blob: 1e4b1c3693ec4ba40a46f0c606415264dd33c68d [file] [log] [blame]
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001//===- InstructionCombining.cpp - Combine multiple instructions -----------===//
2//
3// The LLVM Compiler Infrastructure
4//
5// This file was developed by the LLVM research group and is distributed under
6// the University of Illinois Open Source License. See LICENSE.TXT for details.
7//
8//===----------------------------------------------------------------------===//
9//
10// InstructionCombining - Combine instructions to form fewer, simple
11// instructions. This pass does not modify the CFG This pass is where algebraic
12// simplification happens.
13//
14// This pass combines things like:
15// %Y = add i32 %X, 1
16// %Z = add i32 %Y, 1
17// into:
18// %Z = add i32 %X, 2
19//
20// This is a simple worklist driven algorithm.
21//
22// This pass guarantees that the following canonicalizations are performed on
23// the program:
24// 1. If a binary operator has a constant operand, it is moved to the RHS
25// 2. Bitwise operators with constant operands are always grouped so that
26// shifts are performed first, then or's, then and's, then xor's.
27// 3. Compare instructions are converted from <,>,<=,>= to ==,!= if possible
28// 4. All cmp instructions on boolean values are replaced with logical ops
29// 5. add X, X is represented as (X*2) => (X << 1)
30// 6. Multiplies with a power-of-two constant argument are transformed into
31// shifts.
32// ... etc.
33//
34//===----------------------------------------------------------------------===//
35
36#define DEBUG_TYPE "instcombine"
37#include "llvm/Transforms/Scalar.h"
38#include "llvm/IntrinsicInst.h"
39#include "llvm/Pass.h"
40#include "llvm/DerivedTypes.h"
41#include "llvm/GlobalVariable.h"
Duncan Sandscf7ecaa2007-09-11 14:35:41 +000042#include "llvm/ParameterAttributes.h"
Dan Gohmanf17a25c2007-07-18 16:29:46 +000043#include "llvm/Analysis/ConstantFolding.h"
44#include "llvm/Target/TargetData.h"
45#include "llvm/Transforms/Utils/BasicBlockUtils.h"
46#include "llvm/Transforms/Utils/Local.h"
47#include "llvm/Support/CallSite.h"
48#include "llvm/Support/Debug.h"
49#include "llvm/Support/GetElementPtrTypeIterator.h"
50#include "llvm/Support/InstVisitor.h"
51#include "llvm/Support/MathExtras.h"
52#include "llvm/Support/PatternMatch.h"
53#include "llvm/Support/Compiler.h"
54#include "llvm/ADT/DenseMap.h"
55#include "llvm/ADT/SmallVector.h"
56#include "llvm/ADT/SmallPtrSet.h"
57#include "llvm/ADT/Statistic.h"
58#include "llvm/ADT/STLExtras.h"
59#include <algorithm>
60#include <sstream>
61using namespace llvm;
62using namespace llvm::PatternMatch;
63
64STATISTIC(NumCombined , "Number of insts combined");
65STATISTIC(NumConstProp, "Number of constant folds");
66STATISTIC(NumDeadInst , "Number of dead inst eliminated");
67STATISTIC(NumDeadStore, "Number of dead stores eliminated");
68STATISTIC(NumSunkInst , "Number of instructions sunk");
69
70namespace {
71 class VISIBILITY_HIDDEN InstCombiner
72 : public FunctionPass,
73 public InstVisitor<InstCombiner, Instruction*> {
74 // Worklist of all of the instructions that need to be simplified.
75 std::vector<Instruction*> Worklist;
76 DenseMap<Instruction*, unsigned> WorklistMap;
77 TargetData *TD;
78 bool MustPreserveLCSSA;
79 public:
80 static char ID; // Pass identification, replacement for typeid
81 InstCombiner() : FunctionPass((intptr_t)&ID) {}
82
83 /// AddToWorkList - Add the specified instruction to the worklist if it
84 /// isn't already in it.
85 void AddToWorkList(Instruction *I) {
86 if (WorklistMap.insert(std::make_pair(I, Worklist.size())))
87 Worklist.push_back(I);
88 }
89
90 // RemoveFromWorkList - remove I from the worklist if it exists.
91 void RemoveFromWorkList(Instruction *I) {
92 DenseMap<Instruction*, unsigned>::iterator It = WorklistMap.find(I);
93 if (It == WorklistMap.end()) return; // Not in worklist.
94
95 // Don't bother moving everything down, just null out the slot.
96 Worklist[It->second] = 0;
97
98 WorklistMap.erase(It);
99 }
100
101 Instruction *RemoveOneFromWorkList() {
102 Instruction *I = Worklist.back();
103 Worklist.pop_back();
104 WorklistMap.erase(I);
105 return I;
106 }
107
108
109 /// AddUsersToWorkList - When an instruction is simplified, add all users of
110 /// the instruction to the work lists because they might get more simplified
111 /// now.
112 ///
113 void AddUsersToWorkList(Value &I) {
114 for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
115 UI != UE; ++UI)
116 AddToWorkList(cast<Instruction>(*UI));
117 }
118
119 /// AddUsesToWorkList - When an instruction is simplified, add operands to
120 /// the work lists because they might get more simplified now.
121 ///
122 void AddUsesToWorkList(Instruction &I) {
123 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
124 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i)))
125 AddToWorkList(Op);
126 }
127
128 /// AddSoonDeadInstToWorklist - The specified instruction is about to become
129 /// dead. Add all of its operands to the worklist, turning them into
130 /// undef's to reduce the number of uses of those instructions.
131 ///
132 /// Return the specified operand before it is turned into an undef.
133 ///
134 Value *AddSoonDeadInstToWorklist(Instruction &I, unsigned op) {
135 Value *R = I.getOperand(op);
136
137 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i)
138 if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
139 AddToWorkList(Op);
140 // Set the operand to undef to drop the use.
141 I.setOperand(i, UndefValue::get(Op->getType()));
142 }
143
144 return R;
145 }
146
147 public:
148 virtual bool runOnFunction(Function &F);
149
150 bool DoOneIteration(Function &F, unsigned ItNum);
151
152 virtual void getAnalysisUsage(AnalysisUsage &AU) const {
153 AU.addRequired<TargetData>();
154 AU.addPreservedID(LCSSAID);
155 AU.setPreservesCFG();
156 }
157
158 TargetData &getTargetData() const { return *TD; }
159
160 // Visitation implementation - Implement instruction combining for different
161 // instruction types. The semantics are as follows:
162 // Return Value:
163 // null - No change was made
164 // I - Change was made, I is still valid, I may be dead though
165 // otherwise - Change was made, replace I with returned instruction
166 //
167 Instruction *visitAdd(BinaryOperator &I);
168 Instruction *visitSub(BinaryOperator &I);
169 Instruction *visitMul(BinaryOperator &I);
170 Instruction *visitURem(BinaryOperator &I);
171 Instruction *visitSRem(BinaryOperator &I);
172 Instruction *visitFRem(BinaryOperator &I);
173 Instruction *commonRemTransforms(BinaryOperator &I);
174 Instruction *commonIRemTransforms(BinaryOperator &I);
175 Instruction *commonDivTransforms(BinaryOperator &I);
176 Instruction *commonIDivTransforms(BinaryOperator &I);
177 Instruction *visitUDiv(BinaryOperator &I);
178 Instruction *visitSDiv(BinaryOperator &I);
179 Instruction *visitFDiv(BinaryOperator &I);
180 Instruction *visitAnd(BinaryOperator &I);
181 Instruction *visitOr (BinaryOperator &I);
182 Instruction *visitXor(BinaryOperator &I);
183 Instruction *visitShl(BinaryOperator &I);
184 Instruction *visitAShr(BinaryOperator &I);
185 Instruction *visitLShr(BinaryOperator &I);
186 Instruction *commonShiftTransforms(BinaryOperator &I);
187 Instruction *visitFCmpInst(FCmpInst &I);
188 Instruction *visitICmpInst(ICmpInst &I);
189 Instruction *visitICmpInstWithCastAndCast(ICmpInst &ICI);
190 Instruction *visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
191 Instruction *LHS,
192 ConstantInt *RHS);
193 Instruction *FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
194 ConstantInt *DivRHS);
195
196 Instruction *FoldGEPICmp(User *GEPLHS, Value *RHS,
197 ICmpInst::Predicate Cond, Instruction &I);
198 Instruction *FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
199 BinaryOperator &I);
200 Instruction *commonCastTransforms(CastInst &CI);
201 Instruction *commonIntCastTransforms(CastInst &CI);
202 Instruction *commonPointerCastTransforms(CastInst &CI);
203 Instruction *visitTrunc(TruncInst &CI);
204 Instruction *visitZExt(ZExtInst &CI);
205 Instruction *visitSExt(SExtInst &CI);
206 Instruction *visitFPTrunc(CastInst &CI);
207 Instruction *visitFPExt(CastInst &CI);
208 Instruction *visitFPToUI(CastInst &CI);
209 Instruction *visitFPToSI(CastInst &CI);
210 Instruction *visitUIToFP(CastInst &CI);
211 Instruction *visitSIToFP(CastInst &CI);
212 Instruction *visitPtrToInt(CastInst &CI);
213 Instruction *visitIntToPtr(CastInst &CI);
214 Instruction *visitBitCast(BitCastInst &CI);
215 Instruction *FoldSelectOpOp(SelectInst &SI, Instruction *TI,
216 Instruction *FI);
217 Instruction *visitSelectInst(SelectInst &CI);
218 Instruction *visitCallInst(CallInst &CI);
219 Instruction *visitInvokeInst(InvokeInst &II);
220 Instruction *visitPHINode(PHINode &PN);
221 Instruction *visitGetElementPtrInst(GetElementPtrInst &GEP);
222 Instruction *visitAllocationInst(AllocationInst &AI);
223 Instruction *visitFreeInst(FreeInst &FI);
224 Instruction *visitLoadInst(LoadInst &LI);
225 Instruction *visitStoreInst(StoreInst &SI);
226 Instruction *visitBranchInst(BranchInst &BI);
227 Instruction *visitSwitchInst(SwitchInst &SI);
228 Instruction *visitInsertElementInst(InsertElementInst &IE);
229 Instruction *visitExtractElementInst(ExtractElementInst &EI);
230 Instruction *visitShuffleVectorInst(ShuffleVectorInst &SVI);
231
232 // visitInstruction - Specify what to return for unhandled instructions...
233 Instruction *visitInstruction(Instruction &I) { return 0; }
234
235 private:
236 Instruction *visitCallSite(CallSite CS);
237 bool transformConstExprCastCall(CallSite CS);
Duncan Sands74833f22007-09-17 10:26:40 +0000238 Instruction *transformCallThroughTrampoline(CallSite CS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000239
240 public:
241 // InsertNewInstBefore - insert an instruction New before instruction Old
242 // in the program. Add the new instruction to the worklist.
243 //
244 Instruction *InsertNewInstBefore(Instruction *New, Instruction &Old) {
245 assert(New && New->getParent() == 0 &&
246 "New instruction already inserted into a basic block!");
247 BasicBlock *BB = Old.getParent();
248 BB->getInstList().insert(&Old, New); // Insert inst
249 AddToWorkList(New);
250 return New;
251 }
252
253 /// InsertCastBefore - Insert a cast of V to TY before the instruction POS.
254 /// This also adds the cast to the worklist. Finally, this returns the
255 /// cast.
256 Value *InsertCastBefore(Instruction::CastOps opc, Value *V, const Type *Ty,
257 Instruction &Pos) {
258 if (V->getType() == Ty) return V;
259
260 if (Constant *CV = dyn_cast<Constant>(V))
261 return ConstantExpr::getCast(opc, CV, Ty);
262
263 Instruction *C = CastInst::create(opc, V, Ty, V->getName(), &Pos);
264 AddToWorkList(C);
265 return C;
266 }
267
268 // ReplaceInstUsesWith - This method is to be used when an instruction is
269 // found to be dead, replacable with another preexisting expression. Here
270 // we add all uses of I to the worklist, replace all uses of I with the new
271 // value, then return I, so that the inst combiner will know that I was
272 // modified.
273 //
274 Instruction *ReplaceInstUsesWith(Instruction &I, Value *V) {
275 AddUsersToWorkList(I); // Add all modified instrs to worklist
276 if (&I != V) {
277 I.replaceAllUsesWith(V);
278 return &I;
279 } else {
280 // If we are replacing the instruction with itself, this must be in a
281 // segment of unreachable code, so just clobber the instruction.
282 I.replaceAllUsesWith(UndefValue::get(I.getType()));
283 return &I;
284 }
285 }
286
287 // UpdateValueUsesWith - This method is to be used when an value is
288 // found to be replacable with another preexisting expression or was
289 // updated. Here we add all uses of I to the worklist, replace all uses of
290 // I with the new value (unless the instruction was just updated), then
291 // return true, so that the inst combiner will know that I was modified.
292 //
293 bool UpdateValueUsesWith(Value *Old, Value *New) {
294 AddUsersToWorkList(*Old); // Add all modified instrs to worklist
295 if (Old != New)
296 Old->replaceAllUsesWith(New);
297 if (Instruction *I = dyn_cast<Instruction>(Old))
298 AddToWorkList(I);
299 if (Instruction *I = dyn_cast<Instruction>(New))
300 AddToWorkList(I);
301 return true;
302 }
303
304 // EraseInstFromFunction - When dealing with an instruction that has side
305 // effects or produces a void value, we can't rely on DCE to delete the
306 // instruction. Instead, visit methods should return the value returned by
307 // this function.
308 Instruction *EraseInstFromFunction(Instruction &I) {
309 assert(I.use_empty() && "Cannot erase instruction that is used!");
310 AddUsesToWorkList(I);
311 RemoveFromWorkList(&I);
312 I.eraseFromParent();
313 return 0; // Don't do anything with FI
314 }
315
316 private:
317 /// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
318 /// InsertBefore instruction. This is specialized a bit to avoid inserting
319 /// casts that are known to not do anything...
320 ///
321 Value *InsertOperandCastBefore(Instruction::CastOps opcode,
322 Value *V, const Type *DestTy,
323 Instruction *InsertBefore);
324
325 /// SimplifyCommutative - This performs a few simplifications for
326 /// commutative operators.
327 bool SimplifyCommutative(BinaryOperator &I);
328
329 /// SimplifyCompare - This reorders the operands of a CmpInst to get them in
330 /// most-complex to least-complex order.
331 bool SimplifyCompare(CmpInst &I);
332
333 /// SimplifyDemandedBits - Attempts to replace V with a simpler value based
334 /// on the demanded bits.
335 bool SimplifyDemandedBits(Value *V, APInt DemandedMask,
336 APInt& KnownZero, APInt& KnownOne,
337 unsigned Depth = 0);
338
339 Value *SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
340 uint64_t &UndefElts, unsigned Depth = 0);
341
342 // FoldOpIntoPhi - Given a binary operator or cast instruction which has a
343 // PHI node as operand #0, see if we can fold the instruction into the PHI
344 // (which is only possible if all operands to the PHI are constants).
345 Instruction *FoldOpIntoPhi(Instruction &I);
346
347 // FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
348 // operator and they all are only used by the PHI, PHI together their
349 // inputs, and do the operation once, to the result of the PHI.
350 Instruction *FoldPHIArgOpIntoPHI(PHINode &PN);
351 Instruction *FoldPHIArgBinOpIntoPHI(PHINode &PN);
352
353
354 Instruction *OptAndOp(Instruction *Op, ConstantInt *OpRHS,
355 ConstantInt *AndRHS, BinaryOperator &TheAnd);
356
357 Value *FoldLogicalPlusAnd(Value *LHS, Value *RHS, ConstantInt *Mask,
358 bool isSub, Instruction &I);
359 Instruction *InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
360 bool isSigned, bool Inside, Instruction &IB);
361 Instruction *PromoteCastOfAllocation(BitCastInst &CI, AllocationInst &AI);
362 Instruction *MatchBSwap(BinaryOperator &I);
363 bool SimplifyStoreAtEndOfBlock(StoreInst &SI);
364
365 Value *EvaluateInDifferentType(Value *V, const Type *Ty, bool isSigned);
366 };
367
368 char InstCombiner::ID = 0;
369 RegisterPass<InstCombiner> X("instcombine", "Combine redundant instructions");
370}
371
372// getComplexity: Assign a complexity or rank value to LLVM Values...
373// 0 -> undef, 1 -> Const, 2 -> Other, 3 -> Arg, 3 -> Unary, 4 -> OtherInst
374static unsigned getComplexity(Value *V) {
375 if (isa<Instruction>(V)) {
376 if (BinaryOperator::isNeg(V) || BinaryOperator::isNot(V))
377 return 3;
378 return 4;
379 }
380 if (isa<Argument>(V)) return 3;
381 return isa<Constant>(V) ? (isa<UndefValue>(V) ? 0 : 1) : 2;
382}
383
384// isOnlyUse - Return true if this instruction will be deleted if we stop using
385// it.
386static bool isOnlyUse(Value *V) {
387 return V->hasOneUse() || isa<Constant>(V);
388}
389
390// getPromotedType - Return the specified type promoted as it would be to pass
391// though a va_arg area...
392static const Type *getPromotedType(const Type *Ty) {
393 if (const IntegerType* ITy = dyn_cast<IntegerType>(Ty)) {
394 if (ITy->getBitWidth() < 32)
395 return Type::Int32Ty;
396 }
397 return Ty;
398}
399
400/// getBitCastOperand - If the specified operand is a CastInst or a constant
401/// expression bitcast, return the operand value, otherwise return null.
402static Value *getBitCastOperand(Value *V) {
403 if (BitCastInst *I = dyn_cast<BitCastInst>(V))
404 return I->getOperand(0);
405 else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
406 if (CE->getOpcode() == Instruction::BitCast)
407 return CE->getOperand(0);
408 return 0;
409}
410
411/// This function is a wrapper around CastInst::isEliminableCastPair. It
412/// simply extracts arguments and returns what that function returns.
413static Instruction::CastOps
414isEliminableCastPair(
415 const CastInst *CI, ///< The first cast instruction
416 unsigned opcode, ///< The opcode of the second cast instruction
417 const Type *DstTy, ///< The target type for the second cast instruction
418 TargetData *TD ///< The target data for pointer size
419) {
420
421 const Type *SrcTy = CI->getOperand(0)->getType(); // A from above
422 const Type *MidTy = CI->getType(); // B from above
423
424 // Get the opcodes of the two Cast instructions
425 Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
426 Instruction::CastOps secondOp = Instruction::CastOps(opcode);
427
428 return Instruction::CastOps(
429 CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
430 DstTy, TD->getIntPtrType()));
431}
432
433/// ValueRequiresCast - Return true if the cast from "V to Ty" actually results
434/// in any code being generated. It does not require codegen if V is simple
435/// enough or if the cast can be folded into other casts.
436static bool ValueRequiresCast(Instruction::CastOps opcode, const Value *V,
437 const Type *Ty, TargetData *TD) {
438 if (V->getType() == Ty || isa<Constant>(V)) return false;
439
440 // If this is another cast that can be eliminated, it isn't codegen either.
441 if (const CastInst *CI = dyn_cast<CastInst>(V))
442 if (isEliminableCastPair(CI, opcode, Ty, TD))
443 return false;
444 return true;
445}
446
447/// InsertOperandCastBefore - This inserts a cast of V to DestTy before the
448/// InsertBefore instruction. This is specialized a bit to avoid inserting
449/// casts that are known to not do anything...
450///
451Value *InstCombiner::InsertOperandCastBefore(Instruction::CastOps opcode,
452 Value *V, const Type *DestTy,
453 Instruction *InsertBefore) {
454 if (V->getType() == DestTy) return V;
455 if (Constant *C = dyn_cast<Constant>(V))
456 return ConstantExpr::getCast(opcode, C, DestTy);
457
458 return InsertCastBefore(opcode, V, DestTy, *InsertBefore);
459}
460
461// SimplifyCommutative - This performs a few simplifications for commutative
462// operators:
463//
464// 1. Order operands such that they are listed from right (least complex) to
465// left (most complex). This puts constants before unary operators before
466// binary operators.
467//
468// 2. Transform: (op (op V, C1), C2) ==> (op V, (op C1, C2))
469// 3. Transform: (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
470//
471bool InstCombiner::SimplifyCommutative(BinaryOperator &I) {
472 bool Changed = false;
473 if (getComplexity(I.getOperand(0)) < getComplexity(I.getOperand(1)))
474 Changed = !I.swapOperands();
475
476 if (!I.isAssociative()) return Changed;
477 Instruction::BinaryOps Opcode = I.getOpcode();
478 if (BinaryOperator *Op = dyn_cast<BinaryOperator>(I.getOperand(0)))
479 if (Op->getOpcode() == Opcode && isa<Constant>(Op->getOperand(1))) {
480 if (isa<Constant>(I.getOperand(1))) {
481 Constant *Folded = ConstantExpr::get(I.getOpcode(),
482 cast<Constant>(I.getOperand(1)),
483 cast<Constant>(Op->getOperand(1)));
484 I.setOperand(0, Op->getOperand(0));
485 I.setOperand(1, Folded);
486 return true;
487 } else if (BinaryOperator *Op1=dyn_cast<BinaryOperator>(I.getOperand(1)))
488 if (Op1->getOpcode() == Opcode && isa<Constant>(Op1->getOperand(1)) &&
489 isOnlyUse(Op) && isOnlyUse(Op1)) {
490 Constant *C1 = cast<Constant>(Op->getOperand(1));
491 Constant *C2 = cast<Constant>(Op1->getOperand(1));
492
493 // Fold (op (op V1, C1), (op V2, C2)) ==> (op (op V1, V2), (op C1,C2))
494 Constant *Folded = ConstantExpr::get(I.getOpcode(), C1, C2);
495 Instruction *New = BinaryOperator::create(Opcode, Op->getOperand(0),
496 Op1->getOperand(0),
497 Op1->getName(), &I);
498 AddToWorkList(New);
499 I.setOperand(0, New);
500 I.setOperand(1, Folded);
501 return true;
502 }
503 }
504 return Changed;
505}
506
507/// SimplifyCompare - For a CmpInst this function just orders the operands
508/// so that theyare listed from right (least complex) to left (most complex).
509/// This puts constants before unary operators before binary operators.
510bool InstCombiner::SimplifyCompare(CmpInst &I) {
511 if (getComplexity(I.getOperand(0)) >= getComplexity(I.getOperand(1)))
512 return false;
513 I.swapOperands();
514 // Compare instructions are not associative so there's nothing else we can do.
515 return true;
516}
517
518// dyn_castNegVal - Given a 'sub' instruction, return the RHS of the instruction
519// if the LHS is a constant zero (which is the 'negate' form).
520//
521static inline Value *dyn_castNegVal(Value *V) {
522 if (BinaryOperator::isNeg(V))
523 return BinaryOperator::getNegArgument(V);
524
525 // Constants can be considered to be negated values if they can be folded.
526 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
527 return ConstantExpr::getNeg(C);
528 return 0;
529}
530
531static inline Value *dyn_castNotVal(Value *V) {
532 if (BinaryOperator::isNot(V))
533 return BinaryOperator::getNotArgument(V);
534
535 // Constants can be considered to be not'ed values...
536 if (ConstantInt *C = dyn_cast<ConstantInt>(V))
537 return ConstantInt::get(~C->getValue());
538 return 0;
539}
540
541// dyn_castFoldableMul - If this value is a multiply that can be folded into
542// other computations (because it has a constant operand), return the
543// non-constant operand of the multiply, and set CST to point to the multiplier.
544// Otherwise, return null.
545//
546static inline Value *dyn_castFoldableMul(Value *V, ConstantInt *&CST) {
547 if (V->hasOneUse() && V->getType()->isInteger())
548 if (Instruction *I = dyn_cast<Instruction>(V)) {
549 if (I->getOpcode() == Instruction::Mul)
550 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1))))
551 return I->getOperand(0);
552 if (I->getOpcode() == Instruction::Shl)
553 if ((CST = dyn_cast<ConstantInt>(I->getOperand(1)))) {
554 // The multiplier is really 1 << CST.
555 uint32_t BitWidth = cast<IntegerType>(V->getType())->getBitWidth();
556 uint32_t CSTVal = CST->getLimitedValue(BitWidth);
557 CST = ConstantInt::get(APInt(BitWidth, 1).shl(CSTVal));
558 return I->getOperand(0);
559 }
560 }
561 return 0;
562}
563
564/// dyn_castGetElementPtr - If this is a getelementptr instruction or constant
565/// expression, return it.
566static User *dyn_castGetElementPtr(Value *V) {
567 if (isa<GetElementPtrInst>(V)) return cast<User>(V);
568 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
569 if (CE->getOpcode() == Instruction::GetElementPtr)
570 return cast<User>(V);
571 return false;
572}
573
574/// AddOne - Add one to a ConstantInt
575static ConstantInt *AddOne(ConstantInt *C) {
576 APInt Val(C->getValue());
577 return ConstantInt::get(++Val);
578}
579/// SubOne - Subtract one from a ConstantInt
580static ConstantInt *SubOne(ConstantInt *C) {
581 APInt Val(C->getValue());
582 return ConstantInt::get(--Val);
583}
584/// Add - Add two ConstantInts together
585static ConstantInt *Add(ConstantInt *C1, ConstantInt *C2) {
586 return ConstantInt::get(C1->getValue() + C2->getValue());
587}
588/// And - Bitwise AND two ConstantInts together
589static ConstantInt *And(ConstantInt *C1, ConstantInt *C2) {
590 return ConstantInt::get(C1->getValue() & C2->getValue());
591}
592/// Subtract - Subtract one ConstantInt from another
593static ConstantInt *Subtract(ConstantInt *C1, ConstantInt *C2) {
594 return ConstantInt::get(C1->getValue() - C2->getValue());
595}
596/// Multiply - Multiply two ConstantInts together
597static ConstantInt *Multiply(ConstantInt *C1, ConstantInt *C2) {
598 return ConstantInt::get(C1->getValue() * C2->getValue());
599}
600
601/// ComputeMaskedBits - Determine which of the bits specified in Mask are
602/// known to be either zero or one and return them in the KnownZero/KnownOne
603/// bit sets. This code only analyzes bits in Mask, in order to short-circuit
604/// processing.
605/// NOTE: we cannot consider 'undef' to be "IsZero" here. The problem is that
606/// we cannot optimize based on the assumption that it is zero without changing
607/// it to be an explicit zero. If we don't change it to zero, other code could
608/// optimized based on the contradictory assumption that it is non-zero.
609/// Because instcombine aggressively folds operations with undef args anyway,
610/// this won't lose us code quality.
611static void ComputeMaskedBits(Value *V, const APInt &Mask, APInt& KnownZero,
612 APInt& KnownOne, unsigned Depth = 0) {
613 assert(V && "No Value?");
614 assert(Depth <= 6 && "Limit Search Depth");
615 uint32_t BitWidth = Mask.getBitWidth();
616 assert(cast<IntegerType>(V->getType())->getBitWidth() == BitWidth &&
617 KnownZero.getBitWidth() == BitWidth &&
618 KnownOne.getBitWidth() == BitWidth &&
619 "V, Mask, KnownOne and KnownZero should have same BitWidth");
620 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
621 // We know all of the bits for a constant!
622 KnownOne = CI->getValue() & Mask;
623 KnownZero = ~KnownOne & Mask;
624 return;
625 }
626
627 if (Depth == 6 || Mask == 0)
628 return; // Limit search depth.
629
630 Instruction *I = dyn_cast<Instruction>(V);
631 if (!I) return;
632
633 KnownZero.clear(); KnownOne.clear(); // Don't know anything.
634 APInt KnownZero2(KnownZero), KnownOne2(KnownOne);
635
636 switch (I->getOpcode()) {
637 case Instruction::And: {
638 // If either the LHS or the RHS are Zero, the result is zero.
639 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
640 APInt Mask2(Mask & ~KnownZero);
641 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
642 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
643 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
644
645 // Output known-1 bits are only known if set in both the LHS & RHS.
646 KnownOne &= KnownOne2;
647 // Output known-0 are known to be clear if zero in either the LHS | RHS.
648 KnownZero |= KnownZero2;
649 return;
650 }
651 case Instruction::Or: {
652 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
653 APInt Mask2(Mask & ~KnownOne);
654 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero2, KnownOne2, Depth+1);
655 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
656 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
657
658 // Output known-0 bits are only known if clear in both the LHS & RHS.
659 KnownZero &= KnownZero2;
660 // Output known-1 are known to be set if set in either the LHS | RHS.
661 KnownOne |= KnownOne2;
662 return;
663 }
664 case Instruction::Xor: {
665 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero, KnownOne, Depth+1);
666 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero2, KnownOne2, Depth+1);
667 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
668 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
669
670 // Output known-0 bits are known if clear or set in both the LHS & RHS.
671 APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
672 // Output known-1 are known to be set if set in only one of the LHS, RHS.
673 KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
674 KnownZero = KnownZeroOut;
675 return;
676 }
677 case Instruction::Select:
678 ComputeMaskedBits(I->getOperand(2), Mask, KnownZero, KnownOne, Depth+1);
679 ComputeMaskedBits(I->getOperand(1), Mask, KnownZero2, KnownOne2, Depth+1);
680 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
681 assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
682
683 // Only known if known in both the LHS and RHS.
684 KnownOne &= KnownOne2;
685 KnownZero &= KnownZero2;
686 return;
687 case Instruction::FPTrunc:
688 case Instruction::FPExt:
689 case Instruction::FPToUI:
690 case Instruction::FPToSI:
691 case Instruction::SIToFP:
692 case Instruction::PtrToInt:
693 case Instruction::UIToFP:
694 case Instruction::IntToPtr:
695 return; // Can't work with floating point or pointers
696 case Instruction::Trunc: {
697 // All these have integer operands
698 uint32_t SrcBitWidth =
699 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
700 APInt MaskIn(Mask);
701 MaskIn.zext(SrcBitWidth);
702 KnownZero.zext(SrcBitWidth);
703 KnownOne.zext(SrcBitWidth);
704 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
705 KnownZero.trunc(BitWidth);
706 KnownOne.trunc(BitWidth);
707 return;
708 }
709 case Instruction::BitCast: {
710 const Type *SrcTy = I->getOperand(0)->getType();
711 if (SrcTy->isInteger()) {
712 ComputeMaskedBits(I->getOperand(0), Mask, KnownZero, KnownOne, Depth+1);
713 return;
714 }
715 break;
716 }
717 case Instruction::ZExt: {
718 // Compute the bits in the result that are not present in the input.
719 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
720 uint32_t SrcBitWidth = SrcTy->getBitWidth();
721
722 APInt MaskIn(Mask);
723 MaskIn.trunc(SrcBitWidth);
724 KnownZero.trunc(SrcBitWidth);
725 KnownOne.trunc(SrcBitWidth);
726 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
727 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
728 // The top bits are known to be zero.
729 KnownZero.zext(BitWidth);
730 KnownOne.zext(BitWidth);
731 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
732 return;
733 }
734 case Instruction::SExt: {
735 // Compute the bits in the result that are not present in the input.
736 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
737 uint32_t SrcBitWidth = SrcTy->getBitWidth();
738
739 APInt MaskIn(Mask);
740 MaskIn.trunc(SrcBitWidth);
741 KnownZero.trunc(SrcBitWidth);
742 KnownOne.trunc(SrcBitWidth);
743 ComputeMaskedBits(I->getOperand(0), MaskIn, KnownZero, KnownOne, Depth+1);
744 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
745 KnownZero.zext(BitWidth);
746 KnownOne.zext(BitWidth);
747
748 // If the sign bit of the input is known set or clear, then we know the
749 // top bits of the result.
750 if (KnownZero[SrcBitWidth-1]) // Input sign bit known zero
751 KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
752 else if (KnownOne[SrcBitWidth-1]) // Input sign bit known set
753 KnownOne |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
754 return;
755 }
756 case Instruction::Shl:
757 // (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
758 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
759 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
760 APInt Mask2(Mask.lshr(ShiftAmt));
761 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero, KnownOne, Depth+1);
762 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
763 KnownZero <<= ShiftAmt;
764 KnownOne <<= ShiftAmt;
765 KnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt); // low bits known 0
766 return;
767 }
768 break;
769 case Instruction::LShr:
770 // (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
771 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
772 // Compute the new bits that are at the top now.
773 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
774
775 // Unsigned shift right.
776 APInt Mask2(Mask.shl(ShiftAmt));
777 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1);
778 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
779 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
780 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
781 // high bits known zero.
782 KnownZero |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
783 return;
784 }
785 break;
786 case Instruction::AShr:
787 // (ashr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
788 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
789 // Compute the new bits that are at the top now.
790 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
791
792 // Signed shift right.
793 APInt Mask2(Mask.shl(ShiftAmt));
794 ComputeMaskedBits(I->getOperand(0), Mask2, KnownZero,KnownOne,Depth+1);
795 assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
796 KnownZero = APIntOps::lshr(KnownZero, ShiftAmt);
797 KnownOne = APIntOps::lshr(KnownOne, ShiftAmt);
798
799 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
800 if (KnownZero[BitWidth-ShiftAmt-1]) // New bits are known zero.
801 KnownZero |= HighBits;
802 else if (KnownOne[BitWidth-ShiftAmt-1]) // New bits are known one.
803 KnownOne |= HighBits;
804 return;
805 }
806 break;
807 }
808}
809
810/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
811/// this predicate to simplify operations downstream. Mask is known to be zero
812/// for bits that V cannot have.
813static bool MaskedValueIsZero(Value *V, const APInt& Mask, unsigned Depth = 0) {
814 APInt KnownZero(Mask.getBitWidth(), 0), KnownOne(Mask.getBitWidth(), 0);
815 ComputeMaskedBits(V, Mask, KnownZero, KnownOne, Depth);
816 assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
817 return (KnownZero & Mask) == Mask;
818}
819
820/// ShrinkDemandedConstant - Check to see if the specified operand of the
821/// specified instruction is a constant integer. If so, check to see if there
822/// are any bits set in the constant that are not demanded. If so, shrink the
823/// constant and return true.
824static bool ShrinkDemandedConstant(Instruction *I, unsigned OpNo,
825 APInt Demanded) {
826 assert(I && "No instruction?");
827 assert(OpNo < I->getNumOperands() && "Operand index too large");
828
829 // If the operand is not a constant integer, nothing to do.
830 ConstantInt *OpC = dyn_cast<ConstantInt>(I->getOperand(OpNo));
831 if (!OpC) return false;
832
833 // If there are no bits set that aren't demanded, nothing to do.
834 Demanded.zextOrTrunc(OpC->getValue().getBitWidth());
835 if ((~Demanded & OpC->getValue()) == 0)
836 return false;
837
838 // This instruction is producing bits that are not demanded. Shrink the RHS.
839 Demanded &= OpC->getValue();
840 I->setOperand(OpNo, ConstantInt::get(Demanded));
841 return true;
842}
843
844// ComputeSignedMinMaxValuesFromKnownBits - Given a signed integer type and a
845// set of known zero and one bits, compute the maximum and minimum values that
846// could have the specified known zero and known one bits, returning them in
847// min/max.
848static void ComputeSignedMinMaxValuesFromKnownBits(const Type *Ty,
849 const APInt& KnownZero,
850 const APInt& KnownOne,
851 APInt& Min, APInt& Max) {
852 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
853 assert(KnownZero.getBitWidth() == BitWidth &&
854 KnownOne.getBitWidth() == BitWidth &&
855 Min.getBitWidth() == BitWidth && Max.getBitWidth() == BitWidth &&
856 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
857 APInt UnknownBits = ~(KnownZero|KnownOne);
858
859 // The minimum value is when all unknown bits are zeros, EXCEPT for the sign
860 // bit if it is unknown.
861 Min = KnownOne;
862 Max = KnownOne|UnknownBits;
863
864 if (UnknownBits[BitWidth-1]) { // Sign bit is unknown
865 Min.set(BitWidth-1);
866 Max.clear(BitWidth-1);
867 }
868}
869
870// ComputeUnsignedMinMaxValuesFromKnownBits - Given an unsigned integer type and
871// a set of known zero and one bits, compute the maximum and minimum values that
872// could have the specified known zero and known one bits, returning them in
873// min/max.
874static void ComputeUnsignedMinMaxValuesFromKnownBits(const Type *Ty,
Chris Lattnerb933ea62007-08-05 08:47:58 +0000875 const APInt &KnownZero,
876 const APInt &KnownOne,
877 APInt &Min, APInt &Max) {
878 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth(); BitWidth = BitWidth;
Dan Gohmanf17a25c2007-07-18 16:29:46 +0000879 assert(KnownZero.getBitWidth() == BitWidth &&
880 KnownOne.getBitWidth() == BitWidth &&
881 Min.getBitWidth() == BitWidth && Max.getBitWidth() &&
882 "Ty, KnownZero, KnownOne and Min, Max must have equal bitwidth.");
883 APInt UnknownBits = ~(KnownZero|KnownOne);
884
885 // The minimum value is when the unknown bits are all zeros.
886 Min = KnownOne;
887 // The maximum value is when the unknown bits are all ones.
888 Max = KnownOne|UnknownBits;
889}
890
891/// SimplifyDemandedBits - This function attempts to replace V with a simpler
892/// value based on the demanded bits. When this function is called, it is known
893/// that only the bits set in DemandedMask of the result of V are ever used
894/// downstream. Consequently, depending on the mask and V, it may be possible
895/// to replace V with a constant or one of its operands. In such cases, this
896/// function does the replacement and returns true. In all other cases, it
897/// returns false after analyzing the expression and setting KnownOne and known
898/// to be one in the expression. KnownZero contains all the bits that are known
899/// to be zero in the expression. These are provided to potentially allow the
900/// caller (which might recursively be SimplifyDemandedBits itself) to simplify
901/// the expression. KnownOne and KnownZero always follow the invariant that
902/// KnownOne & KnownZero == 0. That is, a bit can't be both 1 and 0. Note that
903/// the bits in KnownOne and KnownZero may only be accurate for those bits set
904/// in DemandedMask. Note also that the bitwidth of V, DemandedMask, KnownZero
905/// and KnownOne must all be the same.
906bool InstCombiner::SimplifyDemandedBits(Value *V, APInt DemandedMask,
907 APInt& KnownZero, APInt& KnownOne,
908 unsigned Depth) {
909 assert(V != 0 && "Null pointer of Value???");
910 assert(Depth <= 6 && "Limit Search Depth");
911 uint32_t BitWidth = DemandedMask.getBitWidth();
912 const IntegerType *VTy = cast<IntegerType>(V->getType());
913 assert(VTy->getBitWidth() == BitWidth &&
914 KnownZero.getBitWidth() == BitWidth &&
915 KnownOne.getBitWidth() == BitWidth &&
916 "Value *V, DemandedMask, KnownZero and KnownOne \
917 must have same BitWidth");
918 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
919 // We know all of the bits for a constant!
920 KnownOne = CI->getValue() & DemandedMask;
921 KnownZero = ~KnownOne & DemandedMask;
922 return false;
923 }
924
925 KnownZero.clear();
926 KnownOne.clear();
927 if (!V->hasOneUse()) { // Other users may use these bits.
928 if (Depth != 0) { // Not at the root.
929 // Just compute the KnownZero/KnownOne bits to simplify things downstream.
930 ComputeMaskedBits(V, DemandedMask, KnownZero, KnownOne, Depth);
931 return false;
932 }
933 // If this is the root being simplified, allow it to have multiple uses,
934 // just set the DemandedMask to all bits.
935 DemandedMask = APInt::getAllOnesValue(BitWidth);
936 } else if (DemandedMask == 0) { // Not demanding any bits from V.
937 if (V != UndefValue::get(VTy))
938 return UpdateValueUsesWith(V, UndefValue::get(VTy));
939 return false;
940 } else if (Depth == 6) { // Limit search depth.
941 return false;
942 }
943
944 Instruction *I = dyn_cast<Instruction>(V);
945 if (!I) return false; // Only analyze instructions.
946
947 APInt LHSKnownZero(BitWidth, 0), LHSKnownOne(BitWidth, 0);
948 APInt &RHSKnownZero = KnownZero, &RHSKnownOne = KnownOne;
949 switch (I->getOpcode()) {
950 default: break;
951 case Instruction::And:
952 // If either the LHS or the RHS are Zero, the result is zero.
953 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
954 RHSKnownZero, RHSKnownOne, Depth+1))
955 return true;
956 assert((RHSKnownZero & RHSKnownOne) == 0 &&
957 "Bits known to be one AND zero?");
958
959 // If something is known zero on the RHS, the bits aren't demanded on the
960 // LHS.
961 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownZero,
962 LHSKnownZero, LHSKnownOne, Depth+1))
963 return true;
964 assert((LHSKnownZero & LHSKnownOne) == 0 &&
965 "Bits known to be one AND zero?");
966
967 // If all of the demanded bits are known 1 on one side, return the other.
968 // These bits cannot contribute to the result of the 'and'.
969 if ((DemandedMask & ~LHSKnownZero & RHSKnownOne) ==
970 (DemandedMask & ~LHSKnownZero))
971 return UpdateValueUsesWith(I, I->getOperand(0));
972 if ((DemandedMask & ~RHSKnownZero & LHSKnownOne) ==
973 (DemandedMask & ~RHSKnownZero))
974 return UpdateValueUsesWith(I, I->getOperand(1));
975
976 // If all of the demanded bits in the inputs are known zeros, return zero.
977 if ((DemandedMask & (RHSKnownZero|LHSKnownZero)) == DemandedMask)
978 return UpdateValueUsesWith(I, Constant::getNullValue(VTy));
979
980 // If the RHS is a constant, see if we can simplify it.
981 if (ShrinkDemandedConstant(I, 1, DemandedMask & ~LHSKnownZero))
982 return UpdateValueUsesWith(I, I);
983
984 // Output known-1 bits are only known if set in both the LHS & RHS.
985 RHSKnownOne &= LHSKnownOne;
986 // Output known-0 are known to be clear if zero in either the LHS | RHS.
987 RHSKnownZero |= LHSKnownZero;
988 break;
989 case Instruction::Or:
990 // If either the LHS or the RHS are One, the result is One.
991 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
992 RHSKnownZero, RHSKnownOne, Depth+1))
993 return true;
994 assert((RHSKnownZero & RHSKnownOne) == 0 &&
995 "Bits known to be one AND zero?");
996 // If something is known one on the RHS, the bits aren't demanded on the
997 // LHS.
998 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask & ~RHSKnownOne,
999 LHSKnownZero, LHSKnownOne, Depth+1))
1000 return true;
1001 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1002 "Bits known to be one AND zero?");
1003
1004 // If all of the demanded bits are known zero on one side, return the other.
1005 // These bits cannot contribute to the result of the 'or'.
1006 if ((DemandedMask & ~LHSKnownOne & RHSKnownZero) ==
1007 (DemandedMask & ~LHSKnownOne))
1008 return UpdateValueUsesWith(I, I->getOperand(0));
1009 if ((DemandedMask & ~RHSKnownOne & LHSKnownZero) ==
1010 (DemandedMask & ~RHSKnownOne))
1011 return UpdateValueUsesWith(I, I->getOperand(1));
1012
1013 // If all of the potentially set bits on one side are known to be set on
1014 // the other side, just use the 'other' side.
1015 if ((DemandedMask & (~RHSKnownZero) & LHSKnownOne) ==
1016 (DemandedMask & (~RHSKnownZero)))
1017 return UpdateValueUsesWith(I, I->getOperand(0));
1018 if ((DemandedMask & (~LHSKnownZero) & RHSKnownOne) ==
1019 (DemandedMask & (~LHSKnownZero)))
1020 return UpdateValueUsesWith(I, I->getOperand(1));
1021
1022 // If the RHS is a constant, see if we can simplify it.
1023 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1024 return UpdateValueUsesWith(I, I);
1025
1026 // Output known-0 bits are only known if clear in both the LHS & RHS.
1027 RHSKnownZero &= LHSKnownZero;
1028 // Output known-1 are known to be set if set in either the LHS | RHS.
1029 RHSKnownOne |= LHSKnownOne;
1030 break;
1031 case Instruction::Xor: {
1032 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1033 RHSKnownZero, RHSKnownOne, Depth+1))
1034 return true;
1035 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1036 "Bits known to be one AND zero?");
1037 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1038 LHSKnownZero, LHSKnownOne, Depth+1))
1039 return true;
1040 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1041 "Bits known to be one AND zero?");
1042
1043 // If all of the demanded bits are known zero on one side, return the other.
1044 // These bits cannot contribute to the result of the 'xor'.
1045 if ((DemandedMask & RHSKnownZero) == DemandedMask)
1046 return UpdateValueUsesWith(I, I->getOperand(0));
1047 if ((DemandedMask & LHSKnownZero) == DemandedMask)
1048 return UpdateValueUsesWith(I, I->getOperand(1));
1049
1050 // Output known-0 bits are known if clear or set in both the LHS & RHS.
1051 APInt KnownZeroOut = (RHSKnownZero & LHSKnownZero) |
1052 (RHSKnownOne & LHSKnownOne);
1053 // Output known-1 are known to be set if set in only one of the LHS, RHS.
1054 APInt KnownOneOut = (RHSKnownZero & LHSKnownOne) |
1055 (RHSKnownOne & LHSKnownZero);
1056
1057 // If all of the demanded bits are known to be zero on one side or the
1058 // other, turn this into an *inclusive* or.
1059 // e.g. (A & C1)^(B & C2) -> (A & C1)|(B & C2) iff C1&C2 == 0
1060 if ((DemandedMask & ~RHSKnownZero & ~LHSKnownZero) == 0) {
1061 Instruction *Or =
1062 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1063 I->getName());
1064 InsertNewInstBefore(Or, *I);
1065 return UpdateValueUsesWith(I, Or);
1066 }
1067
1068 // If all of the demanded bits on one side are known, and all of the set
1069 // bits on that side are also known to be set on the other side, turn this
1070 // into an AND, as we know the bits will be cleared.
1071 // e.g. (X | C1) ^ C2 --> (X | C1) & ~C2 iff (C1&C2) == C2
1072 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask) {
1073 // all known
1074 if ((RHSKnownOne & LHSKnownOne) == RHSKnownOne) {
1075 Constant *AndC = ConstantInt::get(~RHSKnownOne & DemandedMask);
1076 Instruction *And =
1077 BinaryOperator::createAnd(I->getOperand(0), AndC, "tmp");
1078 InsertNewInstBefore(And, *I);
1079 return UpdateValueUsesWith(I, And);
1080 }
1081 }
1082
1083 // If the RHS is a constant, see if we can simplify it.
1084 // FIXME: for XOR, we prefer to force bits to 1 if they will make a -1.
1085 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1086 return UpdateValueUsesWith(I, I);
1087
1088 RHSKnownZero = KnownZeroOut;
1089 RHSKnownOne = KnownOneOut;
1090 break;
1091 }
1092 case Instruction::Select:
1093 if (SimplifyDemandedBits(I->getOperand(2), DemandedMask,
1094 RHSKnownZero, RHSKnownOne, Depth+1))
1095 return true;
1096 if (SimplifyDemandedBits(I->getOperand(1), DemandedMask,
1097 LHSKnownZero, LHSKnownOne, Depth+1))
1098 return true;
1099 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1100 "Bits known to be one AND zero?");
1101 assert((LHSKnownZero & LHSKnownOne) == 0 &&
1102 "Bits known to be one AND zero?");
1103
1104 // If the operands are constants, see if we can simplify them.
1105 if (ShrinkDemandedConstant(I, 1, DemandedMask))
1106 return UpdateValueUsesWith(I, I);
1107 if (ShrinkDemandedConstant(I, 2, DemandedMask))
1108 return UpdateValueUsesWith(I, I);
1109
1110 // Only known if known in both the LHS and RHS.
1111 RHSKnownOne &= LHSKnownOne;
1112 RHSKnownZero &= LHSKnownZero;
1113 break;
1114 case Instruction::Trunc: {
1115 uint32_t truncBf =
1116 cast<IntegerType>(I->getOperand(0)->getType())->getBitWidth();
1117 DemandedMask.zext(truncBf);
1118 RHSKnownZero.zext(truncBf);
1119 RHSKnownOne.zext(truncBf);
1120 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1121 RHSKnownZero, RHSKnownOne, Depth+1))
1122 return true;
1123 DemandedMask.trunc(BitWidth);
1124 RHSKnownZero.trunc(BitWidth);
1125 RHSKnownOne.trunc(BitWidth);
1126 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1127 "Bits known to be one AND zero?");
1128 break;
1129 }
1130 case Instruction::BitCast:
1131 if (!I->getOperand(0)->getType()->isInteger())
1132 return false;
1133
1134 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1135 RHSKnownZero, RHSKnownOne, Depth+1))
1136 return true;
1137 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1138 "Bits known to be one AND zero?");
1139 break;
1140 case Instruction::ZExt: {
1141 // Compute the bits in the result that are not present in the input.
1142 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1143 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1144
1145 DemandedMask.trunc(SrcBitWidth);
1146 RHSKnownZero.trunc(SrcBitWidth);
1147 RHSKnownOne.trunc(SrcBitWidth);
1148 if (SimplifyDemandedBits(I->getOperand(0), DemandedMask,
1149 RHSKnownZero, RHSKnownOne, Depth+1))
1150 return true;
1151 DemandedMask.zext(BitWidth);
1152 RHSKnownZero.zext(BitWidth);
1153 RHSKnownOne.zext(BitWidth);
1154 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1155 "Bits known to be one AND zero?");
1156 // The top bits are known to be zero.
1157 RHSKnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth);
1158 break;
1159 }
1160 case Instruction::SExt: {
1161 // Compute the bits in the result that are not present in the input.
1162 const IntegerType *SrcTy = cast<IntegerType>(I->getOperand(0)->getType());
1163 uint32_t SrcBitWidth = SrcTy->getBitWidth();
1164
1165 APInt InputDemandedBits = DemandedMask &
1166 APInt::getLowBitsSet(BitWidth, SrcBitWidth);
1167
1168 APInt NewBits(APInt::getHighBitsSet(BitWidth, BitWidth - SrcBitWidth));
1169 // If any of the sign extended bits are demanded, we know that the sign
1170 // bit is demanded.
1171 if ((NewBits & DemandedMask) != 0)
1172 InputDemandedBits.set(SrcBitWidth-1);
1173
1174 InputDemandedBits.trunc(SrcBitWidth);
1175 RHSKnownZero.trunc(SrcBitWidth);
1176 RHSKnownOne.trunc(SrcBitWidth);
1177 if (SimplifyDemandedBits(I->getOperand(0), InputDemandedBits,
1178 RHSKnownZero, RHSKnownOne, Depth+1))
1179 return true;
1180 InputDemandedBits.zext(BitWidth);
1181 RHSKnownZero.zext(BitWidth);
1182 RHSKnownOne.zext(BitWidth);
1183 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1184 "Bits known to be one AND zero?");
1185
1186 // If the sign bit of the input is known set or clear, then we know the
1187 // top bits of the result.
1188
1189 // If the input sign bit is known zero, or if the NewBits are not demanded
1190 // convert this into a zero extension.
1191 if (RHSKnownZero[SrcBitWidth-1] || (NewBits & ~DemandedMask) == NewBits)
1192 {
1193 // Convert to ZExt cast
1194 CastInst *NewCast = new ZExtInst(I->getOperand(0), VTy, I->getName(), I);
1195 return UpdateValueUsesWith(I, NewCast);
1196 } else if (RHSKnownOne[SrcBitWidth-1]) { // Input sign bit known set
1197 RHSKnownOne |= NewBits;
1198 }
1199 break;
1200 }
1201 case Instruction::Add: {
1202 // Figure out what the input bits are. If the top bits of the and result
1203 // are not demanded, then the add doesn't demand them from its input
1204 // either.
1205 uint32_t NLZ = DemandedMask.countLeadingZeros();
1206
1207 // If there is a constant on the RHS, there are a variety of xformations
1208 // we can do.
1209 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
1210 // If null, this should be simplified elsewhere. Some of the xforms here
1211 // won't work if the RHS is zero.
1212 if (RHS->isZero())
1213 break;
1214
1215 // If the top bit of the output is demanded, demand everything from the
1216 // input. Otherwise, we demand all the input bits except NLZ top bits.
1217 APInt InDemandedBits(APInt::getLowBitsSet(BitWidth, BitWidth - NLZ));
1218
1219 // Find information about known zero/one bits in the input.
1220 if (SimplifyDemandedBits(I->getOperand(0), InDemandedBits,
1221 LHSKnownZero, LHSKnownOne, Depth+1))
1222 return true;
1223
1224 // If the RHS of the add has bits set that can't affect the input, reduce
1225 // the constant.
1226 if (ShrinkDemandedConstant(I, 1, InDemandedBits))
1227 return UpdateValueUsesWith(I, I);
1228
1229 // Avoid excess work.
1230 if (LHSKnownZero == 0 && LHSKnownOne == 0)
1231 break;
1232
1233 // Turn it into OR if input bits are zero.
1234 if ((LHSKnownZero & RHS->getValue()) == RHS->getValue()) {
1235 Instruction *Or =
1236 BinaryOperator::createOr(I->getOperand(0), I->getOperand(1),
1237 I->getName());
1238 InsertNewInstBefore(Or, *I);
1239 return UpdateValueUsesWith(I, Or);
1240 }
1241
1242 // We can say something about the output known-zero and known-one bits,
1243 // depending on potential carries from the input constant and the
1244 // unknowns. For example if the LHS is known to have at most the 0x0F0F0
1245 // bits set and the RHS constant is 0x01001, then we know we have a known
1246 // one mask of 0x00001 and a known zero mask of 0xE0F0E.
1247
1248 // To compute this, we first compute the potential carry bits. These are
1249 // the bits which may be modified. I'm not aware of a better way to do
1250 // this scan.
1251 const APInt& RHSVal = RHS->getValue();
1252 APInt CarryBits((~LHSKnownZero + RHSVal) ^ (~LHSKnownZero ^ RHSVal));
1253
1254 // Now that we know which bits have carries, compute the known-1/0 sets.
1255
1256 // Bits are known one if they are known zero in one operand and one in the
1257 // other, and there is no input carry.
1258 RHSKnownOne = ((LHSKnownZero & RHSVal) |
1259 (LHSKnownOne & ~RHSVal)) & ~CarryBits;
1260
1261 // Bits are known zero if they are known zero in both operands and there
1262 // is no input carry.
1263 RHSKnownZero = LHSKnownZero & ~RHSVal & ~CarryBits;
1264 } else {
1265 // If the high-bits of this ADD are not demanded, then it does not demand
1266 // the high bits of its LHS or RHS.
1267 if (DemandedMask[BitWidth-1] == 0) {
1268 // Right fill the mask of bits for this ADD to demand the most
1269 // significant bit and all those below it.
1270 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1271 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1272 LHSKnownZero, LHSKnownOne, Depth+1))
1273 return true;
1274 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1275 LHSKnownZero, LHSKnownOne, Depth+1))
1276 return true;
1277 }
1278 }
1279 break;
1280 }
1281 case Instruction::Sub:
1282 // If the high-bits of this SUB are not demanded, then it does not demand
1283 // the high bits of its LHS or RHS.
1284 if (DemandedMask[BitWidth-1] == 0) {
1285 // Right fill the mask of bits for this SUB to demand the most
1286 // significant bit and all those below it.
1287 uint32_t NLZ = DemandedMask.countLeadingZeros();
1288 APInt DemandedFromOps(APInt::getLowBitsSet(BitWidth, BitWidth-NLZ));
1289 if (SimplifyDemandedBits(I->getOperand(0), DemandedFromOps,
1290 LHSKnownZero, LHSKnownOne, Depth+1))
1291 return true;
1292 if (SimplifyDemandedBits(I->getOperand(1), DemandedFromOps,
1293 LHSKnownZero, LHSKnownOne, Depth+1))
1294 return true;
1295 }
1296 break;
1297 case Instruction::Shl:
1298 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1299 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1300 APInt DemandedMaskIn(DemandedMask.lshr(ShiftAmt));
1301 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1302 RHSKnownZero, RHSKnownOne, Depth+1))
1303 return true;
1304 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1305 "Bits known to be one AND zero?");
1306 RHSKnownZero <<= ShiftAmt;
1307 RHSKnownOne <<= ShiftAmt;
1308 // low bits known zero.
1309 if (ShiftAmt)
1310 RHSKnownZero |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
1311 }
1312 break;
1313 case Instruction::LShr:
1314 // For a logical shift right
1315 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1316 uint64_t ShiftAmt = SA->getLimitedValue(BitWidth);
1317
1318 // Unsigned shift right.
1319 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1320 if (SimplifyDemandedBits(I->getOperand(0), DemandedMaskIn,
1321 RHSKnownZero, RHSKnownOne, Depth+1))
1322 return true;
1323 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1324 "Bits known to be one AND zero?");
1325 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1326 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1327 if (ShiftAmt) {
1328 // Compute the new bits that are at the top now.
1329 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1330 RHSKnownZero |= HighBits; // high bits known zero.
1331 }
1332 }
1333 break;
1334 case Instruction::AShr:
1335 // If this is an arithmetic shift right and only the low-bit is set, we can
1336 // always convert this into a logical shr, even if the shift amount is
1337 // variable. The low bit of the shift cannot be an input sign bit unless
1338 // the shift amount is >= the size of the datatype, which is undefined.
1339 if (DemandedMask == 1) {
1340 // Perform the logical shift right.
1341 Value *NewVal = BinaryOperator::createLShr(
1342 I->getOperand(0), I->getOperand(1), I->getName());
1343 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1344 return UpdateValueUsesWith(I, NewVal);
1345 }
1346
1347 // If the sign bit is the only bit demanded by this ashr, then there is no
1348 // need to do it, the shift doesn't change the high bit.
1349 if (DemandedMask.isSignBit())
1350 return UpdateValueUsesWith(I, I->getOperand(0));
1351
1352 if (ConstantInt *SA = dyn_cast<ConstantInt>(I->getOperand(1))) {
1353 uint32_t ShiftAmt = SA->getLimitedValue(BitWidth);
1354
1355 // Signed shift right.
1356 APInt DemandedMaskIn(DemandedMask.shl(ShiftAmt));
1357 // If any of the "high bits" are demanded, we should set the sign bit as
1358 // demanded.
1359 if (DemandedMask.countLeadingZeros() <= ShiftAmt)
1360 DemandedMaskIn.set(BitWidth-1);
1361 if (SimplifyDemandedBits(I->getOperand(0),
1362 DemandedMaskIn,
1363 RHSKnownZero, RHSKnownOne, Depth+1))
1364 return true;
1365 assert((RHSKnownZero & RHSKnownOne) == 0 &&
1366 "Bits known to be one AND zero?");
1367 // Compute the new bits that are at the top now.
1368 APInt HighBits(APInt::getHighBitsSet(BitWidth, ShiftAmt));
1369 RHSKnownZero = APIntOps::lshr(RHSKnownZero, ShiftAmt);
1370 RHSKnownOne = APIntOps::lshr(RHSKnownOne, ShiftAmt);
1371
1372 // Handle the sign bits.
1373 APInt SignBit(APInt::getSignBit(BitWidth));
1374 // Adjust to where it is now in the mask.
1375 SignBit = APIntOps::lshr(SignBit, ShiftAmt);
1376
1377 // If the input sign bit is known to be zero, or if none of the top bits
1378 // are demanded, turn this into an unsigned shift right.
1379 if (RHSKnownZero[BitWidth-ShiftAmt-1] ||
1380 (HighBits & ~DemandedMask) == HighBits) {
1381 // Perform the logical shift right.
1382 Value *NewVal = BinaryOperator::createLShr(
1383 I->getOperand(0), SA, I->getName());
1384 InsertNewInstBefore(cast<Instruction>(NewVal), *I);
1385 return UpdateValueUsesWith(I, NewVal);
1386 } else if ((RHSKnownOne & SignBit) != 0) { // New bits are known one.
1387 RHSKnownOne |= HighBits;
1388 }
1389 }
1390 break;
1391 }
1392
1393 // If the client is only demanding bits that we know, return the known
1394 // constant.
1395 if ((DemandedMask & (RHSKnownZero|RHSKnownOne)) == DemandedMask)
1396 return UpdateValueUsesWith(I, ConstantInt::get(RHSKnownOne));
1397 return false;
1398}
1399
1400
1401/// SimplifyDemandedVectorElts - The specified value producecs a vector with
1402/// 64 or fewer elements. DemandedElts contains the set of elements that are
1403/// actually used by the caller. This method analyzes which elements of the
1404/// operand are undef and returns that information in UndefElts.
1405///
1406/// If the information about demanded elements can be used to simplify the
1407/// operation, the operation is simplified, then the resultant value is
1408/// returned. This returns null if no change was made.
1409Value *InstCombiner::SimplifyDemandedVectorElts(Value *V, uint64_t DemandedElts,
1410 uint64_t &UndefElts,
1411 unsigned Depth) {
1412 unsigned VWidth = cast<VectorType>(V->getType())->getNumElements();
1413 assert(VWidth <= 64 && "Vector too wide to analyze!");
1414 uint64_t EltMask = ~0ULL >> (64-VWidth);
1415 assert(DemandedElts != EltMask && (DemandedElts & ~EltMask) == 0 &&
1416 "Invalid DemandedElts!");
1417
1418 if (isa<UndefValue>(V)) {
1419 // If the entire vector is undefined, just return this info.
1420 UndefElts = EltMask;
1421 return 0;
1422 } else if (DemandedElts == 0) { // If nothing is demanded, provide undef.
