blob: b867af1dc3de2ce72fbc4939f8fdb5806b005e33 [file] [log] [blame]
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001//===- InstructionSimplify.cpp - Fold instruction operands ----------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements routines for folding instructions into simpler forms
Duncan Sands4cd2ad12010-11-23 10:50:08 +000011// that do not require creating new instructions. This does constant folding
12// ("add i32 1, 1" -> "2") but can also handle non-constant operands, either
13// returning a constant ("and i32 %x, 0" -> "0") or an already existing value
Duncan Sandsee9a2e32010-12-20 14:47:04 +000014// ("and i32 %x, %x" -> "%x"). All operands are assumed to have already been
15// simplified: This is usually true and assuming it simplifies the logic (if
16// they have not been simplified then results are correct but maybe suboptimal).
Chris Lattner9f3c25a2009-11-09 22:57:59 +000017//
18//===----------------------------------------------------------------------===//
19
Duncan Sandsa3c44a52010-12-22 09:40:51 +000020#define DEBUG_TYPE "instsimplify"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000021#include "llvm/Analysis/InstructionSimplify.h"
Chandler Carruthd04a8d42012-12-03 16:50:05 +000022#include "llvm/ADT/SetVector.h"
23#include "llvm/ADT/Statistic.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000024#include "llvm/Analysis/ConstantFolding.h"
Duncan Sands18450092010-11-16 12:16:38 +000025#include "llvm/Analysis/Dominators.h"
Duncan Sandsd70d1a52011-01-25 09:38:29 +000026#include "llvm/Analysis/ValueTracking.h"
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +000027#include "llvm/Analysis/MemoryBuiltins.h"
Chandler Carruth0b8c9a82013-01-02 11:36:10 +000028#include "llvm/IR/DataLayout.h"
29#include "llvm/IR/GlobalAlias.h"
30#include "llvm/IR/Operator.h"
Nick Lewycky3a73e342011-03-04 07:00:57 +000031#include "llvm/Support/ConstantRange.h"
Chandler Carruthfc72ae62012-03-12 11:19:31 +000032#include "llvm/Support/GetElementPtrTypeIterator.h"
Chris Lattnerd06094f2009-11-10 00:55:12 +000033#include "llvm/Support/PatternMatch.h"
Duncan Sands18450092010-11-16 12:16:38 +000034#include "llvm/Support/ValueHandle.h"
Chris Lattner9f3c25a2009-11-09 22:57:59 +000035using namespace llvm;
Chris Lattnerd06094f2009-11-10 00:55:12 +000036using namespace llvm::PatternMatch;
Chris Lattner9f3c25a2009-11-09 22:57:59 +000037
Chris Lattner81a0dc92011-02-09 17:15:04 +000038enum { RecursionLimit = 3 };
Duncan Sandsa74a58c2010-11-10 18:23:01 +000039
Duncan Sandsa3c44a52010-12-22 09:40:51 +000040STATISTIC(NumExpand, "Number of expansions");
41STATISTIC(NumFactor , "Number of factorizations");
42STATISTIC(NumReassoc, "Number of reassociations");
43
Duncan Sands0aa85eb2012-03-13 11:42:19 +000044struct Query {
Micah Villmow3574eca2012-10-08 16:38:25 +000045 const DataLayout *TD;
Duncan Sands0aa85eb2012-03-13 11:42:19 +000046 const TargetLibraryInfo *TLI;
47 const DominatorTree *DT;
48
Micah Villmow3574eca2012-10-08 16:38:25 +000049 Query(const DataLayout *td, const TargetLibraryInfo *tli,
Bill Wendling91337832012-05-17 20:27:58 +000050 const DominatorTree *dt) : TD(td), TLI(tli), DT(dt) {}
Duncan Sands0aa85eb2012-03-13 11:42:19 +000051};
52
53static Value *SimplifyAndInst(Value *, Value *, const Query &, unsigned);
54static Value *SimplifyBinOp(unsigned, Value *, Value *, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +000055 unsigned);
Duncan Sands0aa85eb2012-03-13 11:42:19 +000056static Value *SimplifyCmpInst(unsigned, Value *, Value *, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +000057 unsigned);
Duncan Sands0aa85eb2012-03-13 11:42:19 +000058static Value *SimplifyOrInst(Value *, Value *, const Query &, unsigned);
59static Value *SimplifyXorInst(Value *, Value *, const Query &, unsigned);
Duncan Sandsbd0fe562012-03-13 14:07:05 +000060static Value *SimplifyTruncInst(Value *, Type *, const Query &, unsigned);
Duncan Sands18450092010-11-16 12:16:38 +000061
Duncan Sandsf56138d2011-07-26 15:03:53 +000062/// getFalse - For a boolean type, or a vector of boolean type, return false, or
63/// a vector with every element false, as appropriate for the type.
64static Constant *getFalse(Type *Ty) {
Nick Lewycky66d004e2011-12-01 02:39:36 +000065 assert(Ty->getScalarType()->isIntegerTy(1) &&
Duncan Sandsf56138d2011-07-26 15:03:53 +000066 "Expected i1 type or a vector of i1!");
67 return Constant::getNullValue(Ty);
68}
69
70/// getTrue - For a boolean type, or a vector of boolean type, return true, or
71/// a vector with every element true, as appropriate for the type.
72static Constant *getTrue(Type *Ty) {
Nick Lewycky66d004e2011-12-01 02:39:36 +000073 assert(Ty->getScalarType()->isIntegerTy(1) &&
Duncan Sandsf56138d2011-07-26 15:03:53 +000074 "Expected i1 type or a vector of i1!");
75 return Constant::getAllOnesValue(Ty);
76}
77
Duncan Sands6dc9e2b2011-10-30 19:56:36 +000078/// isSameCompare - Is V equivalent to the comparison "LHS Pred RHS"?
79static bool isSameCompare(Value *V, CmpInst::Predicate Pred, Value *LHS,
80 Value *RHS) {
81 CmpInst *Cmp = dyn_cast<CmpInst>(V);
82 if (!Cmp)
83 return false;
84 CmpInst::Predicate CPred = Cmp->getPredicate();
85 Value *CLHS = Cmp->getOperand(0), *CRHS = Cmp->getOperand(1);
86 if (CPred == Pred && CLHS == LHS && CRHS == RHS)
87 return true;
88 return CPred == CmpInst::getSwappedPredicate(Pred) && CLHS == RHS &&
89 CRHS == LHS;
90}
91
Duncan Sands18450092010-11-16 12:16:38 +000092/// ValueDominatesPHI - Does the given value dominate the specified phi node?
93static bool ValueDominatesPHI(Value *V, PHINode *P, const DominatorTree *DT) {
94 Instruction *I = dyn_cast<Instruction>(V);
95 if (!I)
96 // Arguments and constants dominate all instructions.
97 return true;
98
Chandler Carruthff739c12012-03-21 10:58:47 +000099 // If we are processing instructions (and/or basic blocks) that have not been
100 // fully added to a function, the parent nodes may still be null. Simply
101 // return the conservative answer in these cases.
102 if (!I->getParent() || !P->getParent() || !I->getParent()->getParent())
103 return false;
104
Duncan Sands18450092010-11-16 12:16:38 +0000105 // If we have a DominatorTree then do a precise test.
Eli Friedman5b8f0dd2012-03-13 01:06:07 +0000106 if (DT) {
107 if (!DT->isReachableFromEntry(P->getParent()))
108 return true;
109 if (!DT->isReachableFromEntry(I->getParent()))
110 return false;
111 return DT->dominates(I, P);
112 }
Duncan Sands18450092010-11-16 12:16:38 +0000113
114 // Otherwise, if the instruction is in the entry block, and is not an invoke,
115 // then it obviously dominates all phi nodes.
116 if (I->getParent() == &I->getParent()->getParent()->getEntryBlock() &&
117 !isa<InvokeInst>(I))
118 return true;
119
120 return false;
121}
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000122
Duncan Sands3421d902010-12-21 13:32:22 +0000123/// ExpandBinOp - Simplify "A op (B op' C)" by distributing op over op', turning
124/// it into "(A op B) op' (A op C)". Here "op" is given by Opcode and "op'" is
125/// given by OpcodeToExpand, while "A" corresponds to LHS and "B op' C" to RHS.
126/// Also performs the transform "(A op' B) op C" -> "(A op C) op' (B op C)".
127/// Returns the simplified value, or null if no simplification was performed.
128static Value *ExpandBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000129 unsigned OpcToExpand, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +0000130 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000131 Instruction::BinaryOps OpcodeToExpand = (Instruction::BinaryOps)OpcToExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000132 // Recursion is always used, so bail out at once if we already hit the limit.
133 if (!MaxRecurse--)
134 return 0;
135
136 // Check whether the expression has the form "(A op' B) op C".
137 if (BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS))
138 if (Op0->getOpcode() == OpcodeToExpand) {
139 // It does! Try turning it into "(A op C) op' (B op C)".
140 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1), *C = RHS;
141 // Do "A op C" and "B op C" both simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000142 if (Value *L = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse))
143 if (Value *R = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000144 // They do! Return "L op' R" if it simplifies or is already available.
145 // If "L op' R" equals "A op' B" then "L op' R" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000146 if ((L == A && R == B) || (Instruction::isCommutative(OpcodeToExpand)
147 && L == B && R == A)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000148 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000149 return LHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000150 }
Duncan Sands3421d902010-12-21 13:32:22 +0000151 // Otherwise return "L op' R" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000152 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000153 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000154 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000155 }
Duncan Sands3421d902010-12-21 13:32:22 +0000156 }
157 }
158
159 // Check whether the expression has the form "A op (B op' C)".
160 if (BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS))
161 if (Op1->getOpcode() == OpcodeToExpand) {
162 // It does! Try turning it into "(A op B) op' (A op C)".
163 Value *A = LHS, *B = Op1->getOperand(0), *C = Op1->getOperand(1);
164 // Do "A op B" and "A op C" both simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000165 if (Value *L = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse))
166 if (Value *R = SimplifyBinOp(Opcode, A, C, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000167 // They do! Return "L op' R" if it simplifies or is already available.
168 // If "L op' R" equals "B op' C" then "L op' R" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000169 if ((L == B && R == C) || (Instruction::isCommutative(OpcodeToExpand)
170 && L == C && R == B)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000171 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000172 return RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000173 }
Duncan Sands3421d902010-12-21 13:32:22 +0000174 // Otherwise return "L op' R" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000175 if (Value *V = SimplifyBinOp(OpcodeToExpand, L, R, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000176 ++NumExpand;
Duncan Sands3421d902010-12-21 13:32:22 +0000177 return V;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000178 }
Duncan Sands3421d902010-12-21 13:32:22 +0000179 }
180 }
181
182 return 0;
183}
184
185/// FactorizeBinOp - Simplify "LHS Opcode RHS" by factorizing out a common term
186/// using the operation OpCodeToExtract. For example, when Opcode is Add and
187/// OpCodeToExtract is Mul then this tries to turn "(A*B)+(A*C)" into "A*(B+C)".
188/// Returns the simplified value, or null if no simplification was performed.
189static Value *FactorizeBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000190 unsigned OpcToExtract, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +0000191 unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000192 Instruction::BinaryOps OpcodeToExtract = (Instruction::BinaryOps)OpcToExtract;
Duncan Sands3421d902010-12-21 13:32:22 +0000193 // Recursion is always used, so bail out at once if we already hit the limit.
194 if (!MaxRecurse--)
195 return 0;
196
197 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
198 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
199
200 if (!Op0 || Op0->getOpcode() != OpcodeToExtract ||
201 !Op1 || Op1->getOpcode() != OpcodeToExtract)
202 return 0;
203
204 // The expression has the form "(A op' B) op (C op' D)".
Duncan Sands82fdab32010-12-21 14:00:22 +0000205 Value *A = Op0->getOperand(0), *B = Op0->getOperand(1);
206 Value *C = Op1->getOperand(0), *D = Op1->getOperand(1);
Duncan Sands3421d902010-12-21 13:32:22 +0000207
208 // Use left distributivity, i.e. "X op' (Y op Z) = (X op' Y) op (X op' Z)".
209 // Does the instruction have the form "(A op' B) op (A op' D)" or, in the
210 // commutative case, "(A op' B) op (C op' A)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000211 if (A == C || (Instruction::isCommutative(OpcodeToExtract) && A == D)) {
212 Value *DD = A == C ? D : C;
Duncan Sands3421d902010-12-21 13:32:22 +0000213 // Form "A op' (B op DD)" if it simplifies completely.
214 // Does "B op DD" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000215 if (Value *V = SimplifyBinOp(Opcode, B, DD, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000216 // It does! Return "A op' V" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000217 // If V equals B then "A op' V" is just the LHS. If V equals DD then
218 // "A op' V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000219 if (V == B || V == DD) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000220 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000221 return V == B ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000222 }
Duncan Sands3421d902010-12-21 13:32:22 +0000223 // Otherwise return "A op' V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000224 if (Value *W = SimplifyBinOp(OpcodeToExtract, A, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000225 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000226 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000227 }
Duncan Sands3421d902010-12-21 13:32:22 +0000228 }
229 }
230
231 // Use right distributivity, i.e. "(X op Y) op' Z = (X op' Z) op (Y op' Z)".
232 // Does the instruction have the form "(A op' B) op (C op' B)" or, in the
233 // commutative case, "(A op' B) op (B op' D)"?
Duncan Sands124708d2011-01-01 20:08:02 +0000234 if (B == D || (Instruction::isCommutative(OpcodeToExtract) && B == C)) {
235 Value *CC = B == D ? C : D;
Duncan Sands3421d902010-12-21 13:32:22 +0000236 // Form "(A op CC) op' B" if it simplifies completely..
237 // Does "A op CC" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000238 if (Value *V = SimplifyBinOp(Opcode, A, CC, Q, MaxRecurse)) {
Duncan Sands3421d902010-12-21 13:32:22 +0000239 // It does! Return "V op' B" if it simplifies or is already available.
Duncan Sands1cd05bb2010-12-22 17:15:25 +0000240 // If V equals A then "V op' B" is just the LHS. If V equals CC then
241 // "V op' B" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000242 if (V == A || V == CC) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000243 ++NumFactor;
Duncan Sands124708d2011-01-01 20:08:02 +0000244 return V == A ? LHS : RHS;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000245 }
Duncan Sands3421d902010-12-21 13:32:22 +0000246 // Otherwise return "V op' B" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000247 if (Value *W = SimplifyBinOp(OpcodeToExtract, V, B, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000248 ++NumFactor;
Duncan Sands3421d902010-12-21 13:32:22 +0000249 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000250 }
Duncan Sands3421d902010-12-21 13:32:22 +0000251 }
252 }
253
254 return 0;
255}
256
257/// SimplifyAssociativeBinOp - Generic simplifications for associative binary
258/// operations. Returns the simpler value, or null if none was found.
Benjamin Kramere21083a2010-12-28 13:52:52 +0000259static Value *SimplifyAssociativeBinOp(unsigned Opc, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000260 const Query &Q, unsigned MaxRecurse) {
Benjamin Kramere21083a2010-12-28 13:52:52 +0000261 Instruction::BinaryOps Opcode = (Instruction::BinaryOps)Opc;
Duncan Sands566edb02010-12-21 08:49:00 +0000262 assert(Instruction::isAssociative(Opcode) && "Not an associative operation!");
263
264 // Recursion is always used, so bail out at once if we already hit the limit.
265 if (!MaxRecurse--)
266 return 0;
267
268 BinaryOperator *Op0 = dyn_cast<BinaryOperator>(LHS);
269 BinaryOperator *Op1 = dyn_cast<BinaryOperator>(RHS);
270
271 // Transform: "(A op B) op C" ==> "A op (B op C)" if it simplifies completely.
272 if (Op0 && Op0->getOpcode() == Opcode) {
273 Value *A = Op0->getOperand(0);
274 Value *B = Op0->getOperand(1);
275 Value *C = RHS;
276
277 // Does "B op C" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000278 if (Value *V = SimplifyBinOp(Opcode, B, C, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000279 // It does! Return "A op V" if it simplifies or is already available.
280 // If V equals B then "A op V" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000281 if (V == B) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000282 // Otherwise return "A op V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000283 if (Value *W = SimplifyBinOp(Opcode, A, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000284 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000285 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000286 }
Duncan Sands566edb02010-12-21 08:49:00 +0000287 }
288 }
289
290 // Transform: "A op (B op C)" ==> "(A op B) op C" if it simplifies completely.
291 if (Op1 && Op1->getOpcode() == Opcode) {
292 Value *A = LHS;
293 Value *B = Op1->getOperand(0);
294 Value *C = Op1->getOperand(1);
295
296 // Does "A op B" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000297 if (Value *V = SimplifyBinOp(Opcode, A, B, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000298 // It does! Return "V op C" if it simplifies or is already available.
299 // If V equals B then "V op C" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000300 if (V == B) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000301 // Otherwise return "V op C" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000302 if (Value *W = SimplifyBinOp(Opcode, V, C, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000303 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000304 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000305 }
Duncan Sands566edb02010-12-21 08:49:00 +0000306 }
307 }
308
309 // The remaining transforms require commutativity as well as associativity.
310 if (!Instruction::isCommutative(Opcode))
311 return 0;
312
313 // Transform: "(A op B) op C" ==> "(C op A) op B" if it simplifies completely.
314 if (Op0 && Op0->getOpcode() == Opcode) {
315 Value *A = Op0->getOperand(0);
316 Value *B = Op0->getOperand(1);
317 Value *C = RHS;
318
319 // Does "C op A" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000320 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000321 // It does! Return "V op B" if it simplifies or is already available.
322 // If V equals A then "V op B" is just the LHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000323 if (V == A) return LHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000324 // Otherwise return "V op B" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000325 if (Value *W = SimplifyBinOp(Opcode, V, B, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000326 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000327 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000328 }
Duncan Sands566edb02010-12-21 08:49:00 +0000329 }
330 }
331
332 // Transform: "A op (B op C)" ==> "B op (C op A)" if it simplifies completely.
333 if (Op1 && Op1->getOpcode() == Opcode) {
334 Value *A = LHS;
335 Value *B = Op1->getOperand(0);
336 Value *C = Op1->getOperand(1);
337
338 // Does "C op A" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000339 if (Value *V = SimplifyBinOp(Opcode, C, A, Q, MaxRecurse)) {
Duncan Sands566edb02010-12-21 08:49:00 +0000340 // It does! Return "B op V" if it simplifies or is already available.
341 // If V equals C then "B op V" is just the RHS.
Duncan Sands124708d2011-01-01 20:08:02 +0000342 if (V == C) return RHS;
Duncan Sands566edb02010-12-21 08:49:00 +0000343 // Otherwise return "B op V" if it simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000344 if (Value *W = SimplifyBinOp(Opcode, B, V, Q, MaxRecurse)) {
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000345 ++NumReassoc;
Duncan Sands566edb02010-12-21 08:49:00 +0000346 return W;
Duncan Sandsa3c44a52010-12-22 09:40:51 +0000347 }
Duncan Sands566edb02010-12-21 08:49:00 +0000348 }
349 }
350
351 return 0;
352}
353
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000354/// ThreadBinOpOverSelect - In the case of a binary operation with a select
355/// instruction as an operand, try to simplify the binop by seeing whether
356/// evaluating it on both branches of the select results in the same value.
357/// Returns the common value if so, otherwise returns null.
358static Value *ThreadBinOpOverSelect(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000359 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000360 // Recursion is always used, so bail out at once if we already hit the limit.
361 if (!MaxRecurse--)
362 return 0;
363
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000364 SelectInst *SI;
365 if (isa<SelectInst>(LHS)) {
366 SI = cast<SelectInst>(LHS);
367 } else {
368 assert(isa<SelectInst>(RHS) && "No select instruction operand!");
369 SI = cast<SelectInst>(RHS);
370 }
371
372 // Evaluate the BinOp on the true and false branches of the select.
373 Value *TV;
374 Value *FV;
375 if (SI == LHS) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000376 TV = SimplifyBinOp(Opcode, SI->getTrueValue(), RHS, Q, MaxRecurse);
377 FV = SimplifyBinOp(Opcode, SI->getFalseValue(), RHS, Q, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000378 } else {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000379 TV = SimplifyBinOp(Opcode, LHS, SI->getTrueValue(), Q, MaxRecurse);
380 FV = SimplifyBinOp(Opcode, LHS, SI->getFalseValue(), Q, MaxRecurse);
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000381 }
382
Duncan Sands7cf85e72011-01-01 16:12:09 +0000383 // If they simplified to the same value, then return the common value.
Duncan Sands124708d2011-01-01 20:08:02 +0000384 // If they both failed to simplify then return null.
385 if (TV == FV)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000386 return TV;
387
388 // If one branch simplified to undef, return the other one.
389 if (TV && isa<UndefValue>(TV))
390 return FV;
391 if (FV && isa<UndefValue>(FV))
392 return TV;
393
394 // If applying the operation did not change the true and false select values,
395 // then the result of the binop is the select itself.
Duncan Sands124708d2011-01-01 20:08:02 +0000396 if (TV == SI->getTrueValue() && FV == SI->getFalseValue())
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000397 return SI;
398
399 // If one branch simplified and the other did not, and the simplified
400 // value is equal to the unsimplified one, return the simplified value.
