blob: e70a3181bfeec746b42232d3b66adc4d863c5641 [file] [log] [blame]
/*
* Copyright 2012 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* on the rights to use, copy, modify, merge, publish, distribute, sub
* license, and/or sell copies of the Software, and to permit persons to whom
* the Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice (including the next
* paragraph) shall be included in all copies or substantial portions of the
* Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE AUTHOR(S) AND/OR THEIR SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
* Authors:
* Tom Stellard <thomas.stellard@amd.com>
* Michel Dänzer <michel.daenzer@amd.com>
* Christian König <christian.koenig@amd.com>
*/
#include "gallivm/lp_bld_const.h"
#include "gallivm/lp_bld_gather.h"
#include "gallivm/lp_bld_intr.h"
#include "gallivm/lp_bld_logic.h"
#include "gallivm/lp_bld_arit.h"
#include "gallivm/lp_bld_flow.h"
#include "radeon/r600_cs.h"
#include "radeon/radeon_llvm.h"
#include "radeon/radeon_elf_util.h"
#include "radeon/radeon_llvm_emit.h"
#include "util/u_memory.h"
#include "util/u_pstipple.h"
#include "tgsi/tgsi_parse.h"
#include "tgsi/tgsi_util.h"
#include "tgsi/tgsi_dump.h"
#include "si_pipe.h"
#include "si_shader.h"
#include "sid.h"
#include <errno.h>
static const char *scratch_rsrc_dword0_symbol =
"SCRATCH_RSRC_DWORD0";
static const char *scratch_rsrc_dword1_symbol =
"SCRATCH_RSRC_DWORD1";
struct si_shader_output_values
{
LLVMValueRef values[4];
unsigned name;
unsigned sid;
};
struct si_shader_context
{
struct radeon_llvm_context radeon_bld;
struct si_shader *shader;
struct si_screen *screen;
unsigned type; /* TGSI_PROCESSOR_* specifies the type of shader. */
int param_streamout_config;
int param_streamout_write_index;
int param_streamout_offset[4];
int param_vertex_id;
int param_instance_id;
LLVMValueRef const_md;
LLVMValueRef const_resource[SI_NUM_CONST_BUFFERS];
LLVMValueRef ddxy_lds;
LLVMValueRef *constants[SI_NUM_CONST_BUFFERS];
LLVMValueRef resources[SI_NUM_SAMPLER_VIEWS];
LLVMValueRef samplers[SI_NUM_SAMPLER_STATES];
LLVMValueRef so_buffers[4];
LLVMValueRef esgs_ring;
LLVMValueRef gsvs_ring;
LLVMValueRef gs_next_vertex;
};
static struct si_shader_context * si_shader_context(
struct lp_build_tgsi_context * bld_base)
{
return (struct si_shader_context *)bld_base;
}
#define PERSPECTIVE_BASE 0
#define LINEAR_BASE 9
#define SAMPLE_OFFSET 0
#define CENTER_OFFSET 2
#define CENTROID_OFSET 4
#define USE_SGPR_MAX_SUFFIX_LEN 5
#define CONST_ADDR_SPACE 2
#define LOCAL_ADDR_SPACE 3
#define USER_SGPR_ADDR_SPACE 8
#define SENDMSG_GS 2
#define SENDMSG_GS_DONE 3
#define SENDMSG_GS_OP_NOP (0 << 4)
#define SENDMSG_GS_OP_CUT (1 << 4)
#define SENDMSG_GS_OP_EMIT (2 << 4)
#define SENDMSG_GS_OP_EMIT_CUT (3 << 4)
/**
* Returns a unique index for a semantic name and index. The index must be
* less than 64, so that a 64-bit bitmask of used inputs or outputs can be
* calculated.
*/
unsigned si_shader_io_get_unique_index(unsigned semantic_name, unsigned index)
{
switch (semantic_name) {
case TGSI_SEMANTIC_POSITION:
return 0;
case TGSI_SEMANTIC_PSIZE:
return 1;
case TGSI_SEMANTIC_CLIPDIST:
assert(index <= 1);
return 2 + index;
case TGSI_SEMANTIC_CLIPVERTEX:
return 4;
case TGSI_SEMANTIC_COLOR:
assert(index <= 1);
return 5 + index;
case TGSI_SEMANTIC_BCOLOR:
assert(index <= 1);
return 7 + index;
case TGSI_SEMANTIC_FOG:
return 9;
case TGSI_SEMANTIC_EDGEFLAG:
return 10;
case TGSI_SEMANTIC_GENERIC:
assert(index <= 63-11);
return 11 + index;
default:
assert(0);
return 63;
}
}
/**
* Given a semantic name and index of a parameter and a mask of used parameters
* (inputs or outputs), return the index of the parameter in the list of all
* used parameters.
*
* For example, assume this list of parameters:
* POSITION, PSIZE, GENERIC0, GENERIC2
* which has the mask:
* 11000000000101
* Then:
* querying POSITION returns 0,
* querying PSIZE returns 1,
* querying GENERIC0 returns 2,
* querying GENERIC2 returns 3.
*
* Which can be used as an offset to a parameter buffer in units of vec4s.
*/
static int get_param_index(unsigned semantic_name, unsigned index,
uint64_t mask)
{
unsigned unique_index = si_shader_io_get_unique_index(semantic_name, index);
int i, param_index = 0;
/* If not present... */
if (!((1llu << unique_index) & mask))
return -1;
for (i = 0; mask; i++) {
uint64_t bit = 1llu << i;
if (bit & mask) {
if (i == unique_index)
return param_index;
mask &= ~bit;
param_index++;
}
}
assert(!"unreachable");
return -1;
}
/**
* Build an LLVM bytecode indexed load using LLVMBuildGEP + LLVMBuildLoad.
* It's equivalent to doing a load from &base_ptr[index].
*
* \param base_ptr Where the array starts.
* \param index The element index into the array.
*/
static LLVMValueRef build_indexed_load(struct si_shader_context *si_shader_ctx,
LLVMValueRef base_ptr, LLVMValueRef index)
{
struct lp_build_tgsi_context *bld_base = &si_shader_ctx->radeon_bld.soa.bld_base;
struct gallivm_state *gallivm = bld_base->base.gallivm;
LLVMValueRef indices[2], pointer;
indices[0] = bld_base->uint_bld.zero;
indices[1] = index;
pointer = LLVMBuildGEP(gallivm->builder, base_ptr, indices, 2, "");
return LLVMBuildLoad(gallivm->builder, pointer, "");
}
/**
* Do a load from &base_ptr[index], but also add a flag that it's loading
* a constant.
