blob: b0d017e0620e6c152daffd8b1424a55dd9254785 [file] [log] [blame]
Chris Lattner80f43d32010-01-04 07:53:58 +00001//===- InstCombineCasts.cpp -----------------------------------------------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file is distributed under the University of Illinois Open Source
6// License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// This file implements the visit functions for cast operations.
11//
12//===----------------------------------------------------------------------===//
13
14#include "InstCombine.h"
15#include "llvm/Target/TargetData.h"
16#include "llvm/Support/PatternMatch.h"
17using namespace llvm;
18using namespace PatternMatch;
19
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000020/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
21/// expression. If so, decompose it, returning some value X, such that Val is
22/// X*Scale+Offset.
23///
24static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
25 int &Offset) {
Benjamin Kramer11acaa32010-01-05 20:07:06 +000026 assert(Val->getType()->isInteger(32) && "Unexpected allocation size type!");
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000027 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
28 Offset = CI->getZExtValue();
29 Scale = 0;
30 return ConstantInt::get(Type::getInt32Ty(Val->getContext()), 0);
Chris Lattnerf86d7992010-01-05 20:57:30 +000031 }
32
33 if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000034 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
35 if (I->getOpcode() == Instruction::Shl) {
36 // This is a value scaled by '1 << the shift amt'.
37 Scale = 1U << RHS->getZExtValue();
38 Offset = 0;
39 return I->getOperand(0);
Chris Lattnerf86d7992010-01-05 20:57:30 +000040 }
41
42 if (I->getOpcode() == Instruction::Mul) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000043 // This value is scaled by 'RHS'.
44 Scale = RHS->getZExtValue();
45 Offset = 0;
46 return I->getOperand(0);
Chris Lattnerf86d7992010-01-05 20:57:30 +000047 }
48
49 if (I->getOpcode() == Instruction::Add) {
Chris Lattnerf3d1b5d2010-01-04 07:59:07 +000050 // We have X+C. Check to see if we really have (X*C2)+C1,
51 // where C1 is divisible by C2.
52 unsigned SubScale;
53 Value *SubVal =
54 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
55 Offset += RHS->getZExtValue();
56 Scale = SubScale;
57 return SubVal;
58 }
59 }
60 }
61
62 // Otherwise, we can't look past this.
63 Scale = 1;
64 Offset = 0;
65 return Val;
66}
67
68/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
69/// try to eliminate the cast by moving the type information into the alloc.
70Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
71 AllocaInst &AI) {
72 // This requires TargetData to get the alloca alignment and size information.
73 if (!TD) return 0;
74
75 const PointerType *PTy = cast<PointerType>(CI.getType());
76
77 BuilderTy AllocaBuilder(*Builder);
78 AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
79
80 // Get the type really allocated and the type casted to.
81 const Type *AllocElTy = AI.getAllocatedType();
82 const Type *CastElTy = PTy->getElementType();
83 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
84
85 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
86 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
87 if (CastElTyAlign < AllocElTyAlign) return 0;
88
89 // If the allocation has multiple uses, only promote it if we are strictly
90 // increasing the alignment of the resultant allocation. If we keep it the
91 // same, we open the door to infinite loops of various kinds. (A reference
92 // from a dbg.declare doesn't count as a use for this purpose.)
93 if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
94 CastElTyAlign == AllocElTyAlign) return 0;
95
96 uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
97 uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
98 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
99
100 // See if we can satisfy the modulus by pulling a scale out of the array
101 // size argument.
102 unsigned ArraySizeScale;
103 int ArrayOffset;
104 Value *NumElements = // See if the array size is a decomposable linear expr.
105 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
106
107 // If we can now satisfy the modulus, by using a non-1 scale, we really can
108 // do the xform.
109 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
110 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
111
112 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
113 Value *Amt = 0;
114 if (Scale == 1) {
115 Amt = NumElements;
116 } else {
117 Amt = ConstantInt::get(Type::getInt32Ty(CI.getContext()), Scale);
118 // Insert before the alloca, not before the cast.
119 Amt = AllocaBuilder.CreateMul(Amt, NumElements, "tmp");
120 }
121
122 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
123 Value *Off = ConstantInt::get(Type::getInt32Ty(CI.getContext()),
124 Offset, true);
125 Amt = AllocaBuilder.CreateAdd(Amt, Off, "tmp");
126 }
127
128 AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
129 New->setAlignment(AI.getAlignment());
130 New->takeName(&AI);
131
132 // If the allocation has one real use plus a dbg.declare, just remove the
133 // declare.
134 if (DbgDeclareInst *DI = hasOneUsePlusDeclare(&AI)) {
135 EraseInstFromFunction(*(Instruction*)DI);
136 }
137 // If the allocation has multiple real uses, insert a cast and change all
138 // things that used it to use the new cast. This will also hack on CI, but it
139 // will die soon.
140 else if (!AI.hasOneUse()) {
141 // New is the allocation instruction, pointer typed. AI is the original
142 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
143 Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
144 AI.replaceAllUsesWith(NewCast);
145 }
146 return ReplaceInstUsesWith(CI, New);
147}
148
149
Chris Lattnere0e4cc72010-01-06 01:56:21 +0000150
Chris Lattner5f0290e2010-01-04 07:54:59 +0000151/// EvaluateInDifferentType - Given an expression that
Chris Lattner14bf8f02010-01-08 19:19:23 +0000152/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
Chris Lattnere0e4cc72010-01-06 01:56:21 +0000153/// insert the code to evaluate the expression.
Chris Lattner5f0290e2010-01-04 07:54:59 +0000154Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
155 bool isSigned) {
Chris Lattnerc8b3fce2010-01-08 19:28:47 +0000156 if (Constant *C = dyn_cast<Constant>(V)) {
157 C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
158 // If we got a constantexpr back, try to simplify it with TD info.
159 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
160 C = ConstantFoldConstantExpression(CE, TD);
161 return C;
162 }
Chris Lattner5f0290e2010-01-04 07:54:59 +0000163
164 // Otherwise, it must be an instruction.
165 Instruction *I = cast<Instruction>(V);
166 Instruction *Res = 0;
167 unsigned Opc = I->getOpcode();
168 switch (Opc) {
169 case Instruction::Add:
170 case Instruction::Sub:
171 case Instruction::Mul:
172 case Instruction::And:
173 case Instruction::Or:
174 case Instruction::Xor:
175 case Instruction::AShr:
176 case Instruction::LShr:
177 case Instruction::Shl:
178 case Instruction::UDiv:
179 case Instruction::URem: {
180 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
181 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
182 Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
183 break;
184 }
185 case Instruction::Trunc:
186 case Instruction::ZExt:
187 case Instruction::SExt:
188 // If the source type of the cast is the type we're trying for then we can
189 // just return the source. There's no need to insert it because it is not
190 // new.
