS->isInBounds() &&
2553 Pred == ICmpInst::getSignedPredicate(Pred)))) {
2554 // The bases are equal and the indices are constant. Build a constant
2555 // expression GEP with the same indices and a null base pointer to see
2556 // what constant folding can make out of it.
2557 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
2558 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
2559 Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
2560
2561 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
2562 Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
2563 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
2564 }
2565 }
2566 }
2567
Duncan Sands1ac7c992010-11-07 16:12:23 +00002568 // If the comparison is with the result of a select instruction, check whether
2569 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002570 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002571 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002572 return V;
2573
2574 // If the comparison is with the result of a phi instruction, check whether
2575 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00002576 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002577 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00002578 return V;
Duncan Sands1ac7c992010-11-07 16:12:23 +00002579
Chris Lattner9f3c25a2009-11-09 22:57:59 +00002580 return 0;
2581}
2582
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002583Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002584 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00002585 const TargetLibraryInfo *TLI,
2586 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002587 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2588 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002589}
2590
Chris Lattner9dbb4292009-11-09 23:28:39 +00002591/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2592/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002593static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002594 const Query &Q, unsigned MaxRecurse) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00002595 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2596 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2597
Chris Lattnerd06094f2009-11-10 00:55:12 +00002598 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00002599 if (Constant *CRHS = dyn_cast<Constant>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002600 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
Duncan Sands12a86f52010-11-14 11:23:23 +00002601
Chris Lattnerd06094f2009-11-10 00:55:12 +00002602 // If we have a constant, make sure it is on the RHS.
2603 std::swap(LHS, RHS);
2604 Pred = CmpInst::getSwappedPredicate(Pred);
2605 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002606
Chris Lattner210c5d42009-11-09 23:55:12 +00002607 // Fold trivial predicates.
2608 if (Pred == FCmpInst::FCMP_FALSE)
2609 return ConstantInt::get(GetCompareTy(LHS), 0);
2610 if (Pred == FCmpInst::FCMP_TRUE)
2611 return ConstantInt::get(GetCompareTy(LHS), 1);
2612
Chris Lattner210c5d42009-11-09 23:55:12 +00002613 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
2614 return UndefValue::get(GetCompareTy(LHS));
2615
2616 // fcmp x,x -> true/false. Not all compares are foldable.
Duncan Sands124708d2011-01-01 20:08:02 +00002617 if (LHS == RHS) {
Chris Lattner210c5d42009-11-09 23:55:12 +00002618 if (CmpInst::isTrueWhenEqual(Pred))
2619 return ConstantInt::get(GetCompareTy(LHS), 1);
2620 if (CmpInst::isFalseWhenEqual(Pred))
2621 return ConstantInt::get(GetCompareTy(LHS), 0);
2622 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002623
Chris Lattner210c5d42009-11-09 23:55:12 +00002624 // Handle fcmp with constant RHS
2625 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2626 // If the constant is a nan, see if we can fold the comparison based on it.
2627 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2628 if (CFP->getValueAPF().isNaN()) {
2629 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
2630 return ConstantInt::getFalse(CFP->getContext());
2631 assert(FCmpInst::isUnordered(Pred) &&
2632 "Comparison must be either ordered or unordered!");
2633 // True if unordered.
2634 return ConstantInt::getTrue(CFP->getContext());
2635 }
Dan Gohman6b617a72010-02-22 04:06:03 +00002636 // Check whether the constant is an infinity.
2637 if (CFP->getValueAPF().isInfinity()) {
2638 if (CFP->getValueAPF().isNegative()) {
2639 switch (Pred) {
2640 case FCmpInst::FCMP_OLT:
2641 // No value is ordered and less than negative infinity.
2642 return ConstantInt::getFalse(CFP->getContext());
2643 case FCmpInst::FCMP_UGE:
2644 // All values are unordered with or at least negative infinity.
2645 return ConstantInt::getTrue(CFP->getContext());
2646 default:
2647 break;
2648 }
2649 } else {
2650 switch (Pred) {
2651 case FCmpInst::FCMP_OGT:
2652 // No value is ordered and greater than infinity.