*/
static LLVMValueRef build_indexed_load_const(
struct si_shader_context * si_shader_ctx,
LLVMValueRef base_ptr, LLVMValueRef index)
{
LLVMValueRef result = build_indexed_load(si_shader_ctx, base_ptr, index);
LLVMSetMetadata(result, 1, si_shader_ctx->const_md);
return result;
}
static LLVMValueRef get_instance_index_for_fetch(
struct radeon_llvm_context * radeon_bld,
unsigned divisor)
{
struct si_shader_context *si_shader_ctx =
si_shader_context(&radeon_bld->soa.bld_base);
struct gallivm_state * gallivm = radeon_bld->soa.bld_base.base.gallivm;
LLVMValueRef result = LLVMGetParam(radeon_bld->main_fn,
si_shader_ctx->param_instance_id);
/* The division must be done before START_INSTANCE is added. */
if (divisor > 1)
result = LLVMBuildUDiv(gallivm->builder, result,
lp_build_const_int32(gallivm, divisor), "");
return LLVMBuildAdd(gallivm->builder, result, LLVMGetParam(
radeon_bld->main_fn, SI_PARAM_START_INSTANCE), "");
}
static void declare_input_vs(
struct radeon_llvm_context *radeon_bld,
unsigned input_index,
const struct tgsi_full_declaration *decl)
{
struct lp_build_context *base = &radeon_bld->soa.bld_base.base;
struct gallivm_state *gallivm = base->gallivm;
struct si_shader_context *si_shader_ctx =
si_shader_context(&radeon_bld->soa.bld_base);
unsigned divisor = si_shader_ctx->shader->key.vs.instance_divisors[input_index];
unsigned chan;
LLVMValueRef t_list_ptr;
LLVMValueRef t_offset;
LLVMValueRef t_list;
LLVMValueRef attribute_offset;
LLVMValueRef buffer_index;
LLVMValueRef args[3];
LLVMTypeRef vec4_type;
LLVMValueRef input;
/* Load the T list */
t_list_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_VERTEX_BUFFER);
t_offset = lp_build_const_int32(gallivm, input_index);
t_list = build_indexed_load_const(si_shader_ctx, t_list_ptr, t_offset);
/* Build the attribute offset */
attribute_offset = lp_build_const_int32(gallivm, 0);
if (divisor) {
/* Build index from instance ID, start instance and divisor */
si_shader_ctx->shader->uses_instanceid = true;
buffer_index = get_instance_index_for_fetch(&si_shader_ctx->radeon_bld, divisor);
} else {
/* Load the buffer index for vertices. */
LLVMValueRef vertex_id = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
si_shader_ctx->param_vertex_id);
LLVMValueRef base_vertex = LLVMGetParam(radeon_bld->main_fn,
SI_PARAM_BASE_VERTEX);
buffer_index = LLVMBuildAdd(gallivm->builder, base_vertex, vertex_id, "");
}
vec4_type = LLVMVectorType(base->elem_type, 4);
args[0] = t_list;
args[1] = attribute_offset;
args[2] = buffer_index;
input = build_intrinsic(gallivm->builder,
"llvm.SI.vs.load.input", vec4_type, args, 3,
LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
/* Break up the vec4 into individual components */
for (chan = 0; chan < 4; chan++) {
LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
/* XXX: Use a helper function for this. There is one in
* tgsi_llvm.c. */
si_shader_ctx->radeon_bld.inputs[radeon_llvm_reg_index_soa(input_index, chan)] =
LLVMBuildExtractElement(gallivm->builder,
input, llvm_chan, "");
}
}
static LLVMValueRef fetch_input_gs(
struct lp_build_tgsi_context *bld_base,
const struct tgsi_full_src_register *reg,
enum tgsi_opcode_type type,
unsigned swizzle)
{
struct lp_build_context *base = &bld_base->base;
struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
struct si_shader *shader = si_shader_ctx->shader;
struct lp_build_context *uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld;
struct gallivm_state *gallivm = base->gallivm;
LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context);
LLVMValueRef vtx_offset;
LLVMValueRef args[9];
unsigned vtx_offset_param;
struct tgsi_shader_info *info = &shader->selector->info;
unsigned semantic_name = info->input_semantic_name[reg->Register.Index];
unsigned semantic_index = info->input_semantic_index[reg->Register.Index];
if (swizzle != ~0 && semantic_name == TGSI_SEMANTIC_PRIMID) {
if (swizzle == 0)
return LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
SI_PARAM_PRIMITIVE_ID);
else
return uint->zero;
}
if (!reg->Register.Dimension)
return NULL;
if (swizzle == ~0) {
LLVMValueRef values[TGSI_NUM_CHANNELS];
unsigned chan;
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
values[chan] = fetch_input_gs(bld_base, reg, type, chan);
}
return lp_build_gather_values(bld_base->base.gallivm, values,
TGSI_NUM_CHANNELS);
}
/* Get the vertex offset parameter */
vtx_offset_param = reg->Dimension.Index;
if (vtx_offset_param < 2) {
vtx_offset_param += SI_PARAM_VTX0_OFFSET;
} else {
assert(vtx_offset_param < 6);
vtx_offset_param += SI_PARAM_VTX2_OFFSET - 2;
}
vtx_offset = lp_build_mul_imm(uint,
LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
vtx_offset_param),
4);
args[0] = si_shader_ctx->esgs_ring;
args[1] = vtx_offset;
args[2] = lp_build_const_int32(gallivm,
(get_param_index(semantic_name, semantic_index,
shader->selector->gs_used_inputs) * 4 +
swizzle) * 256);
args[3] = uint->zero;
args[4] = uint->one; /* OFFEN */
args[5] = uint->zero; /* IDXEN */
args[6] = uint->one; /* GLC */
args[7] = uint->zero; /* SLC */
args[8] = uint->zero; /* TFE */
return LLVMBuildBitCast(gallivm->builder,
build_intrinsic(gallivm->builder,
"llvm.SI.buffer.load.dword.i32.i32",
i32, args, 9,
LLVMReadOnlyAttribute | LLVMNoUnwindAttribute),
tgsi2llvmtype(bld_base, type), "");
}
static void declare_input_fs(
struct radeon_llvm_context *radeon_bld,
unsigned input_index,
const struct tgsi_full_declaration *decl)
{
struct lp_build_context *base = &radeon_bld->soa.bld_base.base;
struct si_shader_context *si_shader_ctx =
si_shader_context(&radeon_bld->soa.bld_base);
struct si_shader *shader = si_shader_ctx->shader;
struct lp_build_context *uint = &radeon_bld->soa.bld_base.uint_bld;
struct gallivm_state *gallivm = base->gallivm;
LLVMTypeRef input_type = LLVMFloatTypeInContext(gallivm->context);
LLVMValueRef main_fn = radeon_bld->main_fn;
LLVMValueRef interp_param;
const char * intr_name;
/* This value is:
* [15:0] NewPrimMask (Bit mask for each quad. It is set it the
* quad begins a new primitive. Bit 0 always needs
* to be unset)
* [32:16] ParamOffset
*
*/
LLVMValueRef params = LLVMGetParam(main_fn, SI_PARAM_PRIM_MASK);
LLVMValueRef attr_number;
unsigned chan;
if (decl->Semantic.Name == TGSI_SEMANTIC_POSITION) {
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
unsigned soa_index =
radeon_llvm_reg_index_soa(input_index, chan);
radeon_bld->inputs[soa_index] =
LLVMGetParam(main_fn, SI_PARAM_POS_X_FLOAT + chan);
if (chan == 3)
/* RCP for fragcoord.w */
radeon_bld->inputs[soa_index] =
LLVMBuildFDiv(gallivm->builder,
lp_build_const_float(gallivm, 1.0f),
radeon_bld->inputs[soa_index],
"");
}
return;
}
if (decl->Semantic.Name == TGSI_SEMANTIC_FACE) {
radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 0)] =
LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE);
radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 1)] =
radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 2)] =
lp_build_const_float(gallivm, 0.0f);
radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 3)] =
lp_build_const_float(gallivm, 1.0f);
return;
}
shader->ps_input_param_offset[input_index] = shader->nparam++;
attr_number = lp_build_const_int32(gallivm,
shader->ps_input_param_offset[input_index]);
switch (decl->Interp.Interpolate) {
case TGSI_INTERPOLATE_CONSTANT:
interp_param = 0;
break;
case TGSI_INTERPOLATE_LINEAR:
if (decl->Interp.Location == TGSI_INTERPOLATE_LOC_SAMPLE)
interp_param = LLVMGetParam(main_fn, SI_PARAM_LINEAR_SAMPLE);
else if (decl->Interp.Location == TGSI_INTERPOLATE_LOC_CENTROID)
interp_param = LLVMGetParam(main_fn, SI_PARAM_LINEAR_CENTROID);
else
interp_param = LLVMGetParam(main_fn, SI_PARAM_LINEAR_CENTER);
break;
case TGSI_INTERPOLATE_COLOR:
case TGSI_INTERPOLATE_PERSPECTIVE:
if (decl->Interp.Location == TGSI_INTERPOLATE_LOC_SAMPLE)
interp_param = LLVMGetParam(main_fn, SI_PARAM_PERSP_SAMPLE);
else if (decl->Interp.Location == TGSI_INTERPOLATE_LOC_CENTROID)
interp_param = LLVMGetParam(main_fn, SI_PARAM_PERSP_CENTROID);
else
interp_param = LLVMGetParam(main_fn, SI_PARAM_PERSP_CENTER);
break;
default:
fprintf(stderr, "Warning: Unhandled interpolation mode.\n");
return;
}
/* fs.constant returns the param from the middle vertex, so it's not
* really useful for flat shading. It's meant to be used for custom
* interpolation (but the intrinsic can't fetch from the other two
* vertices).