191 if (I->getOperand(0)->getType() == Ty)
192 return I->getOperand(0);
193
194 // Otherwise, must be the same type of cast, so just reinsert a new one.
195 Res = CastInst::Create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),Ty);
196 break;
197 case Instruction::Select: {
198 Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
199 Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
200 Res = SelectInst::Create(I->getOperand(0), True, False);
201 break;
202 }
203 case Instruction::PHI: {
204 PHINode *OPN = cast<PHINode>(I);
205 PHINode *NPN = PHINode::Create(Ty);
206 for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
207 Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
208 NPN->addIncoming(V, OPN->getIncomingBlock(i));
209 }
210 Res = NPN;
211 break;
212 }
213 default:
214 // TODO: Can handle more cases here.
215 llvm_unreachable("Unreachable!");
216 break;
217 }
218
219 Res->takeName(I);
220 return InsertNewInstBefore(Res, *I);
221}
Chris Lattner80f43d32010-01-04 07:53:58 +0000222
223
224/// This function is a wrapper around CastInst::isEliminableCastPair. It
225/// simply extracts arguments and returns what that function returns.
226static Instruction::CastOps
227isEliminableCastPair(
228 const CastInst *CI, ///< The first cast instruction
229 unsigned opcode, ///< The opcode of the second cast instruction
230 const Type *DstTy, ///< The target type for the second cast instruction
231 TargetData *TD ///< The target data for pointer size
232) {
233
234 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
235 const Type *MidTy = CI->getType(); // B from above
236
237 // Get the opcodes of the two Cast instructions
238 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
239 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
240
241 unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
242 DstTy,
243 TD ? TD->getIntPtrType(CI->getContext()) : 0);
244
245 // We don't want to form an inttoptr or ptrtoint that converts to an integer
246 // type that differs from the pointer size.
247 if ((Res == Instruction::IntToPtr &&
248 (!TD || SrcTy != TD->getIntPtrType(CI->getContext()))) ||
249 (Res == Instruction::PtrToInt &&
250 (!TD || DstTy != TD->getIntPtrType(CI->getContext()))))
251 Res = 0;
252
253 return Instruction::CastOps(Res);
254}
255
256/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
257/// in any code being generated. It does not require codegen if V is simple
258/// enough or if the cast can be folded into other casts.
259bool InstCombiner::ValueRequiresCast(Instruction::CastOps opcode,const Value *V,
260 const Type *Ty) {
261 if (V->getType() == Ty || isa<Constant>(V)) return false;
262
263 // If this is another cast that can be eliminated, it isn't codegen either.
264 if (const CastInst *CI = dyn_cast<CastInst>(V))
265 if (isEliminableCastPair(CI, opcode, Ty, TD))
266 return false;
267 return true;
268}
269
270
271/// @brief Implement the transforms common to all CastInst visitors.
272Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
273 Value *Src = CI.getOperand(0);
274
275 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
276 // eliminate it now.
277 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
278 if (Instruction::CastOps opc =
279 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
280 // The first cast (CSrc) is eliminable so we need to fix up or replace
281 // the second cast (CI). CSrc will then have a good chance of being dead.
282 return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
283 }
284 }
285
286 // If we are casting a select then fold the cast into the select
287 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
288 if (Instruction *NV = FoldOpIntoSelect(CI, SI))
289 return NV;
290
291 // If we are casting a PHI then fold the cast into the PHI
292 if (isa<PHINode>(Src)) {
293 // We don't do this if this would create a PHI node with an illegal type if
294 // it is currently legal.
295 if (!isa<IntegerType>(Src->getType()) ||
296 !isa<IntegerType>(CI.getType()) ||
297 ShouldChangeType(CI.getType(), Src->getType()))
298 if (Instruction *NV = FoldOpIntoPhi(CI))
299 return NV;
300 }
301
302 return 0;
303}
304
Chris Lattner75215c92010-01-10 00:58:42 +0000305/// CanEvaluateTruncated - Return true if we can evaluate the specified
306/// expression tree as type Ty instead of its larger type, and arrive with the
307/// same value. This is used by code that tries to eliminate truncates.
308///
309/// Ty will always be a type smaller than V. We should return true if trunc(V)
310/// can be computed by computing V in the smaller type. If V is an instruction,
311/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
312/// makes sense if x and y can be efficiently truncated.
313///
314static bool CanEvaluateTruncated(Value *V, const Type *Ty) {
315 // We can always evaluate constants in another type.
316 if (isa<Constant>(V))
317 return true;
Chris Lattner68c6e892010-01-05 23:00:30 +0000318
Chris Lattner75215c92010-01-10 00:58:42 +0000319 Instruction *I = dyn_cast<Instruction>(V);
320 if (!I) return false;
321
322 const Type *OrigTy = V->getType();
323
324 // If this is an extension from the dest type, we can eliminate it.
325 if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
326 I->getOperand(0)->getType() == Ty)
327 return true;
328
329 // We can't extend or shrink something that has multiple uses: doing so would
330 // require duplicating the instruction in general, which isn't profitable.
331 if (!I->hasOneUse()) return false;
332
333 unsigned Opc = I->getOpcode();
334 switch (Opc) {
335 case Instruction::Add:
336 case Instruction::Sub:
337 case Instruction::Mul:
338 case Instruction::And:
339 case Instruction::Or:
340 case Instruction::Xor:
341 // These operators can all arbitrarily be extended or truncated.
342 return CanEvaluateTruncated(I->getOperand(0), Ty) &&
343 CanEvaluateTruncated(I->getOperand(1), Ty);
344
345 case Instruction::UDiv:
346 case Instruction::URem: {
347 // UDiv and URem can be truncated if all the truncated bits are zero.
348 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
349 uint32_t BitWidth = Ty->getScalarSizeInBits();
350 if (BitWidth < OrigBitWidth) {
351 APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
352 if (MaskedValueIsZero(I->getOperand(0), Mask) &&
353 MaskedValueIsZero(I->getOperand(1), Mask)) {
354 return CanEvaluateTruncated(I->getOperand(0), Ty) &&
355 CanEvaluateTruncated(I->getOperand(1), Ty);
356 }
357 }
358 break;
359 }
360 case Instruction::Shl:
361 // If we are truncating the result of this SHL, and if it's a shift of a
362 // constant amount, we can always perform a SHL in a smaller type.