2653 return ConstantInt::getFalse(CFP->getContext());
2654 case FCmpInst::FCMP_ULE:
2655 // All values are unordered with and at most infinity.
2656 return ConstantInt::getTrue(CFP->getContext());
2657 default:
2658 break;
2659 }
2660 }
2661 }
Chris Lattner210c5d42009-11-09 23:55:12 +00002662 }
2663 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002664
Duncan Sands92826de2010-11-07 16:46:25 +00002665 // If the comparison is with the result of a select instruction, check whether
2666 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002667 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002668 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002669 return V;
2670
2671 // If the comparison is with the result of a phi instruction, check whether
2672 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00002673 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002674 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00002675 return V;
Duncan Sands92826de2010-11-07 16:46:25 +00002676
Chris Lattner9dbb4292009-11-09 23:28:39 +00002677 return 0;
2678}
2679
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002680Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002681 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00002682 const TargetLibraryInfo *TLI,
2683 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002684 return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2685 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002686}
2687
Chris Lattner04754262010-04-20 05:32:14 +00002688/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2689/// the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002690static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
2691 Value *FalseVal, const Query &Q,
2692 unsigned MaxRecurse) {
Chris Lattner04754262010-04-20 05:32:14 +00002693 // select true, X, Y -> X
2694 // select false, X, Y -> Y
2695 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2696 return CB->getZExtValue() ? TrueVal : FalseVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002697
Chris Lattner04754262010-04-20 05:32:14 +00002698 // select C, X, X -> X
Duncan Sands124708d2011-01-01 20:08:02 +00002699 if (TrueVal == FalseVal)
Chris Lattner04754262010-04-20 05:32:14 +00002700 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002701
Chris Lattner04754262010-04-20 05:32:14 +00002702 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
2703 if (isa<Constant>(TrueVal))
2704 return TrueVal;
2705 return FalseVal;
2706 }
Dan Gohman68c0dbc2011-07-01 01:03:43 +00002707 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
2708 return FalseVal;
2709 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
2710 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002711
Chris Lattner04754262010-04-20 05:32:14 +00002712 return 0;
2713}
2714
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002715Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
Micah Villmow3574eca2012-10-08 16:38:25 +00002716 const DataLayout *TD,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002717 const TargetLibraryInfo *TLI,
2718 const DominatorTree *DT) {
2719 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
2720 RecursionLimit);
2721}
2722
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002723/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2724/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002725static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
Duncan Sands85bbff62010-11-22 13:42:49 +00002726 // The type of the GEP pointer operand.
Nadav Rotem16087692011-12-05 06:29:09 +00002727 PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
2728 // The GEP pointer operand is not a pointer, it's a vector of pointers.
2729 if (!PtrTy)
2730 return 0;
Duncan Sands85bbff62010-11-22 13:42:49 +00002731
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002732 // getelementptr P -> P.
Jay Foadb9b54eb2011-07-19 15:07:52 +00002733 if (Ops.size() == 1)
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002734 return Ops[0];
2735
Duncan Sands85bbff62010-11-22 13:42:49 +00002736 if (isa<UndefValue>(Ops[0])) {
2737 // Compute the (pointer) type returned by the GEP instruction.
Jay Foada9203102011-07-25 09:48:08 +00002738 Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002739 Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
Duncan Sands85bbff62010-11-22 13:42:49 +00002740 return UndefValue::get(GEPTy);
2741 }
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002742
Jay Foadb9b54eb2011-07-19 15:07:52 +00002743 if (Ops.size() == 2) {
Duncan Sandse60d79f2010-11-21 13:53:09 +00002744 // getelementptr P, 0 -> P.
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002745 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2746 if (C->isZero())
2747 return Ops[0];
Duncan Sandse60d79f2010-11-21 13:53:09 +00002748 // getelementptr P, N -> P if P points to a type of zero size.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002749 if (Q.TD) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002750 Type *Ty = PtrTy->getElementType();
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002751 if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
Duncan Sandse60d79f2010-11-21 13:53:09 +00002752 return Ops[0];
2753 }
2754 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002755
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002756 // Check to see if this is constant foldable.