*
* Luckily, it doesn't matter, because we rely on the FLAT_SHADE state
* to do the right thing. The only reason we use fs.constant is that
* fs.interp cannot be used on integers, because they can be equal
* to NaN.
*/
intr_name = interp_param ? "llvm.SI.fs.interp" : "llvm.SI.fs.constant";
if (decl->Semantic.Name == TGSI_SEMANTIC_COLOR &&
si_shader_ctx->shader->key.ps.color_two_side) {
LLVMValueRef args[4];
LLVMValueRef face, is_face_positive;
LLVMValueRef back_attr_number =
lp_build_const_int32(gallivm,
shader->ps_input_param_offset[input_index] + 1);
face = LLVMGetParam(main_fn, SI_PARAM_FRONT_FACE);
is_face_positive = LLVMBuildFCmp(gallivm->builder,
LLVMRealOGT, face,
lp_build_const_float(gallivm, 0.0f),
"");
args[2] = params;
args[3] = interp_param;
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan);
LLVMValueRef front, back;
args[0] = llvm_chan;
args[1] = attr_number;
front = build_intrinsic(gallivm->builder, intr_name,
input_type, args, args[3] ? 4 : 3,
LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
args[1] = back_attr_number;
back = build_intrinsic(gallivm->builder, intr_name,
input_type, args, args[3] ? 4 : 3,
LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
radeon_bld->inputs[soa_index] =
LLVMBuildSelect(gallivm->builder,
is_face_positive,
front,
back,
"");
}
shader->nparam++;
} else if (decl->Semantic.Name == TGSI_SEMANTIC_FOG) {
LLVMValueRef args[4];
args[0] = uint->zero;
args[1] = attr_number;
args[2] = params;
args[3] = interp_param;
radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 0)] =
build_intrinsic(gallivm->builder, intr_name,
input_type, args, args[3] ? 4 : 3,
LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 1)] =
radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 2)] =
lp_build_const_float(gallivm, 0.0f);
radeon_bld->inputs[radeon_llvm_reg_index_soa(input_index, 3)] =
lp_build_const_float(gallivm, 1.0f);
} else {
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
LLVMValueRef args[4];
LLVMValueRef llvm_chan = lp_build_const_int32(gallivm, chan);
unsigned soa_index = radeon_llvm_reg_index_soa(input_index, chan);
args[0] = llvm_chan;
args[1] = attr_number;
args[2] = params;
args[3] = interp_param;
radeon_bld->inputs[soa_index] =
build_intrinsic(gallivm->builder, intr_name,
input_type, args, args[3] ? 4 : 3,
LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
}
}
}
static LLVMValueRef get_sample_id(struct radeon_llvm_context *radeon_bld)
{
struct gallivm_state *gallivm = &radeon_bld->gallivm;
LLVMValueRef value = LLVMGetParam(radeon_bld->main_fn,
SI_PARAM_ANCILLARY);
value = LLVMBuildLShr(gallivm->builder, value,
lp_build_const_int32(gallivm, 8), "");
value = LLVMBuildAnd(gallivm->builder, value,
lp_build_const_int32(gallivm, 0xf), "");
return value;
}
/**
* Load a dword from a constant buffer.