363 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
364 uint32_t BitWidth = Ty->getScalarSizeInBits();
365 if (CI->getLimitedValue(BitWidth) < BitWidth)
366 return CanEvaluateTruncated(I->getOperand(0), Ty);
367 }
368 break;
369 case Instruction::LShr:
370 // If this is a truncate of a logical shr, we can truncate it to a smaller
371 // lshr iff we know that the bits we would otherwise be shifting in are
372 // already zeros.
373 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
374 uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
375 uint32_t BitWidth = Ty->getScalarSizeInBits();
376 if (MaskedValueIsZero(I->getOperand(0),
377 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
378 CI->getLimitedValue(BitWidth) < BitWidth) {
379 return CanEvaluateTruncated(I->getOperand(0), Ty);
380 }
381 }
382 break;
383 case Instruction::Trunc:
384 // trunc(trunc(x)) -> trunc(x)
385 return true;
386 case Instruction::Select: {
387 SelectInst *SI = cast<SelectInst>(I);
388 return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
389 CanEvaluateTruncated(SI->getFalseValue(), Ty);
390 }
391 case Instruction::PHI: {
392 // We can change a phi if we can change all operands. Note that we never
393 // get into trouble with cyclic PHIs here because we only consider
394 // instructions with a single use.
395 PHINode *PN = cast<PHINode>(I);
396 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
397 if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
398 return false;
399 return true;
400 }
401 default:
402 // TODO: Can handle more cases here.
403 break;
404 }
405
406 return false;
407}
408
409Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000410 if (Instruction *Result = commonCastTransforms(CI))
Chris Lattner75215c92010-01-10 00:58:42 +0000411 return Result;
412
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000413 // See if we can simplify any instructions used by the input whose sole
414 // purpose is to compute bits we don't care about.
415 if (SimplifyDemandedInstructionBits(CI))
416 return &CI;
417
Chris Lattner75215c92010-01-10 00:58:42 +0000418 Value *Src = CI.getOperand(0);
419 const Type *DestTy = CI.getType(), *SrcTy = Src->getType();
420
421 // Attempt to truncate the entire input expression tree to the destination
422 // type. Only do this if the dest type is a simple type, don't convert the
Chris Lattner80f43d32010-01-04 07:53:58 +0000423 // expression tree to something weird like i93 unless the source is also
424 // strange.
Chris Lattner75215c92010-01-10 00:58:42 +0000425 if ((isa<VectorType>(DestTy) || ShouldChangeType(SrcTy, DestTy)) &&
426 CanEvaluateTruncated(Src, DestTy)) {
Chris Lattnere0e4cc72010-01-06 01:56:21 +0000427
Chris Lattner80f43d32010-01-04 07:53:58 +0000428 // If this cast is a truncate, evaluting in a different type always
Chris Lattner68c6e892010-01-05 23:00:30 +0000429 // eliminates the cast, so it is always a win.
Chris Lattner075f6922010-01-07 23:41:00 +0000430 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
431 " to avoid cast: " << CI);
432 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
433 assert(Res->getType() == DestTy);
434 return ReplaceInstUsesWith(CI, Res);
435 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000436
Chris Lattner7a34d6c2010-01-05 22:21:18 +0000437 // Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
438 if (DestTy->getScalarSizeInBits() == 1) {
Chris Lattner80f43d32010-01-04 07:53:58 +0000439 Constant *One = ConstantInt::get(Src->getType(), 1);
440 Src = Builder->CreateAnd(Src, One, "tmp");
441 Value *Zero = Constant::getNullValue(Src->getType());
442 return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
443 }
444
Chris Lattner80f43d32010-01-04 07:53:58 +0000445 return 0;
446}
447
448/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
449/// in order to eliminate the icmp.
450Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
451 bool DoXform) {
452 // If we are just checking for a icmp eq of a single bit and zext'ing it
453 // to an integer, then shift the bit to the appropriate place and then
454 // cast to integer to avoid the comparison.
455 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
456 const APInt &Op1CV = Op1C->getValue();
457
458 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
459 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
460 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
461 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
462 if (!DoXform) return ICI;
463
464 Value *In = ICI->getOperand(0);
465 Value *Sh = ConstantInt::get(In->getType(),
466 In->getType()->getScalarSizeInBits()-1);
467 In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
468 if (In->getType() != CI.getType())
469 In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/, "tmp");
470
471 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
472 Constant *One = ConstantInt::get(In->getType(), 1);
473 In = Builder->CreateXor(In, One, In->getName()+".not");
474 }
475
476 return ReplaceInstUsesWith(CI, In);
477 }
478
479
480
481 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
482 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
483 // zext (X == 1) to i32 --> X iff X has only the low bit set.
484 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
485 // zext (X != 0) to i32 --> X iff X has only the low bit set.
486 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
487 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
488 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
489 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
490 // This only works for EQ and NE
491 ICI->isEquality()) {
492 // If Op1C some other power of two, convert:
493 uint32_t BitWidth = Op1C->getType()->getBitWidth();
494 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
495 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
496 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
497
498 APInt KnownZeroMask(~KnownZero);
499 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
500 if (!DoXform) return ICI;
501
502 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
503 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
504 // (X&4) == 2 --> false
505 // (X&4) != 2 --> true
506 Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
507 isNE);
508 Res = ConstantExpr::getZExt(Res, CI.getType());
509 return ReplaceInstUsesWith(CI, Res);
510 }
511
512 uint32_t ShiftAmt = KnownZeroMask.logBase2();
513 Value *In = ICI->getOperand(0);
514 if (ShiftAmt) {
515 // Perform a logical shr by shiftamt.
516 // Insert the shift to put the result in the low bit.
517 In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
518 In->getName()+".lobit");
519 }
520
521 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
522 Constant *One = ConstantInt::get(In->getType(), 1);
523 In = Builder->CreateXor(In, One, "tmp");
524 }
525
526 if (CI.getType() == In->getType())
527 return ReplaceInstUsesWith(CI, In);
528 else
529 return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
530 }
531 }
532 }
533
534 // icmp ne A, B is equal to xor A, B when A and B only really have one bit.
535 // It is also profitable to transform icmp eq into not(xor(A, B)) because that
536 // may lead to additional simplifications.