Jay Foadb9b54eb2011-07-19 15:07:52 +00002757 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002758 if (!isa<Constant>(Ops[i]))
2759 return 0;
Duncan Sands12a86f52010-11-14 11:23:23 +00002760
Jay Foaddab3d292011-07-21 14:31:17 +00002761 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002762}
2763
Micah Villmow3574eca2012-10-08 16:38:25 +00002764Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *TD,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002765 const TargetLibraryInfo *TLI,
2766 const DominatorTree *DT) {
2767 return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
2768}
2769
Duncan Sandsdabc2802011-09-05 06:52:48 +00002770/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2771/// can fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002772static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
2773 ArrayRef<unsigned> Idxs, const Query &Q,
2774 unsigned) {
Duncan Sandsdabc2802011-09-05 06:52:48 +00002775 if (Constant *CAgg = dyn_cast<Constant>(Agg))
2776 if (Constant *CVal = dyn_cast<Constant>(Val))
2777 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2778
2779 // insertvalue x, undef, n -> x
2780 if (match(Val, m_Undef()))
2781 return Agg;
2782
2783 // insertvalue x, (extractvalue y, n), n
2784 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
Benjamin Kramerae707bd2011-09-05 18:16:19 +00002785 if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2786 EV->getIndices() == Idxs) {
Duncan Sandsdabc2802011-09-05 06:52:48 +00002787 // insertvalue undef, (extractvalue y, n), n -> y
2788 if (match(Agg, m_Undef()))
2789 return EV->getAggregateOperand();
2790
2791 // insertvalue y, (extractvalue y, n), n -> y
2792 if (Agg == EV->getAggregateOperand())
2793 return Agg;
2794 }
2795
2796 return 0;
2797}
2798
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002799Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2800 ArrayRef<unsigned> Idxs,
Micah Villmow3574eca2012-10-08 16:38:25 +00002801 const DataLayout *TD,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002802 const TargetLibraryInfo *TLI,
2803 const DominatorTree *DT) {
2804 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
2805 RecursionLimit);
2806}
2807
Duncan Sandsff103412010-11-17 04:30:22 +00002808/// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002809static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
Duncan Sandsff103412010-11-17 04:30:22 +00002810 // If all of the PHI's incoming values are the same then replace the PHI node
2811 // with the common value.
2812 Value *CommonValue = 0;
2813 bool HasUndefInput = false;
2814 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2815 Value *Incoming = PN->getIncomingValue(i);
2816 // If the incoming value is the phi node itself, it can safely be skipped.
2817 if (Incoming == PN) continue;
2818 if (isa<UndefValue>(Incoming)) {
2819 // Remember that we saw an undef value, but otherwise ignore them.
2820 HasUndefInput = true;
2821 continue;
2822 }
2823 if (CommonValue && Incoming != CommonValue)
2824 return 0; // Not the same, bail out.
2825 CommonValue = Incoming;
2826 }
2827
2828 // If CommonValue is null then all of the incoming values were either undef or
2829 // equal to the phi node itself.
2830 if (!CommonValue)
2831 return UndefValue::get(PN->getType());
2832
2833 // If we have a PHI node like phi(X, undef, X), where X is defined by some
2834 // instruction, we cannot return X as the result of the PHI node unless it
2835 // dominates the PHI block.
2836 if (HasUndefInput)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002837 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0;
Duncan Sandsff103412010-11-17 04:30:22 +00002838
2839 return CommonValue;
2840}
2841
Duncan Sandsbd0fe562012-03-13 14:07:05 +00002842static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
2843 if (Constant *C = dyn_cast<Constant>(Op))
2844 return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
2845
2846 return 0;
2847}
2848
Micah Villmow3574eca2012-10-08 16:38:25 +00002849Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *TD,
Duncan Sandsbd0fe562012-03-13 14:07:05 +00002850 const TargetLibraryInfo *TLI,
2851 const DominatorTree *DT) {
2852 return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
2853}
2854
Chris Lattnerd06094f2009-11-10 00:55:12 +00002855//=== Helper functions for higher up the class hierarchy.