*/
static LLVMValueRef buffer_load_const(LLVMBuilderRef builder, LLVMValueRef resource,
LLVMValueRef offset, LLVMTypeRef return_type)
{
LLVMValueRef args[2] = {resource, offset};
return build_intrinsic(builder, "llvm.SI.load.const", return_type, args, 2,
LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
}
static void declare_system_value(
struct radeon_llvm_context * radeon_bld,
unsigned index,
const struct tgsi_full_declaration *decl)
{
struct si_shader_context *si_shader_ctx =
si_shader_context(&radeon_bld->soa.bld_base);
struct lp_build_context *uint_bld = &radeon_bld->soa.bld_base.uint_bld;
struct gallivm_state *gallivm = &radeon_bld->gallivm;
LLVMValueRef value = 0;
switch (decl->Semantic.Name) {
case TGSI_SEMANTIC_INSTANCEID:
value = LLVMGetParam(radeon_bld->main_fn,
si_shader_ctx->param_instance_id);
break;
case TGSI_SEMANTIC_VERTEXID:
value = LLVMBuildAdd(gallivm->builder,
LLVMGetParam(radeon_bld->main_fn,
si_shader_ctx->param_vertex_id),
LLVMGetParam(radeon_bld->main_fn,
SI_PARAM_BASE_VERTEX), "");
break;
case TGSI_SEMANTIC_VERTEXID_NOBASE:
value = LLVMGetParam(radeon_bld->main_fn,
si_shader_ctx->param_vertex_id);
break;
case TGSI_SEMANTIC_BASEVERTEX:
value = LLVMGetParam(radeon_bld->main_fn,
SI_PARAM_BASE_VERTEX);
break;
case TGSI_SEMANTIC_SAMPLEID:
value = get_sample_id(radeon_bld);
break;
case TGSI_SEMANTIC_SAMPLEPOS:
{
LLVMBuilderRef builder = gallivm->builder;
LLVMValueRef desc = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_CONST);
LLVMValueRef buf_index = lp_build_const_int32(gallivm, SI_DRIVER_STATE_CONST_BUF);
LLVMValueRef resource = build_indexed_load_const(si_shader_ctx, desc, buf_index);
/* offset = sample_id * 8 (8 = 2 floats containing samplepos.xy) */
LLVMValueRef offset0 = lp_build_mul_imm(uint_bld, get_sample_id(radeon_bld), 8);
LLVMValueRef offset1 = LLVMBuildAdd(builder, offset0, lp_build_const_int32(gallivm, 4), "");
LLVMValueRef pos[4] = {
buffer_load_const(builder, resource, offset0, radeon_bld->soa.bld_base.base.elem_type),
buffer_load_const(builder, resource, offset1, radeon_bld->soa.bld_base.base.elem_type),
lp_build_const_float(gallivm, 0),
lp_build_const_float(gallivm, 0)
};
value = lp_build_gather_values(gallivm, pos, 4);
break;
}
case TGSI_SEMANTIC_SAMPLEMASK:
value = LLVMGetParam(radeon_bld->main_fn, SI_PARAM_SAMPLE_COVERAGE);
break;
default:
assert(!"unknown system value");
return;
}
radeon_bld->system_values[index] = value;
}
static LLVMValueRef fetch_constant(
struct lp_build_tgsi_context * bld_base,
const struct tgsi_full_src_register *reg,
enum tgsi_opcode_type type,
unsigned swizzle)
{
struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
struct lp_build_context * base = &bld_base->base;
const struct tgsi_ind_register *ireg = &reg->Indirect;
unsigned buf, idx;
LLVMValueRef addr;
LLVMValueRef result;
if (swizzle == LP_CHAN_ALL) {
unsigned chan;
LLVMValueRef values[4];
for (chan = 0; chan < TGSI_NUM_CHANNELS; ++chan)
values[chan] = fetch_constant(bld_base, reg, type, chan);
return lp_build_gather_values(bld_base->base.gallivm, values, 4);
}
buf = reg->Register.Dimension ? reg->Dimension.Index : 0;
idx = reg->Register.Index * 4 + swizzle;
if (!reg->Register.Indirect)
return bitcast(bld_base, type, si_shader_ctx->constants[buf][idx]);
addr = si_shader_ctx->radeon_bld.soa.addr[ireg->Index][ireg->Swizzle];
addr = LLVMBuildLoad(base->gallivm->builder, addr, "load addr reg");
addr = lp_build_mul_imm(&bld_base->uint_bld, addr, 16);
addr = lp_build_add(&bld_base->uint_bld, addr,
lp_build_const_int32(base->gallivm, idx * 4));
result = buffer_load_const(base->gallivm->builder, si_shader_ctx->const_resource[buf],
addr, base->elem_type);
return bitcast(bld_base, type, result);
}
/* Initialize arguments for the shader export intrinsic */
static void si_llvm_init_export_args(struct lp_build_tgsi_context *bld_base,
LLVMValueRef *values,
unsigned target,
LLVMValueRef *args)
{
struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
struct lp_build_context *uint =
&si_shader_ctx->radeon_bld.soa.bld_base.uint_bld;
struct lp_build_context *base = &bld_base->base;
unsigned compressed = 0;
unsigned chan;
if (si_shader_ctx->type == TGSI_PROCESSOR_FRAGMENT) {
int cbuf = target - V_008DFC_SQ_EXP_MRT;
if (cbuf >= 0 && cbuf < 8) {
compressed = (si_shader_ctx->shader->key.ps.export_16bpc >> cbuf) & 0x1;
if (compressed)
si_shader_ctx->shader->spi_shader_col_format |=
V_028714_SPI_SHADER_FP16_ABGR << (4 * cbuf);
else
si_shader_ctx->shader->spi_shader_col_format |=
V_028714_SPI_SHADER_32_ABGR << (4 * cbuf);
si_shader_ctx->shader->cb_shader_mask |= 0xf << (4 * cbuf);
}
}
if (compressed) {
/* Pixel shader needs to pack output values before export */
for (chan = 0; chan < 2; chan++ ) {
args[0] = values[2 * chan];
args[1] = values[2 * chan + 1];
args[chan + 5] =
build_intrinsic(base->gallivm->builder,
"llvm.SI.packf16",
LLVMInt32TypeInContext(base->gallivm->context),
args, 2,
LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
args[chan + 7] = args[chan + 5] =
LLVMBuildBitCast(base->gallivm->builder,
args[chan + 5],
LLVMFloatTypeInContext(base->gallivm->context),
"");
}
/* Set COMPR flag */
args[4] = uint->one;
} else {
for (chan = 0; chan < 4; chan++ )
/* +5 because the first output value will be
* the 6th argument to the intrinsic. */
args[chan + 5] = values[chan];
/* Clear COMPR flag */
args[4] = uint->zero;
}
/* XXX: This controls which components of the output
* registers actually get exported. (e.g bit 0 means export
* X component, bit 1 means export Y component, etc.) I'm
* hard coding this to 0xf for now. In the future, we might
* want to do something else. */
args[0] = lp_build_const_int32(base->gallivm, 0xf);
/* Specify whether the EXEC mask represents the valid mask */
args[1] = uint->zero;
/* Specify whether this is the last export */
args[2] = uint->zero;
/* Specify the target we are exporting */
args[3] = lp_build_const_int32(base->gallivm, target);
/* XXX: We probably need to keep track of the output
* values, so we know what we are passing to the next
* stage. */
}
/* Load from output pointers and initialize arguments for the shader export intrinsic */