537 if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
538 if (const IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
539 uint32_t BitWidth = ITy->getBitWidth();
540 Value *LHS = ICI->getOperand(0);
541 Value *RHS = ICI->getOperand(1);
542
543 APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
544 APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
545 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
546 ComputeMaskedBits(LHS, TypeMask, KnownZeroLHS, KnownOneLHS);
547 ComputeMaskedBits(RHS, TypeMask, KnownZeroRHS, KnownOneRHS);
548
549 if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
550 APInt KnownBits = KnownZeroLHS | KnownOneLHS;
551 APInt UnknownBit = ~KnownBits;
552 if (UnknownBit.countPopulation() == 1) {
553 if (!DoXform) return ICI;
554
555 Value *Result = Builder->CreateXor(LHS, RHS);
556
557 // Mask off any bits that are set and won't be shifted away.
558 if (KnownOneLHS.uge(UnknownBit))
559 Result = Builder->CreateAnd(Result,
560 ConstantInt::get(ITy, UnknownBit));
561
562 // Shift the bit we're testing down to the lsb.
563 Result = Builder->CreateLShr(
564 Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
565
566 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
567 Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
568 Result->takeName(ICI);
569 return ReplaceInstUsesWith(CI, Result);
570 }
571 }
572 }
573 }
574
575 return 0;
576}
577
Chris Lattner75215c92010-01-10 00:58:42 +0000578/// CanEvaluateZExtd - Determine if the specified value can be computed in the
579/// specified wider type and produce the same low bits. If not, return -1. If
580/// it is possible, return the number of high bits that are known to be zero in
581/// the promoted value.
Chris Lattner9e390dd2010-01-10 02:50:04 +0000582static bool CanEvaluateZExtd(Value *V, const Type *Ty, const TargetData *TD) {
583 if (isa<Constant>(V))
584 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000585
586 Instruction *I = dyn_cast<Instruction>(V);
Chris Lattner9e390dd2010-01-10 02:50:04 +0000587 if (!I) return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000588
589 // If the input is a truncate from the destination type, we can trivially
Chris Lattner9e390dd2010-01-10 02:50:04 +0000590 // eliminate it.
591 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
592 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000593
594 // We can't extend or shrink something that has multiple uses: doing so would
595 // require duplicating the instruction in general, which isn't profitable.
Chris Lattner9e390dd2010-01-10 02:50:04 +0000596 if (!I->hasOneUse()) return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000597
Chris Lattner75215c92010-01-10 00:58:42 +0000598 unsigned Opc = I->getOpcode();
599 switch (Opc) {
600 case Instruction::And:
Chris Lattner75215c92010-01-10 00:58:42 +0000601 case Instruction::Or:
602 case Instruction::Xor:
Chris Lattner75215c92010-01-10 00:58:42 +0000603 case Instruction::Add:
604 case Instruction::Sub:
605 case Instruction::Mul:
Chris Lattnerd26c9e12010-01-10 02:22:12 +0000606 case Instruction::Shl:
Chris Lattner9e390dd2010-01-10 02:50:04 +0000607 return CanEvaluateZExtd(I->getOperand(0), Ty, TD) &&
608 CanEvaluateZExtd(I->getOperand(1), Ty, TD);
Chris Lattner75215c92010-01-10 00:58:42 +0000609
Chris Lattner75215c92010-01-10 00:58:42 +0000610 //case Instruction::LShr:
Chris Lattner9e390dd2010-01-10 02:50:04 +0000611 case Instruction::ZExt: // zext(zext(x)) -> zext(x).
612 case Instruction::SExt: // zext(sext(x)) -> sext(x).
613 return true;
Chris Lattnerd26c9e12010-01-10 02:22:12 +0000614
Chris Lattner75215c92010-01-10 00:58:42 +0000615 case Instruction::Select:
Chris Lattner9e390dd2010-01-10 02:50:04 +0000616 return CanEvaluateZExtd(I->getOperand(1), Ty, TD) &&
617 CanEvaluateZExtd(I->getOperand(2), Ty, TD);
Chris Lattner75215c92010-01-10 00:58:42 +0000618
619 case Instruction::PHI: {
620 // We can change a phi if we can change all operands. Note that we never
621 // get into trouble with cyclic PHIs here because we only consider
622 // instructions with a single use.
623 PHINode *PN = cast<PHINode>(I);
Chris Lattner9e390dd2010-01-10 02:50:04 +0000624 if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, TD)) return false;
625 for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
Chris Lattner6091e022010-01-10 06:50:04 +0000626 if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, TD)) return false;
Chris Lattner9e390dd2010-01-10 02:50:04 +0000627 return true;
Chris Lattner75215c92010-01-10 00:58:42 +0000628 }
629 default:
630 // TODO: Can handle more cases here.
Chris Lattner9e390dd2010-01-10 02:50:04 +0000631 return false;
Chris Lattner75215c92010-01-10 00:58:42 +0000632 }
633}
634
Chris Lattner80f43d32010-01-04 07:53:58 +0000635Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
Chris Lattner5324d802010-01-10 02:39:31 +0000636 // If this zero extend is only used by a truncate, let the truncate by
637 // eliminated before we try to optimize this zext.
638 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
639 return 0;
640
Chris Lattner80f43d32010-01-04 07:53:58 +0000641 // If one of the common conversion will work, do it.
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000642 if (Instruction *Result = commonCastTransforms(CI))
Chris Lattner80f43d32010-01-04 07:53:58 +0000643 return Result;
644
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000645 // See if we can simplify any instructions used by the input whose sole
646 // purpose is to compute bits we don't care about.
647 if (SimplifyDemandedInstructionBits(CI))
648 return &CI;
Chris Lattner75215c92010-01-10 00:58:42 +0000649
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000650 Value *Src = CI.getOperand(0);
Chris Lattner75215c92010-01-10 00:58:42 +0000651 const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
652
653 // Attempt to extend the entire input expression tree to the destination
654 // type. Only do this if the dest type is a simple type, don't convert the
655 // expression tree to something weird like i93 unless the source is also
656 // strange.
Chris Lattner9e390dd2010-01-10 02:50:04 +0000657 if ((isa<VectorType>(DestTy) || ShouldChangeType(SrcTy, DestTy)) &&
658 CanEvaluateZExtd(Src, DestTy, TD)) {
Chris Lattner5324d802010-01-10 02:39:31 +0000659 // Okay, we can transform this! Insert the new expression now.
660 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
661 " to avoid zero extend: " << CI);
662 Value *Res = EvaluateInDifferentType(Src, DestTy, false);
663 assert(Res->getType() == DestTy);
664
665 // If the high bits are already filled with zeros, just replace this
666 // cast with the result.
Chris Lattner75215c92010-01-10 00:58:42 +0000667 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
668 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
Chris Lattner9e390dd2010-01-10 02:50:04 +0000669 if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
Chris Lattner5324d802010-01-10 02:39:31 +0000670 DestBitSize-SrcBitSize)))
671 return ReplaceInstUsesWith(CI, Res);
672
673 // We need to emit an AND to clear the high bits.