401 // For example, select (cond, X, X & Z) & Z -> X & Z.
402 if ((FV && !TV) || (TV && !FV)) {
403 // Check that the simplified value has the form "X op Y" where "op" is the
404 // same as the original operation.
405 Instruction *Simplified = dyn_cast<Instruction>(FV ? FV : TV);
406 if (Simplified && Simplified->getOpcode() == Opcode) {
407 // The value that didn't simplify is "UnsimplifiedLHS op UnsimplifiedRHS".
408 // We already know that "op" is the same as for the simplified value. See
409 // if the operands match too. If so, return the simplified value.
410 Value *UnsimplifiedBranch = FV ? SI->getTrueValue() : SI->getFalseValue();
411 Value *UnsimplifiedLHS = SI == LHS ? UnsimplifiedBranch : LHS;
412 Value *UnsimplifiedRHS = SI == LHS ? RHS : UnsimplifiedBranch;
Duncan Sands124708d2011-01-01 20:08:02 +0000413 if (Simplified->getOperand(0) == UnsimplifiedLHS &&
414 Simplified->getOperand(1) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000415 return Simplified;
416 if (Simplified->isCommutative() &&
Duncan Sands124708d2011-01-01 20:08:02 +0000417 Simplified->getOperand(1) == UnsimplifiedLHS &&
418 Simplified->getOperand(0) == UnsimplifiedRHS)
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000419 return Simplified;
420 }
421 }
422
423 return 0;
424}
425
426/// ThreadCmpOverSelect - In the case of a comparison with a select instruction,
427/// try to simplify the comparison by seeing whether both branches of the select
428/// result in the same value. Returns the common value if so, otherwise returns
429/// null.
430static Value *ThreadCmpOverSelect(CmpInst::Predicate Pred, Value *LHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000431 Value *RHS, const Query &Q,
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000432 unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000433 // Recursion is always used, so bail out at once if we already hit the limit.
434 if (!MaxRecurse--)
435 return 0;
436
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000437 // Make sure the select is on the LHS.
438 if (!isa<SelectInst>(LHS)) {
439 std::swap(LHS, RHS);
440 Pred = CmpInst::getSwappedPredicate(Pred);
441 }
442 assert(isa<SelectInst>(LHS) && "Not comparing with a select instruction!");
443 SelectInst *SI = cast<SelectInst>(LHS);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000444 Value *Cond = SI->getCondition();
445 Value *TV = SI->getTrueValue();
446 Value *FV = SI->getFalseValue();
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000447
Duncan Sands50ca4d32011-02-03 09:37:39 +0000448 // Now that we have "cmp select(Cond, TV, FV), RHS", analyse it.
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000449 // Does "cmp TV, RHS" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000450 Value *TCmp = SimplifyCmpInst(Pred, TV, RHS, Q, MaxRecurse);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000451 if (TCmp == Cond) {
452 // It not only simplified, it simplified to the select condition. Replace
453 // it with 'true'.
454 TCmp = getTrue(Cond->getType());
455 } else if (!TCmp) {
456 // It didn't simplify. However if "cmp TV, RHS" is equal to the select
457 // condition then we can replace it with 'true'. Otherwise give up.
458 if (!isSameCompare(Cond, Pred, TV, RHS))
459 return 0;
460 TCmp = getTrue(Cond->getType());
Duncan Sands50ca4d32011-02-03 09:37:39 +0000461 }
462
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000463 // Does "cmp FV, RHS" simplify?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000464 Value *FCmp = SimplifyCmpInst(Pred, FV, RHS, Q, MaxRecurse);
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000465 if (FCmp == Cond) {
466 // It not only simplified, it simplified to the select condition. Replace
467 // it with 'false'.
468 FCmp = getFalse(Cond->getType());
469 } else if (!FCmp) {
470 // It didn't simplify. However if "cmp FV, RHS" is equal to the select
471 // condition then we can replace it with 'false'. Otherwise give up.
472 if (!isSameCompare(Cond, Pred, FV, RHS))
473 return 0;
474 FCmp = getFalse(Cond->getType());
475 }
476
477 // If both sides simplified to the same value, then use it as the result of
478 // the original comparison.
479 if (TCmp == FCmp)
480 return TCmp;
Duncan Sandsaa97bb52012-02-10 14:31:24 +0000481
482 // The remaining cases only make sense if the select condition has the same
483 // type as the result of the comparison, so bail out if this is not so.
484 if (Cond->getType()->isVectorTy() != RHS->getType()->isVectorTy())
485 return 0;
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000486 // If the false value simplified to false, then the result of the compare
487 // is equal to "Cond && TCmp". This also catches the case when the false
488 // value simplified to false and the true value to true, returning "Cond".
489 if (match(FCmp, m_Zero()))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000490 if (Value *V = SimplifyAndInst(Cond, TCmp, Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000491 return V;
492 // If the true value simplified to true, then the result of the compare
493 // is equal to "Cond || FCmp".
494 if (match(TCmp, m_One()))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000495 if (Value *V = SimplifyOrInst(Cond, FCmp, Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000496 return V;
497 // Finally, if the false value simplified to true and the true value to
498 // false, then the result of the compare is equal to "!Cond".
499 if (match(FCmp, m_One()) && match(TCmp, m_Zero()))
500 if (Value *V =
501 SimplifyXorInst(Cond, Constant::getAllOnesValue(Cond->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000502 Q, MaxRecurse))
Duncan Sands6dc9e2b2011-10-30 19:56:36 +0000503 return V;
504
Duncan Sandsb2cbdc32010-11-10 13:00:08 +0000505 return 0;
506}
507
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000508/// ThreadBinOpOverPHI - In the case of a binary operation with an operand that
509/// is a PHI instruction, try to simplify the binop by seeing whether evaluating
510/// it on the incoming phi values yields the same result for every value. If so
511/// returns the common value, otherwise returns null.
512static Value *ThreadBinOpOverPHI(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000513 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000514 // Recursion is always used, so bail out at once if we already hit the limit.
515 if (!MaxRecurse--)
516 return 0;
517
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000518 PHINode *PI;
519 if (isa<PHINode>(LHS)) {
520 PI = cast<PHINode>(LHS);
Duncan Sands18450092010-11-16 12:16:38 +0000521 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000522 if (!ValueDominatesPHI(RHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000523 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000524 } else {
525 assert(isa<PHINode>(RHS) && "No PHI instruction operand!");
526 PI = cast<PHINode>(RHS);
Duncan Sands18450092010-11-16 12:16:38 +0000527 // Bail out if LHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000528 if (!ValueDominatesPHI(LHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000529 return 0;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000530 }
531
532 // Evaluate the BinOp on the incoming phi values.
533 Value *CommonValue = 0;
534 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000535 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000536 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000537 if (Incoming == PI) continue;
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000538 Value *V = PI == LHS ?
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000539 SimplifyBinOp(Opcode, Incoming, RHS, Q, MaxRecurse) :
540 SimplifyBinOp(Opcode, LHS, Incoming, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000541 // If the operation failed to simplify, or simplified to a different value
542 // to previously, then give up.
543 if (!V || (CommonValue && V != CommonValue))
544 return 0;
545 CommonValue = V;
546 }
547
548 return CommonValue;
549}
550
551/// ThreadCmpOverPHI - In the case of a comparison with a PHI instruction, try
552/// try to simplify the comparison by seeing whether comparing with all of the
553/// incoming phi values yields the same result every time. If so returns the
554/// common result, otherwise returns null.
555static Value *ThreadCmpOverPHI(CmpInst::Predicate Pred, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000556 const Query &Q, unsigned MaxRecurse) {
Duncan Sands0312a932010-12-21 09:09:15 +0000557 // Recursion is always used, so bail out at once if we already hit the limit.
558 if (!MaxRecurse--)
559 return 0;
560
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000561 // Make sure the phi is on the LHS.
562 if (!isa<PHINode>(LHS)) {
563 std::swap(LHS, RHS);
564 Pred = CmpInst::getSwappedPredicate(Pred);
565 }
566 assert(isa<PHINode>(LHS) && "Not comparing with a phi instruction!");
567 PHINode *PI = cast<PHINode>(LHS);
568
Duncan Sands18450092010-11-16 12:16:38 +0000569 // Bail out if RHS and the phi may be mutually interdependent due to a loop.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000570 if (!ValueDominatesPHI(RHS, PI, Q.DT))
Duncan Sands18450092010-11-16 12:16:38 +0000571 return 0;
572
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000573 // Evaluate the BinOp on the incoming phi values.
574 Value *CommonValue = 0;
575 for (unsigned i = 0, e = PI->getNumIncomingValues(); i != e; ++i) {
Duncan Sands55200892010-11-15 17:52:45 +0000576 Value *Incoming = PI->getIncomingValue(i);
Duncan Sandsff103412010-11-17 04:30:22 +0000577 // If the incoming value is the phi node itself, it can safely be skipped.
Duncan Sands55200892010-11-15 17:52:45 +0000578 if (Incoming == PI) continue;
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000579 Value *V = SimplifyCmpInst(Pred, Incoming, RHS, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +0000580 // If the operation failed to simplify, or simplified to a different value
581 // to previously, then give up.
582 if (!V || (CommonValue && V != CommonValue))
583 return 0;
584 CommonValue = V;
585 }
586
587 return CommonValue;
588}
589
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000590/// SimplifyAddInst - Given operands for an Add, see if we can
591/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000592static Value *SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000593 const Query &Q, unsigned MaxRecurse) {
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000594 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
595 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
596 Constant *Ops[] = { CLHS, CRHS };
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000597 return ConstantFoldInstOperands(Instruction::Add, CLHS->getType(), Ops,
598 Q.TD, Q.TLI);
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000599 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000600
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000601 // Canonicalize the constant to the RHS.
602 std::swap(Op0, Op1);
603 }
Duncan Sands12a86f52010-11-14 11:23:23 +0000604
Duncan Sandsfea3b212010-12-15 14:07:39 +0000605 // X + undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000606 if (match(Op1, m_Undef()))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000607 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +0000608
Duncan Sandsfea3b212010-12-15 14:07:39 +0000609 // X + 0 -> X
610 if (match(Op1, m_Zero()))
611 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +0000612
Duncan Sandsfea3b212010-12-15 14:07:39 +0000613 // X + (Y - X) -> Y
614 // (Y - X) + X -> Y
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000615 // Eg: X + -X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000616 Value *Y = 0;
617 if (match(Op1, m_Sub(m_Value(Y), m_Specific(Op0))) ||
618 match(Op0, m_Sub(m_Value(Y), m_Specific(Op1))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000619 return Y;
620
621 // X + ~X -> -1 since ~X = -X-1
Duncan Sands124708d2011-01-01 20:08:02 +0000622 if (match(Op0, m_Not(m_Specific(Op1))) ||
623 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000624 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands87689cf2010-11-19 09:20:39 +0000625
Duncan Sands82fdab32010-12-21 14:00:22 +0000626 /// i1 add -> xor.
Duncan Sands75d289e2010-12-21 14:48:48 +0000627 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000628 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sands07f30fb2010-12-21 15:03:43 +0000629 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +0000630
Duncan Sands566edb02010-12-21 08:49:00 +0000631 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000632 if (Value *V = SimplifyAssociativeBinOp(Instruction::Add, Op0, Op1, Q,
Duncan Sands566edb02010-12-21 08:49:00 +0000633 MaxRecurse))
634 return V;
635
Duncan Sands3421d902010-12-21 13:32:22 +0000636 // Mul distributes over Add. Try some generic simplifications based on this.
637 if (Value *V = FactorizeBinOp(Instruction::Add, Op0, Op1, Instruction::Mul,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000638 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +0000639 return V;
640
Duncan Sands87689cf2010-11-19 09:20:39 +0000641 // Threading Add over selects and phi nodes is pointless, so don't bother.
642 // Threading over the select in "A + select(cond, B, C)" means evaluating
643 // "A+B" and "A+C" and seeing if they are equal; but they are equal if and
644 // only if B and C are equal. If B and C are equal then (since we assume
645 // that operands have already been simplified) "select(cond, B, C)" should
646 // have been simplified to the common value of B and C already. Analysing
647 // "A+B" and "A+C" thus gains nothing, but costs compile time. Similarly
648 // for threading over phi nodes.
649
Chris Lattner8aee8ef2009-11-27 17:42:22 +0000650 return 0;
651}
652
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000653Value *llvm::SimplifyAddInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Micah Villmow3574eca2012-10-08 16:38:25 +0000654 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +0000655 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000656 return ::SimplifyAddInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
657 RecursionLimit);
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000658}
659
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000660/// \brief Compute the base pointer and cumulative constant offsets for V.
661///
662/// This strips all constant offsets off of V, leaving it the base pointer, and
663/// accumulates the total constant offset applied in the returned constant. It
664/// returns 0 if V is not a pointer, and returns the constant '0' if there are
665/// no constant offsets applied.
Dan Gohman819f9d62013-01-31 02:45:26 +0000666///
667/// This is very similar to GetPointerBaseWithConstantOffset except it doesn't
668/// follow non-inbounds geps. This allows it to remain usable for icmp ult/etc.
669/// folding.
Benjamin Kramerd9f32c22013-02-01 15:21:10 +0000670static Constant *stripAndComputeConstantOffsets(const DataLayout *TD,
Benjamin Kramerbaca5332013-09-23 14:16:38 +0000671 Value *&V,
672 bool AllowNonInbounds = false) {
Benjamin Kramerd9f32c22013-02-01 15:21:10 +0000673 assert(V->getType()->getScalarType()->isPointerTy());
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000674
Dan Gohman3e3de562013-01-31 02:50:36 +0000675 // Without DataLayout, just be conservative for now. Theoretically, more could
676 // be done in this case.
677 if (!TD)
678 return ConstantInt::get(IntegerType::get(V->getContext(), 64), 0);
679
Matt Arsenault6b4dde72013-08-03 01:03:12 +0000680 Type *IntPtrTy = TD->getIntPtrType(V->getType())->getScalarType();
681 APInt Offset = APInt::getNullValue(IntPtrTy->getIntegerBitWidth());
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000682
683 // Even though we don't look through PHI nodes, we could be called on an
684 // instruction in an unreachable block, which may be on a cycle.
685 SmallPtrSet<Value *, 4> Visited;
686 Visited.insert(V);
687 do {
688 if (GEPOperator *GEP = dyn_cast<GEPOperator>(V)) {
Benjamin Kramerbaca5332013-09-23 14:16:38 +0000689 if ((!AllowNonInbounds && !GEP->isInBounds()) ||
690 !GEP->accumulateConstantOffset(*TD, Offset))
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000691 break;
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000692 V = GEP->getPointerOperand();
693 } else if (Operator::getOpcode(V) == Instruction::BitCast) {
Matt Arsenault6b4dde72013-08-03 01:03:12 +0000694 V = cast<Operator>(V)->getOperand(0);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000695 } else if (GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
696 if (GA->mayBeOverridden())
697 break;
698 V = GA->getAliasee();
699 } else {
700 break;
701 }
Benjamin Kramerd9f32c22013-02-01 15:21:10 +0000702 assert(V->getType()->getScalarType()->isPointerTy() &&
703 "Unexpected operand type!");
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000704 } while (Visited.insert(V));
705
Benjamin Kramerd9f32c22013-02-01 15:21:10 +0000706 Constant *OffsetIntPtr = ConstantInt::get(IntPtrTy, Offset);
707 if (V->getType()->isVectorTy())
708 return ConstantVector::getSplat(V->getType()->getVectorNumElements(),
709 OffsetIntPtr);
710 return OffsetIntPtr;
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000711}
712
713/// \brief Compute the constant difference between two pointer values.
714/// If the difference is not a constant, returns zero.
Dan Gohman3e3de562013-01-31 02:50:36 +0000715static Constant *computePointerDifference(const DataLayout *TD,
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000716 Value *LHS, Value *RHS) {
717 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000718 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
Chandler Carruthfc72ae62012-03-12 11:19:31 +0000719
720 // If LHS and RHS are not related via constant offsets to the same base
721 // value, there is nothing we can do here.
722 if (LHS != RHS)
723 return 0;
724
725 // Otherwise, the difference of LHS - RHS can be computed as:
726 // LHS - RHS
727 // = (LHSOffset + Base) - (RHSOffset + Base)
728 // = LHSOffset - RHSOffset
729 return ConstantExpr::getSub(LHSOffset, RHSOffset);
730}
731
Duncan Sandsfea3b212010-12-15 14:07:39 +0000732/// SimplifySubInst - Given operands for a Sub, see if we can
733/// fold the result. If not, this returns null.
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000734static Value *SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000735 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsfea3b212010-12-15 14:07:39 +0000736 if (Constant *CLHS = dyn_cast<Constant>(Op0))
737 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
738 Constant *Ops[] = { CLHS, CRHS };
739 return ConstantFoldInstOperands(Instruction::Sub, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000740 Ops, Q.TD, Q.TLI);
Duncan Sandsfea3b212010-12-15 14:07:39 +0000741 }
742
743 // X - undef -> undef
744 // undef - X -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000745 if (match(Op0, m_Undef()) || match(Op1, m_Undef()))
Duncan Sandsfea3b212010-12-15 14:07:39 +0000746 return UndefValue::get(Op0->getType());
747
748 // X - 0 -> X
749 if (match(Op1, m_Zero()))
750 return Op0;
751
752 // X - X -> 0
Duncan Sands124708d2011-01-01 20:08:02 +0000753 if (Op0 == Op1)
Duncan Sandsfea3b212010-12-15 14:07:39 +0000754 return Constant::getNullValue(Op0->getType());
755
Duncan Sandsfe02c692011-01-18 09:24:58 +0000756 // (X*2) - X -> X
757 // (X<<1) - X -> X
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000758 Value *X = 0;
Duncan Sandsfe02c692011-01-18 09:24:58 +0000759 if (match(Op0, m_Mul(m_Specific(Op1), m_ConstantInt<2>())) ||
760 match(Op0, m_Shl(m_Specific(Op1), m_One())))
761 return Op1;
762
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000763 // (X + Y) - Z -> X + (Y - Z) or Y + (X - Z) if everything simplifies.
764 // For example, (X + Y) - Y -> X; (Y + X) - Y -> X
765 Value *Y = 0, *Z = Op1;
766 if (MaxRecurse && match(Op0, m_Add(m_Value(X), m_Value(Y)))) { // (X + Y) - Z
767 // See if "V === Y - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000768 if (Value *V = SimplifyBinOp(Instruction::Sub, Y, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000769 // It does! Now see if "X + V" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000770 if (Value *W = SimplifyBinOp(Instruction::Add, X, V, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000771 // It does, we successfully reassociated!
772 ++NumReassoc;
773 return W;
774 }
775 // See if "V === X - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000776 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000777 // It does! Now see if "Y + V" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000778 if (Value *W = SimplifyBinOp(Instruction::Add, Y, V, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000779 // It does, we successfully reassociated!
780 ++NumReassoc;
781 return W;
782 }
783 }
Duncan Sands82fdab32010-12-21 14:00:22 +0000784
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000785 // X - (Y + Z) -> (X - Y) - Z or (X - Z) - Y if everything simplifies.
786 // For example, X - (X + 1) -> -1
787 X = Op0;
788 if (MaxRecurse && match(Op1, m_Add(m_Value(Y), m_Value(Z)))) { // X - (Y + Z)
789 // See if "V === X - Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000790 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000791 // It does! Now see if "V - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000792 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Z, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000793 // It does, we successfully reassociated!
794 ++NumReassoc;
795 return W;
796 }
797 // See if "V === X - Z" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000798 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Z, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000799 // It does! Now see if "V - Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000800 if (Value *W = SimplifyBinOp(Instruction::Sub, V, Y, Q, MaxRecurse-1)) {
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000801 // It does, we successfully reassociated!
802 ++NumReassoc;
803 return W;
804 }
805 }
806
807 // Z - (X - Y) -> (Z - X) + Y if everything simplifies.
808 // For example, X - (X - Y) -> Y.
809 Z = Op0;
Duncan Sandsc087e202011-01-14 15:26:10 +0000810 if (MaxRecurse && match(Op1, m_Sub(m_Value(X), m_Value(Y)))) // Z - (X - Y)
811 // See if "V === Z - X" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000812 if (Value *V = SimplifyBinOp(Instruction::Sub, Z, X, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000813 // It does! Now see if "V + Y" simplifies.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000814 if (Value *W = SimplifyBinOp(Instruction::Add, V, Y, Q, MaxRecurse-1)) {
Duncan Sandsc087e202011-01-14 15:26:10 +0000815 // It does, we successfully reassociated!
816 ++NumReassoc;
817 return W;
818 }
819
Duncan Sandsbd0fe562012-03-13 14:07:05 +0000820 // trunc(X) - trunc(Y) -> trunc(X - Y) if everything simplifies.
821 if (MaxRecurse && match(Op0, m_Trunc(m_Value(X))) &&
822 match(Op1, m_Trunc(m_Value(Y))))
823 if (X->getType() == Y->getType())
824 // See if "V === X - Y" simplifies.
825 if (Value *V = SimplifyBinOp(Instruction::Sub, X, Y, Q, MaxRecurse-1))
826 // It does! Now see if "trunc V" simplifies.
827 if (Value *W = SimplifyTruncInst(V, Op0->getType(), Q, MaxRecurse-1))
828 // It does, return the simplified "trunc V".