Chris Lattner9dbb4292009-11-09 23:28:39 +00002856
Chris Lattnerd06094f2009-11-10 00:55:12 +00002857/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2858/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002859static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002860 const Query &Q, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00002861 switch (Opcode) {
Chris Lattner81a0dc92011-02-09 17:15:04 +00002862 case Instruction::Add:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002863 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002864 Q, MaxRecurse);
Michael Ilsemand0a0d222012-12-12 00:29:16 +00002865 case Instruction::FAdd:
2866 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2867
Chris Lattner81a0dc92011-02-09 17:15:04 +00002868 case Instruction::Sub:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002869 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002870 Q, MaxRecurse);
Michael Ilsemand0a0d222012-12-12 00:29:16 +00002871 case Instruction::FSub:
2872 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2873
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002874 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
Michael Ilsemand0a0d222012-12-12 00:29:16 +00002875 case Instruction::FMul:
2876 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002877 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
2878 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
2879 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
2880 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
2881 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
2882 case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002883 case Instruction::Shl:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002884 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002885 Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002886 case Instruction::LShr:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002887 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002888 case Instruction::AShr:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002889 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2890 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
2891 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
2892 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
Chris Lattnerd06094f2009-11-10 00:55:12 +00002893 default:
2894 if (Constant *CLHS = dyn_cast<Constant>(LHS))
2895 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2896 Constant *COps[] = {CLHS, CRHS};
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002897 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
2898 Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00002899 }
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002900
Duncan Sands566edb02010-12-21 08:49:00 +00002901 // If the operation is associative, try some generic simplifications.
2902 if (Instruction::isAssociative(Opcode))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002903 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00002904 return V;
2905
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002906 // If the operation is with the result of a select instruction check whether
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002907 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002908 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002909 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002910 return V;
2911
2912 // If the operation is with the result of a phi instruction, check whether
2913 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002914 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002915 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002916 return V;
2917
Chris Lattnerd06094f2009-11-10 00:55:12 +00002918 return 0;
2919 }
2920}
Chris Lattner9dbb4292009-11-09 23:28:39 +00002921
Duncan Sands12a86f52010-11-14 11:23:23 +00002922Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002923 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +00002924 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002925 return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
Chris Lattner9dbb4292009-11-09 23:28:39 +00002926}
2927
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002928/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2929/// fold the result.
2930static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002931 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002932 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002933 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2934 return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002935}
2936
2937Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002938 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +00002939 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002940 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2941 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002942}
Chris Lattnere3453782009-11-10 01:08:51 +00002943
Michael Ilsemanf89de812013-02-07 19:26:05 +00002944static bool IsIdempotent(Intrinsic::ID ID) {
2945 switch (ID) {
2946 default: return false;
2947
2948 // Unary idempotent: f(f(x)) = f(x)
2949 case Intrinsic::fabs:
2950 case Intrinsic::floor:
