Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 1 | //===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===// |
| 2 | // |
| 3 | // The LLVM Compiler Infrastructure |
| 4 | // |
| 5 | // This file was developed by Owen Anderson and is distributed under the |
| 6 | // University of Illinois Open Source License. See LICENSE.TXT for details. |
| 7 | // |
| 8 | //===----------------------------------------------------------------------===// |
| 9 | // |
| 10 | // This pass transforms loops by placing phi nodes at the end of the loops for |
| 11 | // all values that are live across the loop boundary. For example, it turns |
| 12 | // the left into the right code: |
| 13 | // |
| 14 | // for (...) for (...) |
| 15 | // if (c) if (c) |
| 16 | // X1 = ... X1 = ... |
| 17 | // else else |
| 18 | // X2 = ... X2 = ... |
| 19 | // X3 = phi(X1, X2) X3 = phi(X1, X2) |
| 20 | // ... = X3 + 4 X4 = phi(X3) |
| 21 | // ... = X4 + 4 |
| 22 | // |
| 23 | // This is still valid LLVM; the extra phi nodes are purely redundant, and will |
| 24 | // be trivially eliminated by InstCombine. The major benefit of this |
| 25 | // transformation is that it makes many other loop optimizations, such as |
| 26 | // LoopUnswitching, simpler. |
| 27 | // |
| 28 | //===----------------------------------------------------------------------===// |
| 29 | |
| 30 | #define DEBUG_TYPE "lcssa" |
| 31 | #include "llvm/Transforms/Scalar.h" |
| 32 | #include "llvm/Constants.h" |
| 33 | #include "llvm/Pass.h" |
| 34 | #include "llvm/Function.h" |
| 35 | #include "llvm/Instructions.h" |
| 36 | #include "llvm/ADT/SetVector.h" |
| 37 | #include "llvm/ADT/Statistic.h" |
| 38 | #include "llvm/Analysis/Dominators.h" |
| 39 | #include "llvm/Analysis/LoopPass.h" |
| 40 | #include "llvm/Analysis/ScalarEvolution.h" |
| 41 | #include "llvm/Support/CFG.h" |
| 42 | #include "llvm/Support/Compiler.h" |
| 43 | #include <algorithm> |
| 44 | #include <map> |
| 45 | using namespace llvm; |
| 46 | |
| 47 | STATISTIC(NumLCSSA, "Number of live out of a loop variables"); |
| 48 | |
| 49 | namespace { |
| 50 | struct VISIBILITY_HIDDEN LCSSA : public LoopPass { |
| 51 | static char ID; // Pass identification, replacement for typeid |
| 52 | LCSSA() : LoopPass((intptr_t)&ID) {} |
| 53 | |
| 54 | // Cached analysis information for the current function. |
| 55 | LoopInfo *LI; |
| 56 | DominatorTree *DT; |
| 57 | std::vector<BasicBlock*> LoopBlocks; |
| 58 | |
| 59 | virtual bool runOnLoop(Loop *L, LPPassManager &LPM); |
| 60 | |
| 61 | void ProcessInstruction(Instruction* Instr, |
Devang Patel | 02451fa | 2007-08-21 00:31:24 +0000 | [diff] [blame] | 62 | const SmallVector<BasicBlock*, 8>& exitBlocks); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 63 | |
| 64 | /// This transformation requires natural loop information & requires that |
| 65 | /// loop preheaders be inserted into the CFG. It maintains both of these, |
| 66 | /// as well as the CFG. It also requires dominator information. |
| 67 | /// |
| 68 | virtual void getAnalysisUsage(AnalysisUsage &AU) const { |
| 69 | AU.setPreservesCFG(); |
| 70 | AU.addRequiredID(LoopSimplifyID); |
| 71 | AU.addPreservedID(LoopSimplifyID); |
| 72 | AU.addRequired<LoopInfo>(); |
| 73 | AU.addPreserved<LoopInfo>(); |
| 74 | AU.addRequired<DominatorTree>(); |
| 75 | AU.addPreserved<ScalarEvolution>(); |
Devang Patel | 48d1580 | 2007-07-30 20:23:45 +0000 | [diff] [blame] | 76 | AU.addPreserved<DominatorTree>(); |
| 77 | |
| 78 | // Request DominanceFrontier now, even though LCSSA does |
| 79 | // not use it. This allows Pass Manager to schedule Dominance |
| 80 | // Frontier early enough such that one LPPassManager can handle |
| 81 | // multiple loop transformation passes. |
| 82 | AU.addRequired<DominanceFrontier>(); |
| 83 | AU.addPreserved<DominanceFrontier>(); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 84 | } |
| 85 | private: |
| 86 | void getLoopValuesUsedOutsideLoop(Loop *L, |
| 87 | SetVector<Instruction*> &AffectedValues); |
| 88 | |
| 89 | Value *GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst, |
| 90 | std::map<DomTreeNode*, Value*> &Phis); |
| 91 | |
| 92 | /// inLoop - returns true if the given block is within the current loop |
| 93 | const bool inLoop(BasicBlock* B) { |