829 return W;
830
831 // Variations on GEP(base, I, ...) - GEP(base, i, ...) -> GEP(null, I-i, ...).
Dan Gohman3e3de562013-01-31 02:50:36 +0000832 if (match(Op0, m_PtrToInt(m_Value(X))) &&
Duncan Sandsbd0fe562012-03-13 14:07:05 +0000833 match(Op1, m_PtrToInt(m_Value(Y))))
Dan Gohman3e3de562013-01-31 02:50:36 +0000834 if (Constant *Result = computePointerDifference(Q.TD, X, Y))
Duncan Sandsbd0fe562012-03-13 14:07:05 +0000835 return ConstantExpr::getIntegerCast(Result, Op0->getType(), true);
836
Duncan Sands3421d902010-12-21 13:32:22 +0000837 // Mul distributes over Sub. Try some generic simplifications based on this.
838 if (Value *V = FactorizeBinOp(Instruction::Sub, Op0, Op1, Instruction::Mul,
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000839 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +0000840 return V;
841
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000842 // i1 sub -> xor.
843 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000844 if (Value *V = SimplifyXorInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sandsb2f3c382011-01-18 11:50:19 +0000845 return V;
846
Duncan Sandsfea3b212010-12-15 14:07:39 +0000847 // Threading Sub over selects and phi nodes is pointless, so don't bother.
848 // Threading over the select in "A - select(cond, B, C)" means evaluating
849 // "A-B" and "A-C" and seeing if they are equal; but they are equal if and
850 // only if B and C are equal. If B and C are equal then (since we assume
851 // that operands have already been simplified) "select(cond, B, C)" should
852 // have been simplified to the common value of B and C already. Analysing
853 // "A-B" and "A-C" thus gains nothing, but costs compile time. Similarly
854 // for threading over phi nodes.
855
856 return 0;
857}
858
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000859Value *llvm::SimplifySubInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Micah Villmow3574eca2012-10-08 16:38:25 +0000860 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +0000861 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000862 return ::SimplifySubInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
863 RecursionLimit);
Duncan Sandsee9a2e32010-12-20 14:47:04 +0000864}
865
Michael Ilseman09ee2502012-12-12 00:27:46 +0000866/// Given operands for an FAdd, see if we can fold the result. If not, this
867/// returns null.
868static Value *SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
869 const Query &Q, unsigned MaxRecurse) {
870 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
871 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
872 Constant *Ops[] = { CLHS, CRHS };
873 return ConstantFoldInstOperands(Instruction::FAdd, CLHS->getType(),
874 Ops, Q.TD, Q.TLI);
875 }
876
877 // Canonicalize the constant to the RHS.
878 std::swap(Op0, Op1);
879 }
880
881 // fadd X, -0 ==> X
882 if (match(Op1, m_NegZero()))
883 return Op0;
884
885 // fadd X, 0 ==> X, when we know X is not -0
886 if (match(Op1, m_Zero()) &&
887 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
888 return Op0;
889
890 // fadd [nnan ninf] X, (fsub [nnan ninf] 0, X) ==> 0
891 // where nnan and ninf have to occur at least once somewhere in this
892 // expression
893 Value *SubOp = 0;
894 if (match(Op1, m_FSub(m_AnyZero(), m_Specific(Op0))))
895 SubOp = Op1;
896 else if (match(Op0, m_FSub(m_AnyZero(), m_Specific(Op1))))
897 SubOp = Op0;
898 if (SubOp) {
899 Instruction *FSub = cast<Instruction>(SubOp);
900 if ((FMF.noNaNs() || FSub->hasNoNaNs()) &&
901 (FMF.noInfs() || FSub->hasNoInfs()))
902 return Constant::getNullValue(Op0->getType());
903 }
904
905 return 0;
906}
907
908/// Given operands for an FSub, see if we can fold the result. If not, this
909/// returns null.
910static Value *SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
911 const Query &Q, unsigned MaxRecurse) {
912 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
913 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
914 Constant *Ops[] = { CLHS, CRHS };
915 return ConstantFoldInstOperands(Instruction::FSub, CLHS->getType(),
916 Ops, Q.TD, Q.TLI);
917 }
918 }
919
920 // fsub X, 0 ==> X
921 if (match(Op1, m_Zero()))
922 return Op0;
923
924 // fsub X, -0 ==> X, when we know X is not -0
925 if (match(Op1, m_NegZero()) &&
926 (FMF.noSignedZeros() || CannotBeNegativeZero(Op0)))
927 return Op0;
928
929 // fsub 0, (fsub -0.0, X) ==> X
930 Value *X;
931 if (match(Op0, m_AnyZero())) {
932 if (match(Op1, m_FSub(m_NegZero(), m_Value(X))))
933 return X;
934 if (FMF.noSignedZeros() && match(Op1, m_FSub(m_AnyZero(), m_Value(X))))
935 return X;
936 }
937
938 // fsub nnan ninf x, x ==> 0.0
939 if (FMF.noNaNs() && FMF.noInfs() && Op0 == Op1)
940 return Constant::getNullValue(Op0->getType());
941
942 return 0;
943}
944
Michael Ilsemaneb61c922012-11-27 00:46:26 +0000945/// Given the operands for an FMul, see if we can fold the result
946static Value *SimplifyFMulInst(Value *Op0, Value *Op1,
947 FastMathFlags FMF,
948 const Query &Q,
949 unsigned MaxRecurse) {
950 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
951 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
952 Constant *Ops[] = { CLHS, CRHS };
953 return ConstantFoldInstOperands(Instruction::FMul, CLHS->getType(),
954 Ops, Q.TD, Q.TLI);
955 }
Michael Ilseman09ee2502012-12-12 00:27:46 +0000956
957 // Canonicalize the constant to the RHS.
958 std::swap(Op0, Op1);
Michael Ilsemaneb61c922012-11-27 00:46:26 +0000959 }
960
Michael Ilseman09ee2502012-12-12 00:27:46 +0000961 // fmul X, 1.0 ==> X
962 if (match(Op1, m_FPOne()))
963 return Op0;
964
965 // fmul nnan nsz X, 0 ==> 0
966 if (FMF.noNaNs() && FMF.noSignedZeros() && match(Op1, m_AnyZero()))
967 return Op1;
Michael Ilsemaneb61c922012-11-27 00:46:26 +0000968
969 return 0;
970}
971
Duncan Sands82fdab32010-12-21 14:00:22 +0000972/// SimplifyMulInst - Given operands for a Mul, see if we can
973/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000974static Value *SimplifyMulInst(Value *Op0, Value *Op1, const Query &Q,
975 unsigned MaxRecurse) {
Duncan Sands82fdab32010-12-21 14:00:22 +0000976 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
977 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
978 Constant *Ops[] = { CLHS, CRHS };
979 return ConstantFoldInstOperands(Instruction::Mul, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +0000980 Ops, Q.TD, Q.TLI);
Duncan Sands82fdab32010-12-21 14:00:22 +0000981 }
982
983 // Canonicalize the constant to the RHS.
984 std::swap(Op0, Op1);
985 }
986
987 // X * undef -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +0000988 if (match(Op1, m_Undef()))
Duncan Sands82fdab32010-12-21 14:00:22 +0000989 return Constant::getNullValue(Op0->getType());
990
991 // X * 0 -> 0
992 if (match(Op1, m_Zero()))
993 return Op1;
994
995 // X * 1 -> X
996 if (match(Op1, m_One()))
997 return Op0;
998
Duncan Sands1895e982011-01-30 18:03:50 +0000999 // (X / Y) * Y -> X if the division is exact.
Benjamin Kramer55c6d572012-01-01 17:55:30 +00001000 Value *X = 0;
1001 if (match(Op0, m_Exact(m_IDiv(m_Value(X), m_Specific(Op1)))) || // (X / Y) * Y
1002 match(Op1, m_Exact(m_IDiv(m_Value(X), m_Specific(Op0))))) // Y * (X / Y)
1003 return X;
Duncan Sands1895e982011-01-30 18:03:50 +00001004
Nick Lewycky54138802011-01-29 19:55:23 +00001005 // i1 mul -> and.
Duncan Sands75d289e2010-12-21 14:48:48 +00001006 if (MaxRecurse && Op0->getType()->isIntegerTy(1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001007 if (Value *V = SimplifyAndInst(Op0, Op1, Q, MaxRecurse-1))
Duncan Sands07f30fb2010-12-21 15:03:43 +00001008 return V;
Duncan Sands82fdab32010-12-21 14:00:22 +00001009
1010 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001011 if (Value *V = SimplifyAssociativeBinOp(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +00001012 MaxRecurse))
1013 return V;
1014
1015 // Mul distributes over Add. Try some generic simplifications based on this.
1016 if (Value *V = ExpandBinOp(Instruction::Mul, Op0, Op1, Instruction::Add,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001017 Q, MaxRecurse))
Duncan Sands82fdab32010-12-21 14:00:22 +00001018 return V;
1019
1020 // If the operation is with the result of a select instruction, check whether
1021 // operating on either branch of the select always yields the same value.
1022 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001023 if (Value *V = ThreadBinOpOverSelect(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +00001024 MaxRecurse))
1025 return V;
1026
1027 // If the operation is with the result of a phi instruction, check whether
1028 // operating on all incoming values of the phi always yields the same value.
1029 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001030 if (Value *V = ThreadBinOpOverPHI(Instruction::Mul, Op0, Op1, Q,
Duncan Sands82fdab32010-12-21 14:00:22 +00001031 MaxRecurse))
1032 return V;
1033
1034 return 0;
1035}
1036
Michael Ilseman09ee2502012-12-12 00:27:46 +00001037Value *llvm::SimplifyFAddInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1038 const DataLayout *TD, const TargetLibraryInfo *TLI,
1039 const DominatorTree *DT) {
1040 return ::SimplifyFAddInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1041}
1042
1043Value *llvm::SimplifyFSubInst(Value *Op0, Value *Op1, FastMathFlags FMF,
1044 const DataLayout *TD, const TargetLibraryInfo *TLI,
1045 const DominatorTree *DT) {
1046 return ::SimplifyFSubInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1047}
1048
Michael Ilsemaneb61c922012-11-27 00:46:26 +00001049Value *llvm::SimplifyFMulInst(Value *Op0, Value *Op1,
1050 FastMathFlags FMF,
1051 const DataLayout *TD,
1052 const TargetLibraryInfo *TLI,
1053 const DominatorTree *DT) {
1054 return ::SimplifyFMulInst(Op0, Op1, FMF, Query (TD, TLI, DT), RecursionLimit);
1055}
1056
Micah Villmow3574eca2012-10-08 16:38:25 +00001057Value *llvm::SimplifyMulInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001058 const TargetLibraryInfo *TLI,
Duncan Sands82fdab32010-12-21 14:00:22 +00001059 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001060 return ::SimplifyMulInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands82fdab32010-12-21 14:00:22 +00001061}
1062
Duncan Sands593faa52011-01-28 16:51:11 +00001063/// SimplifyDiv - Given operands for an SDiv or UDiv, see if we can
1064/// fold the result. If not, this returns null.
Anders Carlsson479b4b92011-02-05 18:33:43 +00001065static Value *SimplifyDiv(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001066 const Query &Q, unsigned MaxRecurse) {
Duncan Sands593faa52011-01-28 16:51:11 +00001067 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1068 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1069 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001070 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sands593faa52011-01-28 16:51:11 +00001071 }
1072 }
1073
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001074 bool isSigned = Opcode == Instruction::SDiv;
1075
Duncan Sands593faa52011-01-28 16:51:11 +00001076 // X / undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001077 if (match(Op1, m_Undef()))
Duncan Sands593faa52011-01-28 16:51:11 +00001078 return Op1;
1079
1080 // undef / X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001081 if (match(Op0, m_Undef()))
Duncan Sands593faa52011-01-28 16:51:11 +00001082 return Constant::getNullValue(Op0->getType());
1083
1084 // 0 / X -> 0, we don't need to preserve faults!
1085 if (match(Op0, m_Zero()))
1086 return Op0;
1087
1088 // X / 1 -> X
1089 if (match(Op1, m_One()))
1090 return Op0;
Duncan Sands593faa52011-01-28 16:51:11 +00001091
1092 if (Op0->getType()->isIntegerTy(1))
1093 // It can't be division by zero, hence it must be division by one.
1094 return Op0;
1095
1096 // X / X -> 1
1097 if (Op0 == Op1)
1098 return ConstantInt::get(Op0->getType(), 1);
1099
1100 // (X * Y) / Y -> X if the multiplication does not overflow.
1101 Value *X = 0, *Y = 0;
1102 if (match(Op0, m_Mul(m_Value(X), m_Value(Y))) && (X == Op1 || Y == Op1)) {
1103 if (Y != Op1) std::swap(X, Y); // Ensure expression is (X * Y) / Y, Y = Op1
Duncan Sands32a43cc2011-10-27 19:16:21 +00001104 OverflowingBinaryOperator *Mul = cast<OverflowingBinaryOperator>(Op0);
Duncan Sands4b720712011-02-02 20:52:00 +00001105 // If the Mul knows it does not overflow, then we are good to go.
1106 if ((isSigned && Mul->hasNoSignedWrap()) ||
1107 (!isSigned && Mul->hasNoUnsignedWrap()))
1108 return X;
Duncan Sands593faa52011-01-28 16:51:11 +00001109 // If X has the form X = A / Y then X * Y cannot overflow.
1110 if (BinaryOperator *Div = dyn_cast<BinaryOperator>(X))
1111 if (Div->getOpcode() == Opcode && Div->getOperand(1) == Y)
1112 return X;
1113 }
1114
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001115 // (X rem Y) / Y -> 0
1116 if ((isSigned && match(Op0, m_SRem(m_Value(), m_Specific(Op1)))) ||
1117 (!isSigned && match(Op0, m_URem(m_Value(), m_Specific(Op1)))))
1118 return Constant::getNullValue(Op0->getType());
1119
1120 // If the operation is with the result of a select instruction, check whether
1121 // operating on either branch of the select always yields the same value.
1122 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001123 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001124 return V;
1125
1126 // If the operation is with the result of a phi instruction, check whether
1127 // operating on all incoming values of the phi always yields the same value.
1128 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001129 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsa3e292c2011-01-28 18:50:50 +00001130 return V;
1131
Duncan Sands593faa52011-01-28 16:51:11 +00001132 return 0;
1133}
1134
1135/// SimplifySDivInst - Given operands for an SDiv, see if we can
1136/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001137static Value *SimplifySDivInst(Value *Op0, Value *Op1, const Query &Q,
1138 unsigned MaxRecurse) {
1139 if (Value *V = SimplifyDiv(Instruction::SDiv, Op0, Op1, Q, MaxRecurse))
Duncan Sands593faa52011-01-28 16:51:11 +00001140 return V;
1141
Duncan Sands593faa52011-01-28 16:51:11 +00001142 return 0;
1143}
1144
Micah Villmow3574eca2012-10-08 16:38:25 +00001145Value *llvm::SimplifySDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001146 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001147 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001148 return ::SimplifySDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands593faa52011-01-28 16:51:11 +00001149}
1150
1151/// SimplifyUDivInst - Given operands for a UDiv, see if we can
1152/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001153static Value *SimplifyUDivInst(Value *Op0, Value *Op1, const Query &Q,
1154 unsigned MaxRecurse) {
1155 if (Value *V = SimplifyDiv(Instruction::UDiv, Op0, Op1, Q, MaxRecurse))
Duncan Sands593faa52011-01-28 16:51:11 +00001156 return V;
1157
Duncan Sands593faa52011-01-28 16:51:11 +00001158 return 0;
1159}
1160
Micah Villmow3574eca2012-10-08 16:38:25 +00001161Value *llvm::SimplifyUDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001162 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001163 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001164 return ::SimplifyUDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands593faa52011-01-28 16:51:11 +00001165}
1166
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001167static Value *SimplifyFDivInst(Value *Op0, Value *Op1, const Query &Q,
1168 unsigned) {
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001169 // undef / X -> undef (the undef could be a snan).
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001170 if (match(Op0, m_Undef()))
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001171 return Op0;
1172
1173 // X / undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001174 if (match(Op1, m_Undef()))
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001175 return Op1;
1176
1177 return 0;
1178}
1179
Micah Villmow3574eca2012-10-08 16:38:25 +00001180Value *llvm::SimplifyFDivInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001181 const TargetLibraryInfo *TLI,
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001182 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001183 return ::SimplifyFDivInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Frits van Bommel1fca2c32011-01-29 15:26:31 +00001184}
1185
Duncan Sandsf24ed772011-05-02 16:27:02 +00001186/// SimplifyRem - Given operands for an SRem or URem, see if we can
1187/// fold the result. If not, this returns null.
1188static Value *SimplifyRem(Instruction::BinaryOps Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001189 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsf24ed772011-05-02 16:27:02 +00001190 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1191 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1192 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001193 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001194 }
1195 }
1196
Duncan Sandsf24ed772011-05-02 16:27:02 +00001197 // X % undef -> undef
1198 if (match(Op1, m_Undef()))
1199 return Op1;
1200
1201 // undef % X -> 0
1202 if (match(Op0, m_Undef()))
1203 return Constant::getNullValue(Op0->getType());
1204
1205 // 0 % X -> 0, we don't need to preserve faults!
1206 if (match(Op0, m_Zero()))
1207 return Op0;
1208
1209 // X % 0 -> undef, we don't need to preserve faults!
1210 if (match(Op1, m_Zero()))
1211 return UndefValue::get(Op0->getType());
1212
1213 // X % 1 -> 0
1214 if (match(Op1, m_One()))
1215 return Constant::getNullValue(Op0->getType());
1216
1217 if (Op0->getType()->isIntegerTy(1))
1218 // It can't be remainder by zero, hence it must be remainder by one.
1219 return Constant::getNullValue(Op0->getType());
1220
1221 // X % X -> 0
1222 if (Op0 == Op1)
1223 return Constant::getNullValue(Op0->getType());
1224
1225 // If the operation is with the result of a select instruction, check whether
1226 // operating on either branch of the select always yields the same value.
1227 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001228 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001229 return V;
1230
1231 // If the operation is with the result of a phi instruction, check whether
1232 // operating on all incoming values of the phi always yields the same value.
1233 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001234 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001235 return V;
1236
1237 return 0;
1238}
1239
1240/// SimplifySRemInst - Given operands for an SRem, see if we can
1241/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001242static Value *SimplifySRemInst(Value *Op0, Value *Op1, const Query &Q,
1243 unsigned MaxRecurse) {
1244 if (Value *V = SimplifyRem(Instruction::SRem, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001245 return V;
1246
1247 return 0;
1248}
1249
Micah Villmow3574eca2012-10-08 16:38:25 +00001250Value *llvm::SimplifySRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001251 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001252 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001253 return ::SimplifySRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001254}
1255
1256/// SimplifyURemInst - Given operands for a URem, see if we can
1257/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001258static Value *SimplifyURemInst(Value *Op0, Value *Op1, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +00001259 unsigned MaxRecurse) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001260 if (Value *V = SimplifyRem(Instruction::URem, Op0, Op1, Q, MaxRecurse))
Duncan Sandsf24ed772011-05-02 16:27:02 +00001261 return V;
1262
1263 return 0;
1264}
1265
Micah Villmow3574eca2012-10-08 16:38:25 +00001266Value *llvm::SimplifyURemInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001267 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001268 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001269 return ::SimplifyURemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001270}
1271
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001272static Value *SimplifyFRemInst(Value *Op0, Value *Op1, const Query &,
Chad Rosier618c1db2011-12-01 03:08:23 +00001273 unsigned) {
Duncan Sandsf24ed772011-05-02 16:27:02 +00001274 // undef % X -> undef (the undef could be a snan).
1275 if (match(Op0, m_Undef()))
1276 return Op0;
1277
1278 // X % undef -> undef
1279 if (match(Op1, m_Undef()))
1280 return Op1;
1281
1282 return 0;
1283}
1284
Micah Villmow3574eca2012-10-08 16:38:25 +00001285Value *llvm::SimplifyFRemInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001286 const TargetLibraryInfo *TLI,
Duncan Sandsf24ed772011-05-02 16:27:02 +00001287 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001288 return ::SimplifyFRemInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsf24ed772011-05-02 16:27:02 +00001289}
1290
Duncan Sandscf80bc12011-01-14 14:44:12 +00001291/// SimplifyShift - Given operands for an Shl, LShr or AShr, see if we can
Duncan Sandsc43cee32011-01-14 00:37:45 +00001292/// fold the result. If not, this returns null.
Duncan Sandscf80bc12011-01-14 14:44:12 +00001293static Value *SimplifyShift(unsigned Opcode, Value *Op0, Value *Op1,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001294 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsc43cee32011-01-14 00:37:45 +00001295 if (Constant *C0 = dyn_cast<Constant>(Op0)) {
1296 if (Constant *C1 = dyn_cast<Constant>(Op1)) {
1297 Constant *Ops[] = { C0, C1 };
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001298 return ConstantFoldInstOperands(Opcode, C0->getType(), Ops, Q.TD, Q.TLI);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001299 }
1300 }
1301
Duncan Sandscf80bc12011-01-14 14:44:12 +00001302 // 0 shift by X -> 0
Duncan Sandsc43cee32011-01-14 00:37:45 +00001303 if (match(Op0, m_Zero()))
1304 return Op0;
1305
Duncan Sandscf80bc12011-01-14 14:44:12 +00001306 // X shift by 0 -> X
Duncan Sandsc43cee32011-01-14 00:37:45 +00001307 if (match(Op1, m_Zero()))
1308 return Op0;
1309
Duncan Sandscf80bc12011-01-14 14:44:12 +00001310 // X shift by undef -> undef because it may shift by the bitwidth.