static void si_llvm_init_export_args_load(struct lp_build_tgsi_context *bld_base,
LLVMValueRef *out_ptr,
unsigned target,
LLVMValueRef *args)
{
struct gallivm_state *gallivm = bld_base->base.gallivm;
LLVMValueRef values[4];
int i;
for (i = 0; i < 4; i++)
values[i] = LLVMBuildLoad(gallivm->builder, out_ptr[i], "");
si_llvm_init_export_args(bld_base, values, target, args);
}
static void si_alpha_test(struct lp_build_tgsi_context *bld_base,
LLVMValueRef *out_ptr)
{
struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
if (si_shader_ctx->shader->key.ps.alpha_func != PIPE_FUNC_NEVER) {
LLVMValueRef alpha_ref = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
SI_PARAM_ALPHA_REF);
LLVMValueRef alpha_pass =
lp_build_cmp(&bld_base->base,
si_shader_ctx->shader->key.ps.alpha_func,
LLVMBuildLoad(gallivm->builder, out_ptr[3], ""),
alpha_ref);
LLVMValueRef arg =
lp_build_select(&bld_base->base,
alpha_pass,
lp_build_const_float(gallivm, 1.0f),
lp_build_const_float(gallivm, -1.0f));
build_intrinsic(gallivm->builder,
"llvm.AMDGPU.kill",
LLVMVoidTypeInContext(gallivm->context),
&arg, 1, 0);
} else {
build_intrinsic(gallivm->builder,
"llvm.AMDGPU.kilp",
LLVMVoidTypeInContext(gallivm->context),
NULL, 0, 0);
}
si_shader_ctx->shader->db_shader_control |= S_02880C_KILL_ENABLE(1);
}
static void si_llvm_emit_clipvertex(struct lp_build_tgsi_context * bld_base,
LLVMValueRef (*pos)[9], LLVMValueRef *out_elts)
{
struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
struct lp_build_context *base = &bld_base->base;
struct lp_build_context *uint = &si_shader_ctx->radeon_bld.soa.bld_base.uint_bld;
unsigned reg_index;
unsigned chan;
unsigned const_chan;
LLVMValueRef base_elt;
LLVMValueRef ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_CONST);
LLVMValueRef constbuf_index = lp_build_const_int32(base->gallivm, SI_DRIVER_STATE_CONST_BUF);
LLVMValueRef const_resource = build_indexed_load_const(si_shader_ctx, ptr, constbuf_index);
for (reg_index = 0; reg_index < 2; reg_index ++) {
LLVMValueRef *args = pos[2 + reg_index];
args[5] =
args[6] =
args[7] =
args[8] = lp_build_const_float(base->gallivm, 0.0f);
/* Compute dot products of position and user clip plane vectors */
for (chan = 0; chan < TGSI_NUM_CHANNELS; chan++) {
for (const_chan = 0; const_chan < TGSI_NUM_CHANNELS; const_chan++) {
args[1] = lp_build_const_int32(base->gallivm,
((reg_index * 4 + chan) * 4 +
const_chan) * 4);
base_elt = buffer_load_const(base->gallivm->builder, const_resource,
args[1], base->elem_type);
args[5 + chan] =
lp_build_add(base, args[5 + chan],
lp_build_mul(base, base_elt,
out_elts[const_chan]));
}
}
args[0] = lp_build_const_int32(base->gallivm, 0xf);
args[1] = uint->zero;
args[2] = uint->zero;
args[3] = lp_build_const_int32(base->gallivm,
V_008DFC_SQ_EXP_POS + 2 + reg_index);
args[4] = uint->zero;
}
}
static void si_dump_streamout(struct pipe_stream_output_info *so)
{
unsigned i;
if (so->num_outputs)
fprintf(stderr, "STREAMOUT\n");
for (i = 0; i < so->num_outputs; i++) {
unsigned mask = ((1 << so->output[i].num_components) - 1) <<
so->output[i].start_component;
fprintf(stderr, " %i: BUF%i[%i..%i] <- OUT[%i].%s%s%s%s\n",
i, so->output[i].output_buffer,
so->output[i].dst_offset, so->output[i].dst_offset + so->output[i].num_components - 1,
so->output[i].register_index,
mask & 1 ? "x" : "",
mask & 2 ? "y" : "",
mask & 4 ? "z" : "",
mask & 8 ? "w" : "");
}
}
/* TBUFFER_STORE_FORMAT_{X,XY,XYZ,XYZW} <- the suffix is selected by num_channels=1..4.
* The type of vdata must be one of i32 (num_channels=1), v2i32 (num_channels=2),
* or v4i32 (num_channels=3,4). */
static void build_tbuffer_store(struct si_shader_context *shader,
LLVMValueRef rsrc,
LLVMValueRef vdata,
unsigned num_channels,
LLVMValueRef vaddr,
LLVMValueRef soffset,
unsigned inst_offset,
unsigned dfmt,
unsigned nfmt,
unsigned offen,
unsigned idxen,
unsigned glc,
unsigned slc,
unsigned tfe)
{
struct gallivm_state *gallivm = &shader->radeon_bld.gallivm;
LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context);
LLVMValueRef args[] = {
rsrc,
vdata,
LLVMConstInt(i32, num_channels, 0),
vaddr,
soffset,
LLVMConstInt(i32, inst_offset, 0),
LLVMConstInt(i32, dfmt, 0),
LLVMConstInt(i32, nfmt, 0),
LLVMConstInt(i32, offen, 0),
LLVMConstInt(i32, idxen, 0),
LLVMConstInt(i32, glc, 0),
LLVMConstInt(i32, slc, 0),
LLVMConstInt(i32, tfe, 0)
};
/* The instruction offset field has 12 bits */
assert(offen || inst_offset < (1 << 12));
/* The intrinsic is overloaded, we need to add a type suffix for overloading to work. */
unsigned func = CLAMP(num_channels, 1, 3) - 1;
const char *types[] = {"i32", "v2i32", "v4i32"};
char name[256];
snprintf(name, sizeof(name), "llvm.SI.tbuffer.store.%s", types[func]);
lp_build_intrinsic(gallivm->builder, name,
LLVMVoidTypeInContext(gallivm->context),
args, Elements(args));
}
static void build_streamout_store(struct si_shader_context *shader,
LLVMValueRef rsrc,
LLVMValueRef vdata,
unsigned num_channels,
LLVMValueRef vaddr,
LLVMValueRef soffset,
unsigned inst_offset)
{
static unsigned dfmt[] = {
V_008F0C_BUF_DATA_FORMAT_32,
V_008F0C_BUF_DATA_FORMAT_32_32,
V_008F0C_BUF_DATA_FORMAT_32_32_32,
V_008F0C_BUF_DATA_FORMAT_32_32_32_32
};
assert(num_channels >= 1 && num_channels <= 4);
build_tbuffer_store(shader, rsrc, vdata, num_channels, vaddr, soffset,
inst_offset, dfmt[num_channels-1],
V_008F0C_BUF_NUM_FORMAT_UINT, 1, 0, 1, 1, 0);
}
/* On SI, the vertex shader is responsible for writing streamout data
* to buffers. */
static void si_llvm_emit_streamout(struct si_shader_context *shader,
struct si_shader_output_values *outputs,
unsigned noutput)
{
struct pipe_stream_output_info *so = &shader->shader->selector->so;
struct gallivm_state *gallivm = &shader->radeon_bld.gallivm;
LLVMBuilderRef builder = gallivm->builder;
int i, j;
struct lp_build_if_state if_ctx;
LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context);
LLVMValueRef so_param =
LLVMGetParam(shader->radeon_bld.main_fn,
shader->param_streamout_config);
/* Get bits [22:16], i.e. (so_param >> 16) & 127; */
LLVMValueRef so_vtx_count =
LLVMBuildAnd(builder,