1423 UndefElts = EltMask;
1424 return UndefValue::get(V->getType());
1425 }
1426
1427 UndefElts = 0;
1428 if (ConstantVector *CP = dyn_cast<ConstantVector>(V)) {
1429 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1430 Constant *Undef = UndefValue::get(EltTy);
1431
1432 std::vector<Constant*> Elts;
1433 for (unsigned i = 0; i != VWidth; ++i)
1434 if (!(DemandedElts & (1ULL << i))) { // If not demanded, set to undef.
1435 Elts.push_back(Undef);
1436 UndefElts |= (1ULL << i);
1437 } else if (isa<UndefValue>(CP->getOperand(i))) { // Already undef.
1438 Elts.push_back(Undef);
1439 UndefElts |= (1ULL << i);
1440 } else { // Otherwise, defined.
1441 Elts.push_back(CP->getOperand(i));
1442 }
1443
1444 // If we changed the constant, return it.
1445 Constant *NewCP = ConstantVector::get(Elts);
1446 return NewCP != CP ? NewCP : 0;
1447 } else if (isa<ConstantAggregateZero>(V)) {
1448 // Simplify the CAZ to a ConstantVector where the non-demanded elements are
1449 // set to undef.
1450 const Type *EltTy = cast<VectorType>(V->getType())->getElementType();
1451 Constant *Zero = Constant::getNullValue(EltTy);
1452 Constant *Undef = UndefValue::get(EltTy);
1453 std::vector<Constant*> Elts;
1454 for (unsigned i = 0; i != VWidth; ++i)
1455 Elts.push_back((DemandedElts & (1ULL << i)) ? Zero : Undef);
1456 UndefElts = DemandedElts ^ EltMask;
1457 return ConstantVector::get(Elts);
1458 }
1459
1460 if (!V->hasOneUse()) { // Other users may use these bits.
1461 if (Depth != 0) { // Not at the root.
1462 // TODO: Just compute the UndefElts information recursively.
1463 return false;
1464 }
1465 return false;
1466 } else if (Depth == 10) { // Limit search depth.
1467 return false;
1468 }
1469
1470 Instruction *I = dyn_cast<Instruction>(V);
1471 if (!I) return false; // Only analyze instructions.
1472
1473 bool MadeChange = false;
1474 uint64_t UndefElts2;
1475 Value *TmpV;
1476 switch (I->getOpcode()) {
1477 default: break;
1478
1479 case Instruction::InsertElement: {
1480 // If this is a variable index, we don't know which element it overwrites.
1481 // demand exactly the same input as we produce.
1482 ConstantInt *Idx = dyn_cast<ConstantInt>(I->getOperand(2));
1483 if (Idx == 0) {
1484 // Note that we can't propagate undef elt info, because we don't know
1485 // which elt is getting updated.
1486 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1487 UndefElts2, Depth+1);
1488 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1489 break;
1490 }
1491
1492 // If this is inserting an element that isn't demanded, remove this
1493 // insertelement.
1494 unsigned IdxNo = Idx->getZExtValue();
1495 if (IdxNo >= VWidth || (DemandedElts & (1ULL << IdxNo)) == 0)
1496 return AddSoonDeadInstToWorklist(*I, 0);
1497
1498 // Otherwise, the element inserted overwrites whatever was there, so the
1499 // input demanded set is simpler than the output set.
1500 TmpV = SimplifyDemandedVectorElts(I->getOperand(0),
1501 DemandedElts & ~(1ULL << IdxNo),
1502 UndefElts, Depth+1);
1503 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1504
1505 // The inserted element is defined.
1506 UndefElts |= 1ULL << IdxNo;
1507 break;
1508 }
1509 case Instruction::BitCast: {
1510 // Vector->vector casts only.
1511 const VectorType *VTy = dyn_cast<VectorType>(I->getOperand(0)->getType());
1512 if (!VTy) break;
1513 unsigned InVWidth = VTy->getNumElements();
1514 uint64_t InputDemandedElts = 0;
1515 unsigned Ratio;
1516
1517 if (VWidth == InVWidth) {
1518 // If we are converting from <4 x i32> -> <4 x f32>, we demand the same
1519 // elements as are demanded of us.
1520 Ratio = 1;
1521 InputDemandedElts = DemandedElts;
1522 } else if (VWidth > InVWidth) {
1523 // Untested so far.
1524 break;
1525
1526 // If there are more elements in the result than there are in the source,
1527 // then an input element is live if any of the corresponding output
1528 // elements are live.
1529 Ratio = VWidth/InVWidth;
1530 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx) {
1531 if (DemandedElts & (1ULL << OutIdx))
1532 InputDemandedElts |= 1ULL << (OutIdx/Ratio);
1533 }
1534 } else {
1535 // Untested so far.
1536 break;
1537
1538 // If there are more elements in the source than there are in the result,
1539 // then an input element is live if the corresponding output element is
1540 // live.
1541 Ratio = InVWidth/VWidth;
1542 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1543 if (DemandedElts & (1ULL << InIdx/Ratio))
1544 InputDemandedElts |= 1ULL << InIdx;
1545 }
1546
1547 // div/rem demand all inputs, because they don't want divide by zero.
1548 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), InputDemandedElts,
1549 UndefElts2, Depth+1);
1550 if (TmpV) {
1551 I->setOperand(0, TmpV);
1552 MadeChange = true;
1553 }
1554
1555 UndefElts = UndefElts2;
1556 if (VWidth > InVWidth) {
1557 assert(0 && "Unimp");
1558 // If there are more elements in the result than there are in the source,
1559 // then an output element is undef if the corresponding input element is
1560 // undef.
1561 for (unsigned OutIdx = 0; OutIdx != VWidth; ++OutIdx)
1562 if (UndefElts2 & (1ULL << (OutIdx/Ratio)))
1563 UndefElts |= 1ULL << OutIdx;
1564 } else if (VWidth < InVWidth) {
1565 assert(0 && "Unimp");
1566 // If there are more elements in the source than there are in the result,
1567 // then a result element is undef if all of the corresponding input
1568 // elements are undef.
1569 UndefElts = ~0ULL >> (64-VWidth); // Start out all undef.
1570 for (unsigned InIdx = 0; InIdx != InVWidth; ++InIdx)
1571 if ((UndefElts2 & (1ULL << InIdx)) == 0) // Not undef?
1572 UndefElts &= ~(1ULL << (InIdx/Ratio)); // Clear undef bit.
1573 }
1574 break;
1575 }
1576 case Instruction::And:
1577 case Instruction::Or:
1578 case Instruction::Xor:
1579 case Instruction::Add:
1580 case Instruction::Sub:
1581 case Instruction::Mul:
1582 // div/rem demand all inputs, because they don't want divide by zero.
1583 TmpV = SimplifyDemandedVectorElts(I->getOperand(0), DemandedElts,
1584 UndefElts, Depth+1);
1585 if (TmpV) { I->setOperand(0, TmpV); MadeChange = true; }
1586 TmpV = SimplifyDemandedVectorElts(I->getOperand(1), DemandedElts,
1587 UndefElts2, Depth+1);
1588 if (TmpV) { I->setOperand(1, TmpV); MadeChange = true; }
1589
1590 // Output elements are undefined if both are undefined. Consider things
1591 // like undef&0. The result is known zero, not undef.
1592 UndefElts &= UndefElts2;
1593 break;
1594
1595 case Instruction::Call: {
1596 IntrinsicInst *II = dyn_cast<IntrinsicInst>(I);
1597 if (!II) break;
1598 switch (II->getIntrinsicID()) {
1599 default: break;
1600
1601 // Binary vector operations that work column-wise. A dest element is a
1602 // function of the corresponding input elements from the two inputs.
1603 case Intrinsic::x86_sse_sub_ss:
1604 case Intrinsic::x86_sse_mul_ss:
1605 case Intrinsic::x86_sse_min_ss:
1606 case Intrinsic::x86_sse_max_ss:
1607 case Intrinsic::x86_sse2_sub_sd:
1608 case Intrinsic::x86_sse2_mul_sd:
1609 case Intrinsic::x86_sse2_min_sd:
1610 case Intrinsic::x86_sse2_max_sd:
1611 TmpV = SimplifyDemandedVectorElts(II->getOperand(1), DemandedElts,
1612 UndefElts, Depth+1);
1613 if (TmpV) { II->setOperand(1, TmpV); MadeChange = true; }
1614 TmpV = SimplifyDemandedVectorElts(II->getOperand(2), DemandedElts,
1615 UndefElts2, Depth+1);
1616 if (TmpV) { II->setOperand(2, TmpV); MadeChange = true; }
1617
1618 // If only the low elt is demanded and this is a scalarizable intrinsic,
1619 // scalarize it now.
1620 if (DemandedElts == 1) {
1621 switch (II->getIntrinsicID()) {
1622 default: break;
1623 case Intrinsic::x86_sse_sub_ss:
1624 case Intrinsic::x86_sse_mul_ss:
1625 case Intrinsic::x86_sse2_sub_sd:
1626 case Intrinsic::x86_sse2_mul_sd:
1627 // TODO: Lower MIN/MAX/ABS/etc
1628 Value *LHS = II->getOperand(1);
1629 Value *RHS = II->getOperand(2);
1630 // Extract the element as scalars.
1631 LHS = InsertNewInstBefore(new ExtractElementInst(LHS, 0U,"tmp"), *II);
1632 RHS = InsertNewInstBefore(new ExtractElementInst(RHS, 0U,"tmp"), *II);
1633
1634 switch (II->getIntrinsicID()) {
1635 default: assert(0 && "Case stmts out of sync!");
1636 case Intrinsic::x86_sse_sub_ss:
1637 case Intrinsic::x86_sse2_sub_sd:
1638 TmpV = InsertNewInstBefore(BinaryOperator::createSub(LHS, RHS,
1639 II->getName()), *II);
1640 break;
1641 case Intrinsic::x86_sse_mul_ss:
1642 case Intrinsic::x86_sse2_mul_sd:
1643 TmpV = InsertNewInstBefore(BinaryOperator::createMul(LHS, RHS,
1644 II->getName()), *II);
1645 break;
1646 }
1647
1648 Instruction *New =
1649 new InsertElementInst(UndefValue::get(II->getType()), TmpV, 0U,
1650 II->getName());
1651 InsertNewInstBefore(New, *II);
1652 AddSoonDeadInstToWorklist(*II, 0);
1653 return New;
1654 }
1655 }
1656
1657 // Output elements are undefined if both are undefined. Consider things
1658 // like undef&0. The result is known zero, not undef.
1659 UndefElts &= UndefElts2;
1660 break;
1661 }
1662 break;
1663 }
1664 }
1665 return MadeChange ? I : 0;
1666}
1667
Nick Lewycky2de09a92007-09-06 02:40:25 +00001668/// @returns true if the specified compare predicate is
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001669/// true when both operands are equal...
Nick Lewycky2de09a92007-09-06 02:40:25 +00001670/// @brief Determine if the icmp Predicate is true when both operands are equal
1671static bool isTrueWhenEqual(ICmpInst::Predicate pred) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001672 return pred == ICmpInst::ICMP_EQ || pred == ICmpInst::ICMP_UGE ||
1673 pred == ICmpInst::ICMP_SGE || pred == ICmpInst::ICMP_ULE ||
1674 pred == ICmpInst::ICMP_SLE;
1675}
1676
Nick Lewycky2de09a92007-09-06 02:40:25 +00001677/// @returns true if the specified compare instruction is
1678/// true when both operands are equal...
1679/// @brief Determine if the ICmpInst returns true when both operands are equal
1680static bool isTrueWhenEqual(ICmpInst &ICI) {
1681 return isTrueWhenEqual(ICI.getPredicate());
1682}
1683
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001684/// AssociativeOpt - Perform an optimization on an associative operator. This
1685/// function is designed to check a chain of associative operators for a
1686/// potential to apply a certain optimization. Since the optimization may be
1687/// applicable if the expression was reassociated, this checks the chain, then
1688/// reassociates the expression as necessary to expose the optimization
1689/// opportunity. This makes use of a special Functor, which must define
1690/// 'shouldApply' and 'apply' methods.
1691///
1692template<typename Functor>
1693Instruction *AssociativeOpt(BinaryOperator &Root, const Functor &F) {
1694 unsigned Opcode = Root.getOpcode();
1695 Value *LHS = Root.getOperand(0);
1696
1697 // Quick check, see if the immediate LHS matches...
1698 if (F.shouldApply(LHS))
1699 return F.apply(Root);
1700
1701 // Otherwise, if the LHS is not of the same opcode as the root, return.
1702 Instruction *LHSI = dyn_cast<Instruction>(LHS);
1703 while (LHSI && LHSI->getOpcode() == Opcode && LHSI->hasOneUse()) {
1704 // Should we apply this transform to the RHS?
1705 bool ShouldApply = F.shouldApply(LHSI->getOperand(1));
1706
1707 // If not to the RHS, check to see if we should apply to the LHS...
1708 if (!ShouldApply && F.shouldApply(LHSI->getOperand(0))) {
1709 cast<BinaryOperator>(LHSI)->swapOperands(); // Make the LHS the RHS
1710 ShouldApply = true;
1711 }
1712
1713 // If the functor wants to apply the optimization to the RHS of LHSI,
1714 // reassociate the expression from ((? op A) op B) to (? op (A op B))
1715 if (ShouldApply) {
1716 BasicBlock *BB = Root.getParent();
1717
1718 // Now all of the instructions are in the current basic block, go ahead
1719 // and perform the reassociation.
1720 Instruction *TmpLHSI = cast<Instruction>(Root.getOperand(0));
1721
1722 // First move the selected RHS to the LHS of the root...
1723 Root.setOperand(0, LHSI->getOperand(1));
1724
1725 // Make what used to be the LHS of the root be the user of the root...
1726 Value *ExtraOperand = TmpLHSI->getOperand(1);
1727 if (&Root == TmpLHSI) {
1728 Root.replaceAllUsesWith(Constant::getNullValue(TmpLHSI->getType()));
1729 return 0;
1730 }
1731 Root.replaceAllUsesWith(TmpLHSI); // Users now use TmpLHSI
1732 TmpLHSI->setOperand(1, &Root); // TmpLHSI now uses the root
1733 TmpLHSI->getParent()->getInstList().remove(TmpLHSI);
1734 BasicBlock::iterator ARI = &Root; ++ARI;
1735 BB->getInstList().insert(ARI, TmpLHSI); // Move TmpLHSI to after Root
1736 ARI = Root;
1737
1738 // Now propagate the ExtraOperand down the chain of instructions until we
1739 // get to LHSI.
1740 while (TmpLHSI != LHSI) {
1741 Instruction *NextLHSI = cast<Instruction>(TmpLHSI->getOperand(0));
1742 // Move the instruction to immediately before the chain we are
1743 // constructing to avoid breaking dominance properties.
1744 NextLHSI->getParent()->getInstList().remove(NextLHSI);
1745 BB->getInstList().insert(ARI, NextLHSI);
1746 ARI = NextLHSI;
1747
1748 Value *NextOp = NextLHSI->getOperand(1);
1749 NextLHSI->setOperand(1, ExtraOperand);
1750 TmpLHSI = NextLHSI;
1751 ExtraOperand = NextOp;
1752 }
1753
1754 // Now that the instructions are reassociated, have the functor perform
1755 // the transformation...
1756 return F.apply(Root);
1757 }
1758
1759 LHSI = dyn_cast<Instruction>(LHSI->getOperand(0));
1760 }
1761 return 0;
1762}
1763
1764
1765// AddRHS - Implements: X + X --> X << 1
1766struct AddRHS {
1767 Value *RHS;
1768 AddRHS(Value *rhs) : RHS(rhs) {}
1769 bool shouldApply(Value *LHS) const { return LHS == RHS; }
1770 Instruction *apply(BinaryOperator &Add) const {
1771 return BinaryOperator::createShl(Add.getOperand(0),
1772 ConstantInt::get(Add.getType(), 1));
1773 }
1774};
1775
1776// AddMaskingAnd - Implements (A & C1)+(B & C2) --> (A & C1)|(B & C2)
1777// iff C1&C2 == 0
1778struct AddMaskingAnd {
1779 Constant *C2;
1780 AddMaskingAnd(Constant *c) : C2(c) {}
1781 bool shouldApply(Value *LHS) const {
1782 ConstantInt *C1;
1783 return match(LHS, m_And(m_Value(), m_ConstantInt(C1))) &&
1784 ConstantExpr::getAnd(C1, C2)->isNullValue();
1785 }
1786 Instruction *apply(BinaryOperator &Add) const {
1787 return BinaryOperator::createOr(Add.getOperand(0), Add.getOperand(1));
1788 }
1789};
1790
1791static Value *FoldOperationIntoSelectOperand(Instruction &I, Value *SO,
1792 InstCombiner *IC) {
1793 if (CastInst *CI = dyn_cast<CastInst>(&I)) {
1794 if (Constant *SOC = dyn_cast<Constant>(SO))
1795 return ConstantExpr::getCast(CI->getOpcode(), SOC, I.getType());
1796
1797 return IC->InsertNewInstBefore(CastInst::create(
1798 CI->getOpcode(), SO, I.getType(), SO->getName() + ".cast"), I);
1799 }
1800
1801 // Figure out if the constant is the left or the right argument.
1802 bool ConstIsRHS = isa<Constant>(I.getOperand(1));
1803 Constant *ConstOperand = cast<Constant>(I.getOperand(ConstIsRHS));
1804
1805 if (Constant *SOC = dyn_cast<Constant>(SO)) {
1806 if (ConstIsRHS)
1807 return ConstantExpr::get(I.getOpcode(), SOC, ConstOperand);
1808 return ConstantExpr::get(I.getOpcode(), ConstOperand, SOC);
1809 }
1810
1811 Value *Op0 = SO, *Op1 = ConstOperand;
1812 if (!ConstIsRHS)
1813 std::swap(Op0, Op1);
1814 Instruction *New;
1815 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
1816 New = BinaryOperator::create(BO->getOpcode(), Op0, Op1,SO->getName()+".op");
1817 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1818 New = CmpInst::create(CI->getOpcode(), CI->getPredicate(), Op0, Op1,
1819 SO->getName()+".cmp");
1820 else {
1821 assert(0 && "Unknown binary instruction type!");
1822 abort();
1823 }
1824 return IC->InsertNewInstBefore(New, I);
1825}
1826
1827// FoldOpIntoSelect - Given an instruction with a select as one operand and a
1828// constant as the other operand, try to fold the binary operator into the
1829// select arguments. This also works for Cast instructions, which obviously do
1830// not have a second operand.
1831static Instruction *FoldOpIntoSelect(Instruction &Op, SelectInst *SI,
1832 InstCombiner *IC) {
1833 // Don't modify shared select instructions
1834 if (!SI->hasOneUse()) return 0;
1835 Value *TV = SI->getOperand(1);
1836 Value *FV = SI->getOperand(2);
1837
1838 if (isa<Constant>(TV) || isa<Constant>(FV)) {
1839 // Bool selects with constant operands can be folded to logical ops.
1840 if (SI->getType() == Type::Int1Ty) return 0;
1841
1842 Value *SelectTrueVal = FoldOperationIntoSelectOperand(Op, TV, IC);
1843 Value *SelectFalseVal = FoldOperationIntoSelectOperand(Op, FV, IC);
1844
1845 return new SelectInst(SI->getCondition(), SelectTrueVal,
1846 SelectFalseVal);
1847 }
1848 return 0;
1849}
1850
1851
1852/// FoldOpIntoPhi - Given a binary operator or cast instruction which has a PHI
1853/// node as operand #0, see if we can fold the instruction into the PHI (which
1854/// is only possible if all operands to the PHI are constants).
1855Instruction *InstCombiner::FoldOpIntoPhi(Instruction &I) {
1856 PHINode *PN = cast<PHINode>(I.getOperand(0));
1857 unsigned NumPHIValues = PN->getNumIncomingValues();
1858 if (!PN->hasOneUse() || NumPHIValues == 0) return 0;
1859
1860 // Check to see if all of the operands of the PHI are constants. If there is
1861 // one non-constant value, remember the BB it is. If there is more than one
1862 // or if *it* is a PHI, bail out.
1863 BasicBlock *NonConstBB = 0;
1864 for (unsigned i = 0; i != NumPHIValues; ++i)
1865 if (!isa<Constant>(PN->getIncomingValue(i))) {
1866 if (NonConstBB) return 0; // More than one non-const value.
1867 if (isa<PHINode>(PN->getIncomingValue(i))) return 0; // Itself a phi.
1868 NonConstBB = PN->getIncomingBlock(i);
1869
1870 // If the incoming non-constant value is in I's block, we have an infinite
1871 // loop.
1872 if (NonConstBB == I.getParent())
1873 return 0;
1874 }
1875
1876 // If there is exactly one non-constant value, we can insert a copy of the
1877 // operation in that block. However, if this is a critical edge, we would be
1878 // inserting the computation one some other paths (e.g. inside a loop). Only
1879 // do this if the pred block is unconditionally branching into the phi block.
1880 if (NonConstBB) {
1881 BranchInst *BI = dyn_cast<BranchInst>(NonConstBB->getTerminator());
1882 if (!BI || !BI->isUnconditional()) return 0;
1883 }
1884
1885 // Okay, we can do the transformation: create the new PHI node.
1886 PHINode *NewPN = new PHINode(I.getType(), "");
1887 NewPN->reserveOperandSpace(PN->getNumOperands()/2);
1888 InsertNewInstBefore(NewPN, *PN);
1889 NewPN->takeName(PN);
1890
1891 // Next, add all of the operands to the PHI.
1892 if (I.getNumOperands() == 2) {
1893 Constant *C = cast<Constant>(I.getOperand(1));
1894 for (unsigned i = 0; i != NumPHIValues; ++i) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00001895 Value *InV = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001896 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1897 if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1898 InV = ConstantExpr::getCompare(CI->getPredicate(), InC, C);
1899 else
1900 InV = ConstantExpr::get(I.getOpcode(), InC, C);
1901 } else {
1902 assert(PN->getIncomingBlock(i) == NonConstBB);
1903 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(&I))
1904 InV = BinaryOperator::create(BO->getOpcode(),
1905 PN->getIncomingValue(i), C, "phitmp",
1906 NonConstBB->getTerminator());
1907 else if (CmpInst *CI = dyn_cast<CmpInst>(&I))
1908 InV = CmpInst::create(CI->getOpcode(),
1909 CI->getPredicate(),
1910 PN->getIncomingValue(i), C, "phitmp",
1911 NonConstBB->getTerminator());
1912 else
1913 assert(0 && "Unknown binop!");
1914
1915 AddToWorkList(cast<Instruction>(InV));
1916 }
1917 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1918 }
1919 } else {
1920 CastInst *CI = cast<CastInst>(&I);
1921 const Type *RetTy = CI->getType();
1922 for (unsigned i = 0; i != NumPHIValues; ++i) {
1923 Value *InV;
1924 if (Constant *InC = dyn_cast<Constant>(PN->getIncomingValue(i))) {
1925 InV = ConstantExpr::getCast(CI->getOpcode(), InC, RetTy);
1926 } else {
1927 assert(PN->getIncomingBlock(i) == NonConstBB);
1928 InV = CastInst::create(CI->getOpcode(), PN->getIncomingValue(i),
1929 I.getType(), "phitmp",
1930 NonConstBB->getTerminator());
1931 AddToWorkList(cast<Instruction>(InV));
1932 }
1933 NewPN->addIncoming(InV, PN->getIncomingBlock(i));
1934 }
1935 }
1936 return ReplaceInstUsesWith(I, NewPN);
1937}
1938
1939Instruction *InstCombiner::visitAdd(BinaryOperator &I) {
1940 bool Changed = SimplifyCommutative(I);
1941 Value *LHS = I.getOperand(0), *RHS = I.getOperand(1);
1942
1943 if (Constant *RHSC = dyn_cast<Constant>(RHS)) {
1944 // X + undef -> undef
1945 if (isa<UndefValue>(RHS))
1946 return ReplaceInstUsesWith(I, RHS);
1947
1948 // X + 0 --> X
1949 if (!I.getType()->isFPOrFPVector()) { // NOTE: -0 + +0 = +0.
1950 if (RHSC->isNullValue())
1951 return ReplaceInstUsesWith(I, LHS);
1952 } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(RHSC)) {
Dale Johannesen2fc20782007-09-14 22:26:36 +00001953 if (CFP->isExactlyValue(ConstantFP::getNegativeZero
1954 (I.getType())->getValueAPF()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00001955 return ReplaceInstUsesWith(I, LHS);
1956 }
1957
1958 if (ConstantInt *CI = dyn_cast<ConstantInt>(RHSC)) {
1959 // X + (signbit) --> X ^ signbit
1960 const APInt& Val = CI->getValue();
1961 uint32_t BitWidth = Val.getBitWidth();
1962 if (Val == APInt::getSignBit(BitWidth))
1963 return BinaryOperator::createXor(LHS, RHS);
1964
1965 // See if SimplifyDemandedBits can simplify this. This handles stuff like
1966 // (X & 254)+1 -> (X&254)|1
1967 if (!isa<VectorType>(I.getType())) {
1968 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
1969 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
1970 KnownZero, KnownOne))
1971 return &I;
1972 }
1973 }
1974
1975 if (isa<PHINode>(LHS))
1976 if (Instruction *NV = FoldOpIntoPhi(I))
1977 return NV;
1978
1979 ConstantInt *XorRHS = 0;
1980 Value *XorLHS = 0;
1981 if (isa<ConstantInt>(RHSC) &&
1982 match(LHS, m_Xor(m_Value(XorLHS), m_ConstantInt(XorRHS)))) {
1983 uint32_t TySizeBits = I.getType()->getPrimitiveSizeInBits();
1984 const APInt& RHSVal = cast<ConstantInt>(RHSC)->getValue();
1985
1986 uint32_t Size = TySizeBits / 2;
1987 APInt C0080Val(APInt(TySizeBits, 1ULL).shl(Size - 1));
1988 APInt CFF80Val(-C0080Val);
1989 do {
1990 if (TySizeBits > Size) {
1991 // If we have ADD(XOR(AND(X, 0xFF), 0x80), 0xF..F80), it's a sext.
1992 // If we have ADD(XOR(AND(X, 0xFF), 0xF..F80), 0x80), it's a sext.
1993 if ((RHSVal == CFF80Val && XorRHS->getValue() == C0080Val) ||
1994 (RHSVal == C0080Val && XorRHS->getValue() == CFF80Val)) {
1995 // This is a sign extend if the top bits are known zero.
1996 if (!MaskedValueIsZero(XorLHS,
1997 APInt::getHighBitsSet(TySizeBits, TySizeBits - Size)))
1998 Size = 0; // Not a sign ext, but can't be any others either.
1999 break;
2000 }
2001 }
2002 Size >>= 1;
2003 C0080Val = APIntOps::lshr(C0080Val, Size);
2004 CFF80Val = APIntOps::ashr(CFF80Val, Size);
2005 } while (Size >= 1);
2006
2007 // FIXME: This shouldn't be necessary. When the backends can handle types
2008 // with funny bit widths then this whole cascade of if statements should
2009 // be removed. It is just here to get the size of the "middle" type back
2010 // up to something that the back ends can handle.
2011 const Type *MiddleType = 0;
2012 switch (Size) {
2013 default: break;
2014 case 32: MiddleType = Type::Int32Ty; break;
2015 case 16: MiddleType = Type::Int16Ty; break;
2016 case 8: MiddleType = Type::Int8Ty; break;
2017 }
2018 if (MiddleType) {
2019 Instruction *NewTrunc = new TruncInst(XorLHS, MiddleType, "sext");
2020 InsertNewInstBefore(NewTrunc, I);
2021 return new SExtInst(NewTrunc, I.getType(), I.getName());
2022 }
2023 }
2024 }
2025
2026 // X + X --> X << 1
2027 if (I.getType()->isInteger() && I.getType() != Type::Int1Ty) {
2028 if (Instruction *Result = AssociativeOpt(I, AddRHS(RHS))) return Result;
2029
2030 if (Instruction *RHSI = dyn_cast<Instruction>(RHS)) {
2031 if (RHSI->getOpcode() == Instruction::Sub)
2032 if (LHS == RHSI->getOperand(1)) // A + (B - A) --> B
2033 return ReplaceInstUsesWith(I, RHSI->getOperand(0));
2034 }
2035 if (Instruction *LHSI = dyn_cast<Instruction>(LHS)) {
2036 if (LHSI->getOpcode() == Instruction::Sub)
2037 if (RHS == LHSI->getOperand(1)) // (B - A) + A --> B
2038 return ReplaceInstUsesWith(I, LHSI->getOperand(0));
2039 }
2040 }
2041
2042 // -A + B --> B - A
2043 if (Value *V = dyn_castNegVal(LHS))
2044 return BinaryOperator::createSub(RHS, V);
2045
2046 // A + -B --> A - B
2047 if (!isa<Constant>(RHS))
2048 if (Value *V = dyn_castNegVal(RHS))
2049 return BinaryOperator::createSub(LHS, V);
2050
2051
2052 ConstantInt *C2;
2053 if (Value *X = dyn_castFoldableMul(LHS, C2)) {
2054 if (X == RHS) // X*C + X --> X * (C+1)
2055 return BinaryOperator::createMul(RHS, AddOne(C2));
2056
2057 // X*C1 + X*C2 --> X * (C1+C2)
2058 ConstantInt *C1;
2059 if (X == dyn_castFoldableMul(RHS, C1))
2060 return BinaryOperator::createMul(X, Add(C1, C2));
2061 }
2062
2063 // X + X*C --> X * (C+1)
2064 if (dyn_castFoldableMul(RHS, C2) == LHS)
2065 return BinaryOperator::createMul(LHS, AddOne(C2));
2066
2067 // X + ~X --> -1 since ~X = -X-1
2068 if (dyn_castNotVal(LHS) == RHS || dyn_castNotVal(RHS) == LHS)
2069 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
2070
2071
2072 // (A & C1)+(B & C2) --> (A & C1)|(B & C2) iff C1&C2 == 0
2073 if (match(RHS, m_And(m_Value(), m_ConstantInt(C2))))
2074 if (Instruction *R = AssociativeOpt(I, AddMaskingAnd(C2)))
2075 return R;
2076
2077 if (ConstantInt *CRHS = dyn_cast<ConstantInt>(RHS)) {
2078 Value *X = 0;
2079 if (match(LHS, m_Not(m_Value(X)))) // ~X + C --> (C-1) - X
2080 return BinaryOperator::createSub(SubOne(CRHS), X);
2081
2082 // (X & FF00) + xx00 -> (X+xx00) & FF00
2083 if (LHS->hasOneUse() && match(LHS, m_And(m_Value(X), m_ConstantInt(C2)))) {
2084 Constant *Anded = And(CRHS, C2);
2085 if (Anded == CRHS) {
2086 // See if all bits from the first bit set in the Add RHS up are included
2087 // in the mask. First, get the rightmost bit.
2088 const APInt& AddRHSV = CRHS->getValue();
2089
2090 // Form a mask of all bits from the lowest bit added through the top.
2091 APInt AddRHSHighBits(~((AddRHSV & -AddRHSV)-1));
2092
2093 // See if the and mask includes all of these bits.
2094 APInt AddRHSHighBitsAnd(AddRHSHighBits & C2->getValue());
2095
2096 if (AddRHSHighBits == AddRHSHighBitsAnd) {
2097 // Okay, the xform is safe. Insert the new add pronto.
2098 Value *NewAdd = InsertNewInstBefore(BinaryOperator::createAdd(X, CRHS,
2099 LHS->getName()), I);
2100 return BinaryOperator::createAnd(NewAdd, C2);
2101 }
2102 }
2103 }
2104
2105 // Try to fold constant add into select arguments.
2106 if (SelectInst *SI = dyn_cast<SelectInst>(LHS))
2107 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2108 return R;
2109 }
2110
2111 // add (cast *A to intptrtype) B ->
2112 // cast (GEP (cast *A to sbyte*) B) ->
2113 // intptrtype
2114 {
2115 CastInst *CI = dyn_cast<CastInst>(LHS);
2116 Value *Other = RHS;
2117 if (!CI) {
2118 CI = dyn_cast<CastInst>(RHS);
2119 Other = LHS;
2120 }
2121 if (CI && CI->getType()->isSized() &&
2122 (CI->getType()->getPrimitiveSizeInBits() ==
2123 TD->getIntPtrType()->getPrimitiveSizeInBits())
2124 && isa<PointerType>(CI->getOperand(0)->getType())) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00002125 unsigned AS =
2126 cast<PointerType>(CI->getOperand(0)->getType())->getAddressSpace();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002127 Value *I2 = InsertCastBefore(Instruction::BitCast, CI->getOperand(0),
Christopher Lambbb2f2222007-12-17 01:12:55 +00002128 PointerType::get(Type::Int8Ty, AS), I);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002129 I2 = InsertNewInstBefore(new GetElementPtrInst(I2, Other, "ctg2"), I);
2130 return new PtrToIntInst(I2, CI->getType());
2131 }
2132 }
Christopher Lamb244ec282007-12-18 09:34:41 +00002133
Christopher Lamb244ec282007-12-18 09:34:41 +00002134 // add (select X 0 (sub n A)) A ->
Christopher Lamb5705edb2007-12-18 09:45:40 +00002135 // select X A n
Christopher Lamb244ec282007-12-18 09:34:41 +00002136 {
2137 SelectInst *SI = dyn_cast<SelectInst>(LHS);
2138 Value *Other = RHS;
2139 if (!SI) {
2140 SI = dyn_cast<SelectInst>(RHS);
2141 Other = LHS;
2142 }
2143 if (SI) {
2144 Value *TV = SI->getTrueValue();
2145 Value *FV = SI->getFalseValue();
2146 Value *A;
Christopher Lamb244ec282007-12-18 09:34:41 +00002147
2148 // Can we fold the add into the argument of the select?
2149 // We check both true and false select arguments for a matching subtract.
2150 ConstantInt *C1, *C2;
2151 if (match(FV, m_ConstantInt(C1)) && C1->getValue() == 0 &&
2152 match(TV, m_Sub(m_ConstantInt(C2), m_Value(A))) &&
2153 A == Other) {
Christopher Lambfd6668a2007-12-18 20:33:11 +00002154 // We managed to fold the add into the true select value.
Christopher Lamb874eaff2007-12-18 20:30:28 +00002155 return new SelectInst(SI->getCondition(), C2, A);
Christopher Lamb244ec282007-12-18 09:34:41 +00002156 } else if (match(TV, m_ConstantInt(C1)) && C1->getValue() == 0 &&
2157 match(FV, m_Sub(m_ConstantInt(C2), m_Value(A))) &&
2158 A == Other) {
Christopher Lambfd6668a2007-12-18 20:33:11 +00002159 // We managed to fold the add into the false select value.
Christopher Lamb874eaff2007-12-18 20:30:28 +00002160 return new SelectInst(SI->getCondition(), A, C2);
Christopher Lamb244ec282007-12-18 09:34:41 +00002161 }
2162 }
2163 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002164
2165 return Changed ? &I : 0;
2166}
2167
2168// isSignBit - Return true if the value represented by the constant only has the
2169// highest order bit set.
2170static bool isSignBit(ConstantInt *CI) {
2171 uint32_t NumBits = CI->getType()->getPrimitiveSizeInBits();
2172 return CI->getValue() == APInt::getSignBit(NumBits);
2173}
2174
2175Instruction *InstCombiner::visitSub(BinaryOperator &I) {
2176 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2177
2178 if (Op0 == Op1) // sub X, X -> 0
2179 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2180
2181 // If this is a 'B = x-(-A)', change to B = x+A...
2182 if (Value *V = dyn_castNegVal(Op1))
2183 return BinaryOperator::createAdd(Op0, V);
2184
2185 if (isa<UndefValue>(Op0))
2186 return ReplaceInstUsesWith(I, Op0); // undef - X -> undef
2187 if (isa<UndefValue>(Op1))
2188 return ReplaceInstUsesWith(I, Op1); // X - undef -> undef
2189
2190 if (ConstantInt *C = dyn_cast<ConstantInt>(Op0)) {
2191 // Replace (-1 - A) with (~A)...
2192 if (C->isAllOnesValue())
2193 return BinaryOperator::createNot(Op1);
2194
2195 // C - ~X == X + (1+C)
2196 Value *X = 0;
2197 if (match(Op1, m_Not(m_Value(X))))
2198 return BinaryOperator::createAdd(X, AddOne(C));
2199
2200 // -(X >>u 31) -> (X >>s 31)
2201 // -(X >>s 31) -> (X >>u 31)
2202 if (C->isZero()) {
2203 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op1))
2204 if (SI->getOpcode() == Instruction::LShr) {
2205 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2206 // Check to see if we are shifting out everything but the sign bit.
2207 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2208 SI->getType()->getPrimitiveSizeInBits()-1) {
2209 // Ok, the transformation is safe. Insert AShr.
2210 return BinaryOperator::create(Instruction::AShr,
2211 SI->getOperand(0), CU, SI->getName());
2212 }
2213 }
2214 }
2215 else if (SI->getOpcode() == Instruction::AShr) {
2216 if (ConstantInt *CU = dyn_cast<ConstantInt>(SI->getOperand(1))) {
2217 // Check to see if we are shifting out everything but the sign bit.
2218 if (CU->getLimitedValue(SI->getType()->getPrimitiveSizeInBits()) ==
2219 SI->getType()->getPrimitiveSizeInBits()-1) {
2220 // Ok, the transformation is safe. Insert LShr.
2221 return BinaryOperator::createLShr(
2222 SI->getOperand(0), CU, SI->getName());
2223 }
2224 }
2225 }
2226 }
2227
2228 // Try to fold constant sub into select arguments.
2229 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2230 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2231 return R;
2232
2233 if (isa<PHINode>(Op0))
2234 if (Instruction *NV = FoldOpIntoPhi(I))
2235 return NV;
2236 }
2237
2238 if (BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1)) {
2239 if (Op1I->getOpcode() == Instruction::Add &&
2240 !Op0->getType()->isFPOrFPVector()) {
2241 if (Op1I->getOperand(0) == Op0) // X-(X+Y) == -Y
2242 return BinaryOperator::createNeg(Op1I->getOperand(1), I.getName());
2243 else if (Op1I->getOperand(1) == Op0) // X-(Y+X) == -Y
2244 return BinaryOperator::createNeg(Op1I->getOperand(0), I.getName());
2245 else if (ConstantInt *CI1 = dyn_cast<ConstantInt>(I.getOperand(0))) {
2246 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(Op1I->getOperand(1)))
2247 // C1-(X+C2) --> (C1-C2)-X
2248 return BinaryOperator::createSub(Subtract(CI1, CI2),
2249 Op1I->getOperand(0));
2250 }
2251 }
2252
2253 if (Op1I->hasOneUse()) {
2254 // Replace (x - (y - z)) with (x + (z - y)) if the (y - z) subexpression
2255 // is not used by anyone else...
2256 //
2257 if (Op1I->getOpcode() == Instruction::Sub &&
2258 !Op1I->getType()->isFPOrFPVector()) {
2259 // Swap the two operands of the subexpr...
2260 Value *IIOp0 = Op1I->getOperand(0), *IIOp1 = Op1I->getOperand(1);
2261 Op1I->setOperand(0, IIOp1);
2262 Op1I->setOperand(1, IIOp0);
2263
2264 // Create the new top level add instruction...
2265 return BinaryOperator::createAdd(Op0, Op1);
2266 }
2267
2268 // Replace (A - (A & B)) with (A & ~B) if this is the only use of (A&B)...
2269 //
2270 if (Op1I->getOpcode() == Instruction::And &&
2271 (Op1I->getOperand(0) == Op0 || Op1I->getOperand(1) == Op0)) {
2272 Value *OtherOp = Op1I->getOperand(Op1I->getOperand(0) == Op0);
2273
2274 Value *NewNot =
2275 InsertNewInstBefore(BinaryOperator::createNot(OtherOp, "B.not"), I);
2276 return BinaryOperator::createAnd(Op0, NewNot);
2277 }
2278
2279 // 0 - (X sdiv C) -> (X sdiv -C)
2280 if (Op1I->getOpcode() == Instruction::SDiv)
2281 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
2282 if (CSI->isZero())
2283 if (Constant *DivRHS = dyn_cast<Constant>(Op1I->getOperand(1)))
2284 return BinaryOperator::createSDiv(Op1I->getOperand(0),
2285 ConstantExpr::getNeg(DivRHS));
2286
2287 // X - X*C --> X * (1-C)
2288 ConstantInt *C2 = 0;
2289 if (dyn_castFoldableMul(Op1I, C2) == Op0) {
2290 Constant *CP1 = Subtract(ConstantInt::get(I.getType(), 1), C2);
2291 return BinaryOperator::createMul(Op0, CP1);
2292 }
Dan Gohmanda338742007-09-17 17:31:57 +00002293
2294 // X - ((X / Y) * Y) --> X % Y
2295 if (Op1I->getOpcode() == Instruction::Mul)
2296 if (Instruction *I = dyn_cast<Instruction>(Op1I->getOperand(0)))
2297 if (Op0 == I->getOperand(0) &&
2298 Op1I->getOperand(1) == I->getOperand(1)) {
2299 if (I->getOpcode() == Instruction::SDiv)
2300 return BinaryOperator::createSRem(Op0, Op1I->getOperand(1));
2301 if (I->getOpcode() == Instruction::UDiv)
2302 return BinaryOperator::createURem(Op0, Op1I->getOperand(1));
2303 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002304 }
2305 }
2306
2307 if (!Op0->getType()->isFPOrFPVector())
2308 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2309 if (Op0I->getOpcode() == Instruction::Add) {
2310 if (Op0I->getOperand(0) == Op1) // (Y+X)-Y == X
2311 return ReplaceInstUsesWith(I, Op0I->getOperand(1));
2312 else if (Op0I->getOperand(1) == Op1) // (X+Y)-Y == X
2313 return ReplaceInstUsesWith(I, Op0I->getOperand(0));
2314 } else if (Op0I->getOpcode() == Instruction::Sub) {
2315 if (Op0I->getOperand(0) == Op1) // (X-Y)-X == -Y
2316 return BinaryOperator::createNeg(Op0I->getOperand(1), I.getName());
2317 }
2318
2319 ConstantInt *C1;
2320 if (Value *X = dyn_castFoldableMul(Op0, C1)) {
2321 if (X == Op1) // X*C - X --> X * (C-1)
2322 return BinaryOperator::createMul(Op1, SubOne(C1));
2323
2324 ConstantInt *C2; // X*C1 - X*C2 -> X * (C1-C2)
2325 if (X == dyn_castFoldableMul(Op1, C2))
2326 return BinaryOperator::createMul(Op1, Subtract(C1, C2));
2327 }
2328 return 0;
2329}
2330
2331/// isSignBitCheck - Given an exploded icmp instruction, return true if the
2332/// comparison only checks the sign bit. If it only checks the sign bit, set
2333/// TrueIfSigned if the result of the comparison is true when the input value is
2334/// signed.
2335static bool isSignBitCheck(ICmpInst::Predicate pred, ConstantInt *RHS,
2336 bool &TrueIfSigned) {
2337 switch (pred) {
2338 case ICmpInst::ICMP_SLT: // True if LHS s< 0
2339 TrueIfSigned = true;
2340 return RHS->isZero();
2341 case ICmpInst::ICMP_SLE: // True if LHS s<= RHS and RHS == -1
2342 TrueIfSigned = true;
2343 return RHS->isAllOnesValue();
2344 case ICmpInst::ICMP_SGT: // True if LHS s> -1
2345 TrueIfSigned = false;
2346 return RHS->isAllOnesValue();
2347 case ICmpInst::ICMP_UGT:
2348 // True if LHS u> RHS and RHS == high-bit-mask - 1
2349 TrueIfSigned = true;
2350 return RHS->getValue() ==
2351 APInt::getSignedMaxValue(RHS->getType()->getPrimitiveSizeInBits());
2352 case ICmpInst::ICMP_UGE:
2353 // True if LHS u>= RHS and RHS == high-bit-mask (2^7, 2^15, 2^31, etc)
2354 TrueIfSigned = true;
2355 return RHS->getValue() ==
2356 APInt::getSignBit(RHS->getType()->getPrimitiveSizeInBits());
2357 default:
2358 return false;
2359 }
2360}
2361
2362Instruction *InstCombiner::visitMul(BinaryOperator &I) {
2363 bool Changed = SimplifyCommutative(I);
2364 Value *Op0 = I.getOperand(0);
2365
2366 if (isa<UndefValue>(I.getOperand(1))) // undef * X -> 0
2367 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2368
2369 // Simplify mul instructions with a constant RHS...
2370 if (Constant *Op1 = dyn_cast<Constant>(I.getOperand(1))) {
2371 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
2372
2373 // ((X << C1)*C2) == (X * (C2 << C1))
2374 if (BinaryOperator *SI = dyn_cast<BinaryOperator>(Op0))
2375 if (SI->getOpcode() == Instruction::Shl)
2376 if (Constant *ShOp = dyn_cast<Constant>(SI->getOperand(1)))
2377 return BinaryOperator::createMul(SI->getOperand(0),
2378 ConstantExpr::getShl(CI, ShOp));
2379
2380 if (CI->isZero())
2381 return ReplaceInstUsesWith(I, Op1); // X * 0 == 0
2382 if (CI->equalsInt(1)) // X * 1 == X
2383 return ReplaceInstUsesWith(I, Op0);
2384 if (CI->isAllOnesValue()) // X * -1 == 0 - X
2385 return BinaryOperator::createNeg(Op0, I.getName());
2386
2387 const APInt& Val = cast<ConstantInt>(CI)->getValue();
2388 if (Val.isPowerOf2()) { // Replace X*(2^C) with X << C
2389 return BinaryOperator::createShl(Op0,
2390 ConstantInt::get(Op0->getType(), Val.logBase2()));
2391 }
2392 } else if (ConstantFP *Op1F = dyn_cast<ConstantFP>(Op1)) {
2393 if (Op1F->isNullValue())
2394 return ReplaceInstUsesWith(I, Op1);
2395
2396 // "In IEEE floating point, x*1 is not equivalent to x for nans. However,
2397 // ANSI says we can drop signals, so we can do this anyway." (from GCC)
Dale Johannesen2fc20782007-09-14 22:26:36 +00002398 // We need a better interface for long double here.
2399 if (Op1->getType() == Type::FloatTy || Op1->getType() == Type::DoubleTy)
2400 if (Op1F->isExactlyValue(1.0))
2401 return ReplaceInstUsesWith(I, Op0); // Eliminate 'mul double %X, 1.0'
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002402 }
2403
2404 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0))
2405 if (Op0I->getOpcode() == Instruction::Add && Op0I->hasOneUse() &&
2406 isa<ConstantInt>(Op0I->getOperand(1))) {
2407 // Canonicalize (X+C1)*C2 -> X*C2+C1*C2.
2408 Instruction *Add = BinaryOperator::createMul(Op0I->getOperand(0),
2409 Op1, "tmp");
2410 InsertNewInstBefore(Add, I);
2411 Value *C1C2 = ConstantExpr::getMul(Op1,
2412 cast<Constant>(Op0I->getOperand(1)));
2413 return BinaryOperator::createAdd(Add, C1C2);
2414
2415 }
2416
2417 // Try to fold constant mul into select arguments.
2418 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2419 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2420 return R;
2421
2422 if (isa<PHINode>(Op0))
2423 if (Instruction *NV = FoldOpIntoPhi(I))
2424 return NV;
2425 }
2426
2427 if (Value *Op0v = dyn_castNegVal(Op0)) // -X * -Y = X*Y
2428 if (Value *Op1v = dyn_castNegVal(I.getOperand(1)))
2429 return BinaryOperator::createMul(Op0v, Op1v);
2430
2431 // If one of the operands of the multiply is a cast from a boolean value, then
2432 // we know the bool is either zero or one, so this is a 'masking' multiply.
2433 // See if we can simplify things based on how the boolean was originally
2434 // formed.
2435 CastInst *BoolCast = 0;
2436 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(0)))
2437 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2438 BoolCast = CI;
2439 if (!BoolCast)
2440 if (ZExtInst *CI = dyn_cast<ZExtInst>(I.getOperand(1)))
2441 if (CI->getOperand(0)->getType() == Type::Int1Ty)
2442 BoolCast = CI;
2443 if (BoolCast) {
2444 if (ICmpInst *SCI = dyn_cast<ICmpInst>(BoolCast->getOperand(0))) {
2445 Value *SCIOp0 = SCI->getOperand(0), *SCIOp1 = SCI->getOperand(1);
2446 const Type *SCOpTy = SCIOp0->getType();
2447 bool TIS = false;
2448
2449 // If the icmp is true iff the sign bit of X is set, then convert this
2450 // multiply into a shift/and combination.
2451 if (isa<ConstantInt>(SCIOp1) &&
2452 isSignBitCheck(SCI->getPredicate(), cast<ConstantInt>(SCIOp1), TIS) &&
2453 TIS) {
2454 // Shift the X value right to turn it into "all signbits".
2455 Constant *Amt = ConstantInt::get(SCIOp0->getType(),
2456 SCOpTy->getPrimitiveSizeInBits()-1);
2457 Value *V =
2458 InsertNewInstBefore(
2459 BinaryOperator::create(Instruction::AShr, SCIOp0, Amt,
2460 BoolCast->getOperand(0)->getName()+
2461 ".mask"), I);
2462
2463 // If the multiply type is not the same as the source type, sign extend
2464 // or truncate to the multiply type.
2465 if (I.getType() != V->getType()) {
2466 uint32_t SrcBits = V->getType()->getPrimitiveSizeInBits();
2467 uint32_t DstBits = I.getType()->getPrimitiveSizeInBits();
2468 Instruction::CastOps opcode =
2469 (SrcBits == DstBits ? Instruction::BitCast :
2470 (SrcBits < DstBits ? Instruction::SExt : Instruction::Trunc));
2471 V = InsertCastBefore(opcode, V, I.getType(), I);
2472 }
2473
2474 Value *OtherOp = Op0 == BoolCast ? I.getOperand(1) : Op0;
2475 return BinaryOperator::createAnd(V, OtherOp);
2476 }
2477 }
2478 }
2479
2480 return Changed ? &I : 0;
2481}
2482
2483/// This function implements the transforms on div instructions that work
2484/// regardless of the kind of div instruction it is (udiv, sdiv, or fdiv). It is
2485/// used by the visitors to those instructions.
2486/// @brief Transforms common to all three div instructions
2487Instruction *InstCombiner::commonDivTransforms(BinaryOperator &I) {
2488 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2489
2490 // undef / X -> 0
2491 if (isa<UndefValue>(Op0))
2492 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2493
2494 // X / undef -> undef
2495 if (isa<UndefValue>(Op1))
2496 return ReplaceInstUsesWith(I, Op1);
2497
2498 // Handle cases involving: div X, (select Cond, Y, Z)
2499 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
2500 // div X, (Cond ? 0 : Y) -> div X, Y. If the div and the select are in the
2501 // same basic block, then we replace the select with Y, and the condition
2502 // of the select with false (if the cond value is in the same BB). If the
2503 // select has uses other than the div, this allows them to be simplified
2504 // also. Note that div X, Y is just as good as div X, 0 (undef)
2505 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2506 if (ST->isNullValue()) {
2507 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2508 if (CondI && CondI->getParent() == I.getParent())
2509 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
2510 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2511 I.setOperand(1, SI->getOperand(2));
2512 else
2513 UpdateValueUsesWith(SI, SI->getOperand(2));
2514 return &I;
2515 }
2516
2517 // Likewise for: div X, (Cond ? Y : 0) -> div X, Y
2518 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2519 if (ST->isNullValue()) {
2520 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2521 if (CondI && CondI->getParent() == I.getParent())
2522 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
2523 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2524 I.setOperand(1, SI->getOperand(1));
2525 else
2526 UpdateValueUsesWith(SI, SI->getOperand(1));
2527 return &I;
2528 }
2529 }
2530
2531 return 0;
2532}
2533
2534/// This function implements the transforms common to both integer division
2535/// instructions (udiv and sdiv). It is called by the visitors to those integer
2536/// division instructions.
2537/// @brief Common integer divide transforms
2538Instruction *InstCombiner::commonIDivTransforms(BinaryOperator &I) {
2539 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2540
2541 if (Instruction *Common = commonDivTransforms(I))
2542 return Common;
2543
2544 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2545 // div X, 1 == X
2546 if (RHS->equalsInt(1))
2547 return ReplaceInstUsesWith(I, Op0);
2548
2549 // (X / C1) / C2 -> X / (C1*C2)
2550 if (Instruction *LHS = dyn_cast<Instruction>(Op0))
2551 if (Instruction::BinaryOps(LHS->getOpcode()) == I.getOpcode())
2552 if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
2553 return BinaryOperator::create(I.getOpcode(), LHS->getOperand(0),
2554 Multiply(RHS, LHSRHS));
2555 }
2556
2557 if (!RHS->isZero()) { // avoid X udiv 0
2558 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
2559 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2560 return R;
2561 if (isa<PHINode>(Op0))
2562 if (Instruction *NV = FoldOpIntoPhi(I))
2563 return NV;
2564 }
2565 }
2566
2567 // 0 / X == 0, we don't need to preserve faults!
2568 if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
2569 if (LHS->equalsInt(0))
2570 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2571
2572 return 0;
2573}
2574
2575Instruction *InstCombiner::visitUDiv(BinaryOperator &I) {
2576 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2577
2578 // Handle the integer div common cases
2579 if (Instruction *Common = commonIDivTransforms(I))
2580 return Common;
2581
2582 // X udiv C^2 -> X >> C
2583 // Check to see if this is an unsigned division with an exact power of 2,
2584 // if so, convert to a right shift.
2585 if (ConstantInt *C = dyn_cast<ConstantInt>(Op1)) {
2586 if (C->getValue().isPowerOf2()) // 0 not included in isPowerOf2
2587 return BinaryOperator::createLShr(Op0,
2588 ConstantInt::get(Op0->getType(), C->getValue().logBase2()));
2589 }
2590
2591 // X udiv (C1 << N), where C1 is "1<<C2" --> X >> (N+C2)
2592 if (BinaryOperator *RHSI = dyn_cast<BinaryOperator>(I.getOperand(1))) {
2593 if (RHSI->getOpcode() == Instruction::Shl &&
2594 isa<ConstantInt>(RHSI->getOperand(0))) {
2595 const APInt& C1 = cast<ConstantInt>(RHSI->getOperand(0))->getValue();
2596 if (C1.isPowerOf2()) {
2597 Value *N = RHSI->getOperand(1);
2598 const Type *NTy = N->getType();
2599 if (uint32_t C2 = C1.logBase2()) {
2600 Constant *C2V = ConstantInt::get(NTy, C2);
2601 N = InsertNewInstBefore(BinaryOperator::createAdd(N, C2V, "tmp"), I);
2602 }
2603 return BinaryOperator::createLShr(Op0, N);
2604 }
2605 }
2606 }
2607
2608 // udiv X, (Select Cond, C1, C2) --> Select Cond, (shr X, C1), (shr X, C2)
2609 // where C1&C2 are powers of two.
2610 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
2611 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2612 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2613 const APInt &TVA = STO->getValue(), &FVA = SFO->getValue();
2614 if (TVA.isPowerOf2() && FVA.isPowerOf2()) {
2615 // Compute the shift amounts
2616 uint32_t TSA = TVA.logBase2(), FSA = FVA.logBase2();
2617 // Construct the "on true" case of the select
2618 Constant *TC = ConstantInt::get(Op0->getType(), TSA);
2619 Instruction *TSI = BinaryOperator::createLShr(
2620 Op0, TC, SI->getName()+".t");
2621 TSI = InsertNewInstBefore(TSI, I);
2622
2623 // Construct the "on false" case of the select
2624 Constant *FC = ConstantInt::get(Op0->getType(), FSA);
2625 Instruction *FSI = BinaryOperator::createLShr(
2626 Op0, FC, SI->getName()+".f");
2627 FSI = InsertNewInstBefore(FSI, I);
2628
2629 // construct the select instruction and return it.
2630 return new SelectInst(SI->getOperand(0), TSI, FSI, SI->getName());
2631 }
2632 }
2633 return 0;
2634}
2635
2636Instruction *InstCombiner::visitSDiv(BinaryOperator &I) {
2637 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2638
2639 // Handle the integer div common cases
2640 if (Instruction *Common = commonIDivTransforms(I))
2641 return Common;
2642
2643 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2644 // sdiv X, -1 == -X
2645 if (RHS->isAllOnesValue())
2646 return BinaryOperator::createNeg(Op0);
2647
2648 // -X/C -> X/-C
2649 if (Value *LHSNeg = dyn_castNegVal(Op0))
2650 return BinaryOperator::createSDiv(LHSNeg, ConstantExpr::getNeg(RHS));
2651 }
2652
2653 // If the sign bits of both operands are zero (i.e. we can prove they are
2654 // unsigned inputs), turn this into a udiv.
2655 if (I.getType()->isInteger()) {
2656 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2657 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
Dan Gohmandb3dd962007-11-05 23:16:33 +00002658 // X sdiv Y -> X udiv Y, iff X and Y don't have sign bit set
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002659 return BinaryOperator::createUDiv(Op0, Op1, I.getName());
2660 }
2661 }
2662
2663 return 0;
2664}
2665
2666Instruction *InstCombiner::visitFDiv(BinaryOperator &I) {
2667 return commonDivTransforms(I);
2668}
2669
2670/// GetFactor - If we can prove that the specified value is at least a multiple
2671/// of some factor, return that factor.
2672static Constant *GetFactor(Value *V) {
2673 if (ConstantInt *CI = dyn_cast<ConstantInt>(V))
2674 return CI;
2675
2676 // Unless we can be tricky, we know this is a multiple of 1.
2677 Constant *Result = ConstantInt::get(V->getType(), 1);
2678
2679 Instruction *I = dyn_cast<Instruction>(V);
2680 if (!I) return Result;
2681
2682 if (I->getOpcode() == Instruction::Mul) {
2683 // Handle multiplies by a constant, etc.
2684 return ConstantExpr::getMul(GetFactor(I->getOperand(0)),
2685 GetFactor(I->getOperand(1)));
2686 } else if (I->getOpcode() == Instruction::Shl) {
2687 // (X<<C) -> X * (1 << C)
2688 if (Constant *ShRHS = dyn_cast<Constant>(I->getOperand(1))) {
2689 ShRHS = ConstantExpr::getShl(Result, ShRHS);
2690 return ConstantExpr::getMul(GetFactor(I->getOperand(0)), ShRHS);
2691 }
2692 } else if (I->getOpcode() == Instruction::And) {
2693 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
2694 // X & 0xFFF0 is known to be a multiple of 16.
2695 uint32_t Zeros = RHS->getValue().countTrailingZeros();
Chris Lattnera03930e2007-11-23 22:35:18 +00002696 if (Zeros != V->getType()->getPrimitiveSizeInBits())// don't shift by "32"
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002697 return ConstantExpr::getShl(Result,
2698 ConstantInt::get(Result->getType(), Zeros));
2699 }
2700 } else if (CastInst *CI = dyn_cast<CastInst>(I)) {
2701 // Only handle int->int casts.
2702 if (!CI->isIntegerCast())
2703 return Result;
2704 Value *Op = CI->getOperand(0);
2705 return ConstantExpr::getCast(CI->getOpcode(), GetFactor(Op), V->getType());
2706 }
2707 return Result;
2708}
2709
2710/// This function implements the transforms on rem instructions that work
2711/// regardless of the kind of rem instruction it is (urem, srem, or frem). It
2712/// is used by the visitors to those instructions.
2713/// @brief Transforms common to all three rem instructions
2714Instruction *InstCombiner::commonRemTransforms(BinaryOperator &I) {
2715 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2716
2717 // 0 % X == 0, we don't need to preserve faults!
2718 if (Constant *LHS = dyn_cast<Constant>(Op0))
2719 if (LHS->isNullValue())
2720 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2721
2722 if (isa<UndefValue>(Op0)) // undef % X -> 0
2723 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2724 if (isa<UndefValue>(Op1))
2725 return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
2726
2727 // Handle cases involving: rem X, (select Cond, Y, Z)
2728 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
2729 // rem X, (Cond ? 0 : Y) -> rem X, Y. If the rem and the select are in
2730 // the same basic block, then we replace the select with Y, and the
2731 // condition of the select with false (if the cond value is in the same
2732 // BB). If the select has uses other than the div, this allows them to be
2733 // simplified also.
2734 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(1)))
2735 if (ST->isNullValue()) {
2736 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2737 if (CondI && CondI->getParent() == I.getParent())
2738 UpdateValueUsesWith(CondI, ConstantInt::getFalse());
2739 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2740 I.setOperand(1, SI->getOperand(2));
2741 else
2742 UpdateValueUsesWith(SI, SI->getOperand(2));
2743 return &I;
2744 }
2745 // Likewise for: rem X, (Cond ? Y : 0) -> rem X, Y
2746 if (Constant *ST = dyn_cast<Constant>(SI->getOperand(2)))
2747 if (ST->isNullValue()) {
2748 Instruction *CondI = dyn_cast<Instruction>(SI->getOperand(0));
2749 if (CondI && CondI->getParent() == I.getParent())
2750 UpdateValueUsesWith(CondI, ConstantInt::getTrue());
2751 else if (I.getParent() != SI->getParent() || SI->hasOneUse())
2752 I.setOperand(1, SI->getOperand(1));
2753 else
2754 UpdateValueUsesWith(SI, SI->getOperand(1));
2755 return &I;
2756 }
2757 }
2758
2759 return 0;
2760}
2761
2762/// This function implements the transforms common to both integer remainder
2763/// instructions (urem and srem). It is called by the visitors to those integer
2764/// remainder instructions.