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001311 if (match(Op1, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001312 return Op1;
1313
1314 // Shifting by the bitwidth or more is undefined.
1315 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1))
1316 if (CI->getValue().getLimitedValue() >=
1317 Op0->getType()->getScalarSizeInBits())
1318 return UndefValue::get(Op0->getType());
1319
Duncan Sandscf80bc12011-01-14 14:44:12 +00001320 // If the operation is with the result of a select instruction, check whether
1321 // operating on either branch of the select always yields the same value.
1322 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001323 if (Value *V = ThreadBinOpOverSelect(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001324 return V;
1325
1326 // If the operation is with the result of a phi instruction, check whether
1327 // operating on all incoming values of the phi always yields the same value.
1328 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001329 if (Value *V = ThreadBinOpOverPHI(Opcode, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001330 return V;
1331
1332 return 0;
1333}
1334
1335/// SimplifyShlInst - Given operands for an Shl, see if we can
1336/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001337static Value *SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001338 const Query &Q, unsigned MaxRecurse) {
1339 if (Value *V = SimplifyShift(Instruction::Shl, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001340 return V;
1341
1342 // undef << X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001343 if (match(Op0, m_Undef()))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001344 return Constant::getNullValue(Op0->getType());
1345
Chris Lattner81a0dc92011-02-09 17:15:04 +00001346 // (X >> A) << A -> X
1347 Value *X;
Benjamin Kramer55c6d572012-01-01 17:55:30 +00001348 if (match(Op0, m_Exact(m_Shr(m_Value(X), m_Specific(Op1)))))
Chris Lattner81a0dc92011-02-09 17:15:04 +00001349 return X;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001350 return 0;
1351}
1352
Chris Lattner81a0dc92011-02-09 17:15:04 +00001353Value *llvm::SimplifyShlInst(Value *Op0, Value *Op1, bool isNSW, bool isNUW,
Micah Villmow3574eca2012-10-08 16:38:25 +00001354 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +00001355 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001356 return ::SimplifyShlInst(Op0, Op1, isNSW, isNUW, Query (TD, TLI, DT),
1357 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001358}
1359
1360/// SimplifyLShrInst - Given operands for an LShr, see if we can
1361/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001362static Value *SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001363 const Query &Q, unsigned MaxRecurse) {
1364 if (Value *V = SimplifyShift(Instruction::LShr, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001365 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001366
David Majnemer8c5c6f02013-07-09 22:01:22 +00001367 // X >> X -> 0
1368 if (Op0 == Op1)
1369 return Constant::getNullValue(Op0->getType());
1370
Duncan Sandsc43cee32011-01-14 00:37:45 +00001371 // undef >>l X -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001372 if (match(Op0, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001373 return Constant::getNullValue(Op0->getType());
1374
Chris Lattner81a0dc92011-02-09 17:15:04 +00001375 // (X << A) >> A -> X
1376 Value *X;
1377 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1378 cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap())
1379 return X;
Duncan Sands52fb8462011-02-13 17:15:40 +00001380
Duncan Sandsc43cee32011-01-14 00:37:45 +00001381 return 0;
1382}
1383
Chris Lattner81a0dc92011-02-09 17:15:04 +00001384Value *llvm::SimplifyLShrInst(Value *Op0, Value *Op1, bool isExact,
Micah Villmow3574eca2012-10-08 16:38:25 +00001385 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001386 const TargetLibraryInfo *TLI,
1387 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001388 return ::SimplifyLShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1389 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001390}
1391
1392/// SimplifyAShrInst - Given operands for an AShr, see if we can
1393/// fold the result. If not, this returns null.
Chris Lattner81a0dc92011-02-09 17:15:04 +00001394static Value *SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001395 const Query &Q, unsigned MaxRecurse) {
1396 if (Value *V = SimplifyShift(Instruction::AShr, Op0, Op1, Q, MaxRecurse))
Duncan Sandscf80bc12011-01-14 14:44:12 +00001397 return V;
Duncan Sandsc43cee32011-01-14 00:37:45 +00001398
David Majnemer8c5c6f02013-07-09 22:01:22 +00001399 // X >> X -> 0
1400 if (Op0 == Op1)
1401 return Constant::getNullValue(Op0->getType());
1402
Duncan Sandsc43cee32011-01-14 00:37:45 +00001403 // all ones >>a X -> all ones
1404 if (match(Op0, m_AllOnes()))
1405 return Op0;
1406
1407 // undef >>a X -> all ones
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001408 if (match(Op0, m_Undef()))
Duncan Sandsc43cee32011-01-14 00:37:45 +00001409 return Constant::getAllOnesValue(Op0->getType());
1410
Chris Lattner81a0dc92011-02-09 17:15:04 +00001411 // (X << A) >> A -> X
1412 Value *X;
1413 if (match(Op0, m_Shl(m_Value(X), m_Specific(Op1))) &&
1414 cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap())
1415 return X;
Duncan Sands52fb8462011-02-13 17:15:40 +00001416
Duncan Sandsc43cee32011-01-14 00:37:45 +00001417 return 0;
1418}
1419
Chris Lattner81a0dc92011-02-09 17:15:04 +00001420Value *llvm::SimplifyAShrInst(Value *Op0, Value *Op1, bool isExact,
Micah Villmow3574eca2012-10-08 16:38:25 +00001421 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001422 const TargetLibraryInfo *TLI,
1423 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001424 return ::SimplifyAShrInst(Op0, Op1, isExact, Query (TD, TLI, DT),
1425 RecursionLimit);
Duncan Sandsc43cee32011-01-14 00:37:45 +00001426}
1427
Chris Lattnerd06094f2009-11-10 00:55:12 +00001428/// SimplifyAndInst - Given operands for an And, see if we can
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001429/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001430static Value *SimplifyAndInst(Value *Op0, Value *Op1, const Query &Q,
Chad Rosier618c1db2011-12-01 03:08:23 +00001431 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001432 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1433 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1434 Constant *Ops[] = { CLHS, CRHS };
1435 return ConstantFoldInstOperands(Instruction::And, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001436 Ops, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001437 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001438
Chris Lattnerd06094f2009-11-10 00:55:12 +00001439 // Canonicalize the constant to the RHS.
1440 std::swap(Op0, Op1);
1441 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001442
Chris Lattnerd06094f2009-11-10 00:55:12 +00001443 // X & undef -> 0
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001444 if (match(Op1, m_Undef()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001445 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001446
Chris Lattnerd06094f2009-11-10 00:55:12 +00001447 // X & X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001448 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001449 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001450
Duncan Sands2b749872010-11-17 18:52:15 +00001451 // X & 0 = 0
1452 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001453 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001454
Duncan Sands2b749872010-11-17 18:52:15 +00001455 // X & -1 = X
1456 if (match(Op1, m_AllOnes()))
1457 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001458
Chris Lattnerd06094f2009-11-10 00:55:12 +00001459 // A & ~A = ~A & A = 0
Chris Lattner81a0dc92011-02-09 17:15:04 +00001460 if (match(Op0, m_Not(m_Specific(Op1))) ||
1461 match(Op1, m_Not(m_Specific(Op0))))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001462 return Constant::getNullValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001463
Chris Lattnerd06094f2009-11-10 00:55:12 +00001464 // (A | ?) & A = A
Chris Lattner81a0dc92011-02-09 17:15:04 +00001465 Value *A = 0, *B = 0;
Chris Lattnerd06094f2009-11-10 00:55:12 +00001466 if (match(Op0, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001467 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001468 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001469
Chris Lattnerd06094f2009-11-10 00:55:12 +00001470 // A & (A | ?) = A
1471 if (match(Op1, m_Or(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001472 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001473 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001474
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001475 // A & (-A) = A if A is a power of two or zero.
1476 if (match(Op0, m_Neg(m_Specific(Op1))) ||
1477 match(Op1, m_Neg(m_Specific(Op0)))) {
Rafael Espindoladbaa2372012-12-13 03:37:24 +00001478 if (isKnownToBeAPowerOfTwo(Op0, /*OrZero*/true))
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001479 return Op0;
Rafael Espindoladbaa2372012-12-13 03:37:24 +00001480 if (isKnownToBeAPowerOfTwo(Op1, /*OrZero*/true))
Duncan Sandsdd3149d2011-10-26 20:55:21 +00001481 return Op1;
1482 }
1483
Duncan Sands566edb02010-12-21 08:49:00 +00001484 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001485 if (Value *V = SimplifyAssociativeBinOp(Instruction::And, Op0, Op1, Q,
1486 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001487 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001488
Duncan Sands3421d902010-12-21 13:32:22 +00001489 // And distributes over Or. Try some generic simplifications based on this.
1490 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Or,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001491 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001492 return V;
1493
1494 // And distributes over Xor. Try some generic simplifications based on this.
1495 if (Value *V = ExpandBinOp(Instruction::And, Op0, Op1, Instruction::Xor,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001496 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001497 return V;
1498
1499 // Or distributes over And. Try some generic simplifications based on this.
1500 if (Value *V = FactorizeBinOp(Instruction::And, Op0, Op1, Instruction::Or,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001501 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001502 return V;
1503
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001504 // If the operation is with the result of a select instruction, check whether
1505 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001506 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001507 if (Value *V = ThreadBinOpOverSelect(Instruction::And, Op0, Op1, Q,
1508 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001509 return V;
1510
1511 // If the operation is with the result of a phi instruction, check whether
1512 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001513 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001514 if (Value *V = ThreadBinOpOverPHI(Instruction::And, Op0, Op1, Q,
Duncan Sands0312a932010-12-21 09:09:15 +00001515 MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001516 return V;
1517
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001518 return 0;
1519}
1520
Micah Villmow3574eca2012-10-08 16:38:25 +00001521Value *llvm::SimplifyAndInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001522 const TargetLibraryInfo *TLI,
Duncan Sands18450092010-11-16 12:16:38 +00001523 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001524 return ::SimplifyAndInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001525}
1526
Chris Lattnerd06094f2009-11-10 00:55:12 +00001527/// SimplifyOrInst - Given operands for an Or, see if we can
1528/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001529static Value *SimplifyOrInst(Value *Op0, Value *Op1, const Query &Q,
1530 unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00001531 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1532 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1533 Constant *Ops[] = { CLHS, CRHS };
1534 return ConstantFoldInstOperands(Instruction::Or, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001535 Ops, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001536 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001537
Chris Lattnerd06094f2009-11-10 00:55:12 +00001538 // Canonicalize the constant to the RHS.
1539 std::swap(Op0, Op1);
1540 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001541
Chris Lattnerd06094f2009-11-10 00:55:12 +00001542 // X | undef -> -1
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001543 if (match(Op1, m_Undef()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001544 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001545
Chris Lattnerd06094f2009-11-10 00:55:12 +00001546 // X | X = X
Duncan Sands124708d2011-01-01 20:08:02 +00001547 if (Op0 == Op1)
Chris Lattnerd06094f2009-11-10 00:55:12 +00001548 return Op0;
1549
Duncan Sands2b749872010-11-17 18:52:15 +00001550 // X | 0 = X
1551 if (match(Op1, m_Zero()))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001552 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001553
Duncan Sands2b749872010-11-17 18:52:15 +00001554 // X | -1 = -1
1555 if (match(Op1, m_AllOnes()))
1556 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001557
Chris Lattnerd06094f2009-11-10 00:55:12 +00001558 // A | ~A = ~A | A = -1
Chris Lattner81a0dc92011-02-09 17:15:04 +00001559 if (match(Op0, m_Not(m_Specific(Op1))) ||
1560 match(Op1, m_Not(m_Specific(Op0))))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001561 return Constant::getAllOnesValue(Op0->getType());
Duncan Sands12a86f52010-11-14 11:23:23 +00001562
Chris Lattnerd06094f2009-11-10 00:55:12 +00001563 // (A & ?) | A = A
Chris Lattner81a0dc92011-02-09 17:15:04 +00001564 Value *A = 0, *B = 0;
Chris Lattnerd06094f2009-11-10 00:55:12 +00001565 if (match(Op0, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001566 (A == Op1 || B == Op1))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001567 return Op1;
Duncan Sands12a86f52010-11-14 11:23:23 +00001568
Chris Lattnerd06094f2009-11-10 00:55:12 +00001569 // A | (A & ?) = A
1570 if (match(Op1, m_And(m_Value(A), m_Value(B))) &&
Duncan Sands124708d2011-01-01 20:08:02 +00001571 (A == Op0 || B == Op0))
Chris Lattnerd06094f2009-11-10 00:55:12 +00001572 return Op0;
Duncan Sands12a86f52010-11-14 11:23:23 +00001573
Benjamin Kramer38f7f662011-02-20 15:20:01 +00001574 // ~(A & ?) | A = -1
1575 if (match(Op0, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1576 (A == Op1 || B == Op1))
1577 return Constant::getAllOnesValue(Op1->getType());
1578
1579 // A | ~(A & ?) = -1
1580 if (match(Op1, m_Not(m_And(m_Value(A), m_Value(B)))) &&
1581 (A == Op0 || B == Op0))
1582 return Constant::getAllOnesValue(Op0->getType());
1583
Duncan Sands566edb02010-12-21 08:49:00 +00001584 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001585 if (Value *V = SimplifyAssociativeBinOp(Instruction::Or, Op0, Op1, Q,
1586 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001587 return V;
Benjamin Kramer6844c8e2010-09-10 22:39:55 +00001588
Duncan Sands3421d902010-12-21 13:32:22 +00001589 // Or distributes over And. Try some generic simplifications based on this.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001590 if (Value *V = ExpandBinOp(Instruction::Or, Op0, Op1, Instruction::And, Q,
1591 MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001592 return V;
1593
1594 // And distributes over Or. Try some generic simplifications based on this.
1595 if (Value *V = FactorizeBinOp(Instruction::Or, Op0, Op1, Instruction::And,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001596 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001597 return V;
1598
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001599 // If the operation is with the result of a select instruction, check whether
1600 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001601 if (isa<SelectInst>(Op0) || isa<SelectInst>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001602 if (Value *V = ThreadBinOpOverSelect(Instruction::Or, Op0, Op1, Q,
Duncan Sands0312a932010-12-21 09:09:15 +00001603 MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001604 return V;
1605
1606 // If the operation is with the result of a phi instruction, check whether
1607 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00001608 if (isa<PHINode>(Op0) || isa<PHINode>(Op1))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001609 if (Value *V = ThreadBinOpOverPHI(Instruction::Or, Op0, Op1, Q, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00001610 return V;
1611
Chris Lattnerd06094f2009-11-10 00:55:12 +00001612 return 0;
1613}
1614
Micah Villmow3574eca2012-10-08 16:38:25 +00001615Value *llvm::SimplifyOrInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001616 const TargetLibraryInfo *TLI,
Duncan Sands18450092010-11-16 12:16:38 +00001617 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001618 return ::SimplifyOrInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001619}
Chris Lattnerd06094f2009-11-10 00:55:12 +00001620
Duncan Sands2b749872010-11-17 18:52:15 +00001621/// SimplifyXorInst - Given operands for a Xor, see if we can
1622/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001623static Value *SimplifyXorInst(Value *Op0, Value *Op1, const Query &Q,
1624 unsigned MaxRecurse) {
Duncan Sands2b749872010-11-17 18:52:15 +00001625 if (Constant *CLHS = dyn_cast<Constant>(Op0)) {
1626 if (Constant *CRHS = dyn_cast<Constant>(Op1)) {
1627 Constant *Ops[] = { CLHS, CRHS };
1628 return ConstantFoldInstOperands(Instruction::Xor, CLHS->getType(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001629 Ops, Q.TD, Q.TLI);
Duncan Sands2b749872010-11-17 18:52:15 +00001630 }
1631
1632 // Canonicalize the constant to the RHS.
1633 std::swap(Op0, Op1);
1634 }
1635
1636 // A ^ undef -> undef
Duncan Sandsf9e4a982011-02-01 09:06:20 +00001637 if (match(Op1, m_Undef()))
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00001638 return Op1;
Duncan Sands2b749872010-11-17 18:52:15 +00001639
1640 // A ^ 0 = A
1641 if (match(Op1, m_Zero()))
1642 return Op0;
1643
Eli Friedmanf23d4ad2011-08-17 19:31:49 +00001644 // A ^ A = 0
1645 if (Op0 == Op1)
1646 return Constant::getNullValue(Op0->getType());
1647
Duncan Sands2b749872010-11-17 18:52:15 +00001648 // A ^ ~A = ~A ^ A = -1
Chris Lattner81a0dc92011-02-09 17:15:04 +00001649 if (match(Op0, m_Not(m_Specific(Op1))) ||
1650 match(Op1, m_Not(m_Specific(Op0))))
Duncan Sands2b749872010-11-17 18:52:15 +00001651 return Constant::getAllOnesValue(Op0->getType());
1652
Duncan Sands566edb02010-12-21 08:49:00 +00001653 // Try some generic simplifications for associative operations.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001654 if (Value *V = SimplifyAssociativeBinOp(Instruction::Xor, Op0, Op1, Q,
1655 MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00001656 return V;
Duncan Sands2b749872010-11-17 18:52:15 +00001657
Duncan Sands3421d902010-12-21 13:32:22 +00001658 // And distributes over Xor. Try some generic simplifications based on this.
1659 if (Value *V = FactorizeBinOp(Instruction::Xor, Op0, Op1, Instruction::And,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001660 Q, MaxRecurse))
Duncan Sands3421d902010-12-21 13:32:22 +00001661 return V;
1662
Duncan Sands87689cf2010-11-19 09:20:39 +00001663 // Threading Xor over selects and phi nodes is pointless, so don't bother.
1664 // Threading over the select in "A ^ select(cond, B, C)" means evaluating
1665 // "A^B" and "A^C" and seeing if they are equal; but they are equal if and
1666 // only if B and C are equal. If B and C are equal then (since we assume
1667 // that operands have already been simplified) "select(cond, B, C)" should
1668 // have been simplified to the common value of B and C already. Analysing
1669 // "A^B" and "A^C" thus gains nothing, but costs compile time. Similarly
1670 // for threading over phi nodes.
Duncan Sands2b749872010-11-17 18:52:15 +00001671
1672 return 0;
1673}
1674
Micah Villmow3574eca2012-10-08 16:38:25 +00001675Value *llvm::SimplifyXorInst(Value *Op0, Value *Op1, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00001676 const TargetLibraryInfo *TLI,
Duncan Sands2b749872010-11-17 18:52:15 +00001677 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001678 return ::SimplifyXorInst(Op0, Op1, Query (TD, TLI, DT), RecursionLimit);
Duncan Sands2b749872010-11-17 18:52:15 +00001679}
1680
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001681static Type *GetCompareTy(Value *Op) {
Chris Lattner210c5d42009-11-09 23:55:12 +00001682 return CmpInst::makeCmpResultType(Op->getType());
1683}
1684
Duncan Sandse864b5b2011-05-07 16:56:49 +00001685/// ExtractEquivalentCondition - Rummage around inside V looking for something
1686/// equivalent to the comparison "LHS Pred RHS". Return such a value if found,
1687/// otherwise return null. Helper function for analyzing max/min idioms.
1688static Value *ExtractEquivalentCondition(Value *V, CmpInst::Predicate Pred,
1689 Value *LHS, Value *RHS) {
1690 SelectInst *SI = dyn_cast<SelectInst>(V);
1691 if (!SI)
1692 return 0;
1693 CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
1694 if (!Cmp)
1695 return 0;
1696 Value *CmpLHS = Cmp->getOperand(0), *CmpRHS = Cmp->getOperand(1);
1697 if (Pred == Cmp->getPredicate() && LHS == CmpLHS && RHS == CmpRHS)
1698 return Cmp;
1699 if (Pred == CmpInst::getSwappedPredicate(Cmp->getPredicate()) &&
1700 LHS == CmpRHS && RHS == CmpLHS)
1701 return Cmp;
1702 return 0;
1703}
1704
Dan Gohman901261d2013-02-01 00:49:06 +00001705// A significant optimization not implemented here is assuming that alloca
1706// addresses are not equal to incoming argument values. They don't *alias*,
1707// as we say, but that doesn't mean they aren't equal, so we take a
1708// conservative approach.
1709//
1710// This is inspired in part by C++11 5.10p1:
1711// "Two pointers of the same type compare equal if and only if they are both
1712// null, both point to the same function, or both represent the same
1713// address."
1714//
1715// This is pretty permissive.
1716//
1717// It's also partly due to C11 6.5.9p6:
1718// "Two pointers compare equal if and only if both are null pointers, both are
1719// pointers to the same object (including a pointer to an object and a
1720// subobject at its beginning) or function, both are pointers to one past the
1721// last element of the same array object, or one is a pointer to one past the
1722// end of one array object and the other is a pointer to the start of a
NAKAMURA Takumi92c37422013-04-08 23:05:21 +00001723// different array object that happens to immediately follow the first array
Dan Gohman901261d2013-02-01 00:49:06 +00001724// object in the address space.)