LLVMBuildLShr(builder, so_param,
LLVMConstInt(i32, 16, 0), ""),
LLVMConstInt(i32, 127, 0), "");
LLVMValueRef tid = build_intrinsic(builder, "llvm.SI.tid", i32,
NULL, 0, LLVMReadNoneAttribute);
/* can_emit = tid < so_vtx_count; */
LLVMValueRef can_emit =
LLVMBuildICmp(builder, LLVMIntULT, tid, so_vtx_count, "");
/* Emit the streamout code conditionally. This actually avoids
* out-of-bounds buffer access. The hw tells us via the SGPR
* (so_vtx_count) which threads are allowed to emit streamout data. */
lp_build_if(&if_ctx, gallivm, can_emit);
{
/* The buffer offset is computed as follows:
* ByteOffset = streamout_offset[buffer_id]*4 +
* (streamout_write_index + thread_id)*stride[buffer_id] +
* attrib_offset
*/
LLVMValueRef so_write_index =
LLVMGetParam(shader->radeon_bld.main_fn,
shader->param_streamout_write_index);
/* Compute (streamout_write_index + thread_id). */
so_write_index = LLVMBuildAdd(builder, so_write_index, tid, "");
/* Compute the write offset for each enabled buffer. */
LLVMValueRef so_write_offset[4] = {};
for (i = 0; i < 4; i++) {
if (!so->stride[i])
continue;
LLVMValueRef so_offset = LLVMGetParam(shader->radeon_bld.main_fn,
shader->param_streamout_offset[i]);
so_offset = LLVMBuildMul(builder, so_offset, LLVMConstInt(i32, 4, 0), "");
so_write_offset[i] = LLVMBuildMul(builder, so_write_index,
LLVMConstInt(i32, so->stride[i]*4, 0), "");
so_write_offset[i] = LLVMBuildAdd(builder, so_write_offset[i], so_offset, "");
}
/* Write streamout data. */
for (i = 0; i < so->num_outputs; i++) {
unsigned buf_idx = so->output[i].output_buffer;
unsigned reg = so->output[i].register_index;
unsigned start = so->output[i].start_component;
unsigned num_comps = so->output[i].num_components;
LLVMValueRef out[4];
assert(num_comps && num_comps <= 4);
if (!num_comps || num_comps > 4)
continue;
if (reg >= noutput)
continue;
/* Load the output as int. */
for (j = 0; j < num_comps; j++) {
out[j] = LLVMBuildBitCast(builder,
outputs[reg].values[start+j],
i32, "");
}
/* Pack the output. */
LLVMValueRef vdata = NULL;
switch (num_comps) {
case 1: /* as i32 */
vdata = out[0];
break;
case 2: /* as v2i32 */
case 3: /* as v4i32 (aligned to 4) */
case 4: /* as v4i32 */
vdata = LLVMGetUndef(LLVMVectorType(i32, util_next_power_of_two(num_comps)));
for (j = 0; j < num_comps; j++) {
vdata = LLVMBuildInsertElement(builder, vdata, out[j],
LLVMConstInt(i32, j, 0), "");
}
break;
}
build_streamout_store(shader, shader->so_buffers[buf_idx],
vdata, num_comps,
so_write_offset[buf_idx],
LLVMConstInt(i32, 0, 0),
so->output[i].dst_offset*4);
}
}
lp_build_endif(&if_ctx);
}
/* Generate export instructions for hardware VS shader stage */
static void si_llvm_export_vs(struct lp_build_tgsi_context *bld_base,
struct si_shader_output_values *outputs,
unsigned noutput)
{
struct si_shader_context * si_shader_ctx = si_shader_context(bld_base);
struct si_shader * shader = si_shader_ctx->shader;
struct lp_build_context * base = &bld_base->base;
struct lp_build_context * uint =
&si_shader_ctx->radeon_bld.soa.bld_base.uint_bld;
LLVMValueRef args[9];
LLVMValueRef pos_args[4][9] = { { 0 } };
LLVMValueRef psize_value = NULL, edgeflag_value = NULL, layer_value = NULL;
unsigned semantic_name, semantic_index;
unsigned target;
unsigned param_count = 0;
unsigned pos_idx;
int i;
if (outputs && si_shader_ctx->shader->selector->so.num_outputs) {
si_llvm_emit_streamout(si_shader_ctx, outputs, noutput);
}
for (i = 0; i < noutput; i++) {
semantic_name = outputs[i].name;
semantic_index = outputs[i].sid;
handle_semantic:
/* Select the correct target */
switch(semantic_name) {
case TGSI_SEMANTIC_PSIZE:
psize_value = outputs[i].values[0];
continue;
case TGSI_SEMANTIC_EDGEFLAG:
edgeflag_value = outputs[i].values[0];
continue;
case TGSI_SEMANTIC_LAYER:
layer_value = outputs[i].values[0];
continue;
case TGSI_SEMANTIC_POSITION:
target = V_008DFC_SQ_EXP_POS;
break;
case TGSI_SEMANTIC_COLOR:
case TGSI_SEMANTIC_BCOLOR:
target = V_008DFC_SQ_EXP_PARAM + param_count;
shader->vs_output_param_offset[i] = param_count;
param_count++;
break;
case TGSI_SEMANTIC_CLIPDIST:
target = V_008DFC_SQ_EXP_POS + 2 + semantic_index;
break;
case TGSI_SEMANTIC_CLIPVERTEX:
si_llvm_emit_clipvertex(bld_base, pos_args, outputs[i].values);
continue;
case TGSI_SEMANTIC_PRIMID:
case TGSI_SEMANTIC_FOG:
case TGSI_SEMANTIC_GENERIC:
target = V_008DFC_SQ_EXP_PARAM + param_count;
shader->vs_output_param_offset[i] = param_count;
param_count++;
break;
default:
target = 0;
fprintf(stderr,
"Warning: SI unhandled vs output type:%d\n",
semantic_name);
}
si_llvm_init_export_args(bld_base, outputs[i].values, target, args);
if (target >= V_008DFC_SQ_EXP_POS &&
target <= (V_008DFC_SQ_EXP_POS + 3)) {
memcpy(pos_args[target - V_008DFC_SQ_EXP_POS],
args, sizeof(args));
} else {
lp_build_intrinsic(base->gallivm->builder,
"llvm.SI.export",
LLVMVoidTypeInContext(base->gallivm->context),
args, 9);
}
if (semantic_name == TGSI_SEMANTIC_CLIPDIST) {
semantic_name = TGSI_SEMANTIC_GENERIC;
goto handle_semantic;
}
}
/* We need to add the position output manually if it's missing. */
if (!pos_args[0][0]) {
pos_args[0][0] = lp_build_const_int32(base->gallivm, 0xf); /* writemask */
pos_args[0][1] = uint->zero; /* EXEC mask */
pos_args[0][2] = uint->zero; /* last export? */
pos_args[0][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS);
pos_args[0][4] = uint->zero; /* COMPR flag */
pos_args[0][5] = base->zero; /* X */
pos_args[0][6] = base->zero; /* Y */
pos_args[0][7] = base->zero; /* Z */
pos_args[0][8] = base->one; /* W */
}
/* Write the misc vector (point size, edgeflag, layer, viewport). */
if (shader->selector->info.writes_psize ||
shader->selector->info.writes_edgeflag ||
shader->selector->info.writes_layer) {
pos_args[1][0] = lp_build_const_int32(base->gallivm, /* writemask */
shader->selector->info.writes_psize |
(shader->selector->info.writes_edgeflag << 1) |
(shader->selector->info.writes_layer << 2));
pos_args[1][1] = uint->zero; /* EXEC mask */
pos_args[1][2] = uint->zero; /* last export? */
pos_args[1][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS + 1);