| 94 | return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B); |
| 95 | } |
| 96 | }; |
| 97 | |
| 98 | char LCSSA::ID = 0; |
| 99 | RegisterPass<LCSSA> X("lcssa", "Loop-Closed SSA Form Pass"); |
| 100 | } |
| 101 | |
| 102 | LoopPass *llvm::createLCSSAPass() { return new LCSSA(); } |
| 103 | const PassInfo *llvm::LCSSAID = X.getPassInfo(); |
| 104 | |
| 105 | /// runOnFunction - Process all loops in the function, inner-most out. |
| 106 | bool LCSSA::runOnLoop(Loop *L, LPPassManager &LPM) { |
| 107 | |
| 108 | LI = &LPM.getAnalysis<LoopInfo>(); |
| 109 | DT = &getAnalysis<DominatorTree>(); |
Devang Patel | 9cee7a0 | 2007-08-17 21:59:16 +0000 | [diff] [blame] | 110 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 111 | // Speed up queries by creating a sorted list of blocks |
| 112 | LoopBlocks.clear(); |
| 113 | LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end()); |
| 114 | std::sort(LoopBlocks.begin(), LoopBlocks.end()); |
| 115 | |
| 116 | SetVector<Instruction*> AffectedValues; |
| 117 | getLoopValuesUsedOutsideLoop(L, AffectedValues); |
| 118 | |
| 119 | // If no values are affected, we can save a lot of work, since we know that |
| 120 | // nothing will be changed. |
| 121 | if (AffectedValues.empty()) |
| 122 | return false; |
| 123 | |
Devang Patel | 02451fa | 2007-08-21 00:31:24 +0000 | [diff] [blame] | 124 | SmallVector<BasicBlock*, 8> exitBlocks; |
| 125 | L->getExitBlocks(exitBlocks); |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 126 | |
| 127 | // Iterate over all affected values for this loop and insert Phi nodes |
| 128 | // for them in the appropriate exit blocks |
| 129 | |
| 130 | for (SetVector<Instruction*>::iterator I = AffectedValues.begin(), |
| 131 | E = AffectedValues.end(); I != E; ++I) |
| 132 | ProcessInstruction(*I, exitBlocks); |
| 133 | |
| 134 | assert(L->isLCSSAForm()); |
| 135 | |
| 136 | return true; |
| 137 | } |
| 138 | |
| 139 | /// processInstruction - Given a live-out instruction, insert LCSSA Phi nodes, |
| 140 | /// eliminate all out-of-loop uses. |
| 141 | void LCSSA::ProcessInstruction(Instruction *Instr, |
Devang Patel | 02451fa | 2007-08-21 00:31:24 +0000 | [diff] [blame] | 142 | const SmallVector<BasicBlock*, 8>& exitBlocks) { |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 143 | ++NumLCSSA; // We are applying the transformation |
| 144 | |
| 145 | // Keep track of the blocks that have the value available already. |
| 146 | std::map<DomTreeNode*, Value*> Phis; |
| 147 | |
| 148 | DomTreeNode *InstrNode = DT->getNode(Instr->getParent()); |
| 149 | |
| 150 | // Insert the LCSSA phi's into the exit blocks (dominated by the value), and |
| 151 | // add them to the Phi's map. |
Devang Patel | 02451fa | 2007-08-21 00:31:24 +0000 | [diff] [blame] | 152 | for (SmallVector<BasicBlock*, 8>::const_iterator BBI = exitBlocks.begin(), |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 153 | BBE = exitBlocks.end(); BBI != BBE; ++BBI) { |
| 154 | BasicBlock *BB = *BBI; |
| 155 | DomTreeNode *ExitBBNode = DT->getNode(BB); |
| 156 | Value *&Phi = Phis[ExitBBNode]; |
| 157 | if (!Phi && DT->dominates(InstrNode, ExitBBNode)) { |
| 158 | PHINode *PN = new PHINode(Instr->getType(), Instr->getName()+".lcssa", |
| 159 | BB->begin()); |
| 160 | PN->reserveOperandSpace(std::distance(pred_begin(BB), pred_end(BB))); |
| 161 | |
| 162 | // Remember that this phi makes the value alive in this block. |
| 163 | Phi = PN; |
| 164 | |
| 165 | // Add inputs from inside the loop for this PHI. |
| 166 | for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI) |
| 167 | PN->addIncoming(Instr, *PI); |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | |
| 172 | // Record all uses of Instr outside the loop. We need to rewrite these. The |
| 173 | // LCSSA phis won't be included because they use the value in the loop. |
| 174 | for (Value::use_iterator UI = Instr->use_begin(), E = Instr->use_end(); |
| 175 | UI != E;) { |
| 176 | BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); |
| 177 | if (PHINode *P = dyn_cast<PHINode>(*UI)) { |
| 178 | unsigned OperandNo = UI.getOperandNo(); |
| 179 | UserBB = P->getIncomingBlock(OperandNo/2); |
| 180 | } |
| 181 | |
| 182 | // If the user is in the loop, don't rewrite it! |