1725//
1726// C11's version is more restrictive, however there's no reason why an argument
1727// couldn't be a one-past-the-end value for a stack object in the caller and be
1728// equal to the beginning of a stack object in the callee.
1729//
1730// If the C and C++ standards are ever made sufficiently restrictive in this
1731// area, it may be possible to update LLVM's semantics accordingly and reinstate
1732// this optimization.
Dan Gohman3e3de562013-01-31 02:50:36 +00001733static Constant *computePointerICmp(const DataLayout *TD,
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001734 const TargetLibraryInfo *TLI,
Chandler Carruth58725a62012-03-25 21:28:14 +00001735 CmpInst::Predicate Pred,
1736 Value *LHS, Value *RHS) {
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001737 // First, skip past any trivial no-ops.
1738 LHS = LHS->stripPointerCasts();
1739 RHS = RHS->stripPointerCasts();
1740
1741 // A non-null pointer is not equal to a null pointer.
Benjamin Kramer66292102013-09-24 16:37:51 +00001742 if (llvm::isKnownNonNull(LHS, TLI) && isa<ConstantPointerNull>(RHS) &&
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001743 (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE))
1744 return ConstantInt::get(GetCompareTy(LHS),
1745 !CmpInst::isTrueWhenEqual(Pred));
1746
Chandler Carruth58725a62012-03-25 21:28:14 +00001747 // We can only fold certain predicates on pointer comparisons.
1748 switch (Pred) {
1749 default:
1750 return 0;
1751
1752 // Equality comaprisons are easy to fold.
1753 case CmpInst::ICMP_EQ:
1754 case CmpInst::ICMP_NE:
1755 break;
1756
1757 // We can only handle unsigned relational comparisons because 'inbounds' on
1758 // a GEP only protects against unsigned wrapping.
1759 case CmpInst::ICMP_UGT:
1760 case CmpInst::ICMP_UGE:
1761 case CmpInst::ICMP_ULT:
1762 case CmpInst::ICMP_ULE:
1763 // However, we have to switch them to their signed variants to handle
1764 // negative indices from the base pointer.
1765 Pred = ICmpInst::getSignedPredicate(Pred);
1766 break;
1767 }
1768
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001769 // Strip off any constant offsets so that we can reason about them.
1770 // It's tempting to use getUnderlyingObject or even just stripInBoundsOffsets
1771 // here and compare base addresses like AliasAnalysis does, however there are
1772 // numerous hazards. AliasAnalysis and its utilities rely on special rules
1773 // governing loads and stores which don't apply to icmps. Also, AliasAnalysis
1774 // doesn't need to guarantee pointer inequality when it says NoAlias.
Benjamin Kramerd9f32c22013-02-01 15:21:10 +00001775 Constant *LHSOffset = stripAndComputeConstantOffsets(TD, LHS);
1776 Constant *RHSOffset = stripAndComputeConstantOffsets(TD, RHS);
Chandler Carruth58725a62012-03-25 21:28:14 +00001777
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001778 // If LHS and RHS are related via constant offsets to the same base
1779 // value, we can replace it with an icmp which just compares the offsets.
1780 if (LHS == RHS)
1781 return ConstantExpr::getICmp(Pred, LHSOffset, RHSOffset);
Chandler Carruth58725a62012-03-25 21:28:14 +00001782
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001783 // Various optimizations for (in)equality comparisons.
1784 if (Pred == CmpInst::ICMP_EQ || Pred == CmpInst::ICMP_NE) {
1785 // Different non-empty allocations that exist at the same time have
1786 // different addresses (if the program can tell). Global variables always
1787 // exist, so they always exist during the lifetime of each other and all
1788 // allocas. Two different allocas usually have different addresses...
1789 //
1790 // However, if there's an @llvm.stackrestore dynamically in between two
1791 // allocas, they may have the same address. It's tempting to reduce the
1792 // scope of the problem by only looking at *static* allocas here. That would
1793 // cover the majority of allocas while significantly reducing the likelihood
1794 // of having an @llvm.stackrestore pop up in the middle. However, it's not
1795 // actually impossible for an @llvm.stackrestore to pop up in the middle of
1796 // an entry block. Also, if we have a block that's not attached to a
1797 // function, we can't tell if it's "static" under the current definition.
1798 // Theoretically, this problem could be fixed by creating a new kind of
1799 // instruction kind specifically for static allocas. Such a new instruction
1800 // could be required to be at the top of the entry block, thus preventing it
1801 // from being subject to a @llvm.stackrestore. Instcombine could even
1802 // convert regular allocas into these special allocas. It'd be nifty.
1803 // However, until then, this problem remains open.
1804 //
1805 // So, we'll assume that two non-empty allocas have different addresses
1806 // for now.
1807 //
1808 // With all that, if the offsets are within the bounds of their allocations
1809 // (and not one-past-the-end! so we can't use inbounds!), and their
1810 // allocations aren't the same, the pointers are not equal.
1811 //
1812 // Note that it's not necessary to check for LHS being a global variable
1813 // address, due to canonicalization and constant folding.
1814 if (isa<AllocaInst>(LHS) &&
1815 (isa<AllocaInst>(RHS) || isa<GlobalVariable>(RHS))) {
Benjamin Kramerd9f32c22013-02-01 15:21:10 +00001816 ConstantInt *LHSOffsetCI = dyn_cast<ConstantInt>(LHSOffset);
1817 ConstantInt *RHSOffsetCI = dyn_cast<ConstantInt>(RHSOffset);
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001818 uint64_t LHSSize, RHSSize;
Benjamin Kramerd9f32c22013-02-01 15:21:10 +00001819 if (LHSOffsetCI && RHSOffsetCI &&
1820 getObjectSize(LHS, LHSSize, TD, TLI) &&
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001821 getObjectSize(RHS, RHSSize, TD, TLI)) {
Benjamin Kramerd9f32c22013-02-01 15:21:10 +00001822 const APInt &LHSOffsetValue = LHSOffsetCI->getValue();
1823 const APInt &RHSOffsetValue = RHSOffsetCI->getValue();
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001824 if (!LHSOffsetValue.isNegative() &&
1825 !RHSOffsetValue.isNegative() &&
1826 LHSOffsetValue.ult(LHSSize) &&
1827 RHSOffsetValue.ult(RHSSize)) {
1828 return ConstantInt::get(GetCompareTy(LHS),
1829 !CmpInst::isTrueWhenEqual(Pred));
1830 }
1831 }
1832
1833 // Repeat the above check but this time without depending on DataLayout
1834 // or being able to compute a precise size.
1835 if (!cast<PointerType>(LHS->getType())->isEmptyTy() &&
1836 !cast<PointerType>(RHS->getType())->isEmptyTy() &&
1837 LHSOffset->isNullValue() &&
1838 RHSOffset->isNullValue())
1839 return ConstantInt::get(GetCompareTy(LHS),
1840 !CmpInst::isTrueWhenEqual(Pred));
1841 }
Benjamin Kramerbaca5332013-09-23 14:16:38 +00001842
1843 // Even if an non-inbounds GEP occurs along the path we can still optimize
1844 // equality comparisons concerning the result. We avoid walking the whole
1845 // chain again by starting where the last calls to
1846 // stripAndComputeConstantOffsets left off and accumulate the offsets.
1847 Constant *LHSNoBound = stripAndComputeConstantOffsets(TD, LHS, true);
1848 Constant *RHSNoBound = stripAndComputeConstantOffsets(TD, RHS, true);
1849 if (LHS == RHS)
1850 return ConstantExpr::getICmp(Pred,
1851 ConstantExpr::getAdd(LHSOffset, LHSNoBound),
1852 ConstantExpr::getAdd(RHSOffset, RHSNoBound));
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00001853 }
1854
1855 // Otherwise, fail.
1856 return 0;
Chandler Carruth58725a62012-03-25 21:28:14 +00001857}
Chris Lattner009e2652012-02-24 19:01:58 +00001858
Chris Lattner9dbb4292009-11-09 23:28:39 +00001859/// SimplifyICmpInst - Given operands for an ICmpInst, see if we can
1860/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00001861static Value *SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001862 const Query &Q, unsigned MaxRecurse) {
Chris Lattner9f3c25a2009-11-09 22:57:59 +00001863 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
Chris Lattner9dbb4292009-11-09 23:28:39 +00001864 assert(CmpInst::isIntPredicate(Pred) && "Not an integer compare!");
Duncan Sands12a86f52010-11-14 11:23:23 +00001865
Chris Lattnerd06094f2009-11-10 00:55:12 +00001866 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner8f73dea2009-11-09 23:06:58 +00001867 if (Constant *CRHS = dyn_cast<Constant>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001868 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00001869
1870 // If we have a constant, make sure it is on the RHS.
1871 std::swap(LHS, RHS);
1872 Pred = CmpInst::getSwappedPredicate(Pred);
1873 }
Duncan Sands12a86f52010-11-14 11:23:23 +00001874
Chris Lattnerdb125cf2011-07-18 04:54:35 +00001875 Type *ITy = GetCompareTy(LHS); // The return type.
1876 Type *OpTy = LHS->getType(); // The operand type.
Duncan Sands12a86f52010-11-14 11:23:23 +00001877
Chris Lattner210c5d42009-11-09 23:55:12 +00001878 // icmp X, X -> true/false
Chris Lattnerc8e14b32010-03-03 19:46:03 +00001879 // X icmp undef -> true/false. For example, icmp ugt %X, undef -> false
1880 // because X could be 0.
Duncan Sands124708d2011-01-01 20:08:02 +00001881 if (LHS == RHS || isa<UndefValue>(RHS))
Chris Lattner210c5d42009-11-09 23:55:12 +00001882 return ConstantInt::get(ITy, CmpInst::isTrueWhenEqual(Pred));
Duncan Sands12a86f52010-11-14 11:23:23 +00001883
Duncan Sands6dc91252011-01-13 08:56:29 +00001884 // Special case logic when the operands have i1 type.
Nick Lewycky66d004e2011-12-01 02:39:36 +00001885 if (OpTy->getScalarType()->isIntegerTy(1)) {
Duncan Sands6dc91252011-01-13 08:56:29 +00001886 switch (Pred) {
1887 default: break;
1888 case ICmpInst::ICMP_EQ:
1889 // X == 1 -> X
1890 if (match(RHS, m_One()))
1891 return LHS;
1892 break;
1893 case ICmpInst::ICMP_NE:
1894 // X != 0 -> X
1895 if (match(RHS, m_Zero()))
1896 return LHS;
1897 break;
1898 case ICmpInst::ICMP_UGT:
1899 // X >u 0 -> X
1900 if (match(RHS, m_Zero()))
1901 return LHS;
1902 break;
1903 case ICmpInst::ICMP_UGE:
1904 // X >=u 1 -> X
1905 if (match(RHS, m_One()))
1906 return LHS;
1907 break;
1908 case ICmpInst::ICMP_SLT:
1909 // X <s 0 -> X
1910 if (match(RHS, m_Zero()))
1911 return LHS;
1912 break;
1913 case ICmpInst::ICMP_SLE:
1914 // X <=s -1 -> X
1915 if (match(RHS, m_One()))
1916 return LHS;
1917 break;
1918 }
1919 }
1920
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001921 // If we are comparing with zero then try hard since this is a common case.
1922 if (match(RHS, m_Zero())) {
1923 bool LHSKnownNonNegative, LHSKnownNegative;
1924 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00001925 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001926 case ICmpInst::ICMP_ULT:
Duncan Sandsf56138d2011-07-26 15:03:53 +00001927 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001928 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00001929 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001930 case ICmpInst::ICMP_EQ:
1931 case ICmpInst::ICMP_ULE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001932 if (isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001933 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001934 break;
1935 case ICmpInst::ICMP_NE:
1936 case ICmpInst::ICMP_UGT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001937 if (isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001938 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001939 break;
1940 case ICmpInst::ICMP_SLT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001941 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001942 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001943 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001944 if (LHSKnownNonNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001945 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001946 break;
1947 case ICmpInst::ICMP_SLE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001948 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001949 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001950 return getTrue(ITy);
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001951 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001952 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001953 break;
1954 case ICmpInst::ICMP_SGE:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001955 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001956 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001957 return getFalse(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001958 if (LHSKnownNonNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001959 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001960 break;
1961 case ICmpInst::ICMP_SGT:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001962 ComputeSignBit(LHS, LHSKnownNonNegative, LHSKnownNegative, Q.TD);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001963 if (LHSKnownNegative)
Duncan Sandsf56138d2011-07-26 15:03:53 +00001964 return getFalse(ITy);
Duncan Sands0aa85eb2012-03-13 11:42:19 +00001965 if (LHSKnownNonNegative && isKnownNonZero(LHS, Q.TD))
Duncan Sandsf56138d2011-07-26 15:03:53 +00001966 return getTrue(ITy);
Duncan Sandsd70d1a52011-01-25 09:38:29 +00001967 break;
1968 }
1969 }
1970
1971 // See if we are doing a comparison with a constant integer.
Duncan Sands6dc91252011-01-13 08:56:29 +00001972 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
Nick Lewycky3a73e342011-03-04 07:00:57 +00001973 // Rule out tautological comparisons (eg., ult 0 or uge 0).
1974 ConstantRange RHS_CR = ICmpInst::makeConstantRange(Pred, CI->getValue());
1975 if (RHS_CR.isEmptySet())
1976 return ConstantInt::getFalse(CI->getContext());
1977 if (RHS_CR.isFullSet())
1978 return ConstantInt::getTrue(CI->getContext());
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00001979
Nick Lewycky3a73e342011-03-04 07:00:57 +00001980 // Many binary operators with constant RHS have easy to compute constant
1981 // range. Use them to check whether the comparison is a tautology.
1982 uint32_t Width = CI->getBitWidth();
1983 APInt Lower = APInt(Width, 0);
1984 APInt Upper = APInt(Width, 0);
1985 ConstantInt *CI2;
1986 if (match(LHS, m_URem(m_Value(), m_ConstantInt(CI2)))) {
1987 // 'urem x, CI2' produces [0, CI2).
1988 Upper = CI2->getValue();
1989 } else if (match(LHS, m_SRem(m_Value(), m_ConstantInt(CI2)))) {
1990 // 'srem x, CI2' produces (-|CI2|, |CI2|).
1991 Upper = CI2->getValue().abs();
1992 Lower = (-Upper) + 1;
Duncan Sandsc65c7472011-10-28 18:17:44 +00001993 } else if (match(LHS, m_UDiv(m_ConstantInt(CI2), m_Value()))) {
1994 // 'udiv CI2, x' produces [0, CI2].
Eli Friedman7781ae52011-11-08 21:08:02 +00001995 Upper = CI2->getValue() + 1;
Nick Lewycky3a73e342011-03-04 07:00:57 +00001996 } else if (match(LHS, m_UDiv(m_Value(), m_ConstantInt(CI2)))) {
1997 // 'udiv x, CI2' produces [0, UINT_MAX / CI2].
1998 APInt NegOne = APInt::getAllOnesValue(Width);
1999 if (!CI2->isZero())
2000 Upper = NegOne.udiv(CI2->getValue()) + 1;
2001 } else if (match(LHS, m_SDiv(m_Value(), m_ConstantInt(CI2)))) {
2002 // 'sdiv x, CI2' produces [INT_MIN / CI2, INT_MAX / CI2].
2003 APInt IntMin = APInt::getSignedMinValue(Width);
2004 APInt IntMax = APInt::getSignedMaxValue(Width);
2005 APInt Val = CI2->getValue().abs();
2006 if (!Val.isMinValue()) {
2007 Lower = IntMin.sdiv(Val);
2008 Upper = IntMax.sdiv(Val) + 1;
2009 }
2010 } else if (match(LHS, m_LShr(m_Value(), m_ConstantInt(CI2)))) {
2011 // 'lshr x, CI2' produces [0, UINT_MAX >> CI2].
2012 APInt NegOne = APInt::getAllOnesValue(Width);
2013 if (CI2->getValue().ult(Width))
2014 Upper = NegOne.lshr(CI2->getValue()) + 1;
2015 } else if (match(LHS, m_AShr(m_Value(), m_ConstantInt(CI2)))) {
2016 // 'ashr x, CI2' produces [INT_MIN >> CI2, INT_MAX >> CI2].
2017 APInt IntMin = APInt::getSignedMinValue(Width);
2018 APInt IntMax = APInt::getSignedMaxValue(Width);
2019 if (CI2->getValue().ult(Width)) {
2020 Lower = IntMin.ashr(CI2->getValue());
2021 Upper = IntMax.ashr(CI2->getValue()) + 1;
2022 }
2023 } else if (match(LHS, m_Or(m_Value(), m_ConstantInt(CI2)))) {
2024 // 'or x, CI2' produces [CI2, UINT_MAX].
2025 Lower = CI2->getValue();
2026 } else if (match(LHS, m_And(m_Value(), m_ConstantInt(CI2)))) {
2027 // 'and x, CI2' produces [0, CI2].
2028 Upper = CI2->getValue() + 1;
2029 }
2030 if (Lower != Upper) {
2031 ConstantRange LHS_CR = ConstantRange(Lower, Upper);
2032 if (RHS_CR.contains(LHS_CR))
2033 return ConstantInt::getTrue(RHS->getContext());
2034 if (RHS_CR.inverse().contains(LHS_CR))
2035 return ConstantInt::getFalse(RHS->getContext());
2036 }
Duncan Sands6dc91252011-01-13 08:56:29 +00002037 }
2038
Duncan Sands9d32f602011-01-20 13:21:55 +00002039 // Compare of cast, for example (zext X) != 0 -> X != 0
2040 if (isa<CastInst>(LHS) && (isa<Constant>(RHS) || isa<CastInst>(RHS))) {
2041 Instruction *LI = cast<CastInst>(LHS);
2042 Value *SrcOp = LI->getOperand(0);
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002043 Type *SrcTy = SrcOp->getType();
2044 Type *DstTy = LI->getType();
Duncan Sands9d32f602011-01-20 13:21:55 +00002045
2046 // Turn icmp (ptrtoint x), (ptrtoint/constant) into a compare of the input
2047 // if the integer type is the same size as the pointer type.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002048 if (MaxRecurse && Q.TD && isa<PtrToIntInst>(LI) &&
Matt Arsenault7eef3bd2013-08-02 00:10:44 +00002049 Q.TD->getTypeSizeInBits(SrcTy) == DstTy->getPrimitiveSizeInBits()) {
Duncan Sands9d32f602011-01-20 13:21:55 +00002050 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2051 // Transfer the cast to the constant.
2052 if (Value *V = SimplifyICmpInst(Pred, SrcOp,
2053 ConstantExpr::getIntToPtr(RHSC, SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002054 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002055 return V;
2056 } else if (PtrToIntInst *RI = dyn_cast<PtrToIntInst>(RHS)) {
2057 if (RI->getOperand(0)->getType() == SrcTy)
2058 // Compare without the cast.
2059 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002060 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002061 return V;
2062 }
2063 }
2064
2065 if (isa<ZExtInst>(LHS)) {
2066 // Turn icmp (zext X), (zext Y) into a compare of X and Y if they have the
2067 // same type.
2068 if (ZExtInst *RI = dyn_cast<ZExtInst>(RHS)) {
2069 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2070 // Compare X and Y. Note that signed predicates become unsigned.
2071 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002072 SrcOp, RI->getOperand(0), Q,
Duncan Sands9d32f602011-01-20 13:21:55 +00002073 MaxRecurse-1))
2074 return V;
2075 }
2076 // Turn icmp (zext X), Cst into a compare of X and Cst if Cst is extended
2077 // too. If not, then try to deduce the result of the comparison.
2078 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2079 // Compute the constant that would happen if we truncated to SrcTy then
2080 // reextended to DstTy.
2081 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2082 Constant *RExt = ConstantExpr::getCast(CastInst::ZExt, Trunc, DstTy);
2083
2084 // If the re-extended constant didn't change then this is effectively
2085 // also a case of comparing two zero-extended values.
2086 if (RExt == CI && MaxRecurse)
2087 if (Value *V = SimplifyICmpInst(ICmpInst::getUnsignedPredicate(Pred),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002088 SrcOp, Trunc, Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002089 return V;
2090
2091 // Otherwise the upper bits of LHS are zero while RHS has a non-zero bit
2092 // there. Use this to work out the result of the comparison.
2093 if (RExt != CI) {
2094 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00002095 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sands9d32f602011-01-20 13:21:55 +00002096 // LHS <u RHS.
2097 case ICmpInst::ICMP_EQ:
2098 case ICmpInst::ICMP_UGT:
2099 case ICmpInst::ICMP_UGE:
2100 return ConstantInt::getFalse(CI->getContext());
2101
2102 case ICmpInst::ICMP_NE:
2103 case ICmpInst::ICMP_ULT:
2104 case ICmpInst::ICMP_ULE:
2105 return ConstantInt::getTrue(CI->getContext());
2106
2107 // LHS is non-negative. If RHS is negative then LHS >s LHS. If RHS
2108 // is non-negative then LHS <s RHS.
2109 case ICmpInst::ICMP_SGT:
2110 case ICmpInst::ICMP_SGE:
2111 return CI->getValue().isNegative() ?