2765/// @brief Common integer remainder transforms
2766Instruction *InstCombiner::commonIRemTransforms(BinaryOperator &I) {
2767 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2768
2769 if (Instruction *common = commonRemTransforms(I))
2770 return common;
2771
2772 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2773 // X % 0 == undef, we don't need to preserve faults!
2774 if (RHS->equalsInt(0))
2775 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
2776
2777 if (RHS->equalsInt(1)) // X % 1 == 0
2778 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2779
2780 if (Instruction *Op0I = dyn_cast<Instruction>(Op0)) {
2781 if (SelectInst *SI = dyn_cast<SelectInst>(Op0I)) {
2782 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
2783 return R;
2784 } else if (isa<PHINode>(Op0I)) {
2785 if (Instruction *NV = FoldOpIntoPhi(I))
2786 return NV;
2787 }
2788 // (X * C1) % C2 --> 0 iff C1 % C2 == 0
2789 if (ConstantExpr::getSRem(GetFactor(Op0I), RHS)->isNullValue())
2790 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
2791 }
2792 }
2793
2794 return 0;
2795}
2796
2797Instruction *InstCombiner::visitURem(BinaryOperator &I) {
2798 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2799
2800 if (Instruction *common = commonIRemTransforms(I))
2801 return common;
2802
2803 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
2804 // X urem C^2 -> X and C
2805 // Check to see if this is an unsigned remainder with an exact power of 2,
2806 // if so, convert to a bitwise and.
2807 if (ConstantInt *C = dyn_cast<ConstantInt>(RHS))
2808 if (C->getValue().isPowerOf2())
2809 return BinaryOperator::createAnd(Op0, SubOne(C));
2810 }
2811
2812 if (Instruction *RHSI = dyn_cast<Instruction>(I.getOperand(1))) {
2813 // Turn A % (C << N), where C is 2^k, into A & ((C << N)-1)
2814 if (RHSI->getOpcode() == Instruction::Shl &&
2815 isa<ConstantInt>(RHSI->getOperand(0))) {
2816 if (cast<ConstantInt>(RHSI->getOperand(0))->getValue().isPowerOf2()) {
2817 Constant *N1 = ConstantInt::getAllOnesValue(I.getType());
2818 Value *Add = InsertNewInstBefore(BinaryOperator::createAdd(RHSI, N1,
2819 "tmp"), I);
2820 return BinaryOperator::createAnd(Op0, Add);
2821 }
2822 }
2823 }
2824
2825 // urem X, (select Cond, 2^C1, 2^C2) --> select Cond, (and X, C1), (and X, C2)
2826 // where C1&C2 are powers of two.
2827 if (SelectInst *SI = dyn_cast<SelectInst>(Op1)) {
2828 if (ConstantInt *STO = dyn_cast<ConstantInt>(SI->getOperand(1)))
2829 if (ConstantInt *SFO = dyn_cast<ConstantInt>(SI->getOperand(2))) {
2830 // STO == 0 and SFO == 0 handled above.
2831 if ((STO->getValue().isPowerOf2()) &&
2832 (SFO->getValue().isPowerOf2())) {
2833 Value *TrueAnd = InsertNewInstBefore(
2834 BinaryOperator::createAnd(Op0, SubOne(STO), SI->getName()+".t"), I);
2835 Value *FalseAnd = InsertNewInstBefore(
2836 BinaryOperator::createAnd(Op0, SubOne(SFO), SI->getName()+".f"), I);
2837 return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd);
2838 }
2839 }
2840 }
2841
2842 return 0;
2843}
2844
2845Instruction *InstCombiner::visitSRem(BinaryOperator &I) {
2846 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
2847
Dan Gohmandb3dd962007-11-05 23:16:33 +00002848 // Handle the integer rem common cases
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002849 if (Instruction *common = commonIRemTransforms(I))
2850 return common;
2851
2852 if (Value *RHSNeg = dyn_castNegVal(Op1))
2853 if (!isa<ConstantInt>(RHSNeg) ||
2854 cast<ConstantInt>(RHSNeg)->getValue().isStrictlyPositive()) {
2855 // X % -Y -> X % Y
2856 AddUsesToWorkList(I);
2857 I.setOperand(1, RHSNeg);
2858 return &I;
2859 }
2860
Dan Gohmandb3dd962007-11-05 23:16:33 +00002861 // If the sign bits of both operands are zero (i.e. we can prove they are
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002862 // unsigned inputs), turn this into a urem.
Dan Gohmandb3dd962007-11-05 23:16:33 +00002863 if (I.getType()->isInteger()) {
2864 APInt Mask(APInt::getSignBit(I.getType()->getPrimitiveSizeInBits()));
2865 if (MaskedValueIsZero(Op1, Mask) && MaskedValueIsZero(Op0, Mask)) {
2866 // X srem Y -> X urem Y, iff X and Y don't have sign bit set
2867 return BinaryOperator::createURem(Op0, Op1, I.getName());
2868 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002869 }
2870
2871 return 0;
2872}
2873
2874Instruction *InstCombiner::visitFRem(BinaryOperator &I) {
2875 return commonRemTransforms(I);
2876}
2877
2878// isMaxValueMinusOne - return true if this is Max-1
2879static bool isMaxValueMinusOne(const ConstantInt *C, bool isSigned) {
2880 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
2881 if (!isSigned)
2882 return C->getValue() == APInt::getAllOnesValue(TypeBits) - 1;
2883 return C->getValue() == APInt::getSignedMaxValue(TypeBits)-1;
2884}
2885
2886// isMinValuePlusOne - return true if this is Min+1
2887static bool isMinValuePlusOne(const ConstantInt *C, bool isSigned) {
2888 if (!isSigned)
2889 return C->getValue() == 1; // unsigned
2890
2891 // Calculate 1111111111000000000000
2892 uint32_t TypeBits = C->getType()->getPrimitiveSizeInBits();
2893 return C->getValue() == APInt::getSignedMinValue(TypeBits)+1;
2894}
2895
2896// isOneBitSet - Return true if there is exactly one bit set in the specified
2897// constant.
2898static bool isOneBitSet(const ConstantInt *CI) {
2899 return CI->getValue().isPowerOf2();
2900}
2901
2902// isHighOnes - Return true if the constant is of the form 1+0+.
2903// This is the same as lowones(~X).
2904static bool isHighOnes(const ConstantInt *CI) {
2905 return (~CI->getValue() + 1).isPowerOf2();
2906}
2907
2908/// getICmpCode - Encode a icmp predicate into a three bit mask. These bits
2909/// are carefully arranged to allow folding of expressions such as:
2910///
2911/// (A < B) | (A > B) --> (A != B)
2912///
2913/// Note that this is only valid if the first and second predicates have the
2914/// same sign. Is illegal to do: (A u< B) | (A s> B)
2915///
2916/// Three bits are used to represent the condition, as follows:
2917/// 0 A > B
2918/// 1 A == B
2919/// 2 A < B
2920///
2921/// <=> Value Definition
2922/// 000 0 Always false
2923/// 001 1 A > B
2924/// 010 2 A == B
2925/// 011 3 A >= B
2926/// 100 4 A < B
2927/// 101 5 A != B
2928/// 110 6 A <= B
2929/// 111 7 Always true
2930///
2931static unsigned getICmpCode(const ICmpInst *ICI) {
2932 switch (ICI->getPredicate()) {
2933 // False -> 0
2934 case ICmpInst::ICMP_UGT: return 1; // 001
2935 case ICmpInst::ICMP_SGT: return 1; // 001
2936 case ICmpInst::ICMP_EQ: return 2; // 010
2937 case ICmpInst::ICMP_UGE: return 3; // 011
2938 case ICmpInst::ICMP_SGE: return 3; // 011
2939 case ICmpInst::ICMP_ULT: return 4; // 100
2940 case ICmpInst::ICMP_SLT: return 4; // 100
2941 case ICmpInst::ICMP_NE: return 5; // 101
2942 case ICmpInst::ICMP_ULE: return 6; // 110
2943 case ICmpInst::ICMP_SLE: return 6; // 110
2944 // True -> 7
2945 default:
2946 assert(0 && "Invalid ICmp predicate!");
2947 return 0;
2948 }
2949}
2950
2951/// getICmpValue - This is the complement of getICmpCode, which turns an
2952/// opcode and two operands into either a constant true or false, or a brand
Dan Gohmanda338742007-09-17 17:31:57 +00002953/// new ICmp instruction. The sign is passed in to determine which kind
Dan Gohmanf17a25c2007-07-18 16:29:46 +00002954/// of predicate to use in new icmp instructions.
2955static Value *getICmpValue(bool sign, unsigned code, Value *LHS, Value *RHS) {
2956 switch (code) {
2957 default: assert(0 && "Illegal ICmp code!");
2958 case 0: return ConstantInt::getFalse();
2959 case 1:
2960 if (sign)
2961 return new ICmpInst(ICmpInst::ICMP_SGT, LHS, RHS);
2962 else
2963 return new ICmpInst(ICmpInst::ICMP_UGT, LHS, RHS);
2964 case 2: return new ICmpInst(ICmpInst::ICMP_EQ, LHS, RHS);
2965 case 3:
2966 if (sign)
2967 return new ICmpInst(ICmpInst::ICMP_SGE, LHS, RHS);
2968 else
2969 return new ICmpInst(ICmpInst::ICMP_UGE, LHS, RHS);
2970 case 4:
2971 if (sign)
2972 return new ICmpInst(ICmpInst::ICMP_SLT, LHS, RHS);
2973 else
2974 return new ICmpInst(ICmpInst::ICMP_ULT, LHS, RHS);
2975 case 5: return new ICmpInst(ICmpInst::ICMP_NE, LHS, RHS);
2976 case 6:
2977 if (sign)
2978 return new ICmpInst(ICmpInst::ICMP_SLE, LHS, RHS);
2979 else
2980 return new ICmpInst(ICmpInst::ICMP_ULE, LHS, RHS);
2981 case 7: return ConstantInt::getTrue();
2982 }
2983}
2984
2985static bool PredicatesFoldable(ICmpInst::Predicate p1, ICmpInst::Predicate p2) {
2986 return (ICmpInst::isSignedPredicate(p1) == ICmpInst::isSignedPredicate(p2)) ||
2987 (ICmpInst::isSignedPredicate(p1) &&
2988 (p2 == ICmpInst::ICMP_EQ || p2 == ICmpInst::ICMP_NE)) ||
2989 (ICmpInst::isSignedPredicate(p2) &&
2990 (p1 == ICmpInst::ICMP_EQ || p1 == ICmpInst::ICMP_NE));
2991}
2992
2993namespace {
2994// FoldICmpLogical - Implements (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
2995struct FoldICmpLogical {
2996 InstCombiner &IC;
2997 Value *LHS, *RHS;
2998 ICmpInst::Predicate pred;
2999 FoldICmpLogical(InstCombiner &ic, ICmpInst *ICI)
3000 : IC(ic), LHS(ICI->getOperand(0)), RHS(ICI->getOperand(1)),
3001 pred(ICI->getPredicate()) {}
3002 bool shouldApply(Value *V) const {
3003 if (ICmpInst *ICI = dyn_cast<ICmpInst>(V))
3004 if (PredicatesFoldable(pred, ICI->getPredicate()))
3005 return (ICI->getOperand(0) == LHS && ICI->getOperand(1) == RHS ||
3006 ICI->getOperand(0) == RHS && ICI->getOperand(1) == LHS);
3007 return false;
3008 }
3009 Instruction *apply(Instruction &Log) const {
3010 ICmpInst *ICI = cast<ICmpInst>(Log.getOperand(0));
3011 if (ICI->getOperand(0) != LHS) {
3012 assert(ICI->getOperand(1) == LHS);
3013 ICI->swapOperands(); // Swap the LHS and RHS of the ICmp
3014 }
3015
3016 ICmpInst *RHSICI = cast<ICmpInst>(Log.getOperand(1));
3017 unsigned LHSCode = getICmpCode(ICI);
3018 unsigned RHSCode = getICmpCode(RHSICI);
3019 unsigned Code;
3020 switch (Log.getOpcode()) {
3021 case Instruction::And: Code = LHSCode & RHSCode; break;
3022 case Instruction::Or: Code = LHSCode | RHSCode; break;
3023 case Instruction::Xor: Code = LHSCode ^ RHSCode; break;
3024 default: assert(0 && "Illegal logical opcode!"); return 0;
3025 }
3026
3027 bool isSigned = ICmpInst::isSignedPredicate(RHSICI->getPredicate()) ||
3028 ICmpInst::isSignedPredicate(ICI->getPredicate());
3029
3030 Value *RV = getICmpValue(isSigned, Code, LHS, RHS);
3031 if (Instruction *I = dyn_cast<Instruction>(RV))
3032 return I;
3033 // Otherwise, it's a constant boolean value...
3034 return IC.ReplaceInstUsesWith(Log, RV);
3035 }
3036};
3037} // end anonymous namespace
3038
3039// OptAndOp - This handles expressions of the form ((val OP C1) & C2). Where
3040// the Op parameter is 'OP', OpRHS is 'C1', and AndRHS is 'C2'. Op is
3041// guaranteed to be a binary operator.
3042Instruction *InstCombiner::OptAndOp(Instruction *Op,
3043 ConstantInt *OpRHS,
3044 ConstantInt *AndRHS,
3045 BinaryOperator &TheAnd) {
3046 Value *X = Op->getOperand(0);
3047 Constant *Together = 0;
3048 if (!Op->isShift())
3049 Together = And(AndRHS, OpRHS);
3050
3051 switch (Op->getOpcode()) {
3052 case Instruction::Xor:
3053 if (Op->hasOneUse()) {
3054 // (X ^ C1) & C2 --> (X & C2) ^ (C1&C2)
3055 Instruction *And = BinaryOperator::createAnd(X, AndRHS);
3056 InsertNewInstBefore(And, TheAnd);
3057 And->takeName(Op);
3058 return BinaryOperator::createXor(And, Together);
3059 }
3060 break;
3061 case Instruction::Or:
3062 if (Together == AndRHS) // (X | C) & C --> C
3063 return ReplaceInstUsesWith(TheAnd, AndRHS);
3064
3065 if (Op->hasOneUse() && Together != OpRHS) {
3066 // (X | C1) & C2 --> (X | (C1&C2)) & C2
3067 Instruction *Or = BinaryOperator::createOr(X, Together);
3068 InsertNewInstBefore(Or, TheAnd);
3069 Or->takeName(Op);
3070 return BinaryOperator::createAnd(Or, AndRHS);
3071 }
3072 break;
3073 case Instruction::Add:
3074 if (Op->hasOneUse()) {
3075 // Adding a one to a single bit bit-field should be turned into an XOR
3076 // of the bit. First thing to check is to see if this AND is with a
3077 // single bit constant.
3078 const APInt& AndRHSV = cast<ConstantInt>(AndRHS)->getValue();
3079
3080 // If there is only one bit set...
3081 if (isOneBitSet(cast<ConstantInt>(AndRHS))) {
3082 // Ok, at this point, we know that we are masking the result of the
3083 // ADD down to exactly one bit. If the constant we are adding has
3084 // no bits set below this bit, then we can eliminate the ADD.
3085 const APInt& AddRHS = cast<ConstantInt>(OpRHS)->getValue();
3086
3087 // Check to see if any bits below the one bit set in AndRHSV are set.
3088 if ((AddRHS & (AndRHSV-1)) == 0) {
3089 // If not, the only thing that can effect the output of the AND is
3090 // the bit specified by AndRHSV. If that bit is set, the effect of
3091 // the XOR is to toggle the bit. If it is clear, then the ADD has
3092 // no effect.
3093 if ((AddRHS & AndRHSV) == 0) { // Bit is not set, noop
3094 TheAnd.setOperand(0, X);
3095 return &TheAnd;
3096 } else {
3097 // Pull the XOR out of the AND.
3098 Instruction *NewAnd = BinaryOperator::createAnd(X, AndRHS);
3099 InsertNewInstBefore(NewAnd, TheAnd);
3100 NewAnd->takeName(Op);
3101 return BinaryOperator::createXor(NewAnd, AndRHS);
3102 }
3103 }
3104 }
3105 }
3106 break;
3107
3108 case Instruction::Shl: {
3109 // We know that the AND will not produce any of the bits shifted in, so if
3110 // the anded constant includes them, clear them now!
3111 //
3112 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3113 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3114 APInt ShlMask(APInt::getHighBitsSet(BitWidth, BitWidth-OpRHSVal));
3115 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShlMask);
3116
3117 if (CI->getValue() == ShlMask) {
3118 // Masking out bits that the shift already masks
3119 return ReplaceInstUsesWith(TheAnd, Op); // No need for the and.
3120 } else if (CI != AndRHS) { // Reducing bits set in and.
3121 TheAnd.setOperand(1, CI);
3122 return &TheAnd;
3123 }
3124 break;
3125 }
3126 case Instruction::LShr:
3127 {
3128 // We know that the AND will not produce any of the bits shifted in, so if
3129 // the anded constant includes them, clear them now! This only applies to
3130 // unsigned shifts, because a signed shr may bring in set bits!
3131 //
3132 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3133 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3134 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3135 ConstantInt *CI = ConstantInt::get(AndRHS->getValue() & ShrMask);
3136
3137 if (CI->getValue() == ShrMask) {
3138 // Masking out bits that the shift already masks.
3139 return ReplaceInstUsesWith(TheAnd, Op);
3140 } else if (CI != AndRHS) {
3141 TheAnd.setOperand(1, CI); // Reduce bits set in and cst.
3142 return &TheAnd;
3143 }
3144 break;
3145 }
3146 case Instruction::AShr:
3147 // Signed shr.
3148 // See if this is shifting in some sign extension, then masking it out
3149 // with an and.
3150 if (Op->hasOneUse()) {
3151 uint32_t BitWidth = AndRHS->getType()->getBitWidth();
3152 uint32_t OpRHSVal = OpRHS->getLimitedValue(BitWidth);
3153 APInt ShrMask(APInt::getLowBitsSet(BitWidth, BitWidth - OpRHSVal));
3154 Constant *C = ConstantInt::get(AndRHS->getValue() & ShrMask);
3155 if (C == AndRHS) { // Masking out bits shifted in.
3156 // (Val ashr C1) & C2 -> (Val lshr C1) & C2
3157 // Make the argument unsigned.
3158 Value *ShVal = Op->getOperand(0);
3159 ShVal = InsertNewInstBefore(
3160 BinaryOperator::createLShr(ShVal, OpRHS,
3161 Op->getName()), TheAnd);
3162 return BinaryOperator::createAnd(ShVal, AndRHS, TheAnd.getName());
3163 }
3164 }
3165 break;
3166 }
3167 return 0;
3168}
3169
3170
3171/// InsertRangeTest - Emit a computation of: (V >= Lo && V < Hi) if Inside is
3172/// true, otherwise (V < Lo || V >= Hi). In pratice, we emit the more efficient
3173/// (V-Lo) <u Hi-Lo. This method expects that Lo <= Hi. isSigned indicates
3174/// whether to treat the V, Lo and HI as signed or not. IB is the location to
3175/// insert new instructions.
3176Instruction *InstCombiner::InsertRangeTest(Value *V, Constant *Lo, Constant *Hi,
3177 bool isSigned, bool Inside,
3178 Instruction &IB) {
3179 assert(cast<ConstantInt>(ConstantExpr::getICmp((isSigned ?
3180 ICmpInst::ICMP_SLE:ICmpInst::ICMP_ULE), Lo, Hi))->getZExtValue() &&
3181 "Lo is not <= Hi in range emission code!");
3182
3183 if (Inside) {
3184 if (Lo == Hi) // Trivially false.
3185 return new ICmpInst(ICmpInst::ICMP_NE, V, V);
3186
3187 // V >= Min && V < Hi --> V < Hi
3188 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3189 ICmpInst::Predicate pred = (isSigned ?
3190 ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT);
3191 return new ICmpInst(pred, V, Hi);
3192 }
3193
3194 // Emit V-Lo <u Hi-Lo
3195 Constant *NegLo = ConstantExpr::getNeg(Lo);
3196 Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
3197 InsertNewInstBefore(Add, IB);
3198 Constant *UpperBound = ConstantExpr::getAdd(NegLo, Hi);
3199 return new ICmpInst(ICmpInst::ICMP_ULT, Add, UpperBound);
3200 }
3201
3202 if (Lo == Hi) // Trivially true.
3203 return new ICmpInst(ICmpInst::ICMP_EQ, V, V);
3204
3205 // V < Min || V >= Hi -> V > Hi-1
3206 Hi = SubOne(cast<ConstantInt>(Hi));
3207 if (cast<ConstantInt>(Lo)->isMinValue(isSigned)) {
3208 ICmpInst::Predicate pred = (isSigned ?
3209 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT);
3210 return new ICmpInst(pred, V, Hi);
3211 }
3212
3213 // Emit V-Lo >u Hi-1-Lo
3214 // Note that Hi has already had one subtracted from it, above.
3215 ConstantInt *NegLo = cast<ConstantInt>(ConstantExpr::getNeg(Lo));
3216 Instruction *Add = BinaryOperator::createAdd(V, NegLo, V->getName()+".off");
3217 InsertNewInstBefore(Add, IB);
3218 Constant *LowerBound = ConstantExpr::getAdd(NegLo, Hi);
3219 return new ICmpInst(ICmpInst::ICMP_UGT, Add, LowerBound);
3220}
3221
3222// isRunOfOnes - Returns true iff Val consists of one contiguous run of 1s with
3223// any number of 0s on either side. The 1s are allowed to wrap from LSB to
3224// MSB, so 0x000FFF0, 0x0000FFFF, and 0xFF0000FF are all runs. 0x0F0F0000 is
3225// not, since all 1s are not contiguous.
3226static bool isRunOfOnes(ConstantInt *Val, uint32_t &MB, uint32_t &ME) {
3227 const APInt& V = Val->getValue();
3228 uint32_t BitWidth = Val->getType()->getBitWidth();
3229 if (!APIntOps::isShiftedMask(BitWidth, V)) return false;
3230
3231 // look for the first zero bit after the run of ones
3232 MB = BitWidth - ((V - 1) ^ V).countLeadingZeros();
3233 // look for the first non-zero bit
3234 ME = V.getActiveBits();
3235 return true;
3236}
3237
3238/// FoldLogicalPlusAnd - This is part of an expression (LHS +/- RHS) & Mask,
3239/// where isSub determines whether the operator is a sub. If we can fold one of
3240/// the following xforms:
3241///
3242/// ((A & N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == Mask
3243/// ((A | N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3244/// ((A ^ N) +/- B) & Mask -> (A +/- B) & Mask iff N&Mask == 0
3245///
3246/// return (A +/- B).
3247///
3248Value *InstCombiner::FoldLogicalPlusAnd(Value *LHS, Value *RHS,
3249 ConstantInt *Mask, bool isSub,
3250 Instruction &I) {
3251 Instruction *LHSI = dyn_cast<Instruction>(LHS);
3252 if (!LHSI || LHSI->getNumOperands() != 2 ||
3253 !isa<ConstantInt>(LHSI->getOperand(1))) return 0;
3254
3255 ConstantInt *N = cast<ConstantInt>(LHSI->getOperand(1));
3256
3257 switch (LHSI->getOpcode()) {
3258 default: return 0;
3259 case Instruction::And:
3260 if (And(N, Mask) == Mask) {
3261 // If the AndRHS is a power of two minus one (0+1+), this is simple.
3262 if ((Mask->getValue().countLeadingZeros() +
3263 Mask->getValue().countPopulation()) ==
3264 Mask->getValue().getBitWidth())
3265 break;
3266
3267 // Otherwise, if Mask is 0+1+0+, and if B is known to have the low 0+
3268 // part, we don't need any explicit masks to take them out of A. If that
3269 // is all N is, ignore it.
3270 uint32_t MB = 0, ME = 0;
3271 if (isRunOfOnes(Mask, MB, ME)) { // begin/end bit of run, inclusive
3272 uint32_t BitWidth = cast<IntegerType>(RHS->getType())->getBitWidth();
3273 APInt Mask(APInt::getLowBitsSet(BitWidth, MB-1));
3274 if (MaskedValueIsZero(RHS, Mask))
3275 break;
3276 }
3277 }
3278 return 0;
3279 case Instruction::Or:
3280 case Instruction::Xor:
3281 // If the AndRHS is a power of two minus one (0+1+), and N&Mask == 0
3282 if ((Mask->getValue().countLeadingZeros() +
3283 Mask->getValue().countPopulation()) == Mask->getValue().getBitWidth()
3284 && And(N, Mask)->isZero())
3285 break;
3286 return 0;
3287 }
3288
3289 Instruction *New;
3290 if (isSub)
3291 New = BinaryOperator::createSub(LHSI->getOperand(0), RHS, "fold");
3292 else
3293 New = BinaryOperator::createAdd(LHSI->getOperand(0), RHS, "fold");
3294 return InsertNewInstBefore(New, I);
3295}
3296
3297Instruction *InstCombiner::visitAnd(BinaryOperator &I) {
3298 bool Changed = SimplifyCommutative(I);
3299 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3300
3301 if (isa<UndefValue>(Op1)) // X & undef -> 0
3302 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3303
3304 // and X, X = X
3305 if (Op0 == Op1)
3306 return ReplaceInstUsesWith(I, Op1);
3307
3308 // See if we can simplify any instructions used by the instruction whose sole
3309 // purpose is to compute bits we don't care about.
3310 if (!isa<VectorType>(I.getType())) {
3311 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3312 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3313 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3314 KnownZero, KnownOne))
3315 return &I;
3316 } else {
3317 if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3318 if (CP->isAllOnesValue()) // X & <-1,-1> -> X
3319 return ReplaceInstUsesWith(I, I.getOperand(0));
3320 } else if (isa<ConstantAggregateZero>(Op1)) {
3321 return ReplaceInstUsesWith(I, Op1); // X & <0,0> -> <0,0>
3322 }
3323 }
3324
3325 if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(Op1)) {
3326 const APInt& AndRHSMask = AndRHS->getValue();
3327 APInt NotAndRHS(~AndRHSMask);
3328
3329 // Optimize a variety of ((val OP C1) & C2) combinations...
3330 if (isa<BinaryOperator>(Op0)) {
3331 Instruction *Op0I = cast<Instruction>(Op0);
3332 Value *Op0LHS = Op0I->getOperand(0);
3333 Value *Op0RHS = Op0I->getOperand(1);
3334 switch (Op0I->getOpcode()) {
3335 case Instruction::Xor:
3336 case Instruction::Or:
3337 // If the mask is only needed on one incoming arm, push it up.
3338 if (Op0I->hasOneUse()) {
3339 if (MaskedValueIsZero(Op0LHS, NotAndRHS)) {
3340 // Not masking anything out for the LHS, move to RHS.
3341 Instruction *NewRHS = BinaryOperator::createAnd(Op0RHS, AndRHS,
3342 Op0RHS->getName()+".masked");
3343 InsertNewInstBefore(NewRHS, I);
3344 return BinaryOperator::create(
3345 cast<BinaryOperator>(Op0I)->getOpcode(), Op0LHS, NewRHS);
3346 }
3347 if (!isa<Constant>(Op0RHS) &&
3348 MaskedValueIsZero(Op0RHS, NotAndRHS)) {
3349 // Not masking anything out for the RHS, move to LHS.
3350 Instruction *NewLHS = BinaryOperator::createAnd(Op0LHS, AndRHS,
3351 Op0LHS->getName()+".masked");
3352 InsertNewInstBefore(NewLHS, I);
3353 return BinaryOperator::create(
3354 cast<BinaryOperator>(Op0I)->getOpcode(), NewLHS, Op0RHS);
3355 }
3356 }
3357
3358 break;
3359 case Instruction::Add:
3360 // ((A & N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == AndRHS.
3361 // ((A | N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3362 // ((A ^ N) + B) & AndRHS -> (A + B) & AndRHS iff N&AndRHS == 0
3363 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, false, I))
3364 return BinaryOperator::createAnd(V, AndRHS);
3365 if (Value *V = FoldLogicalPlusAnd(Op0RHS, Op0LHS, AndRHS, false, I))
3366 return BinaryOperator::createAnd(V, AndRHS); // Add commutes
3367 break;
3368
3369 case Instruction::Sub:
3370 // ((A & N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == AndRHS.
3371 // ((A | N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3372 // ((A ^ N) - B) & AndRHS -> (A - B) & AndRHS iff N&AndRHS == 0
3373 if (Value *V = FoldLogicalPlusAnd(Op0LHS, Op0RHS, AndRHS, true, I))
3374 return BinaryOperator::createAnd(V, AndRHS);
3375 break;
3376 }
3377
3378 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
3379 if (Instruction *Res = OptAndOp(Op0I, Op0CI, AndRHS, I))
3380 return Res;
3381 } else if (CastInst *CI = dyn_cast<CastInst>(Op0)) {
3382 // If this is an integer truncation or change from signed-to-unsigned, and
3383 // if the source is an and/or with immediate, transform it. This
3384 // frequently occurs for bitfield accesses.
3385 if (Instruction *CastOp = dyn_cast<Instruction>(CI->getOperand(0))) {
3386 if ((isa<TruncInst>(CI) || isa<BitCastInst>(CI)) &&
3387 CastOp->getNumOperands() == 2)
3388 if (ConstantInt *AndCI = dyn_cast<ConstantInt>(CastOp->getOperand(1)))
3389 if (CastOp->getOpcode() == Instruction::And) {
3390 // Change: and (cast (and X, C1) to T), C2
3391 // into : and (cast X to T), trunc_or_bitcast(C1)&C2
3392 // This will fold the two constants together, which may allow
3393 // other simplifications.
3394 Instruction *NewCast = CastInst::createTruncOrBitCast(
3395 CastOp->getOperand(0), I.getType(),
3396 CastOp->getName()+".shrunk");
3397 NewCast = InsertNewInstBefore(NewCast, I);
3398 // trunc_or_bitcast(C1)&C2
3399 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3400 C3 = ConstantExpr::getAnd(C3, AndRHS);
3401 return BinaryOperator::createAnd(NewCast, C3);
3402 } else if (CastOp->getOpcode() == Instruction::Or) {
3403 // Change: and (cast (or X, C1) to T), C2
3404 // into : trunc(C1)&C2 iff trunc(C1)&C2 == C2
3405 Constant *C3 = ConstantExpr::getTruncOrBitCast(AndCI,I.getType());
3406 if (ConstantExpr::getAnd(C3, AndRHS) == AndRHS) // trunc(C1)&C2
3407 return ReplaceInstUsesWith(I, AndRHS);
3408 }
3409 }
3410 }
3411
3412 // Try to fold constant and into select arguments.
3413 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3414 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3415 return R;
3416 if (isa<PHINode>(Op0))
3417 if (Instruction *NV = FoldOpIntoPhi(I))
3418 return NV;
3419 }
3420
3421 Value *Op0NotVal = dyn_castNotVal(Op0);
3422 Value *Op1NotVal = dyn_castNotVal(Op1);
3423
3424 if (Op0NotVal == Op1 || Op1NotVal == Op0) // A & ~A == ~A & A == 0
3425 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
3426
3427 // (~A & ~B) == (~(A | B)) - De Morgan's Law
3428 if (Op0NotVal && Op1NotVal && isOnlyUse(Op0) && isOnlyUse(Op1)) {
3429 Instruction *Or = BinaryOperator::createOr(Op0NotVal, Op1NotVal,
3430 I.getName()+".demorgan");
3431 InsertNewInstBefore(Or, I);
3432 return BinaryOperator::createNot(Or);
3433 }
3434
3435 {
3436 Value *A = 0, *B = 0, *C = 0, *D = 0;
3437 if (match(Op0, m_Or(m_Value(A), m_Value(B)))) {
3438 if (A == Op1 || B == Op1) // (A | ?) & A --> A
3439 return ReplaceInstUsesWith(I, Op1);
3440
3441 // (A|B) & ~(A&B) -> A^B
3442 if (match(Op1, m_Not(m_And(m_Value(C), m_Value(D))))) {
3443 if ((A == C && B == D) || (A == D && B == C))
3444 return BinaryOperator::createXor(A, B);
3445 }
3446 }
3447
3448 if (match(Op1, m_Or(m_Value(A), m_Value(B)))) {
3449 if (A == Op0 || B == Op0) // A & (A | ?) --> A
3450 return ReplaceInstUsesWith(I, Op0);
3451
3452 // ~(A&B) & (A|B) -> A^B
3453 if (match(Op0, m_Not(m_And(m_Value(C), m_Value(D))))) {
3454 if ((A == C && B == D) || (A == D && B == C))
3455 return BinaryOperator::createXor(A, B);
3456 }
3457 }
3458
3459 if (Op0->hasOneUse() &&
3460 match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
3461 if (A == Op1) { // (A^B)&A -> A&(A^B)
3462 I.swapOperands(); // Simplify below
3463 std::swap(Op0, Op1);
3464 } else if (B == Op1) { // (A^B)&B -> B&(B^A)
3465 cast<BinaryOperator>(Op0)->swapOperands();
3466 I.swapOperands(); // Simplify below
3467 std::swap(Op0, Op1);
3468 }
3469 }
3470 if (Op1->hasOneUse() &&
3471 match(Op1, m_Xor(m_Value(A), m_Value(B)))) {
3472 if (B == Op0) { // B&(A^B) -> B&(B^A)
3473 cast<BinaryOperator>(Op1)->swapOperands();
3474 std::swap(A, B);
3475 }
3476 if (A == Op0) { // A&(A^B) -> A & ~B
3477 Instruction *NotB = BinaryOperator::createNot(B, "tmp");
3478 InsertNewInstBefore(NotB, I);
3479 return BinaryOperator::createAnd(A, NotB);
3480 }
3481 }
3482 }
3483
3484 if (ICmpInst *RHS = dyn_cast<ICmpInst>(Op1)) {
3485 // (icmp1 A, B) & (icmp2 A, B) --> (icmp3 A, B)
3486 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3487 return R;
3488
3489 Value *LHSVal, *RHSVal;
3490 ConstantInt *LHSCst, *RHSCst;
3491 ICmpInst::Predicate LHSCC, RHSCC;
3492 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
3493 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
3494 if (LHSVal == RHSVal && // Found (X icmp C1) & (X icmp C2)
3495 // ICMP_[GL]E X, CST is folded to ICMP_[GL]T elsewhere.
3496 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
3497 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
3498 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
Chris Lattner205ad1d2007-11-22 23:47:13 +00003499 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
3500
3501 // Don't try to fold ICMP_SLT + ICMP_ULT.
3502 (ICmpInst::isEquality(LHSCC) || ICmpInst::isEquality(RHSCC) ||
3503 ICmpInst::isSignedPredicate(LHSCC) ==
3504 ICmpInst::isSignedPredicate(RHSCC))) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003505 // Ensure that the larger constant is on the RHS.
3506 ICmpInst::Predicate GT = ICmpInst::isSignedPredicate(LHSCC) ?
3507 ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
3508 Constant *Cmp = ConstantExpr::getICmp(GT, LHSCst, RHSCst);
3509 ICmpInst *LHS = cast<ICmpInst>(Op0);
3510 if (cast<ConstantInt>(Cmp)->getZExtValue()) {
3511 std::swap(LHS, RHS);
3512 std::swap(LHSCst, RHSCst);
3513 std::swap(LHSCC, RHSCC);
3514 }
3515
3516 // At this point, we know we have have two icmp instructions
3517 // comparing a value against two constants and and'ing the result
3518 // together. Because of the above check, we know that we only have
3519 // icmp eq, icmp ne, icmp [su]lt, and icmp [SU]gt here. We also know
3520 // (from the FoldICmpLogical check above), that the two constants
3521 // are not equal and that the larger constant is on the RHS
3522 assert(LHSCst != RHSCst && "Compares not folded above?");
3523
3524 switch (LHSCC) {
3525 default: assert(0 && "Unknown integer condition code!");
3526 case ICmpInst::ICMP_EQ:
3527 switch (RHSCC) {
3528 default: assert(0 && "Unknown integer condition code!");
3529 case ICmpInst::ICMP_EQ: // (X == 13 & X == 15) -> false
3530 case ICmpInst::ICMP_UGT: // (X == 13 & X > 15) -> false
3531 case ICmpInst::ICMP_SGT: // (X == 13 & X > 15) -> false
3532 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3533 case ICmpInst::ICMP_NE: // (X == 13 & X != 15) -> X == 13
3534 case ICmpInst::ICMP_ULT: // (X == 13 & X < 15) -> X == 13
3535 case ICmpInst::ICMP_SLT: // (X == 13 & X < 15) -> X == 13
3536 return ReplaceInstUsesWith(I, LHS);
3537 }
3538 case ICmpInst::ICMP_NE:
3539 switch (RHSCC) {
3540 default: assert(0 && "Unknown integer condition code!");
3541 case ICmpInst::ICMP_ULT:
3542 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X u< 14) -> X < 13
3543 return new ICmpInst(ICmpInst::ICMP_ULT, LHSVal, LHSCst);
3544 break; // (X != 13 & X u< 15) -> no change
3545 case ICmpInst::ICMP_SLT:
3546 if (LHSCst == SubOne(RHSCst)) // (X != 13 & X s< 14) -> X < 13
3547 return new ICmpInst(ICmpInst::ICMP_SLT, LHSVal, LHSCst);
3548 break; // (X != 13 & X s< 15) -> no change
3549 case ICmpInst::ICMP_EQ: // (X != 13 & X == 15) -> X == 15
3550 case ICmpInst::ICMP_UGT: // (X != 13 & X u> 15) -> X u> 15
3551 case ICmpInst::ICMP_SGT: // (X != 13 & X s> 15) -> X s> 15
3552 return ReplaceInstUsesWith(I, RHS);
3553 case ICmpInst::ICMP_NE:
3554 if (LHSCst == SubOne(RHSCst)){// (X != 13 & X != 14) -> X-13 >u 1
3555 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
3556 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
3557 LHSVal->getName()+".off");
3558 InsertNewInstBefore(Add, I);
3559 return new ICmpInst(ICmpInst::ICMP_UGT, Add,
3560 ConstantInt::get(Add->getType(), 1));
3561 }
3562 break; // (X != 13 & X != 15) -> no change
3563 }
3564 break;
3565 case ICmpInst::ICMP_ULT:
3566 switch (RHSCC) {
3567 default: assert(0 && "Unknown integer condition code!");
3568 case ICmpInst::ICMP_EQ: // (X u< 13 & X == 15) -> false
3569 case ICmpInst::ICMP_UGT: // (X u< 13 & X u> 15) -> false
3570 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3571 case ICmpInst::ICMP_SGT: // (X u< 13 & X s> 15) -> no change
3572 break;
3573 case ICmpInst::ICMP_NE: // (X u< 13 & X != 15) -> X u< 13
3574 case ICmpInst::ICMP_ULT: // (X u< 13 & X u< 15) -> X u< 13
3575 return ReplaceInstUsesWith(I, LHS);
3576 case ICmpInst::ICMP_SLT: // (X u< 13 & X s< 15) -> no change
3577 break;
3578 }
3579 break;
3580 case ICmpInst::ICMP_SLT:
3581 switch (RHSCC) {
3582 default: assert(0 && "Unknown integer condition code!");
3583 case ICmpInst::ICMP_EQ: // (X s< 13 & X == 15) -> false
3584 case ICmpInst::ICMP_SGT: // (X s< 13 & X s> 15) -> false
3585 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3586 case ICmpInst::ICMP_UGT: // (X s< 13 & X u> 15) -> no change
3587 break;
3588 case ICmpInst::ICMP_NE: // (X s< 13 & X != 15) -> X < 13
3589 case ICmpInst::ICMP_SLT: // (X s< 13 & X s< 15) -> X < 13
3590 return ReplaceInstUsesWith(I, LHS);
3591 case ICmpInst::ICMP_ULT: // (X s< 13 & X u< 15) -> no change
3592 break;
3593 }
3594 break;
3595 case ICmpInst::ICMP_UGT:
3596 switch (RHSCC) {
3597 default: assert(0 && "Unknown integer condition code!");
3598 case ICmpInst::ICMP_EQ: // (X u> 13 & X == 15) -> X > 13
3599 return ReplaceInstUsesWith(I, LHS);
3600 case ICmpInst::ICMP_UGT: // (X u> 13 & X u> 15) -> X u> 15
3601 return ReplaceInstUsesWith(I, RHS);
3602 case ICmpInst::ICMP_SGT: // (X u> 13 & X s> 15) -> no change
3603 break;
3604 case ICmpInst::ICMP_NE:
3605 if (RHSCst == AddOne(LHSCst)) // (X u> 13 & X != 14) -> X u> 14
3606 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3607 break; // (X u> 13 & X != 15) -> no change
3608 case ICmpInst::ICMP_ULT: // (X u> 13 & X u< 15) ->(X-14) <u 1
3609 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, false,
3610 true, I);
3611 case ICmpInst::ICMP_SLT: // (X u> 13 & X s< 15) -> no change
3612 break;
3613 }
3614 break;
3615 case ICmpInst::ICMP_SGT:
3616 switch (RHSCC) {
3617 default: assert(0 && "Unknown integer condition code!");
Chris Lattnerab0fc252007-11-16 06:04:17 +00003618 case ICmpInst::ICMP_EQ: // (X s> 13 & X == 15) -> X == 15
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003619 case ICmpInst::ICMP_SGT: // (X s> 13 & X s> 15) -> X s> 15
3620 return ReplaceInstUsesWith(I, RHS);
3621 case ICmpInst::ICMP_UGT: // (X s> 13 & X u> 15) -> no change
3622 break;
3623 case ICmpInst::ICMP_NE:
3624 if (RHSCst == AddOne(LHSCst)) // (X s> 13 & X != 14) -> X s> 14
3625 return new ICmpInst(LHSCC, LHSVal, RHSCst);
3626 break; // (X s> 13 & X != 15) -> no change
3627 case ICmpInst::ICMP_SLT: // (X s> 13 & X s< 15) ->(X-14) s< 1
3628 return InsertRangeTest(LHSVal, AddOne(LHSCst), RHSCst, true,
3629 true, I);
3630 case ICmpInst::ICMP_ULT: // (X s> 13 & X u< 15) -> no change
3631 break;
3632 }
3633 break;
3634 }
3635 }
3636 }
3637
3638 // fold (and (cast A), (cast B)) -> (cast (and A, B))
3639 if (CastInst *Op0C = dyn_cast<CastInst>(Op0))
3640 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
3641 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind ?
3642 const Type *SrcTy = Op0C->getOperand(0)->getType();
3643 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
3644 // Only do this if the casts both really cause code to be generated.
3645 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
3646 I.getType(), TD) &&
3647 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
3648 I.getType(), TD)) {
3649 Instruction *NewOp = BinaryOperator::createAnd(Op0C->getOperand(0),
3650 Op1C->getOperand(0),
3651 I.getName());
3652 InsertNewInstBefore(NewOp, I);
3653 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
3654 }
3655 }
3656
3657 // (X >> Z) & (Y >> Z) -> (X&Y) >> Z for all shifts.
3658 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
3659 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
3660 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
3661 SI0->getOperand(1) == SI1->getOperand(1) &&
3662 (SI0->hasOneUse() || SI1->hasOneUse())) {
3663 Instruction *NewOp =
3664 InsertNewInstBefore(BinaryOperator::createAnd(SI0->getOperand(0),
3665 SI1->getOperand(0),
3666 SI0->getName()), I);
3667 return BinaryOperator::create(SI1->getOpcode(), NewOp,
3668 SI1->getOperand(1));
3669 }
3670 }
3671
Chris Lattner91882432007-10-24 05:38:08 +00003672 // (fcmp ord x, c) & (fcmp ord y, c) -> (fcmp ord x, y)
3673 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
3674 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
3675 if (LHS->getPredicate() == FCmpInst::FCMP_ORD &&
3676 RHS->getPredicate() == FCmpInst::FCMP_ORD)
3677 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
3678 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
3679 // If either of the constants are nans, then the whole thing returns
3680 // false.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00003681 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00003682 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
3683 return new FCmpInst(FCmpInst::FCMP_ORD, LHS->getOperand(0),
3684 RHS->getOperand(0));
3685 }
3686 }
3687 }
3688
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003689 return Changed ? &I : 0;
3690}
3691
3692/// CollectBSwapParts - Look to see if the specified value defines a single byte
3693/// in the result. If it does, and if the specified byte hasn't been filled in
3694/// yet, fill it in and return false.
3695static bool CollectBSwapParts(Value *V, SmallVector<Value*, 8> &ByteValues) {
3696 Instruction *I = dyn_cast<Instruction>(V);
3697 if (I == 0) return true;
3698
3699 // If this is an or instruction, it is an inner node of the bswap.
3700 if (I->getOpcode() == Instruction::Or)
3701 return CollectBSwapParts(I->getOperand(0), ByteValues) ||
3702 CollectBSwapParts(I->getOperand(1), ByteValues);
3703
3704 uint32_t BitWidth = I->getType()->getPrimitiveSizeInBits();
3705 // If this is a shift by a constant int, and it is "24", then its operand
3706 // defines a byte. We only handle unsigned types here.
3707 if (I->isShift() && isa<ConstantInt>(I->getOperand(1))) {
3708 // Not shifting the entire input by N-1 bytes?
3709 if (cast<ConstantInt>(I->getOperand(1))->getLimitedValue(BitWidth) !=
3710 8*(ByteValues.size()-1))
3711 return true;
3712
3713 unsigned DestNo;
3714 if (I->getOpcode() == Instruction::Shl) {
3715 // X << 24 defines the top byte with the lowest of the input bytes.
3716 DestNo = ByteValues.size()-1;
3717 } else {
3718 // X >>u 24 defines the low byte with the highest of the input bytes.
3719 DestNo = 0;
3720 }
3721
3722 // If the destination byte value is already defined, the values are or'd
3723 // together, which isn't a bswap (unless it's an or of the same bits).
3724 if (ByteValues[DestNo] && ByteValues[DestNo] != I->getOperand(0))
3725 return true;
3726 ByteValues[DestNo] = I->getOperand(0);
3727 return false;
3728 }
3729
3730 // Otherwise, we can only handle and(shift X, imm), imm). Bail out of if we
3731 // don't have this.
3732 Value *Shift = 0, *ShiftLHS = 0;
3733 ConstantInt *AndAmt = 0, *ShiftAmt = 0;
3734 if (!match(I, m_And(m_Value(Shift), m_ConstantInt(AndAmt))) ||
3735 !match(Shift, m_Shift(m_Value(ShiftLHS), m_ConstantInt(ShiftAmt))))
3736 return true;
3737 Instruction *SI = cast<Instruction>(Shift);
3738
3739 // Make sure that the shift amount is by a multiple of 8 and isn't too big.
3740 if (ShiftAmt->getLimitedValue(BitWidth) & 7 ||
3741 ShiftAmt->getLimitedValue(BitWidth) > 8*ByteValues.size())
3742 return true;
3743
3744 // Turn 0xFF -> 0, 0xFF00 -> 1, 0xFF0000 -> 2, etc.
3745 unsigned DestByte;
3746 if (AndAmt->getValue().getActiveBits() > 64)
3747 return true;
3748 uint64_t AndAmtVal = AndAmt->getZExtValue();
3749 for (DestByte = 0; DestByte != ByteValues.size(); ++DestByte)
3750 if (AndAmtVal == uint64_t(0xFF) << 8*DestByte)
3751 break;
3752 // Unknown mask for bswap.
3753 if (DestByte == ByteValues.size()) return true;
3754
3755 unsigned ShiftBytes = ShiftAmt->getZExtValue()/8;
3756 unsigned SrcByte;
3757 if (SI->getOpcode() == Instruction::Shl)
3758 SrcByte = DestByte - ShiftBytes;
3759 else
3760 SrcByte = DestByte + ShiftBytes;
3761
3762 // If the SrcByte isn't a bswapped value from the DestByte, reject it.
3763 if (SrcByte != ByteValues.size()-DestByte-1)
3764 return true;
3765
3766 // If the destination byte value is already defined, the values are or'd
3767 // together, which isn't a bswap (unless it's an or of the same bits).
3768 if (ByteValues[DestByte] && ByteValues[DestByte] != SI->getOperand(0))
3769 return true;
3770 ByteValues[DestByte] = SI->getOperand(0);
3771 return false;
3772}
3773
3774/// MatchBSwap - Given an OR instruction, check to see if this is a bswap idiom.
3775/// If so, insert the new bswap intrinsic and return it.
3776Instruction *InstCombiner::MatchBSwap(BinaryOperator &I) {
3777 const IntegerType *ITy = dyn_cast<IntegerType>(I.getType());
3778 if (!ITy || ITy->getBitWidth() % 16)
3779 return 0; // Can only bswap pairs of bytes. Can't do vectors.
3780
3781 /// ByteValues - For each byte of the result, we keep track of which value
3782 /// defines each byte.
3783 SmallVector<Value*, 8> ByteValues;
3784 ByteValues.resize(ITy->getBitWidth()/8);
3785
3786 // Try to find all the pieces corresponding to the bswap.
3787 if (CollectBSwapParts(I.getOperand(0), ByteValues) ||
3788 CollectBSwapParts(I.getOperand(1), ByteValues))
3789 return 0;
3790
3791 // Check to see if all of the bytes come from the same value.
3792 Value *V = ByteValues[0];
3793 if (V == 0) return 0; // Didn't find a byte? Must be zero.
3794
3795 // Check to make sure that all of the bytes come from the same value.
3796 for (unsigned i = 1, e = ByteValues.size(); i != e; ++i)
3797 if (ByteValues[i] != V)
3798 return 0;
Chandler Carrutha228e392007-08-04 01:51:18 +00003799 const Type *Tys[] = { ITy };
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003800 Module *M = I.getParent()->getParent()->getParent();
Chandler Carrutha228e392007-08-04 01:51:18 +00003801 Function *F = Intrinsic::getDeclaration(M, Intrinsic::bswap, Tys, 1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003802 return new CallInst(F, V);
3803}
3804
3805
3806Instruction *InstCombiner::visitOr(BinaryOperator &I) {
3807 bool Changed = SimplifyCommutative(I);
3808 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
3809
3810 if (isa<UndefValue>(Op1)) // X | undef -> -1
3811 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
3812
3813 // or X, X = X
3814 if (Op0 == Op1)
3815 return ReplaceInstUsesWith(I, Op0);
3816
3817 // See if we can simplify any instructions used by the instruction whose sole
3818 // purpose is to compute bits we don't care about.
3819 if (!isa<VectorType>(I.getType())) {
3820 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
3821 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
3822 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
3823 KnownZero, KnownOne))
3824 return &I;
3825 } else if (isa<ConstantAggregateZero>(Op1)) {
3826 return ReplaceInstUsesWith(I, Op0); // X | <0,0> -> X
3827 } else if (ConstantVector *CP = dyn_cast<ConstantVector>(Op1)) {
3828 if (CP->isAllOnesValue()) // X | <-1,-1> -> <-1,-1>
3829 return ReplaceInstUsesWith(I, I.getOperand(1));
3830 }
3831
3832
3833
3834 // or X, -1 == -1
3835 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
3836 ConstantInt *C1 = 0; Value *X = 0;
3837 // (X & C1) | C2 --> (X | C2) & (C1|C2)
3838 if (match(Op0, m_And(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
3839 Instruction *Or = BinaryOperator::createOr(X, RHS);
3840 InsertNewInstBefore(Or, I);
3841 Or->takeName(Op0);
3842 return BinaryOperator::createAnd(Or,
3843 ConstantInt::get(RHS->getValue() | C1->getValue()));
3844 }
3845
3846 // (X ^ C1) | C2 --> (X | C2) ^ (C1&~C2)
3847 if (match(Op0, m_Xor(m_Value(X), m_ConstantInt(C1))) && isOnlyUse(Op0)) {
3848 Instruction *Or = BinaryOperator::createOr(X, RHS);
3849 InsertNewInstBefore(Or, I);
3850 Or->takeName(Op0);
3851 return BinaryOperator::createXor(Or,
3852 ConstantInt::get(C1->getValue() & ~RHS->getValue()));
3853 }
3854
3855 // Try to fold constant and into select arguments.
3856 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
3857 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
3858 return R;
3859 if (isa<PHINode>(Op0))
3860 if (Instruction *NV = FoldOpIntoPhi(I))
3861 return NV;
3862 }
3863
3864 Value *A = 0, *B = 0;
3865 ConstantInt *C1 = 0, *C2 = 0;
3866
3867 if (match(Op0, m_And(m_Value(A), m_Value(B))))
3868 if (A == Op1 || B == Op1) // (A & ?) | A --> A
3869 return ReplaceInstUsesWith(I, Op1);
3870 if (match(Op1, m_And(m_Value(A), m_Value(B))))
3871 if (A == Op0 || B == Op0) // A | (A & ?) --> A
3872 return ReplaceInstUsesWith(I, Op0);
3873
3874 // (A | B) | C and A | (B | C) -> bswap if possible.
3875 // (A >> B) | (C << D) and (A << B) | (B >> C) -> bswap if possible.
3876 if (match(Op0, m_Or(m_Value(), m_Value())) ||
3877 match(Op1, m_Or(m_Value(), m_Value())) ||
3878 (match(Op0, m_Shift(m_Value(), m_Value())) &&
3879 match(Op1, m_Shift(m_Value(), m_Value())))) {
3880 if (Instruction *BSwap = MatchBSwap(I))
3881 return BSwap;
3882 }
3883
3884 // (X^C)|Y -> (X|Y)^C iff Y&C == 0
3885 if (Op0->hasOneUse() && match(Op0, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
3886 MaskedValueIsZero(Op1, C1->getValue())) {
3887 Instruction *NOr = BinaryOperator::createOr(A, Op1);
3888 InsertNewInstBefore(NOr, I);
3889 NOr->takeName(Op0);
3890 return BinaryOperator::createXor(NOr, C1);
3891 }
3892
3893 // Y|(X^C) -> (X|Y)^C iff Y&C == 0
3894 if (Op1->hasOneUse() && match(Op1, m_Xor(m_Value(A), m_ConstantInt(C1))) &&
3895 MaskedValueIsZero(Op0, C1->getValue())) {
3896 Instruction *NOr = BinaryOperator::createOr(A, Op0);
3897 InsertNewInstBefore(NOr, I);
3898 NOr->takeName(Op0);
3899 return BinaryOperator::createXor(NOr, C1);
3900 }
3901
3902 // (A & C)|(B & D)
3903 Value *C = 0, *D = 0;
3904 if (match(Op0, m_And(m_Value(A), m_Value(C))) &&
3905 match(Op1, m_And(m_Value(B), m_Value(D)))) {
3906 Value *V1 = 0, *V2 = 0, *V3 = 0;
3907 C1 = dyn_cast<ConstantInt>(C);
3908 C2 = dyn_cast<ConstantInt>(D);
3909 if (C1 && C2) { // (A & C1)|(B & C2)
3910 // If we have: ((V + N) & C1) | (V & C2)
3911 // .. and C2 = ~C1 and C2 is 0+1+ and (N & C2) == 0
3912 // replace with V+N.
3913 if (C1->getValue() == ~C2->getValue()) {
3914 if ((C2->getValue() & (C2->getValue()+1)) == 0 && // C2 == 0+1+
3915 match(A, m_Add(m_Value(V1), m_Value(V2)))) {
3916 // Add commutes, try both ways.
3917 if (V1 == B && MaskedValueIsZero(V2, C2->getValue()))
3918 return ReplaceInstUsesWith(I, A);
3919 if (V2 == B && MaskedValueIsZero(V1, C2->getValue()))
3920 return ReplaceInstUsesWith(I, A);
3921 }
3922 // Or commutes, try both ways.
3923 if ((C1->getValue() & (C1->getValue()+1)) == 0 &&
3924 match(B, m_Add(m_Value(V1), m_Value(V2)))) {
3925 // Add commutes, try both ways.
3926 if (V1 == A && MaskedValueIsZero(V2, C1->getValue()))
3927 return ReplaceInstUsesWith(I, B);
3928 if (V2 == A && MaskedValueIsZero(V1, C1->getValue()))
3929 return ReplaceInstUsesWith(I, B);
3930 }
3931 }
3932 V1 = 0; V2 = 0; V3 = 0;
3933 }
3934
3935 // Check to see if we have any common things being and'ed. If so, find the
3936 // terms for V1 & (V2|V3).
3937 if (isOnlyUse(Op0) || isOnlyUse(Op1)) {
3938 if (A == B) // (A & C)|(A & D) == A & (C|D)
3939 V1 = A, V2 = C, V3 = D;
3940 else if (A == D) // (A & C)|(B & A) == A & (B|C)
3941 V1 = A, V2 = B, V3 = C;
3942 else if (C == B) // (A & C)|(C & D) == C & (A|D)
3943 V1 = C, V2 = A, V3 = D;
3944 else if (C == D) // (A & C)|(B & C) == C & (A|B)
3945 V1 = C, V2 = A, V3 = B;
3946
3947 if (V1) {
3948 Value *Or =
3949 InsertNewInstBefore(BinaryOperator::createOr(V2, V3, "tmp"), I);
3950 return BinaryOperator::createAnd(V1, Or);
3951 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00003952 }
3953 }
3954
3955 // (X >> Z) | (Y >> Z) -> (X|Y) >> Z for all shifts.
3956 if (BinaryOperator *SI1 = dyn_cast<BinaryOperator>(Op1)) {
3957 if (BinaryOperator *SI0 = dyn_cast<BinaryOperator>(Op0))
3958 if (SI0->isShift() && SI0->getOpcode() == SI1->getOpcode() &&
3959 SI0->getOperand(1) == SI1->getOperand(1) &&
3960 (SI0->hasOneUse() || SI1->hasOneUse())) {
3961 Instruction *NewOp =
3962 InsertNewInstBefore(BinaryOperator::createOr(SI0->getOperand(0),
3963 SI1->getOperand(0),
3964 SI0->getName()), I);
3965 return BinaryOperator::create(SI1->getOpcode(), NewOp,
3966 SI1->getOperand(1));
3967 }
3968 }
3969
3970 if (match(Op0, m_Not(m_Value(A)))) { // ~A | Op1
3971 if (A == Op1) // ~A | A == -1
3972 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
3973 } else {
3974 A = 0;
3975 }
3976 // Note, A is still live here!
3977 if (match(Op1, m_Not(m_Value(B)))) { // Op0 | ~B
3978 if (Op0 == B)
3979 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
3980
3981 // (~A | ~B) == (~(A & B)) - De Morgan's Law
3982 if (A && isOnlyUse(Op0) && isOnlyUse(Op1)) {
3983 Value *And = InsertNewInstBefore(BinaryOperator::createAnd(A, B,
3984 I.getName()+".demorgan"), I);
3985 return BinaryOperator::createNot(And);
3986 }
3987 }
3988
3989 // (icmp1 A, B) | (icmp2 A, B) --> (icmp3 A, B)
3990 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1))) {
3991 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
3992 return R;
3993
3994 Value *LHSVal, *RHSVal;
3995 ConstantInt *LHSCst, *RHSCst;
3996 ICmpInst::Predicate LHSCC, RHSCC;
3997 if (match(Op0, m_ICmp(LHSCC, m_Value(LHSVal), m_ConstantInt(LHSCst))))
3998 if (match(RHS, m_ICmp(RHSCC, m_Value(RHSVal), m_ConstantInt(RHSCst))))
3999 if (LHSVal == RHSVal && // Found (X icmp C1) | (X icmp C2)
4000 // icmp [us][gl]e x, cst is folded to icmp [us][gl]t elsewhere.
4001 LHSCC != ICmpInst::ICMP_UGE && LHSCC != ICmpInst::ICMP_ULE &&
4002 RHSCC != ICmpInst::ICMP_UGE && RHSCC != ICmpInst::ICMP_ULE &&
4003 LHSCC != ICmpInst::ICMP_SGE && LHSCC != ICmpInst::ICMP_SLE &&
4004 RHSCC != ICmpInst::ICMP_SGE && RHSCC != ICmpInst::ICMP_SLE &&
4005 // We can't fold (ugt x, C) | (sgt x, C2).
4006 PredicatesFoldable(LHSCC, RHSCC)) {
4007 // Ensure that the larger constant is on the RHS.
4008 ICmpInst *LHS = cast<ICmpInst>(Op0);
4009 bool NeedsSwap;
4010 if (ICmpInst::isSignedPredicate(LHSCC))
4011 NeedsSwap = LHSCst->getValue().sgt(RHSCst->getValue());
4012 else
4013 NeedsSwap = LHSCst->getValue().ugt(RHSCst->getValue());
4014
4015 if (NeedsSwap) {
4016 std::swap(LHS, RHS);
4017 std::swap(LHSCst, RHSCst);
4018 std::swap(LHSCC, RHSCC);
4019 }
4020
4021 // At this point, we know we have have two icmp instructions
4022 // comparing a value against two constants and or'ing the result
4023 // together. Because of the above check, we know that we only have
4024 // ICMP_EQ, ICMP_NE, ICMP_LT, and ICMP_GT here. We also know (from the
4025 // FoldICmpLogical check above), that the two constants are not
4026 // equal.