674 Constant *C = ConstantInt::get(CI.getContext(),
675 APInt::getLowBitsSet(DestBitSize, SrcBitSize));
676 return BinaryOperator::CreateAnd(Res, C);
Chris Lattner75215c92010-01-10 00:58:42 +0000677 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000678
679 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
680 // types and if the sizes are just right we can convert this into a logical
681 // 'and' which will be much cheaper than the pair of casts.
682 if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
Chris Lattnerf4fb9112010-01-10 07:08:30 +0000683 // TODO: Subsume this into EvaluateInDifferentType.
684
Chris Lattner80f43d32010-01-04 07:53:58 +0000685 // Get the sizes of the types involved. We know that the intermediate type
686 // will be smaller than A or C, but don't know the relation between A and C.
687 Value *A = CSrc->getOperand(0);
688 unsigned SrcSize = A->getType()->getScalarSizeInBits();
689 unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
690 unsigned DstSize = CI.getType()->getScalarSizeInBits();
691 // If we're actually extending zero bits, then if
692 // SrcSize < DstSize: zext(a & mask)
693 // SrcSize == DstSize: a & mask
694 // SrcSize > DstSize: trunc(a) & mask
695 if (SrcSize < DstSize) {
696 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
697 Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
698 Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
699 return new ZExtInst(And, CI.getType());
700 }
701
702 if (SrcSize == DstSize) {
703 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
704 return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
705 AndValue));
706 }
707 if (SrcSize > DstSize) {
708 Value *Trunc = Builder->CreateTrunc(A, CI.getType(), "tmp");
709 APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
710 return BinaryOperator::CreateAnd(Trunc,
711 ConstantInt::get(Trunc->getType(),
Chris Lattnerf4fb9112010-01-10 07:08:30 +0000712 AndValue));
Chris Lattner80f43d32010-01-04 07:53:58 +0000713 }
714 }
715
716 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
717 return transformZExtICmp(ICI, CI);
718
719 BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
720 if (SrcI && SrcI->getOpcode() == Instruction::Or) {
721 // zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
722 // of the (zext icmp) will be transformed.
723 ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
724 ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
725 if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
726 (transformZExtICmp(LHS, CI, false) ||
727 transformZExtICmp(RHS, CI, false))) {
728 Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
729 Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
730 return BinaryOperator::Create(Instruction::Or, LCast, RCast);
731 }
732 }
733
734 // zext(trunc(t) & C) -> (t & zext(C)).
735 if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
736 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
737 if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
738 Value *TI0 = TI->getOperand(0);
739 if (TI0->getType() == CI.getType())
740 return
741 BinaryOperator::CreateAnd(TI0,
742 ConstantExpr::getZExt(C, CI.getType()));
743 }
744
745 // zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
746 if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
747 if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
748 if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
749 if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
750 And->getOperand(1) == C)
751 if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
752 Value *TI0 = TI->getOperand(0);
753 if (TI0->getType() == CI.getType()) {
754 Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
755 Value *NewAnd = Builder->CreateAnd(TI0, ZC, "tmp");
756 return BinaryOperator::CreateXor(NewAnd, ZC);
757 }
758 }
759
Chris Lattner718bf3f2010-01-05 21:04:47 +0000760 // zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
761 Value *X;
Chris Lattner49bdfef2010-01-05 21:11:17 +0000762 if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isInteger(1) &&
763 match(SrcI, m_Not(m_Value(X))) &&
Chris Lattner718bf3f2010-01-05 21:04:47 +0000764 (!X->hasOneUse() || !isa<CmpInst>(X))) {
765 Value *New = Builder->CreateZExt(X, CI.getType());
766 return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
767 }
768
Chris Lattner80f43d32010-01-04 07:53:58 +0000769 return 0;
770}
771
Chris Lattner75215c92010-01-10 00:58:42 +0000772/// CanEvaluateSExtd - Return true if we can take the specified value
773/// and return it as type Ty without inserting any new casts and without
774/// changing the value of the common low bits. This is used by code that tries
775/// to promote integer operations to a wider types will allow us to eliminate
776/// the extension.
777///
778/// This returns 0 if we can't do this or the number of sign bits that would be
779/// set if we can. For example, CanEvaluateSExtd(i16 1, i64) would return 63,
780/// because the computation can be extended (to "i64 1") and the resulting
781/// computation has 63 equal sign bits.
782///
783/// This function works on both vectors and scalars. For vectors, the result is
784/// the number of bits known sign extended in each element.
785///
786static unsigned CanEvaluateSExtd(Value *V, const Type *Ty,
787 unsigned &NumCastsRemoved, TargetData *TD) {
788 assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
789 "Can't sign extend type to a smaller type");
790 // If this is a constant, return the number of sign bits the extended version
791 // of it would have.
792 if (Constant *C = dyn_cast<Constant>(V))
793 return ComputeNumSignBits(ConstantExpr::getSExt(C, Ty), TD);
794
795 Instruction *I = dyn_cast<Instruction>(V);
796 if (!I) return 0;
797
798 // If this is a truncate from the destination type, we can trivially eliminate
799 // it, and this will remove a cast overall.
800 if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty) {
801 // If the operand of the truncate is itself a cast, and is eliminable, do
802 // not count this as an eliminable cast. We would prefer to eliminate those
803 // two casts first.
804 if (!isa<CastInst>(I->getOperand(0)) && I->hasOneUse())
805 ++NumCastsRemoved;
806 return ComputeNumSignBits(I->getOperand(0), TD);
807 }
808
809 // We can't extend or shrink something that has multiple uses: doing so would
810 // require duplicating the instruction in general, which isn't profitable.
811 if (!I->hasOneUse()) return 0;
812
813 const Type *OrigTy = V->getType();
814
815 unsigned Opc = I->getOpcode();
816 unsigned Tmp1, Tmp2;
817 switch (Opc) {
818 case Instruction::And:
819 case Instruction::Or:
820 case Instruction::Xor:
821 // These operators can all arbitrarily be extended or truncated.
822 Tmp1 = CanEvaluateSExtd(I->getOperand(0), Ty, NumCastsRemoved, TD);
823 if (Tmp1 == 0) return 0;
824 Tmp2 = CanEvaluateSExtd(I->getOperand(1), Ty, NumCastsRemoved, TD);
825 return std::min(Tmp1, Tmp2);
826 case Instruction::Add:
827 case Instruction::Sub:
828 // Add/Sub can have at most one carry/borrow bit.