2112 ConstantInt::getTrue(CI->getContext()) :
2113 ConstantInt::getFalse(CI->getContext());
2114
2115 case ICmpInst::ICMP_SLT:
2116 case ICmpInst::ICMP_SLE:
2117 return CI->getValue().isNegative() ?
2118 ConstantInt::getFalse(CI->getContext()) :
2119 ConstantInt::getTrue(CI->getContext());
2120 }
2121 }
2122 }
2123 }
2124
2125 if (isa<SExtInst>(LHS)) {
2126 // Turn icmp (sext X), (sext Y) into a compare of X and Y if they have the
2127 // same type.
2128 if (SExtInst *RI = dyn_cast<SExtInst>(RHS)) {
2129 if (MaxRecurse && SrcTy == RI->getOperand(0)->getType())
2130 // Compare X and Y. Note that the predicate does not change.
2131 if (Value *V = SimplifyICmpInst(Pred, SrcOp, RI->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002132 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002133 return V;
2134 }
2135 // Turn icmp (sext X), Cst into a compare of X and Cst if Cst is extended
2136 // too. If not, then try to deduce the result of the comparison.
2137 else if (ConstantInt *CI = dyn_cast<ConstantInt>(RHS)) {
2138 // Compute the constant that would happen if we truncated to SrcTy then
2139 // reextended to DstTy.
2140 Constant *Trunc = ConstantExpr::getTrunc(CI, SrcTy);
2141 Constant *RExt = ConstantExpr::getCast(CastInst::SExt, Trunc, DstTy);
2142
2143 // If the re-extended constant didn't change then this is effectively
2144 // also a case of comparing two sign-extended values.
2145 if (RExt == CI && MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002146 if (Value *V = SimplifyICmpInst(Pred, SrcOp, Trunc, Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002147 return V;
2148
2149 // Otherwise the upper bits of LHS are all equal, while RHS has varying
2150 // bits there. Use this to work out the result of the comparison.
2151 if (RExt != CI) {
2152 switch (Pred) {
Craig Topper85814382012-02-07 05:05:23 +00002153 default: llvm_unreachable("Unknown ICmp predicate!");
Duncan Sands9d32f602011-01-20 13:21:55 +00002154 case ICmpInst::ICMP_EQ:
2155 return ConstantInt::getFalse(CI->getContext());
2156 case ICmpInst::ICMP_NE:
2157 return ConstantInt::getTrue(CI->getContext());
2158
2159 // If RHS is non-negative then LHS <s RHS. If RHS is negative then
2160 // LHS >s RHS.
2161 case ICmpInst::ICMP_SGT:
2162 case ICmpInst::ICMP_SGE:
2163 return CI->getValue().isNegative() ?
2164 ConstantInt::getTrue(CI->getContext()) :
2165 ConstantInt::getFalse(CI->getContext());
2166 case ICmpInst::ICMP_SLT:
2167 case ICmpInst::ICMP_SLE:
2168 return CI->getValue().isNegative() ?
2169 ConstantInt::getFalse(CI->getContext()) :
2170 ConstantInt::getTrue(CI->getContext());
2171
2172 // If LHS is non-negative then LHS <u RHS. If LHS is negative then
2173 // LHS >u RHS.
2174 case ICmpInst::ICMP_UGT:
2175 case ICmpInst::ICMP_UGE:
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002176 // Comparison is true iff the LHS <s 0.
Duncan Sands9d32f602011-01-20 13:21:55 +00002177 if (MaxRecurse)
2178 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SLT, SrcOp,
2179 Constant::getNullValue(SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002180 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002181 return V;
2182 break;
2183 case ICmpInst::ICMP_ULT:
2184 case ICmpInst::ICMP_ULE:
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002185 // Comparison is true iff the LHS >=s 0.
Duncan Sands9d32f602011-01-20 13:21:55 +00002186 if (MaxRecurse)
2187 if (Value *V = SimplifyICmpInst(ICmpInst::ICMP_SGE, SrcOp,
2188 Constant::getNullValue(SrcTy),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002189 Q, MaxRecurse-1))
Duncan Sands9d32f602011-01-20 13:21:55 +00002190 return V;
2191 break;
2192 }
2193 }
2194 }
2195 }
2196 }
2197
Duncan Sands52fb8462011-02-13 17:15:40 +00002198 // Special logic for binary operators.
2199 BinaryOperator *LBO = dyn_cast<BinaryOperator>(LHS);
2200 BinaryOperator *RBO = dyn_cast<BinaryOperator>(RHS);
2201 if (MaxRecurse && (LBO || RBO)) {
Duncan Sands52fb8462011-02-13 17:15:40 +00002202 // Analyze the case when either LHS or RHS is an add instruction.
2203 Value *A = 0, *B = 0, *C = 0, *D = 0;
2204 // LHS = A + B (or A and B are null); RHS = C + D (or C and D are null).
2205 bool NoLHSWrapProblem = false, NoRHSWrapProblem = false;
2206 if (LBO && LBO->getOpcode() == Instruction::Add) {
2207 A = LBO->getOperand(0); B = LBO->getOperand(1);
2208 NoLHSWrapProblem = ICmpInst::isEquality(Pred) ||
2209 (CmpInst::isUnsigned(Pred) && LBO->hasNoUnsignedWrap()) ||
2210 (CmpInst::isSigned(Pred) && LBO->hasNoSignedWrap());
2211 }
2212 if (RBO && RBO->getOpcode() == Instruction::Add) {
2213 C = RBO->getOperand(0); D = RBO->getOperand(1);
2214 NoRHSWrapProblem = ICmpInst::isEquality(Pred) ||
2215 (CmpInst::isUnsigned(Pred) && RBO->hasNoUnsignedWrap()) ||
2216 (CmpInst::isSigned(Pred) && RBO->hasNoSignedWrap());
2217 }
2218
2219 // icmp (X+Y), X -> icmp Y, 0 for equalities or if there is no overflow.
2220 if ((A == RHS || B == RHS) && NoLHSWrapProblem)
2221 if (Value *V = SimplifyICmpInst(Pred, A == RHS ? B : A,
2222 Constant::getNullValue(RHS->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002223 Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002224 return V;
2225
2226 // icmp X, (X+Y) -> icmp 0, Y for equalities or if there is no overflow.
2227 if ((C == LHS || D == LHS) && NoRHSWrapProblem)
2228 if (Value *V = SimplifyICmpInst(Pred,
2229 Constant::getNullValue(LHS->getType()),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002230 C == LHS ? D : C, Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002231 return V;
2232
2233 // icmp (X+Y), (X+Z) -> icmp Y,Z for equalities or if there is no overflow.
2234 if (A && C && (A == C || A == D || B == C || B == D) &&
2235 NoLHSWrapProblem && NoRHSWrapProblem) {
2236 // Determine Y and Z in the form icmp (X+Y), (X+Z).
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002237 Value *Y, *Z;
2238 if (A == C) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002239 // C + B == C + D -> B == D
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002240 Y = B;
2241 Z = D;
2242 } else if (A == D) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002243 // D + B == C + D -> B == C
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002244 Y = B;
2245 Z = C;
2246 } else if (B == C) {
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002247 // A + C == C + D -> A == D
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002248 Y = A;
2249 Z = D;
Duncan Sands4f0dfbb2012-11-16 20:53:08 +00002250 } else {
2251 assert(B == D);
2252 // A + D == C + D -> A == C
Duncan Sandsaceb03e2012-11-16 19:41:26 +00002253 Y = A;
2254 Z = C;
2255 }
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002256 if (Value *V = SimplifyICmpInst(Pred, Y, Z, Q, MaxRecurse-1))
Duncan Sands52fb8462011-02-13 17:15:40 +00002257 return V;
2258 }
2259 }
2260
Nick Lewycky8a232702013-07-12 23:42:57 +00002261 // icmp pred (urem X, Y), Y
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002262 if (LBO && match(LBO, m_URem(m_Value(), m_Specific(RHS)))) {
Nick Lewycky78679272011-03-04 10:06:52 +00002263 bool KnownNonNegative, KnownNegative;
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002264 switch (Pred) {
2265 default:
2266 break;
Nick Lewycky78679272011-03-04 10:06:52 +00002267 case ICmpInst::ICMP_SGT:
2268 case ICmpInst::ICMP_SGE:
Nick Lewycky8a232702013-07-12 23:42:57 +00002269 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky78679272011-03-04 10:06:52 +00002270 if (!KnownNonNegative)
2271 break;
2272 // fall-through
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002273 case ICmpInst::ICMP_EQ:
2274 case ICmpInst::ICMP_UGT:
2275 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002276 return getFalse(ITy);
Nick Lewycky78679272011-03-04 10:06:52 +00002277 case ICmpInst::ICMP_SLT:
2278 case ICmpInst::ICMP_SLE:
Nick Lewycky8a232702013-07-12 23:42:57 +00002279 ComputeSignBit(RHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky78679272011-03-04 10:06:52 +00002280 if (!KnownNonNegative)
2281 break;
2282 // fall-through
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002283 case ICmpInst::ICMP_NE:
2284 case ICmpInst::ICMP_ULT:
2285 case ICmpInst::ICMP_ULE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002286 return getTrue(ITy);
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002287 }
2288 }
Nick Lewycky8a232702013-07-12 23:42:57 +00002289
2290 // icmp pred X, (urem Y, X)
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002291 if (RBO && match(RBO, m_URem(m_Value(), m_Specific(LHS)))) {
2292 bool KnownNonNegative, KnownNegative;
2293 switch (Pred) {
2294 default:
2295 break;
2296 case ICmpInst::ICMP_SGT:
2297 case ICmpInst::ICMP_SGE:
Nick Lewycky8a232702013-07-12 23:42:57 +00002298 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002299 if (!KnownNonNegative)
2300 break;
2301 // fall-through
Nick Lewyckya0e2f382011-03-09 08:20:06 +00002302 case ICmpInst::ICMP_NE:
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002303 case ICmpInst::ICMP_UGT:
2304 case ICmpInst::ICMP_UGE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002305 return getTrue(ITy);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002306 case ICmpInst::ICMP_SLT:
2307 case ICmpInst::ICMP_SLE:
Nick Lewycky8a232702013-07-12 23:42:57 +00002308 ComputeSignBit(LHS, KnownNonNegative, KnownNegative, Q.TD);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002309 if (!KnownNonNegative)
2310 break;
2311 // fall-through
Nick Lewyckya0e2f382011-03-09 08:20:06 +00002312 case ICmpInst::ICMP_EQ:
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002313 case ICmpInst::ICMP_ULT:
2314 case ICmpInst::ICMP_ULE:
Duncan Sandsf56138d2011-07-26 15:03:53 +00002315 return getFalse(ITy);
Nick Lewycky84dd4fa2011-03-09 06:26:03 +00002316 }
2317 }
Nick Lewycky88cd0aa2011-03-01 08:15:50 +00002318
Duncan Sandsc65c7472011-10-28 18:17:44 +00002319 // x udiv y <=u x.
2320 if (LBO && match(LBO, m_UDiv(m_Specific(RHS), m_Value()))) {
2321 // icmp pred (X /u Y), X
2322 if (Pred == ICmpInst::ICMP_UGT)
2323 return getFalse(ITy);
2324 if (Pred == ICmpInst::ICMP_ULE)
2325 return getTrue(ITy);
2326 }
2327
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002328 if (MaxRecurse && LBO && RBO && LBO->getOpcode() == RBO->getOpcode() &&
2329 LBO->getOperand(1) == RBO->getOperand(1)) {
2330 switch (LBO->getOpcode()) {
2331 default: break;
2332 case Instruction::UDiv:
2333 case Instruction::LShr:
2334 if (ICmpInst::isSigned(Pred))
2335 break;
2336 // fall-through
2337 case Instruction::SDiv:
2338 case Instruction::AShr:
Eli Friedmanb6e7cd62011-05-05 21:59:18 +00002339 if (!LBO->isExact() || !RBO->isExact())
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002340 break;
2341 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002342 RBO->getOperand(0), Q, MaxRecurse-1))
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002343 return V;
2344 break;
2345 case Instruction::Shl: {
Duncan Sandsc9d904e2011-08-04 10:02:21 +00002346 bool NUW = LBO->hasNoUnsignedWrap() && RBO->hasNoUnsignedWrap();
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002347 bool NSW = LBO->hasNoSignedWrap() && RBO->hasNoSignedWrap();
2348 if (!NUW && !NSW)
2349 break;
2350 if (!NSW && ICmpInst::isSigned(Pred))
2351 break;
2352 if (Value *V = SimplifyICmpInst(Pred, LBO->getOperand(0),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002353 RBO->getOperand(0), Q, MaxRecurse-1))
Nick Lewycky58bfcdb2011-03-05 05:19:11 +00002354 return V;
2355 break;
2356 }
2357 }
2358 }
2359
Duncan Sandsad206812011-05-03 19:53:10 +00002360 // Simplify comparisons involving max/min.
2361 Value *A, *B;
2362 CmpInst::Predicate P = CmpInst::BAD_ICMP_PREDICATE;
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002363 CmpInst::Predicate EqP; // Chosen so that "A == max/min(A,B)" iff "A EqP B".
Duncan Sandsad206812011-05-03 19:53:10 +00002364
Duncan Sands8140ad32011-05-04 16:05:05 +00002365 // Signed variants on "max(a,b)>=a -> true".
Duncan Sandsad206812011-05-03 19:53:10 +00002366 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2367 if (A != RHS) std::swap(A, B); // smax(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002368 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002369 // We analyze this as smax(A, B) pred A.
2370 P = Pred;
2371 } else if (match(RHS, m_SMax(m_Value(A), m_Value(B))) &&
2372 (A == LHS || B == LHS)) {
2373 if (A != LHS) std::swap(A, B); // A pred smax(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002374 EqP = CmpInst::ICMP_SGE; // "A == smax(A, B)" iff "A sge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002375 // We analyze this as smax(A, B) swapped-pred A.
2376 P = CmpInst::getSwappedPredicate(Pred);
2377 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2378 (A == RHS || B == RHS)) {
2379 if (A != RHS) std::swap(A, B); // smin(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002380 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
Duncan Sandsad206812011-05-03 19:53:10 +00002381 // We analyze this as smax(-A, -B) swapped-pred -A.
2382 // Note that we do not need to actually form -A or -B thanks to EqP.
2383 P = CmpInst::getSwappedPredicate(Pred);
2384 } else if (match(RHS, m_SMin(m_Value(A), m_Value(B))) &&
2385 (A == LHS || B == LHS)) {
2386 if (A != LHS) std::swap(A, B); // A pred smin(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002387 EqP = CmpInst::ICMP_SLE; // "A == smin(A, B)" iff "A sle B".
Duncan Sandsad206812011-05-03 19:53:10 +00002388 // We analyze this as smax(-A, -B) pred -A.
2389 // Note that we do not need to actually form -A or -B thanks to EqP.
2390 P = Pred;
2391 }
2392 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2393 // Cases correspond to "max(A, B) p A".
2394 switch (P) {
2395 default:
2396 break;
2397 case CmpInst::ICMP_EQ:
2398 case CmpInst::ICMP_SLE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002399 // Equivalent to "A EqP B". This may be the same as the condition tested
2400 // in the max/min; if so, we can just return that.
2401 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2402 return V;
2403 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2404 return V;
2405 // Otherwise, see if "A EqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002406 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002407 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002408 return V;
2409 break;
2410 case CmpInst::ICMP_NE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002411 case CmpInst::ICMP_SGT: {
2412 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2413 // Equivalent to "A InvEqP B". This may be the same as the condition
2414 // tested in the max/min; if so, we can just return that.
2415 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2416 return V;
2417 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2418 return V;
2419 // Otherwise, see if "A InvEqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002420 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002421 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002422 return V;
2423 break;
Duncan Sandse864b5b2011-05-07 16:56:49 +00002424 }
Duncan Sandsad206812011-05-03 19:53:10 +00002425 case CmpInst::ICMP_SGE:
2426 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002427 return getTrue(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002428 case CmpInst::ICMP_SLT:
2429 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002430 return getFalse(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002431 }
2432 }
2433
Duncan Sands8140ad32011-05-04 16:05:05 +00002434 // Unsigned variants on "max(a,b)>=a -> true".
Duncan Sandsad206812011-05-03 19:53:10 +00002435 P = CmpInst::BAD_ICMP_PREDICATE;
2436 if (match(LHS, m_UMax(m_Value(A), m_Value(B))) && (A == RHS || B == RHS)) {
2437 if (A != RHS) std::swap(A, B); // umax(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002438 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002439 // We analyze this as umax(A, B) pred A.
2440 P = Pred;
2441 } else if (match(RHS, m_UMax(m_Value(A), m_Value(B))) &&
2442 (A == LHS || B == LHS)) {
2443 if (A != LHS) std::swap(A, B); // A pred umax(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002444 EqP = CmpInst::ICMP_UGE; // "A == umax(A, B)" iff "A uge B".
Duncan Sandsad206812011-05-03 19:53:10 +00002445 // We analyze this as umax(A, B) swapped-pred A.
2446 P = CmpInst::getSwappedPredicate(Pred);
2447 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2448 (A == RHS || B == RHS)) {
2449 if (A != RHS) std::swap(A, B); // umin(A, B) pred A.
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002450 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
Duncan Sandsad206812011-05-03 19:53:10 +00002451 // We analyze this as umax(-A, -B) swapped-pred -A.
2452 // Note that we do not need to actually form -A or -B thanks to EqP.
2453 P = CmpInst::getSwappedPredicate(Pred);
2454 } else if (match(RHS, m_UMin(m_Value(A), m_Value(B))) &&
2455 (A == LHS || B == LHS)) {
2456 if (A != LHS) std::swap(A, B); // A pred umin(A, B).
Sylvestre Ledru94c22712012-09-27 10:14:43 +00002457 EqP = CmpInst::ICMP_ULE; // "A == umin(A, B)" iff "A ule B".
Duncan Sandsad206812011-05-03 19:53:10 +00002458 // We analyze this as umax(-A, -B) pred -A.
2459 // Note that we do not need to actually form -A or -B thanks to EqP.
2460 P = Pred;
2461 }
2462 if (P != CmpInst::BAD_ICMP_PREDICATE) {
2463 // Cases correspond to "max(A, B) p A".
2464 switch (P) {
2465 default:
2466 break;
2467 case CmpInst::ICMP_EQ:
2468 case CmpInst::ICMP_ULE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002469 // Equivalent to "A EqP B". This may be the same as the condition tested
2470 // in the max/min; if so, we can just return that.
2471 if (Value *V = ExtractEquivalentCondition(LHS, EqP, A, B))
2472 return V;
2473 if (Value *V = ExtractEquivalentCondition(RHS, EqP, A, B))
2474 return V;
2475 // Otherwise, see if "A EqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002476 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002477 if (Value *V = SimplifyICmpInst(EqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002478 return V;
2479 break;
2480 case CmpInst::ICMP_NE:
Duncan Sandse864b5b2011-05-07 16:56:49 +00002481 case CmpInst::ICMP_UGT: {
2482 CmpInst::Predicate InvEqP = CmpInst::getInversePredicate(EqP);
2483 // Equivalent to "A InvEqP B". This may be the same as the condition
2484 // tested in the max/min; if so, we can just return that.
2485 if (Value *V = ExtractEquivalentCondition(LHS, InvEqP, A, B))
2486 return V;
2487 if (Value *V = ExtractEquivalentCondition(RHS, InvEqP, A, B))
2488 return V;
2489 // Otherwise, see if "A InvEqP B" simplifies.
Duncan Sandsad206812011-05-03 19:53:10 +00002490 if (MaxRecurse)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002491 if (Value *V = SimplifyICmpInst(InvEqP, A, B, Q, MaxRecurse-1))
Duncan Sandsad206812011-05-03 19:53:10 +00002492 return V;
2493 break;
Duncan Sandse864b5b2011-05-07 16:56:49 +00002494 }
Duncan Sandsad206812011-05-03 19:53:10 +00002495 case CmpInst::ICMP_UGE:
2496 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002497 return getTrue(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002498 case CmpInst::ICMP_ULT:
2499 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002500 return getFalse(ITy);
Duncan Sandsad206812011-05-03 19:53:10 +00002501 }
2502 }
2503
Duncan Sands8140ad32011-05-04 16:05:05 +00002504 // Variants on "max(x,y) >= min(x,z)".
2505 Value *C, *D;
2506 if (match(LHS, m_SMax(m_Value(A), m_Value(B))) &&
2507 match(RHS, m_SMin(m_Value(C), m_Value(D))) &&
2508 (A == C || A == D || B == C || B == D)) {
2509 // max(x, ?) pred min(x, ?).
2510 if (Pred == CmpInst::ICMP_SGE)
2511 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002512 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002513 if (Pred == CmpInst::ICMP_SLT)
2514 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002515 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002516 } else if (match(LHS, m_SMin(m_Value(A), m_Value(B))) &&
2517 match(RHS, m_SMax(m_Value(C), m_Value(D))) &&
2518 (A == C || A == D || B == C || B == D)) {
2519 // min(x, ?) pred max(x, ?).