4027 assert(LHSCst != RHSCst && "Compares not folded above?");
4028
4029 switch (LHSCC) {
4030 default: assert(0 && "Unknown integer condition code!");
4031 case ICmpInst::ICMP_EQ:
4032 switch (RHSCC) {
4033 default: assert(0 && "Unknown integer condition code!");
4034 case ICmpInst::ICMP_EQ:
4035 if (LHSCst == SubOne(RHSCst)) {// (X == 13 | X == 14) -> X-13 <u 2
4036 Constant *AddCST = ConstantExpr::getNeg(LHSCst);
4037 Instruction *Add = BinaryOperator::createAdd(LHSVal, AddCST,
4038 LHSVal->getName()+".off");
4039 InsertNewInstBefore(Add, I);
4040 AddCST = Subtract(AddOne(RHSCst), LHSCst);
4041 return new ICmpInst(ICmpInst::ICMP_ULT, Add, AddCST);
4042 }
4043 break; // (X == 13 | X == 15) -> no change
4044 case ICmpInst::ICMP_UGT: // (X == 13 | X u> 14) -> no change
4045 case ICmpInst::ICMP_SGT: // (X == 13 | X s> 14) -> no change
4046 break;
4047 case ICmpInst::ICMP_NE: // (X == 13 | X != 15) -> X != 15
4048 case ICmpInst::ICMP_ULT: // (X == 13 | X u< 15) -> X u< 15
4049 case ICmpInst::ICMP_SLT: // (X == 13 | X s< 15) -> X s< 15
4050 return ReplaceInstUsesWith(I, RHS);
4051 }
4052 break;
4053 case ICmpInst::ICMP_NE:
4054 switch (RHSCC) {
4055 default: assert(0 && "Unknown integer condition code!");
4056 case ICmpInst::ICMP_EQ: // (X != 13 | X == 15) -> X != 13
4057 case ICmpInst::ICMP_UGT: // (X != 13 | X u> 15) -> X != 13
4058 case ICmpInst::ICMP_SGT: // (X != 13 | X s> 15) -> X != 13
4059 return ReplaceInstUsesWith(I, LHS);
4060 case ICmpInst::ICMP_NE: // (X != 13 | X != 15) -> true
4061 case ICmpInst::ICMP_ULT: // (X != 13 | X u< 15) -> true
4062 case ICmpInst::ICMP_SLT: // (X != 13 | X s< 15) -> true
4063 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4064 }
4065 break;
4066 case ICmpInst::ICMP_ULT:
4067 switch (RHSCC) {
4068 default: assert(0 && "Unknown integer condition code!");
4069 case ICmpInst::ICMP_EQ: // (X u< 13 | X == 14) -> no change
4070 break;
4071 case ICmpInst::ICMP_UGT: // (X u< 13 | X u> 15) ->(X-13) u> 2
Chris Lattner26376862007-11-01 02:18:41 +00004072 // If RHSCst is [us]MAXINT, it is always false. Not handling
4073 // this can cause overflow.
4074 if (RHSCst->isMaxValue(false))
4075 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004076 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), false,
4077 false, I);
4078 case ICmpInst::ICMP_SGT: // (X u< 13 | X s> 15) -> no change
4079 break;
4080 case ICmpInst::ICMP_NE: // (X u< 13 | X != 15) -> X != 15
4081 case ICmpInst::ICMP_ULT: // (X u< 13 | X u< 15) -> X u< 15
4082 return ReplaceInstUsesWith(I, RHS);
4083 case ICmpInst::ICMP_SLT: // (X u< 13 | X s< 15) -> no change
4084 break;
4085 }
4086 break;
4087 case ICmpInst::ICMP_SLT:
4088 switch (RHSCC) {
4089 default: assert(0 && "Unknown integer condition code!");
4090 case ICmpInst::ICMP_EQ: // (X s< 13 | X == 14) -> no change
4091 break;
4092 case ICmpInst::ICMP_SGT: // (X s< 13 | X s> 15) ->(X-13) s> 2
Chris Lattner26376862007-11-01 02:18:41 +00004093 // If RHSCst is [us]MAXINT, it is always false. Not handling
4094 // this can cause overflow.
4095 if (RHSCst->isMaxValue(true))
4096 return ReplaceInstUsesWith(I, LHS);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004097 return InsertRangeTest(LHSVal, LHSCst, AddOne(RHSCst), true,
4098 false, I);
4099 case ICmpInst::ICMP_UGT: // (X s< 13 | X u> 15) -> no change
4100 break;
4101 case ICmpInst::ICMP_NE: // (X s< 13 | X != 15) -> X != 15
4102 case ICmpInst::ICMP_SLT: // (X s< 13 | X s< 15) -> X s< 15
4103 return ReplaceInstUsesWith(I, RHS);
4104 case ICmpInst::ICMP_ULT: // (X s< 13 | X u< 15) -> no change
4105 break;
4106 }
4107 break;
4108 case ICmpInst::ICMP_UGT:
4109 switch (RHSCC) {
4110 default: assert(0 && "Unknown integer condition code!");
4111 case ICmpInst::ICMP_EQ: // (X u> 13 | X == 15) -> X u> 13
4112 case ICmpInst::ICMP_UGT: // (X u> 13 | X u> 15) -> X u> 13
4113 return ReplaceInstUsesWith(I, LHS);
4114 case ICmpInst::ICMP_SGT: // (X u> 13 | X s> 15) -> no change
4115 break;
4116 case ICmpInst::ICMP_NE: // (X u> 13 | X != 15) -> true
4117 case ICmpInst::ICMP_ULT: // (X u> 13 | X u< 15) -> true
4118 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4119 case ICmpInst::ICMP_SLT: // (X u> 13 | X s< 15) -> no change
4120 break;
4121 }
4122 break;
4123 case ICmpInst::ICMP_SGT:
4124 switch (RHSCC) {
4125 default: assert(0 && "Unknown integer condition code!");
4126 case ICmpInst::ICMP_EQ: // (X s> 13 | X == 15) -> X > 13
4127 case ICmpInst::ICMP_SGT: // (X s> 13 | X s> 15) -> X > 13
4128 return ReplaceInstUsesWith(I, LHS);
4129 case ICmpInst::ICMP_UGT: // (X s> 13 | X u> 15) -> no change
4130 break;
4131 case ICmpInst::ICMP_NE: // (X s> 13 | X != 15) -> true
4132 case ICmpInst::ICMP_SLT: // (X s> 13 | X s< 15) -> true
4133 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4134 case ICmpInst::ICMP_ULT: // (X s> 13 | X u< 15) -> no change
4135 break;
4136 }
4137 break;
4138 }
4139 }
4140 }
4141
4142 // fold (or (cast A), (cast B)) -> (cast (or A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004143 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004144 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4145 if (Op0C->getOpcode() == Op1C->getOpcode()) {// same cast kind ?
4146 const Type *SrcTy = Op0C->getOperand(0)->getType();
4147 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4148 // Only do this if the casts both really cause code to be generated.
4149 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4150 I.getType(), TD) &&
4151 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4152 I.getType(), TD)) {
4153 Instruction *NewOp = BinaryOperator::createOr(Op0C->getOperand(0),
4154 Op1C->getOperand(0),
4155 I.getName());
4156 InsertNewInstBefore(NewOp, I);
4157 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4158 }
4159 }
Chris Lattner91882432007-10-24 05:38:08 +00004160 }
4161
4162
4163 // (fcmp uno x, c) | (fcmp uno y, c) -> (fcmp uno x, y)
4164 if (FCmpInst *LHS = dyn_cast<FCmpInst>(I.getOperand(0))) {
4165 if (FCmpInst *RHS = dyn_cast<FCmpInst>(I.getOperand(1))) {
4166 if (LHS->getPredicate() == FCmpInst::FCMP_UNO &&
4167 RHS->getPredicate() == FCmpInst::FCMP_UNO)
4168 if (ConstantFP *LHSC = dyn_cast<ConstantFP>(LHS->getOperand(1)))
4169 if (ConstantFP *RHSC = dyn_cast<ConstantFP>(RHS->getOperand(1))) {
4170 // If either of the constants are nans, then the whole thing returns
4171 // true.
Chris Lattnera6c7dce2007-10-24 18:54:45 +00004172 if (LHSC->getValueAPF().isNaN() || RHSC->getValueAPF().isNaN())
Chris Lattner91882432007-10-24 05:38:08 +00004173 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4174
4175 // Otherwise, no need to compare the two constants, compare the
4176 // rest.
4177 return new FCmpInst(FCmpInst::FCMP_UNO, LHS->getOperand(0),
4178 RHS->getOperand(0));
4179 }
4180 }
4181 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004182
4183 return Changed ? &I : 0;
4184}
4185
4186// XorSelf - Implements: X ^ X --> 0
4187struct XorSelf {
4188 Value *RHS;
4189 XorSelf(Value *rhs) : RHS(rhs) {}
4190 bool shouldApply(Value *LHS) const { return LHS == RHS; }
4191 Instruction *apply(BinaryOperator &Xor) const {
4192 return &Xor;
4193 }
4194};
4195
4196
4197Instruction *InstCombiner::visitXor(BinaryOperator &I) {
4198 bool Changed = SimplifyCommutative(I);
4199 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4200
4201 if (isa<UndefValue>(Op1))
4202 return ReplaceInstUsesWith(I, Op1); // X ^ undef -> undef
4203
4204 // xor X, X = 0, even if X is nested in a sequence of Xor's.
4205 if (Instruction *Result = AssociativeOpt(I, XorSelf(Op1))) {
Chris Lattnerb933ea62007-08-05 08:47:58 +00004206 assert(Result == &I && "AssociativeOpt didn't work?"); Result=Result;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004207 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
4208 }
4209
4210 // See if we can simplify any instructions used by the instruction whose sole
4211 // purpose is to compute bits we don't care about.
4212 if (!isa<VectorType>(I.getType())) {
4213 uint32_t BitWidth = cast<IntegerType>(I.getType())->getBitWidth();
4214 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4215 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(BitWidth),
4216 KnownZero, KnownOne))
4217 return &I;
4218 } else if (isa<ConstantAggregateZero>(Op1)) {
4219 return ReplaceInstUsesWith(I, Op0); // X ^ <0,0> -> X
4220 }
4221
4222 // Is this a ~ operation?
4223 if (Value *NotOp = dyn_castNotVal(&I)) {
4224 // ~(~X & Y) --> (X | ~Y) - De Morgan's Law
4225 // ~(~X | Y) === (X & ~Y) - De Morgan's Law
4226 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(NotOp)) {
4227 if (Op0I->getOpcode() == Instruction::And ||
4228 Op0I->getOpcode() == Instruction::Or) {
4229 if (dyn_castNotVal(Op0I->getOperand(1))) Op0I->swapOperands();
4230 if (Value *Op0NotVal = dyn_castNotVal(Op0I->getOperand(0))) {
4231 Instruction *NotY =
4232 BinaryOperator::createNot(Op0I->getOperand(1),
4233 Op0I->getOperand(1)->getName()+".not");
4234 InsertNewInstBefore(NotY, I);
4235 if (Op0I->getOpcode() == Instruction::And)
4236 return BinaryOperator::createOr(Op0NotVal, NotY);
4237 else
4238 return BinaryOperator::createAnd(Op0NotVal, NotY);
4239 }
4240 }
4241 }
4242 }
4243
4244
4245 if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
Nick Lewycky1405e922007-08-06 20:04:16 +00004246 // xor (cmp A, B), true = not (cmp A, B) = !cmp A, B
4247 if (RHS == ConstantInt::getTrue() && Op0->hasOneUse()) {
4248 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Op0))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004249 return new ICmpInst(ICI->getInversePredicate(),
4250 ICI->getOperand(0), ICI->getOperand(1));
4251
Nick Lewycky1405e922007-08-06 20:04:16 +00004252 if (FCmpInst *FCI = dyn_cast<FCmpInst>(Op0))
4253 return new FCmpInst(FCI->getInversePredicate(),
4254 FCI->getOperand(0), FCI->getOperand(1));
4255 }
4256
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004257 if (BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0)) {
4258 // ~(c-X) == X-c-1 == X+(-c-1)
4259 if (Op0I->getOpcode() == Instruction::Sub && RHS->isAllOnesValue())
4260 if (Constant *Op0I0C = dyn_cast<Constant>(Op0I->getOperand(0))) {
4261 Constant *NegOp0I0C = ConstantExpr::getNeg(Op0I0C);
4262 Constant *ConstantRHS = ConstantExpr::getSub(NegOp0I0C,
4263 ConstantInt::get(I.getType(), 1));
4264 return BinaryOperator::createAdd(Op0I->getOperand(1), ConstantRHS);
4265 }
4266
4267 if (ConstantInt *Op0CI = dyn_cast<ConstantInt>(Op0I->getOperand(1)))
4268 if (Op0I->getOpcode() == Instruction::Add) {
4269 // ~(X-c) --> (-c-1)-X
4270 if (RHS->isAllOnesValue()) {
4271 Constant *NegOp0CI = ConstantExpr::getNeg(Op0CI);
4272 return BinaryOperator::createSub(
4273 ConstantExpr::getSub(NegOp0CI,
4274 ConstantInt::get(I.getType(), 1)),
4275 Op0I->getOperand(0));
4276 } else if (RHS->getValue().isSignBit()) {
4277 // (X + C) ^ signbit -> (X + C + signbit)
4278 Constant *C = ConstantInt::get(RHS->getValue() + Op0CI->getValue());
4279 return BinaryOperator::createAdd(Op0I->getOperand(0), C);
4280
4281 }
4282 } else if (Op0I->getOpcode() == Instruction::Or) {
4283 // (X|C1)^C2 -> X^(C1|C2) iff X&~C1 == 0
4284 if (MaskedValueIsZero(Op0I->getOperand(0), Op0CI->getValue())) {
4285 Constant *NewRHS = ConstantExpr::getOr(Op0CI, RHS);
4286 // Anything in both C1 and C2 is known to be zero, remove it from
4287 // NewRHS.
4288 Constant *CommonBits = And(Op0CI, RHS);
4289 NewRHS = ConstantExpr::getAnd(NewRHS,
4290 ConstantExpr::getNot(CommonBits));
4291 AddToWorkList(Op0I);
4292 I.setOperand(0, Op0I->getOperand(0));
4293 I.setOperand(1, NewRHS);
4294 return &I;
4295 }
4296 }
4297 }
4298
4299 // Try to fold constant and into select arguments.
4300 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
4301 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
4302 return R;
4303 if (isa<PHINode>(Op0))
4304 if (Instruction *NV = FoldOpIntoPhi(I))
4305 return NV;
4306 }
4307
4308 if (Value *X = dyn_castNotVal(Op0)) // ~A ^ A == -1
4309 if (X == Op1)
4310 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4311
4312 if (Value *X = dyn_castNotVal(Op1)) // A ^ ~A == -1
4313 if (X == Op0)
4314 return ReplaceInstUsesWith(I, Constant::getAllOnesValue(I.getType()));
4315
4316
4317 BinaryOperator *Op1I = dyn_cast<BinaryOperator>(Op1);
4318 if (Op1I) {
4319 Value *A, *B;
4320 if (match(Op1I, m_Or(m_Value(A), m_Value(B)))) {
4321 if (A == Op0) { // B^(B|A) == (A|B)^B
4322 Op1I->swapOperands();
4323 I.swapOperands();
4324 std::swap(Op0, Op1);
4325 } else if (B == Op0) { // B^(A|B) == (A|B)^B
4326 I.swapOperands(); // Simplified below.
4327 std::swap(Op0, Op1);
4328 }
4329 } else if (match(Op1I, m_Xor(m_Value(A), m_Value(B)))) {
4330 if (Op0 == A) // A^(A^B) == B
4331 return ReplaceInstUsesWith(I, B);
4332 else if (Op0 == B) // A^(B^A) == B
4333 return ReplaceInstUsesWith(I, A);
4334 } else if (match(Op1I, m_And(m_Value(A), m_Value(B))) && Op1I->hasOneUse()){
4335 if (A == Op0) { // A^(A&B) -> A^(B&A)
4336 Op1I->swapOperands();
4337 std::swap(A, B);
4338 }
4339 if (B == Op0) { // A^(B&A) -> (B&A)^A
4340 I.swapOperands(); // Simplified below.
4341 std::swap(Op0, Op1);
4342 }
4343 }
4344 }
4345
4346 BinaryOperator *Op0I = dyn_cast<BinaryOperator>(Op0);
4347 if (Op0I) {
4348 Value *A, *B;
4349 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) && Op0I->hasOneUse()) {
4350 if (A == Op1) // (B|A)^B == (A|B)^B
4351 std::swap(A, B);
4352 if (B == Op1) { // (A|B)^B == A & ~B
4353 Instruction *NotB =
4354 InsertNewInstBefore(BinaryOperator::createNot(Op1, "tmp"), I);
4355 return BinaryOperator::createAnd(A, NotB);
4356 }
4357 } else if (match(Op0I, m_Xor(m_Value(A), m_Value(B)))) {
4358 if (Op1 == A) // (A^B)^A == B
4359 return ReplaceInstUsesWith(I, B);
4360 else if (Op1 == B) // (B^A)^A == B
4361 return ReplaceInstUsesWith(I, A);
4362 } else if (match(Op0I, m_And(m_Value(A), m_Value(B))) && Op0I->hasOneUse()){
4363 if (A == Op1) // (A&B)^A -> (B&A)^A
4364 std::swap(A, B);
4365 if (B == Op1 && // (B&A)^A == ~B & A
4366 !isa<ConstantInt>(Op1)) { // Canonical form is (B&C)^C
4367 Instruction *N =
4368 InsertNewInstBefore(BinaryOperator::createNot(A, "tmp"), I);
4369 return BinaryOperator::createAnd(N, Op1);
4370 }
4371 }
4372 }
4373
4374 // (X >> Z) ^ (Y >> Z) -> (X^Y) >> Z for all shifts.
4375 if (Op0I && Op1I && Op0I->isShift() &&
4376 Op0I->getOpcode() == Op1I->getOpcode() &&
4377 Op0I->getOperand(1) == Op1I->getOperand(1) &&
4378 (Op1I->hasOneUse() || Op1I->hasOneUse())) {
4379 Instruction *NewOp =
4380 InsertNewInstBefore(BinaryOperator::createXor(Op0I->getOperand(0),
4381 Op1I->getOperand(0),
4382 Op0I->getName()), I);
4383 return BinaryOperator::create(Op1I->getOpcode(), NewOp,
4384 Op1I->getOperand(1));
4385 }
4386
4387 if (Op0I && Op1I) {
4388 Value *A, *B, *C, *D;
4389 // (A & B)^(A | B) -> A ^ B
4390 if (match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4391 match(Op1I, m_Or(m_Value(C), m_Value(D)))) {
4392 if ((A == C && B == D) || (A == D && B == C))
4393 return BinaryOperator::createXor(A, B);
4394 }
4395 // (A | B)^(A & B) -> A ^ B
4396 if (match(Op0I, m_Or(m_Value(A), m_Value(B))) &&
4397 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4398 if ((A == C && B == D) || (A == D && B == C))
4399 return BinaryOperator::createXor(A, B);
4400 }
4401
4402 // (A & B)^(C & D)
4403 if ((Op0I->hasOneUse() || Op1I->hasOneUse()) &&
4404 match(Op0I, m_And(m_Value(A), m_Value(B))) &&
4405 match(Op1I, m_And(m_Value(C), m_Value(D)))) {
4406 // (X & Y)^(X & Y) -> (Y^Z) & X
4407 Value *X = 0, *Y = 0, *Z = 0;
4408 if (A == C)
4409 X = A, Y = B, Z = D;
4410 else if (A == D)
4411 X = A, Y = B, Z = C;
4412 else if (B == C)
4413 X = B, Y = A, Z = D;
4414 else if (B == D)
4415 X = B, Y = A, Z = C;
4416
4417 if (X) {
4418 Instruction *NewOp =
4419 InsertNewInstBefore(BinaryOperator::createXor(Y, Z, Op0->getName()), I);
4420 return BinaryOperator::createAnd(NewOp, X);
4421 }
4422 }
4423 }
4424
4425 // (icmp1 A, B) ^ (icmp2 A, B) --> (icmp3 A, B)
4426 if (ICmpInst *RHS = dyn_cast<ICmpInst>(I.getOperand(1)))
4427 if (Instruction *R = AssociativeOpt(I, FoldICmpLogical(*this, RHS)))
4428 return R;
4429
4430 // fold (xor (cast A), (cast B)) -> (cast (xor A, B))
Chris Lattner91882432007-10-24 05:38:08 +00004431 if (CastInst *Op0C = dyn_cast<CastInst>(Op0)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004432 if (CastInst *Op1C = dyn_cast<CastInst>(Op1))
4433 if (Op0C->getOpcode() == Op1C->getOpcode()) { // same cast kind?
4434 const Type *SrcTy = Op0C->getOperand(0)->getType();
4435 if (SrcTy == Op1C->getOperand(0)->getType() && SrcTy->isInteger() &&
4436 // Only do this if the casts both really cause code to be generated.
4437 ValueRequiresCast(Op0C->getOpcode(), Op0C->getOperand(0),
4438 I.getType(), TD) &&
4439 ValueRequiresCast(Op1C->getOpcode(), Op1C->getOperand(0),
4440 I.getType(), TD)) {
4441 Instruction *NewOp = BinaryOperator::createXor(Op0C->getOperand(0),
4442 Op1C->getOperand(0),
4443 I.getName());
4444 InsertNewInstBefore(NewOp, I);
4445 return CastInst::create(Op0C->getOpcode(), NewOp, I.getType());
4446 }
4447 }
Chris Lattner91882432007-10-24 05:38:08 +00004448 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004449 return Changed ? &I : 0;
4450}
4451
4452/// AddWithOverflow - Compute Result = In1+In2, returning true if the result
4453/// overflowed for this type.
4454static bool AddWithOverflow(ConstantInt *&Result, ConstantInt *In1,
4455 ConstantInt *In2, bool IsSigned = false) {
4456 Result = cast<ConstantInt>(Add(In1, In2));
4457
4458 if (IsSigned)
4459 if (In2->getValue().isNegative())
4460 return Result->getValue().sgt(In1->getValue());
4461 else
4462 return Result->getValue().slt(In1->getValue());
4463 else
4464 return Result->getValue().ult(In1->getValue());
4465}
4466
4467/// EmitGEPOffset - Given a getelementptr instruction/constantexpr, emit the
4468/// code necessary to compute the offset from the base pointer (without adding
4469/// in the base pointer). Return the result as a signed integer of intptr size.
4470static Value *EmitGEPOffset(User *GEP, Instruction &I, InstCombiner &IC) {
4471 TargetData &TD = IC.getTargetData();
4472 gep_type_iterator GTI = gep_type_begin(GEP);
4473 const Type *IntPtrTy = TD.getIntPtrType();
4474 Value *Result = Constant::getNullValue(IntPtrTy);
4475
4476 // Build a mask for high order bits.
4477 unsigned IntPtrWidth = TD.getPointerSize()*8;
4478 uint64_t PtrSizeMask = ~0ULL >> (64-IntPtrWidth);
4479
4480 for (unsigned i = 1, e = GEP->getNumOperands(); i != e; ++i, ++GTI) {
4481 Value *Op = GEP->getOperand(i);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00004482 uint64_t Size = TD.getABITypeSize(GTI.getIndexedType()) & PtrSizeMask;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004483 if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
4484 if (OpC->isZero()) continue;
4485
4486 // Handle a struct index, which adds its field offset to the pointer.
4487 if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
4488 Size = TD.getStructLayout(STy)->getElementOffset(OpC->getZExtValue());
4489
4490 if (ConstantInt *RC = dyn_cast<ConstantInt>(Result))
4491 Result = ConstantInt::get(RC->getValue() + APInt(IntPtrWidth, Size));
4492 else
4493 Result = IC.InsertNewInstBefore(
4494 BinaryOperator::createAdd(Result,
4495 ConstantInt::get(IntPtrTy, Size),
4496 GEP->getName()+".offs"), I);
4497 continue;
4498 }
4499
4500 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4501 Constant *OC = ConstantExpr::getIntegerCast(OpC, IntPtrTy, true /*SExt*/);
4502 Scale = ConstantExpr::getMul(OC, Scale);
4503 if (Constant *RC = dyn_cast<Constant>(Result))
4504 Result = ConstantExpr::getAdd(RC, Scale);
4505 else {
4506 // Emit an add instruction.
4507 Result = IC.InsertNewInstBefore(
4508 BinaryOperator::createAdd(Result, Scale,
4509 GEP->getName()+".offs"), I);
4510 }
4511 continue;
4512 }
4513 // Convert to correct type.
4514 if (Op->getType() != IntPtrTy) {
4515 if (Constant *OpC = dyn_cast<Constant>(Op))
4516 Op = ConstantExpr::getSExt(OpC, IntPtrTy);
4517 else
4518 Op = IC.InsertNewInstBefore(new SExtInst(Op, IntPtrTy,
4519 Op->getName()+".c"), I);
4520 }
4521 if (Size != 1) {
4522 Constant *Scale = ConstantInt::get(IntPtrTy, Size);
4523 if (Constant *OpC = dyn_cast<Constant>(Op))
4524 Op = ConstantExpr::getMul(OpC, Scale);
4525 else // We'll let instcombine(mul) convert this to a shl if possible.
4526 Op = IC.InsertNewInstBefore(BinaryOperator::createMul(Op, Scale,
4527 GEP->getName()+".idx"), I);
4528 }
4529
4530 // Emit an add instruction.
4531 if (isa<Constant>(Op) && isa<Constant>(Result))
4532 Result = ConstantExpr::getAdd(cast<Constant>(Op),
4533 cast<Constant>(Result));
4534 else
4535 Result = IC.InsertNewInstBefore(BinaryOperator::createAdd(Op, Result,
4536 GEP->getName()+".offs"), I);
4537 }
4538 return Result;
4539}
4540
4541/// FoldGEPICmp - Fold comparisons between a GEP instruction and something
4542/// else. At this point we know that the GEP is on the LHS of the comparison.
4543Instruction *InstCombiner::FoldGEPICmp(User *GEPLHS, Value *RHS,
4544 ICmpInst::Predicate Cond,
4545 Instruction &I) {
4546 assert(dyn_castGetElementPtr(GEPLHS) && "LHS is not a getelementptr!");
4547
4548 if (CastInst *CI = dyn_cast<CastInst>(RHS))
4549 if (isa<PointerType>(CI->getOperand(0)->getType()))
4550 RHS = CI->getOperand(0);
4551
4552 Value *PtrBase = GEPLHS->getOperand(0);
4553 if (PtrBase == RHS) {
4554 // As an optimization, we don't actually have to compute the actual value of
4555 // OFFSET if this is a icmp_eq or icmp_ne comparison, just return whether
4556 // each index is zero or not.
4557 if (Cond == ICmpInst::ICMP_EQ || Cond == ICmpInst::ICMP_NE) {
4558 Instruction *InVal = 0;
4559 gep_type_iterator GTI = gep_type_begin(GEPLHS);
4560 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i, ++GTI) {
4561 bool EmitIt = true;
4562 if (Constant *C = dyn_cast<Constant>(GEPLHS->getOperand(i))) {
4563 if (isa<UndefValue>(C)) // undef index -> undef.
4564 return ReplaceInstUsesWith(I, UndefValue::get(I.getType()));
4565 if (C->isNullValue())
4566 EmitIt = false;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00004567 else if (TD->getABITypeSize(GTI.getIndexedType()) == 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004568 EmitIt = false; // This is indexing into a zero sized array?
4569 } else if (isa<ConstantInt>(C))
4570 return ReplaceInstUsesWith(I, // No comparison is needed here.
4571 ConstantInt::get(Type::Int1Ty,
4572 Cond == ICmpInst::ICMP_NE));
4573 }
4574
4575 if (EmitIt) {
4576 Instruction *Comp =
4577 new ICmpInst(Cond, GEPLHS->getOperand(i),
4578 Constant::getNullValue(GEPLHS->getOperand(i)->getType()));
4579 if (InVal == 0)
4580 InVal = Comp;
4581 else {
4582 InVal = InsertNewInstBefore(InVal, I);
4583 InsertNewInstBefore(Comp, I);
4584 if (Cond == ICmpInst::ICMP_NE) // True if any are unequal
4585 InVal = BinaryOperator::createOr(InVal, Comp);
4586 else // True if all are equal
4587 InVal = BinaryOperator::createAnd(InVal, Comp);
4588 }
4589 }
4590 }
4591
4592 if (InVal)
4593 return InVal;
4594 else
4595 // No comparison is needed here, all indexes = 0
4596 ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
4597 Cond == ICmpInst::ICMP_EQ));
4598 }
4599
4600 // Only lower this if the icmp is the only user of the GEP or if we expect
4601 // the result to fold to a constant!
4602 if (isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) {
4603 // ((gep Ptr, OFFSET) cmp Ptr) ---> (OFFSET cmp 0).
4604 Value *Offset = EmitGEPOffset(GEPLHS, I, *this);
4605 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), Offset,
4606 Constant::getNullValue(Offset->getType()));
4607 }
4608 } else if (User *GEPRHS = dyn_castGetElementPtr(RHS)) {
4609 // If the base pointers are different, but the indices are the same, just
4610 // compare the base pointer.
4611 if (PtrBase != GEPRHS->getOperand(0)) {
4612 bool IndicesTheSame = GEPLHS->getNumOperands()==GEPRHS->getNumOperands();
4613 IndicesTheSame &= GEPLHS->getOperand(0)->getType() ==
4614 GEPRHS->getOperand(0)->getType();
4615 if (IndicesTheSame)
4616 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
4617 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
4618 IndicesTheSame = false;
4619 break;
4620 }
4621
4622 // If all indices are the same, just compare the base pointers.
4623 if (IndicesTheSame)
4624 return new ICmpInst(ICmpInst::getSignedPredicate(Cond),
4625 GEPLHS->getOperand(0), GEPRHS->getOperand(0));
4626
4627 // Otherwise, the base pointers are different and the indices are
4628 // different, bail out.
4629 return 0;
4630 }
4631
4632 // If one of the GEPs has all zero indices, recurse.
4633 bool AllZeros = true;
4634 for (unsigned i = 1, e = GEPLHS->getNumOperands(); i != e; ++i)
4635 if (!isa<Constant>(GEPLHS->getOperand(i)) ||
4636 !cast<Constant>(GEPLHS->getOperand(i))->isNullValue()) {
4637 AllZeros = false;
4638 break;
4639 }
4640 if (AllZeros)
4641 return FoldGEPICmp(GEPRHS, GEPLHS->getOperand(0),
4642 ICmpInst::getSwappedPredicate(Cond), I);
4643
4644 // If the other GEP has all zero indices, recurse.
4645 AllZeros = true;
4646 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
4647 if (!isa<Constant>(GEPRHS->getOperand(i)) ||
4648 !cast<Constant>(GEPRHS->getOperand(i))->isNullValue()) {
4649 AllZeros = false;
4650 break;
4651 }
4652 if (AllZeros)
4653 return FoldGEPICmp(GEPLHS, GEPRHS->getOperand(0), Cond, I);
4654
4655 if (GEPLHS->getNumOperands() == GEPRHS->getNumOperands()) {
4656 // If the GEPs only differ by one index, compare it.
4657 unsigned NumDifferences = 0; // Keep track of # differences.
4658 unsigned DiffOperand = 0; // The operand that differs.
4659 for (unsigned i = 1, e = GEPRHS->getNumOperands(); i != e; ++i)
4660 if (GEPLHS->getOperand(i) != GEPRHS->getOperand(i)) {
4661 if (GEPLHS->getOperand(i)->getType()->getPrimitiveSizeInBits() !=
4662 GEPRHS->getOperand(i)->getType()->getPrimitiveSizeInBits()) {
4663 // Irreconcilable differences.
4664 NumDifferences = 2;
4665 break;
4666 } else {
4667 if (NumDifferences++) break;
4668 DiffOperand = i;
4669 }
4670 }
4671
4672 if (NumDifferences == 0) // SAME GEP?
4673 return ReplaceInstUsesWith(I, // No comparison is needed here.
Nick Lewycky2de09a92007-09-06 02:40:25 +00004674 ConstantInt::get(Type::Int1Ty,
4675 isTrueWhenEqual(Cond)));
4676
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004677 else if (NumDifferences == 1) {
4678 Value *LHSV = GEPLHS->getOperand(DiffOperand);
4679 Value *RHSV = GEPRHS->getOperand(DiffOperand);
4680 // Make sure we do a signed comparison here.
4681 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), LHSV, RHSV);
4682 }
4683 }
4684
4685 // Only lower this if the icmp is the only user of the GEP or if we expect
4686 // the result to fold to a constant!
4687 if ((isa<ConstantExpr>(GEPLHS) || GEPLHS->hasOneUse()) &&
4688 (isa<ConstantExpr>(GEPRHS) || GEPRHS->hasOneUse())) {
4689 // ((gep Ptr, OFFSET1) cmp (gep Ptr, OFFSET2) ---> (OFFSET1 cmp OFFSET2)
4690 Value *L = EmitGEPOffset(GEPLHS, I, *this);
4691 Value *R = EmitGEPOffset(GEPRHS, I, *this);
4692 return new ICmpInst(ICmpInst::getSignedPredicate(Cond), L, R);
4693 }
4694 }
4695 return 0;
4696}
4697
4698Instruction *InstCombiner::visitFCmpInst(FCmpInst &I) {
4699 bool Changed = SimplifyCompare(I);
4700 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4701
4702 // Fold trivial predicates.
4703 if (I.getPredicate() == FCmpInst::FCMP_FALSE)
4704 return ReplaceInstUsesWith(I, Constant::getNullValue(Type::Int1Ty));
4705 if (I.getPredicate() == FCmpInst::FCMP_TRUE)
4706 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
4707
4708 // Simplify 'fcmp pred X, X'
4709 if (Op0 == Op1) {
4710 switch (I.getPredicate()) {
4711 default: assert(0 && "Unknown predicate!");
4712 case FCmpInst::FCMP_UEQ: // True if unordered or equal
4713 case FCmpInst::FCMP_UGE: // True if unordered, greater than, or equal
4714 case FCmpInst::FCMP_ULE: // True if unordered, less than, or equal
4715 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 1));
4716 case FCmpInst::FCMP_OGT: // True if ordered and greater than
4717 case FCmpInst::FCMP_OLT: // True if ordered and less than
4718 case FCmpInst::FCMP_ONE: // True if ordered and operands are unequal
4719 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty, 0));
4720
4721 case FCmpInst::FCMP_UNO: // True if unordered: isnan(X) | isnan(Y)
4722 case FCmpInst::FCMP_ULT: // True if unordered or less than
4723 case FCmpInst::FCMP_UGT: // True if unordered or greater than
4724 case FCmpInst::FCMP_UNE: // True if unordered or not equal
4725 // Canonicalize these to be 'fcmp uno %X, 0.0'.
4726 I.setPredicate(FCmpInst::FCMP_UNO);
4727 I.setOperand(1, Constant::getNullValue(Op0->getType()));
4728 return &I;
4729
4730 case FCmpInst::FCMP_ORD: // True if ordered (no nans)
4731 case FCmpInst::FCMP_OEQ: // True if ordered and equal
4732 case FCmpInst::FCMP_OGE: // True if ordered and greater than or equal
4733 case FCmpInst::FCMP_OLE: // True if ordered and less than or equal
4734 // Canonicalize these to be 'fcmp ord %X, 0.0'.
4735 I.setPredicate(FCmpInst::FCMP_ORD);
4736 I.setOperand(1, Constant::getNullValue(Op0->getType()));
4737 return &I;
4738 }
4739 }
4740
4741 if (isa<UndefValue>(Op1)) // fcmp pred X, undef -> undef
4742 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
4743
4744 // Handle fcmp with constant RHS
4745 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
4746 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
4747 switch (LHSI->getOpcode()) {
4748 case Instruction::PHI:
4749 if (Instruction *NV = FoldOpIntoPhi(I))
4750 return NV;
4751 break;
4752 case Instruction::Select:
4753 // If either operand of the select is a constant, we can fold the
4754 // comparison into the select arms, which will cause one to be
4755 // constant folded and the select turned into a bitwise or.
4756 Value *Op1 = 0, *Op2 = 0;
4757 if (LHSI->hasOneUse()) {
4758 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
4759 // Fold the known value into the constant operand.
4760 Op1 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
4761 // Insert a new FCmp of the other select operand.
4762 Op2 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
4763 LHSI->getOperand(2), RHSC,
4764 I.getName()), I);
4765 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
4766 // Fold the known value into the constant operand.
4767 Op2 = ConstantExpr::getCompare(I.getPredicate(), C, RHSC);
4768 // Insert a new FCmp of the other select operand.
4769 Op1 = InsertNewInstBefore(new FCmpInst(I.getPredicate(),
4770 LHSI->getOperand(1), RHSC,
4771 I.getName()), I);
4772 }
4773 }
4774
4775 if (Op1)
4776 return new SelectInst(LHSI->getOperand(0), Op1, Op2);
4777 break;
4778 }
4779 }
4780
4781 return Changed ? &I : 0;
4782}
4783
4784Instruction *InstCombiner::visitICmpInst(ICmpInst &I) {
4785 bool Changed = SimplifyCompare(I);
4786 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
4787 const Type *Ty = Op0->getType();
4788
4789 // icmp X, X
4790 if (Op0 == Op1)
4791 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
4792 isTrueWhenEqual(I)));
4793
4794 if (isa<UndefValue>(Op1)) // X icmp undef -> undef
4795 return ReplaceInstUsesWith(I, UndefValue::get(Type::Int1Ty));
4796
Dan Gohmanf17a25c2007-07-18 16:29:46 +00004797 // icmp <global/alloca*/null>, <global/alloca*/null> - Global/Stack value
4798 // addresses never equal each other! We already know that Op0 != Op1.
4799 if ((isa<GlobalValue>(Op0) || isa<AllocaInst>(Op0) ||
4800 isa<ConstantPointerNull>(Op0)) &&
4801 (isa<GlobalValue>(Op1) || isa<AllocaInst>(Op1) ||
4802 isa<ConstantPointerNull>(Op1)))
4803 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
4804 !isTrueWhenEqual(I)));
4805
4806 // icmp's with boolean values can always be turned into bitwise operations
4807 if (Ty == Type::Int1Ty) {
4808 switch (I.getPredicate()) {
4809 default: assert(0 && "Invalid icmp instruction!");
4810 case ICmpInst::ICMP_EQ: { // icmp eq bool %A, %B -> ~(A^B)
4811 Instruction *Xor = BinaryOperator::createXor(Op0, Op1, I.getName()+"tmp");
4812 InsertNewInstBefore(Xor, I);
4813 return BinaryOperator::createNot(Xor);
4814 }
4815 case ICmpInst::ICMP_NE: // icmp eq bool %A, %B -> A^B
4816 return BinaryOperator::createXor(Op0, Op1);
4817
4818 case ICmpInst::ICMP_UGT:
4819 case ICmpInst::ICMP_SGT:
4820 std::swap(Op0, Op1); // Change icmp gt -> icmp lt
4821 // FALL THROUGH
4822 case ICmpInst::ICMP_ULT:
4823 case ICmpInst::ICMP_SLT: { // icmp lt bool A, B -> ~X & Y
4824 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
4825 InsertNewInstBefore(Not, I);
4826 return BinaryOperator::createAnd(Not, Op1);
4827 }
4828 case ICmpInst::ICMP_UGE:
4829 case ICmpInst::ICMP_SGE:
4830 std::swap(Op0, Op1); // Change icmp ge -> icmp le
4831 // FALL THROUGH
4832 case ICmpInst::ICMP_ULE:
4833 case ICmpInst::ICMP_SLE: { // icmp le bool %A, %B -> ~A | B
4834 Instruction *Not = BinaryOperator::createNot(Op0, I.getName()+"tmp");
4835 InsertNewInstBefore(Not, I);
4836 return BinaryOperator::createOr(Not, Op1);
4837 }
4838 }
4839 }
4840
4841 // See if we are doing a comparison between a constant and an instruction that
4842 // can be folded into the comparison.
4843 if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
4844 switch (I.getPredicate()) {
4845 default: break;
4846 case ICmpInst::ICMP_ULT: // A <u MIN -> FALSE
4847 if (CI->isMinValue(false))
4848 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4849 if (CI->isMaxValue(false)) // A <u MAX -> A != MAX
4850 return new ICmpInst(ICmpInst::ICMP_NE, Op0,Op1);
4851 if (isMinValuePlusOne(CI,false)) // A <u MIN+1 -> A == MIN
4852 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
4853 // (x <u 2147483648) -> (x >s -1) -> true if sign bit clear
4854 if (CI->isMinValue(true))
4855 return new ICmpInst(ICmpInst::ICMP_SGT, Op0,
4856 ConstantInt::getAllOnesValue(Op0->getType()));
4857
4858 break;
4859
4860 case ICmpInst::ICMP_SLT:
4861 if (CI->isMinValue(true)) // A <s MIN -> FALSE
4862 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4863 if (CI->isMaxValue(true)) // A <s MAX -> A != MAX
4864 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4865 if (isMinValuePlusOne(CI,true)) // A <s MIN+1 -> A == MIN
4866 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, SubOne(CI));
4867 break;
4868
4869 case ICmpInst::ICMP_UGT:
4870 if (CI->isMaxValue(false)) // A >u MAX -> FALSE
4871 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4872 if (CI->isMinValue(false)) // A >u MIN -> A != MIN
4873 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4874 if (isMaxValueMinusOne(CI, false)) // A >u MAX-1 -> A == MAX
4875 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
4876
4877 // (x >u 2147483647) -> (x <s 0) -> true if sign bit set
4878 if (CI->isMaxValue(true))
4879 return new ICmpInst(ICmpInst::ICMP_SLT, Op0,
4880 ConstantInt::getNullValue(Op0->getType()));
4881 break;
4882
4883 case ICmpInst::ICMP_SGT:
4884 if (CI->isMaxValue(true)) // A >s MAX -> FALSE
4885 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4886 if (CI->isMinValue(true)) // A >s MIN -> A != MIN
4887 return new ICmpInst(ICmpInst::ICMP_NE, Op0, Op1);
4888 if (isMaxValueMinusOne(CI, true)) // A >s MAX-1 -> A == MAX
4889 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, AddOne(CI));
4890 break;
4891
4892 case ICmpInst::ICMP_ULE:
4893 if (CI->isMaxValue(false)) // A <=u MAX -> TRUE
4894 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4895 if (CI->isMinValue(false)) // A <=u MIN -> A == MIN
4896 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4897 if (isMaxValueMinusOne(CI,false)) // A <=u MAX-1 -> A != MAX
4898 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
4899 break;
4900
4901 case ICmpInst::ICMP_SLE:
4902 if (CI->isMaxValue(true)) // A <=s MAX -> TRUE
4903 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4904 if (CI->isMinValue(true)) // A <=s MIN -> A == MIN
4905 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4906 if (isMaxValueMinusOne(CI,true)) // A <=s MAX-1 -> A != MAX
4907 return new ICmpInst(ICmpInst::ICMP_NE, Op0, AddOne(CI));
4908 break;
4909
4910 case ICmpInst::ICMP_UGE:
4911 if (CI->isMinValue(false)) // A >=u MIN -> TRUE
4912 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4913 if (CI->isMaxValue(false)) // A >=u MAX -> A == MAX
4914 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4915 if (isMinValuePlusOne(CI,false)) // A >=u MIN-1 -> A != MIN
4916 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
4917 break;
4918
4919 case ICmpInst::ICMP_SGE:
4920 if (CI->isMinValue(true)) // A >=s MIN -> TRUE
4921 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4922 if (CI->isMaxValue(true)) // A >=s MAX -> A == MAX
4923 return new ICmpInst(ICmpInst::ICMP_EQ, Op0, Op1);
4924 if (isMinValuePlusOne(CI,true)) // A >=s MIN-1 -> A != MIN
4925 return new ICmpInst(ICmpInst::ICMP_NE, Op0, SubOne(CI));
4926 break;
4927 }
4928
4929 // If we still have a icmp le or icmp ge instruction, turn it into the
4930 // appropriate icmp lt or icmp gt instruction. Since the border cases have
4931 // already been handled above, this requires little checking.
4932 //
4933 switch (I.getPredicate()) {
4934 default: break;
4935 case ICmpInst::ICMP_ULE:
4936 return new ICmpInst(ICmpInst::ICMP_ULT, Op0, AddOne(CI));
4937 case ICmpInst::ICMP_SLE:
4938 return new ICmpInst(ICmpInst::ICMP_SLT, Op0, AddOne(CI));
4939 case ICmpInst::ICMP_UGE:
4940 return new ICmpInst( ICmpInst::ICMP_UGT, Op0, SubOne(CI));
4941 case ICmpInst::ICMP_SGE:
4942 return new ICmpInst(ICmpInst::ICMP_SGT, Op0, SubOne(CI));
4943 }
4944
4945 // See if we can fold the comparison based on bits known to be zero or one
4946 // in the input. If this comparison is a normal comparison, it demands all
4947 // bits, if it is a sign bit comparison, it only demands the sign bit.
4948
4949 bool UnusedBit;
4950 bool isSignBit = isSignBitCheck(I.getPredicate(), CI, UnusedBit);
4951
4952 uint32_t BitWidth = cast<IntegerType>(Ty)->getBitWidth();
4953 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
4954 if (SimplifyDemandedBits(Op0,
4955 isSignBit ? APInt::getSignBit(BitWidth)
4956 : APInt::getAllOnesValue(BitWidth),
4957 KnownZero, KnownOne, 0))
4958 return &I;
4959
4960 // Given the known and unknown bits, compute a range that the LHS could be
4961 // in.
4962 if ((KnownOne | KnownZero) != 0) {
4963 // Compute the Min, Max and RHS values based on the known bits. For the
4964 // EQ and NE we use unsigned values.
4965 APInt Min(BitWidth, 0), Max(BitWidth, 0);
4966 const APInt& RHSVal = CI->getValue();
4967 if (ICmpInst::isSignedPredicate(I.getPredicate())) {
4968 ComputeSignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min,
4969 Max);
4970 } else {
4971 ComputeUnsignedMinMaxValuesFromKnownBits(Ty, KnownZero, KnownOne, Min,
4972 Max);
4973 }
4974 switch (I.getPredicate()) { // LE/GE have been folded already.
4975 default: assert(0 && "Unknown icmp opcode!");
4976 case ICmpInst::ICMP_EQ:
4977 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
4978 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4979 break;
4980 case ICmpInst::ICMP_NE:
4981 if (Max.ult(RHSVal) || Min.ugt(RHSVal))
4982 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4983 break;
4984 case ICmpInst::ICMP_ULT:
4985 if (Max.ult(RHSVal))
4986 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4987 if (Min.uge(RHSVal))
4988 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4989 break;
4990 case ICmpInst::ICMP_UGT:
4991 if (Min.ugt(RHSVal))
4992 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4993 if (Max.ule(RHSVal))
4994 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
4995 break;
4996 case ICmpInst::ICMP_SLT:
4997 if (Max.slt(RHSVal))
4998 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
4999 if (Min.sgt(RHSVal))
5000 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5001 break;
5002 case ICmpInst::ICMP_SGT:
5003 if (Min.sgt(RHSVal))
5004 return ReplaceInstUsesWith(I, ConstantInt::getTrue());
5005 if (Max.sle(RHSVal))
5006 return ReplaceInstUsesWith(I, ConstantInt::getFalse());
5007 break;
5008 }
5009 }
5010
5011 // Since the RHS is a ConstantInt (CI), if the left hand side is an
5012 // instruction, see if that instruction also has constants so that the
5013 // instruction can be folded into the icmp
5014 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5015 if (Instruction *Res = visitICmpInstWithInstAndIntCst(I, LHSI, CI))
5016 return Res;
5017 }
5018
5019 // Handle icmp with constant (but not simple integer constant) RHS
5020 if (Constant *RHSC = dyn_cast<Constant>(Op1)) {
5021 if (Instruction *LHSI = dyn_cast<Instruction>(Op0))
5022 switch (LHSI->getOpcode()) {
5023 case Instruction::GetElementPtr:
5024 if (RHSC->isNullValue()) {
5025 // icmp pred GEP (P, int 0, int 0, int 0), null -> icmp pred P, null
5026 bool isAllZeros = true;
5027 for (unsigned i = 1, e = LHSI->getNumOperands(); i != e; ++i)
5028 if (!isa<Constant>(LHSI->getOperand(i)) ||
5029 !cast<Constant>(LHSI->getOperand(i))->isNullValue()) {
5030 isAllZeros = false;
5031 break;
5032 }
5033 if (isAllZeros)
5034 return new ICmpInst(I.getPredicate(), LHSI->getOperand(0),
5035 Constant::getNullValue(LHSI->getOperand(0)->getType()));
5036 }
5037 break;
5038
5039 case Instruction::PHI:
5040 if (Instruction *NV = FoldOpIntoPhi(I))
5041 return NV;
5042 break;
5043 case Instruction::Select: {
5044 // If either operand of the select is a constant, we can fold the
5045 // comparison into the select arms, which will cause one to be
5046 // constant folded and the select turned into a bitwise or.
5047 Value *Op1 = 0, *Op2 = 0;
5048 if (LHSI->hasOneUse()) {
5049 if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(1))) {
5050 // Fold the known value into the constant operand.
5051 Op1 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5052 // Insert a new ICmp of the other select operand.
5053 Op2 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5054 LHSI->getOperand(2), RHSC,
5055 I.getName()), I);
5056 } else if (Constant *C = dyn_cast<Constant>(LHSI->getOperand(2))) {
5057 // Fold the known value into the constant operand.
5058 Op2 = ConstantExpr::getICmp(I.getPredicate(), C, RHSC);
5059 // Insert a new ICmp of the other select operand.
5060 Op1 = InsertNewInstBefore(new ICmpInst(I.getPredicate(),
5061 LHSI->getOperand(1), RHSC,
5062 I.getName()), I);
5063 }
5064 }
5065
5066 if (Op1)
5067 return new SelectInst(LHSI->getOperand(0), Op1, Op2);
5068 break;
5069 }
5070 case Instruction::Malloc:
5071 // If we have (malloc != null), and if the malloc has a single use, we
5072 // can assume it is successful and remove the malloc.
5073 if (LHSI->hasOneUse() && isa<ConstantPointerNull>(RHSC)) {
5074 AddToWorkList(LHSI);
5075 return ReplaceInstUsesWith(I, ConstantInt::get(Type::Int1Ty,
5076 !isTrueWhenEqual(I)));
5077 }
5078 break;
5079 }
5080 }
5081
5082 // If we can optimize a 'icmp GEP, P' or 'icmp P, GEP', do so now.
5083 if (User *GEP = dyn_castGetElementPtr(Op0))
5084 if (Instruction *NI = FoldGEPICmp(GEP, Op1, I.getPredicate(), I))
5085 return NI;
5086 if (User *GEP = dyn_castGetElementPtr(Op1))
5087 if (Instruction *NI = FoldGEPICmp(GEP, Op0,
5088 ICmpInst::getSwappedPredicate(I.getPredicate()), I))
5089 return NI;
5090
5091 // Test to see if the operands of the icmp are casted versions of other
5092 // values. If the ptr->ptr cast can be stripped off both arguments, we do so
5093 // now.
5094 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op0)) {
5095 if (isa<PointerType>(Op0->getType()) &&
5096 (isa<Constant>(Op1) || isa<BitCastInst>(Op1))) {
5097 // We keep moving the cast from the left operand over to the right
5098 // operand, where it can often be eliminated completely.
5099 Op0 = CI->getOperand(0);
5100
5101 // If operand #1 is a bitcast instruction, it must also be a ptr->ptr cast
5102 // so eliminate it as well.
5103 if (BitCastInst *CI2 = dyn_cast<BitCastInst>(Op1))
5104 Op1 = CI2->getOperand(0);
5105
5106 // If Op1 is a constant, we can fold the cast into the constant.
5107 if (Op0->getType() != Op1->getType())
5108 if (Constant *Op1C = dyn_cast<Constant>(Op1)) {
5109 Op1 = ConstantExpr::getBitCast(Op1C, Op0->getType());
5110 } else {
5111 // Otherwise, cast the RHS right before the icmp
5112 Op1 = InsertCastBefore(Instruction::BitCast, Op1, Op0->getType(), I);
5113 }
5114 return new ICmpInst(I.getPredicate(), Op0, Op1);
5115 }
5116 }
5117
5118 if (isa<CastInst>(Op0)) {
5119 // Handle the special case of: icmp (cast bool to X), <cst>
5120 // This comes up when you have code like
5121 // int X = A < B;
5122 // if (X) ...
5123 // For generality, we handle any zero-extension of any operand comparison
5124 // with a constant or another cast from the same type.
5125 if (isa<ConstantInt>(Op1) || isa<CastInst>(Op1))
5126 if (Instruction *R = visitICmpInstWithCastAndCast(I))
5127 return R;
5128 }
5129
5130 if (I.isEquality()) {
5131 Value *A, *B, *C, *D;
5132 if (match(Op0, m_Xor(m_Value(A), m_Value(B)))) {
5133 if (A == Op1 || B == Op1) { // (A^B) == A -> B == 0
5134 Value *OtherVal = A == Op1 ? B : A;
5135 return new ICmpInst(I.getPredicate(), OtherVal,
5136 Constant::getNullValue(A->getType()));
5137 }
5138
5139 if (match(Op1, m_Xor(m_Value(C), m_Value(D)))) {
5140 // A^c1 == C^c2 --> A == C^(c1^c2)
5141 if (ConstantInt *C1 = dyn_cast<ConstantInt>(B))
5142 if (ConstantInt *C2 = dyn_cast<ConstantInt>(D))
5143 if (Op1->hasOneUse()) {
5144 Constant *NC = ConstantInt::get(C1->getValue() ^ C2->getValue());
5145 Instruction *Xor = BinaryOperator::createXor(C, NC, "tmp");
5146 return new ICmpInst(I.getPredicate(), A,
5147 InsertNewInstBefore(Xor, I));
5148 }
5149
5150 // A^B == A^D -> B == D
5151 if (A == C) return new ICmpInst(I.getPredicate(), B, D);
5152 if (A == D) return new ICmpInst(I.getPredicate(), B, C);
5153 if (B == C) return new ICmpInst(I.getPredicate(), A, D);
5154 if (B == D) return new ICmpInst(I.getPredicate(), A, C);
5155 }
5156 }
5157
5158 if (match(Op1, m_Xor(m_Value(A), m_Value(B))) &&
5159 (A == Op0 || B == Op0)) {
5160 // A == (A^B) -> B == 0
5161 Value *OtherVal = A == Op0 ? B : A;
5162 return new ICmpInst(I.getPredicate(), OtherVal,
5163 Constant::getNullValue(A->getType()));
5164 }
5165 if (match(Op0, m_Sub(m_Value(A), m_Value(B))) && A == Op1) {
5166 // (A-B) == A -> B == 0
5167 return new ICmpInst(I.getPredicate(), B,
5168 Constant::getNullValue(B->getType()));
5169 }
5170 if (match(Op1, m_Sub(m_Value(A), m_Value(B))) && A == Op0) {
5171 // A == (A-B) -> B == 0
5172 return new ICmpInst(I.getPredicate(), B,
5173 Constant::getNullValue(B->getType()));
5174 }
5175
5176 // (X&Z) == (Y&Z) -> (X^Y) & Z == 0
5177 if (Op0->hasOneUse() && Op1->hasOneUse() &&
5178 match(Op0, m_And(m_Value(A), m_Value(B))) &&
5179 match(Op1, m_And(m_Value(C), m_Value(D)))) {
5180 Value *X = 0, *Y = 0, *Z = 0;
5181
5182 if (A == C) {
5183 X = B; Y = D; Z = A;
5184 } else if (A == D) {
5185 X = B; Y = C; Z = A;
5186 } else if (B == C) {
5187 X = A; Y = D; Z = B;
5188 } else if (B == D) {
5189 X = A; Y = C; Z = B;
5190 }
5191
5192 if (X) { // Build (X^Y) & Z
5193 Op1 = InsertNewInstBefore(BinaryOperator::createXor(X, Y, "tmp"), I);
5194 Op1 = InsertNewInstBefore(BinaryOperator::createAnd(Op1, Z, "tmp"), I);
5195 I.setOperand(0, Op1);
5196 I.setOperand(1, Constant::getNullValue(Op1->getType()));
5197 return &I;
5198 }
5199 }
5200 }
5201 return Changed ? &I : 0;
5202}
5203
5204
5205/// FoldICmpDivCst - Fold "icmp pred, ([su]div X, DivRHS), CmpRHS" where DivRHS
5206/// and CmpRHS are both known to be integer constants.
5207Instruction *InstCombiner::FoldICmpDivCst(ICmpInst &ICI, BinaryOperator *DivI,
5208 ConstantInt *DivRHS) {
5209 ConstantInt *CmpRHS = cast<ConstantInt>(ICI.getOperand(1));
5210 const APInt &CmpRHSV = CmpRHS->getValue();
5211
5212 // FIXME: If the operand types don't match the type of the divide
5213 // then don't attempt this transform. The code below doesn't have the
5214 // logic to deal with a signed divide and an unsigned compare (and
5215 // vice versa). This is because (x /s C1) <s C2 produces different
5216 // results than (x /s C1) <u C2 or (x /u C1) <s C2 or even
5217 // (x /u C1) <u C2. Simply casting the operands and result won't
5218 // work. :( The if statement below tests that condition and bails
5219 // if it finds it.
5220 bool DivIsSigned = DivI->getOpcode() == Instruction::SDiv;
5221 if (!ICI.isEquality() && DivIsSigned != ICI.isSignedPredicate())
5222 return 0;
5223 if (DivRHS->isZero())
5224 return 0; // The ProdOV computation fails on divide by zero.
5225
5226 // Compute Prod = CI * DivRHS. We are essentially solving an equation
5227 // of form X/C1=C2. We solve for X by multiplying C1 (DivRHS) and
5228 // C2 (CI). By solving for X we can turn this into a range check
5229 // instead of computing a divide.
5230 ConstantInt *Prod = Multiply(CmpRHS, DivRHS);
5231
5232 // Determine if the product overflows by seeing if the product is
5233 // not equal to the divide. Make sure we do the same kind of divide
5234 // as in the LHS instruction that we're folding.
5235 bool ProdOV = (DivIsSigned ? ConstantExpr::getSDiv(Prod, DivRHS) :
5236 ConstantExpr::getUDiv(Prod, DivRHS)) != CmpRHS;
5237
5238 // Get the ICmp opcode
5239 ICmpInst::Predicate Pred = ICI.getPredicate();
5240
5241 // Figure out the interval that is being checked. For example, a comparison
5242 // like "X /u 5 == 0" is really checking that X is in the interval [0, 5).
5243 // Compute this interval based on the constants involved and the signedness of
5244 // the compare/divide. This computes a half-open interval, keeping track of
5245 // whether either value in the interval overflows. After analysis each
5246 // overflow variable is set to 0 if it's corresponding bound variable is valid
5247 // -1 if overflowed off the bottom end, or +1 if overflowed off the top end.
5248 int LoOverflow = 0, HiOverflow = 0;
5249 ConstantInt *LoBound = 0, *HiBound = 0;
5250
5251
5252 if (!DivIsSigned) { // udiv
5253 // e.g. X/5 op 3 --> [15, 20)
5254 LoBound = Prod;
5255 HiOverflow = LoOverflow = ProdOV;
5256 if (!HiOverflow)
5257 HiOverflow = AddWithOverflow(HiBound, LoBound, DivRHS, false);
5258 } else if (DivRHS->getValue().isPositive()) { // Divisor is > 0.
5259 if (CmpRHSV == 0) { // (X / pos) op 0
5260 // Can't overflow. e.g. X/2 op 0 --> [-1, 2)
5261 LoBound = cast<ConstantInt>(ConstantExpr::getNeg(SubOne(DivRHS)));
5262 HiBound = DivRHS;
5263 } else if (CmpRHSV.isPositive()) { // (X / pos) op pos
5264 LoBound = Prod; // e.g. X/5 op 3 --> [15, 20)
5265 HiOverflow = LoOverflow = ProdOV;
5266 if (!HiOverflow)
5267 HiOverflow = AddWithOverflow(HiBound, Prod, DivRHS, true);
5268 } else { // (X / pos) op neg
5269 // e.g. X/5 op -3 --> [-15-4, -15+1) --> [-19, -14)
5270 Constant *DivRHSH = ConstantExpr::getNeg(SubOne(DivRHS));
5271 LoOverflow = AddWithOverflow(LoBound, Prod,
5272 cast<ConstantInt>(DivRHSH), true) ? -1 : 0;
5273 HiBound = AddOne(Prod);
5274 HiOverflow = ProdOV ? -1 : 0;
5275 }
5276 } else { // Divisor is < 0.