829 Tmp1 = CanEvaluateSExtd(I->getOperand(0), Ty, NumCastsRemoved, TD);
830 if (Tmp1 == 0) return 0;
831 Tmp2 = CanEvaluateSExtd(I->getOperand(1), Ty, NumCastsRemoved, TD);
832 if (Tmp2 == 0) return 0;
833 return std::min(Tmp1, Tmp2)-1;
834 case Instruction::Mul:
835 // These operators can all arbitrarily be extended or truncated.
836 if (!CanEvaluateSExtd(I->getOperand(0), Ty, NumCastsRemoved, TD))
837 return 0;
838 if (!CanEvaluateSExtd(I->getOperand(1), Ty, NumCastsRemoved, TD))
839 return 0;
840 return 1; // IMPROVE?
841
842 //case Instruction::Shl: TODO
843 //case Instruction::LShr: TODO
844 //case Instruction::Trunc: TODO
845
846 case Instruction::SExt:
847 case Instruction::ZExt: {
848 // sext(sext(x)) -> sext(x)
849 // sext(zext(x)) -> zext(x)
850 // Note that replacing a cast does not reduce the number of casts in the
851 // input.
852 unsigned InSignBits = ComputeNumSignBits(I, TD);
853 unsigned ExtBits = Ty->getScalarSizeInBits()-OrigTy->getScalarSizeInBits();
854 // We'll end up extending it all the way out.
855 return InSignBits+ExtBits;
856 }
857 case Instruction::Select: {
858 SelectInst *SI = cast<SelectInst>(I);
859 Tmp1 = CanEvaluateSExtd(SI->getTrueValue(), Ty, NumCastsRemoved, TD);
860 if (Tmp1 == 0) return 0;
861 Tmp2 = CanEvaluateSExtd(SI->getFalseValue(), Ty, NumCastsRemoved,TD);
862 return std::min(Tmp1, Tmp2);
863 }
864 case Instruction::PHI: {
865 // We can change a phi if we can change all operands. Note that we never
866 // get into trouble with cyclic PHIs here because we only consider
867 // instructions with a single use.
868 PHINode *PN = cast<PHINode>(I);
869 unsigned Result = ~0U;
870 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
871 Result = std::min(Result,
872 CanEvaluateSExtd(PN->getIncomingValue(i), Ty,
873 NumCastsRemoved, TD));
874 if (Result == 0) return 0;
875 }
876 return Result;
877 }
878 default:
879 // TODO: Can handle more cases here.
880 break;
881 }
882
883 return 0;
884}
885
Chris Lattner80f43d32010-01-04 07:53:58 +0000886Instruction *InstCombiner::visitSExt(SExtInst &CI) {
Chris Lattner5324d802010-01-10 02:39:31 +0000887 // If this sign extend is only used by a truncate, let the truncate by
888 // eliminated before we try to optimize this zext.
889 if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
890 return 0;
891
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000892 if (Instruction *I = commonCastTransforms(CI))
Chris Lattner80f43d32010-01-04 07:53:58 +0000893 return I;
894
Chris Lattnerd84dfa42010-01-10 01:00:46 +0000895 // See if we can simplify any instructions used by the input whose sole
896 // purpose is to compute bits we don't care about.
897 if (SimplifyDemandedInstructionBits(CI))
898 return &CI;
899
Chris Lattner80f43d32010-01-04 07:53:58 +0000900 Value *Src = CI.getOperand(0);
Chris Lattner75215c92010-01-10 00:58:42 +0000901 const Type *SrcTy = Src->getType(), *DestTy = CI.getType();
902
Chris Lattner80f43d32010-01-04 07:53:58 +0000903 // Canonicalize sign-extend from i1 to a select.
Benjamin Kramer11acaa32010-01-05 20:07:06 +0000904 if (Src->getType()->isInteger(1))
Chris Lattner80f43d32010-01-04 07:53:58 +0000905 return SelectInst::Create(Src,
906 Constant::getAllOnesValue(CI.getType()),
907 Constant::getNullValue(CI.getType()));
Chris Lattner75215c92010-01-10 00:58:42 +0000908
909 // Attempt to extend the entire input expression tree to the destination
910 // type. Only do this if the dest type is a simple type, don't convert the
911 // expression tree to something weird like i93 unless the source is also
912 // strange.
913 if (isa<VectorType>(DestTy) || ShouldChangeType(SrcTy, DestTy)) {
914 unsigned NumCastsRemoved = 0;
915 // Check to see if we can do this transformation, and if so, how many bits
916 // of the promoted expression will be known copies of the sign bit in the
917 // result.
918 unsigned NumBitsSExt = CanEvaluateSExtd(Src, DestTy, NumCastsRemoved, TD);
919 if (NumBitsSExt == 0)
920 return 0;
921
922 uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
923 uint32_t DestBitSize = DestTy->getScalarSizeInBits();
924
925 // Because this is a sign extension, we can always transform it by inserting
926 // two new shifts (to do the extension). However, this is only profitable
927 // if we've eliminated two or more casts from the input. If we know the
928 // result will be sign-extended enough to not require these shifts, we can
929 // always do the transformation.
930 if (NumCastsRemoved >= 2 ||
931 NumBitsSExt > DestBitSize-SrcBitSize) {
Chris Lattnerf4fb9112010-01-10 07:08:30 +0000932
Chris Lattner75215c92010-01-10 00:58:42 +0000933 // Okay, we can transform this! Insert the new expression now.
934 DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
935 " to avoid sign extend: " << CI);
936 Value *Res = EvaluateInDifferentType(Src, DestTy, true);
937 assert(Res->getType() == DestTy);
938
939 // If the high bits are already filled with sign bit, just replace this
940 // cast with the result.
941 if (NumBitsSExt > DestBitSize - SrcBitSize ||
942 ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
943 return ReplaceInstUsesWith(CI, Res);
944
Chris Lattnerf4fb9112010-01-10 07:08:30 +0000945 // We need to emit a shl + ashr to do the sign extend.
946 Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
947 return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
948 ShAmt);
Chris Lattner75215c92010-01-10 00:58:42 +0000949 }
950 }
Chris Lattner80f43d32010-01-04 07:53:58 +0000951
952 // If the input is a shl/ashr pair of a same constant, then this is a sign
953 // extension from a smaller value. If we could trust arbitrary bitwidth
954 // integers, we could turn this into a truncate to the smaller bit and then
955 // use a sext for the whole extension. Since we don't, look deeper and check
956 // for a truncate. If the source and dest are the same type, eliminate the
957 // trunc and extend and just do shifts. For example, turn:
958 // %a = trunc i32 %i to i8
959 // %b = shl i8 %a, 6
960 // %c = ashr i8 %b, 6
961 // %d = sext i8 %c to i32
962 // into:
963 // %a = shl i32 %i, 30
964 // %d = ashr i32 %a, 30
965 Value *A = 0;
Chris Lattner4f379782010-01-10 01:04:31 +0000966 // TODO: Eventually this could be subsumed by EvaluateInDifferentType.