2520 if (Pred == CmpInst::ICMP_SLE)
2521 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002522 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002523 if (Pred == CmpInst::ICMP_SGT)
2524 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002525 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002526 } else if (match(LHS, m_UMax(m_Value(A), m_Value(B))) &&
2527 match(RHS, m_UMin(m_Value(C), m_Value(D))) &&
2528 (A == C || A == D || B == C || B == D)) {
2529 // max(x, ?) pred min(x, ?).
2530 if (Pred == CmpInst::ICMP_UGE)
2531 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002532 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002533 if (Pred == CmpInst::ICMP_ULT)
2534 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002535 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002536 } else if (match(LHS, m_UMin(m_Value(A), m_Value(B))) &&
2537 match(RHS, m_UMax(m_Value(C), m_Value(D))) &&
2538 (A == C || A == D || B == C || B == D)) {
2539 // min(x, ?) pred max(x, ?).
2540 if (Pred == CmpInst::ICMP_ULE)
2541 // Always true.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002542 return getTrue(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002543 if (Pred == CmpInst::ICMP_UGT)
2544 // Always false.
Duncan Sandsf56138d2011-07-26 15:03:53 +00002545 return getFalse(ITy);
Duncan Sands8140ad32011-05-04 16:05:05 +00002546 }
2547
Chandler Carruth58725a62012-03-25 21:28:14 +00002548 // Simplify comparisons of related pointers using a powerful, recursive
2549 // GEP-walk when we have target data available..
Dan Gohman3e3de562013-01-31 02:50:36 +00002550 if (LHS->getType()->isPointerTy())
Dan Gohmanfdd1eaf2013-02-01 00:11:13 +00002551 if (Constant *C = computePointerICmp(Q.TD, Q.TLI, Pred, LHS, RHS))
Chandler Carruth58725a62012-03-25 21:28:14 +00002552 return C;
2553
Nick Lewyckyf7087ea2012-02-26 02:09:49 +00002554 if (GetElementPtrInst *GLHS = dyn_cast<GetElementPtrInst>(LHS)) {
2555 if (GEPOperator *GRHS = dyn_cast<GEPOperator>(RHS)) {
2556 if (GLHS->getPointerOperand() == GRHS->getPointerOperand() &&
2557 GLHS->hasAllConstantIndices() && GRHS->hasAllConstantIndices() &&
2558 (ICmpInst::isEquality(Pred) ||
2559 (GLHS->isInBounds() && GRHS->isInBounds() &&
2560 Pred == ICmpInst::getSignedPredicate(Pred)))) {
2561 // The bases are equal and the indices are constant. Build a constant
2562 // expression GEP with the same indices and a null base pointer to see
2563 // what constant folding can make out of it.
2564 Constant *Null = Constant::getNullValue(GLHS->getPointerOperandType());
2565 SmallVector<Value *, 4> IndicesLHS(GLHS->idx_begin(), GLHS->idx_end());
2566 Constant *NewLHS = ConstantExpr::getGetElementPtr(Null, IndicesLHS);
2567
2568 SmallVector<Value *, 4> IndicesRHS(GRHS->idx_begin(), GRHS->idx_end());
2569 Constant *NewRHS = ConstantExpr::getGetElementPtr(Null, IndicesRHS);
2570 return ConstantExpr::getICmp(Pred, NewLHS, NewRHS);
2571 }
2572 }
2573 }
2574
Duncan Sands1ac7c992010-11-07 16:12:23 +00002575 // If the comparison is with the result of a select instruction, check whether
2576 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002577 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002578 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002579 return V;
2580
2581 // If the comparison is with the result of a phi instruction, check whether
2582 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00002583 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002584 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00002585 return V;
Duncan Sands1ac7c992010-11-07 16:12:23 +00002586
Chris Lattner9f3c25a2009-11-09 22:57:59 +00002587 return 0;
2588}
2589
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002590Value *llvm::SimplifyICmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002591 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00002592 const TargetLibraryInfo *TLI,
2593 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002594 return ::SimplifyICmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2595 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002596}
2597
Chris Lattner9dbb4292009-11-09 23:28:39 +00002598/// SimplifyFCmpInst - Given operands for an FCmpInst, see if we can
2599/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002600static Value *SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002601 const Query &Q, unsigned MaxRecurse) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00002602 CmpInst::Predicate Pred = (CmpInst::Predicate)Predicate;
2603 assert(CmpInst::isFPPredicate(Pred) && "Not an FP compare!");
2604
Chris Lattnerd06094f2009-11-10 00:55:12 +00002605 if (Constant *CLHS = dyn_cast<Constant>(LHS)) {
Chris Lattner9dbb4292009-11-09 23:28:39 +00002606 if (Constant *CRHS = dyn_cast<Constant>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002607 return ConstantFoldCompareInstOperands(Pred, CLHS, CRHS, Q.TD, Q.TLI);
Duncan Sands12a86f52010-11-14 11:23:23 +00002608
Chris Lattnerd06094f2009-11-10 00:55:12 +00002609 // If we have a constant, make sure it is on the RHS.
2610 std::swap(LHS, RHS);
2611 Pred = CmpInst::getSwappedPredicate(Pred);
2612 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002613
Chris Lattner210c5d42009-11-09 23:55:12 +00002614 // Fold trivial predicates.
2615 if (Pred == FCmpInst::FCMP_FALSE)
2616 return ConstantInt::get(GetCompareTy(LHS), 0);
2617 if (Pred == FCmpInst::FCMP_TRUE)
2618 return ConstantInt::get(GetCompareTy(LHS), 1);
2619
Chris Lattner210c5d42009-11-09 23:55:12 +00002620 if (isa<UndefValue>(RHS)) // fcmp pred X, undef -> undef
2621 return UndefValue::get(GetCompareTy(LHS));
2622
2623 // fcmp x,x -> true/false. Not all compares are foldable.
Duncan Sands124708d2011-01-01 20:08:02 +00002624 if (LHS == RHS) {
Chris Lattner210c5d42009-11-09 23:55:12 +00002625 if (CmpInst::isTrueWhenEqual(Pred))
2626 return ConstantInt::get(GetCompareTy(LHS), 1);
2627 if (CmpInst::isFalseWhenEqual(Pred))
2628 return ConstantInt::get(GetCompareTy(LHS), 0);
2629 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002630
Chris Lattner210c5d42009-11-09 23:55:12 +00002631 // Handle fcmp with constant RHS
2632 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
2633 // If the constant is a nan, see if we can fold the comparison based on it.
2634 if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
2635 if (CFP->getValueAPF().isNaN()) {
2636 if (FCmpInst::isOrdered(Pred)) // True "if ordered and foo"
2637 return ConstantInt::getFalse(CFP->getContext());
2638 assert(FCmpInst::isUnordered(Pred) &&
2639 "Comparison must be either ordered or unordered!");
2640 // True if unordered.
2641 return ConstantInt::getTrue(CFP->getContext());
2642 }
Dan Gohman6b617a72010-02-22 04:06:03 +00002643 // Check whether the constant is an infinity.
2644 if (CFP->getValueAPF().isInfinity()) {
2645 if (CFP->getValueAPF().isNegative()) {
2646 switch (Pred) {
2647 case FCmpInst::FCMP_OLT:
2648 // No value is ordered and less than negative infinity.
2649 return ConstantInt::getFalse(CFP->getContext());
2650 case FCmpInst::FCMP_UGE:
2651 // All values are unordered with or at least negative infinity.
2652 return ConstantInt::getTrue(CFP->getContext());
2653 default:
2654 break;
2655 }
2656 } else {
2657 switch (Pred) {
2658 case FCmpInst::FCMP_OGT:
2659 // No value is ordered and greater than infinity.
2660 return ConstantInt::getFalse(CFP->getContext());
2661 case FCmpInst::FCMP_ULE:
2662 // All values are unordered with and at most infinity.
2663 return ConstantInt::getTrue(CFP->getContext());
2664 default:
2665 break;
2666 }
2667 }
2668 }
Chris Lattner210c5d42009-11-09 23:55:12 +00002669 }
2670 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002671
Duncan Sands92826de2010-11-07 16:46:25 +00002672 // If the comparison is with the result of a select instruction, check whether
2673 // comparing with either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002674 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002675 if (Value *V = ThreadCmpOverSelect(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002676 return V;
2677
2678 // If the comparison is with the result of a phi instruction, check whether
2679 // doing the compare with each incoming phi value yields a common result.
Duncan Sands0312a932010-12-21 09:09:15 +00002680 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002681 if (Value *V = ThreadCmpOverPHI(Pred, LHS, RHS, Q, MaxRecurse))
Duncan Sands3bbb0cc2010-11-09 17:25:51 +00002682 return V;
Duncan Sands92826de2010-11-07 16:46:25 +00002683
Chris Lattner9dbb4292009-11-09 23:28:39 +00002684 return 0;
2685}
2686
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002687Value *llvm::SimplifyFCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002688 const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00002689 const TargetLibraryInfo *TLI,
2690 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002691 return ::SimplifyFCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2692 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002693}
2694
Chris Lattner04754262010-04-20 05:32:14 +00002695/// SimplifySelectInst - Given operands for a SelectInst, see if we can fold
2696/// the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002697static Value *SimplifySelectInst(Value *CondVal, Value *TrueVal,
2698 Value *FalseVal, const Query &Q,
2699 unsigned MaxRecurse) {
Chris Lattner04754262010-04-20 05:32:14 +00002700 // select true, X, Y -> X
2701 // select false, X, Y -> Y
2702 if (ConstantInt *CB = dyn_cast<ConstantInt>(CondVal))
2703 return CB->getZExtValue() ? TrueVal : FalseVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002704
Chris Lattner04754262010-04-20 05:32:14 +00002705 // select C, X, X -> X
Duncan Sands124708d2011-01-01 20:08:02 +00002706 if (TrueVal == FalseVal)
Chris Lattner04754262010-04-20 05:32:14 +00002707 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002708
Chris Lattner04754262010-04-20 05:32:14 +00002709 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
2710 if (isa<Constant>(TrueVal))
2711 return TrueVal;
2712 return FalseVal;
2713 }
Dan Gohman68c0dbc2011-07-01 01:03:43 +00002714 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
2715 return FalseVal;
2716 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
2717 return TrueVal;
Duncan Sands12a86f52010-11-14 11:23:23 +00002718
Chris Lattner04754262010-04-20 05:32:14 +00002719 return 0;
2720}
2721
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002722Value *llvm::SimplifySelectInst(Value *Cond, Value *TrueVal, Value *FalseVal,
Micah Villmow3574eca2012-10-08 16:38:25 +00002723 const DataLayout *TD,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002724 const TargetLibraryInfo *TLI,
2725 const DominatorTree *DT) {
2726 return ::SimplifySelectInst(Cond, TrueVal, FalseVal, Query (TD, TLI, DT),
2727 RecursionLimit);
2728}
2729
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002730/// SimplifyGEPInst - Given operands for an GetElementPtrInst, see if we can
2731/// fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002732static Value *SimplifyGEPInst(ArrayRef<Value *> Ops, const Query &Q, unsigned) {
Duncan Sands85bbff62010-11-22 13:42:49 +00002733 // The type of the GEP pointer operand.
Nadav Rotem16087692011-12-05 06:29:09 +00002734 PointerType *PtrTy = dyn_cast<PointerType>(Ops[0]->getType());
2735 // The GEP pointer operand is not a pointer, it's a vector of pointers.
2736 if (!PtrTy)
2737 return 0;
Duncan Sands85bbff62010-11-22 13:42:49 +00002738
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002739 // getelementptr P -> P.
Jay Foadb9b54eb2011-07-19 15:07:52 +00002740 if (Ops.size() == 1)
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002741 return Ops[0];
2742
Duncan Sands85bbff62010-11-22 13:42:49 +00002743 if (isa<UndefValue>(Ops[0])) {
2744 // Compute the (pointer) type returned by the GEP instruction.
Jay Foada9203102011-07-25 09:48:08 +00002745 Type *LastType = GetElementPtrInst::getIndexedType(PtrTy, Ops.slice(1));
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002746 Type *GEPTy = PointerType::get(LastType, PtrTy->getAddressSpace());
Duncan Sands85bbff62010-11-22 13:42:49 +00002747 return UndefValue::get(GEPTy);
2748 }
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002749
Jay Foadb9b54eb2011-07-19 15:07:52 +00002750 if (Ops.size() == 2) {
Duncan Sandse60d79f2010-11-21 13:53:09 +00002751 // getelementptr P, 0 -> P.
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002752 if (ConstantInt *C = dyn_cast<ConstantInt>(Ops[1]))
2753 if (C->isZero())
2754 return Ops[0];
Duncan Sandse60d79f2010-11-21 13:53:09 +00002755 // getelementptr P, N -> P if P points to a type of zero size.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002756 if (Q.TD) {
Chris Lattnerdb125cf2011-07-18 04:54:35 +00002757 Type *Ty = PtrTy->getElementType();
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002758 if (Ty->isSized() && Q.TD->getTypeAllocSize(Ty) == 0)
Duncan Sandse60d79f2010-11-21 13:53:09 +00002759 return Ops[0];
2760 }
2761 }
Duncan Sands12a86f52010-11-14 11:23:23 +00002762
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002763 // Check to see if this is constant foldable.
Jay Foadb9b54eb2011-07-19 15:07:52 +00002764 for (unsigned i = 0, e = Ops.size(); i != e; ++i)
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002765 if (!isa<Constant>(Ops[i]))
2766 return 0;
Duncan Sands12a86f52010-11-14 11:23:23 +00002767
Jay Foaddab3d292011-07-21 14:31:17 +00002768 return ConstantExpr::getGetElementPtr(cast<Constant>(Ops[0]), Ops.slice(1));
Chris Lattnerc514c1f2009-11-27 00:29:05 +00002769}
2770
Micah Villmow3574eca2012-10-08 16:38:25 +00002771Value *llvm::SimplifyGEPInst(ArrayRef<Value *> Ops, const DataLayout *TD,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002772 const TargetLibraryInfo *TLI,
2773 const DominatorTree *DT) {
2774 return ::SimplifyGEPInst(Ops, Query (TD, TLI, DT), RecursionLimit);
2775}
2776
Duncan Sandsdabc2802011-09-05 06:52:48 +00002777/// SimplifyInsertValueInst - Given operands for an InsertValueInst, see if we
2778/// can fold the result. If not, this returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002779static Value *SimplifyInsertValueInst(Value *Agg, Value *Val,
2780 ArrayRef<unsigned> Idxs, const Query &Q,
2781 unsigned) {
Duncan Sandsdabc2802011-09-05 06:52:48 +00002782 if (Constant *CAgg = dyn_cast<Constant>(Agg))
2783 if (Constant *CVal = dyn_cast<Constant>(Val))
2784 return ConstantFoldInsertValueInstruction(CAgg, CVal, Idxs);
2785
2786 // insertvalue x, undef, n -> x
2787 if (match(Val, m_Undef()))
2788 return Agg;
2789
2790 // insertvalue x, (extractvalue y, n), n
2791 if (ExtractValueInst *EV = dyn_cast<ExtractValueInst>(Val))
Benjamin Kramerae707bd2011-09-05 18:16:19 +00002792 if (EV->getAggregateOperand()->getType() == Agg->getType() &&
2793 EV->getIndices() == Idxs) {
Duncan Sandsdabc2802011-09-05 06:52:48 +00002794 // insertvalue undef, (extractvalue y, n), n -> y
2795 if (match(Agg, m_Undef()))
2796 return EV->getAggregateOperand();
2797
2798 // insertvalue y, (extractvalue y, n), n -> y
2799 if (Agg == EV->getAggregateOperand())
2800 return Agg;
2801 }
2802
2803 return 0;
2804}
2805
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002806Value *llvm::SimplifyInsertValueInst(Value *Agg, Value *Val,
2807 ArrayRef<unsigned> Idxs,
Micah Villmow3574eca2012-10-08 16:38:25 +00002808 const DataLayout *TD,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002809 const TargetLibraryInfo *TLI,
2810 const DominatorTree *DT) {
2811 return ::SimplifyInsertValueInst(Agg, Val, Idxs, Query (TD, TLI, DT),
2812 RecursionLimit);
2813}
2814
Duncan Sandsff103412010-11-17 04:30:22 +00002815/// SimplifyPHINode - See if we can fold the given phi. If not, returns null.
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002816static Value *SimplifyPHINode(PHINode *PN, const Query &Q) {
Duncan Sandsff103412010-11-17 04:30:22 +00002817 // If all of the PHI's incoming values are the same then replace the PHI node
2818 // with the common value.
2819 Value *CommonValue = 0;
2820 bool HasUndefInput = false;
2821 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
2822 Value *Incoming = PN->getIncomingValue(i);
2823 // If the incoming value is the phi node itself, it can safely be skipped.
2824 if (Incoming == PN) continue;
2825 if (isa<UndefValue>(Incoming)) {
2826 // Remember that we saw an undef value, but otherwise ignore them.
2827 HasUndefInput = true;
2828 continue;
2829 }
2830 if (CommonValue && Incoming != CommonValue)
2831 return 0; // Not the same, bail out.
2832 CommonValue = Incoming;
2833 }
2834
2835 // If CommonValue is null then all of the incoming values were either undef or
2836 // equal to the phi node itself.
2837 if (!CommonValue)
2838 return UndefValue::get(PN->getType());
2839
2840 // If we have a PHI node like phi(X, undef, X), where X is defined by some
2841 // instruction, we cannot return X as the result of the PHI node unless it
2842 // dominates the PHI block.
2843 if (HasUndefInput)
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002844 return ValueDominatesPHI(CommonValue, PN, Q.DT) ? CommonValue : 0;
Duncan Sandsff103412010-11-17 04:30:22 +00002845
2846 return CommonValue;
2847}
2848
Duncan Sandsbd0fe562012-03-13 14:07:05 +00002849static Value *SimplifyTruncInst(Value *Op, Type *Ty, const Query &Q, unsigned) {
2850 if (Constant *C = dyn_cast<Constant>(Op))
2851 return ConstantFoldInstOperands(Instruction::Trunc, Ty, C, Q.TD, Q.TLI);
2852
2853 return 0;
2854}
2855
Micah Villmow3574eca2012-10-08 16:38:25 +00002856Value *llvm::SimplifyTruncInst(Value *Op, Type *Ty, const DataLayout *TD,
Duncan Sandsbd0fe562012-03-13 14:07:05 +00002857 const TargetLibraryInfo *TLI,
2858 const DominatorTree *DT) {
2859 return ::SimplifyTruncInst(Op, Ty, Query (TD, TLI, DT), RecursionLimit);
2860}
2861
Chris Lattnerd06094f2009-11-10 00:55:12 +00002862//=== Helper functions for higher up the class hierarchy.
Chris Lattner9dbb4292009-11-09 23:28:39 +00002863
Chris Lattnerd06094f2009-11-10 00:55:12 +00002864/// SimplifyBinOp - Given operands for a BinaryOperator, see if we can
2865/// fold the result. If not, this returns null.
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002866static Value *SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002867 const Query &Q, unsigned MaxRecurse) {
Chris Lattnerd06094f2009-11-10 00:55:12 +00002868 switch (Opcode) {
Chris Lattner81a0dc92011-02-09 17:15:04 +00002869 case Instruction::Add:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002870 return SimplifyAddInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002871 Q, MaxRecurse);
Michael Ilsemand0a0d222012-12-12 00:29:16 +00002872 case Instruction::FAdd:
2873 return SimplifyFAddInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2874
Chris Lattner81a0dc92011-02-09 17:15:04 +00002875 case Instruction::Sub:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002876 return SimplifySubInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002877 Q, MaxRecurse);
Michael Ilsemand0a0d222012-12-12 00:29:16 +00002878 case Instruction::FSub:
2879 return SimplifyFSubInst(LHS, RHS, FastMathFlags(), Q, MaxRecurse);
2880
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002881 case Instruction::Mul: return SimplifyMulInst (LHS, RHS, Q, MaxRecurse);
Michael Ilsemand0a0d222012-12-12 00:29:16 +00002882 case Instruction::FMul:
2883 return SimplifyFMulInst (LHS, RHS, FastMathFlags(), Q, MaxRecurse);
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002884 case Instruction::SDiv: return SimplifySDivInst(LHS, RHS, Q, MaxRecurse);
2885 case Instruction::UDiv: return SimplifyUDivInst(LHS, RHS, Q, MaxRecurse);
2886 case Instruction::FDiv: return SimplifyFDivInst(LHS, RHS, Q, MaxRecurse);
2887 case Instruction::SRem: return SimplifySRemInst(LHS, RHS, Q, MaxRecurse);
2888 case Instruction::URem: return SimplifyURemInst(LHS, RHS, Q, MaxRecurse);
2889 case Instruction::FRem: return SimplifyFRemInst(LHS, RHS, Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002890 case Instruction::Shl:
Duncan Sandsffeb98a2011-02-09 17:45:03 +00002891 return SimplifyShlInst(LHS, RHS, /*isNSW*/false, /*isNUW*/false,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002892 Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002893 case Instruction::LShr:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002894 return SimplifyLShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
Chris Lattner81a0dc92011-02-09 17:15:04 +00002895 case Instruction::AShr:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002896 return SimplifyAShrInst(LHS, RHS, /*isExact*/false, Q, MaxRecurse);
2897 case Instruction::And: return SimplifyAndInst(LHS, RHS, Q, MaxRecurse);
2898 case Instruction::Or: return SimplifyOrInst (LHS, RHS, Q, MaxRecurse);
2899 case Instruction::Xor: return SimplifyXorInst(LHS, RHS, Q, MaxRecurse);
Chris Lattnerd06094f2009-11-10 00:55:12 +00002900 default:
2901 if (Constant *CLHS = dyn_cast<Constant>(LHS))
2902 if (Constant *CRHS = dyn_cast<Constant>(RHS)) {
2903 Constant *COps[] = {CLHS, CRHS};
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002904 return ConstantFoldInstOperands(Opcode, LHS->getType(), COps, Q.TD,
2905 Q.TLI);
Chris Lattnerd06094f2009-11-10 00:55:12 +00002906 }
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002907
Duncan Sands566edb02010-12-21 08:49:00 +00002908 // If the operation is associative, try some generic simplifications.