pos_args[1][4] = uint->zero; /* COMPR flag */
pos_args[1][5] = base->zero; /* X */
pos_args[1][6] = base->zero; /* Y */
pos_args[1][7] = base->zero; /* Z */
pos_args[1][8] = base->zero; /* W */
if (shader->selector->info.writes_psize)
pos_args[1][5] = psize_value;
if (shader->selector->info.writes_edgeflag) {
/* The output is a float, but the hw expects an integer
* with the first bit containing the edge flag. */
edgeflag_value = LLVMBuildFPToUI(base->gallivm->builder,
edgeflag_value,
bld_base->uint_bld.elem_type, "");
edgeflag_value = lp_build_min(&bld_base->int_bld,
edgeflag_value,
bld_base->int_bld.one);
/* The LLVM intrinsic expects a float. */
pos_args[1][6] = LLVMBuildBitCast(base->gallivm->builder,
edgeflag_value,
base->elem_type, "");
}
if (shader->selector->info.writes_layer)
pos_args[1][7] = layer_value;
}
for (i = 0; i < 4; i++)
if (pos_args[i][0])
shader->nr_pos_exports++;
pos_idx = 0;
for (i = 0; i < 4; i++) {
if (!pos_args[i][0])
continue;
/* Specify the target we are exporting */
pos_args[i][3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_POS + pos_idx++);
if (pos_idx == shader->nr_pos_exports)
/* Specify that this is the last export */
pos_args[i][2] = uint->one;
lp_build_intrinsic(base->gallivm->builder,
"llvm.SI.export",
LLVMVoidTypeInContext(base->gallivm->context),
pos_args[i], 9);
}
}
static void si_llvm_emit_es_epilogue(struct lp_build_tgsi_context * bld_base)
{
struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
struct si_shader *es = si_shader_ctx->shader;
struct tgsi_shader_info *info = &es->selector->info;
LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context);
LLVMValueRef soffset = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
SI_PARAM_ES2GS_OFFSET);
unsigned chan;
int i;
for (i = 0; i < info->num_outputs; i++) {
LLVMValueRef *out_ptr =
si_shader_ctx->radeon_bld.soa.outputs[i];
int param_index = get_param_index(info->output_semantic_name[i],
info->output_semantic_index[i],
es->key.vs.gs_used_inputs);
if (param_index < 0)
continue;
for (chan = 0; chan < 4; chan++) {
LLVMValueRef out_val = LLVMBuildLoad(gallivm->builder, out_ptr[chan], "");
out_val = LLVMBuildBitCast(gallivm->builder, out_val, i32, "");
build_tbuffer_store(si_shader_ctx,
si_shader_ctx->esgs_ring,
out_val, 1,
LLVMGetUndef(i32), soffset,
(4 * param_index + chan) * 4,
V_008F0C_BUF_DATA_FORMAT_32,
V_008F0C_BUF_NUM_FORMAT_UINT,
0, 0, 1, 1, 0);
}
}
}
static void si_llvm_emit_gs_epilogue(struct lp_build_tgsi_context *bld_base)
{
struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
LLVMValueRef args[2];
args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_NOP | SENDMSG_GS_DONE);
args[1] = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_GS_WAVE_ID);
build_intrinsic(gallivm->builder, "llvm.SI.sendmsg",
LLVMVoidTypeInContext(gallivm->context), args, 2,
LLVMNoUnwindAttribute);
}
static void si_llvm_emit_vs_epilogue(struct lp_build_tgsi_context * bld_base)
{
struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
struct tgsi_shader_info *info = &si_shader_ctx->shader->selector->info;
struct si_shader_output_values *outputs = NULL;
int i,j;
outputs = MALLOC(info->num_outputs * sizeof(outputs[0]));
for (i = 0; i < info->num_outputs; i++) {
outputs[i].name = info->output_semantic_name[i];
outputs[i].sid = info->output_semantic_index[i];
for (j = 0; j < 4; j++)
outputs[i].values[j] =
LLVMBuildLoad(gallivm->builder,
si_shader_ctx->radeon_bld.soa.outputs[i][j],
"");
}
si_llvm_export_vs(bld_base, outputs, info->num_outputs);
FREE(outputs);
}
static void si_llvm_emit_fs_epilogue(struct lp_build_tgsi_context * bld_base)
{
struct si_shader_context * si_shader_ctx = si_shader_context(bld_base);
struct si_shader * shader = si_shader_ctx->shader;
struct lp_build_context * base = &bld_base->base;
struct lp_build_context * uint = &bld_base->uint_bld;
struct tgsi_shader_info *info = &shader->selector->info;
LLVMValueRef args[9];
LLVMValueRef last_args[9] = { 0 };
int depth_index = -1, stencil_index = -1, samplemask_index = -1;
int i;
for (i = 0; i < info->num_outputs; i++) {
unsigned semantic_name = info->output_semantic_name[i];
unsigned semantic_index = info->output_semantic_index[i];
unsigned target;
/* Select the correct target */
switch (semantic_name) {
case TGSI_SEMANTIC_POSITION:
depth_index = i;
continue;
case TGSI_SEMANTIC_STENCIL:
stencil_index = i;
continue;
case TGSI_SEMANTIC_SAMPLEMASK:
samplemask_index = i;
continue;
case TGSI_SEMANTIC_COLOR:
target = V_008DFC_SQ_EXP_MRT + semantic_index;
if (si_shader_ctx->shader->key.ps.alpha_to_one)
LLVMBuildStore(bld_base->base.gallivm->builder,
bld_base->base.one,
si_shader_ctx->radeon_bld.soa.outputs[i][3]);
if (semantic_index == 0 &&
si_shader_ctx->shader->key.ps.alpha_func != PIPE_FUNC_ALWAYS)
si_alpha_test(bld_base,
si_shader_ctx->radeon_bld.soa.outputs[i]);
break;
default:
target = 0;
fprintf(stderr,
"Warning: SI unhandled fs output type:%d\n",
semantic_name);
}
si_llvm_init_export_args_load(bld_base,
si_shader_ctx->radeon_bld.soa.outputs[i],
target, args);
if (semantic_name == TGSI_SEMANTIC_COLOR) {
/* If there is an export instruction waiting to be emitted, do so now. */
if (last_args[0]) {
lp_build_intrinsic(base->gallivm->builder,
"llvm.SI.export",
LLVMVoidTypeInContext(base->gallivm->context),
last_args, 9);
}
/* This instruction will be emitted at the end of the shader. */
memcpy(last_args, args, sizeof(args));
/* Handle FS_COLOR0_WRITES_ALL_CBUFS. */
if (shader->selector->info.properties[TGSI_PROPERTY_FS_COLOR0_WRITES_ALL_CBUFS] &&
semantic_index == 0 &&
si_shader_ctx->shader->key.ps.last_cbuf > 0) {
for (int c = 1; c <= si_shader_ctx->shader->key.ps.last_cbuf; c++) {
si_llvm_init_export_args_load(bld_base,
si_shader_ctx->radeon_bld.soa.outputs[i],
V_008DFC_SQ_EXP_MRT + c, args);
lp_build_intrinsic(base->gallivm->builder,
"llvm.SI.export",
LLVMVoidTypeInContext(base->gallivm->context),
args, 9);
}
}
} else {
lp_build_intrinsic(base->gallivm->builder,
"llvm.SI.export",
LLVMVoidTypeInContext(base->gallivm->context),
args, 9);
}
}
if (depth_index >= 0 || stencil_index >= 0 || samplemask_index >= 0) {