2951 case Intrinsic::ceil:
2952 case Intrinsic::trunc:
2953 case Intrinsic::rint:
2954 case Intrinsic::nearbyint:
2955 return true;
2956 }
2957}
2958
2959template <typename IterTy>
2960static Value *SimplifyIntrinsic(Intrinsic::ID IID, IterTy ArgBegin, IterTy ArgEnd,
2961 const Query &Q, unsigned MaxRecurse) {
2962 // Perform idempotent optimizations
2963 if (!IsIdempotent(IID))
2964 return 0;
2965
2966 // Unary Ops
2967 if (std::distance(ArgBegin, ArgEnd) == 1)
2968 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
2969 if (II->getIntrinsicID() == IID)
2970 return II;
2971
2972 return 0;
2973}
2974
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002975template <typename IterTy>
Chandler Carruthe949aa12012-12-28 14:23:29 +00002976static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002977 const Query &Q, unsigned MaxRecurse) {
Chandler Carruthe949aa12012-12-28 14:23:29 +00002978 Type *Ty = V->getType();
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002979 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
2980 Ty = PTy->getElementType();
2981 FunctionType *FTy = cast<FunctionType>(Ty);
2982
Dan Gohman71d05032011-11-04 18:32:42 +00002983 // call undef -> undef
Chandler Carruthe949aa12012-12-28 14:23:29 +00002984 if (isa<UndefValue>(V))
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002985 return UndefValue::get(FTy->getReturnType());
Dan Gohman71d05032011-11-04 18:32:42 +00002986
Chandler Carruthe949aa12012-12-28 14:23:29 +00002987 Function *F = dyn_cast<Function>(V);
2988 if (!F)
2989 return 0;
2990
Michael Ilsemanf89de812013-02-07 19:26:05 +00002991 if (unsigned IID = F->getIntrinsicID())
2992 if (Value *Ret =
2993 SimplifyIntrinsic((Intrinsic::ID) IID, ArgBegin, ArgEnd, Q, MaxRecurse))
2994 return Ret;
2995
Chandler Carruthe949aa12012-12-28 14:23:29 +00002996 if (!canConstantFoldCallTo(F))
2997 return 0;
2998
2999 SmallVector<Constant *, 4> ConstantArgs;
3000 ConstantArgs.reserve(ArgEnd - ArgBegin);
3001 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
3002 Constant *C = dyn_cast<Constant>(*I);
3003 if (!C)
3004 return 0;
3005 ConstantArgs.push_back(C);
3006 }
3007
3008 return ConstantFoldCall(F, ConstantArgs, Q.TLI);
Dan Gohman71d05032011-11-04 18:32:42 +00003009}
3010
Chandler Carruthe949aa12012-12-28 14:23:29 +00003011Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003012 User::op_iterator ArgEnd, const DataLayout *TD,
3013 const TargetLibraryInfo *TLI,
3014 const DominatorTree *DT) {
Chandler Carruthe949aa12012-12-28 14:23:29 +00003015 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(TD, TLI, DT),
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003016 RecursionLimit);
3017}
3018
Chandler Carruthe949aa12012-12-28 14:23:29 +00003019Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003020 const DataLayout *TD, const TargetLibraryInfo *TLI,
3021 const DominatorTree *DT) {
Chandler Carruthe949aa12012-12-28 14:23:29 +00003022 return ::SimplifyCall(V, Args.begin(), Args.end(), Query(TD, TLI, DT),
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003023 RecursionLimit);
3024}
3025
Chris Lattnere3453782009-11-10 01:08:51 +00003026/// SimplifyInstruction - See if we can compute a simplified version of this
3027/// instruction. If not, this returns null.
Micah Villmow3574eca2012-10-08 16:38:25 +00003028Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00003029 const TargetLibraryInfo *TLI,
Duncan Sandseff05812010-11-14 18:36:10 +00003030 const DominatorTree *DT) {
Duncan Sandsd261dc62010-11-17 08:35:29 +00003031 Value *Result;
3032
Chris Lattnere3453782009-11-10 01:08:51 +00003033 switch (I->getOpcode()) {
3034 default:
Chad Rosier618c1db2011-12-01 03:08:23 +00003035 Result = ConstantFoldInstruction(I, TD, TLI);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003036 break;
Michael Ilseman09ee2502012-12-12 00:27:46 +00003037 case Instruction::FAdd:
3038 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
3039 I->getFastMathFlags(), TD, TLI, DT);
3040 break;
Chris Lattner8aee8ef2009-11-27 17:42:22 +00003041 case Instruction::Add:
Duncan Sandsd261dc62010-11-17 08:35:29 +00003042 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
3043 cast<BinaryOperator>(I)->hasNoSignedWrap(),
3044 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003045 TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003046 break;
Michael Ilseman09ee2502012-12-12 00:27:46 +00003047 case Instruction::FSub:
3048 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
3049 I->getFastMathFlags(), TD, TLI, DT);
3050 break;
Duncan Sandsfea3b212010-12-15 14:07:39 +00003051 case Instruction::Sub:
3052 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
3053 cast<BinaryOperator>(I)->hasNoSignedWrap(),
3054 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003055 TD, TLI, DT);
Duncan Sandsfea3b212010-12-15 14:07:39 +00003056 break;
Michael Ilsemaneb61c922012-11-27 00:46:26 +00003057 case Instruction::FMul:
3058 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
3059 I->getFastMathFlags(), TD, TLI, DT);
3060 break;
Duncan Sands82fdab32010-12-21 14:00:22 +00003061 case Instruction::Mul:
Chad Rosier618c1db2011-12-01 03:08:23 +00003062 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands82fdab32010-12-21 14:00:22 +00003063 break;