Chris Lattner80f43d32010-01-04 07:53:58 +0000967 ConstantInt *BA = 0, *CA = 0;
Chris Lattner4f379782010-01-10 01:04:31 +0000968 if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
Chris Lattner80f43d32010-01-04 07:53:58 +0000969 m_ConstantInt(CA))) &&
Chris Lattner4f379782010-01-10 01:04:31 +0000970 BA == CA && A->getType() == CI.getType()) {
971 unsigned MidSize = Src->getType()->getScalarSizeInBits();
972 unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
973 unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
974 Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
975 A = Builder->CreateShl(A, ShAmtV, CI.getName());
976 return BinaryOperator::CreateAShr(A, ShAmtV);
Chris Lattner80f43d32010-01-04 07:53:58 +0000977 }
978
979 return 0;
980}
981
982
983/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
984/// in the specified FP type without changing its value.
985static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
986 bool losesInfo;
987 APFloat F = CFP->getValueAPF();
988 (void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
989 if (!losesInfo)
990 return ConstantFP::get(CFP->getContext(), F);
991 return 0;
992}
993
994/// LookThroughFPExtensions - If this is an fp extension instruction, look
995/// through it until we get the source value.
996static Value *LookThroughFPExtensions(Value *V) {
997 if (Instruction *I = dyn_cast<Instruction>(V))
998 if (I->getOpcode() == Instruction::FPExt)
999 return LookThroughFPExtensions(I->getOperand(0));
1000
1001 // If this value is a constant, return the constant in the smallest FP type
1002 // that can accurately represent it. This allows us to turn
1003 // (float)((double)X+2.0) into x+2.0f.
1004 if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
1005 if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
1006 return V; // No constant folding of this.
1007 // See if the value can be truncated to float and then reextended.
1008 if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
1009 return V;
Benjamin Kramerf0127052010-01-05 13:12:22 +00001010 if (CFP->getType()->isDoubleTy())
Chris Lattner80f43d32010-01-04 07:53:58 +00001011 return V; // Won't shrink.
1012 if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
1013 return V;
1014 // Don't try to shrink to various long double types.
1015 }
1016
1017 return V;
1018}
1019
1020Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
1021 if (Instruction *I = commonCastTransforms(CI))
1022 return I;
1023
1024 // If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
1025 // smaller than the destination type, we can eliminate the truncate by doing
1026 // the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
1027 // as many builtins (sqrt, etc).
1028 BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
1029 if (OpI && OpI->hasOneUse()) {
1030 switch (OpI->getOpcode()) {
1031 default: break;
1032 case Instruction::FAdd:
1033 case Instruction::FSub:
1034 case Instruction::FMul:
1035 case Instruction::FDiv:
1036 case Instruction::FRem:
1037 const Type *SrcTy = OpI->getType();
1038 Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
1039 Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
1040 if (LHSTrunc->getType() != SrcTy &&
1041 RHSTrunc->getType() != SrcTy) {
1042 unsigned DstSize = CI.getType()->getScalarSizeInBits();
1043 // If the source types were both smaller than the destination type of
1044 // the cast, do this xform.
1045 if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
1046 RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
1047 LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
1048 RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
1049 return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
1050 }
1051 }
1052 break;
1053 }
1054 }
1055 return 0;
1056}
1057
1058Instruction *InstCombiner::visitFPExt(CastInst &CI) {
1059 return commonCastTransforms(CI);
1060}
1061
1062Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
1063 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1064 if (OpI == 0)
1065 return commonCastTransforms(FI);
1066
1067 // fptoui(uitofp(X)) --> X
1068 // fptoui(sitofp(X)) --> X
1069 // This is safe if the intermediate type has enough bits in its mantissa to
1070 // accurately represent all values of X. For example, do not do this with
1071 // i64->float->i64. This is also safe for sitofp case, because any negative
1072 // 'X' value would cause an undefined result for the fptoui.
1073 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1074 OpI->getOperand(0)->getType() == FI.getType() &&
1075 (int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
1076 OpI->getType()->getFPMantissaWidth())
1077 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1078
1079 return commonCastTransforms(FI);
1080}
1081
1082Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
1083 Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
1084 if (OpI == 0)
1085 return commonCastTransforms(FI);
1086
1087 // fptosi(sitofp(X)) --> X
1088 // fptosi(uitofp(X)) --> X
1089 // This is safe if the intermediate type has enough bits in its mantissa to
1090 // accurately represent all values of X. For example, do not do this with
1091 // i64->float->i64. This is also safe for sitofp case, because any negative
1092 // 'X' value would cause an undefined result for the fptoui.
1093 if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
1094 OpI->getOperand(0)->getType() == FI.getType() &&
1095 (int)FI.getType()->getScalarSizeInBits() <=
1096 OpI->getType()->getFPMantissaWidth())
1097 return ReplaceInstUsesWith(FI, OpI->getOperand(0));
1098
1099 return commonCastTransforms(FI);
1100}
1101
1102Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
1103 return commonCastTransforms(CI);
1104}
1105
1106Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
1107 return commonCastTransforms(CI);
1108}
1109
Chris Lattner80f43d32010-01-04 07:53:58 +00001110Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
1111 // If the source integer type is larger than the intptr_t type for
1112 // this target, do a trunc to the intptr_t type, then inttoptr of it. This
1113 // allows the trunc to be exposed to other transforms. Don't do this for
1114 // extending inttoptr's, because we don't know if the target sign or zero
1115 // extends to pointers.
1116 if (TD && CI.getOperand(0)->getType()->getScalarSizeInBits() >
1117 TD->getPointerSizeInBits()) {
1118 Value *P = Builder->CreateTrunc(CI.getOperand(0),
1119 TD->getIntPtrType(CI.getContext()), "tmp");
1120 return new IntToPtrInst(P, CI.getType());
1121 }
1122
1123 if (Instruction *I = commonCastTransforms(CI))
1124 return I;
1125
1126 return 0;
1127}
1128
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001129/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
1130Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
1131 Value *Src = CI.getOperand(0);
1132
1133 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
1134 // If casting the result of a getelementptr instruction with no offset, turn
1135 // this into a cast of the original pointer!