5277 if (CmpRHSV == 0) { // (X / neg) op 0
5278 // e.g. X/-5 op 0 --> [-4, 5)
5279 LoBound = AddOne(DivRHS);
5280 HiBound = cast<ConstantInt>(ConstantExpr::getNeg(DivRHS));
5281 if (HiBound == DivRHS) { // -INTMIN = INTMIN
5282 HiOverflow = 1; // [INTMIN+1, overflow)
5283 HiBound = 0; // e.g. X/INTMIN = 0 --> X > INTMIN
5284 }
5285 } else if (CmpRHSV.isPositive()) { // (X / neg) op pos
5286 // e.g. X/-5 op 3 --> [-19, -14)
5287 HiOverflow = LoOverflow = ProdOV ? -1 : 0;
5288 if (!LoOverflow)
5289 LoOverflow = AddWithOverflow(LoBound, Prod, AddOne(DivRHS), true) ?-1:0;
5290 HiBound = AddOne(Prod);
5291 } else { // (X / neg) op neg
5292 // e.g. X/-5 op -3 --> [15, 20)
5293 LoBound = Prod;
5294 LoOverflow = HiOverflow = ProdOV ? 1 : 0;
5295 HiBound = Subtract(Prod, DivRHS);
5296 }
5297
5298 // Dividing by a negative swaps the condition. LT <-> GT
5299 Pred = ICmpInst::getSwappedPredicate(Pred);
5300 }
5301
5302 Value *X = DivI->getOperand(0);
5303 switch (Pred) {
5304 default: assert(0 && "Unhandled icmp opcode!");
5305 case ICmpInst::ICMP_EQ:
5306 if (LoOverflow && HiOverflow)
5307 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5308 else if (HiOverflow)
5309 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5310 ICmpInst::ICMP_UGE, X, LoBound);
5311 else if (LoOverflow)
5312 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5313 ICmpInst::ICMP_ULT, X, HiBound);
5314 else
5315 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, true, ICI);
5316 case ICmpInst::ICMP_NE:
5317 if (LoOverflow && HiOverflow)
5318 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5319 else if (HiOverflow)
5320 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SLT :
5321 ICmpInst::ICMP_ULT, X, LoBound);
5322 else if (LoOverflow)
5323 return new ICmpInst(DivIsSigned ? ICmpInst::ICMP_SGE :
5324 ICmpInst::ICMP_UGE, X, HiBound);
5325 else
5326 return InsertRangeTest(X, LoBound, HiBound, DivIsSigned, false, ICI);
5327 case ICmpInst::ICMP_ULT:
5328 case ICmpInst::ICMP_SLT:
5329 if (LoOverflow == +1) // Low bound is greater than input range.
5330 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5331 if (LoOverflow == -1) // Low bound is less than input range.
5332 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5333 return new ICmpInst(Pred, X, LoBound);
5334 case ICmpInst::ICMP_UGT:
5335 case ICmpInst::ICMP_SGT:
5336 if (HiOverflow == +1) // High bound greater than input range.
5337 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5338 else if (HiOverflow == -1) // High bound less than input range.
5339 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5340 if (Pred == ICmpInst::ICMP_UGT)
5341 return new ICmpInst(ICmpInst::ICMP_UGE, X, HiBound);
5342 else
5343 return new ICmpInst(ICmpInst::ICMP_SGE, X, HiBound);
5344 }
5345}
5346
5347
5348/// visitICmpInstWithInstAndIntCst - Handle "icmp (instr, intcst)".
5349///
5350Instruction *InstCombiner::visitICmpInstWithInstAndIntCst(ICmpInst &ICI,
5351 Instruction *LHSI,
5352 ConstantInt *RHS) {
5353 const APInt &RHSV = RHS->getValue();
5354
5355 switch (LHSI->getOpcode()) {
5356 case Instruction::Xor: // (icmp pred (xor X, XorCST), CI)
5357 if (ConstantInt *XorCST = dyn_cast<ConstantInt>(LHSI->getOperand(1))) {
5358 // If this is a comparison that tests the signbit (X < 0) or (x > -1),
5359 // fold the xor.
5360 if (ICI.getPredicate() == ICmpInst::ICMP_SLT && RHSV == 0 ||
5361 ICI.getPredicate() == ICmpInst::ICMP_SGT && RHSV.isAllOnesValue()) {
5362 Value *CompareVal = LHSI->getOperand(0);
5363
5364 // If the sign bit of the XorCST is not set, there is no change to
5365 // the operation, just stop using the Xor.
5366 if (!XorCST->getValue().isNegative()) {
5367 ICI.setOperand(0, CompareVal);
5368 AddToWorkList(LHSI);
5369 return &ICI;
5370 }
5371
5372 // Was the old condition true if the operand is positive?
5373 bool isTrueIfPositive = ICI.getPredicate() == ICmpInst::ICMP_SGT;
5374
5375 // If so, the new one isn't.
5376 isTrueIfPositive ^= true;
5377
5378 if (isTrueIfPositive)
5379 return new ICmpInst(ICmpInst::ICMP_SGT, CompareVal, SubOne(RHS));
5380 else
5381 return new ICmpInst(ICmpInst::ICMP_SLT, CompareVal, AddOne(RHS));
5382 }
5383 }
5384 break;
5385 case Instruction::And: // (icmp pred (and X, AndCST), RHS)
5386 if (LHSI->hasOneUse() && isa<ConstantInt>(LHSI->getOperand(1)) &&
5387 LHSI->getOperand(0)->hasOneUse()) {
5388 ConstantInt *AndCST = cast<ConstantInt>(LHSI->getOperand(1));
5389
5390 // If the LHS is an AND of a truncating cast, we can widen the
5391 // and/compare to be the input width without changing the value
5392 // produced, eliminating a cast.
5393 if (TruncInst *Cast = dyn_cast<TruncInst>(LHSI->getOperand(0))) {
5394 // We can do this transformation if either the AND constant does not
5395 // have its sign bit set or if it is an equality comparison.
5396 // Extending a relational comparison when we're checking the sign
5397 // bit would not work.
5398 if (Cast->hasOneUse() &&
5399 (ICI.isEquality() || AndCST->getValue().isPositive() &&
5400 RHSV.isPositive())) {
5401 uint32_t BitWidth =
5402 cast<IntegerType>(Cast->getOperand(0)->getType())->getBitWidth();
5403 APInt NewCST = AndCST->getValue();
5404 NewCST.zext(BitWidth);
5405 APInt NewCI = RHSV;
5406 NewCI.zext(BitWidth);
5407 Instruction *NewAnd =
5408 BinaryOperator::createAnd(Cast->getOperand(0),
5409 ConstantInt::get(NewCST),LHSI->getName());
5410 InsertNewInstBefore(NewAnd, ICI);
5411 return new ICmpInst(ICI.getPredicate(), NewAnd,
5412 ConstantInt::get(NewCI));
5413 }
5414 }
5415
5416 // If this is: (X >> C1) & C2 != C3 (where any shift and any compare
5417 // could exist), turn it into (X & (C2 << C1)) != (C3 << C1). This
5418 // happens a LOT in code produced by the C front-end, for bitfield
5419 // access.
5420 BinaryOperator *Shift = dyn_cast<BinaryOperator>(LHSI->getOperand(0));
5421 if (Shift && !Shift->isShift())
5422 Shift = 0;
5423
5424 ConstantInt *ShAmt;
5425 ShAmt = Shift ? dyn_cast<ConstantInt>(Shift->getOperand(1)) : 0;
5426 const Type *Ty = Shift ? Shift->getType() : 0; // Type of the shift.
5427 const Type *AndTy = AndCST->getType(); // Type of the and.
5428
5429 // We can fold this as long as we can't shift unknown bits
5430 // into the mask. This can only happen with signed shift
5431 // rights, as they sign-extend.
5432 if (ShAmt) {
5433 bool CanFold = Shift->isLogicalShift();
5434 if (!CanFold) {
5435 // To test for the bad case of the signed shr, see if any
5436 // of the bits shifted in could be tested after the mask.
5437 uint32_t TyBits = Ty->getPrimitiveSizeInBits();
5438 int ShAmtVal = TyBits - ShAmt->getLimitedValue(TyBits);
5439
5440 uint32_t BitWidth = AndTy->getPrimitiveSizeInBits();
5441 if ((APInt::getHighBitsSet(BitWidth, BitWidth-ShAmtVal) &
5442 AndCST->getValue()) == 0)
5443 CanFold = true;
5444 }
5445
5446 if (CanFold) {
5447 Constant *NewCst;
5448 if (Shift->getOpcode() == Instruction::Shl)
5449 NewCst = ConstantExpr::getLShr(RHS, ShAmt);
5450 else
5451 NewCst = ConstantExpr::getShl(RHS, ShAmt);
5452
5453 // Check to see if we are shifting out any of the bits being
5454 // compared.
5455 if (ConstantExpr::get(Shift->getOpcode(), NewCst, ShAmt) != RHS) {
5456 // If we shifted bits out, the fold is not going to work out.
5457 // As a special case, check to see if this means that the
5458 // result is always true or false now.
5459 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
5460 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5461 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
5462 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5463 } else {
5464 ICI.setOperand(1, NewCst);
5465 Constant *NewAndCST;
5466 if (Shift->getOpcode() == Instruction::Shl)
5467 NewAndCST = ConstantExpr::getLShr(AndCST, ShAmt);
5468 else
5469 NewAndCST = ConstantExpr::getShl(AndCST, ShAmt);
5470 LHSI->setOperand(1, NewAndCST);
5471 LHSI->setOperand(0, Shift->getOperand(0));
5472 AddToWorkList(Shift); // Shift is dead.
5473 AddUsesToWorkList(ICI);
5474 return &ICI;
5475 }
5476 }
5477 }
5478
5479 // Turn ((X >> Y) & C) == 0 into (X & (C << Y)) == 0. The later is
5480 // preferable because it allows the C<<Y expression to be hoisted out
5481 // of a loop if Y is invariant and X is not.
5482 if (Shift && Shift->hasOneUse() && RHSV == 0 &&
5483 ICI.isEquality() && !Shift->isArithmeticShift() &&
5484 isa<Instruction>(Shift->getOperand(0))) {
5485 // Compute C << Y.
5486 Value *NS;
5487 if (Shift->getOpcode() == Instruction::LShr) {
5488 NS = BinaryOperator::createShl(AndCST,
5489 Shift->getOperand(1), "tmp");
5490 } else {
5491 // Insert a logical shift.
5492 NS = BinaryOperator::createLShr(AndCST,
5493 Shift->getOperand(1), "tmp");
5494 }
5495 InsertNewInstBefore(cast<Instruction>(NS), ICI);
5496
5497 // Compute X & (C << Y).
5498 Instruction *NewAnd =
5499 BinaryOperator::createAnd(Shift->getOperand(0), NS, LHSI->getName());
5500 InsertNewInstBefore(NewAnd, ICI);
5501
5502 ICI.setOperand(0, NewAnd);
5503 return &ICI;
5504 }
5505 }
5506 break;
5507
5508 case Instruction::Shl: { // (icmp pred (shl X, ShAmt), CI)
5509 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
5510 if (!ShAmt) break;
5511
5512 uint32_t TypeBits = RHSV.getBitWidth();
5513
5514 // Check that the shift amount is in range. If not, don't perform
5515 // undefined shifts. When the shift is visited it will be
5516 // simplified.
5517 if (ShAmt->uge(TypeBits))
5518 break;
5519
5520 if (ICI.isEquality()) {
5521 // If we are comparing against bits always shifted out, the
5522 // comparison cannot succeed.
5523 Constant *Comp =
5524 ConstantExpr::getShl(ConstantExpr::getLShr(RHS, ShAmt), ShAmt);
5525 if (Comp != RHS) {// Comparing against a bit that we know is zero.
5526 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
5527 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
5528 return ReplaceInstUsesWith(ICI, Cst);
5529 }
5530
5531 if (LHSI->hasOneUse()) {
5532 // Otherwise strength reduce the shift into an and.
5533 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
5534 Constant *Mask =
5535 ConstantInt::get(APInt::getLowBitsSet(TypeBits, TypeBits-ShAmtVal));
5536
5537 Instruction *AndI =
5538 BinaryOperator::createAnd(LHSI->getOperand(0),
5539 Mask, LHSI->getName()+".mask");
5540 Value *And = InsertNewInstBefore(AndI, ICI);
5541 return new ICmpInst(ICI.getPredicate(), And,
5542 ConstantInt::get(RHSV.lshr(ShAmtVal)));
5543 }
5544 }
5545
5546 // Otherwise, if this is a comparison of the sign bit, simplify to and/test.
5547 bool TrueIfSigned = false;
5548 if (LHSI->hasOneUse() &&
5549 isSignBitCheck(ICI.getPredicate(), RHS, TrueIfSigned)) {
5550 // (X << 31) <s 0 --> (X&1) != 0
5551 Constant *Mask = ConstantInt::get(APInt(TypeBits, 1) <<
5552 (TypeBits-ShAmt->getZExtValue()-1));
5553 Instruction *AndI =
5554 BinaryOperator::createAnd(LHSI->getOperand(0),
5555 Mask, LHSI->getName()+".mask");
5556 Value *And = InsertNewInstBefore(AndI, ICI);
5557
5558 return new ICmpInst(TrueIfSigned ? ICmpInst::ICMP_NE : ICmpInst::ICMP_EQ,
5559 And, Constant::getNullValue(And->getType()));
5560 }
5561 break;
5562 }
5563
5564 case Instruction::LShr: // (icmp pred (shr X, ShAmt), CI)
5565 case Instruction::AShr: {
5566 ConstantInt *ShAmt = dyn_cast<ConstantInt>(LHSI->getOperand(1));
5567 if (!ShAmt) break;
5568
5569 if (ICI.isEquality()) {
5570 // Check that the shift amount is in range. If not, don't perform
5571 // undefined shifts. When the shift is visited it will be
5572 // simplified.
5573 uint32_t TypeBits = RHSV.getBitWidth();
5574 if (ShAmt->uge(TypeBits))
5575 break;
5576 uint32_t ShAmtVal = (uint32_t)ShAmt->getLimitedValue(TypeBits);
5577
5578 // If we are comparing against bits always shifted out, the
5579 // comparison cannot succeed.
5580 APInt Comp = RHSV << ShAmtVal;
5581 if (LHSI->getOpcode() == Instruction::LShr)
5582 Comp = Comp.lshr(ShAmtVal);
5583 else
5584 Comp = Comp.ashr(ShAmtVal);
5585
5586 if (Comp != RHSV) { // Comparing against a bit that we know is zero.
5587 bool IsICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
5588 Constant *Cst = ConstantInt::get(Type::Int1Ty, IsICMP_NE);
5589 return ReplaceInstUsesWith(ICI, Cst);
5590 }
5591
5592 if (LHSI->hasOneUse() || RHSV == 0) {
5593 // Otherwise strength reduce the shift into an and.
5594 APInt Val(APInt::getHighBitsSet(TypeBits, TypeBits - ShAmtVal));
5595 Constant *Mask = ConstantInt::get(Val);
5596
5597 Instruction *AndI =
5598 BinaryOperator::createAnd(LHSI->getOperand(0),
5599 Mask, LHSI->getName()+".mask");
5600 Value *And = InsertNewInstBefore(AndI, ICI);
5601 return new ICmpInst(ICI.getPredicate(), And,
5602 ConstantExpr::getShl(RHS, ShAmt));
5603 }
5604 }
5605 break;
5606 }
5607
5608 case Instruction::SDiv:
5609 case Instruction::UDiv:
5610 // Fold: icmp pred ([us]div X, C1), C2 -> range test
5611 // Fold this div into the comparison, producing a range check.
5612 // Determine, based on the divide type, what the range is being
5613 // checked. If there is an overflow on the low or high side, remember
5614 // it, otherwise compute the range [low, hi) bounding the new value.
5615 // See: InsertRangeTest above for the kinds of replacements possible.
5616 if (ConstantInt *DivRHS = dyn_cast<ConstantInt>(LHSI->getOperand(1)))
5617 if (Instruction *R = FoldICmpDivCst(ICI, cast<BinaryOperator>(LHSI),
5618 DivRHS))
5619 return R;
5620 break;
5621 }
5622
5623 // Simplify icmp_eq and icmp_ne instructions with integer constant RHS.
5624 if (ICI.isEquality()) {
5625 bool isICMP_NE = ICI.getPredicate() == ICmpInst::ICMP_NE;
5626
5627 // If the first operand is (add|sub|and|or|xor|rem) with a constant, and
5628 // the second operand is a constant, simplify a bit.
5629 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(LHSI)) {
5630 switch (BO->getOpcode()) {
5631 case Instruction::SRem:
5632 // If we have a signed (X % (2^c)) == 0, turn it into an unsigned one.
5633 if (RHSV == 0 && isa<ConstantInt>(BO->getOperand(1)) &&BO->hasOneUse()){
5634 const APInt &V = cast<ConstantInt>(BO->getOperand(1))->getValue();
5635 if (V.sgt(APInt(V.getBitWidth(), 1)) && V.isPowerOf2()) {
5636 Instruction *NewRem =
5637 BinaryOperator::createURem(BO->getOperand(0), BO->getOperand(1),
5638 BO->getName());
5639 InsertNewInstBefore(NewRem, ICI);
5640 return new ICmpInst(ICI.getPredicate(), NewRem,
5641 Constant::getNullValue(BO->getType()));
5642 }
5643 }
5644 break;
5645 case Instruction::Add:
5646 // Replace ((add A, B) != C) with (A != C-B) if B & C are constants.
5647 if (ConstantInt *BOp1C = dyn_cast<ConstantInt>(BO->getOperand(1))) {
5648 if (BO->hasOneUse())
5649 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
5650 Subtract(RHS, BOp1C));
5651 } else if (RHSV == 0) {
5652 // Replace ((add A, B) != 0) with (A != -B) if A or B is
5653 // efficiently invertible, or if the add has just this one use.
5654 Value *BOp0 = BO->getOperand(0), *BOp1 = BO->getOperand(1);
5655
5656 if (Value *NegVal = dyn_castNegVal(BOp1))
5657 return new ICmpInst(ICI.getPredicate(), BOp0, NegVal);
5658 else if (Value *NegVal = dyn_castNegVal(BOp0))
5659 return new ICmpInst(ICI.getPredicate(), NegVal, BOp1);
5660 else if (BO->hasOneUse()) {
5661 Instruction *Neg = BinaryOperator::createNeg(BOp1);
5662 InsertNewInstBefore(Neg, ICI);
5663 Neg->takeName(BO);
5664 return new ICmpInst(ICI.getPredicate(), BOp0, Neg);
5665 }
5666 }
5667 break;
5668 case Instruction::Xor:
5669 // For the xor case, we can xor two constants together, eliminating
5670 // the explicit xor.
5671 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1)))
5672 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
5673 ConstantExpr::getXor(RHS, BOC));
5674
5675 // FALLTHROUGH
5676 case Instruction::Sub:
5677 // Replace (([sub|xor] A, B) != 0) with (A != B)
5678 if (RHSV == 0)
5679 return new ICmpInst(ICI.getPredicate(), BO->getOperand(0),
5680 BO->getOperand(1));
5681 break;
5682
5683 case Instruction::Or:
5684 // If bits are being or'd in that are not present in the constant we
5685 // are comparing against, then the comparison could never succeed!
5686 if (Constant *BOC = dyn_cast<Constant>(BO->getOperand(1))) {
5687 Constant *NotCI = ConstantExpr::getNot(RHS);
5688 if (!ConstantExpr::getAnd(BOC, NotCI)->isNullValue())
5689 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
5690 isICMP_NE));
5691 }
5692 break;
5693
5694 case Instruction::And:
5695 if (ConstantInt *BOC = dyn_cast<ConstantInt>(BO->getOperand(1))) {
5696 // If bits are being compared against that are and'd out, then the
5697 // comparison can never succeed!
5698 if ((RHSV & ~BOC->getValue()) != 0)
5699 return ReplaceInstUsesWith(ICI, ConstantInt::get(Type::Int1Ty,
5700 isICMP_NE));
5701
5702 // If we have ((X & C) == C), turn it into ((X & C) != 0).
5703 if (RHS == BOC && RHSV.isPowerOf2())
5704 return new ICmpInst(isICMP_NE ? ICmpInst::ICMP_EQ :
5705 ICmpInst::ICMP_NE, LHSI,
5706 Constant::getNullValue(RHS->getType()));
5707
5708 // Replace (and X, (1 << size(X)-1) != 0) with x s< 0
5709 if (isSignBit(BOC)) {
5710 Value *X = BO->getOperand(0);
5711 Constant *Zero = Constant::getNullValue(X->getType());
5712 ICmpInst::Predicate pred = isICMP_NE ?
5713 ICmpInst::ICMP_SLT : ICmpInst::ICMP_SGE;
5714 return new ICmpInst(pred, X, Zero);
5715 }
5716
5717 // ((X & ~7) == 0) --> X < 8
5718 if (RHSV == 0 && isHighOnes(BOC)) {
5719 Value *X = BO->getOperand(0);
5720 Constant *NegX = ConstantExpr::getNeg(BOC);
5721 ICmpInst::Predicate pred = isICMP_NE ?
5722 ICmpInst::ICMP_UGE : ICmpInst::ICMP_ULT;
5723 return new ICmpInst(pred, X, NegX);
5724 }
5725 }
5726 default: break;
5727 }
5728 } else if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(LHSI)) {
5729 // Handle icmp {eq|ne} <intrinsic>, intcst.
5730 if (II->getIntrinsicID() == Intrinsic::bswap) {
5731 AddToWorkList(II);
5732 ICI.setOperand(0, II->getOperand(1));
5733 ICI.setOperand(1, ConstantInt::get(RHSV.byteSwap()));
5734 return &ICI;
5735 }
5736 }
5737 } else { // Not a ICMP_EQ/ICMP_NE
5738 // If the LHS is a cast from an integral value of the same size,
5739 // then since we know the RHS is a constant, try to simlify.
5740 if (CastInst *Cast = dyn_cast<CastInst>(LHSI)) {
5741 Value *CastOp = Cast->getOperand(0);
5742 const Type *SrcTy = CastOp->getType();
5743 uint32_t SrcTySize = SrcTy->getPrimitiveSizeInBits();
5744 if (SrcTy->isInteger() &&
5745 SrcTySize == Cast->getType()->getPrimitiveSizeInBits()) {
5746 // If this is an unsigned comparison, try to make the comparison use
5747 // smaller constant values.
5748 if (ICI.getPredicate() == ICmpInst::ICMP_ULT && RHSV.isSignBit()) {
5749 // X u< 128 => X s> -1
5750 return new ICmpInst(ICmpInst::ICMP_SGT, CastOp,
5751 ConstantInt::get(APInt::getAllOnesValue(SrcTySize)));
5752 } else if (ICI.getPredicate() == ICmpInst::ICMP_UGT &&
5753 RHSV == APInt::getSignedMaxValue(SrcTySize)) {
5754 // X u> 127 => X s< 0
5755 return new ICmpInst(ICmpInst::ICMP_SLT, CastOp,
5756 Constant::getNullValue(SrcTy));
5757 }
5758 }
5759 }
5760 }
5761 return 0;
5762}
5763
5764/// visitICmpInstWithCastAndCast - Handle icmp (cast x to y), (cast/cst).
5765/// We only handle extending casts so far.
5766///
5767Instruction *InstCombiner::visitICmpInstWithCastAndCast(ICmpInst &ICI) {
5768 const CastInst *LHSCI = cast<CastInst>(ICI.getOperand(0));
5769 Value *LHSCIOp = LHSCI->getOperand(0);
5770 const Type *SrcTy = LHSCIOp->getType();
5771 const Type *DestTy = LHSCI->getType();
5772 Value *RHSCIOp;
5773
5774 // Turn icmp (ptrtoint x), (ptrtoint/c) into a compare of the input if the
5775 // integer type is the same size as the pointer type.
5776 if (LHSCI->getOpcode() == Instruction::PtrToInt &&
5777 getTargetData().getPointerSizeInBits() ==
5778 cast<IntegerType>(DestTy)->getBitWidth()) {
5779 Value *RHSOp = 0;
5780 if (Constant *RHSC = dyn_cast<Constant>(ICI.getOperand(1))) {
5781 RHSOp = ConstantExpr::getIntToPtr(RHSC, SrcTy);
5782 } else if (PtrToIntInst *RHSC = dyn_cast<PtrToIntInst>(ICI.getOperand(1))) {
5783 RHSOp = RHSC->getOperand(0);
5784 // If the pointer types don't match, insert a bitcast.
5785 if (LHSCIOp->getType() != RHSOp->getType())
5786 RHSOp = InsertCastBefore(Instruction::BitCast, RHSOp,
5787 LHSCIOp->getType(), ICI);
5788 }
5789
5790 if (RHSOp)
5791 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSOp);
5792 }
5793
5794 // The code below only handles extension cast instructions, so far.
5795 // Enforce this.
5796 if (LHSCI->getOpcode() != Instruction::ZExt &&
5797 LHSCI->getOpcode() != Instruction::SExt)
5798 return 0;
5799
5800 bool isSignedExt = LHSCI->getOpcode() == Instruction::SExt;
5801 bool isSignedCmp = ICI.isSignedPredicate();
5802
5803 if (CastInst *CI = dyn_cast<CastInst>(ICI.getOperand(1))) {
5804 // Not an extension from the same type?
5805 RHSCIOp = CI->getOperand(0);
5806 if (RHSCIOp->getType() != LHSCIOp->getType())
5807 return 0;
5808
5809 // If the signedness of the two compares doesn't agree (i.e. one is a sext
5810 // and the other is a zext), then we can't handle this.
5811 if (CI->getOpcode() != LHSCI->getOpcode())
5812 return 0;
5813
5814 // Likewise, if the signedness of the [sz]exts and the compare don't match,
5815 // then we can't handle this.
5816 if (isSignedExt != isSignedCmp && !ICI.isEquality())
5817 return 0;
5818
5819 // Okay, just insert a compare of the reduced operands now!
5820 return new ICmpInst(ICI.getPredicate(), LHSCIOp, RHSCIOp);
5821 }
5822
5823 // If we aren't dealing with a constant on the RHS, exit early
5824 ConstantInt *CI = dyn_cast<ConstantInt>(ICI.getOperand(1));
5825 if (!CI)
5826 return 0;
5827
5828 // Compute the constant that would happen if we truncated to SrcTy then
5829 // reextended to DestTy.
5830 Constant *Res1 = ConstantExpr::getTrunc(CI, SrcTy);
5831 Constant *Res2 = ConstantExpr::getCast(LHSCI->getOpcode(), Res1, DestTy);
5832
5833 // If the re-extended constant didn't change...
5834 if (Res2 == CI) {
5835 // Make sure that sign of the Cmp and the sign of the Cast are the same.
5836 // For example, we might have:
5837 // %A = sext short %X to uint
5838 // %B = icmp ugt uint %A, 1330
5839 // It is incorrect to transform this into
5840 // %B = icmp ugt short %X, 1330
5841 // because %A may have negative value.
5842 //
5843 // However, it is OK if SrcTy is bool (See cast-set.ll testcase)
5844 // OR operation is EQ/NE.
5845 if (isSignedExt == isSignedCmp || SrcTy == Type::Int1Ty || ICI.isEquality())
5846 return new ICmpInst(ICI.getPredicate(), LHSCIOp, Res1);
5847 else
5848 return 0;
5849 }
5850
5851 // The re-extended constant changed so the constant cannot be represented
5852 // in the shorter type. Consequently, we cannot emit a simple comparison.
5853
5854 // First, handle some easy cases. We know the result cannot be equal at this
5855 // point so handle the ICI.isEquality() cases
5856 if (ICI.getPredicate() == ICmpInst::ICMP_EQ)
5857 return ReplaceInstUsesWith(ICI, ConstantInt::getFalse());
5858 if (ICI.getPredicate() == ICmpInst::ICMP_NE)
5859 return ReplaceInstUsesWith(ICI, ConstantInt::getTrue());
5860
5861 // Evaluate the comparison for LT (we invert for GT below). LE and GE cases
5862 // should have been folded away previously and not enter in here.
5863 Value *Result;
5864 if (isSignedCmp) {
5865 // We're performing a signed comparison.
5866 if (cast<ConstantInt>(CI)->getValue().isNegative())
5867 Result = ConstantInt::getFalse(); // X < (small) --> false
5868 else
5869 Result = ConstantInt::getTrue(); // X < (large) --> true
5870 } else {
5871 // We're performing an unsigned comparison.
5872 if (isSignedExt) {
5873 // We're performing an unsigned comp with a sign extended value.
5874 // This is true if the input is >= 0. [aka >s -1]
5875 Constant *NegOne = ConstantInt::getAllOnesValue(SrcTy);
5876 Result = InsertNewInstBefore(new ICmpInst(ICmpInst::ICMP_SGT, LHSCIOp,
5877 NegOne, ICI.getName()), ICI);
5878 } else {
5879 // Unsigned extend & unsigned compare -> always true.
5880 Result = ConstantInt::getTrue();
5881 }
5882 }
5883
5884 // Finally, return the value computed.
5885 if (ICI.getPredicate() == ICmpInst::ICMP_ULT ||
5886 ICI.getPredicate() == ICmpInst::ICMP_SLT) {
5887 return ReplaceInstUsesWith(ICI, Result);
5888 } else {
5889 assert((ICI.getPredicate()==ICmpInst::ICMP_UGT ||
5890 ICI.getPredicate()==ICmpInst::ICMP_SGT) &&
5891 "ICmp should be folded!");
5892 if (Constant *CI = dyn_cast<Constant>(Result))
5893 return ReplaceInstUsesWith(ICI, ConstantExpr::getNot(CI));
5894 else
5895 return BinaryOperator::createNot(Result);
5896 }
5897}
5898
5899Instruction *InstCombiner::visitShl(BinaryOperator &I) {
5900 return commonShiftTransforms(I);
5901}
5902
5903Instruction *InstCombiner::visitLShr(BinaryOperator &I) {
5904 return commonShiftTransforms(I);
5905}
5906
5907Instruction *InstCombiner::visitAShr(BinaryOperator &I) {
Chris Lattnere3c504f2007-12-06 01:59:46 +00005908 if (Instruction *R = commonShiftTransforms(I))
5909 return R;
5910
5911 Value *Op0 = I.getOperand(0);
5912
5913 // ashr int -1, X = -1 (for any arithmetic shift rights of ~0)
5914 if (ConstantInt *CSI = dyn_cast<ConstantInt>(Op0))
5915 if (CSI->isAllOnesValue())
5916 return ReplaceInstUsesWith(I, CSI);
5917
5918 // See if we can turn a signed shr into an unsigned shr.
5919 if (MaskedValueIsZero(Op0,
5920 APInt::getSignBit(I.getType()->getPrimitiveSizeInBits())))
5921 return BinaryOperator::createLShr(Op0, I.getOperand(1));
5922
5923 return 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005924}
5925
5926Instruction *InstCombiner::commonShiftTransforms(BinaryOperator &I) {
5927 assert(I.getOperand(1)->getType() == I.getOperand(0)->getType());
5928 Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
5929
5930 // shl X, 0 == X and shr X, 0 == X
5931 // shl 0, X == 0 and shr 0, X == 0
5932 if (Op1 == Constant::getNullValue(Op1->getType()) ||
5933 Op0 == Constant::getNullValue(Op0->getType()))
5934 return ReplaceInstUsesWith(I, Op0);
5935
5936 if (isa<UndefValue>(Op0)) {
5937 if (I.getOpcode() == Instruction::AShr) // undef >>s X -> undef
5938 return ReplaceInstUsesWith(I, Op0);
5939 else // undef << X -> 0, undef >>u X -> 0
5940 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
5941 }
5942 if (isa<UndefValue>(Op1)) {
5943 if (I.getOpcode() == Instruction::AShr) // X >>s undef -> X
5944 return ReplaceInstUsesWith(I, Op0);
5945 else // X << undef, X >>u undef -> 0
5946 return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
5947 }
5948
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005949 // Try to fold constant and into select arguments.
5950 if (isa<Constant>(Op0))
5951 if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
5952 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
5953 return R;
5954
Dan Gohmanf17a25c2007-07-18 16:29:46 +00005955 if (ConstantInt *CUI = dyn_cast<ConstantInt>(Op1))
5956 if (Instruction *Res = FoldShiftByConstant(Op0, CUI, I))
5957 return Res;
5958 return 0;
5959}
5960
5961Instruction *InstCombiner::FoldShiftByConstant(Value *Op0, ConstantInt *Op1,
5962 BinaryOperator &I) {
5963 bool isLeftShift = I.getOpcode() == Instruction::Shl;
5964
5965 // See if we can simplify any instructions used by the instruction whose sole
5966 // purpose is to compute bits we don't care about.
5967 uint32_t TypeBits = Op0->getType()->getPrimitiveSizeInBits();
5968 APInt KnownZero(TypeBits, 0), KnownOne(TypeBits, 0);
5969 if (SimplifyDemandedBits(&I, APInt::getAllOnesValue(TypeBits),
5970 KnownZero, KnownOne))
5971 return &I;
5972
5973 // shl uint X, 32 = 0 and shr ubyte Y, 9 = 0, ... just don't eliminate shr
5974 // of a signed value.
5975 //
5976 if (Op1->uge(TypeBits)) {
5977 if (I.getOpcode() != Instruction::AShr)
5978 return ReplaceInstUsesWith(I, Constant::getNullValue(Op0->getType()));
5979 else {
5980 I.setOperand(1, ConstantInt::get(I.getType(), TypeBits-1));
5981 return &I;
5982 }
5983 }
5984
5985 // ((X*C1) << C2) == (X * (C1 << C2))
5986 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(Op0))
5987 if (BO->getOpcode() == Instruction::Mul && isLeftShift)
5988 if (Constant *BOOp = dyn_cast<Constant>(BO->getOperand(1)))
5989 return BinaryOperator::createMul(BO->getOperand(0),
5990 ConstantExpr::getShl(BOOp, Op1));
5991
5992 // Try to fold constant and into select arguments.
5993 if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
5994 if (Instruction *R = FoldOpIntoSelect(I, SI, this))
5995 return R;
5996 if (isa<PHINode>(Op0))
5997 if (Instruction *NV = FoldOpIntoPhi(I))
5998 return NV;
5999
6000 if (Op0->hasOneUse()) {
6001 if (BinaryOperator *Op0BO = dyn_cast<BinaryOperator>(Op0)) {
6002 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6003 Value *V1, *V2;
6004 ConstantInt *CC;
6005 switch (Op0BO->getOpcode()) {
6006 default: break;
6007 case Instruction::Add:
6008 case Instruction::And:
6009 case Instruction::Or:
6010 case Instruction::Xor: {
6011 // These operators commute.
6012 // Turn (Y + (X >> C)) << C -> (X + (Y << C)) & (~0 << C)
6013 if (isLeftShift && Op0BO->getOperand(1)->hasOneUse() &&
6014 match(Op0BO->getOperand(1),
6015 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
6016 Instruction *YS = BinaryOperator::createShl(
6017 Op0BO->getOperand(0), Op1,
6018 Op0BO->getName());
6019 InsertNewInstBefore(YS, I); // (Y << C)
6020 Instruction *X =
6021 BinaryOperator::create(Op0BO->getOpcode(), YS, V1,
6022 Op0BO->getOperand(1)->getName());
6023 InsertNewInstBefore(X, I); // (X + (Y << C))
6024 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
6025 return BinaryOperator::createAnd(X, ConstantInt::get(
6026 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6027 }
6028
6029 // Turn (Y + ((X >> C) & CC)) << C -> ((X & (CC << C)) + (Y << C))
6030 Value *Op0BOOp1 = Op0BO->getOperand(1);
6031 if (isLeftShift && Op0BOOp1->hasOneUse() &&
6032 match(Op0BOOp1,
6033 m_And(m_Shr(m_Value(V1), m_Value(V2)),m_ConstantInt(CC))) &&
6034 cast<BinaryOperator>(Op0BOOp1)->getOperand(0)->hasOneUse() &&
6035 V2 == Op1) {
6036 Instruction *YS = BinaryOperator::createShl(
6037 Op0BO->getOperand(0), Op1,
6038 Op0BO->getName());
6039 InsertNewInstBefore(YS, I); // (Y << C)
6040 Instruction *XM =
6041 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
6042 V1->getName()+".mask");
6043 InsertNewInstBefore(XM, I); // X & (CC << C)
6044
6045 return BinaryOperator::create(Op0BO->getOpcode(), YS, XM);
6046 }
6047 }
6048
6049 // FALL THROUGH.
6050 case Instruction::Sub: {
6051 // Turn ((X >> C) + Y) << C -> (X + (Y << C)) & (~0 << C)
6052 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6053 match(Op0BO->getOperand(0),
6054 m_Shr(m_Value(V1), m_ConstantInt(CC))) && CC == Op1) {
6055 Instruction *YS = BinaryOperator::createShl(
6056 Op0BO->getOperand(1), Op1,
6057 Op0BO->getName());
6058 InsertNewInstBefore(YS, I); // (Y << C)
6059 Instruction *X =
6060 BinaryOperator::create(Op0BO->getOpcode(), V1, YS,
6061 Op0BO->getOperand(0)->getName());
6062 InsertNewInstBefore(X, I); // (X + (Y << C))
6063 uint32_t Op1Val = Op1->getLimitedValue(TypeBits);
6064 return BinaryOperator::createAnd(X, ConstantInt::get(
6065 APInt::getHighBitsSet(TypeBits, TypeBits-Op1Val)));
6066 }
6067
6068 // Turn (((X >> C)&CC) + Y) << C -> (X + (Y << C)) & (CC << C)
6069 if (isLeftShift && Op0BO->getOperand(0)->hasOneUse() &&
6070 match(Op0BO->getOperand(0),
6071 m_And(m_Shr(m_Value(V1), m_Value(V2)),
6072 m_ConstantInt(CC))) && V2 == Op1 &&
6073 cast<BinaryOperator>(Op0BO->getOperand(0))
6074 ->getOperand(0)->hasOneUse()) {
6075 Instruction *YS = BinaryOperator::createShl(
6076 Op0BO->getOperand(1), Op1,
6077 Op0BO->getName());
6078 InsertNewInstBefore(YS, I); // (Y << C)
6079 Instruction *XM =
6080 BinaryOperator::createAnd(V1, ConstantExpr::getShl(CC, Op1),
6081 V1->getName()+".mask");
6082 InsertNewInstBefore(XM, I); // X & (CC << C)
6083
6084 return BinaryOperator::create(Op0BO->getOpcode(), XM, YS);
6085 }
6086
6087 break;
6088 }
6089 }
6090
6091
6092 // If the operand is an bitwise operator with a constant RHS, and the
6093 // shift is the only use, we can pull it out of the shift.
6094 if (ConstantInt *Op0C = dyn_cast<ConstantInt>(Op0BO->getOperand(1))) {
6095 bool isValid = true; // Valid only for And, Or, Xor
6096 bool highBitSet = false; // Transform if high bit of constant set?
6097
6098 switch (Op0BO->getOpcode()) {
6099 default: isValid = false; break; // Do not perform transform!
6100 case Instruction::Add:
6101 isValid = isLeftShift;
6102 break;
6103 case Instruction::Or:
6104 case Instruction::Xor:
6105 highBitSet = false;
6106 break;
6107 case Instruction::And:
6108 highBitSet = true;
6109 break;
6110 }
6111
6112 // If this is a signed shift right, and the high bit is modified
6113 // by the logical operation, do not perform the transformation.
6114 // The highBitSet boolean indicates the value of the high bit of
6115 // the constant which would cause it to be modified for this
6116 // operation.
6117 //
Chris Lattner15b76e32007-12-06 06:25:04 +00006118 if (isValid && I.getOpcode() == Instruction::AShr)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006119 isValid = Op0C->getValue()[TypeBits-1] == highBitSet;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006120
6121 if (isValid) {
6122 Constant *NewRHS = ConstantExpr::get(I.getOpcode(), Op0C, Op1);
6123
6124 Instruction *NewShift =
6125 BinaryOperator::create(I.getOpcode(), Op0BO->getOperand(0), Op1);
6126 InsertNewInstBefore(NewShift, I);
6127 NewShift->takeName(Op0BO);
6128
6129 return BinaryOperator::create(Op0BO->getOpcode(), NewShift,
6130 NewRHS);
6131 }
6132 }
6133 }
6134 }
6135
6136 // Find out if this is a shift of a shift by a constant.
6137 BinaryOperator *ShiftOp = dyn_cast<BinaryOperator>(Op0);
6138 if (ShiftOp && !ShiftOp->isShift())
6139 ShiftOp = 0;
6140
6141 if (ShiftOp && isa<ConstantInt>(ShiftOp->getOperand(1))) {
6142 ConstantInt *ShiftAmt1C = cast<ConstantInt>(ShiftOp->getOperand(1));
6143 uint32_t ShiftAmt1 = ShiftAmt1C->getLimitedValue(TypeBits);
6144 uint32_t ShiftAmt2 = Op1->getLimitedValue(TypeBits);
6145 assert(ShiftAmt2 != 0 && "Should have been simplified earlier");
6146 if (ShiftAmt1 == 0) return 0; // Will be simplified in the future.
6147 Value *X = ShiftOp->getOperand(0);
6148
6149 uint32_t AmtSum = ShiftAmt1+ShiftAmt2; // Fold into one big shift.
6150 if (AmtSum > TypeBits)
6151 AmtSum = TypeBits;
6152
6153 const IntegerType *Ty = cast<IntegerType>(I.getType());
6154
6155 // Check for (X << c1) << c2 and (X >> c1) >> c2
6156 if (I.getOpcode() == ShiftOp->getOpcode()) {
6157 return BinaryOperator::create(I.getOpcode(), X,
6158 ConstantInt::get(Ty, AmtSum));
6159 } else if (ShiftOp->getOpcode() == Instruction::LShr &&
6160 I.getOpcode() == Instruction::AShr) {
6161 // ((X >>u C1) >>s C2) -> (X >>u (C1+C2)) since C1 != 0.
6162 return BinaryOperator::createLShr(X, ConstantInt::get(Ty, AmtSum));
6163 } else if (ShiftOp->getOpcode() == Instruction::AShr &&
6164 I.getOpcode() == Instruction::LShr) {
6165 // ((X >>s C1) >>u C2) -> ((X >>s (C1+C2)) & mask) since C1 != 0.
6166 Instruction *Shift =
6167 BinaryOperator::createAShr(X, ConstantInt::get(Ty, AmtSum));
6168 InsertNewInstBefore(Shift, I);
6169
6170 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
6171 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6172 }
6173
6174 // Okay, if we get here, one shift must be left, and the other shift must be
6175 // right. See if the amounts are equal.
6176 if (ShiftAmt1 == ShiftAmt2) {
6177 // If we have ((X >>? C) << C), turn this into X & (-1 << C).
6178 if (I.getOpcode() == Instruction::Shl) {
6179 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt1));
6180 return BinaryOperator::createAnd(X, ConstantInt::get(Mask));
6181 }
6182 // If we have ((X << C) >>u C), turn this into X & (-1 >>u C).
6183 if (I.getOpcode() == Instruction::LShr) {
6184 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt1));
6185 return BinaryOperator::createAnd(X, ConstantInt::get(Mask));
6186 }
6187 // We can simplify ((X << C) >>s C) into a trunc + sext.
6188 // NOTE: we could do this for any C, but that would make 'unusual' integer
6189 // types. For now, just stick to ones well-supported by the code
6190 // generators.
6191 const Type *SExtType = 0;
6192 switch (Ty->getBitWidth() - ShiftAmt1) {
6193 case 1 :
6194 case 8 :
6195 case 16 :
6196 case 32 :
6197 case 64 :
6198 case 128:
6199 SExtType = IntegerType::get(Ty->getBitWidth() - ShiftAmt1);
6200 break;
6201 default: break;
6202 }
6203 if (SExtType) {
6204 Instruction *NewTrunc = new TruncInst(X, SExtType, "sext");
6205 InsertNewInstBefore(NewTrunc, I);
6206 return new SExtInst(NewTrunc, Ty);
6207 }
6208 // Otherwise, we can't handle it yet.
6209 } else if (ShiftAmt1 < ShiftAmt2) {
6210 uint32_t ShiftDiff = ShiftAmt2-ShiftAmt1;
6211
6212 // (X >>? C1) << C2 --> X << (C2-C1) & (-1 << C2)
6213 if (I.getOpcode() == Instruction::Shl) {
6214 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6215 ShiftOp->getOpcode() == Instruction::AShr);
6216 Instruction *Shift =
6217 BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
6218 InsertNewInstBefore(Shift, I);
6219
6220 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
6221 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6222 }
6223
6224 // (X << C1) >>u C2 --> X >>u (C2-C1) & (-1 >> C2)
6225 if (I.getOpcode() == Instruction::LShr) {
6226 assert(ShiftOp->getOpcode() == Instruction::Shl);
6227 Instruction *Shift =
6228 BinaryOperator::createLShr(X, ConstantInt::get(Ty, ShiftDiff));
6229 InsertNewInstBefore(Shift, I);
6230
6231 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
6232 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6233 }
6234
6235 // We can't handle (X << C1) >>s C2, it shifts arbitrary bits in.
6236 } else {
6237 assert(ShiftAmt2 < ShiftAmt1);
6238 uint32_t ShiftDiff = ShiftAmt1-ShiftAmt2;
6239
6240 // (X >>? C1) << C2 --> X >>? (C1-C2) & (-1 << C2)
6241 if (I.getOpcode() == Instruction::Shl) {
6242 assert(ShiftOp->getOpcode() == Instruction::LShr ||
6243 ShiftOp->getOpcode() == Instruction::AShr);
6244 Instruction *Shift =
6245 BinaryOperator::create(ShiftOp->getOpcode(), X,
6246 ConstantInt::get(Ty, ShiftDiff));
6247 InsertNewInstBefore(Shift, I);
6248
6249 APInt Mask(APInt::getHighBitsSet(TypeBits, TypeBits - ShiftAmt2));
6250 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6251 }
6252
6253 // (X << C1) >>u C2 --> X << (C1-C2) & (-1 >> C2)
6254 if (I.getOpcode() == Instruction::LShr) {
6255 assert(ShiftOp->getOpcode() == Instruction::Shl);
6256 Instruction *Shift =
6257 BinaryOperator::createShl(X, ConstantInt::get(Ty, ShiftDiff));
6258 InsertNewInstBefore(Shift, I);
6259
6260 APInt Mask(APInt::getLowBitsSet(TypeBits, TypeBits - ShiftAmt2));
6261 return BinaryOperator::createAnd(Shift, ConstantInt::get(Mask));
6262 }
6263
6264 // We can't handle (X << C1) >>a C2, it shifts arbitrary bits in.
6265 }
6266 }
6267 return 0;
6268}
6269
6270
6271/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
6272/// expression. If so, decompose it, returning some value X, such that Val is
6273/// X*Scale+Offset.
6274///
6275static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
6276 int &Offset) {
6277 assert(Val->getType() == Type::Int32Ty && "Unexpected allocation size type!");
6278 if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
6279 Offset = CI->getZExtValue();
Chris Lattnerc59171a2007-10-12 05:30:59 +00006280 Scale = 0;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006281 return ConstantInt::get(Type::Int32Ty, 0);
Chris Lattnerc59171a2007-10-12 05:30:59 +00006282 } else if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
6283 if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
6284 if (I->getOpcode() == Instruction::Shl) {
6285 // This is a value scaled by '1 << the shift amt'.
6286 Scale = 1U << RHS->getZExtValue();
6287 Offset = 0;
6288 return I->getOperand(0);
6289 } else if (I->getOpcode() == Instruction::Mul) {
6290 // This value is scaled by 'RHS'.
6291 Scale = RHS->getZExtValue();
6292 Offset = 0;
6293 return I->getOperand(0);
6294 } else if (I->getOpcode() == Instruction::Add) {
6295 // We have X+C. Check to see if we really have (X*C2)+C1,
6296 // where C1 is divisible by C2.
6297 unsigned SubScale;
6298 Value *SubVal =
6299 DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
6300 Offset += RHS->getZExtValue();
6301 Scale = SubScale;
6302 return SubVal;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006303 }
6304 }
6305 }
6306
6307 // Otherwise, we can't look past this.
6308 Scale = 1;
6309 Offset = 0;
6310 return Val;
6311}
6312
6313
6314/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
6315/// try to eliminate the cast by moving the type information into the alloc.
6316Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
6317 AllocationInst &AI) {
6318 const PointerType *PTy = cast<PointerType>(CI.getType());
6319
6320 // Remove any uses of AI that are dead.
6321 assert(!CI.use_empty() && "Dead instructions should be removed earlier!");
6322
6323 for (Value::use_iterator UI = AI.use_begin(), E = AI.use_end(); UI != E; ) {
6324 Instruction *User = cast<Instruction>(*UI++);
6325 if (isInstructionTriviallyDead(User)) {
6326 while (UI != E && *UI == User)
6327 ++UI; // If this instruction uses AI more than once, don't break UI.
6328
6329 ++NumDeadInst;
6330 DOUT << "IC: DCE: " << *User;
6331 EraseInstFromFunction(*User);
6332 }
6333 }
6334
6335 // Get the type really allocated and the type casted to.
6336 const Type *AllocElTy = AI.getAllocatedType();
6337 const Type *CastElTy = PTy->getElementType();
6338 if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
6339
6340 unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
6341 unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
6342 if (CastElTyAlign < AllocElTyAlign) return 0;
6343
6344 // If the allocation has multiple uses, only promote it if we are strictly
6345 // increasing the alignment of the resultant allocation. If we keep it the
6346 // same, we open the door to infinite loops of various kinds.
6347 if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
6348
Duncan Sandsf99fdc62007-11-01 20:53:16 +00006349 uint64_t AllocElTySize = TD->getABITypeSize(AllocElTy);
6350 uint64_t CastElTySize = TD->getABITypeSize(CastElTy);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006351 if (CastElTySize == 0 || AllocElTySize == 0) return 0;
6352
6353 // See if we can satisfy the modulus by pulling a scale out of the array
6354 // size argument.
6355 unsigned ArraySizeScale;
6356 int ArrayOffset;
6357 Value *NumElements = // See if the array size is a decomposable linear expr.
6358 DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
6359
6360 // If we can now satisfy the modulus, by using a non-1 scale, we really can
6361 // do the xform.
6362 if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
6363 (AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
6364
6365 unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
6366 Value *Amt = 0;
6367 if (Scale == 1) {
6368 Amt = NumElements;
6369 } else {
6370 // If the allocation size is constant, form a constant mul expression
6371 Amt = ConstantInt::get(Type::Int32Ty, Scale);
6372 if (isa<ConstantInt>(NumElements))
6373 Amt = Multiply(cast<ConstantInt>(NumElements), cast<ConstantInt>(Amt));
6374 // otherwise multiply the amount and the number of elements
6375 else if (Scale != 1) {
6376 Instruction *Tmp = BinaryOperator::createMul(Amt, NumElements, "tmp");
6377 Amt = InsertNewInstBefore(Tmp, AI);
6378 }
6379 }
6380
6381 if (int Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
6382 Value *Off = ConstantInt::get(Type::Int32Ty, Offset, true);
6383 Instruction *Tmp = BinaryOperator::createAdd(Amt, Off, "tmp");
6384 Amt = InsertNewInstBefore(Tmp, AI);
6385 }
6386
6387 AllocationInst *New;
6388 if (isa<MallocInst>(AI))
6389 New = new MallocInst(CastElTy, Amt, AI.getAlignment());
6390 else
6391 New = new AllocaInst(CastElTy, Amt, AI.getAlignment());
6392 InsertNewInstBefore(New, AI);
6393 New->takeName(&AI);
6394
6395 // If the allocation has multiple uses, insert a cast and change all things
6396 // that used it to use the new cast. This will also hack on CI, but it will
6397 // die soon.
6398 if (!AI.hasOneUse()) {
6399 AddUsesToWorkList(AI);
6400 // New is the allocation instruction, pointer typed. AI is the original
6401 // allocation instruction, also pointer typed. Thus, cast to use is BitCast.
6402 CastInst *NewCast = new BitCastInst(New, AI.getType(), "tmpcast");
6403 InsertNewInstBefore(NewCast, AI);
6404 AI.replaceAllUsesWith(NewCast);
6405 }
6406 return ReplaceInstUsesWith(CI, New);
6407}
6408
6409/// CanEvaluateInDifferentType - Return true if we can take the specified value
6410/// and return it as type Ty without inserting any new casts and without
6411/// changing the computed value. This is used by code that tries to decide
6412/// whether promoting or shrinking integer operations to wider or smaller types
6413/// will allow us to eliminate a truncate or extend.
6414///
6415/// This is a truncation operation if Ty is smaller than V->getType(), or an
6416/// extension operation if Ty is larger.
6417static bool CanEvaluateInDifferentType(Value *V, const IntegerType *Ty,
Chris Lattneref70bb82007-08-02 06:11:14 +00006418 unsigned CastOpc, int &NumCastsRemoved) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006419 // We can always evaluate constants in another type.
6420 if (isa<ConstantInt>(V))
6421 return true;
6422
6423 Instruction *I = dyn_cast<Instruction>(V);
6424 if (!I) return false;
6425
6426 const IntegerType *OrigTy = cast<IntegerType>(V->getType());
6427
Chris Lattneref70bb82007-08-02 06:11:14 +00006428 // If this is an extension or truncate, we can often eliminate it.
6429 if (isa<TruncInst>(I) || isa<ZExtInst>(I) || isa<SExtInst>(I)) {
6430 // If this is a cast from the destination type, we can trivially eliminate
6431 // it, and this will remove a cast overall.
6432 if (I->getOperand(0)->getType() == Ty) {
6433 // If the first operand is itself a cast, and is eliminable, do not count
6434 // this as an eliminable cast. We would prefer to eliminate those two
6435 // casts first.
6436 if (!isa<CastInst>(I->getOperand(0)))
6437 ++NumCastsRemoved;
6438 return true;
6439 }
6440 }
6441
6442 // We can't extend or shrink something that has multiple uses: doing so would
6443 // require duplicating the instruction in general, which isn't profitable.
6444 if (!I->hasOneUse()) return false;
6445
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006446 switch (I->getOpcode()) {
6447 case Instruction::Add:
6448 case Instruction::Sub:
6449 case Instruction::And:
6450 case Instruction::Or:
6451 case Instruction::Xor:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006452 // These operators can all arbitrarily be extended or truncated.
Chris Lattneref70bb82007-08-02 06:11:14 +00006453 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
6454 NumCastsRemoved) &&
6455 CanEvaluateInDifferentType(I->getOperand(1), Ty, CastOpc,
6456 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006457
6458 case Instruction::Shl:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006459 // If we are truncating the result of this SHL, and if it's a shift of a
6460 // constant amount, we can always perform a SHL in a smaller type.
6461 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
6462 uint32_t BitWidth = Ty->getBitWidth();
6463 if (BitWidth < OrigTy->getBitWidth() &&
6464 CI->getLimitedValue(BitWidth) < BitWidth)
Chris Lattneref70bb82007-08-02 06:11:14 +00006465 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
6466 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006467 }
6468 break;
6469 case Instruction::LShr:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006470 // If this is a truncate of a logical shr, we can truncate it to a smaller
6471 // lshr iff we know that the bits we would otherwise be shifting in are
6472 // already zeros.
6473 if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
6474 uint32_t OrigBitWidth = OrigTy->getBitWidth();
6475 uint32_t BitWidth = Ty->getBitWidth();
6476 if (BitWidth < OrigBitWidth &&
6477 MaskedValueIsZero(I->getOperand(0),
6478 APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
6479 CI->getLimitedValue(BitWidth) < BitWidth) {
Chris Lattneref70bb82007-08-02 06:11:14 +00006480 return CanEvaluateInDifferentType(I->getOperand(0), Ty, CastOpc,
6481 NumCastsRemoved);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006482 }
6483 }
6484 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006485 case Instruction::ZExt:
6486 case Instruction::SExt:
Chris Lattneref70bb82007-08-02 06:11:14 +00006487 case Instruction::Trunc:
6488 // If this is the same kind of case as our original (e.g. zext+zext), we
Chris Lattner9c909d22007-08-02 17:23:38 +00006489 // can safely replace it. Note that replacing it does not reduce the number
6490 // of casts in the input.
6491 if (I->getOpcode() == CastOpc)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006492 return true;
Chris Lattner2799b2f2007-09-10 23:46:29 +00006493
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006494 break;
6495 default:
6496 // TODO: Can handle more cases here.
6497 break;
6498 }
6499
6500 return false;
6501}
6502
6503/// EvaluateInDifferentType - Given an expression that
6504/// CanEvaluateInDifferentType returns true for, actually insert the code to
6505/// evaluate the expression.
6506Value *InstCombiner::EvaluateInDifferentType(Value *V, const Type *Ty,
6507 bool isSigned) {
6508 if (Constant *C = dyn_cast<Constant>(V))
6509 return ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
6510
6511 // Otherwise, it must be an instruction.
6512 Instruction *I = cast<Instruction>(V);
6513 Instruction *Res = 0;
6514 switch (I->getOpcode()) {
6515 case Instruction::Add:
6516 case Instruction::Sub:
6517 case Instruction::And:
6518 case Instruction::Or:
6519 case Instruction::Xor:
6520 case Instruction::AShr:
6521 case Instruction::LShr:
6522 case Instruction::Shl: {
6523 Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
6524 Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
6525 Res = BinaryOperator::create((Instruction::BinaryOps)I->getOpcode(),
6526 LHS, RHS, I->getName());
6527 break;
6528 }
6529 case Instruction::Trunc:
6530 case Instruction::ZExt:
6531 case Instruction::SExt:
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006532 // If the source type of the cast is the type we're trying for then we can
Chris Lattneref70bb82007-08-02 06:11:14 +00006533 // just return the source. There's no need to insert it because it is not
6534 // new.
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006535 if (I->getOperand(0)->getType() == Ty)
6536 return I->getOperand(0);
6537
Chris Lattneref70bb82007-08-02 06:11:14 +00006538 // Otherwise, must be the same type of case, so just reinsert a new one.
6539 Res = CastInst::create(cast<CastInst>(I)->getOpcode(), I->getOperand(0),
6540 Ty, I->getName());
6541 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006542 default:
6543 // TODO: Can handle more cases here.
6544 assert(0 && "Unreachable!");
6545 break;
6546 }
6547
6548 return InsertNewInstBefore(Res, *I);
6549}
6550
6551/// @brief Implement the transforms common to all CastInst visitors.
6552Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
6553 Value *Src = CI.getOperand(0);
6554
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006555 // Many cases of "cast of a cast" are eliminable. If it's eliminable we just
6556 // eliminate it now.
6557 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
6558 if (Instruction::CastOps opc =
6559 isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
6560 // The first cast (CSrc) is eliminable so we need to fix up or replace
6561 // the second cast (CI). CSrc will then have a good chance of being dead.
6562 return CastInst::create(opc, CSrc->getOperand(0), CI.getType());
6563 }
6564 }
6565
6566 // If we are casting a select then fold the cast into the select
6567 if (SelectInst *SI = dyn_cast<SelectInst>(Src))
6568 if (Instruction *NV = FoldOpIntoSelect(CI, SI, this))
6569 return NV;
6570
6571 // If we are casting a PHI then fold the cast into the PHI
6572 if (isa<PHINode>(Src))
6573 if (Instruction *NV = FoldOpIntoPhi(CI))
6574 return NV;
6575
6576 return 0;
6577}
6578
6579/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
6580Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
6581 Value *Src = CI.getOperand(0);
6582
6583 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
6584 // If casting the result of a getelementptr instruction with no offset, turn
6585 // this into a cast of the original pointer!
6586 if (GEP->hasAllZeroIndices()) {
6587 // Changing the cast operand is usually not a good idea but it is safe
6588 // here because the pointer operand is being replaced with another
6589 // pointer operand so the opcode doesn't need to change.
6590 AddToWorkList(GEP);
6591 CI.setOperand(0, GEP->getOperand(0));
6592 return &CI;
6593 }
6594
6595 // If the GEP has a single use, and the base pointer is a bitcast, and the
6596 // GEP computes a constant offset, see if we can convert these three
6597 // instructions into fewer. This typically happens with unions and other
6598 // non-type-safe code.
6599 if (GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0))) {
6600 if (GEP->hasAllConstantIndices()) {
6601 // We are guaranteed to get a constant from EmitGEPOffset.
6602 ConstantInt *OffsetV = cast<ConstantInt>(EmitGEPOffset(GEP, CI, *this));
6603 int64_t Offset = OffsetV->getSExtValue();
6604
6605 // Get the base pointer input of the bitcast, and the type it points to.
6606 Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
6607 const Type *GEPIdxTy =
6608 cast<PointerType>(OrigBase->getType())->getElementType();
6609 if (GEPIdxTy->isSized()) {
6610 SmallVector<Value*, 8> NewIndices;
6611
6612 // Start with the index over the outer type. Note that the type size
6613 // might be zero (even if the offset isn't zero) if the indexed type
6614 // is something like [0 x {int, int}]
6615 const Type *IntPtrTy = TD->getIntPtrType();
6616 int64_t FirstIdx = 0;
Duncan Sandsf99fdc62007-11-01 20:53:16 +00006617 if (int64_t TySize = TD->getABITypeSize(GEPIdxTy)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006618 FirstIdx = Offset/TySize;
6619 Offset %= TySize;
6620
6621 // Handle silly modulus not returning values values [0..TySize).
6622 if (Offset < 0) {
6623 --FirstIdx;
6624 Offset += TySize;
6625 assert(Offset >= 0);
6626 }
6627 assert((uint64_t)Offset < (uint64_t)TySize &&"Out of range offset");
6628 }
6629
6630 NewIndices.push_back(ConstantInt::get(IntPtrTy, FirstIdx));
6631
6632 // Index into the types. If we fail, set OrigBase to null.
6633 while (Offset) {
6634 if (const StructType *STy = dyn_cast<StructType>(GEPIdxTy)) {
6635 const StructLayout *SL = TD->getStructLayout(STy);
6636 if (Offset < (int64_t)SL->getSizeInBytes()) {
6637 unsigned Elt = SL->getElementContainingOffset(Offset);
6638 NewIndices.push_back(ConstantInt::get(Type::Int32Ty, Elt));
6639
6640 Offset -= SL->getElementOffset(Elt);
6641 GEPIdxTy = STy->getElementType(Elt);
6642 } else {
6643 // Otherwise, we can't index into this, bail out.