Duncan Sands593faa52011-01-28 16:51:11 +00003064 case Instruction::SDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00003065 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands593faa52011-01-28 16:51:11 +00003066 break;
3067 case Instruction::UDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00003068 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands593faa52011-01-28 16:51:11 +00003069 break;
Frits van Bommel1fca2c32011-01-29 15:26:31 +00003070 case Instruction::FDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00003071 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Frits van Bommel1fca2c32011-01-29 15:26:31 +00003072 break;
Duncan Sandsf24ed772011-05-02 16:27:02 +00003073 case Instruction::SRem:
Chad Rosier618c1db2011-12-01 03:08:23 +00003074 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00003075 break;
3076 case Instruction::URem:
Chad Rosier618c1db2011-12-01 03:08:23 +00003077 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00003078 break;
3079 case Instruction::FRem:
Chad Rosier618c1db2011-12-01 03:08:23 +00003080 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00003081 break;
Duncan Sandsc43cee32011-01-14 00:37:45 +00003082 case Instruction::Shl:
Chris Lattner81a0dc92011-02-09 17:15:04 +00003083 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
3084 cast<BinaryOperator>(I)->hasNoSignedWrap(),
3085 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003086 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00003087 break;
3088 case Instruction::LShr:
Chris Lattner81a0dc92011-02-09 17:15:04 +00003089 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
3090 cast<BinaryOperator>(I)->isExact(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003091 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00003092 break;
3093 case Instruction::AShr:
Chris Lattner81a0dc92011-02-09 17:15:04 +00003094 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
3095 cast<BinaryOperator>(I)->isExact(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003096 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00003097 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003098 case Instruction::And:
Chad Rosier618c1db2011-12-01 03:08:23 +00003099 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003100 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003101 case Instruction::Or:
Chad Rosier618c1db2011-12-01 03:08:23 +00003102 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003103 break;
Duncan Sands2b749872010-11-17 18:52:15 +00003104 case Instruction::Xor:
Chad Rosier618c1db2011-12-01 03:08:23 +00003105 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands2b749872010-11-17 18:52:15 +00003106 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003107 case Instruction::ICmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00003108 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003109 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003110 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003111 case Instruction::FCmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00003112 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003113 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003114 break;
Chris Lattner04754262010-04-20 05:32:14 +00003115 case Instruction::Select:
Duncan Sandsd261dc62010-11-17 08:35:29 +00003116 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00003117 I->getOperand(2), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003118 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00003119 case Instruction::GetElementPtr: {
3120 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
Duncan Sands0aa85eb2012-03-13 11:42:19 +00003121 Result = SimplifyGEPInst(Ops, TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003122 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00003123 }
Duncan Sandsdabc2802011-09-05 06:52:48 +00003124 case Instruction::InsertValue: {
3125 InsertValueInst *IV = cast<InsertValueInst>(I);
3126 Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
3127 IV->getInsertedValueOperand(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00003128 IV->getIndices(), TD, TLI, DT);
Duncan Sandsdabc2802011-09-05 06:52:48 +00003129 break;
3130 }
Duncan Sandscd6636c2010-11-14 13:30:18 +00003131 case Instruction::PHI:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00003132 Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
Duncan Sandsd261dc62010-11-17 08:35:29 +00003133 break;
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003134 case Instruction::Call: {
3135 CallSite CS(cast<CallInst>(I));
3136 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
3137 TD, TLI, DT);
Dan Gohman71d05032011-11-04 18:32:42 +00003138 break;
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003139 }
Duncan Sandsbd0fe562012-03-13 14:07:05 +00003140 case Instruction::Trunc:
3141 Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
3142 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003143 }
Duncan Sandsd261dc62010-11-17 08:35:29 +00003144
3145 /// If called on unreachable code, the above logic may report that the
3146 /// instruction simplified to itself. Make life easier for users by
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00003147 /// detecting that case here, returning a safe value instead.