| 183 | if (UserBB == Instr->getParent() || inLoop(UserBB)) { |
| 184 | ++UI; |
| 185 | continue; |
| 186 | } |
| 187 | |
| 188 | // Otherwise, patch up uses of the value with the appropriate LCSSA Phi, |
| 189 | // inserting PHI nodes into join points where needed. |
| 190 | Value *Val = GetValueForBlock(DT->getNode(UserBB), Instr, Phis); |
| 191 | |
| 192 | // Preincrement the iterator to avoid invalidating it when we change the |
| 193 | // value. |
| 194 | Use &U = UI.getUse(); |
| 195 | ++UI; |
| 196 | U.set(Val); |
| 197 | } |
| 198 | } |
| 199 | |
| 200 | /// getLoopValuesUsedOutsideLoop - Return any values defined in the loop that |
| 201 | /// are used by instructions outside of it. |
| 202 | void LCSSA::getLoopValuesUsedOutsideLoop(Loop *L, |
| 203 | SetVector<Instruction*> &AffectedValues) { |
| 204 | // FIXME: For large loops, we may be able to avoid a lot of use-scanning |
| 205 | // by using dominance information. In particular, if a block does not |
| 206 | // dominate any of the loop exits, then none of the values defined in the |
| 207 | // block could be used outside the loop. |
| 208 | for (Loop::block_iterator BB = L->block_begin(), E = L->block_end(); |
| 209 | BB != E; ++BB) { |
| 210 | for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ++I) |
| 211 | for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E; |
| 212 | ++UI) { |
| 213 | BasicBlock *UserBB = cast<Instruction>(*UI)->getParent(); |
| 214 | if (PHINode* p = dyn_cast<PHINode>(*UI)) { |
| 215 | unsigned OperandNo = UI.getOperandNo(); |
| 216 | UserBB = p->getIncomingBlock(OperandNo/2); |
| 217 | } |
| 218 | |
| 219 | if (*BB != UserBB && !inLoop(UserBB)) { |
| 220 | AffectedValues.insert(I); |
| 221 | break; |
| 222 | } |
| 223 | } |
| 224 | } |
| 225 | } |
| 226 | |
| 227 | /// GetValueForBlock - Get the value to use within the specified basic block. |
| 228 | /// available values are in Phis. |
| 229 | Value *LCSSA::GetValueForBlock(DomTreeNode *BB, Instruction *OrigInst, |
| 230 | std::map<DomTreeNode*, Value*> &Phis) { |
| 231 | // If there is no dominator info for this BB, it is unreachable. |
| 232 | if (BB == 0) |
| 233 | return UndefValue::get(OrigInst->getType()); |
| 234 | |
| 235 | // If we have already computed this value, return the previously computed val. |
| 236 | Value *&V = Phis[BB]; |
| 237 | if (V) return V; |
| 238 | |
| 239 | DomTreeNode *IDom = BB->getIDom(); |
| 240 | |
Dan Gohman | f17a25c | 2007-07-18 16:29:46 +0000 | [diff] [blame] | 241 | // Otherwise, there are two cases: we either have to insert a PHI node or we |
| 242 | // don't. We need to insert a PHI node if this block is not dominated by one |
| 243 | // of the exit nodes from the loop (the loop could have multiple exits, and |
| 244 | // though the value defined *inside* the loop dominated all its uses, each |
| 245 | // exit by itself may not dominate all the uses). |
| 246 | // |
| 247 | // The simplest way to check for this condition is by checking to see if the |
| 248 | // idom is in the loop. If so, we *know* that none of the exit blocks |
| 249 | // dominate this block. Note that we *know* that the block defining the |
| 250 | // original instruction is in the idom chain, because if it weren't, then the |
| 251 | // original value didn't dominate this use. |
| 252 | if (!inLoop(IDom->getBlock())) { |
| 253 | // Idom is not in the loop, we must still be "below" the exit block and must |
| 254 | // be fully dominated by the value live in the idom. |
| 255 | return V = GetValueForBlock(IDom, OrigInst, Phis); |
| 256 | } |
| 257 | |
| 258 | BasicBlock *BBN = BB->getBlock(); |
| 259 | |
| 260 | // Otherwise, the idom is the loop, so we need to insert a PHI node. Do so |
| 261 | // now, then get values to fill in the incoming values for the PHI. |
| 262 | PHINode *PN = new PHINode(OrigInst->getType(), OrigInst->getName()+".lcssa", |
| 263 | BBN->begin()); |
| 264 | PN->reserveOperandSpace(std::distance(pred_begin(BBN), pred_end(BBN))); |
| 265 | V = PN; |
| 266 | |
| 267 | // Fill in the incoming values for the block. |
| 268 | for (pred_iterator PI = pred_begin(BBN), E = pred_end(BBN); PI != E; ++PI) |
| 269 | PN->addIncoming(GetValueForBlock(DT->getNode(*PI), OrigInst, Phis), *PI); |
| 270 | return PN; |
| 271 | } |
| 272 | |