6644 Offset = 0;
6645 OrigBase = 0;
6646 }
6647 } else if (isa<ArrayType>(GEPIdxTy) || isa<VectorType>(GEPIdxTy)) {
6648 const SequentialType *STy = cast<SequentialType>(GEPIdxTy);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00006649 if (uint64_t EltSize = TD->getABITypeSize(STy->getElementType())){
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006650 NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
6651 Offset %= EltSize;
6652 } else {
6653 NewIndices.push_back(ConstantInt::get(IntPtrTy, 0));
6654 }
6655 GEPIdxTy = STy->getElementType();
6656 } else {
6657 // Otherwise, we can't index into this, bail out.
6658 Offset = 0;
6659 OrigBase = 0;
6660 }
6661 }
6662 if (OrigBase) {
6663 // If we were able to index down into an element, create the GEP
6664 // and bitcast the result. This eliminates one bitcast, potentially
6665 // two.
David Greene393be882007-09-04 15:46:09 +00006666 Instruction *NGEP = new GetElementPtrInst(OrigBase,
6667 NewIndices.begin(),
6668 NewIndices.end(), "");
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006669 InsertNewInstBefore(NGEP, CI);
6670 NGEP->takeName(GEP);
6671
6672 if (isa<BitCastInst>(CI))
6673 return new BitCastInst(NGEP, CI.getType());
6674 assert(isa<PtrToIntInst>(CI));
6675 return new PtrToIntInst(NGEP, CI.getType());
6676 }
6677 }
6678 }
6679 }
6680 }
6681
6682 return commonCastTransforms(CI);
6683}
6684
6685
6686
6687/// Only the TRUNC, ZEXT, SEXT, and BITCAST can both operand and result as
6688/// integer types. This function implements the common transforms for all those
6689/// cases.
6690/// @brief Implement the transforms common to CastInst with integer operands
6691Instruction *InstCombiner::commonIntCastTransforms(CastInst &CI) {
6692 if (Instruction *Result = commonCastTransforms(CI))
6693 return Result;
6694
6695 Value *Src = CI.getOperand(0);
6696 const Type *SrcTy = Src->getType();
6697 const Type *DestTy = CI.getType();
6698 uint32_t SrcBitSize = SrcTy->getPrimitiveSizeInBits();
6699 uint32_t DestBitSize = DestTy->getPrimitiveSizeInBits();
6700
6701 // See if we can simplify any instructions used by the LHS whose sole
6702 // purpose is to compute bits we don't care about.
6703 APInt KnownZero(DestBitSize, 0), KnownOne(DestBitSize, 0);
6704 if (SimplifyDemandedBits(&CI, APInt::getAllOnesValue(DestBitSize),
6705 KnownZero, KnownOne))
6706 return &CI;
6707
6708 // If the source isn't an instruction or has more than one use then we
6709 // can't do anything more.
6710 Instruction *SrcI = dyn_cast<Instruction>(Src);
6711 if (!SrcI || !Src->hasOneUse())
6712 return 0;
6713
6714 // Attempt to propagate the cast into the instruction for int->int casts.
6715 int NumCastsRemoved = 0;
6716 if (!isa<BitCastInst>(CI) &&
6717 CanEvaluateInDifferentType(SrcI, cast<IntegerType>(DestTy),
Chris Lattneref70bb82007-08-02 06:11:14 +00006718 CI.getOpcode(), NumCastsRemoved)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006719 // If this cast is a truncate, evaluting in a different type always
Chris Lattneref70bb82007-08-02 06:11:14 +00006720 // eliminates the cast, so it is always a win. If this is a zero-extension,
6721 // we need to do an AND to maintain the clear top-part of the computation,
6722 // so we require that the input have eliminated at least one cast. If this
6723 // is a sign extension, we insert two new casts (to do the extension) so we
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006724 // require that two casts have been eliminated.
6725 bool DoXForm;
6726 switch (CI.getOpcode()) {
6727 default:
6728 // All the others use floating point so we shouldn't actually
6729 // get here because of the check above.
6730 assert(0 && "Unknown cast type");
6731 case Instruction::Trunc:
6732 DoXForm = true;
6733 break;
6734 case Instruction::ZExt:
6735 DoXForm = NumCastsRemoved >= 1;
6736 break;
6737 case Instruction::SExt:
6738 DoXForm = NumCastsRemoved >= 2;
6739 break;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00006740 }
6741
6742 if (DoXForm) {
6743 Value *Res = EvaluateInDifferentType(SrcI, DestTy,
6744 CI.getOpcode() == Instruction::SExt);
6745 assert(Res->getType() == DestTy);
6746 switch (CI.getOpcode()) {
6747 default: assert(0 && "Unknown cast type!");
6748 case Instruction::Trunc:
6749 case Instruction::BitCast:
6750 // Just replace this cast with the result.
6751 return ReplaceInstUsesWith(CI, Res);
6752 case Instruction::ZExt: {
6753 // We need to emit an AND to clear the high bits.
6754 assert(SrcBitSize < DestBitSize && "Not a zext?");
6755 Constant *C = ConstantInt::get(APInt::getLowBitsSet(DestBitSize,
6756 SrcBitSize));
6757 return BinaryOperator::createAnd(Res, C);
6758 }
6759 case Instruction::SExt:
6760 // We need to emit a cast to truncate, then a cast to sext.
6761 return CastInst::create(Instruction::SExt,
6762 InsertCastBefore(Instruction::Trunc, Res, Src->getType(),
6763 CI), DestTy);
6764 }
6765 }
6766 }
6767
6768 Value *Op0 = SrcI->getNumOperands() > 0 ? SrcI->getOperand(0) : 0;
6769 Value *Op1 = SrcI->getNumOperands() > 1 ? SrcI->getOperand(1) : 0;
6770
6771 switch (SrcI->getOpcode()) {
6772 case Instruction::Add:
6773 case Instruction::Mul:
6774 case Instruction::And:
6775 case Instruction::Or:
6776 case Instruction::Xor:
6777 // If we are discarding information, rewrite.
6778 if (DestBitSize <= SrcBitSize && DestBitSize != 1) {
6779 // Don't insert two casts if they cannot be eliminated. We allow
6780 // two casts to be inserted if the sizes are the same. This could
6781 // only be converting signedness, which is a noop.
6782 if (DestBitSize == SrcBitSize ||
6783 !ValueRequiresCast(CI.getOpcode(), Op1, DestTy,TD) ||
6784 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
6785 Instruction::CastOps opcode = CI.getOpcode();
6786 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
6787 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
6788 return BinaryOperator::create(
6789 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
6790 }
6791 }
6792
6793 // cast (xor bool X, true) to int --> xor (cast bool X to int), 1
6794 if (isa<ZExtInst>(CI) && SrcBitSize == 1 &&
6795 SrcI->getOpcode() == Instruction::Xor &&
6796 Op1 == ConstantInt::getTrue() &&
6797 (!Op0->hasOneUse() || !isa<CmpInst>(Op0))) {
6798 Value *New = InsertOperandCastBefore(Instruction::ZExt, Op0, DestTy, &CI);
6799 return BinaryOperator::createXor(New, ConstantInt::get(CI.getType(), 1));
6800 }
6801 break;
6802 case Instruction::SDiv:
6803 case Instruction::UDiv:
6804 case Instruction::SRem:
6805 case Instruction::URem:
6806 // If we are just changing the sign, rewrite.
6807 if (DestBitSize == SrcBitSize) {
6808 // Don't insert two casts if they cannot be eliminated. We allow
6809 // two casts to be inserted if the sizes are the same. This could
6810 // only be converting signedness, which is a noop.
6811 if (!ValueRequiresCast(CI.getOpcode(), Op1, DestTy, TD) ||
6812 !ValueRequiresCast(CI.getOpcode(), Op0, DestTy, TD)) {
6813 Value *Op0c = InsertOperandCastBefore(Instruction::BitCast,
6814 Op0, DestTy, SrcI);
6815 Value *Op1c = InsertOperandCastBefore(Instruction::BitCast,
6816 Op1, DestTy, SrcI);
6817 return BinaryOperator::create(
6818 cast<BinaryOperator>(SrcI)->getOpcode(), Op0c, Op1c);
6819 }
6820 }
6821 break;
6822
6823 case Instruction::Shl:
6824 // Allow changing the sign of the source operand. Do not allow
6825 // changing the size of the shift, UNLESS the shift amount is a
6826 // constant. We must not change variable sized shifts to a smaller
6827 // size, because it is undefined to shift more bits out than exist
6828 // in the value.
6829 if (DestBitSize == SrcBitSize ||
6830 (DestBitSize < SrcBitSize && isa<Constant>(Op1))) {
6831 Instruction::CastOps opcode = (DestBitSize == SrcBitSize ?
6832 Instruction::BitCast : Instruction::Trunc);
6833 Value *Op0c = InsertOperandCastBefore(opcode, Op0, DestTy, SrcI);
6834 Value *Op1c = InsertOperandCastBefore(opcode, Op1, DestTy, SrcI);
6835 return BinaryOperator::createShl(Op0c, Op1c);
6836 }
6837 break;
6838 case Instruction::AShr:
6839 // If this is a signed shr, and if all bits shifted in are about to be
6840 // truncated off, turn it into an unsigned shr to allow greater
6841 // simplifications.
6842 if (DestBitSize < SrcBitSize &&
6843 isa<ConstantInt>(Op1)) {
6844 uint32_t ShiftAmt = cast<ConstantInt>(Op1)->getLimitedValue(SrcBitSize);
6845 if (SrcBitSize > ShiftAmt && SrcBitSize-ShiftAmt >= DestBitSize) {
6846 // Insert the new logical shift right.
6847 return BinaryOperator::createLShr(Op0, Op1);
6848 }
6849 }
6850 break;
6851 }
6852 return 0;
6853}
6854
6855Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
6856 if (Instruction *Result = commonIntCastTransforms(CI))
6857 return Result;
6858
6859 Value *Src = CI.getOperand(0);
6860 const Type *Ty = CI.getType();
6861 uint32_t DestBitWidth = Ty->getPrimitiveSizeInBits();
6862 uint32_t SrcBitWidth = cast<IntegerType>(Src->getType())->getBitWidth();
6863
6864 if (Instruction *SrcI = dyn_cast<Instruction>(Src)) {
6865 switch (SrcI->getOpcode()) {
6866 default: break;
6867 case Instruction::LShr:
6868 // We can shrink lshr to something smaller if we know the bits shifted in
6869 // are already zeros.
6870 if (ConstantInt *ShAmtV = dyn_cast<ConstantInt>(SrcI->getOperand(1))) {
6871 uint32_t ShAmt = ShAmtV->getLimitedValue(SrcBitWidth);
6872
6873 // Get a mask for the bits shifting in.
6874 APInt Mask(APInt::getLowBitsSet(SrcBitWidth, ShAmt).shl(DestBitWidth));
6875 Value* SrcIOp0 = SrcI->getOperand(0);
6876 if (SrcI->hasOneUse() && MaskedValueIsZero(SrcIOp0, Mask)) {
6877 if (ShAmt >= DestBitWidth) // All zeros.
6878 return ReplaceInstUsesWith(CI, Constant::getNullValue(Ty));
6879
6880 // Okay, we can shrink this. Truncate the input, then return a new
6881 // shift.
6882 Value *V1 = InsertCastBefore(Instruction::Trunc, SrcIOp0, Ty, CI);
6883 Value *V2 = InsertCastBefore(Instruction::Trunc, SrcI->getOperand(1),
6884 Ty, CI);
6885 return BinaryOperator::createLShr(V1, V2);
6886 }
6887 } else { // This is a variable shr.
6888
6889 // Turn 'trunc (lshr X, Y) to bool' into '(X & (1 << Y)) != 0'. This is
6890 // more LLVM instructions, but allows '1 << Y' to be hoisted if
6891 // loop-invariant and CSE'd.
6892 if (CI.getType() == Type::Int1Ty && SrcI->hasOneUse()) {
6893 Value *One = ConstantInt::get(SrcI->getType(), 1);
6894
6895 Value *V = InsertNewInstBefore(
6896 BinaryOperator::createShl(One, SrcI->getOperand(1),
6897 "tmp"), CI);
6898 V = InsertNewInstBefore(BinaryOperator::createAnd(V,
6899 SrcI->getOperand(0),
6900 "tmp"), CI);
6901 Value *Zero = Constant::getNullValue(V->getType());
6902 return new ICmpInst(ICmpInst::ICMP_NE, V, Zero);
6903 }
6904 }
6905 break;
6906 }
6907 }
6908
6909 return 0;
6910}
6911
6912Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
6913 // If one of the common conversion will work ..
6914 if (Instruction *Result = commonIntCastTransforms(CI))
6915 return Result;
6916
6917 Value *Src = CI.getOperand(0);
6918
6919 // If this is a cast of a cast
6920 if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
6921 // If this is a TRUNC followed by a ZEXT then we are dealing with integral
6922 // types and if the sizes are just right we can convert this into a logical
6923 // 'and' which will be much cheaper than the pair of casts.
6924 if (isa<TruncInst>(CSrc)) {
6925 // Get the sizes of the types involved
6926 Value *A = CSrc->getOperand(0);
6927 uint32_t SrcSize = A->getType()->getPrimitiveSizeInBits();
6928 uint32_t MidSize = CSrc->getType()->getPrimitiveSizeInBits();
6929 uint32_t DstSize = CI.getType()->getPrimitiveSizeInBits();
6930 // If we're actually extending zero bits and the trunc is a no-op
6931 if (MidSize < DstSize && SrcSize == DstSize) {
6932 // Replace both of the casts with an And of the type mask.
6933 APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
6934 Constant *AndConst = ConstantInt::get(AndValue);
6935 Instruction *And =
6936 BinaryOperator::createAnd(CSrc->getOperand(0), AndConst);
6937 // Unfortunately, if the type changed, we need to cast it back.
6938 if (And->getType() != CI.getType()) {
6939 And->setName(CSrc->getName()+".mask");
6940 InsertNewInstBefore(And, CI);
6941 And = CastInst::createIntegerCast(And, CI.getType(), false/*ZExt*/);
6942 }
6943 return And;
6944 }
6945 }
6946 }
6947
6948 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) {
6949 // If we are just checking for a icmp eq of a single bit and zext'ing it
6950 // to an integer, then shift the bit to the appropriate place and then
6951 // cast to integer to avoid the comparison.
6952 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
6953 const APInt &Op1CV = Op1C->getValue();
6954
6955 // zext (x <s 0) to i32 --> x>>u31 true if signbit set.
6956 // zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
6957 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
6958 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){
6959 Value *In = ICI->getOperand(0);
6960 Value *Sh = ConstantInt::get(In->getType(),
6961 In->getType()->getPrimitiveSizeInBits()-1);
6962 In = InsertNewInstBefore(BinaryOperator::createLShr(In, Sh,
6963 In->getName()+".lobit"),
6964 CI);
6965 if (In->getType() != CI.getType())
6966 In = CastInst::createIntegerCast(In, CI.getType(),
6967 false/*ZExt*/, "tmp", &CI);
6968
6969 if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
6970 Constant *One = ConstantInt::get(In->getType(), 1);
6971 In = InsertNewInstBefore(BinaryOperator::createXor(In, One,
6972 In->getName()+".not"),
6973 CI);
6974 }
6975
6976 return ReplaceInstUsesWith(CI, In);
6977 }
6978
6979
6980
6981 // zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
6982 // zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
6983 // zext (X == 1) to i32 --> X iff X has only the low bit set.
6984 // zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
6985 // zext (X != 0) to i32 --> X iff X has only the low bit set.
6986 // zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
6987 // zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
6988 // zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
6989 if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
6990 // This only works for EQ and NE
6991 ICI->isEquality()) {
6992 // If Op1C some other power of two, convert:
6993 uint32_t BitWidth = Op1C->getType()->getBitWidth();
6994 APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
6995 APInt TypeMask(APInt::getAllOnesValue(BitWidth));
6996 ComputeMaskedBits(ICI->getOperand(0), TypeMask, KnownZero, KnownOne);
6997
6998 APInt KnownZeroMask(~KnownZero);
6999 if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
7000 bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
7001 if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
7002 // (X&4) == 2 --> false
7003 // (X&4) != 2 --> true
7004 Constant *Res = ConstantInt::get(Type::Int1Ty, isNE);
7005 Res = ConstantExpr::getZExt(Res, CI.getType());
7006 return ReplaceInstUsesWith(CI, Res);
7007 }
7008
7009 uint32_t ShiftAmt = KnownZeroMask.logBase2();
7010 Value *In = ICI->getOperand(0);
7011 if (ShiftAmt) {
7012 // Perform a logical shr by shiftamt.
7013 // Insert the shift to put the result in the low bit.
7014 In = InsertNewInstBefore(
7015 BinaryOperator::createLShr(In,
7016 ConstantInt::get(In->getType(), ShiftAmt),
7017 In->getName()+".lobit"), CI);
7018 }
7019
7020 if ((Op1CV != 0) == isNE) { // Toggle the low bit.
7021 Constant *One = ConstantInt::get(In->getType(), 1);
7022 In = BinaryOperator::createXor(In, One, "tmp");
7023 InsertNewInstBefore(cast<Instruction>(In), CI);
7024 }
7025
7026 if (CI.getType() == In->getType())
7027 return ReplaceInstUsesWith(CI, In);
7028 else
7029 return CastInst::createIntegerCast(In, CI.getType(), false/*ZExt*/);
7030 }
7031 }
7032 }
7033 }
7034 return 0;
7035}
7036
7037Instruction *InstCombiner::visitSExt(SExtInst &CI) {
7038 if (Instruction *I = commonIntCastTransforms(CI))
7039 return I;
7040
7041 Value *Src = CI.getOperand(0);
7042
7043 // sext (x <s 0) -> ashr x, 31 -> all ones if signed
7044 // sext (x >s -1) -> ashr x, 31 -> all ones if not signed
7045 if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src)) {
7046 // If we are just checking for a icmp eq of a single bit and zext'ing it
7047 // to an integer, then shift the bit to the appropriate place and then
7048 // cast to integer to avoid the comparison.
7049 if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
7050 const APInt &Op1CV = Op1C->getValue();
7051
7052 // sext (x <s 0) to i32 --> x>>s31 true if signbit set.
7053 // sext (x >s -1) to i32 --> (x>>s31)^-1 true if signbit clear.
7054 if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
7055 (ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())){
7056 Value *In = ICI->getOperand(0);
7057 Value *Sh = ConstantInt::get(In->getType(),
7058 In->getType()->getPrimitiveSizeInBits()-1);
7059 In = InsertNewInstBefore(BinaryOperator::createAShr(In, Sh,
7060 In->getName()+".lobit"),
7061 CI);
7062 if (In->getType() != CI.getType())
7063 In = CastInst::createIntegerCast(In, CI.getType(),
7064 true/*SExt*/, "tmp", &CI);
7065
7066 if (ICI->getPredicate() == ICmpInst::ICMP_SGT)
7067 In = InsertNewInstBefore(BinaryOperator::createNot(In,
7068 In->getName()+".not"), CI);
7069
7070 return ReplaceInstUsesWith(CI, In);
7071 }
7072 }
7073 }
7074
7075 return 0;
7076}
7077
7078Instruction *InstCombiner::visitFPTrunc(CastInst &CI) {
7079 return commonCastTransforms(CI);
7080}
7081
7082Instruction *InstCombiner::visitFPExt(CastInst &CI) {
7083 return commonCastTransforms(CI);
7084}
7085
7086Instruction *InstCombiner::visitFPToUI(CastInst &CI) {
7087 return commonCastTransforms(CI);
7088}
7089
7090Instruction *InstCombiner::visitFPToSI(CastInst &CI) {
7091 return commonCastTransforms(CI);
7092}
7093
7094Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
7095 return commonCastTransforms(CI);
7096}
7097
7098Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
7099 return commonCastTransforms(CI);
7100}
7101
7102Instruction *InstCombiner::visitPtrToInt(CastInst &CI) {
7103 return commonPointerCastTransforms(CI);
7104}
7105
7106Instruction *InstCombiner::visitIntToPtr(CastInst &CI) {
7107 return commonCastTransforms(CI);
7108}
7109
7110Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
7111 // If the operands are integer typed then apply the integer transforms,
7112 // otherwise just apply the common ones.
7113 Value *Src = CI.getOperand(0);
7114 const Type *SrcTy = Src->getType();
7115 const Type *DestTy = CI.getType();
7116
7117 if (SrcTy->isInteger() && DestTy->isInteger()) {
7118 if (Instruction *Result = commonIntCastTransforms(CI))
7119 return Result;
7120 } else if (isa<PointerType>(SrcTy)) {
7121 if (Instruction *I = commonPointerCastTransforms(CI))
7122 return I;
7123 } else {
7124 if (Instruction *Result = commonCastTransforms(CI))
7125 return Result;
7126 }
7127
7128
7129 // Get rid of casts from one type to the same type. These are useless and can
7130 // be replaced by the operand.
7131 if (DestTy == Src->getType())
7132 return ReplaceInstUsesWith(CI, Src);
7133
7134 if (const PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
7135 const PointerType *SrcPTy = cast<PointerType>(SrcTy);
7136 const Type *DstElTy = DstPTy->getElementType();
7137 const Type *SrcElTy = SrcPTy->getElementType();
7138
7139 // If we are casting a malloc or alloca to a pointer to a type of the same
7140 // size, rewrite the allocation instruction to allocate the "right" type.
7141 if (AllocationInst *AI = dyn_cast<AllocationInst>(Src))
7142 if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
7143 return V;
7144
7145 // If the source and destination are pointers, and this cast is equivalent
7146 // to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
7147 // This can enhance SROA and other transforms that want type-safe pointers.
7148 Constant *ZeroUInt = Constant::getNullValue(Type::Int32Ty);
7149 unsigned NumZeros = 0;
7150 while (SrcElTy != DstElTy &&
7151 isa<CompositeType>(SrcElTy) && !isa<PointerType>(SrcElTy) &&
7152 SrcElTy->getNumContainedTypes() /* not "{}" */) {
7153 SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
7154 ++NumZeros;
7155 }
7156
7157 // If we found a path from the src to dest, create the getelementptr now.
7158 if (SrcElTy == DstElTy) {
7159 SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
Chuck Rose III27d49792007-09-05 20:36:41 +00007160 return new GetElementPtrInst(Src, Idxs.begin(), Idxs.end(), "",
7161 ((Instruction*) NULL));
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007162 }
7163 }
7164
7165 if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
7166 if (SVI->hasOneUse()) {
7167 // Okay, we have (bitconvert (shuffle ..)). Check to see if this is
7168 // a bitconvert to a vector with the same # elts.
7169 if (isa<VectorType>(DestTy) &&
7170 cast<VectorType>(DestTy)->getNumElements() ==
7171 SVI->getType()->getNumElements()) {
7172 CastInst *Tmp;
7173 // If either of the operands is a cast from CI.getType(), then
7174 // evaluating the shuffle in the casted destination's type will allow
7175 // us to eliminate at least one cast.
7176 if (((Tmp = dyn_cast<CastInst>(SVI->getOperand(0))) &&
7177 Tmp->getOperand(0)->getType() == DestTy) ||
7178 ((Tmp = dyn_cast<CastInst>(SVI->getOperand(1))) &&
7179 Tmp->getOperand(0)->getType() == DestTy)) {
7180 Value *LHS = InsertOperandCastBefore(Instruction::BitCast,
7181 SVI->getOperand(0), DestTy, &CI);
7182 Value *RHS = InsertOperandCastBefore(Instruction::BitCast,
7183 SVI->getOperand(1), DestTy, &CI);
7184 // Return a new shuffle vector. Use the same element ID's, as we
7185 // know the vector types match #elts.
7186 return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
7187 }
7188 }
7189 }
7190 }
7191 return 0;
7192}
7193
7194/// GetSelectFoldableOperands - We want to turn code that looks like this:
7195/// %C = or %A, %B
7196/// %D = select %cond, %C, %A
7197/// into:
7198/// %C = select %cond, %B, 0
7199/// %D = or %A, %C
7200///
7201/// Assuming that the specified instruction is an operand to the select, return
7202/// a bitmask indicating which operands of this instruction are foldable if they
7203/// equal the other incoming value of the select.
7204///
7205static unsigned GetSelectFoldableOperands(Instruction *I) {
7206 switch (I->getOpcode()) {
7207 case Instruction::Add:
7208 case Instruction::Mul:
7209 case Instruction::And:
7210 case Instruction::Or:
7211 case Instruction::Xor:
7212 return 3; // Can fold through either operand.
7213 case Instruction::Sub: // Can only fold on the amount subtracted.
7214 case Instruction::Shl: // Can only fold on the shift amount.
7215 case Instruction::LShr:
7216 case Instruction::AShr:
7217 return 1;
7218 default:
7219 return 0; // Cannot fold
7220 }
7221}
7222
7223/// GetSelectFoldableConstant - For the same transformation as the previous
7224/// function, return the identity constant that goes into the select.
7225static Constant *GetSelectFoldableConstant(Instruction *I) {
7226 switch (I->getOpcode()) {
7227 default: assert(0 && "This cannot happen!"); abort();
7228 case Instruction::Add:
7229 case Instruction::Sub:
7230 case Instruction::Or:
7231 case Instruction::Xor:
7232 case Instruction::Shl:
7233 case Instruction::LShr:
7234 case Instruction::AShr:
7235 return Constant::getNullValue(I->getType());
7236 case Instruction::And:
7237 return Constant::getAllOnesValue(I->getType());
7238 case Instruction::Mul:
7239 return ConstantInt::get(I->getType(), 1);
7240 }
7241}
7242
7243/// FoldSelectOpOp - Here we have (select c, TI, FI), and we know that TI and FI
7244/// have the same opcode and only one use each. Try to simplify this.
7245Instruction *InstCombiner::FoldSelectOpOp(SelectInst &SI, Instruction *TI,
7246 Instruction *FI) {
7247 if (TI->getNumOperands() == 1) {
7248 // If this is a non-volatile load or a cast from the same type,
7249 // merge.
7250 if (TI->isCast()) {
7251 if (TI->getOperand(0)->getType() != FI->getOperand(0)->getType())
7252 return 0;
7253 } else {
7254 return 0; // unknown unary op.
7255 }
7256
7257 // Fold this by inserting a select from the input values.
7258 SelectInst *NewSI = new SelectInst(SI.getCondition(), TI->getOperand(0),
7259 FI->getOperand(0), SI.getName()+".v");
7260 InsertNewInstBefore(NewSI, SI);
7261 return CastInst::create(Instruction::CastOps(TI->getOpcode()), NewSI,
7262 TI->getType());
7263 }
7264
7265 // Only handle binary operators here.
7266 if (!isa<BinaryOperator>(TI))
7267 return 0;
7268
7269 // Figure out if the operations have any operands in common.
7270 Value *MatchOp, *OtherOpT, *OtherOpF;
7271 bool MatchIsOpZero;
7272 if (TI->getOperand(0) == FI->getOperand(0)) {
7273 MatchOp = TI->getOperand(0);
7274 OtherOpT = TI->getOperand(1);
7275 OtherOpF = FI->getOperand(1);
7276 MatchIsOpZero = true;
7277 } else if (TI->getOperand(1) == FI->getOperand(1)) {
7278 MatchOp = TI->getOperand(1);
7279 OtherOpT = TI->getOperand(0);
7280 OtherOpF = FI->getOperand(0);
7281 MatchIsOpZero = false;
7282 } else if (!TI->isCommutative()) {
7283 return 0;
7284 } else if (TI->getOperand(0) == FI->getOperand(1)) {
7285 MatchOp = TI->getOperand(0);
7286 OtherOpT = TI->getOperand(1);
7287 OtherOpF = FI->getOperand(0);
7288 MatchIsOpZero = true;
7289 } else if (TI->getOperand(1) == FI->getOperand(0)) {
7290 MatchOp = TI->getOperand(1);
7291 OtherOpT = TI->getOperand(0);
7292 OtherOpF = FI->getOperand(1);
7293 MatchIsOpZero = true;
7294 } else {
7295 return 0;
7296 }
7297
7298 // If we reach here, they do have operations in common.
7299 SelectInst *NewSI = new SelectInst(SI.getCondition(), OtherOpT,
7300 OtherOpF, SI.getName()+".v");
7301 InsertNewInstBefore(NewSI, SI);
7302
7303 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TI)) {
7304 if (MatchIsOpZero)
7305 return BinaryOperator::create(BO->getOpcode(), MatchOp, NewSI);
7306 else
7307 return BinaryOperator::create(BO->getOpcode(), NewSI, MatchOp);
7308 }
7309 assert(0 && "Shouldn't get here");
7310 return 0;
7311}
7312
7313Instruction *InstCombiner::visitSelectInst(SelectInst &SI) {
7314 Value *CondVal = SI.getCondition();
7315 Value *TrueVal = SI.getTrueValue();
7316 Value *FalseVal = SI.getFalseValue();
7317
7318 // select true, X, Y -> X
7319 // select false, X, Y -> Y
7320 if (ConstantInt *C = dyn_cast<ConstantInt>(CondVal))
7321 return ReplaceInstUsesWith(SI, C->getZExtValue() ? TrueVal : FalseVal);
7322
7323 // select C, X, X -> X
7324 if (TrueVal == FalseVal)
7325 return ReplaceInstUsesWith(SI, TrueVal);
7326
7327 if (isa<UndefValue>(TrueVal)) // select C, undef, X -> X
7328 return ReplaceInstUsesWith(SI, FalseVal);
7329 if (isa<UndefValue>(FalseVal)) // select C, X, undef -> X
7330 return ReplaceInstUsesWith(SI, TrueVal);
7331 if (isa<UndefValue>(CondVal)) { // select undef, X, Y -> X or Y
7332 if (isa<Constant>(TrueVal))
7333 return ReplaceInstUsesWith(SI, TrueVal);
7334 else
7335 return ReplaceInstUsesWith(SI, FalseVal);
7336 }
7337
7338 if (SI.getType() == Type::Int1Ty) {
7339 if (ConstantInt *C = dyn_cast<ConstantInt>(TrueVal)) {
7340 if (C->getZExtValue()) {
7341 // Change: A = select B, true, C --> A = or B, C
7342 return BinaryOperator::createOr(CondVal, FalseVal);
7343 } else {
7344 // Change: A = select B, false, C --> A = and !B, C
7345 Value *NotCond =
7346 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
7347 "not."+CondVal->getName()), SI);
7348 return BinaryOperator::createAnd(NotCond, FalseVal);
7349 }
7350 } else if (ConstantInt *C = dyn_cast<ConstantInt>(FalseVal)) {
7351 if (C->getZExtValue() == false) {
7352 // Change: A = select B, C, false --> A = and B, C
7353 return BinaryOperator::createAnd(CondVal, TrueVal);
7354 } else {
7355 // Change: A = select B, C, true --> A = or !B, C
7356 Value *NotCond =
7357 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
7358 "not."+CondVal->getName()), SI);
7359 return BinaryOperator::createOr(NotCond, TrueVal);
7360 }
7361 }
Chris Lattner53f85a72007-11-25 21:27:53 +00007362
7363 // select a, b, a -> a&b
7364 // select a, a, b -> a|b
7365 if (CondVal == TrueVal)
7366 return BinaryOperator::createOr(CondVal, FalseVal);
7367 else if (CondVal == FalseVal)
7368 return BinaryOperator::createAnd(CondVal, TrueVal);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007369 }
7370
7371 // Selecting between two integer constants?
7372 if (ConstantInt *TrueValC = dyn_cast<ConstantInt>(TrueVal))
7373 if (ConstantInt *FalseValC = dyn_cast<ConstantInt>(FalseVal)) {
7374 // select C, 1, 0 -> zext C to int
7375 if (FalseValC->isZero() && TrueValC->getValue() == 1) {
7376 return CastInst::create(Instruction::ZExt, CondVal, SI.getType());
7377 } else if (TrueValC->isZero() && FalseValC->getValue() == 1) {
7378 // select C, 0, 1 -> zext !C to int
7379 Value *NotCond =
7380 InsertNewInstBefore(BinaryOperator::createNot(CondVal,
7381 "not."+CondVal->getName()), SI);
7382 return CastInst::create(Instruction::ZExt, NotCond, SI.getType());
7383 }
7384
7385 // FIXME: Turn select 0/-1 and -1/0 into sext from condition!
7386
7387 if (ICmpInst *IC = dyn_cast<ICmpInst>(SI.getCondition())) {
7388
7389 // (x <s 0) ? -1 : 0 -> ashr x, 31
7390 if (TrueValC->isAllOnesValue() && FalseValC->isZero())
7391 if (ConstantInt *CmpCst = dyn_cast<ConstantInt>(IC->getOperand(1))) {
7392 if (IC->getPredicate() == ICmpInst::ICMP_SLT && CmpCst->isZero()) {
7393 // The comparison constant and the result are not neccessarily the
7394 // same width. Make an all-ones value by inserting a AShr.
7395 Value *X = IC->getOperand(0);
7396 uint32_t Bits = X->getType()->getPrimitiveSizeInBits();
7397 Constant *ShAmt = ConstantInt::get(X->getType(), Bits-1);
7398 Instruction *SRA = BinaryOperator::create(Instruction::AShr, X,
7399 ShAmt, "ones");
7400 InsertNewInstBefore(SRA, SI);
7401
7402 // Finally, convert to the type of the select RHS. We figure out
7403 // if this requires a SExt, Trunc or BitCast based on the sizes.
7404 Instruction::CastOps opc = Instruction::BitCast;
7405 uint32_t SRASize = SRA->getType()->getPrimitiveSizeInBits();
7406 uint32_t SISize = SI.getType()->getPrimitiveSizeInBits();
7407 if (SRASize < SISize)
7408 opc = Instruction::SExt;
7409 else if (SRASize > SISize)
7410 opc = Instruction::Trunc;
7411 return CastInst::create(opc, SRA, SI.getType());
7412 }
7413 }
7414
7415
7416 // If one of the constants is zero (we know they can't both be) and we
7417 // have an icmp instruction with zero, and we have an 'and' with the
7418 // non-constant value, eliminate this whole mess. This corresponds to
7419 // cases like this: ((X & 27) ? 27 : 0)
7420 if (TrueValC->isZero() || FalseValC->isZero())
7421 if (IC->isEquality() && isa<ConstantInt>(IC->getOperand(1)) &&
7422 cast<Constant>(IC->getOperand(1))->isNullValue())
7423 if (Instruction *ICA = dyn_cast<Instruction>(IC->getOperand(0)))
7424 if (ICA->getOpcode() == Instruction::And &&
7425 isa<ConstantInt>(ICA->getOperand(1)) &&
7426 (ICA->getOperand(1) == TrueValC ||
7427 ICA->getOperand(1) == FalseValC) &&
7428 isOneBitSet(cast<ConstantInt>(ICA->getOperand(1)))) {
7429 // Okay, now we know that everything is set up, we just don't
7430 // know whether we have a icmp_ne or icmp_eq and whether the
7431 // true or false val is the zero.
7432 bool ShouldNotVal = !TrueValC->isZero();
7433 ShouldNotVal ^= IC->getPredicate() == ICmpInst::ICMP_NE;
7434 Value *V = ICA;
7435 if (ShouldNotVal)
7436 V = InsertNewInstBefore(BinaryOperator::create(
7437 Instruction::Xor, V, ICA->getOperand(1)), SI);
7438 return ReplaceInstUsesWith(SI, V);
7439 }
7440 }
7441 }
7442
7443 // See if we are selecting two values based on a comparison of the two values.
7444 if (FCmpInst *FCI = dyn_cast<FCmpInst>(CondVal)) {
7445 if (FCI->getOperand(0) == TrueVal && FCI->getOperand(1) == FalseVal) {
7446 // Transform (X == Y) ? X : Y -> Y
Dale Johannesen2e1b7692007-10-03 17:45:27 +00007447 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
7448 // This is not safe in general for floating point:
7449 // consider X== -0, Y== +0.
7450 // It becomes safe if either operand is a nonzero constant.
7451 ConstantFP *CFPt, *CFPf;
7452 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
7453 !CFPt->getValueAPF().isZero()) ||
7454 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
7455 !CFPf->getValueAPF().isZero()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007456 return ReplaceInstUsesWith(SI, FalseVal);
Dale Johannesen2e1b7692007-10-03 17:45:27 +00007457 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007458 // Transform (X != Y) ? X : Y -> X
7459 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
7460 return ReplaceInstUsesWith(SI, TrueVal);
7461 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7462
7463 } else if (FCI->getOperand(0) == FalseVal && FCI->getOperand(1) == TrueVal){
7464 // Transform (X == Y) ? Y : X -> X
Dale Johannesen2e1b7692007-10-03 17:45:27 +00007465 if (FCI->getPredicate() == FCmpInst::FCMP_OEQ) {
7466 // This is not safe in general for floating point:
7467 // consider X== -0, Y== +0.
7468 // It becomes safe if either operand is a nonzero constant.
7469 ConstantFP *CFPt, *CFPf;
7470 if (((CFPt = dyn_cast<ConstantFP>(TrueVal)) &&
7471 !CFPt->getValueAPF().isZero()) ||
7472 ((CFPf = dyn_cast<ConstantFP>(FalseVal)) &&
7473 !CFPf->getValueAPF().isZero()))
7474 return ReplaceInstUsesWith(SI, FalseVal);
7475 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007476 // Transform (X != Y) ? Y : X -> Y
7477 if (FCI->getPredicate() == FCmpInst::FCMP_ONE)
7478 return ReplaceInstUsesWith(SI, TrueVal);
7479 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7480 }
7481 }
7482
7483 // See if we are selecting two values based on a comparison of the two values.
7484 if (ICmpInst *ICI = dyn_cast<ICmpInst>(CondVal)) {
7485 if (ICI->getOperand(0) == TrueVal && ICI->getOperand(1) == FalseVal) {
7486 // Transform (X == Y) ? X : Y -> Y
7487 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
7488 return ReplaceInstUsesWith(SI, FalseVal);
7489 // Transform (X != Y) ? X : Y -> X
7490 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
7491 return ReplaceInstUsesWith(SI, TrueVal);
7492 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7493
7494 } else if (ICI->getOperand(0) == FalseVal && ICI->getOperand(1) == TrueVal){
7495 // Transform (X == Y) ? Y : X -> X
7496 if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
7497 return ReplaceInstUsesWith(SI, FalseVal);
7498 // Transform (X != Y) ? Y : X -> Y
7499 if (ICI->getPredicate() == ICmpInst::ICMP_NE)
7500 return ReplaceInstUsesWith(SI, TrueVal);
7501 // NOTE: if we wanted to, this is where to detect MIN/MAX/ABS/etc.
7502 }
7503 }
7504
7505 if (Instruction *TI = dyn_cast<Instruction>(TrueVal))
7506 if (Instruction *FI = dyn_cast<Instruction>(FalseVal))
7507 if (TI->hasOneUse() && FI->hasOneUse()) {
7508 Instruction *AddOp = 0, *SubOp = 0;
7509
7510 // Turn (select C, (op X, Y), (op X, Z)) -> (op X, (select C, Y, Z))
7511 if (TI->getOpcode() == FI->getOpcode())
7512 if (Instruction *IV = FoldSelectOpOp(SI, TI, FI))
7513 return IV;
7514
7515 // Turn select C, (X+Y), (X-Y) --> (X+(select C, Y, (-Y))). This is
7516 // even legal for FP.
7517 if (TI->getOpcode() == Instruction::Sub &&
7518 FI->getOpcode() == Instruction::Add) {
7519 AddOp = FI; SubOp = TI;
7520 } else if (FI->getOpcode() == Instruction::Sub &&
7521 TI->getOpcode() == Instruction::Add) {
7522 AddOp = TI; SubOp = FI;
7523 }
7524
7525 if (AddOp) {
7526 Value *OtherAddOp = 0;
7527 if (SubOp->getOperand(0) == AddOp->getOperand(0)) {
7528 OtherAddOp = AddOp->getOperand(1);
7529 } else if (SubOp->getOperand(0) == AddOp->getOperand(1)) {
7530 OtherAddOp = AddOp->getOperand(0);
7531 }
7532
7533 if (OtherAddOp) {
7534 // So at this point we know we have (Y -> OtherAddOp):
7535 // select C, (add X, Y), (sub X, Z)
7536 Value *NegVal; // Compute -Z
7537 if (Constant *C = dyn_cast<Constant>(SubOp->getOperand(1))) {
7538 NegVal = ConstantExpr::getNeg(C);
7539 } else {
7540 NegVal = InsertNewInstBefore(
7541 BinaryOperator::createNeg(SubOp->getOperand(1), "tmp"), SI);
7542 }
7543
7544 Value *NewTrueOp = OtherAddOp;
7545 Value *NewFalseOp = NegVal;
7546 if (AddOp != TI)
7547 std::swap(NewTrueOp, NewFalseOp);
7548 Instruction *NewSel =
7549 new SelectInst(CondVal, NewTrueOp,NewFalseOp,SI.getName()+".p");
7550
7551 NewSel = InsertNewInstBefore(NewSel, SI);
7552 return BinaryOperator::createAdd(SubOp->getOperand(0), NewSel);
7553 }
7554 }
7555 }
7556
7557 // See if we can fold the select into one of our operands.
7558 if (SI.getType()->isInteger()) {
7559 // See the comment above GetSelectFoldableOperands for a description of the
7560 // transformation we are doing here.
7561 if (Instruction *TVI = dyn_cast<Instruction>(TrueVal))
7562 if (TVI->hasOneUse() && TVI->getNumOperands() == 2 &&
7563 !isa<Constant>(FalseVal))
7564 if (unsigned SFO = GetSelectFoldableOperands(TVI)) {
7565 unsigned OpToFold = 0;
7566 if ((SFO & 1) && FalseVal == TVI->getOperand(0)) {
7567 OpToFold = 1;
7568 } else if ((SFO & 2) && FalseVal == TVI->getOperand(1)) {
7569 OpToFold = 2;
7570 }
7571
7572 if (OpToFold) {
7573 Constant *C = GetSelectFoldableConstant(TVI);
7574 Instruction *NewSel =
7575 new SelectInst(SI.getCondition(), TVI->getOperand(2-OpToFold), C);
7576 InsertNewInstBefore(NewSel, SI);
7577 NewSel->takeName(TVI);
7578 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(TVI))
7579 return BinaryOperator::create(BO->getOpcode(), FalseVal, NewSel);
7580 else {
7581 assert(0 && "Unknown instruction!!");
7582 }
7583 }
7584 }
7585
7586 if (Instruction *FVI = dyn_cast<Instruction>(FalseVal))
7587 if (FVI->hasOneUse() && FVI->getNumOperands() == 2 &&
7588 !isa<Constant>(TrueVal))
7589 if (unsigned SFO = GetSelectFoldableOperands(FVI)) {
7590 unsigned OpToFold = 0;
7591 if ((SFO & 1) && TrueVal == FVI->getOperand(0)) {
7592 OpToFold = 1;
7593 } else if ((SFO & 2) && TrueVal == FVI->getOperand(1)) {
7594 OpToFold = 2;
7595 }
7596
7597 if (OpToFold) {
7598 Constant *C = GetSelectFoldableConstant(FVI);
7599 Instruction *NewSel =
7600 new SelectInst(SI.getCondition(), C, FVI->getOperand(2-OpToFold));
7601 InsertNewInstBefore(NewSel, SI);
7602 NewSel->takeName(FVI);
7603 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(FVI))
7604 return BinaryOperator::create(BO->getOpcode(), TrueVal, NewSel);
7605 else
7606 assert(0 && "Unknown instruction!!");
7607 }
7608 }
7609 }
7610
7611 if (BinaryOperator::isNot(CondVal)) {
7612 SI.setOperand(0, BinaryOperator::getNotArgument(CondVal));
7613 SI.setOperand(1, FalseVal);
7614 SI.setOperand(2, TrueVal);
7615 return &SI;
7616 }
7617
7618 return 0;
7619}
7620
Chris Lattner47cf3452007-08-09 19:05:49 +00007621/// GetOrEnforceKnownAlignment - If the specified pointer has an alignment that
7622/// we can determine, return it, otherwise return 0. If PrefAlign is specified,
7623/// and it is more than the alignment of the ultimate object, see if we can
7624/// increase the alignment of the ultimate object, making this check succeed.
7625static unsigned GetOrEnforceKnownAlignment(Value *V, TargetData *TD,
7626 unsigned PrefAlign = 0) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007627 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
7628 unsigned Align = GV->getAlignment();
Andrew Lenharthdae02012007-11-08 18:45:15 +00007629 if (Align == 0 && TD && GV->getType()->getElementType()->isSized())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007630 Align = TD->getPrefTypeAlignment(GV->getType()->getElementType());
Chris Lattner47cf3452007-08-09 19:05:49 +00007631
7632 // If there is a large requested alignment and we can, bump up the alignment
7633 // of the global.
7634 if (PrefAlign > Align && GV->hasInitializer()) {
7635 GV->setAlignment(PrefAlign);
7636 Align = PrefAlign;
7637 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007638 return Align;
7639 } else if (AllocationInst *AI = dyn_cast<AllocationInst>(V)) {
7640 unsigned Align = AI->getAlignment();
7641 if (Align == 0 && TD) {
7642 if (isa<AllocaInst>(AI))
7643 Align = TD->getPrefTypeAlignment(AI->getType()->getElementType());
7644 else if (isa<MallocInst>(AI)) {
7645 // Malloc returns maximally aligned memory.
7646 Align = TD->getABITypeAlignment(AI->getType()->getElementType());
7647 Align =
7648 std::max(Align,
7649 (unsigned)TD->getABITypeAlignment(Type::DoubleTy));
7650 Align =
7651 std::max(Align,
7652 (unsigned)TD->getABITypeAlignment(Type::Int64Ty));
7653 }
7654 }
Chris Lattner47cf3452007-08-09 19:05:49 +00007655
7656 // If there is a requested alignment and if this is an alloca, round up. We
7657 // don't do this for malloc, because some systems can't respect the request.
7658 if (PrefAlign > Align && isa<AllocaInst>(AI)) {
7659 AI->setAlignment(PrefAlign);
7660 Align = PrefAlign;
7661 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007662 return Align;
7663 } else if (isa<BitCastInst>(V) ||
7664 (isa<ConstantExpr>(V) &&
7665 cast<ConstantExpr>(V)->getOpcode() == Instruction::BitCast)) {
Chris Lattner47cf3452007-08-09 19:05:49 +00007666 return GetOrEnforceKnownAlignment(cast<User>(V)->getOperand(0),
7667 TD, PrefAlign);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007668 } else if (User *GEPI = dyn_castGetElementPtr(V)) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007669 // If all indexes are zero, it is just the alignment of the base pointer.
7670 bool AllZeroOperands = true;
7671 for (unsigned i = 1, e = GEPI->getNumOperands(); i != e; ++i)
7672 if (!isa<Constant>(GEPI->getOperand(i)) ||
7673 !cast<Constant>(GEPI->getOperand(i))->isNullValue()) {
7674 AllZeroOperands = false;
7675 break;
7676 }
Chris Lattner47cf3452007-08-09 19:05:49 +00007677
7678 if (AllZeroOperands) {
7679 // Treat this like a bitcast.
7680 return GetOrEnforceKnownAlignment(GEPI->getOperand(0), TD, PrefAlign);
7681 }
7682
7683 unsigned BaseAlignment = GetOrEnforceKnownAlignment(GEPI->getOperand(0),TD);
7684 if (BaseAlignment == 0) return 0;
7685
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007686 // Otherwise, if the base alignment is >= the alignment we expect for the
7687 // base pointer type, then we know that the resultant pointer is aligned at
7688 // least as much as its type requires.
7689 if (!TD) return 0;
7690
7691 const Type *BasePtrTy = GEPI->getOperand(0)->getType();
7692 const PointerType *PtrTy = cast<PointerType>(BasePtrTy);
Lauro Ramos Venancio55da3352007-07-31 20:13:21 +00007693 unsigned Align = TD->getABITypeAlignment(PtrTy->getElementType());
7694 if (Align <= BaseAlignment) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007695 const Type *GEPTy = GEPI->getType();
7696 const PointerType *GEPPtrTy = cast<PointerType>(GEPTy);
Lauro Ramos Venancio55da3352007-07-31 20:13:21 +00007697 Align = std::min(Align, (unsigned)
7698 TD->getABITypeAlignment(GEPPtrTy->getElementType()));
7699 return Align;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007700 }
7701 return 0;
7702 }
7703 return 0;
7704}
7705
7706
7707/// visitCallInst - CallInst simplification. This mostly only handles folding
7708/// of intrinsic instructions. For normal calls, it allows visitCallSite to do
7709/// the heavy lifting.
7710///
7711Instruction *InstCombiner::visitCallInst(CallInst &CI) {
7712 IntrinsicInst *II = dyn_cast<IntrinsicInst>(&CI);
7713 if (!II) return visitCallSite(&CI);
7714
7715 // Intrinsics cannot occur in an invoke, so handle them here instead of in
7716 // visitCallSite.
7717 if (MemIntrinsic *MI = dyn_cast<MemIntrinsic>(II)) {
7718 bool Changed = false;
7719
7720 // memmove/cpy/set of zero bytes is a noop.
7721 if (Constant *NumBytes = dyn_cast<Constant>(MI->getLength())) {
7722 if (NumBytes->isNullValue()) return EraseInstFromFunction(CI);
7723
7724 if (ConstantInt *CI = dyn_cast<ConstantInt>(NumBytes))
7725 if (CI->getZExtValue() == 1) {
7726 // Replace the instruction with just byte operations. We would
7727 // transform other cases to loads/stores, but we don't know if
7728 // alignment is sufficient.
7729 }
7730 }
7731
7732 // If we have a memmove and the source operation is a constant global,
7733 // then the source and dest pointers can't alias, so we can change this
7734 // into a call to memcpy.
7735 if (MemMoveInst *MMI = dyn_cast<MemMoveInst>(II)) {
7736 if (GlobalVariable *GVSrc = dyn_cast<GlobalVariable>(MMI->getSource()))
7737 if (GVSrc->isConstant()) {
7738 Module *M = CI.getParent()->getParent()->getParent();
7739 const char *Name;
7740 if (CI.getCalledFunction()->getFunctionType()->getParamType(2) ==
7741 Type::Int32Ty)
7742 Name = "llvm.memcpy.i32";
7743 else
7744 Name = "llvm.memcpy.i64";
7745 Constant *MemCpy = M->getOrInsertFunction(Name,
7746 CI.getCalledFunction()->getFunctionType());
7747 CI.setOperand(0, MemCpy);
7748 Changed = true;
7749 }
7750 }
7751
7752 // If we can determine a pointer alignment that is bigger than currently
7753 // set, update the alignment.
7754 if (isa<MemCpyInst>(MI) || isa<MemMoveInst>(MI)) {
Chris Lattner47cf3452007-08-09 19:05:49 +00007755 unsigned Alignment1 = GetOrEnforceKnownAlignment(MI->getOperand(1), TD);
7756 unsigned Alignment2 = GetOrEnforceKnownAlignment(MI->getOperand(2), TD);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007757 unsigned Align = std::min(Alignment1, Alignment2);
7758 if (MI->getAlignment()->getZExtValue() < Align) {
7759 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Align));
7760 Changed = true;
7761 }
Devang Patel6ad3bd12007-10-11 17:21:57 +00007762
Chris Lattnerc59171a2007-10-12 05:30:59 +00007763 // If MemCpyInst length is 1/2/4/8 bytes then replace memcpy with
7764 // load/store.
Devang Patel6ad3bd12007-10-11 17:21:57 +00007765 ConstantInt *MemOpLength = dyn_cast<ConstantInt>(CI.getOperand(3));
Devang Patel136fb902007-10-12 20:10:21 +00007766 if (MemOpLength) {
Devang Patel6ad3bd12007-10-11 17:21:57 +00007767 unsigned Size = MemOpLength->getZExtValue();
7768 unsigned Align = cast<ConstantInt>(CI.getOperand(4))->getZExtValue();
Devang Patel6ad3bd12007-10-11 17:21:57 +00007769 PointerType *NewPtrTy = NULL;
Devang Patel136fb902007-10-12 20:10:21 +00007770 // Destination pointer type is always i8 *
Devang Patelc1dc7012007-10-15 15:31:35 +00007771 // If Size is 8 then use Int64Ty
7772 // If Size is 4 then use Int32Ty
7773 // If Size is 2 then use Int16Ty
7774 // If Size is 1 then use Int8Ty
7775 if (Size && Size <=8 && !(Size&(Size-1)))
Christopher Lambbb2f2222007-12-17 01:12:55 +00007776 NewPtrTy = PointerType::getUnqual(IntegerType::get(Size<<3));
Devang Patelc1dc7012007-10-15 15:31:35 +00007777
Chris Lattnerc59171a2007-10-12 05:30:59 +00007778 if (NewPtrTy) {
Chris Lattnerc8f8eb42007-11-06 01:15:27 +00007779 Value *Src = InsertCastBefore(Instruction::BitCast, CI.getOperand(2),
7780 NewPtrTy, CI);
7781 Value *Dest = InsertCastBefore(Instruction::BitCast, CI.getOperand(1),
7782 NewPtrTy, CI);
Devang Patel40bafac2007-10-17 07:24:40 +00007783 Value *L = new LoadInst(Src, "tmp", false, Align, &CI);
Devang Patel6ad3bd12007-10-11 17:21:57 +00007784 Value *NS = new StoreInst(L, Dest, false, Align, &CI);
7785 CI.replaceAllUsesWith(NS);
7786 Changed = true;
7787 return EraseInstFromFunction(CI);
7788 }
7789 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007790 } else if (isa<MemSetInst>(MI)) {
Chris Lattner47cf3452007-08-09 19:05:49 +00007791 unsigned Alignment = GetOrEnforceKnownAlignment(MI->getDest(), TD);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007792 if (MI->getAlignment()->getZExtValue() < Alignment) {
7793 MI->setAlignment(ConstantInt::get(Type::Int32Ty, Alignment));
7794 Changed = true;
7795 }
7796 }
7797
7798 if (Changed) return II;
7799 } else {
7800 switch (II->getIntrinsicID()) {
7801 default: break;
7802 case Intrinsic::ppc_altivec_lvx:
7803 case Intrinsic::ppc_altivec_lvxl:
7804 case Intrinsic::x86_sse_loadu_ps:
7805 case Intrinsic::x86_sse2_loadu_pd:
7806 case Intrinsic::x86_sse2_loadu_dq:
7807 // Turn PPC lvx -> load if the pointer is known aligned.
7808 // Turn X86 loadups -> load if the pointer is known aligned.
Chris Lattner47cf3452007-08-09 19:05:49 +00007809 if (GetOrEnforceKnownAlignment(II->getOperand(1), TD, 16) >= 16) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00007810 Value *Ptr =
7811 InsertCastBefore(Instruction::BitCast, II->getOperand(1),
7812 PointerType::getUnqual(II->getType()), CI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007813 return new LoadInst(Ptr);
7814 }
7815 break;
7816 case Intrinsic::ppc_altivec_stvx:
7817 case Intrinsic::ppc_altivec_stvxl:
7818 // Turn stvx -> store if the pointer is known aligned.
Chris Lattner47cf3452007-08-09 19:05:49 +00007819 if (GetOrEnforceKnownAlignment(II->getOperand(2), TD, 16) >= 16) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00007820 const Type *OpPtrTy =
7821 PointerType::getUnqual(II->getOperand(1)->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007822 Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(2),
7823 OpPtrTy, CI);
7824 return new StoreInst(II->getOperand(1), Ptr);
7825 }
7826 break;
7827 case Intrinsic::x86_sse_storeu_ps:
7828 case Intrinsic::x86_sse2_storeu_pd:
7829 case Intrinsic::x86_sse2_storeu_dq:
7830 case Intrinsic::x86_sse2_storel_dq:
7831 // Turn X86 storeu -> store if the pointer is known aligned.
Chris Lattner47cf3452007-08-09 19:05:49 +00007832 if (GetOrEnforceKnownAlignment(II->getOperand(1), TD, 16) >= 16) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00007833 const Type *OpPtrTy =
7834 PointerType::getUnqual(II->getOperand(2)->getType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007835 Value *Ptr = InsertCastBefore(Instruction::BitCast, II->getOperand(1),
7836 OpPtrTy, CI);
7837 return new StoreInst(II->getOperand(2), Ptr);
7838 }
7839 break;
7840
7841 case Intrinsic::x86_sse_cvttss2si: {
7842 // These intrinsics only demands the 0th element of its input vector. If
7843 // we can simplify the input based on that, do so now.
7844 uint64_t UndefElts;
7845 if (Value *V = SimplifyDemandedVectorElts(II->getOperand(1), 1,
7846 UndefElts)) {
7847 II->setOperand(1, V);
7848 return II;
7849 }
7850 break;
7851 }
7852
7853 case Intrinsic::ppc_altivec_vperm:
7854 // Turn vperm(V1,V2,mask) -> shuffle(V1,V2,mask) if mask is a constant.
7855 if (ConstantVector *Mask = dyn_cast<ConstantVector>(II->getOperand(3))) {
7856 assert(Mask->getNumOperands() == 16 && "Bad type for intrinsic!");
7857
7858 // Check that all of the elements are integer constants or undefs.
7859 bool AllEltsOk = true;
7860 for (unsigned i = 0; i != 16; ++i) {
7861 if (!isa<ConstantInt>(Mask->getOperand(i)) &&
7862 !isa<UndefValue>(Mask->getOperand(i))) {
7863 AllEltsOk = false;
7864 break;
7865 }
7866 }
7867
7868 if (AllEltsOk) {
7869 // Cast the input vectors to byte vectors.
7870 Value *Op0 = InsertCastBefore(Instruction::BitCast,
7871 II->getOperand(1), Mask->getType(), CI);
7872 Value *Op1 = InsertCastBefore(Instruction::BitCast,
7873 II->getOperand(2), Mask->getType(), CI);
7874 Value *Result = UndefValue::get(Op0->getType());
7875
7876 // Only extract each element once.
7877 Value *ExtractedElts[32];
7878 memset(ExtractedElts, 0, sizeof(ExtractedElts));
7879
7880 for (unsigned i = 0; i != 16; ++i) {
7881 if (isa<UndefValue>(Mask->getOperand(i)))
7882 continue;
7883 unsigned Idx=cast<ConstantInt>(Mask->getOperand(i))->getZExtValue();
7884 Idx &= 31; // Match the hardware behavior.
7885
7886 if (ExtractedElts[Idx] == 0) {
7887 Instruction *Elt =
7888 new ExtractElementInst(Idx < 16 ? Op0 : Op1, Idx&15, "tmp");
7889 InsertNewInstBefore(Elt, CI);
7890 ExtractedElts[Idx] = Elt;
7891 }
7892
7893 // Insert this value into the result vector.
7894 Result = new InsertElementInst(Result, ExtractedElts[Idx], i,"tmp");
7895 InsertNewInstBefore(cast<Instruction>(Result), CI);
7896 }
7897 return CastInst::create(Instruction::BitCast, Result, CI.getType());
7898 }
7899 }
7900 break;
7901
7902 case Intrinsic::stackrestore: {
7903 // If the save is right next to the restore, remove the restore. This can
7904 // happen when variable allocas are DCE'd.
7905 if (IntrinsicInst *SS = dyn_cast<IntrinsicInst>(II->getOperand(1))) {
7906 if (SS->getIntrinsicID() == Intrinsic::stacksave) {
7907 BasicBlock::iterator BI = SS;
7908 if (&*++BI == II)
7909 return EraseInstFromFunction(CI);
7910 }
7911 }
7912
7913 // If the stack restore is in a return/unwind block and if there are no
7914 // allocas or calls between the restore and the return, nuke the restore.
7915 TerminatorInst *TI = II->getParent()->getTerminator();
7916 if (isa<ReturnInst>(TI) || isa<UnwindInst>(TI)) {
7917 BasicBlock::iterator BI = II;
7918 bool CannotRemove = false;
7919 for (++BI; &*BI != TI; ++BI) {
7920 if (isa<AllocaInst>(BI) ||
7921 (isa<CallInst>(BI) && !isa<IntrinsicInst>(BI))) {
7922 CannotRemove = true;
7923 break;
7924 }
7925 }
7926 if (!CannotRemove)
7927 return EraseInstFromFunction(CI);
7928 }
7929 break;
7930 }
7931 }
7932 }
7933
7934 return visitCallSite(II);
7935}
7936
7937// InvokeInst simplification
7938//
7939Instruction *InstCombiner::visitInvokeInst(InvokeInst &II) {
7940 return visitCallSite(&II);
7941}
7942
7943// visitCallSite - Improvements for call and invoke instructions.
7944//
7945Instruction *InstCombiner::visitCallSite(CallSite CS) {
7946 bool Changed = false;
7947
7948 // If the callee is a constexpr cast of a function, attempt to move the cast
7949 // to the arguments of the call/invoke.
7950 if (transformConstExprCastCall(CS)) return 0;
7951
7952 Value *Callee = CS.getCalledValue();
7953
7954 if (Function *CalleeF = dyn_cast<Function>(Callee))
7955 if (CalleeF->getCallingConv() != CS.getCallingConv()) {
7956 Instruction *OldCall = CS.getInstruction();
7957 // If the call and callee calling conventions don't match, this call must
7958 // be unreachable, as the call is undefined.