1136 if (GEP->hasAllZeroIndices()) {
1137 // Changing the cast operand is usually not a good idea but it is safe
1138 // here because the pointer operand is being replaced with another
1139 // pointer operand so the opcode doesn't need to change.
1140 Worklist.Add(GEP);
1141 CI.setOperand(0, GEP->getOperand(0));
1142 return &CI;
1143 }
1144
1145 // If the GEP has a single use, and the base pointer is a bitcast, and the
1146 // GEP computes a constant offset, see if we can convert these three
1147 // instructions into fewer. This typically happens with unions and other
1148 // non-type-safe code.
1149 if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
1150 GEP->hasAllConstantIndices()) {
1151 // We are guaranteed to get a constant from EmitGEPOffset.
1152 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP));
1153 int64_t Offset = OffsetV->getSExtValue();
1154
1155 // Get the base pointer input of the bitcast, and the type it points to.
1156 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
1157 const Type *GEPIdxTy =
1158 cast<PointerType>(OrigBase->getType())->getElementType();
1159 SmallVector<Value*, 8> NewIndices;
1160 if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
1161 // If we were able to index down into an element, create the GEP
1162 // and bitcast the result. This eliminates one bitcast, potentially
1163 // two.
1164 Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
1165 Builder->CreateInBoundsGEP(OrigBase,
1166 NewIndices.begin(), NewIndices.end()) :
1167 Builder->CreateGEP(OrigBase, NewIndices.begin(), NewIndices.end());
1168 NGEP->takeName(GEP);
1169
1170 if (isa<BitCastInst>(CI))
1171 return new BitCastInst(NGEP, CI.getType());
1172 assert(isa<PtrToIntInst>(CI));
1173 return new PtrToIntInst(NGEP, CI.getType());
1174 }
1175 }
1176 }
1177
1178 return commonCastTransforms(CI);
1179}
1180
1181Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
1182 // If the destination integer type is smaller than the intptr_t type for
1183 // this target, do a ptrtoint to intptr_t then do a trunc. This allows the
1184 // trunc to be exposed to other transforms. Don't do this for extending
1185 // ptrtoint's, because we don't know if the target sign or zero extends its
1186 // pointers.
1187 if (TD &&
1188 CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
1189 Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
1190 TD->getIntPtrType(CI.getContext()),
1191 "tmp");
1192 return new TruncInst(P, CI.getType());
1193 }
1194
1195 return commonPointerCastTransforms(CI);
1196}
1197
Chris Lattner80f43d32010-01-04 07:53:58 +00001198Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
1199 // If the operands are integer typed then apply the integer transforms,
1200 // otherwise just apply the common ones.
1201 Value *Src = CI.getOperand(0);
1202 const Type *SrcTy = Src->getType();
1203 const Type *DestTy = CI.getType();
1204
Chris Lattner80f43d32010-01-04 07:53:58 +00001205 // Get rid of casts from one type to the same type. These are useless and can
1206 // be replaced by the operand.
1207 if (DestTy == Src->getType())
1208 return ReplaceInstUsesWith(CI, Src);
1209
1210 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
1211 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
1212 const Type *DstElTy = DstPTy->getElementType();
1213 const Type *SrcElTy = SrcPTy->getElementType();
1214
1215 // If the address spaces don't match, don't eliminate the bitcast, which is
1216 // required for changing types.
1217 if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
1218 return 0;
1219
1220 // If we are casting a alloca to a pointer to a type of the same
1221 // size, rewrite the allocation instruction to allocate the "right" type.
1222 // There is no need to modify malloc calls because it is their bitcast that
1223 // needs to be cleaned up.
1224 if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
1225 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
1226 return V;
1227
1228 // If the source and destination are pointers, and this cast is equivalent
1229 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
1230 // This can enhance SROA and other transforms that want type-safe pointers.
1231 Constant *ZeroUInt =
1232 Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
1233 unsigned NumZeros = 0;
1234 while (SrcElTy != DstElTy &&
1235 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
1236 SrcElTy->getNumContainedTypes() /* not "{}" */) {
1237 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
1238 ++NumZeros;
1239 }
1240
1241 // If we found a path from the src to dest, create the getelementptr now.
1242 if (SrcElTy == DstElTy) {
1243 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
1244 return GetElementPtrInst::CreateInBounds(Src, Idxs.begin(), Idxs.end(),"",
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001245 ((Instruction*)NULL));
Chris Lattner80f43d32010-01-04 07:53:58 +00001246 }
1247 }
1248
1249 if (const VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001250 if (DestVTy->getNumElements() == 1 && !isa<VectorType>(SrcTy)) {
1251 Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
1252 return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
Chris Lattner80f43d32010-01-04 07:53:58 +00001253 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
Chris Lattner80f43d32010-01-04 07:53:58 +00001254 // FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
1255 }
1256 }
1257
1258 if (const VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001259 if (SrcVTy->getNumElements() == 1 && !isa<VectorType>(DestTy)) {
1260 Value *Elem =
1261 Builder->CreateExtractElement(Src,
1262 Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
1263 return CastInst::Create(Instruction::BitCast, Elem, DestTy);
Chris Lattner80f43d32010-01-04 07:53:58 +00001264 }
1265 }
1266
1267 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001268 // Okay, we have (bitcast (shuffle ..)). Check to see if this is
1269 // a bitconvert to a vector with the same # elts.
1270 if (SVI->hasOneUse() && isa<VectorType>(DestTy) &&
1271 cast<VectorType>(DestTy)->getNumElements() ==
1272 SVI->getType()->getNumElements() &&
1273 SVI->getType()->getNumElements() ==
1274 cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
1275 BitCastInst *Tmp;
1276 // If either of the operands is a cast from CI.getType(), then
1277 // evaluating the shuffle in the casted destination's type will allow
1278 // us to eliminate at least one cast.
1279 if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
1280 Tmp->getOperand(0)->getType() == DestTy) ||
1281 ((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
1282 Tmp->getOperand(0)->getType() == DestTy)) {
1283 Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
1284 Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
1285 // Return a new shuffle vector. Use the same element ID's, as we
1286 // know the vector types match #elts.
1287 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
Chris Lattner80f43d32010-01-04 07:53:58 +00001288 }
1289 }
1290 }
Chris Lattner7a34d6c2010-01-05 22:21:18 +00001291
1292 if (isa<PointerType>(SrcTy))
1293 return commonPointerCastTransforms(CI);
1294 return commonCastTransforms(CI);
Chris Lattner80f43d32010-01-04 07:53:58 +00001295}