2909 if (Instruction::isAssociative(Opcode))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002910 if (Value *V = SimplifyAssociativeBinOp(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sands566edb02010-12-21 08:49:00 +00002911 return V;
2912
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002913 // If the operation is with the result of a select instruction check whether
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002914 // operating on either branch of the select always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002915 if (isa<SelectInst>(LHS) || isa<SelectInst>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002916 if (Value *V = ThreadBinOpOverSelect(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002917 return V;
2918
2919 // If the operation is with the result of a phi instruction, check whether
2920 // operating on all incoming values of the phi always yields the same value.
Duncan Sands0312a932010-12-21 09:09:15 +00002921 if (isa<PHINode>(LHS) || isa<PHINode>(RHS))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002922 if (Value *V = ThreadBinOpOverPHI(Opcode, LHS, RHS, Q, MaxRecurse))
Duncan Sandsb2cbdc32010-11-10 13:00:08 +00002923 return V;
2924
Chris Lattnerd06094f2009-11-10 00:55:12 +00002925 return 0;
2926 }
2927}
Chris Lattner9dbb4292009-11-09 23:28:39 +00002928
Duncan Sands12a86f52010-11-14 11:23:23 +00002929Value *llvm::SimplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002930 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +00002931 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002932 return ::SimplifyBinOp(Opcode, LHS, RHS, Query (TD, TLI, DT), RecursionLimit);
Chris Lattner9dbb4292009-11-09 23:28:39 +00002933}
2934
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002935/// SimplifyCmpInst - Given operands for a CmpInst, see if we can
2936/// fold the result.
2937static Value *SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002938 const Query &Q, unsigned MaxRecurse) {
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002939 if (CmpInst::isIntPredicate((CmpInst::Predicate)Predicate))
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002940 return SimplifyICmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
2941 return SimplifyFCmpInst(Predicate, LHS, RHS, Q, MaxRecurse);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002942}
2943
2944Value *llvm::SimplifyCmpInst(unsigned Predicate, Value *LHS, Value *RHS,
Micah Villmow3574eca2012-10-08 16:38:25 +00002945 const DataLayout *TD, const TargetLibraryInfo *TLI,
Chad Rosier618c1db2011-12-01 03:08:23 +00002946 const DominatorTree *DT) {
Duncan Sands0aa85eb2012-03-13 11:42:19 +00002947 return ::SimplifyCmpInst(Predicate, LHS, RHS, Query (TD, TLI, DT),
2948 RecursionLimit);
Duncan Sandsa74a58c2010-11-10 18:23:01 +00002949}
Chris Lattnere3453782009-11-10 01:08:51 +00002950
Michael Ilsemanf89de812013-02-07 19:26:05 +00002951static bool IsIdempotent(Intrinsic::ID ID) {
2952 switch (ID) {
2953 default: return false;
2954
2955 // Unary idempotent: f(f(x)) = f(x)
2956 case Intrinsic::fabs:
2957 case Intrinsic::floor:
2958 case Intrinsic::ceil:
2959 case Intrinsic::trunc:
2960 case Intrinsic::rint:
2961 case Intrinsic::nearbyint:
Hal Finkel41418d12013-08-07 22:49:12 +00002962 case Intrinsic::round:
Michael Ilsemanf89de812013-02-07 19:26:05 +00002963 return true;
2964 }
2965}
2966
2967template <typename IterTy>
2968static Value *SimplifyIntrinsic(Intrinsic::ID IID, IterTy ArgBegin, IterTy ArgEnd,
2969 const Query &Q, unsigned MaxRecurse) {
2970 // Perform idempotent optimizations
2971 if (!IsIdempotent(IID))
2972 return 0;
2973
2974 // Unary Ops
2975 if (std::distance(ArgBegin, ArgEnd) == 1)
2976 if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*ArgBegin))
2977 if (II->getIntrinsicID() == IID)
2978 return II;
2979
2980 return 0;
2981}
2982
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002983template <typename IterTy>
Chandler Carruthe949aa12012-12-28 14:23:29 +00002984static Value *SimplifyCall(Value *V, IterTy ArgBegin, IterTy ArgEnd,
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002985 const Query &Q, unsigned MaxRecurse) {
Chandler Carruthe949aa12012-12-28 14:23:29 +00002986 Type *Ty = V->getType();
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002987 if (PointerType *PTy = dyn_cast<PointerType>(Ty))
2988 Ty = PTy->getElementType();
2989 FunctionType *FTy = cast<FunctionType>(Ty);
2990
Dan Gohman71d05032011-11-04 18:32:42 +00002991 // call undef -> undef
Chandler Carruthe949aa12012-12-28 14:23:29 +00002992 if (isa<UndefValue>(V))
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00002993 return UndefValue::get(FTy->getReturnType());
Dan Gohman71d05032011-11-04 18:32:42 +00002994
Chandler Carruthe949aa12012-12-28 14:23:29 +00002995 Function *F = dyn_cast<Function>(V);
2996 if (!F)
2997 return 0;
2998
Michael Ilsemanf89de812013-02-07 19:26:05 +00002999 if (unsigned IID = F->getIntrinsicID())
3000 if (Value *Ret =
3001 SimplifyIntrinsic((Intrinsic::ID) IID, ArgBegin, ArgEnd, Q, MaxRecurse))
3002 return Ret;
3003
Chandler Carruthe949aa12012-12-28 14:23:29 +00003004 if (!canConstantFoldCallTo(F))
3005 return 0;
3006
3007 SmallVector<Constant *, 4> ConstantArgs;
3008 ConstantArgs.reserve(ArgEnd - ArgBegin);
3009 for (IterTy I = ArgBegin, E = ArgEnd; I != E; ++I) {
3010 Constant *C = dyn_cast<Constant>(*I);
3011 if (!C)
3012 return 0;
3013 ConstantArgs.push_back(C);
3014 }
3015
3016 return ConstantFoldCall(F, ConstantArgs, Q.TLI);
Dan Gohman71d05032011-11-04 18:32:42 +00003017}
3018
Chandler Carruthe949aa12012-12-28 14:23:29 +00003019Value *llvm::SimplifyCall(Value *V, User::op_iterator ArgBegin,
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003020 User::op_iterator ArgEnd, const DataLayout *TD,
3021 const TargetLibraryInfo *TLI,
3022 const DominatorTree *DT) {
Chandler Carruthe949aa12012-12-28 14:23:29 +00003023 return ::SimplifyCall(V, ArgBegin, ArgEnd, Query(TD, TLI, DT),
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003024 RecursionLimit);
3025}
3026
Chandler Carruthe949aa12012-12-28 14:23:29 +00003027Value *llvm::SimplifyCall(Value *V, ArrayRef<Value *> Args,
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003028 const DataLayout *TD, const TargetLibraryInfo *TLI,
3029 const DominatorTree *DT) {
Chandler Carruthe949aa12012-12-28 14:23:29 +00003030 return ::SimplifyCall(V, Args.begin(), Args.end(), Query(TD, TLI, DT),
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003031 RecursionLimit);
3032}
3033
Chris Lattnere3453782009-11-10 01:08:51 +00003034/// SimplifyInstruction - See if we can compute a simplified version of this
3035/// instruction. If not, this returns null.
Micah Villmow3574eca2012-10-08 16:38:25 +00003036Value *llvm::SimplifyInstruction(Instruction *I, const DataLayout *TD,
Chad Rosier618c1db2011-12-01 03:08:23 +00003037 const TargetLibraryInfo *TLI,
Duncan Sandseff05812010-11-14 18:36:10 +00003038 const DominatorTree *DT) {
Duncan Sandsd261dc62010-11-17 08:35:29 +00003039 Value *Result;
3040
Chris Lattnere3453782009-11-10 01:08:51 +00003041 switch (I->getOpcode()) {
3042 default:
Chad Rosier618c1db2011-12-01 03:08:23 +00003043 Result = ConstantFoldInstruction(I, TD, TLI);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003044 break;
Michael Ilseman09ee2502012-12-12 00:27:46 +00003045 case Instruction::FAdd:
3046 Result = SimplifyFAddInst(I->getOperand(0), I->getOperand(1),
3047 I->getFastMathFlags(), TD, TLI, DT);
3048 break;
Chris Lattner8aee8ef2009-11-27 17:42:22 +00003049 case Instruction::Add:
Duncan Sandsd261dc62010-11-17 08:35:29 +00003050 Result = SimplifyAddInst(I->getOperand(0), I->getOperand(1),
3051 cast<BinaryOperator>(I)->hasNoSignedWrap(),
3052 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003053 TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003054 break;
Michael Ilseman09ee2502012-12-12 00:27:46 +00003055 case Instruction::FSub:
3056 Result = SimplifyFSubInst(I->getOperand(0), I->getOperand(1),
3057 I->getFastMathFlags(), TD, TLI, DT);
3058 break;
Duncan Sandsfea3b212010-12-15 14:07:39 +00003059 case Instruction::Sub:
3060 Result = SimplifySubInst(I->getOperand(0), I->getOperand(1),
3061 cast<BinaryOperator>(I)->hasNoSignedWrap(),
3062 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003063 TD, TLI, DT);
Duncan Sandsfea3b212010-12-15 14:07:39 +00003064 break;
Michael Ilsemaneb61c922012-11-27 00:46:26 +00003065 case Instruction::FMul:
3066 Result = SimplifyFMulInst(I->getOperand(0), I->getOperand(1),
3067 I->getFastMathFlags(), TD, TLI, DT);
3068 break;
Duncan Sands82fdab32010-12-21 14:00:22 +00003069 case Instruction::Mul:
Chad Rosier618c1db2011-12-01 03:08:23 +00003070 Result = SimplifyMulInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands82fdab32010-12-21 14:00:22 +00003071 break;
Duncan Sands593faa52011-01-28 16:51:11 +00003072 case Instruction::SDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00003073 Result = SimplifySDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands593faa52011-01-28 16:51:11 +00003074 break;
3075 case Instruction::UDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00003076 Result = SimplifyUDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands593faa52011-01-28 16:51:11 +00003077 break;
Frits van Bommel1fca2c32011-01-29 15:26:31 +00003078 case Instruction::FDiv:
Chad Rosier618c1db2011-12-01 03:08:23 +00003079 Result = SimplifyFDivInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Frits van Bommel1fca2c32011-01-29 15:26:31 +00003080 break;
Duncan Sandsf24ed772011-05-02 16:27:02 +00003081 case Instruction::SRem:
Chad Rosier618c1db2011-12-01 03:08:23 +00003082 Result = SimplifySRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00003083 break;
3084 case Instruction::URem:
Chad Rosier618c1db2011-12-01 03:08:23 +00003085 Result = SimplifyURemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00003086 break;
3087 case Instruction::FRem:
Chad Rosier618c1db2011-12-01 03:08:23 +00003088 Result = SimplifyFRemInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsf24ed772011-05-02 16:27:02 +00003089 break;
Duncan Sandsc43cee32011-01-14 00:37:45 +00003090 case Instruction::Shl:
Chris Lattner81a0dc92011-02-09 17:15:04 +00003091 Result = SimplifyShlInst(I->getOperand(0), I->getOperand(1),
3092 cast<BinaryOperator>(I)->hasNoSignedWrap(),
3093 cast<BinaryOperator>(I)->hasNoUnsignedWrap(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003094 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00003095 break;
3096 case Instruction::LShr:
Chris Lattner81a0dc92011-02-09 17:15:04 +00003097 Result = SimplifyLShrInst(I->getOperand(0), I->getOperand(1),
3098 cast<BinaryOperator>(I)->isExact(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003099 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00003100 break;
3101 case Instruction::AShr:
Chris Lattner81a0dc92011-02-09 17:15:04 +00003102 Result = SimplifyAShrInst(I->getOperand(0), I->getOperand(1),
3103 cast<BinaryOperator>(I)->isExact(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003104 TD, TLI, DT);
Duncan Sandsc43cee32011-01-14 00:37:45 +00003105 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003106 case Instruction::And:
Chad Rosier618c1db2011-12-01 03:08:23 +00003107 Result = SimplifyAndInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003108 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003109 case Instruction::Or:
Chad Rosier618c1db2011-12-01 03:08:23 +00003110 Result = SimplifyOrInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003111 break;
Duncan Sands2b749872010-11-17 18:52:15 +00003112 case Instruction::Xor:
Chad Rosier618c1db2011-12-01 03:08:23 +00003113 Result = SimplifyXorInst(I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sands2b749872010-11-17 18:52:15 +00003114 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003115 case Instruction::ICmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00003116 Result = SimplifyICmpInst(cast<ICmpInst>(I)->getPredicate(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003117 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003118 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003119 case Instruction::FCmp:
Duncan Sandsd261dc62010-11-17 08:35:29 +00003120 Result = SimplifyFCmpInst(cast<FCmpInst>(I)->getPredicate(),
Chad Rosier618c1db2011-12-01 03:08:23 +00003121 I->getOperand(0), I->getOperand(1), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003122 break;
Chris Lattner04754262010-04-20 05:32:14 +00003123 case Instruction::Select:
Duncan Sandsd261dc62010-11-17 08:35:29 +00003124 Result = SimplifySelectInst(I->getOperand(0), I->getOperand(1),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00003125 I->getOperand(2), TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003126 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00003127 case Instruction::GetElementPtr: {
3128 SmallVector<Value*, 8> Ops(I->op_begin(), I->op_end());
Duncan Sands0aa85eb2012-03-13 11:42:19 +00003129 Result = SimplifyGEPInst(Ops, TD, TLI, DT);
Duncan Sandsd261dc62010-11-17 08:35:29 +00003130 break;
Chris Lattnerc514c1f2009-11-27 00:29:05 +00003131 }
Duncan Sandsdabc2802011-09-05 06:52:48 +00003132 case Instruction::InsertValue: {
3133 InsertValueInst *IV = cast<InsertValueInst>(I);
3134 Result = SimplifyInsertValueInst(IV->getAggregateOperand(),
3135 IV->getInsertedValueOperand(),
Duncan Sands0aa85eb2012-03-13 11:42:19 +00003136 IV->getIndices(), TD, TLI, DT);
Duncan Sandsdabc2802011-09-05 06:52:48 +00003137 break;
3138 }
Duncan Sandscd6636c2010-11-14 13:30:18 +00003139 case Instruction::PHI:
Duncan Sands0aa85eb2012-03-13 11:42:19 +00003140 Result = SimplifyPHINode(cast<PHINode>(I), Query (TD, TLI, DT));
Duncan Sandsd261dc62010-11-17 08:35:29 +00003141 break;
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003142 case Instruction::Call: {
3143 CallSite CS(cast<CallInst>(I));
3144 Result = SimplifyCall(CS.getCalledValue(), CS.arg_begin(), CS.arg_end(),
3145 TD, TLI, DT);
Dan Gohman71d05032011-11-04 18:32:42 +00003146 break;
Chandler Carruthc98bd9f2012-12-28 11:30:55 +00003147 }
Duncan Sandsbd0fe562012-03-13 14:07:05 +00003148 case Instruction::Trunc:
3149 Result = SimplifyTruncInst(I->getOperand(0), I->getType(), TD, TLI, DT);
3150 break;
Chris Lattnere3453782009-11-10 01:08:51 +00003151 }
Duncan Sandsd261dc62010-11-17 08:35:29 +00003152
3153 /// If called on unreachable code, the above logic may report that the
3154 /// instruction simplified to itself. Make life easier for users by
Duncan Sandsf8b1a5e2010-12-15 11:02:22 +00003155 /// detecting that case here, returning a safe value instead.
3156 return Result == I ? UndefValue::get(I->getType()) : Result;
Chris Lattnere3453782009-11-10 01:08:51 +00003157}
3158
Chandler Carruth6b980542012-03-24 21:11:24 +00003159/// \brief Implementation of recursive simplification through an instructions
3160/// uses.
Chris Lattner40d8c282009-11-10 22:26:15 +00003161///
Chandler Carruth6b980542012-03-24 21:11:24 +00003162/// This is the common implementation of the recursive simplification routines.
3163/// If we have a pre-simplified value in 'SimpleV', that is forcibly used to
3164/// replace the instruction 'I'. Otherwise, we simply add 'I' to the list of
3165/// instructions to process and attempt to simplify it using
3166/// InstructionSimplify.
3167///
3168/// This routine returns 'true' only when *it* simplifies something. The passed
3169/// in simplified value does not count toward this.
3170static bool replaceAndRecursivelySimplifyImpl(Instruction *I, Value *SimpleV,
Micah Villmow3574eca2012-10-08 16:38:25 +00003171 const DataLayout *TD,
Chandler Carruth6b980542012-03-24 21:11:24 +00003172 const TargetLibraryInfo *TLI,
3173 const DominatorTree *DT) {
3174 bool Simplified = false;
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003175 SmallSetVector<Instruction *, 8> Worklist;
Duncan Sands12a86f52010-11-14 11:23:23 +00003176
Chandler Carruth6b980542012-03-24 21:11:24 +00003177 // If we have an explicit value to collapse to, do that round of the
3178 // simplification loop by hand initially.
3179 if (SimpleV) {
3180 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
3181 ++UI)
Chandler Carruthc5b785b2012-03-24 22:34:23 +00003182 if (*UI != I)
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003183 Worklist.insert(cast<Instruction>(*UI));
Duncan Sands12a86f52010-11-14 11:23:23 +00003184
Chandler Carruth6b980542012-03-24 21:11:24 +00003185 // Replace the instruction with its simplified value.
3186 I->replaceAllUsesWith(SimpleV);
Chris Lattnerd2bfe542010-07-15 06:36:08 +00003187
Chandler Carruth6b980542012-03-24 21:11:24 +00003188 // Gracefully handle edge cases where the instruction is not wired into any
3189 // parent block.
3190 if (I->getParent())
3191 I->eraseFromParent();
3192 } else {
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003193 Worklist.insert(I);
Chris Lattner40d8c282009-11-10 22:26:15 +00003194 }
Duncan Sands12a86f52010-11-14 11:23:23 +00003195
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003196 // Note that we must test the size on each iteration, the worklist can grow.
3197 for (unsigned Idx = 0; Idx != Worklist.size(); ++Idx) {
3198 I = Worklist[Idx];
Duncan Sands12a86f52010-11-14 11:23:23 +00003199
Chandler Carruth6b980542012-03-24 21:11:24 +00003200 // See if this instruction simplifies.
3201 SimpleV = SimplifyInstruction(I, TD, TLI, DT);
3202 if (!SimpleV)
3203 continue;
3204
3205 Simplified = true;
3206
3207 // Stash away all the uses of the old instruction so we can check them for
3208 // recursive simplifications after a RAUW. This is cheaper than checking all
3209 // uses of To on the recursive step in most cases.
3210 for (Value::use_iterator UI = I->use_begin(), UE = I->use_end(); UI != UE;
3211 ++UI)
Chandler Carruth6231d5b2012-03-24 22:34:26 +00003212 Worklist.insert(cast<Instruction>(*UI));
Chandler Carruth6b980542012-03-24 21:11:24 +00003213
3214 // Replace the instruction with its simplified value.
3215 I->replaceAllUsesWith(SimpleV);
3216
3217 // Gracefully handle edge cases where the instruction is not wired into any
3218 // parent block.
3219 if (I->getParent())
3220 I->eraseFromParent();
3221 }
3222 return Simplified;
3223}
3224
3225bool llvm::recursivelySimplifyInstruction(Instruction *I,
Micah Villmow3574eca2012-10-08 16:38:25 +00003226 const DataLayout *TD,
Chandler Carruth6b980542012-03-24 21:11:24 +00003227 const TargetLibraryInfo *TLI,
3228 const DominatorTree *DT) {
3229 return replaceAndRecursivelySimplifyImpl(I, 0, TD, TLI, DT);
3230}
3231
3232bool llvm::replaceAndRecursivelySimplify(Instruction *I, Value *SimpleV,
Micah Villmow3574eca2012-10-08 16:38:25 +00003233 const DataLayout *TD,
Chandler Carruth6b980542012-03-24 21:11:24 +00003234 const TargetLibraryInfo *TLI,
3235 const DominatorTree *DT) {
3236 assert(I != SimpleV && "replaceAndRecursivelySimplify(X,X) is not valid!");
3237 assert(SimpleV && "Must provide a simplified value.");
3238 return replaceAndRecursivelySimplifyImpl(I, SimpleV, TD, TLI, DT);
Chris Lattner40d8c282009-11-10 22:26:15 +00003239}