7959 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00007960 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
7961 OldCall);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007962 if (!OldCall->use_empty())
7963 OldCall->replaceAllUsesWith(UndefValue::get(OldCall->getType()));
7964 if (isa<CallInst>(OldCall)) // Not worth removing an invoke here.
7965 return EraseInstFromFunction(*OldCall);
7966 return 0;
7967 }
7968
7969 if (isa<ConstantPointerNull>(Callee) || isa<UndefValue>(Callee)) {
7970 // This instruction is not reachable, just remove it. We insert a store to
7971 // undef so that we know that this code is not reachable, despite the fact
7972 // that we can't modify the CFG here.
7973 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00007974 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)),
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007975 CS.getInstruction());
7976
7977 if (!CS.getInstruction()->use_empty())
7978 CS.getInstruction()->
7979 replaceAllUsesWith(UndefValue::get(CS.getInstruction()->getType()));
7980
7981 if (InvokeInst *II = dyn_cast<InvokeInst>(CS.getInstruction())) {
7982 // Don't break the CFG, insert a dummy cond branch.
7983 new BranchInst(II->getNormalDest(), II->getUnwindDest(),
7984 ConstantInt::getTrue(), II);
7985 }
7986 return EraseInstFromFunction(*CS.getInstruction());
7987 }
7988
Duncan Sands74833f22007-09-17 10:26:40 +00007989 if (BitCastInst *BC = dyn_cast<BitCastInst>(Callee))
7990 if (IntrinsicInst *In = dyn_cast<IntrinsicInst>(BC->getOperand(0)))
7991 if (In->getIntrinsicID() == Intrinsic::init_trampoline)
7992 return transformCallThroughTrampoline(CS);
7993
Dan Gohmanf17a25c2007-07-18 16:29:46 +00007994 const PointerType *PTy = cast<PointerType>(Callee->getType());
7995 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
7996 if (FTy->isVarArg()) {
7997 // See if we can optimize any arguments passed through the varargs area of
7998 // the call.
7999 for (CallSite::arg_iterator I = CS.arg_begin()+FTy->getNumParams(),
8000 E = CS.arg_end(); I != E; ++I)
8001 if (CastInst *CI = dyn_cast<CastInst>(*I)) {
8002 // If this cast does not effect the value passed through the varargs
8003 // area, we can eliminate the use of the cast.
8004 Value *Op = CI->getOperand(0);
8005 if (CI->isLosslessCast()) {
8006 *I = Op;
8007 Changed = true;
8008 }
8009 }
8010 }
8011
Duncan Sands7dc19d42007-12-18 09:59:50 +00008012 if (isa<InlineAsm>(Callee) && !CS.paramHasAttr(0, ParamAttr::NoUnwind)) {
Duncan Sands7868f3c2007-12-16 15:51:49 +00008013 // Inline asm calls cannot throw - mark them 'nounwind'.
8014 const ParamAttrsList *PAL = CS.getParamAttrs();
8015 uint16_t RAttributes = PAL ? PAL->getParamAttrs(0) : 0;
8016 RAttributes |= ParamAttr::NoUnwind;
8017
8018 ParamAttrsVector modVec;
8019 modVec.push_back(ParamAttrsWithIndex::get(0, RAttributes));
8020 PAL = ParamAttrsList::getModified(PAL, modVec);
8021 CS.setParamAttrs(PAL);
8022 Changed = true;
8023 }
8024
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008025 return Changed ? CS.getInstruction() : 0;
8026}
8027
8028// transformConstExprCastCall - If the callee is a constexpr cast of a function,
8029// attempt to move the cast to the arguments of the call/invoke.
8030//
8031bool InstCombiner::transformConstExprCastCall(CallSite CS) {
8032 if (!isa<ConstantExpr>(CS.getCalledValue())) return false;
8033 ConstantExpr *CE = cast<ConstantExpr>(CS.getCalledValue());
8034 if (CE->getOpcode() != Instruction::BitCast ||
8035 !isa<Function>(CE->getOperand(0)))
8036 return false;
8037 Function *Callee = cast<Function>(CE->getOperand(0));
8038 Instruction *Caller = CS.getInstruction();
8039
8040 // Okay, this is a cast from a function to a different type. Unless doing so
8041 // would cause a type conversion of one of our arguments, change this call to
8042 // be a direct call with arguments casted to the appropriate types.
8043 //
8044 const FunctionType *FT = Callee->getFunctionType();
8045 const Type *OldRetTy = Caller->getType();
8046
Duncan Sandsf5588dc2007-11-27 13:23:08 +00008047 const ParamAttrsList* CallerPAL = 0;
8048 if (CallInst *CallerCI = dyn_cast<CallInst>(Caller))
8049 CallerPAL = CallerCI->getParamAttrs();
8050 else if (InvokeInst *CallerII = dyn_cast<InvokeInst>(Caller))
8051 CallerPAL = CallerII->getParamAttrs();
8052
Duncan Sands1548ff52007-11-25 14:10:56 +00008053 // If the parameter attributes are not compatible, don't do the xform. We
8054 // don't want to lose an sret attribute or something.
Duncan Sandsf5588dc2007-11-27 13:23:08 +00008055 if (!ParamAttrsList::areCompatible(CallerPAL, Callee->getParamAttrs()))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008056 return false;
Duncan Sands1548ff52007-11-25 14:10:56 +00008057
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008058 // Check to see if we are changing the return type...
8059 if (OldRetTy != FT->getReturnType()) {
8060 if (Callee->isDeclaration() && !Caller->use_empty() &&
8061 // Conversion is ok if changing from pointer to int of same size.
8062 !(isa<PointerType>(FT->getReturnType()) &&
8063 TD->getIntPtrType() == OldRetTy))
8064 return false; // Cannot transform this return value.
8065
8066 // If the callsite is an invoke instruction, and the return value is used by
8067 // a PHI node in a successor, we cannot change the return type of the call
8068 // because there is no place to put the cast instruction (without breaking
8069 // the critical edge). Bail out in this case.
8070 if (!Caller->use_empty())
8071 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller))
8072 for (Value::use_iterator UI = II->use_begin(), E = II->use_end();
8073 UI != E; ++UI)
8074 if (PHINode *PN = dyn_cast<PHINode>(*UI))
8075 if (PN->getParent() == II->getNormalDest() ||
8076 PN->getParent() == II->getUnwindDest())
8077 return false;
8078 }
8079
8080 unsigned NumActualArgs = unsigned(CS.arg_end()-CS.arg_begin());
8081 unsigned NumCommonArgs = std::min(FT->getNumParams(), NumActualArgs);
8082
8083 CallSite::arg_iterator AI = CS.arg_begin();
8084 for (unsigned i = 0, e = NumCommonArgs; i != e; ++i, ++AI) {
8085 const Type *ParamTy = FT->getParamType(i);
8086 const Type *ActTy = (*AI)->getType();
8087 ConstantInt *c = dyn_cast<ConstantInt>(*AI);
8088 //Some conversions are safe even if we do not have a body.
8089 //Either we can cast directly, or we can upconvert the argument
8090 bool isConvertible = ActTy == ParamTy ||
8091 (isa<PointerType>(ParamTy) && isa<PointerType>(ActTy)) ||
8092 (ParamTy->isInteger() && ActTy->isInteger() &&
8093 ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()) ||
8094 (c && ParamTy->getPrimitiveSizeInBits() >= ActTy->getPrimitiveSizeInBits()
8095 && c->getValue().isStrictlyPositive());
8096 if (Callee->isDeclaration() && !isConvertible) return false;
8097
8098 // Most other conversions can be done if we have a body, even if these
8099 // lose information, e.g. int->short.
8100 // Some conversions cannot be done at all, e.g. float to pointer.
8101 // Logic here parallels CastInst::getCastOpcode (the design there
8102 // requires legality checks like this be done before calling it).
8103 if (ParamTy->isInteger()) {
8104 if (const VectorType *VActTy = dyn_cast<VectorType>(ActTy)) {
8105 if (VActTy->getBitWidth() != ParamTy->getPrimitiveSizeInBits())
8106 return false;
8107 }
8108 if (!ActTy->isInteger() && !ActTy->isFloatingPoint() &&
8109 !isa<PointerType>(ActTy))
8110 return false;
8111 } else if (ParamTy->isFloatingPoint()) {
8112 if (const VectorType *VActTy = dyn_cast<VectorType>(ActTy)) {
8113 if (VActTy->getBitWidth() != ParamTy->getPrimitiveSizeInBits())
8114 return false;
8115 }
8116 if (!ActTy->isInteger() && !ActTy->isFloatingPoint())
8117 return false;
8118 } else if (const VectorType *VParamTy = dyn_cast<VectorType>(ParamTy)) {
8119 if (const VectorType *VActTy = dyn_cast<VectorType>(ActTy)) {
8120 if (VActTy->getBitWidth() != VParamTy->getBitWidth())
8121 return false;
8122 }
8123 if (VParamTy->getBitWidth() != ActTy->getPrimitiveSizeInBits())
8124 return false;
8125 } else if (isa<PointerType>(ParamTy)) {
8126 if (!ActTy->isInteger() && !isa<PointerType>(ActTy))
8127 return false;
8128 } else {
8129 return false;
8130 }
8131 }
8132
8133 if (FT->getNumParams() < NumActualArgs && !FT->isVarArg() &&
8134 Callee->isDeclaration())
8135 return false; // Do not delete arguments unless we have a function body...
8136
8137 // Okay, we decided that this is a safe thing to do: go ahead and start
8138 // inserting cast instructions as necessary...
8139 std::vector<Value*> Args;
8140 Args.reserve(NumActualArgs);
8141
8142 AI = CS.arg_begin();
8143 for (unsigned i = 0; i != NumCommonArgs; ++i, ++AI) {
8144 const Type *ParamTy = FT->getParamType(i);
8145 if ((*AI)->getType() == ParamTy) {
8146 Args.push_back(*AI);
8147 } else {
8148 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI,
8149 false, ParamTy, false);
8150 CastInst *NewCast = CastInst::create(opcode, *AI, ParamTy, "tmp");
8151 Args.push_back(InsertNewInstBefore(NewCast, *Caller));
8152 }
8153 }
8154
8155 // If the function takes more arguments than the call was taking, add them
8156 // now...
8157 for (unsigned i = NumCommonArgs; i != FT->getNumParams(); ++i)
8158 Args.push_back(Constant::getNullValue(FT->getParamType(i)));
8159
8160 // If we are removing arguments to the function, emit an obnoxious warning...
8161 if (FT->getNumParams() < NumActualArgs)
8162 if (!FT->isVarArg()) {
8163 cerr << "WARNING: While resolving call to function '"
8164 << Callee->getName() << "' arguments were dropped!\n";
8165 } else {
8166 // Add all of the arguments in their promoted form to the arg list...
8167 for (unsigned i = FT->getNumParams(); i != NumActualArgs; ++i, ++AI) {
8168 const Type *PTy = getPromotedType((*AI)->getType());
8169 if (PTy != (*AI)->getType()) {
8170 // Must promote to pass through va_arg area!
8171 Instruction::CastOps opcode = CastInst::getCastOpcode(*AI, false,
8172 PTy, false);
8173 Instruction *Cast = CastInst::create(opcode, *AI, PTy, "tmp");
8174 InsertNewInstBefore(Cast, *Caller);
8175 Args.push_back(Cast);
8176 } else {
8177 Args.push_back(*AI);
8178 }
8179 }
8180 }
8181
8182 if (FT->getReturnType() == Type::VoidTy)
8183 Caller->setName(""); // Void type should not have a name.
8184
8185 Instruction *NC;
8186 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
8187 NC = new InvokeInst(Callee, II->getNormalDest(), II->getUnwindDest(),
David Greene8278ef52007-08-27 19:04:21 +00008188 Args.begin(), Args.end(), Caller->getName(), Caller);
Reid Spencer6b0b09a2007-07-30 19:53:57 +00008189 cast<InvokeInst>(NC)->setCallingConv(II->getCallingConv());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00008190 cast<InvokeInst>(NC)->setParamAttrs(CallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008191 } else {
Chris Lattner03dc7d72007-08-02 16:53:43 +00008192 NC = new CallInst(Callee, Args.begin(), Args.end(),
8193 Caller->getName(), Caller);
Duncan Sandsf5588dc2007-11-27 13:23:08 +00008194 CallInst *CI = cast<CallInst>(Caller);
8195 if (CI->isTailCall())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008196 cast<CallInst>(NC)->setTailCall();
Duncan Sandsf5588dc2007-11-27 13:23:08 +00008197 cast<CallInst>(NC)->setCallingConv(CI->getCallingConv());
8198 cast<CallInst>(NC)->setParamAttrs(CallerPAL);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008199 }
8200
8201 // Insert a cast of the return type as necessary.
8202 Value *NV = NC;
8203 if (Caller->getType() != NV->getType() && !Caller->use_empty()) {
8204 if (NV->getType() != Type::VoidTy) {
8205 const Type *CallerTy = Caller->getType();
8206 Instruction::CastOps opcode = CastInst::getCastOpcode(NC, false,
8207 CallerTy, false);
8208 NV = NC = CastInst::create(opcode, NC, CallerTy, "tmp");
8209
8210 // If this is an invoke instruction, we should insert it after the first
8211 // non-phi, instruction in the normal successor block.
8212 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
8213 BasicBlock::iterator I = II->getNormalDest()->begin();
8214 while (isa<PHINode>(I)) ++I;
8215 InsertNewInstBefore(NC, *I);
8216 } else {
8217 // Otherwise, it's a call, just insert cast right after the call instr
8218 InsertNewInstBefore(NC, *Caller);
8219 }
8220 AddUsersToWorkList(*Caller);
8221 } else {
8222 NV = UndefValue::get(Caller->getType());
8223 }
8224 }
8225
8226 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
8227 Caller->replaceAllUsesWith(NV);
8228 Caller->eraseFromParent();
8229 RemoveFromWorkList(Caller);
8230 return true;
8231}
8232
Duncan Sands74833f22007-09-17 10:26:40 +00008233// transformCallThroughTrampoline - Turn a call to a function created by the
8234// init_trampoline intrinsic into a direct call to the underlying function.
8235//
8236Instruction *InstCombiner::transformCallThroughTrampoline(CallSite CS) {
8237 Value *Callee = CS.getCalledValue();
8238 const PointerType *PTy = cast<PointerType>(Callee->getType());
8239 const FunctionType *FTy = cast<FunctionType>(PTy->getElementType());
8240
8241 IntrinsicInst *Tramp =
8242 cast<IntrinsicInst>(cast<BitCastInst>(Callee)->getOperand(0));
8243
8244 Function *NestF =
8245 cast<Function>(IntrinsicInst::StripPointerCasts(Tramp->getOperand(2)));
8246 const PointerType *NestFPTy = cast<PointerType>(NestF->getType());
8247 const FunctionType *NestFTy = cast<FunctionType>(NestFPTy->getElementType());
8248
Duncan Sandsf5588dc2007-11-27 13:23:08 +00008249 if (const ParamAttrsList *NestAttrs = NestF->getParamAttrs()) {
Duncan Sands74833f22007-09-17 10:26:40 +00008250 unsigned NestIdx = 1;
8251 const Type *NestTy = 0;
8252 uint16_t NestAttr = 0;
8253
8254 // Look for a parameter marked with the 'nest' attribute.
8255 for (FunctionType::param_iterator I = NestFTy->param_begin(),
8256 E = NestFTy->param_end(); I != E; ++NestIdx, ++I)
8257 if (NestAttrs->paramHasAttr(NestIdx, ParamAttr::Nest)) {
8258 // Record the parameter type and any other attributes.
8259 NestTy = *I;
8260 NestAttr = NestAttrs->getParamAttrs(NestIdx);
8261 break;
8262 }
8263
8264 if (NestTy) {
8265 Instruction *Caller = CS.getInstruction();
8266 std::vector<Value*> NewArgs;
8267 NewArgs.reserve(unsigned(CS.arg_end()-CS.arg_begin())+1);
8268
8269 // Insert the nest argument into the call argument list, which may
8270 // mean appending it.
8271 {
8272 unsigned Idx = 1;
8273 CallSite::arg_iterator I = CS.arg_begin(), E = CS.arg_end();
8274 do {
8275 if (Idx == NestIdx) {
8276 // Add the chain argument.
8277 Value *NestVal = Tramp->getOperand(3);
8278 if (NestVal->getType() != NestTy)
8279 NestVal = new BitCastInst(NestVal, NestTy, "nest", Caller);
8280 NewArgs.push_back(NestVal);
8281 }
8282
8283 if (I == E)
8284 break;
8285
8286 // Add the original argument.
8287 NewArgs.push_back(*I);
8288
8289 ++Idx, ++I;
8290 } while (1);
8291 }
8292
8293 // The trampoline may have been bitcast to a bogus type (FTy).
8294 // Handle this by synthesizing a new function type, equal to FTy
8295 // with the chain parameter inserted. Likewise for attributes.
8296
Duncan Sandsf5588dc2007-11-27 13:23:08 +00008297 const ParamAttrsList *Attrs = CS.getParamAttrs();
Duncan Sands74833f22007-09-17 10:26:40 +00008298 std::vector<const Type*> NewTypes;
8299 ParamAttrsVector NewAttrs;
8300 NewTypes.reserve(FTy->getNumParams()+1);
8301
8302 // Add any function result attributes.
8303 uint16_t Attr = Attrs ? Attrs->getParamAttrs(0) : 0;
8304 if (Attr)
8305 NewAttrs.push_back (ParamAttrsWithIndex::get(0, Attr));
8306
8307 // Insert the chain's type into the list of parameter types, which may
8308 // mean appending it. Likewise for the chain's attributes.
8309 {
8310 unsigned Idx = 1;
8311 FunctionType::param_iterator I = FTy->param_begin(),
8312 E = FTy->param_end();
8313
8314 do {
8315 if (Idx == NestIdx) {
8316 // Add the chain's type and attributes.
8317 NewTypes.push_back(NestTy);
8318 NewAttrs.push_back(ParamAttrsWithIndex::get(NestIdx, NestAttr));
8319 }
8320
8321 if (I == E)
8322 break;
8323
8324 // Add the original type and attributes.
8325 NewTypes.push_back(*I);
8326 Attr = Attrs ? Attrs->getParamAttrs(Idx) : 0;
8327 if (Attr)
8328 NewAttrs.push_back
8329 (ParamAttrsWithIndex::get(Idx + (Idx >= NestIdx), Attr));
8330
8331 ++Idx, ++I;
8332 } while (1);
8333 }
8334
8335 // Replace the trampoline call with a direct call. Let the generic
8336 // code sort out any function type mismatches.
8337 FunctionType *NewFTy =
Duncan Sandsf5588dc2007-11-27 13:23:08 +00008338 FunctionType::get(FTy->getReturnType(), NewTypes, FTy->isVarArg());
Christopher Lambbb2f2222007-12-17 01:12:55 +00008339 Constant *NewCallee = NestF->getType() == PointerType::getUnqual(NewFTy) ?
8340 NestF : ConstantExpr::getBitCast(NestF, PointerType::getUnqual(NewFTy));
Duncan Sandsf5588dc2007-11-27 13:23:08 +00008341 const ParamAttrsList *NewPAL = ParamAttrsList::get(NewAttrs);
Duncan Sands74833f22007-09-17 10:26:40 +00008342
8343 Instruction *NewCaller;
8344 if (InvokeInst *II = dyn_cast<InvokeInst>(Caller)) {
8345 NewCaller = new InvokeInst(NewCallee,
8346 II->getNormalDest(), II->getUnwindDest(),
8347 NewArgs.begin(), NewArgs.end(),
8348 Caller->getName(), Caller);
8349 cast<InvokeInst>(NewCaller)->setCallingConv(II->getCallingConv());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00008350 cast<InvokeInst>(NewCaller)->setParamAttrs(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00008351 } else {
8352 NewCaller = new CallInst(NewCallee, NewArgs.begin(), NewArgs.end(),
8353 Caller->getName(), Caller);
8354 if (cast<CallInst>(Caller)->isTailCall())
8355 cast<CallInst>(NewCaller)->setTailCall();
8356 cast<CallInst>(NewCaller)->
8357 setCallingConv(cast<CallInst>(Caller)->getCallingConv());
Duncan Sandsf5588dc2007-11-27 13:23:08 +00008358 cast<CallInst>(NewCaller)->setParamAttrs(NewPAL);
Duncan Sands74833f22007-09-17 10:26:40 +00008359 }
8360 if (Caller->getType() != Type::VoidTy && !Caller->use_empty())
8361 Caller->replaceAllUsesWith(NewCaller);
8362 Caller->eraseFromParent();
8363 RemoveFromWorkList(Caller);
8364 return 0;
8365 }
8366 }
8367
8368 // Replace the trampoline call with a direct call. Since there is no 'nest'
8369 // parameter, there is no need to adjust the argument list. Let the generic
8370 // code sort out any function type mismatches.
8371 Constant *NewCallee =
8372 NestF->getType() == PTy ? NestF : ConstantExpr::getBitCast(NestF, PTy);
8373 CS.setCalledFunction(NewCallee);
8374 return CS.getInstruction();
8375}
8376
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008377/// FoldPHIArgBinOpIntoPHI - If we have something like phi [add (a,b), add(c,d)]
8378/// and if a/b/c/d and the add's all have a single use, turn this into two phi's
8379/// and a single binop.
8380Instruction *InstCombiner::FoldPHIArgBinOpIntoPHI(PHINode &PN) {
8381 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
8382 assert(isa<BinaryOperator>(FirstInst) || isa<GetElementPtrInst>(FirstInst) ||
8383 isa<CmpInst>(FirstInst));
8384 unsigned Opc = FirstInst->getOpcode();
8385 Value *LHSVal = FirstInst->getOperand(0);
8386 Value *RHSVal = FirstInst->getOperand(1);
8387
8388 const Type *LHSType = LHSVal->getType();
8389 const Type *RHSType = RHSVal->getType();
8390
8391 // Scan to see if all operands are the same opcode, all have one use, and all
8392 // kill their operands (i.e. the operands have one use).
8393 for (unsigned i = 0; i != PN.getNumIncomingValues(); ++i) {
8394 Instruction *I = dyn_cast<Instruction>(PN.getIncomingValue(i));
8395 if (!I || I->getOpcode() != Opc || !I->hasOneUse() ||
8396 // Verify type of the LHS matches so we don't fold cmp's of different
8397 // types or GEP's with different index types.
8398 I->getOperand(0)->getType() != LHSType ||
8399 I->getOperand(1)->getType() != RHSType)
8400 return 0;
8401
8402 // If they are CmpInst instructions, check their predicates
8403 if (Opc == Instruction::ICmp || Opc == Instruction::FCmp)
8404 if (cast<CmpInst>(I)->getPredicate() !=
8405 cast<CmpInst>(FirstInst)->getPredicate())
8406 return 0;
8407
8408 // Keep track of which operand needs a phi node.
8409 if (I->getOperand(0) != LHSVal) LHSVal = 0;
8410 if (I->getOperand(1) != RHSVal) RHSVal = 0;
8411 }
8412
8413 // Otherwise, this is safe to transform, determine if it is profitable.
8414
8415 // If this is a GEP, and if the index (not the pointer) needs a PHI, bail out.
8416 // Indexes are often folded into load/store instructions, so we don't want to
8417 // hide them behind a phi.
8418 if (isa<GetElementPtrInst>(FirstInst) && RHSVal == 0)
8419 return 0;
8420
8421 Value *InLHS = FirstInst->getOperand(0);
8422 Value *InRHS = FirstInst->getOperand(1);
8423 PHINode *NewLHS = 0, *NewRHS = 0;
8424 if (LHSVal == 0) {
8425 NewLHS = new PHINode(LHSType, FirstInst->getOperand(0)->getName()+".pn");
8426 NewLHS->reserveOperandSpace(PN.getNumOperands()/2);
8427 NewLHS->addIncoming(InLHS, PN.getIncomingBlock(0));
8428 InsertNewInstBefore(NewLHS, PN);
8429 LHSVal = NewLHS;
8430 }
8431
8432 if (RHSVal == 0) {
8433 NewRHS = new PHINode(RHSType, FirstInst->getOperand(1)->getName()+".pn");
8434 NewRHS->reserveOperandSpace(PN.getNumOperands()/2);
8435 NewRHS->addIncoming(InRHS, PN.getIncomingBlock(0));
8436 InsertNewInstBefore(NewRHS, PN);
8437 RHSVal = NewRHS;
8438 }
8439
8440 // Add all operands to the new PHIs.
8441 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
8442 if (NewLHS) {
8443 Value *NewInLHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
8444 NewLHS->addIncoming(NewInLHS, PN.getIncomingBlock(i));
8445 }
8446 if (NewRHS) {
8447 Value *NewInRHS =cast<Instruction>(PN.getIncomingValue(i))->getOperand(1);
8448 NewRHS->addIncoming(NewInRHS, PN.getIncomingBlock(i));
8449 }
8450 }
8451
8452 if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
8453 return BinaryOperator::create(BinOp->getOpcode(), LHSVal, RHSVal);
8454 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
8455 return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(), LHSVal,
8456 RHSVal);
8457 else {
8458 assert(isa<GetElementPtrInst>(FirstInst));
8459 return new GetElementPtrInst(LHSVal, RHSVal);
8460 }
8461}
8462
8463/// isSafeToSinkLoad - Return true if we know that it is safe sink the load out
8464/// of the block that defines it. This means that it must be obvious the value
8465/// of the load is not changed from the point of the load to the end of the
8466/// block it is in.
8467///
8468/// Finally, it is safe, but not profitable, to sink a load targetting a
8469/// non-address-taken alloca. Doing so will cause us to not promote the alloca
8470/// to a register.
8471static bool isSafeToSinkLoad(LoadInst *L) {
8472 BasicBlock::iterator BBI = L, E = L->getParent()->end();
8473
8474 for (++BBI; BBI != E; ++BBI)
8475 if (BBI->mayWriteToMemory())
8476 return false;
8477
8478 // Check for non-address taken alloca. If not address-taken already, it isn't
8479 // profitable to do this xform.
8480 if (AllocaInst *AI = dyn_cast<AllocaInst>(L->getOperand(0))) {
8481 bool isAddressTaken = false;
8482 for (Value::use_iterator UI = AI->use_begin(), E = AI->use_end();
8483 UI != E; ++UI) {
8484 if (isa<LoadInst>(UI)) continue;
8485 if (StoreInst *SI = dyn_cast<StoreInst>(*UI)) {
8486 // If storing TO the alloca, then the address isn't taken.
8487 if (SI->getOperand(1) == AI) continue;
8488 }
8489 isAddressTaken = true;
8490 break;
8491 }
8492
8493 if (!isAddressTaken)
8494 return false;
8495 }
8496
8497 return true;
8498}
8499
8500
8501// FoldPHIArgOpIntoPHI - If all operands to a PHI node are the same "unary"
8502// operator and they all are only used by the PHI, PHI together their
8503// inputs, and do the operation once, to the result of the PHI.
8504Instruction *InstCombiner::FoldPHIArgOpIntoPHI(PHINode &PN) {
8505 Instruction *FirstInst = cast<Instruction>(PN.getIncomingValue(0));
8506
8507 // Scan the instruction, looking for input operations that can be folded away.
8508 // If all input operands to the phi are the same instruction (e.g. a cast from
8509 // the same type or "+42") we can pull the operation through the PHI, reducing
8510 // code size and simplifying code.
8511 Constant *ConstantOp = 0;
8512 const Type *CastSrcTy = 0;
8513 bool isVolatile = false;
8514 if (isa<CastInst>(FirstInst)) {
8515 CastSrcTy = FirstInst->getOperand(0)->getType();
8516 } else if (isa<BinaryOperator>(FirstInst) || isa<CmpInst>(FirstInst)) {
8517 // Can fold binop, compare or shift here if the RHS is a constant,
8518 // otherwise call FoldPHIArgBinOpIntoPHI.
8519 ConstantOp = dyn_cast<Constant>(FirstInst->getOperand(1));
8520 if (ConstantOp == 0)
8521 return FoldPHIArgBinOpIntoPHI(PN);
8522 } else if (LoadInst *LI = dyn_cast<LoadInst>(FirstInst)) {
8523 isVolatile = LI->isVolatile();
8524 // We can't sink the load if the loaded value could be modified between the
8525 // load and the PHI.
8526 if (LI->getParent() != PN.getIncomingBlock(0) ||
8527 !isSafeToSinkLoad(LI))
8528 return 0;
8529 } else if (isa<GetElementPtrInst>(FirstInst)) {
8530 if (FirstInst->getNumOperands() == 2)
8531 return FoldPHIArgBinOpIntoPHI(PN);
8532 // Can't handle general GEPs yet.
8533 return 0;
8534 } else {
8535 return 0; // Cannot fold this operation.
8536 }
8537
8538 // Check to see if all arguments are the same operation.
8539 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
8540 if (!isa<Instruction>(PN.getIncomingValue(i))) return 0;
8541 Instruction *I = cast<Instruction>(PN.getIncomingValue(i));
8542 if (!I->hasOneUse() || !I->isSameOperationAs(FirstInst))
8543 return 0;
8544 if (CastSrcTy) {
8545 if (I->getOperand(0)->getType() != CastSrcTy)
8546 return 0; // Cast operation must match.
8547 } else if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
8548 // We can't sink the load if the loaded value could be modified between
8549 // the load and the PHI.
8550 if (LI->isVolatile() != isVolatile ||
8551 LI->getParent() != PN.getIncomingBlock(i) ||
8552 !isSafeToSinkLoad(LI))
8553 return 0;
8554 } else if (I->getOperand(1) != ConstantOp) {
8555 return 0;
8556 }
8557 }
8558
8559 // Okay, they are all the same operation. Create a new PHI node of the
8560 // correct type, and PHI together all of the LHS's of the instructions.
8561 PHINode *NewPN = new PHINode(FirstInst->getOperand(0)->getType(),
8562 PN.getName()+".in");
8563 NewPN->reserveOperandSpace(PN.getNumOperands()/2);
8564
8565 Value *InVal = FirstInst->getOperand(0);
8566 NewPN->addIncoming(InVal, PN.getIncomingBlock(0));
8567
8568 // Add all operands to the new PHI.
8569 for (unsigned i = 1, e = PN.getNumIncomingValues(); i != e; ++i) {
8570 Value *NewInVal = cast<Instruction>(PN.getIncomingValue(i))->getOperand(0);
8571 if (NewInVal != InVal)
8572 InVal = 0;
8573 NewPN->addIncoming(NewInVal, PN.getIncomingBlock(i));
8574 }
8575
8576 Value *PhiVal;
8577 if (InVal) {
8578 // The new PHI unions all of the same values together. This is really
8579 // common, so we handle it intelligently here for compile-time speed.
8580 PhiVal = InVal;
8581 delete NewPN;
8582 } else {
8583 InsertNewInstBefore(NewPN, PN);
8584 PhiVal = NewPN;
8585 }
8586
8587 // Insert and return the new operation.
8588 if (CastInst* FirstCI = dyn_cast<CastInst>(FirstInst))
8589 return CastInst::create(FirstCI->getOpcode(), PhiVal, PN.getType());
8590 else if (isa<LoadInst>(FirstInst))
8591 return new LoadInst(PhiVal, "", isVolatile);
8592 else if (BinaryOperator *BinOp = dyn_cast<BinaryOperator>(FirstInst))
8593 return BinaryOperator::create(BinOp->getOpcode(), PhiVal, ConstantOp);
8594 else if (CmpInst *CIOp = dyn_cast<CmpInst>(FirstInst))
8595 return CmpInst::create(CIOp->getOpcode(), CIOp->getPredicate(),
8596 PhiVal, ConstantOp);
8597 else
8598 assert(0 && "Unknown operation");
8599 return 0;
8600}
8601
8602/// DeadPHICycle - Return true if this PHI node is only used by a PHI node cycle
8603/// that is dead.
8604static bool DeadPHICycle(PHINode *PN,
8605 SmallPtrSet<PHINode*, 16> &PotentiallyDeadPHIs) {
8606 if (PN->use_empty()) return true;
8607 if (!PN->hasOneUse()) return false;
8608
8609 // Remember this node, and if we find the cycle, return.
8610 if (!PotentiallyDeadPHIs.insert(PN))
8611 return true;
Chris Lattneradf2e342007-08-28 04:23:55 +00008612
8613 // Don't scan crazily complex things.
8614 if (PotentiallyDeadPHIs.size() == 16)
8615 return false;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008616
8617 if (PHINode *PU = dyn_cast<PHINode>(PN->use_back()))
8618 return DeadPHICycle(PU, PotentiallyDeadPHIs);
8619
8620 return false;
8621}
8622
Chris Lattner27b695d2007-11-06 21:52:06 +00008623/// PHIsEqualValue - Return true if this phi node is always equal to
8624/// NonPhiInVal. This happens with mutually cyclic phi nodes like:
8625/// z = some value; x = phi (y, z); y = phi (x, z)
8626static bool PHIsEqualValue(PHINode *PN, Value *NonPhiInVal,
8627 SmallPtrSet<PHINode*, 16> &ValueEqualPHIs) {
8628 // See if we already saw this PHI node.
8629 if (!ValueEqualPHIs.insert(PN))
8630 return true;
8631
8632 // Don't scan crazily complex things.
8633 if (ValueEqualPHIs.size() == 16)
8634 return false;
8635
8636 // Scan the operands to see if they are either phi nodes or are equal to
8637 // the value.
8638 for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
8639 Value *Op = PN->getIncomingValue(i);
8640 if (PHINode *OpPN = dyn_cast<PHINode>(Op)) {
8641 if (!PHIsEqualValue(OpPN, NonPhiInVal, ValueEqualPHIs))
8642 return false;
8643 } else if (Op != NonPhiInVal)
8644 return false;
8645 }
8646
8647 return true;
8648}
8649
8650
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008651// PHINode simplification
8652//
8653Instruction *InstCombiner::visitPHINode(PHINode &PN) {
8654 // If LCSSA is around, don't mess with Phi nodes
8655 if (MustPreserveLCSSA) return 0;
8656
8657 if (Value *V = PN.hasConstantValue())
8658 return ReplaceInstUsesWith(PN, V);
8659
8660 // If all PHI operands are the same operation, pull them through the PHI,
8661 // reducing code size.
8662 if (isa<Instruction>(PN.getIncomingValue(0)) &&
8663 PN.getIncomingValue(0)->hasOneUse())
8664 if (Instruction *Result = FoldPHIArgOpIntoPHI(PN))
8665 return Result;
8666
8667 // If this is a trivial cycle in the PHI node graph, remove it. Basically, if
8668 // this PHI only has a single use (a PHI), and if that PHI only has one use (a
8669 // PHI)... break the cycle.
8670 if (PN.hasOneUse()) {
8671 Instruction *PHIUser = cast<Instruction>(PN.use_back());
8672 if (PHINode *PU = dyn_cast<PHINode>(PHIUser)) {
8673 SmallPtrSet<PHINode*, 16> PotentiallyDeadPHIs;
8674 PotentiallyDeadPHIs.insert(&PN);
8675 if (DeadPHICycle(PU, PotentiallyDeadPHIs))
8676 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
8677 }
8678
8679 // If this phi has a single use, and if that use just computes a value for
8680 // the next iteration of a loop, delete the phi. This occurs with unused
8681 // induction variables, e.g. "for (int j = 0; ; ++j);". Detecting this
8682 // common case here is good because the only other things that catch this
8683 // are induction variable analysis (sometimes) and ADCE, which is only run
8684 // late.
8685 if (PHIUser->hasOneUse() &&
8686 (isa<BinaryOperator>(PHIUser) || isa<GetElementPtrInst>(PHIUser)) &&
8687 PHIUser->use_back() == &PN) {
8688 return ReplaceInstUsesWith(PN, UndefValue::get(PN.getType()));
8689 }
8690 }
8691
Chris Lattner27b695d2007-11-06 21:52:06 +00008692 // We sometimes end up with phi cycles that non-obviously end up being the
8693 // same value, for example:
8694 // z = some value; x = phi (y, z); y = phi (x, z)
8695 // where the phi nodes don't necessarily need to be in the same block. Do a
8696 // quick check to see if the PHI node only contains a single non-phi value, if
8697 // so, scan to see if the phi cycle is actually equal to that value.
8698 {
8699 unsigned InValNo = 0, NumOperandVals = PN.getNumIncomingValues();
8700 // Scan for the first non-phi operand.
8701 while (InValNo != NumOperandVals &&
8702 isa<PHINode>(PN.getIncomingValue(InValNo)))
8703 ++InValNo;
8704
8705 if (InValNo != NumOperandVals) {
8706 Value *NonPhiInVal = PN.getOperand(InValNo);
8707
8708 // Scan the rest of the operands to see if there are any conflicts, if so
8709 // there is no need to recursively scan other phis.
8710 for (++InValNo; InValNo != NumOperandVals; ++InValNo) {
8711 Value *OpVal = PN.getIncomingValue(InValNo);
8712 if (OpVal != NonPhiInVal && !isa<PHINode>(OpVal))
8713 break;
8714 }
8715
8716 // If we scanned over all operands, then we have one unique value plus
8717 // phi values. Scan PHI nodes to see if they all merge in each other or
8718 // the value.
8719 if (InValNo == NumOperandVals) {
8720 SmallPtrSet<PHINode*, 16> ValueEqualPHIs;
8721 if (PHIsEqualValue(&PN, NonPhiInVal, ValueEqualPHIs))
8722 return ReplaceInstUsesWith(PN, NonPhiInVal);
8723 }
8724 }
8725 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008726 return 0;
8727}
8728
8729static Value *InsertCastToIntPtrTy(Value *V, const Type *DTy,
8730 Instruction *InsertPoint,
8731 InstCombiner *IC) {
8732 unsigned PtrSize = DTy->getPrimitiveSizeInBits();
8733 unsigned VTySize = V->getType()->getPrimitiveSizeInBits();
8734 // We must cast correctly to the pointer type. Ensure that we
8735 // sign extend the integer value if it is smaller as this is
8736 // used for address computation.
8737 Instruction::CastOps opcode =
8738 (VTySize < PtrSize ? Instruction::SExt :
8739 (VTySize == PtrSize ? Instruction::BitCast : Instruction::Trunc));
8740 return IC->InsertCastBefore(opcode, V, DTy, *InsertPoint);
8741}
8742
8743
8744Instruction *InstCombiner::visitGetElementPtrInst(GetElementPtrInst &GEP) {
8745 Value *PtrOp = GEP.getOperand(0);
8746 // Is it 'getelementptr %P, i32 0' or 'getelementptr %P'
8747 // If so, eliminate the noop.
8748 if (GEP.getNumOperands() == 1)
8749 return ReplaceInstUsesWith(GEP, PtrOp);
8750
8751 if (isa<UndefValue>(GEP.getOperand(0)))
8752 return ReplaceInstUsesWith(GEP, UndefValue::get(GEP.getType()));
8753
8754 bool HasZeroPointerIndex = false;
8755 if (Constant *C = dyn_cast<Constant>(GEP.getOperand(1)))
8756 HasZeroPointerIndex = C->isNullValue();
8757
8758 if (GEP.getNumOperands() == 2 && HasZeroPointerIndex)
8759 return ReplaceInstUsesWith(GEP, PtrOp);
8760
8761 // Eliminate unneeded casts for indices.
8762 bool MadeChange = false;
8763
8764 gep_type_iterator GTI = gep_type_begin(GEP);
8765 for (unsigned i = 1, e = GEP.getNumOperands(); i != e; ++i, ++GTI) {
8766 if (isa<SequentialType>(*GTI)) {
8767 if (CastInst *CI = dyn_cast<CastInst>(GEP.getOperand(i))) {
8768 if (CI->getOpcode() == Instruction::ZExt ||
8769 CI->getOpcode() == Instruction::SExt) {
8770 const Type *SrcTy = CI->getOperand(0)->getType();
8771 // We can eliminate a cast from i32 to i64 iff the target
8772 // is a 32-bit pointer target.
8773 if (SrcTy->getPrimitiveSizeInBits() >= TD->getPointerSizeInBits()) {
8774 MadeChange = true;
8775 GEP.setOperand(i, CI->getOperand(0));
8776 }
8777 }
8778 }
8779 // If we are using a wider index than needed for this platform, shrink it
8780 // to what we need. If the incoming value needs a cast instruction,
8781 // insert it. This explicit cast can make subsequent optimizations more
8782 // obvious.
8783 Value *Op = GEP.getOperand(i);
Duncan Sandsf99fdc62007-11-01 20:53:16 +00008784 if (TD->getTypeSizeInBits(Op->getType()) > TD->getPointerSizeInBits())
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008785 if (Constant *C = dyn_cast<Constant>(Op)) {
8786 GEP.setOperand(i, ConstantExpr::getTrunc(C, TD->getIntPtrType()));
8787 MadeChange = true;
8788 } else {
8789 Op = InsertCastBefore(Instruction::Trunc, Op, TD->getIntPtrType(),
8790 GEP);
8791 GEP.setOperand(i, Op);
8792 MadeChange = true;
8793 }
8794 }
8795 }
8796 if (MadeChange) return &GEP;
8797
8798 // If this GEP instruction doesn't move the pointer, and if the input operand
8799 // is a bitcast of another pointer, just replace the GEP with a bitcast of the
8800 // real input to the dest type.
Chris Lattnerc59171a2007-10-12 05:30:59 +00008801 if (GEP.hasAllZeroIndices()) {
8802 if (BitCastInst *BCI = dyn_cast<BitCastInst>(GEP.getOperand(0))) {
8803 // If the bitcast is of an allocation, and the allocation will be
8804 // converted to match the type of the cast, don't touch this.
8805 if (isa<AllocationInst>(BCI->getOperand(0))) {
8806 // See if the bitcast simplifies, if so, don't nuke this GEP yet.
Chris Lattner551a5872007-10-12 18:05:47 +00008807 if (Instruction *I = visitBitCast(*BCI)) {
8808 if (I != BCI) {
8809 I->takeName(BCI);
8810 BCI->getParent()->getInstList().insert(BCI, I);
8811 ReplaceInstUsesWith(*BCI, I);
8812 }
Chris Lattnerc59171a2007-10-12 05:30:59 +00008813 return &GEP;
Chris Lattner551a5872007-10-12 18:05:47 +00008814 }
Chris Lattnerc59171a2007-10-12 05:30:59 +00008815 }
8816 return new BitCastInst(BCI->getOperand(0), GEP.getType());
8817 }
8818 }
8819
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008820 // Combine Indices - If the source pointer to this getelementptr instruction
8821 // is a getelementptr instruction, combine the indices of the two
8822 // getelementptr instructions into a single instruction.
8823 //
8824 SmallVector<Value*, 8> SrcGEPOperands;
8825 if (User *Src = dyn_castGetElementPtr(PtrOp))
8826 SrcGEPOperands.append(Src->op_begin(), Src->op_end());
8827
8828 if (!SrcGEPOperands.empty()) {
8829 // Note that if our source is a gep chain itself that we wait for that
8830 // chain to be resolved before we perform this transformation. This
8831 // avoids us creating a TON of code in some cases.
8832 //
8833 if (isa<GetElementPtrInst>(SrcGEPOperands[0]) &&
8834 cast<Instruction>(SrcGEPOperands[0])->getNumOperands() == 2)
8835 return 0; // Wait until our source is folded to completion.
8836
8837 SmallVector<Value*, 8> Indices;
8838
8839 // Find out whether the last index in the source GEP is a sequential idx.
8840 bool EndsWithSequential = false;
8841 for (gep_type_iterator I = gep_type_begin(*cast<User>(PtrOp)),
8842 E = gep_type_end(*cast<User>(PtrOp)); I != E; ++I)
8843 EndsWithSequential = !isa<StructType>(*I);
8844
8845 // Can we combine the two pointer arithmetics offsets?
8846 if (EndsWithSequential) {
8847 // Replace: gep (gep %P, long B), long A, ...
8848 // With: T = long A+B; gep %P, T, ...
8849 //
8850 Value *Sum, *SO1 = SrcGEPOperands.back(), *GO1 = GEP.getOperand(1);
8851 if (SO1 == Constant::getNullValue(SO1->getType())) {
8852 Sum = GO1;
8853 } else if (GO1 == Constant::getNullValue(GO1->getType())) {
8854 Sum = SO1;
8855 } else {
8856 // If they aren't the same type, convert both to an integer of the
8857 // target's pointer size.
8858 if (SO1->getType() != GO1->getType()) {
8859 if (Constant *SO1C = dyn_cast<Constant>(SO1)) {
8860 SO1 = ConstantExpr::getIntegerCast(SO1C, GO1->getType(), true);
8861 } else if (Constant *GO1C = dyn_cast<Constant>(GO1)) {
8862 GO1 = ConstantExpr::getIntegerCast(GO1C, SO1->getType(), true);
8863 } else {
Duncan Sandsf99fdc62007-11-01 20:53:16 +00008864 unsigned PS = TD->getPointerSizeInBits();
8865 if (TD->getTypeSizeInBits(SO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008866 // Convert GO1 to SO1's type.
8867 GO1 = InsertCastToIntPtrTy(GO1, SO1->getType(), &GEP, this);
8868
Duncan Sandsf99fdc62007-11-01 20:53:16 +00008869 } else if (TD->getTypeSizeInBits(GO1->getType()) == PS) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008870 // Convert SO1 to GO1's type.
8871 SO1 = InsertCastToIntPtrTy(SO1, GO1->getType(), &GEP, this);
8872 } else {
8873 const Type *PT = TD->getIntPtrType();
8874 SO1 = InsertCastToIntPtrTy(SO1, PT, &GEP, this);
8875 GO1 = InsertCastToIntPtrTy(GO1, PT, &GEP, this);
8876 }
8877 }
8878 }
8879 if (isa<Constant>(SO1) && isa<Constant>(GO1))
8880 Sum = ConstantExpr::getAdd(cast<Constant>(SO1), cast<Constant>(GO1));
8881 else {
8882 Sum = BinaryOperator::createAdd(SO1, GO1, PtrOp->getName()+".sum");
8883 InsertNewInstBefore(cast<Instruction>(Sum), GEP);
8884 }
8885 }
8886
8887 // Recycle the GEP we already have if possible.
8888 if (SrcGEPOperands.size() == 2) {
8889 GEP.setOperand(0, SrcGEPOperands[0]);
8890 GEP.setOperand(1, Sum);
8891 return &GEP;
8892 } else {
8893 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
8894 SrcGEPOperands.end()-1);
8895 Indices.push_back(Sum);
8896 Indices.insert(Indices.end(), GEP.op_begin()+2, GEP.op_end());
8897 }
8898 } else if (isa<Constant>(*GEP.idx_begin()) &&
8899 cast<Constant>(*GEP.idx_begin())->isNullValue() &&
8900 SrcGEPOperands.size() != 1) {
8901 // Otherwise we can do the fold if the first index of the GEP is a zero
8902 Indices.insert(Indices.end(), SrcGEPOperands.begin()+1,
8903 SrcGEPOperands.end());
8904 Indices.insert(Indices.end(), GEP.idx_begin()+1, GEP.idx_end());
8905 }
8906
8907 if (!Indices.empty())
David Greene393be882007-09-04 15:46:09 +00008908 return new GetElementPtrInst(SrcGEPOperands[0], Indices.begin(),
8909 Indices.end(), GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008910
8911 } else if (GlobalValue *GV = dyn_cast<GlobalValue>(PtrOp)) {
8912 // GEP of global variable. If all of the indices for this GEP are
8913 // constants, we can promote this to a constexpr instead of an instruction.
8914
8915 // Scan for nonconstants...
8916 SmallVector<Constant*, 8> Indices;
8917 User::op_iterator I = GEP.idx_begin(), E = GEP.idx_end();
8918 for (; I != E && isa<Constant>(*I); ++I)
8919 Indices.push_back(cast<Constant>(*I));
8920
8921 if (I == E) { // If they are all constants...
8922 Constant *CE = ConstantExpr::getGetElementPtr(GV,
8923 &Indices[0],Indices.size());
8924
8925 // Replace all uses of the GEP with the new constexpr...
8926 return ReplaceInstUsesWith(GEP, CE);
8927 }
8928 } else if (Value *X = getBitCastOperand(PtrOp)) { // Is the operand a cast?
8929 if (!isa<PointerType>(X->getType())) {
8930 // Not interesting. Source pointer must be a cast from pointer.
8931 } else if (HasZeroPointerIndex) {
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00008932 // transform: GEP (bitcast [10 x i8]* X to [0 x i8]*), i32 0, ...
8933 // into : GEP [10 x i8]* X, i32 0, ...
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008934 //
8935 // This occurs when the program declares an array extern like "int X[];"
8936 //
8937 const PointerType *CPTy = cast<PointerType>(PtrOp->getType());
8938 const PointerType *XTy = cast<PointerType>(X->getType());
8939 if (const ArrayType *XATy =
8940 dyn_cast<ArrayType>(XTy->getElementType()))
8941 if (const ArrayType *CATy =
8942 dyn_cast<ArrayType>(CPTy->getElementType()))
8943 if (CATy->getElementType() == XATy->getElementType()) {
8944 // At this point, we know that the cast source type is a pointer
8945 // to an array of the same type as the destination pointer
8946 // array. Because the array type is never stepped over (there
8947 // is a leading zero) we can fold the cast into this GEP.
8948 GEP.setOperand(0, X);
8949 return &GEP;
8950 }
8951 } else if (GEP.getNumOperands() == 2) {
8952 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00008953 // %t = getelementptr i32* bitcast ([2 x i32]* %str to i32*), i32 %V
8954 // into: %t1 = getelementptr [2 x i32]* %str, i32 0, i32 %V; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008955 const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
8956 const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
8957 if (isa<ArrayType>(SrcElTy) &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +00008958 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
8959 TD->getABITypeSize(ResElTy)) {
David Greene393be882007-09-04 15:46:09 +00008960 Value *Idx[2];
8961 Idx[0] = Constant::getNullValue(Type::Int32Ty);
8962 Idx[1] = GEP.getOperand(1);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008963 Value *V = InsertNewInstBefore(
David Greene393be882007-09-04 15:46:09 +00008964 new GetElementPtrInst(X, Idx, Idx + 2, GEP.getName()), GEP);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008965 // V and GEP are both pointer types --> BitCast
8966 return new BitCastInst(V, GEP.getType());
8967 }
8968
8969 // Transform things like:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00008970 // getelementptr i8* bitcast ([100 x double]* X to i8*), i32 %tmp
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008971 // (where tmp = 8*tmp2) into:
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00008972 // getelementptr [100 x double]* %arr, i32 0, i32 %tmp2; bitcast
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008973
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00008974 if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008975 uint64_t ArrayEltSize =
Duncan Sandsf99fdc62007-11-01 20:53:16 +00008976 TD->getABITypeSize(cast<ArrayType>(SrcElTy)->getElementType());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00008977
8978 // Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
8979 // allow either a mul, shift, or constant here.
8980 Value *NewIdx = 0;
8981 ConstantInt *Scale = 0;
8982 if (ArrayEltSize == 1) {
8983 NewIdx = GEP.getOperand(1);
8984 Scale = ConstantInt::get(NewIdx->getType(), 1);
8985 } else if (ConstantInt *CI = dyn_cast<ConstantInt>(GEP.getOperand(1))) {
8986 NewIdx = ConstantInt::get(CI->getType(), 1);
8987 Scale = CI;
8988 } else if (Instruction *Inst =dyn_cast<Instruction>(GEP.getOperand(1))){
8989 if (Inst->getOpcode() == Instruction::Shl &&
8990 isa<ConstantInt>(Inst->getOperand(1))) {
8991 ConstantInt *ShAmt = cast<ConstantInt>(Inst->getOperand(1));
8992 uint32_t ShAmtVal = ShAmt->getLimitedValue(64);
8993 Scale = ConstantInt::get(Inst->getType(), 1ULL << ShAmtVal);
8994 NewIdx = Inst->getOperand(0);
8995 } else if (Inst->getOpcode() == Instruction::Mul &&
8996 isa<ConstantInt>(Inst->getOperand(1))) {
8997 Scale = cast<ConstantInt>(Inst->getOperand(1));
8998 NewIdx = Inst->getOperand(0);
8999 }
9000 }
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009001
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009002 // If the index will be to exactly the right offset with the scale taken
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009003 // out, perform the transformation. Note, we don't know whether Scale is
9004 // signed or not. We'll use unsigned version of division/modulo
9005 // operation after making sure Scale doesn't have the sign bit set.
9006 if (Scale && Scale->getSExtValue() >= 0LL &&
9007 Scale->getZExtValue() % ArrayEltSize == 0) {
9008 Scale = ConstantInt::get(Scale->getType(),
9009 Scale->getZExtValue() / ArrayEltSize);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009010 if (Scale->getZExtValue() != 1) {
9011 Constant *C = ConstantExpr::getIntegerCast(Scale, NewIdx->getType(),
Wojciech Matyjewicz5b5ab532007-12-12 15:21:32 +00009012 false /*ZExt*/);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009013 Instruction *Sc = BinaryOperator::createMul(NewIdx, C, "idxscale");
9014 NewIdx = InsertNewInstBefore(Sc, GEP);
9015 }
9016
9017 // Insert the new GEP instruction.
David Greene393be882007-09-04 15:46:09 +00009018 Value *Idx[2];
9019 Idx[0] = Constant::getNullValue(Type::Int32Ty);
9020 Idx[1] = NewIdx;
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009021 Instruction *NewGEP =
David Greene393be882007-09-04 15:46:09 +00009022 new GetElementPtrInst(X, Idx, Idx + 2, GEP.getName());
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009023 NewGEP = InsertNewInstBefore(NewGEP, GEP);
9024 // The NewGEP must be pointer typed, so must the old one -> BitCast
9025 return new BitCastInst(NewGEP, GEP.getType());
9026 }
9027 }
9028 }
9029 }
9030
9031 return 0;
9032}
9033
9034Instruction *InstCombiner::visitAllocationInst(AllocationInst &AI) {
9035 // Convert: malloc Ty, C - where C is a constant != 1 into: malloc [C x Ty], 1
9036 if (AI.isArrayAllocation()) // Check C != 1
9037 if (const ConstantInt *C = dyn_cast<ConstantInt>(AI.getArraySize())) {
9038 const Type *NewTy =
9039 ArrayType::get(AI.getAllocatedType(), C->getZExtValue());
9040 AllocationInst *New = 0;
9041
9042 // Create and insert the replacement instruction...
9043 if (isa<MallocInst>(AI))
9044 New = new MallocInst(NewTy, 0, AI.getAlignment(), AI.getName());
9045 else {
9046 assert(isa<AllocaInst>(AI) && "Unknown type of allocation inst!");
9047 New = new AllocaInst(NewTy, 0, AI.getAlignment(), AI.getName());
9048 }
9049
9050 InsertNewInstBefore(New, AI);
9051
9052 // Scan to the end of the allocation instructions, to skip over a block of
9053 // allocas if possible...
9054 //
9055 BasicBlock::iterator It = New;
9056 while (isa<AllocationInst>(*It)) ++It;
9057
9058 // Now that I is pointing to the first non-allocation-inst in the block,
9059 // insert our getelementptr instruction...
9060 //
9061 Value *NullIdx = Constant::getNullValue(Type::Int32Ty);
David Greene393be882007-09-04 15:46:09 +00009062 Value *Idx[2];
9063 Idx[0] = NullIdx;
9064 Idx[1] = NullIdx;
9065 Value *V = new GetElementPtrInst(New, Idx, Idx + 2,
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009066 New->getName()+".sub", It);
9067
9068 // Now make everything use the getelementptr instead of the original
9069 // allocation.
9070 return ReplaceInstUsesWith(AI, V);
9071 } else if (isa<UndefValue>(AI.getArraySize())) {
9072 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
9073 }
9074
9075 // If alloca'ing a zero byte object, replace the alloca with a null pointer.
9076 // Note that we only do this for alloca's, because malloc should allocate and
9077 // return a unique pointer, even for a zero byte allocation.
9078 if (isa<AllocaInst>(AI) && AI.getAllocatedType()->isSized() &&
Duncan Sandsf99fdc62007-11-01 20:53:16 +00009079 TD->getABITypeSize(AI.getAllocatedType()) == 0)
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009080 return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
9081
9082 return 0;
9083}
9084
9085Instruction *InstCombiner::visitFreeInst(FreeInst &FI) {
9086 Value *Op = FI.getOperand(0);
9087
9088 // free undef -> unreachable.
9089 if (isa<UndefValue>(Op)) {
9090 // Insert a new store to null because we cannot modify the CFG here.
9091 new StoreInst(ConstantInt::getTrue(),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009092 UndefValue::get(PointerType::getUnqual(Type::Int1Ty)), &FI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009093 return EraseInstFromFunction(FI);
9094 }
9095
9096 // If we have 'free null' delete the instruction. This can happen in stl code
9097 // when lots of inlining happens.
9098 if (isa<ConstantPointerNull>(Op))
9099 return EraseInstFromFunction(FI);
9100
9101 // Change free <ty>* (cast <ty2>* X to <ty>*) into free <ty2>* X
9102 if (BitCastInst *CI = dyn_cast<BitCastInst>(Op)) {
9103 FI.setOperand(0, CI->getOperand(0));
9104 return &FI;
9105 }
9106
9107 // Change free (gep X, 0,0,0,0) into free(X)
9108 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op)) {
9109 if (GEPI->hasAllZeroIndices()) {
9110 AddToWorkList(GEPI);
9111 FI.setOperand(0, GEPI->getOperand(0));
9112 return &FI;
9113 }
9114 }
9115
9116 // Change free(malloc) into nothing, if the malloc has a single use.
9117 if (MallocInst *MI = dyn_cast<MallocInst>(Op))
9118 if (MI->hasOneUse()) {
9119 EraseInstFromFunction(FI);
9120 return EraseInstFromFunction(*MI);
9121 }
9122
9123 return 0;
9124}
9125
9126
9127/// InstCombineLoadCast - Fold 'load (cast P)' -> cast (load P)' when possible.
Devang Patela0f8ea82007-10-18 19:52:32 +00009128static Instruction *InstCombineLoadCast(InstCombiner &IC, LoadInst &LI,
9129 const TargetData *TD) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009130 User *CI = cast<User>(LI.getOperand(0));
9131 Value *CastOp = CI->getOperand(0);
9132
Devang Patela0f8ea82007-10-18 19:52:32 +00009133 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(CI)) {
9134 // Instead of loading constant c string, use corresponding integer value
9135 // directly if string length is small enough.
9136 const std::string &Str = CE->getOperand(0)->getStringValue();
9137 if (!Str.empty()) {
9138 unsigned len = Str.length();
9139 const Type *Ty = cast<PointerType>(CE->getType())->getElementType();
9140 unsigned numBits = Ty->getPrimitiveSizeInBits();
9141 // Replace LI with immediate integer store.
9142 if ((numBits >> 3) == len + 1) {
9143 APInt StrVal(numBits, 0);
9144 APInt SingleChar(numBits, 0);
9145 if (TD->isLittleEndian()) {
9146 for (signed i = len-1; i >= 0; i--) {
9147 SingleChar = (uint64_t) Str[i];
9148 StrVal = (StrVal << 8) | SingleChar;
9149 }
9150 } else {
9151 for (unsigned i = 0; i < len; i++) {
9152 SingleChar = (uint64_t) Str[i];
9153 StrVal = (StrVal << 8) | SingleChar;
9154 }
9155 // Append NULL at the end.
9156 SingleChar = 0;
9157 StrVal = (StrVal << 8) | SingleChar;
9158 }
9159 Value *NL = ConstantInt::get(StrVal);
9160 return IC.ReplaceInstUsesWith(LI, NL);
9161 }
9162 }
9163 }
9164
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009165 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
9166 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
9167 const Type *SrcPTy = SrcTy->getElementType();
9168
9169 if (DestPTy->isInteger() || isa<PointerType>(DestPTy) ||
9170 isa<VectorType>(DestPTy)) {
9171 // If the source is an array, the code below will not succeed. Check to
9172 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
9173 // constants.
9174 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
9175 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
9176 if (ASrcTy->getNumElements() != 0) {
9177 Value *Idxs[2];
9178 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
9179 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
9180 SrcTy = cast<PointerType>(CastOp->getType());
9181 SrcPTy = SrcTy->getElementType();
9182 }
9183
9184 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy) ||
9185 isa<VectorType>(SrcPTy)) &&
9186 // Do not allow turning this into a load of an integer, which is then
9187 // casted to a pointer, this pessimizes pointer analysis a lot.
9188 (isa<PointerType>(SrcPTy) == isa<PointerType>(LI.getType())) &&
9189 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
9190 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
9191
9192 // Okay, we are casting from one integer or pointer type to another of
9193 // the same size. Instead of casting the pointer before the load, cast
9194 // the result of the loaded value.
9195 Value *NewLoad = IC.InsertNewInstBefore(new LoadInst(CastOp,
9196 CI->getName(),
9197 LI.isVolatile()),LI);
9198 // Now cast the result of the load.
9199 return new BitCastInst(NewLoad, LI.getType());
9200 }
9201 }
9202 }
9203 return 0;
9204}
9205
9206/// isSafeToLoadUnconditionally - Return true if we know that executing a load
9207/// from this value cannot trap. If it is not obviously safe to load from the
9208/// specified pointer, we do a quick local scan of the basic block containing
9209/// ScanFrom, to determine if the address is already accessed.
9210static bool isSafeToLoadUnconditionally(Value *V, Instruction *ScanFrom) {
Duncan Sands9b27dbe2007-09-19 10:10:31 +00009211 // If it is an alloca it is always safe to load from.