3148 return Result == I ? UndefValue::get(I->getType()) : Result;
Chris Lattnere3453782009-11-10 01:08:51 +00003149}
3150
Chandler Carruth6b980542012-03-24 21:11:24 +00003151/// \brief Implementation of recursive simplification through an instructions
3152/// uses.
Chris Lattner40d8c282009-11-10 22:26:15 +00003153///
Chandler Carruth6b980542012-03-24 21:11:24 +00003154/// This is the common implementation of the recursive simplification routines.
3155/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
3156/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
3157/// instructions to process and attempt to simplify it using
3158/// InstructionSimplify.
3159///
3160/// This routine returns 'true' only when *it* simplifies something. The passed
3161/// in simplified value does not count toward this.
3162static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
Micah Villmow3574eca2012-10-08 16:38:25 +00003163 const DataLayout *TD,
Chandler Carruth6b980542012-03-24 21:11:24 +00003164 const TargetLibraryInfo *TLI,
3165 const DominatorTree *DT) {
3166 bool Simplified = false;
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003167 SmallSetVector<Instruction *, 8> Worklist;
Duncan Sands12a86f52010-11-14 11:23:23 +00003168
Chandler Carruth6b980542012-03-24 21:11:24 +00003169 // If we have an explicit value to collapse to, do that round of the
3170 // simplification loop by hand initially.
3171 if (SimpleV) {
3172 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
3173 ++UI)
Chandler Carruthc5b785b2012-03-24 22:34:23 +00003174 if (*UI != I)
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003175 Worklist.insert(cast<Instruction>(*UI));
Duncan Sands12a86f52010-11-14 11:23:23 +00003176
Chandler Carruth6b980542012-03-24 21:11:24 +00003177 // Replace the instruction with its simplified value.
3178 I->replaceAllUsesWith(SimpleV);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00003179
Chandler Carruth6b980542012-03-24 21:11:24 +00003180 // Gracefully handle edge cases where the instruction is not wired into any
3181 // parent block.
3182 if (I->getParent())
3183 I->eraseFromParent();
3184 } else {
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003185 Worklist.insert(I);
Chris Lattner40d8c282009-11-10 22:26:15 +00003186 }
Duncan Sands12a86f52010-11-14 11:23:23 +00003187
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003188 // Note that we must test the size on each iteration, the worklist can grow.
3189 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
3190 I = Worklist[Idx];
Duncan Sands12a86f52010-11-14 11:23:23 +00003191
Chandler Carruth6b980542012-03-24 21:11:24 +00003192 // See if this instruction simplifies.
3193 SimpleV = SimplifyInstruction(I, TD, TLI, DT);
3194 if (!SimpleV)
3195 continue;
3196
3197 Simplified = true;
3198
3199 // Stash away all the uses of the old instruction so we can check them for
3200 // recursive simplifications after a RAUW. This is cheaper than checking all
3201 // uses of To on the recursive step in most cases.
3202 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
3203 ++UI)
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003204 Worklist.insert(cast<Instruction>(*UI));
Chandler Carruth6b980542012-03-24 21:11:24 +00003205
3206 // Replace the instruction with its simplified value.
3207 I->replaceAllUsesWith(SimpleV);
3208
3209 // Gracefully handle edge cases where the instruction is not wired into any
3210 // parent block.
3211 if (I->getParent())
3212 I->eraseFromParent();
3213 }
3214 return Simplified;
3215}
3216
3217bool llvm::recursivelySimplifyInstruction(Instruction *I,
Micah Villmow3574eca2012-10-08 16:38:25 +00003218 const DataLayout *TD,
Chandler Carruth6b980542012-03-24 21:11:24 +00003219 const TargetLibraryInfo *TLI,
3220 const DominatorTree *DT) {
3221 return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT);
3222}
3223
3224bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
Micah Villmow3574eca2012-10-08 16:38:25 +00003225 const DataLayout *TD,
Chandler Carruth6b980542012-03-24 21:11:24 +00003226 const TargetLibraryInfo *TLI,
3227 const DominatorTree *DT) {
3228 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
3229 assert(SimpleV && "Must provide a simplified value.");
3230 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT);
Chris Lattner40d8c282009-11-10 22:26:15 +00003231}