9212 if (isa<AllocaInst>(V)) return true;
9213
Duncan Sandse40a94a2007-09-19 10:25:38 +00009214 // If it is a global variable it is mostly safe to load from.
Duncan Sands9b27dbe2007-09-19 10:10:31 +00009215 if (const GlobalValue *GV = dyn_cast<GlobalVariable>(V))
Duncan Sandse40a94a2007-09-19 10:25:38 +00009216 // Don't try to evaluate aliases. External weak GV can be null.
Duncan Sands9b27dbe2007-09-19 10:10:31 +00009217 return !isa<GlobalAlias>(GV) && !GV->hasExternalWeakLinkage();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009218
9219 // Otherwise, be a little bit agressive by scanning the local block where we
9220 // want to check to see if the pointer is already being loaded or stored
9221 // from/to. If so, the previous load or store would have already trapped,
9222 // so there is no harm doing an extra load (also, CSE will later eliminate
9223 // the load entirely).
9224 BasicBlock::iterator BBI = ScanFrom, E = ScanFrom->getParent()->begin();
9225
9226 while (BBI != E) {
9227 --BBI;
9228
9229 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
9230 if (LI->getOperand(0) == V) return true;
9231 } else if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
9232 if (SI->getOperand(1) == V) return true;
9233
9234 }
9235 return false;
9236}
9237
Chris Lattner0270a112007-08-11 18:48:48 +00009238/// GetUnderlyingObject - Trace through a series of getelementptrs and bitcasts
9239/// until we find the underlying object a pointer is referring to or something
9240/// we don't understand. Note that the returned pointer may be offset from the
9241/// input, because we ignore GEP indices.
9242static Value *GetUnderlyingObject(Value *Ptr) {
9243 while (1) {
9244 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr)) {
9245 if (CE->getOpcode() == Instruction::BitCast ||
9246 CE->getOpcode() == Instruction::GetElementPtr)
9247 Ptr = CE->getOperand(0);
9248 else
9249 return Ptr;
9250 } else if (BitCastInst *BCI = dyn_cast<BitCastInst>(Ptr)) {
9251 Ptr = BCI->getOperand(0);
9252 } else if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr)) {
9253 Ptr = GEP->getOperand(0);
9254 } else {
9255 return Ptr;
9256 }
9257 }
9258}
9259
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009260Instruction *InstCombiner::visitLoadInst(LoadInst &LI) {
9261 Value *Op = LI.getOperand(0);
9262
Dan Gohman5c4d0e12007-07-20 16:34:21 +00009263 // Attempt to improve the alignment.
Chris Lattner47cf3452007-08-09 19:05:49 +00009264 unsigned KnownAlign = GetOrEnforceKnownAlignment(Op, TD);
Dan Gohman5c4d0e12007-07-20 16:34:21 +00009265 if (KnownAlign > LI.getAlignment())
9266 LI.setAlignment(KnownAlign);
9267
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009268 // load (cast X) --> cast (load X) iff safe
9269 if (isa<CastInst>(Op))
Devang Patela0f8ea82007-10-18 19:52:32 +00009270 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009271 return Res;
9272
9273 // None of the following transforms are legal for volatile loads.
9274 if (LI.isVolatile()) return 0;
9275
9276 if (&LI.getParent()->front() != &LI) {
9277 BasicBlock::iterator BBI = &LI; --BBI;
9278 // If the instruction immediately before this is a store to the same
9279 // address, do a simple form of store->load forwarding.
9280 if (StoreInst *SI = dyn_cast<StoreInst>(BBI))
9281 if (SI->getOperand(1) == LI.getOperand(0))
9282 return ReplaceInstUsesWith(LI, SI->getOperand(0));
9283 if (LoadInst *LIB = dyn_cast<LoadInst>(BBI))
9284 if (LIB->getOperand(0) == LI.getOperand(0))
9285 return ReplaceInstUsesWith(LI, LIB);
9286 }
9287
9288 if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(Op))
9289 if (isa<ConstantPointerNull>(GEPI->getOperand(0))) {
9290 // Insert a new store to null instruction before the load to indicate
9291 // that this code is not reachable. We do this instead of inserting
9292 // an unreachable instruction directly because we cannot modify the
9293 // CFG.
9294 new StoreInst(UndefValue::get(LI.getType()),
9295 Constant::getNullValue(Op->getType()), &LI);
9296 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
9297 }
9298
9299 if (Constant *C = dyn_cast<Constant>(Op)) {
9300 // load null/undef -> undef
9301 if ((C->isNullValue() || isa<UndefValue>(C))) {
9302 // Insert a new store to null instruction before the load to indicate that
9303 // this code is not reachable. We do this instead of inserting an
9304 // unreachable instruction directly because we cannot modify the CFG.
9305 new StoreInst(UndefValue::get(LI.getType()),
9306 Constant::getNullValue(Op->getType()), &LI);
9307 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
9308 }
9309
9310 // Instcombine load (constant global) into the value loaded.
9311 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(Op))
9312 if (GV->isConstant() && !GV->isDeclaration())
9313 return ReplaceInstUsesWith(LI, GV->getInitializer());
9314
9315 // Instcombine load (constantexpr_GEP global, 0, ...) into the value loaded.
9316 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Op))
9317 if (CE->getOpcode() == Instruction::GetElementPtr) {
9318 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(CE->getOperand(0)))
9319 if (GV->isConstant() && !GV->isDeclaration())
9320 if (Constant *V =
9321 ConstantFoldLoadThroughGEPConstantExpr(GV->getInitializer(), CE))
9322 return ReplaceInstUsesWith(LI, V);
9323 if (CE->getOperand(0)->isNullValue()) {
9324 // Insert a new store to null instruction before the load to indicate
9325 // that this code is not reachable. We do this instead of inserting
9326 // an unreachable instruction directly because we cannot modify the
9327 // CFG.
9328 new StoreInst(UndefValue::get(LI.getType()),
9329 Constant::getNullValue(Op->getType()), &LI);
9330 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
9331 }
9332
9333 } else if (CE->isCast()) {
Devang Patela0f8ea82007-10-18 19:52:32 +00009334 if (Instruction *Res = InstCombineLoadCast(*this, LI, TD))
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009335 return Res;
9336 }
9337 }
Chris Lattner0270a112007-08-11 18:48:48 +00009338
9339 // If this load comes from anywhere in a constant global, and if the global
9340 // is all undef or zero, we know what it loads.
9341 if (GlobalVariable *GV = dyn_cast<GlobalVariable>(GetUnderlyingObject(Op))) {
9342 if (GV->isConstant() && GV->hasInitializer()) {
9343 if (GV->getInitializer()->isNullValue())
9344 return ReplaceInstUsesWith(LI, Constant::getNullValue(LI.getType()));
9345 else if (isa<UndefValue>(GV->getInitializer()))
9346 return ReplaceInstUsesWith(LI, UndefValue::get(LI.getType()));
9347 }
9348 }
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009349
9350 if (Op->hasOneUse()) {
9351 // Change select and PHI nodes to select values instead of addresses: this
9352 // helps alias analysis out a lot, allows many others simplifications, and
9353 // exposes redundancy in the code.
9354 //
9355 // Note that we cannot do the transformation unless we know that the
9356 // introduced loads cannot trap! Something like this is valid as long as
9357 // the condition is always false: load (select bool %C, int* null, int* %G),
9358 // but it would not be valid if we transformed it to load from null
9359 // unconditionally.
9360 //
9361 if (SelectInst *SI = dyn_cast<SelectInst>(Op)) {
9362 // load (select (Cond, &V1, &V2)) --> select(Cond, load &V1, load &V2).
9363 if (isSafeToLoadUnconditionally(SI->getOperand(1), SI) &&
9364 isSafeToLoadUnconditionally(SI->getOperand(2), SI)) {
9365 Value *V1 = InsertNewInstBefore(new LoadInst(SI->getOperand(1),
9366 SI->getOperand(1)->getName()+".val"), LI);
9367 Value *V2 = InsertNewInstBefore(new LoadInst(SI->getOperand(2),
9368 SI->getOperand(2)->getName()+".val"), LI);
9369 return new SelectInst(SI->getCondition(), V1, V2);
9370 }
9371
9372 // load (select (cond, null, P)) -> load P
9373 if (Constant *C = dyn_cast<Constant>(SI->getOperand(1)))
9374 if (C->isNullValue()) {
9375 LI.setOperand(0, SI->getOperand(2));
9376 return &LI;
9377 }
9378
9379 // load (select (cond, P, null)) -> load P
9380 if (Constant *C = dyn_cast<Constant>(SI->getOperand(2)))
9381 if (C->isNullValue()) {
9382 LI.setOperand(0, SI->getOperand(1));
9383 return &LI;
9384 }
9385 }
9386 }
9387 return 0;
9388}
9389
9390/// InstCombineStoreToCast - Fold store V, (cast P) -> store (cast V), P
9391/// when possible.
9392static Instruction *InstCombineStoreToCast(InstCombiner &IC, StoreInst &SI) {
9393 User *CI = cast<User>(SI.getOperand(1));
9394 Value *CastOp = CI->getOperand(0);
9395
9396 const Type *DestPTy = cast<PointerType>(CI->getType())->getElementType();
9397 if (const PointerType *SrcTy = dyn_cast<PointerType>(CastOp->getType())) {
9398 const Type *SrcPTy = SrcTy->getElementType();
9399
9400 if (DestPTy->isInteger() || isa<PointerType>(DestPTy)) {
9401 // If the source is an array, the code below will not succeed. Check to
9402 // see if a trivial 'gep P, 0, 0' will help matters. Only do this for
9403 // constants.
9404 if (const ArrayType *ASrcTy = dyn_cast<ArrayType>(SrcPTy))
9405 if (Constant *CSrc = dyn_cast<Constant>(CastOp))
9406 if (ASrcTy->getNumElements() != 0) {
9407 Value* Idxs[2];
9408 Idxs[0] = Idxs[1] = Constant::getNullValue(Type::Int32Ty);
9409 CastOp = ConstantExpr::getGetElementPtr(CSrc, Idxs, 2);
9410 SrcTy = cast<PointerType>(CastOp->getType());
9411 SrcPTy = SrcTy->getElementType();
9412 }
9413
9414 if ((SrcPTy->isInteger() || isa<PointerType>(SrcPTy)) &&
9415 IC.getTargetData().getTypeSizeInBits(SrcPTy) ==
9416 IC.getTargetData().getTypeSizeInBits(DestPTy)) {
9417
9418 // Okay, we are casting from one integer or pointer type to another of
9419 // the same size. Instead of casting the pointer before
9420 // the store, cast the value to be stored.
9421 Value *NewCast;
9422 Value *SIOp0 = SI.getOperand(0);
9423 Instruction::CastOps opcode = Instruction::BitCast;
9424 const Type* CastSrcTy = SIOp0->getType();
9425 const Type* CastDstTy = SrcPTy;
9426 if (isa<PointerType>(CastDstTy)) {
9427 if (CastSrcTy->isInteger())
9428 opcode = Instruction::IntToPtr;
9429 } else if (isa<IntegerType>(CastDstTy)) {
9430 if (isa<PointerType>(SIOp0->getType()))
9431 opcode = Instruction::PtrToInt;
9432 }
9433 if (Constant *C = dyn_cast<Constant>(SIOp0))
9434 NewCast = ConstantExpr::getCast(opcode, C, CastDstTy);
9435 else
9436 NewCast = IC.InsertNewInstBefore(
9437 CastInst::create(opcode, SIOp0, CastDstTy, SIOp0->getName()+".c"),
9438 SI);
9439 return new StoreInst(NewCast, CastOp);
9440 }
9441 }
9442 }
9443 return 0;
9444}
9445
9446Instruction *InstCombiner::visitStoreInst(StoreInst &SI) {
9447 Value *Val = SI.getOperand(0);
9448 Value *Ptr = SI.getOperand(1);
9449
9450 if (isa<UndefValue>(Ptr)) { // store X, undef -> noop (even if volatile)
9451 EraseInstFromFunction(SI);
9452 ++NumCombined;
9453 return 0;
9454 }
9455
9456 // If the RHS is an alloca with a single use, zapify the store, making the
9457 // alloca dead.
9458 if (Ptr->hasOneUse()) {
9459 if (isa<AllocaInst>(Ptr)) {
9460 EraseInstFromFunction(SI);
9461 ++NumCombined;
9462 return 0;
9463 }
9464
9465 if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Ptr))
9466 if (isa<AllocaInst>(GEP->getOperand(0)) &&
9467 GEP->getOperand(0)->hasOneUse()) {
9468 EraseInstFromFunction(SI);
9469 ++NumCombined;
9470 return 0;
9471 }
9472 }
9473
Dan Gohman5c4d0e12007-07-20 16:34:21 +00009474 // Attempt to improve the alignment.
Chris Lattner47cf3452007-08-09 19:05:49 +00009475 unsigned KnownAlign = GetOrEnforceKnownAlignment(Ptr, TD);
Dan Gohman5c4d0e12007-07-20 16:34:21 +00009476 if (KnownAlign > SI.getAlignment())
9477 SI.setAlignment(KnownAlign);
9478
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009479 // Do really simple DSE, to catch cases where there are several consequtive
9480 // stores to the same location, separated by a few arithmetic operations. This
9481 // situation often occurs with bitfield accesses.
9482 BasicBlock::iterator BBI = &SI;
9483 for (unsigned ScanInsts = 6; BBI != SI.getParent()->begin() && ScanInsts;
9484 --ScanInsts) {
9485 --BBI;
9486
9487 if (StoreInst *PrevSI = dyn_cast<StoreInst>(BBI)) {
9488 // Prev store isn't volatile, and stores to the same location?
9489 if (!PrevSI->isVolatile() && PrevSI->getOperand(1) == SI.getOperand(1)) {
9490 ++NumDeadStore;
9491 ++BBI;
9492 EraseInstFromFunction(*PrevSI);
9493 continue;
9494 }
9495 break;
9496 }
9497
9498 // If this is a load, we have to stop. However, if the loaded value is from
9499 // the pointer we're loading and is producing the pointer we're storing,
9500 // then *this* store is dead (X = load P; store X -> P).
9501 if (LoadInst *LI = dyn_cast<LoadInst>(BBI)) {
Chris Lattner24905f72007-09-07 05:33:03 +00009502 if (LI == Val && LI->getOperand(0) == Ptr && !SI.isVolatile()) {
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009503 EraseInstFromFunction(SI);
9504 ++NumCombined;
9505 return 0;
9506 }
9507 // Otherwise, this is a load from some other location. Stores before it
9508 // may not be dead.
9509 break;
9510 }
9511
9512 // Don't skip over loads or things that can modify memory.
9513 if (BBI->mayWriteToMemory())
9514 break;
9515 }
9516
9517
9518 if (SI.isVolatile()) return 0; // Don't hack volatile stores.
9519
9520 // store X, null -> turns into 'unreachable' in SimplifyCFG
9521 if (isa<ConstantPointerNull>(Ptr)) {
9522 if (!isa<UndefValue>(Val)) {
9523 SI.setOperand(0, UndefValue::get(Val->getType()));
9524 if (Instruction *U = dyn_cast<Instruction>(Val))
9525 AddToWorkList(U); // Dropped a use.
9526 ++NumCombined;
9527 }
9528 return 0; // Do not modify these!
9529 }
9530
9531 // store undef, Ptr -> noop
9532 if (isa<UndefValue>(Val)) {
9533 EraseInstFromFunction(SI);
9534 ++NumCombined;
9535 return 0;
9536 }
9537
9538 // If the pointer destination is a cast, see if we can fold the cast into the
9539 // source instead.
9540 if (isa<CastInst>(Ptr))
9541 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
9542 return Res;
9543 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Ptr))
9544 if (CE->isCast())
9545 if (Instruction *Res = InstCombineStoreToCast(*this, SI))
9546 return Res;
9547
9548
9549 // If this store is the last instruction in the basic block, and if the block
9550 // ends with an unconditional branch, try to move it to the successor block.
9551 BBI = &SI; ++BBI;
9552 if (BranchInst *BI = dyn_cast<BranchInst>(BBI))
9553 if (BI->isUnconditional())
9554 if (SimplifyStoreAtEndOfBlock(SI))
9555 return 0; // xform done!
9556
9557 return 0;
9558}
9559
9560/// SimplifyStoreAtEndOfBlock - Turn things like:
9561/// if () { *P = v1; } else { *P = v2 }
9562/// into a phi node with a store in the successor.
9563///
9564/// Simplify things like:
9565/// *P = v1; if () { *P = v2; }
9566/// into a phi node with a store in the successor.
9567///
9568bool InstCombiner::SimplifyStoreAtEndOfBlock(StoreInst &SI) {
9569 BasicBlock *StoreBB = SI.getParent();
9570
9571 // Check to see if the successor block has exactly two incoming edges. If
9572 // so, see if the other predecessor contains a store to the same location.
9573 // if so, insert a PHI node (if needed) and move the stores down.
9574 BasicBlock *DestBB = StoreBB->getTerminator()->getSuccessor(0);
9575
9576 // Determine whether Dest has exactly two predecessors and, if so, compute
9577 // the other predecessor.
9578 pred_iterator PI = pred_begin(DestBB);
9579 BasicBlock *OtherBB = 0;
9580 if (*PI != StoreBB)
9581 OtherBB = *PI;
9582 ++PI;
9583 if (PI == pred_end(DestBB))
9584 return false;
9585
9586 if (*PI != StoreBB) {
9587 if (OtherBB)
9588 return false;
9589 OtherBB = *PI;
9590 }
9591 if (++PI != pred_end(DestBB))
9592 return false;
9593
9594
9595 // Verify that the other block ends in a branch and is not otherwise empty.
9596 BasicBlock::iterator BBI = OtherBB->getTerminator();
9597 BranchInst *OtherBr = dyn_cast<BranchInst>(BBI);
9598 if (!OtherBr || BBI == OtherBB->begin())
9599 return false;
9600
9601 // If the other block ends in an unconditional branch, check for the 'if then
9602 // else' case. there is an instruction before the branch.
9603 StoreInst *OtherStore = 0;
9604 if (OtherBr->isUnconditional()) {
9605 // If this isn't a store, or isn't a store to the same location, bail out.
9606 --BBI;
9607 OtherStore = dyn_cast<StoreInst>(BBI);
9608 if (!OtherStore || OtherStore->getOperand(1) != SI.getOperand(1))
9609 return false;
9610 } else {
9611 // Otherwise, the other block ended with a conditional branch. If one of the
9612 // destinations is StoreBB, then we have the if/then case.
9613 if (OtherBr->getSuccessor(0) != StoreBB &&
9614 OtherBr->getSuccessor(1) != StoreBB)
9615 return false;
9616
9617 // Okay, we know that OtherBr now goes to Dest and StoreBB, so this is an
9618 // if/then triangle. See if there is a store to the same ptr as SI that
9619 // lives in OtherBB.
9620 for (;; --BBI) {
9621 // Check to see if we find the matching store.
9622 if ((OtherStore = dyn_cast<StoreInst>(BBI))) {
9623 if (OtherStore->getOperand(1) != SI.getOperand(1))
9624 return false;
9625 break;
9626 }
9627 // If we find something that may be using the stored value, or if we run
9628 // out of instructions, we can't do the xform.
9629 if (isa<LoadInst>(BBI) || BBI->mayWriteToMemory() ||
9630 BBI == OtherBB->begin())
9631 return false;
9632 }
9633
9634 // In order to eliminate the store in OtherBr, we have to
9635 // make sure nothing reads the stored value in StoreBB.
9636 for (BasicBlock::iterator I = StoreBB->begin(); &*I != &SI; ++I) {
9637 // FIXME: This should really be AA driven.
9638 if (isa<LoadInst>(I) || I->mayWriteToMemory())
9639 return false;
9640 }
9641 }
9642
9643 // Insert a PHI node now if we need it.
9644 Value *MergedVal = OtherStore->getOperand(0);
9645 if (MergedVal != SI.getOperand(0)) {
9646 PHINode *PN = new PHINode(MergedVal->getType(), "storemerge");
9647 PN->reserveOperandSpace(2);
9648 PN->addIncoming(SI.getOperand(0), SI.getParent());
9649 PN->addIncoming(OtherStore->getOperand(0), OtherBB);
9650 MergedVal = InsertNewInstBefore(PN, DestBB->front());
9651 }
9652
9653 // Advance to a place where it is safe to insert the new store and
9654 // insert it.
9655 BBI = DestBB->begin();
9656 while (isa<PHINode>(BBI)) ++BBI;
9657 InsertNewInstBefore(new StoreInst(MergedVal, SI.getOperand(1),
9658 OtherStore->isVolatile()), *BBI);
9659
9660 // Nuke the old stores.
9661 EraseInstFromFunction(SI);
9662 EraseInstFromFunction(*OtherStore);
9663 ++NumCombined;
9664 return true;
9665}
9666
9667
9668Instruction *InstCombiner::visitBranchInst(BranchInst &BI) {
9669 // Change br (not X), label True, label False to: br X, label False, True
9670 Value *X = 0;
9671 BasicBlock *TrueDest;
9672 BasicBlock *FalseDest;
9673 if (match(&BI, m_Br(m_Not(m_Value(X)), TrueDest, FalseDest)) &&
9674 !isa<Constant>(X)) {
9675 // Swap Destinations and condition...
9676 BI.setCondition(X);
9677 BI.setSuccessor(0, FalseDest);
9678 BI.setSuccessor(1, TrueDest);
9679 return &BI;
9680 }
9681
9682 // Cannonicalize fcmp_one -> fcmp_oeq
9683 FCmpInst::Predicate FPred; Value *Y;
9684 if (match(&BI, m_Br(m_FCmp(FPred, m_Value(X), m_Value(Y)),
9685 TrueDest, FalseDest)))
9686 if ((FPred == FCmpInst::FCMP_ONE || FPred == FCmpInst::FCMP_OLE ||
9687 FPred == FCmpInst::FCMP_OGE) && BI.getCondition()->hasOneUse()) {
9688 FCmpInst *I = cast<FCmpInst>(BI.getCondition());
9689 FCmpInst::Predicate NewPred = FCmpInst::getInversePredicate(FPred);
9690 Instruction *NewSCC = new FCmpInst(NewPred, X, Y, "", I);
9691 NewSCC->takeName(I);
9692 // Swap Destinations and condition...
9693 BI.setCondition(NewSCC);
9694 BI.setSuccessor(0, FalseDest);
9695 BI.setSuccessor(1, TrueDest);
9696 RemoveFromWorkList(I);
9697 I->eraseFromParent();
9698 AddToWorkList(NewSCC);
9699 return &BI;
9700 }
9701
9702 // Cannonicalize icmp_ne -> icmp_eq
9703 ICmpInst::Predicate IPred;
9704 if (match(&BI, m_Br(m_ICmp(IPred, m_Value(X), m_Value(Y)),
9705 TrueDest, FalseDest)))
9706 if ((IPred == ICmpInst::ICMP_NE || IPred == ICmpInst::ICMP_ULE ||
9707 IPred == ICmpInst::ICMP_SLE || IPred == ICmpInst::ICMP_UGE ||
9708 IPred == ICmpInst::ICMP_SGE) && BI.getCondition()->hasOneUse()) {
9709 ICmpInst *I = cast<ICmpInst>(BI.getCondition());
9710 ICmpInst::Predicate NewPred = ICmpInst::getInversePredicate(IPred);
9711 Instruction *NewSCC = new ICmpInst(NewPred, X, Y, "", I);
9712 NewSCC->takeName(I);
9713 // Swap Destinations and condition...
9714 BI.setCondition(NewSCC);
9715 BI.setSuccessor(0, FalseDest);
9716 BI.setSuccessor(1, TrueDest);
9717 RemoveFromWorkList(I);
9718 I->eraseFromParent();;
9719 AddToWorkList(NewSCC);
9720 return &BI;
9721 }
9722
9723 return 0;
9724}
9725
9726Instruction *InstCombiner::visitSwitchInst(SwitchInst &SI) {
9727 Value *Cond = SI.getCondition();
9728 if (Instruction *I = dyn_cast<Instruction>(Cond)) {
9729 if (I->getOpcode() == Instruction::Add)
9730 if (ConstantInt *AddRHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
9731 // change 'switch (X+4) case 1:' into 'switch (X) case -3'
9732 for (unsigned i = 2, e = SI.getNumOperands(); i != e; i += 2)
9733 SI.setOperand(i,ConstantExpr::getSub(cast<Constant>(SI.getOperand(i)),
9734 AddRHS));
9735 SI.setOperand(0, I->getOperand(0));
9736 AddToWorkList(I);
9737 return &SI;
9738 }
9739 }
9740 return 0;
9741}
9742
9743/// CheapToScalarize - Return true if the value is cheaper to scalarize than it
9744/// is to leave as a vector operation.
9745static bool CheapToScalarize(Value *V, bool isConstant) {
9746 if (isa<ConstantAggregateZero>(V))
9747 return true;
9748 if (ConstantVector *C = dyn_cast<ConstantVector>(V)) {
9749 if (isConstant) return true;
9750 // If all elts are the same, we can extract.
9751 Constant *Op0 = C->getOperand(0);
9752 for (unsigned i = 1; i < C->getNumOperands(); ++i)
9753 if (C->getOperand(i) != Op0)
9754 return false;
9755 return true;
9756 }
9757 Instruction *I = dyn_cast<Instruction>(V);
9758 if (!I) return false;
9759
9760 // Insert element gets simplified to the inserted element or is deleted if
9761 // this is constant idx extract element and its a constant idx insertelt.
9762 if (I->getOpcode() == Instruction::InsertElement && isConstant &&
9763 isa<ConstantInt>(I->getOperand(2)))
9764 return true;
9765 if (I->getOpcode() == Instruction::Load && I->hasOneUse())
9766 return true;
9767 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I))
9768 if (BO->hasOneUse() &&
9769 (CheapToScalarize(BO->getOperand(0), isConstant) ||
9770 CheapToScalarize(BO->getOperand(1), isConstant)))
9771 return true;
9772 if (CmpInst *CI = dyn_cast<CmpInst>(I))
9773 if (CI->hasOneUse() &&
9774 (CheapToScalarize(CI->getOperand(0), isConstant) ||
9775 CheapToScalarize(CI->getOperand(1), isConstant)))
9776 return true;
9777
9778 return false;
9779}
9780
9781/// Read and decode a shufflevector mask.
9782///
9783/// It turns undef elements into values that are larger than the number of
9784/// elements in the input.
9785static std::vector<unsigned> getShuffleMask(const ShuffleVectorInst *SVI) {
9786 unsigned NElts = SVI->getType()->getNumElements();
9787 if (isa<ConstantAggregateZero>(SVI->getOperand(2)))
9788 return std::vector<unsigned>(NElts, 0);
9789 if (isa<UndefValue>(SVI->getOperand(2)))
9790 return std::vector<unsigned>(NElts, 2*NElts);
9791
9792 std::vector<unsigned> Result;
9793 const ConstantVector *CP = cast<ConstantVector>(SVI->getOperand(2));
9794 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
9795 if (isa<UndefValue>(CP->getOperand(i)))
9796 Result.push_back(NElts*2); // undef -> 8
9797 else
9798 Result.push_back(cast<ConstantInt>(CP->getOperand(i))->getZExtValue());
9799 return Result;
9800}
9801
9802/// FindScalarElement - Given a vector and an element number, see if the scalar
9803/// value is already around as a register, for example if it were inserted then
9804/// extracted from the vector.
9805static Value *FindScalarElement(Value *V, unsigned EltNo) {
9806 assert(isa<VectorType>(V->getType()) && "Not looking at a vector?");
9807 const VectorType *PTy = cast<VectorType>(V->getType());
9808 unsigned Width = PTy->getNumElements();
9809 if (EltNo >= Width) // Out of range access.
9810 return UndefValue::get(PTy->getElementType());
9811
9812 if (isa<UndefValue>(V))
9813 return UndefValue::get(PTy->getElementType());
9814 else if (isa<ConstantAggregateZero>(V))
9815 return Constant::getNullValue(PTy->getElementType());
9816 else if (ConstantVector *CP = dyn_cast<ConstantVector>(V))
9817 return CP->getOperand(EltNo);
9818 else if (InsertElementInst *III = dyn_cast<InsertElementInst>(V)) {
9819 // If this is an insert to a variable element, we don't know what it is.
9820 if (!isa<ConstantInt>(III->getOperand(2)))
9821 return 0;
9822 unsigned IIElt = cast<ConstantInt>(III->getOperand(2))->getZExtValue();
9823
9824 // If this is an insert to the element we are looking for, return the
9825 // inserted value.
9826 if (EltNo == IIElt)
9827 return III->getOperand(1);
9828
9829 // Otherwise, the insertelement doesn't modify the value, recurse on its
9830 // vector input.
9831 return FindScalarElement(III->getOperand(0), EltNo);
9832 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V)) {
9833 unsigned InEl = getShuffleMask(SVI)[EltNo];
9834 if (InEl < Width)
9835 return FindScalarElement(SVI->getOperand(0), InEl);
9836 else if (InEl < Width*2)
9837 return FindScalarElement(SVI->getOperand(1), InEl - Width);
9838 else
9839 return UndefValue::get(PTy->getElementType());
9840 }
9841
9842 // Otherwise, we don't know.
9843 return 0;
9844}
9845
9846Instruction *InstCombiner::visitExtractElementInst(ExtractElementInst &EI) {
9847
9848 // If vector val is undef, replace extract with scalar undef.
9849 if (isa<UndefValue>(EI.getOperand(0)))
9850 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
9851
9852 // If vector val is constant 0, replace extract with scalar 0.
9853 if (isa<ConstantAggregateZero>(EI.getOperand(0)))
9854 return ReplaceInstUsesWith(EI, Constant::getNullValue(EI.getType()));
9855
9856 if (ConstantVector *C = dyn_cast<ConstantVector>(EI.getOperand(0))) {
9857 // If vector val is constant with uniform operands, replace EI
9858 // with that operand
9859 Constant *op0 = C->getOperand(0);
9860 for (unsigned i = 1; i < C->getNumOperands(); ++i)
9861 if (C->getOperand(i) != op0) {
9862 op0 = 0;
9863 break;
9864 }
9865 if (op0)
9866 return ReplaceInstUsesWith(EI, op0);
9867 }
9868
9869 // If extracting a specified index from the vector, see if we can recursively
9870 // find a previously computed scalar that was inserted into the vector.
9871 if (ConstantInt *IdxC = dyn_cast<ConstantInt>(EI.getOperand(1))) {
9872 unsigned IndexVal = IdxC->getZExtValue();
9873 unsigned VectorWidth =
9874 cast<VectorType>(EI.getOperand(0)->getType())->getNumElements();
9875
9876 // If this is extracting an invalid index, turn this into undef, to avoid
9877 // crashing the code below.
9878 if (IndexVal >= VectorWidth)
9879 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
9880
9881 // This instruction only demands the single element from the input vector.
9882 // If the input vector has a single use, simplify it based on this use
9883 // property.
9884 if (EI.getOperand(0)->hasOneUse() && VectorWidth != 1) {
9885 uint64_t UndefElts;
9886 if (Value *V = SimplifyDemandedVectorElts(EI.getOperand(0),
9887 1 << IndexVal,
9888 UndefElts)) {
9889 EI.setOperand(0, V);
9890 return &EI;
9891 }
9892 }
9893
9894 if (Value *Elt = FindScalarElement(EI.getOperand(0), IndexVal))
9895 return ReplaceInstUsesWith(EI, Elt);
9896
9897 // If the this extractelement is directly using a bitcast from a vector of
9898 // the same number of elements, see if we can find the source element from
9899 // it. In this case, we will end up needing to bitcast the scalars.
9900 if (BitCastInst *BCI = dyn_cast<BitCastInst>(EI.getOperand(0))) {
9901 if (const VectorType *VT =
9902 dyn_cast<VectorType>(BCI->getOperand(0)->getType()))
9903 if (VT->getNumElements() == VectorWidth)
9904 if (Value *Elt = FindScalarElement(BCI->getOperand(0), IndexVal))
9905 return new BitCastInst(Elt, EI.getType());
9906 }
9907 }
9908
9909 if (Instruction *I = dyn_cast<Instruction>(EI.getOperand(0))) {
9910 if (I->hasOneUse()) {
9911 // Push extractelement into predecessor operation if legal and
9912 // profitable to do so
9913 if (BinaryOperator *BO = dyn_cast<BinaryOperator>(I)) {
9914 bool isConstantElt = isa<ConstantInt>(EI.getOperand(1));
9915 if (CheapToScalarize(BO, isConstantElt)) {
9916 ExtractElementInst *newEI0 =
9917 new ExtractElementInst(BO->getOperand(0), EI.getOperand(1),
9918 EI.getName()+".lhs");
9919 ExtractElementInst *newEI1 =
9920 new ExtractElementInst(BO->getOperand(1), EI.getOperand(1),
9921 EI.getName()+".rhs");
9922 InsertNewInstBefore(newEI0, EI);
9923 InsertNewInstBefore(newEI1, EI);
9924 return BinaryOperator::create(BO->getOpcode(), newEI0, newEI1);
9925 }
9926 } else if (isa<LoadInst>(I)) {
Christopher Lambbb2f2222007-12-17 01:12:55 +00009927 unsigned AS =
9928 cast<PointerType>(I->getOperand(0)->getType())->getAddressSpace();
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009929 Value *Ptr = InsertCastBefore(Instruction::BitCast, I->getOperand(0),
Christopher Lambbb2f2222007-12-17 01:12:55 +00009930 PointerType::get(EI.getType(), AS), EI);
Dan Gohmanf17a25c2007-07-18 16:29:46 +00009931 GetElementPtrInst *GEP =
9932 new GetElementPtrInst(Ptr, EI.getOperand(1), I->getName() + ".gep");
9933 InsertNewInstBefore(GEP, EI);
9934 return new LoadInst(GEP);
9935 }
9936 }
9937 if (InsertElementInst *IE = dyn_cast<InsertElementInst>(I)) {
9938 // Extracting the inserted element?
9939 if (IE->getOperand(2) == EI.getOperand(1))
9940 return ReplaceInstUsesWith(EI, IE->getOperand(1));
9941 // If the inserted and extracted elements are constants, they must not
9942 // be the same value, extract from the pre-inserted value instead.
9943 if (isa<Constant>(IE->getOperand(2)) &&
9944 isa<Constant>(EI.getOperand(1))) {
9945 AddUsesToWorkList(EI);
9946 EI.setOperand(0, IE->getOperand(0));
9947 return &EI;
9948 }
9949 } else if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I)) {
9950 // If this is extracting an element from a shufflevector, figure out where
9951 // it came from and extract from the appropriate input element instead.
9952 if (ConstantInt *Elt = dyn_cast<ConstantInt>(EI.getOperand(1))) {
9953 unsigned SrcIdx = getShuffleMask(SVI)[Elt->getZExtValue()];
9954 Value *Src;
9955 if (SrcIdx < SVI->getType()->getNumElements())
9956 Src = SVI->getOperand(0);
9957 else if (SrcIdx < SVI->getType()->getNumElements()*2) {
9958 SrcIdx -= SVI->getType()->getNumElements();
9959 Src = SVI->getOperand(1);
9960 } else {
9961 return ReplaceInstUsesWith(EI, UndefValue::get(EI.getType()));
9962 }
9963 return new ExtractElementInst(Src, SrcIdx);
9964 }
9965 }
9966 }
9967 return 0;
9968}
9969
9970/// CollectSingleShuffleElements - If V is a shuffle of values that ONLY returns
9971/// elements from either LHS or RHS, return the shuffle mask and true.
9972/// Otherwise, return false.
9973static bool CollectSingleShuffleElements(Value *V, Value *LHS, Value *RHS,
9974 std::vector<Constant*> &Mask) {
9975 assert(V->getType() == LHS->getType() && V->getType() == RHS->getType() &&
9976 "Invalid CollectSingleShuffleElements");
9977 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
9978
9979 if (isa<UndefValue>(V)) {
9980 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
9981 return true;
9982 } else if (V == LHS) {
9983 for (unsigned i = 0; i != NumElts; ++i)
9984 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
9985 return true;
9986 } else if (V == RHS) {
9987 for (unsigned i = 0; i != NumElts; ++i)
9988 Mask.push_back(ConstantInt::get(Type::Int32Ty, i+NumElts));
9989 return true;
9990 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
9991 // If this is an insert of an extract from some other vector, include it.
9992 Value *VecOp = IEI->getOperand(0);
9993 Value *ScalarOp = IEI->getOperand(1);
9994 Value *IdxOp = IEI->getOperand(2);
9995
9996 if (!isa<ConstantInt>(IdxOp))
9997 return false;
9998 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
9999
10000 if (isa<UndefValue>(ScalarOp)) { // inserting undef into vector.
10001 // Okay, we can handle this if the vector we are insertinting into is
10002 // transitively ok.
10003 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
10004 // If so, update the mask to reflect the inserted undef.
10005 Mask[InsertedIdx] = UndefValue::get(Type::Int32Ty);
10006 return true;
10007 }
10008 } else if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)){
10009 if (isa<ConstantInt>(EI->getOperand(1)) &&
10010 EI->getOperand(0)->getType() == V->getType()) {
10011 unsigned ExtractedIdx =
10012 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
10013
10014 // This must be extracting from either LHS or RHS.
10015 if (EI->getOperand(0) == LHS || EI->getOperand(0) == RHS) {
10016 // Okay, we can handle this if the vector we are insertinting into is
10017 // transitively ok.
10018 if (CollectSingleShuffleElements(VecOp, LHS, RHS, Mask)) {
10019 // If so, update the mask to reflect the inserted value.
10020 if (EI->getOperand(0) == LHS) {
10021 Mask[InsertedIdx & (NumElts-1)] =
10022 ConstantInt::get(Type::Int32Ty, ExtractedIdx);
10023 } else {
10024 assert(EI->getOperand(0) == RHS);
10025 Mask[InsertedIdx & (NumElts-1)] =
10026 ConstantInt::get(Type::Int32Ty, ExtractedIdx+NumElts);
10027
10028 }
10029 return true;
10030 }
10031 }
10032 }
10033 }
10034 }
10035 // TODO: Handle shufflevector here!
10036
10037 return false;
10038}
10039
10040/// CollectShuffleElements - We are building a shuffle of V, using RHS as the
10041/// RHS of the shuffle instruction, if it is not null. Return a shuffle mask
10042/// that computes V and the LHS value of the shuffle.
10043static Value *CollectShuffleElements(Value *V, std::vector<Constant*> &Mask,
10044 Value *&RHS) {
10045 assert(isa<VectorType>(V->getType()) &&
10046 (RHS == 0 || V->getType() == RHS->getType()) &&
10047 "Invalid shuffle!");
10048 unsigned NumElts = cast<VectorType>(V->getType())->getNumElements();
10049
10050 if (isa<UndefValue>(V)) {
10051 Mask.assign(NumElts, UndefValue::get(Type::Int32Ty));
10052 return V;
10053 } else if (isa<ConstantAggregateZero>(V)) {
10054 Mask.assign(NumElts, ConstantInt::get(Type::Int32Ty, 0));
10055 return V;
10056 } else if (InsertElementInst *IEI = dyn_cast<InsertElementInst>(V)) {
10057 // If this is an insert of an extract from some other vector, include it.
10058 Value *VecOp = IEI->getOperand(0);
10059 Value *ScalarOp = IEI->getOperand(1);
10060 Value *IdxOp = IEI->getOperand(2);
10061
10062 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
10063 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
10064 EI->getOperand(0)->getType() == V->getType()) {
10065 unsigned ExtractedIdx =
10066 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
10067 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
10068
10069 // Either the extracted from or inserted into vector must be RHSVec,
10070 // otherwise we'd end up with a shuffle of three inputs.
10071 if (EI->getOperand(0) == RHS || RHS == 0) {
10072 RHS = EI->getOperand(0);
10073 Value *V = CollectShuffleElements(VecOp, Mask, RHS);
10074 Mask[InsertedIdx & (NumElts-1)] =
10075 ConstantInt::get(Type::Int32Ty, NumElts+ExtractedIdx);
10076 return V;
10077 }
10078
10079 if (VecOp == RHS) {
10080 Value *V = CollectShuffleElements(EI->getOperand(0), Mask, RHS);
10081 // Everything but the extracted element is replaced with the RHS.
10082 for (unsigned i = 0; i != NumElts; ++i) {
10083 if (i != InsertedIdx)
10084 Mask[i] = ConstantInt::get(Type::Int32Ty, NumElts+i);
10085 }
10086 return V;
10087 }
10088
10089 // If this insertelement is a chain that comes from exactly these two
10090 // vectors, return the vector and the effective shuffle.
10091 if (CollectSingleShuffleElements(IEI, EI->getOperand(0), RHS, Mask))
10092 return EI->getOperand(0);
10093
10094 }
10095 }
10096 }
10097 // TODO: Handle shufflevector here!
10098
10099 // Otherwise, can't do anything fancy. Return an identity vector.
10100 for (unsigned i = 0; i != NumElts; ++i)
10101 Mask.push_back(ConstantInt::get(Type::Int32Ty, i));
10102 return V;
10103}
10104
10105Instruction *InstCombiner::visitInsertElementInst(InsertElementInst &IE) {
10106 Value *VecOp = IE.getOperand(0);
10107 Value *ScalarOp = IE.getOperand(1);
10108 Value *IdxOp = IE.getOperand(2);
10109
10110 // Inserting an undef or into an undefined place, remove this.
10111 if (isa<UndefValue>(ScalarOp) || isa<UndefValue>(IdxOp))
10112 ReplaceInstUsesWith(IE, VecOp);
10113
10114 // If the inserted element was extracted from some other vector, and if the
10115 // indexes are constant, try to turn this into a shufflevector operation.
10116 if (ExtractElementInst *EI = dyn_cast<ExtractElementInst>(ScalarOp)) {
10117 if (isa<ConstantInt>(EI->getOperand(1)) && isa<ConstantInt>(IdxOp) &&
10118 EI->getOperand(0)->getType() == IE.getType()) {
10119 unsigned NumVectorElts = IE.getType()->getNumElements();
10120 unsigned ExtractedIdx =
10121 cast<ConstantInt>(EI->getOperand(1))->getZExtValue();
10122 unsigned InsertedIdx = cast<ConstantInt>(IdxOp)->getZExtValue();
10123
10124 if (ExtractedIdx >= NumVectorElts) // Out of range extract.
10125 return ReplaceInstUsesWith(IE, VecOp);
10126
10127 if (InsertedIdx >= NumVectorElts) // Out of range insert.
10128 return ReplaceInstUsesWith(IE, UndefValue::get(IE.getType()));
10129
10130 // If we are extracting a value from a vector, then inserting it right
10131 // back into the same place, just use the input vector.
10132 if (EI->getOperand(0) == VecOp && ExtractedIdx == InsertedIdx)
10133 return ReplaceInstUsesWith(IE, VecOp);
10134
10135 // We could theoretically do this for ANY input. However, doing so could
10136 // turn chains of insertelement instructions into a chain of shufflevector
10137 // instructions, and right now we do not merge shufflevectors. As such,
10138 // only do this in a situation where it is clear that there is benefit.
10139 if (isa<UndefValue>(VecOp) || isa<ConstantAggregateZero>(VecOp)) {
10140 // Turn this into shuffle(EIOp0, VecOp, Mask). The result has all of
10141 // the values of VecOp, except then one read from EIOp0.
10142 // Build a new shuffle mask.
10143 std::vector<Constant*> Mask;
10144 if (isa<UndefValue>(VecOp))
10145 Mask.assign(NumVectorElts, UndefValue::get(Type::Int32Ty));
10146 else {
10147 assert(isa<ConstantAggregateZero>(VecOp) && "Unknown thing");
10148 Mask.assign(NumVectorElts, ConstantInt::get(Type::Int32Ty,
10149 NumVectorElts));
10150 }
10151 Mask[InsertedIdx] = ConstantInt::get(Type::Int32Ty, ExtractedIdx);
10152 return new ShuffleVectorInst(EI->getOperand(0), VecOp,
10153 ConstantVector::get(Mask));
10154 }
10155
10156 // If this insertelement isn't used by some other insertelement, turn it
10157 // (and any insertelements it points to), into one big shuffle.
10158 if (!IE.hasOneUse() || !isa<InsertElementInst>(IE.use_back())) {
10159 std::vector<Constant*> Mask;
10160 Value *RHS = 0;
10161 Value *LHS = CollectShuffleElements(&IE, Mask, RHS);
10162 if (RHS == 0) RHS = UndefValue::get(LHS->getType());
10163 // We now have a shuffle of LHS, RHS, Mask.
10164 return new ShuffleVectorInst(LHS, RHS, ConstantVector::get(Mask));
10165 }
10166 }
10167 }
10168
10169 return 0;
10170}
10171
10172
10173Instruction *InstCombiner::visitShuffleVectorInst(ShuffleVectorInst &SVI) {
10174 Value *LHS = SVI.getOperand(0);
10175 Value *RHS = SVI.getOperand(1);
10176 std::vector<unsigned> Mask = getShuffleMask(&SVI);
10177
10178 bool MadeChange = false;
10179
10180 // Undefined shuffle mask -> undefined value.
10181 if (isa<UndefValue>(SVI.getOperand(2)))
10182 return ReplaceInstUsesWith(SVI, UndefValue::get(SVI.getType()));
10183
10184 // If we have shuffle(x, undef, mask) and any elements of mask refer to
10185 // the undef, change them to undefs.
10186 if (isa<UndefValue>(SVI.getOperand(1))) {
10187 // Scan to see if there are any references to the RHS. If so, replace them
10188 // with undef element refs and set MadeChange to true.
10189 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
10190 if (Mask[i] >= e && Mask[i] != 2*e) {
10191 Mask[i] = 2*e;
10192 MadeChange = true;
10193 }
10194 }
10195
10196 if (MadeChange) {
10197 // Remap any references to RHS to use LHS.
10198 std::vector<Constant*> Elts;
10199 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
10200 if (Mask[i] == 2*e)
10201 Elts.push_back(UndefValue::get(Type::Int32Ty));
10202 else
10203 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
10204 }
10205 SVI.setOperand(2, ConstantVector::get(Elts));
10206 }
10207 }
10208
10209 // Canonicalize shuffle(x ,x,mask) -> shuffle(x, undef,mask')
10210 // Canonicalize shuffle(undef,x,mask) -> shuffle(x, undef,mask').
10211 if (LHS == RHS || isa<UndefValue>(LHS)) {
10212 if (isa<UndefValue>(LHS) && LHS == RHS) {
10213 // shuffle(undef,undef,mask) -> undef.
10214 return ReplaceInstUsesWith(SVI, LHS);
10215 }
10216
10217 // Remap any references to RHS to use LHS.
10218 std::vector<Constant*> Elts;
10219 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
10220 if (Mask[i] >= 2*e)
10221 Elts.push_back(UndefValue::get(Type::Int32Ty));
10222 else {
10223 if ((Mask[i] >= e && isa<UndefValue>(RHS)) ||
10224 (Mask[i] < e && isa<UndefValue>(LHS)))
10225 Mask[i] = 2*e; // Turn into undef.
10226 else
10227 Mask[i] &= (e-1); // Force to LHS.
10228 Elts.push_back(ConstantInt::get(Type::Int32Ty, Mask[i]));
10229 }
10230 }
10231 SVI.setOperand(0, SVI.getOperand(1));
10232 SVI.setOperand(1, UndefValue::get(RHS->getType()));
10233 SVI.setOperand(2, ConstantVector::get(Elts));
10234 LHS = SVI.getOperand(0);
10235 RHS = SVI.getOperand(1);
10236 MadeChange = true;
10237 }
10238
10239 // Analyze the shuffle, are the LHS or RHS and identity shuffles?
10240 bool isLHSID = true, isRHSID = true;
10241
10242 for (unsigned i = 0, e = Mask.size(); i != e; ++i) {
10243 if (Mask[i] >= e*2) continue; // Ignore undef values.
10244 // Is this an identity shuffle of the LHS value?
10245 isLHSID &= (Mask[i] == i);
10246
10247 // Is this an identity shuffle of the RHS value?
10248 isRHSID &= (Mask[i]-e == i);
10249 }
10250
10251 // Eliminate identity shuffles.
10252 if (isLHSID) return ReplaceInstUsesWith(SVI, LHS);
10253 if (isRHSID) return ReplaceInstUsesWith(SVI, RHS);
10254
10255 // If the LHS is a shufflevector itself, see if we can combine it with this
10256 // one without producing an unusual shuffle. Here we are really conservative:
10257 // we are absolutely afraid of producing a shuffle mask not in the input
10258 // program, because the code gen may not be smart enough to turn a merged
10259 // shuffle into two specific shuffles: it may produce worse code. As such,
10260 // we only merge two shuffles if the result is one of the two input shuffle
10261 // masks. In this case, merging the shuffles just removes one instruction,
10262 // which we know is safe. This is good for things like turning:
10263 // (splat(splat)) -> splat.
10264 if (ShuffleVectorInst *LHSSVI = dyn_cast<ShuffleVectorInst>(LHS)) {
10265 if (isa<UndefValue>(RHS)) {
10266 std::vector<unsigned> LHSMask = getShuffleMask(LHSSVI);
10267
10268 std::vector<unsigned> NewMask;
10269 for (unsigned i = 0, e = Mask.size(); i != e; ++i)
10270 if (Mask[i] >= 2*e)
10271 NewMask.push_back(2*e);
10272 else
10273 NewMask.push_back(LHSMask[Mask[i]]);
10274
10275 // If the result mask is equal to the src shuffle or this shuffle mask, do
10276 // the replacement.
10277 if (NewMask == LHSMask || NewMask == Mask) {
10278 std::vector<Constant*> Elts;
10279 for (unsigned i = 0, e = NewMask.size(); i != e; ++i) {
10280 if (NewMask[i] >= e*2) {
10281 Elts.push_back(UndefValue::get(Type::Int32Ty));
10282 } else {
10283 Elts.push_back(ConstantInt::get(Type::Int32Ty, NewMask[i]));
10284 }
10285 }
10286 return new ShuffleVectorInst(LHSSVI->getOperand(0),
10287 LHSSVI->getOperand(1),
10288 ConstantVector::get(Elts));
10289 }
10290 }
10291 }
10292
10293 return MadeChange ? &SVI : 0;
10294}
10295
10296
10297
10298
10299/// TryToSinkInstruction - Try to move the specified instruction from its
10300/// current block into the beginning of DestBlock, which can only happen if it's
10301/// safe to move the instruction past all of the instructions between it and the
10302/// end of its block.
10303static bool TryToSinkInstruction(Instruction *I, BasicBlock *DestBlock) {
10304 assert(I->hasOneUse() && "Invariants didn't hold!");
10305
10306 // Cannot move control-flow-involving, volatile loads, vaarg, etc.
10307 if (isa<PHINode>(I) || I->mayWriteToMemory()) return false;
10308
10309 // Do not sink alloca instructions out of the entry block.
10310 if (isa<AllocaInst>(I) && I->getParent() ==
10311 &DestBlock->getParent()->getEntryBlock())
10312 return false;
10313
10314 // We can only sink load instructions if there is nothing between the load and
10315 // the end of block that could change the value.
10316 if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
10317 for (BasicBlock::iterator Scan = LI, E = LI->getParent()->end();
10318 Scan != E; ++Scan)
10319 if (Scan->mayWriteToMemory())
10320 return false;
10321 }
10322
10323 BasicBlock::iterator InsertPos = DestBlock->begin();
10324 while (isa<PHINode>(InsertPos)) ++InsertPos;
10325
10326 I->moveBefore(InsertPos);
10327 ++NumSunkInst;
10328 return true;
10329}
10330
10331
10332/// AddReachableCodeToWorklist - Walk the function in depth-first order, adding
10333/// all reachable code to the worklist.
10334///
10335/// This has a couple of tricks to make the code faster and more powerful. In
10336/// particular, we constant fold and DCE instructions as we go, to avoid adding
10337/// them to the worklist (this significantly speeds up instcombine on code where
10338/// many instructions are dead or constant). Additionally, if we find a branch
10339/// whose condition is a known constant, we only visit the reachable successors.
10340///
10341static void AddReachableCodeToWorklist(BasicBlock *BB,
10342 SmallPtrSet<BasicBlock*, 64> &Visited,
10343 InstCombiner &IC,
10344 const TargetData *TD) {
10345 std::vector<BasicBlock*> Worklist;
10346 Worklist.push_back(BB);
10347
10348 while (!Worklist.empty()) {
10349 BB = Worklist.back();
10350 Worklist.pop_back();
10351
10352 // We have now visited this block! If we've already been here, ignore it.
10353 if (!Visited.insert(BB)) continue;
10354
10355 for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
10356 Instruction *Inst = BBI++;
10357
10358 // DCE instruction if trivially dead.
10359 if (isInstructionTriviallyDead(Inst)) {
10360 ++NumDeadInst;
10361 DOUT << "IC: DCE: " << *Inst;
10362 Inst->eraseFromParent();
10363 continue;
10364 }
10365
10366 // ConstantProp instruction if trivially constant.
10367 if (Constant *C = ConstantFoldInstruction(Inst, TD)) {
10368 DOUT << "IC: ConstFold to: " << *C << " from: " << *Inst;
10369 Inst->replaceAllUsesWith(C);
10370 ++NumConstProp;
10371 Inst->eraseFromParent();
10372 continue;
10373 }
Chris Lattnere0f462d2007-07-20 22:06:41 +000010374
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010375 IC.AddToWorkList(Inst);
10376 }
10377
10378 // Recursively visit successors. If this is a branch or switch on a
10379 // constant, only visit the reachable successor.
10380 TerminatorInst *TI = BB->getTerminator();
10381 if (BranchInst *BI = dyn_cast<BranchInst>(TI)) {
10382 if (BI->isConditional() && isa<ConstantInt>(BI->getCondition())) {
10383 bool CondVal = cast<ConstantInt>(BI->getCondition())->getZExtValue();
10384 Worklist.push_back(BI->getSuccessor(!CondVal));
10385 continue;
10386 }
10387 } else if (SwitchInst *SI = dyn_cast<SwitchInst>(TI)) {
10388 if (ConstantInt *Cond = dyn_cast<ConstantInt>(SI->getCondition())) {
10389 // See if this is an explicit destination.
10390 for (unsigned i = 1, e = SI->getNumSuccessors(); i != e; ++i)
10391 if (SI->getCaseValue(i) == Cond) {
10392 Worklist.push_back(SI->getSuccessor(i));
10393 continue;
10394 }
10395
10396 // Otherwise it is the default destination.
10397 Worklist.push_back(SI->getSuccessor(0));
10398 continue;
10399 }
10400 }
10401
10402 for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
10403 Worklist.push_back(TI->getSuccessor(i));
10404 }
10405}
10406
10407bool InstCombiner::DoOneIteration(Function &F, unsigned Iteration) {
10408 bool Changed = false;
10409 TD = &getAnalysis<TargetData>();
10410
10411 DEBUG(DOUT << "\n\nINSTCOMBINE ITERATION #" << Iteration << " on "
10412 << F.getNameStr() << "\n");
10413
10414 {
10415 // Do a depth-first traversal of the function, populate the worklist with
10416 // the reachable instructions. Ignore blocks that are not reachable. Keep
10417 // track of which blocks we visit.
10418 SmallPtrSet<BasicBlock*, 64> Visited;
10419 AddReachableCodeToWorklist(F.begin(), Visited, *this, TD);
10420
10421 // Do a quick scan over the function. If we find any blocks that are
10422 // unreachable, remove any instructions inside of them. This prevents
10423 // the instcombine code from having to deal with some bad special cases.
10424 for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
10425 if (!Visited.count(BB)) {
10426 Instruction *Term = BB->getTerminator();
10427 while (Term != BB->begin()) { // Remove instrs bottom-up
10428 BasicBlock::iterator I = Term; --I;
10429
10430 DOUT << "IC: DCE: " << *I;
10431 ++NumDeadInst;
10432
10433 if (!I->use_empty())
10434 I->replaceAllUsesWith(UndefValue::get(I->getType()));
10435 I->eraseFromParent();
10436 }
10437 }
10438 }
10439
10440 while (!Worklist.empty()) {
10441 Instruction *I = RemoveOneFromWorkList();
10442 if (I == 0) continue; // skip null values.
10443
10444 // Check to see if we can DCE the instruction.
10445 if (isInstructionTriviallyDead(I)) {
10446 // Add operands to the worklist.
10447 if (I->getNumOperands() < 4)
10448 AddUsesToWorkList(*I);
10449 ++NumDeadInst;
10450
10451 DOUT << "IC: DCE: " << *I;
10452
10453 I->eraseFromParent();
10454 RemoveFromWorkList(I);
10455 continue;
10456 }
10457
10458 // Instruction isn't dead, see if we can constant propagate it.
10459 if (Constant *C = ConstantFoldInstruction(I, TD)) {
10460 DOUT << "IC: ConstFold to: " << *C << " from: " << *I;
10461
10462 // Add operands to the worklist.
10463 AddUsesToWorkList(*I);
10464 ReplaceInstUsesWith(*I, C);
10465
10466 ++NumConstProp;
10467 I->eraseFromParent();
10468 RemoveFromWorkList(I);
10469 continue;
10470 }
10471
10472 // See if we can trivially sink this instruction to a successor basic block.
10473 if (I->hasOneUse()) {
10474 BasicBlock *BB = I->getParent();
10475 BasicBlock *UserParent = cast<Instruction>(I->use_back())->getParent();
10476 if (UserParent != BB) {
10477 bool UserIsSuccessor = false;
10478 // See if the user is one of our successors.
10479 for (succ_iterator SI = succ_begin(BB), E = succ_end(BB); SI != E; ++SI)
10480 if (*SI == UserParent) {
10481 UserIsSuccessor = true;
10482 break;
10483 }
10484
10485 // If the user is one of our immediate successors, and if that successor
10486 // only has us as a predecessors (we'd have to split the critical edge
10487 // otherwise), we can keep going.
10488 if (UserIsSuccessor && !isa<PHINode>(I->use_back()) &&
10489 next(pred_begin(UserParent)) == pred_end(UserParent))
10490 // Okay, the CFG is simple enough, try to sink this instruction.
10491 Changed |= TryToSinkInstruction(I, UserParent);
10492 }
10493 }
10494
10495 // Now that we have an instruction, try combining it to simplify it...
10496#ifndef NDEBUG
10497 std::string OrigI;
10498#endif
10499 DEBUG(std::ostringstream SS; I->print(SS); OrigI = SS.str(););
10500 if (Instruction *Result = visit(*I)) {
10501 ++NumCombined;
10502 // Should we replace the old instruction with a new one?
10503 if (Result != I) {
10504 DOUT << "IC: Old = " << *I
10505 << " New = " << *Result;
10506
10507 // Everything uses the new instruction now.
10508 I->replaceAllUsesWith(Result);
10509
10510 // Push the new instruction and any users onto the worklist.
10511 AddToWorkList(Result);
10512 AddUsersToWorkList(*Result);
10513
10514 // Move the name to the new instruction first.
10515 Result->takeName(I);
10516
10517 // Insert the new instruction into the basic block...
10518 BasicBlock *InstParent = I->getParent();
10519 BasicBlock::iterator InsertPos = I;
10520
10521 if (!isa<PHINode>(Result)) // If combining a PHI, don't insert
10522 while (isa<PHINode>(InsertPos)) // middle of a block of PHIs.
10523 ++InsertPos;
10524
10525 InstParent->getInstList().insert(InsertPos, Result);
10526
10527 // Make sure that we reprocess all operands now that we reduced their
10528 // use counts.
10529 AddUsesToWorkList(*I);
10530
10531 // Instructions can end up on the worklist more than once. Make sure
10532 // we do not process an instruction that has been deleted.
10533 RemoveFromWorkList(I);
10534
10535 // Erase the old instruction.
10536 InstParent->getInstList().erase(I);
10537 } else {
10538#ifndef NDEBUG
10539 DOUT << "IC: Mod = " << OrigI
10540 << " New = " << *I;
10541#endif
10542
10543 // If the instruction was modified, it's possible that it is now dead.
10544 // if so, remove it.
10545 if (isInstructionTriviallyDead(I)) {
10546 // Make sure we process all operands now that we are reducing their
10547 // use counts.
10548 AddUsesToWorkList(*I);
10549
10550 // Instructions may end up in the worklist more than once. Erase all
10551 // occurrences of this instruction.
10552 RemoveFromWorkList(I);
10553 I->eraseFromParent();
10554 } else {
10555 AddToWorkList(I);
10556 AddUsersToWorkList(*I);
10557 }
10558 }
10559 Changed = true;
10560 }
10561 }
10562
10563 assert(WorklistMap.empty() && "Worklist empty, but map not?");
Chris Lattnerb933ea62007-08-05 08:47:58 +000010564
10565 // Do an explicit clear, this shrinks the map if needed.
10566 WorklistMap.clear();
Dan Gohmanf17a25c2007-07-18 16:29:46 +000010567 return Changed;
10568}
10569
10570
10571bool InstCombiner::runOnFunction(Function &F) {
10572 MustPreserveLCSSA = mustPreserveAnalysisID(LCSSAID);
10573
10574 bool EverMadeChange = false;
10575
10576 // Iterate while there is work to do.
10577 unsigned Iteration = 0;
10578 while (DoOneIteration(F, Iteration++))
10579 EverMadeChange = true;
10580 return EverMadeChange;
10581}
10582
10583FunctionPass *llvm::createInstructionCombiningPass() {
10584 return new InstCombiner();
10585}
10586