LLVMValueRef out_ptr;
unsigned mask = 0;
/* Specify the target we are exporting */
args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_MRTZ);
args[5] = base->zero; /* R, depth */
args[6] = base->zero; /* G, stencil test value[0:7], stencil op value[8:15] */
args[7] = base->zero; /* B, sample mask */
args[8] = base->zero; /* A, alpha to mask */
if (depth_index >= 0) {
out_ptr = si_shader_ctx->radeon_bld.soa.outputs[depth_index][2];
args[5] = LLVMBuildLoad(base->gallivm->builder, out_ptr, "");
mask |= 0x1;
si_shader_ctx->shader->db_shader_control |= S_02880C_Z_EXPORT_ENABLE(1);
}
if (stencil_index >= 0) {
out_ptr = si_shader_ctx->radeon_bld.soa.outputs[stencil_index][1];
args[6] = LLVMBuildLoad(base->gallivm->builder, out_ptr, "");
mask |= 0x2;
si_shader_ctx->shader->db_shader_control |=
S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(1);
}
if (samplemask_index >= 0) {
out_ptr = si_shader_ctx->radeon_bld.soa.outputs[samplemask_index][0];
args[7] = LLVMBuildLoad(base->gallivm->builder, out_ptr, "");
mask |= 0x4;
si_shader_ctx->shader->db_shader_control |= S_02880C_MASK_EXPORT_ENABLE(1);
}
/* SI (except OLAND) has a bug that it only looks
* at the X writemask component. */
if (si_shader_ctx->screen->b.chip_class == SI &&
si_shader_ctx->screen->b.family != CHIP_OLAND)
mask |= 0x1;
if (samplemask_index >= 0)
si_shader_ctx->shader->spi_shader_z_format = V_028710_SPI_SHADER_32_ABGR;
else if (stencil_index >= 0)
si_shader_ctx->shader->spi_shader_z_format = V_028710_SPI_SHADER_32_GR;
else
si_shader_ctx->shader->spi_shader_z_format = V_028710_SPI_SHADER_32_R;
/* Specify which components to enable */
args[0] = lp_build_const_int32(base->gallivm, mask);
args[1] =
args[2] =
args[4] = uint->zero;
if (last_args[0])
lp_build_intrinsic(base->gallivm->builder,
"llvm.SI.export",
LLVMVoidTypeInContext(base->gallivm->context),
args, 9);
else
memcpy(last_args, args, sizeof(args));
}
if (!last_args[0]) {
/* Specify which components to enable */
last_args[0] = lp_build_const_int32(base->gallivm, 0x0);
/* Specify the target we are exporting */
last_args[3] = lp_build_const_int32(base->gallivm, V_008DFC_SQ_EXP_MRT);
/* Set COMPR flag to zero to export data as 32-bit */
last_args[4] = uint->zero;
/* dummy bits */
last_args[5]= uint->zero;
last_args[6]= uint->zero;
last_args[7]= uint->zero;
last_args[8]= uint->zero;
}
/* Specify whether the EXEC mask represents the valid mask */
last_args[1] = uint->one;
/* Specify that this is the last export */
last_args[2] = lp_build_const_int32(base->gallivm, 1);
lp_build_intrinsic(base->gallivm->builder,
"llvm.SI.export",
LLVMVoidTypeInContext(base->gallivm->context),
last_args, 9);
}
static void build_tex_intrinsic(const struct lp_build_tgsi_action * action,
struct lp_build_tgsi_context * bld_base,
struct lp_build_emit_data * emit_data);
static bool tgsi_is_shadow_sampler(unsigned target)
{
return target == TGSI_TEXTURE_SHADOW1D ||
target == TGSI_TEXTURE_SHADOW1D_ARRAY ||
target == TGSI_TEXTURE_SHADOW2D ||
target == TGSI_TEXTURE_SHADOW2D_ARRAY ||
target == TGSI_TEXTURE_SHADOWCUBE ||
target == TGSI_TEXTURE_SHADOWCUBE_ARRAY ||
target == TGSI_TEXTURE_SHADOWRECT;
}
static const struct lp_build_tgsi_action tex_action;
static void tex_fetch_args(
struct lp_build_tgsi_context * bld_base,
struct lp_build_emit_data * emit_data)
{
struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
const struct tgsi_full_instruction * inst = emit_data->inst;
unsigned opcode = inst->Instruction.Opcode;
unsigned target = inst->Texture.Texture;
LLVMValueRef coords[4];
LLVMValueRef address[16];
int ref_pos;
unsigned num_coords = tgsi_util_get_texture_coord_dim(target, &ref_pos);
unsigned count = 0;
unsigned chan;
unsigned sampler_src = emit_data->inst->Instruction.NumSrcRegs - 1;
unsigned sampler_index = emit_data->inst->Src[sampler_src].Register.Index;
bool has_offset = HAVE_LLVM >= 0x0305 ? inst->Texture.NumOffsets > 0 : false;
if (target == TGSI_TEXTURE_BUFFER) {
LLVMTypeRef i128 = LLVMIntTypeInContext(gallivm->context, 128);
LLVMTypeRef v2i128 = LLVMVectorType(i128, 2);
LLVMTypeRef i8 = LLVMInt8TypeInContext(gallivm->context);
LLVMTypeRef v16i8 = LLVMVectorType(i8, 16);
/* Bitcast and truncate v8i32 to v16i8. */
LLVMValueRef res = si_shader_ctx->resources[sampler_index];
res = LLVMBuildBitCast(gallivm->builder, res, v2i128, "");
res = LLVMBuildExtractElement(gallivm->builder, res, bld_base->uint_bld.one, "");
res = LLVMBuildBitCast(gallivm->builder, res, v16i8, "");
emit_data->dst_type = LLVMVectorType(bld_base->base.elem_type, 4);
emit_data->args[0] = res;
emit_data->args[1] = bld_base->uint_bld.zero;
emit_data->args[2] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, 0);
emit_data->arg_count = 3;
return;
}
/* Fetch and project texture coordinates */
coords[3] = lp_build_emit_fetch(bld_base, emit_data->inst, 0, TGSI_CHAN_W);
for (chan = 0; chan < 3; chan++ ) {
coords[chan] = lp_build_emit_fetch(bld_base,
emit_data->inst, 0,
chan);
if (opcode == TGSI_OPCODE_TXP)
coords[chan] = lp_build_emit_llvm_binary(bld_base,
TGSI_OPCODE_DIV,
coords[chan],
coords[3]);
}
if (opcode == TGSI_OPCODE_TXP)
coords[3] = bld_base->base.one;
/* Pack offsets. */
if (has_offset && opcode != TGSI_OPCODE_TXF) {
/* The offsets are six-bit signed integers packed like this:
* X=[5:0], Y=[13:8], and Z=[21:16].
*/
LLVMValueRef offset[3], pack;
assert(inst->Texture.NumOffsets == 1);
for (chan = 0; chan < 3; chan++) {
offset[chan] = lp_build_emit_fetch_texoffset(bld_base,
emit_data->inst, 0, chan);
offset[chan] = LLVMBuildAnd(gallivm->builder, offset[chan],
lp_build_const_int32(gallivm, 0x3f), "");
if (chan)
offset[chan] = LLVMBuildShl(gallivm->builder, offset[chan],
lp_build_const_int32(gallivm, chan*8), "");
}
pack = LLVMBuildOr(gallivm->builder, offset[0], offset[1], "");
pack = LLVMBuildOr(gallivm->builder, pack, offset[2], "");
address[count++] = pack;
}
/* Pack LOD bias value */
if (opcode == TGSI_OPCODE_TXB)
address[count++] = coords[3];
if (opcode == TGSI_OPCODE_TXB2)
address[count++] = lp_build_emit_fetch(bld_base, inst, 1, 0);
/* Pack depth comparison value */
if (tgsi_is_shadow_sampler(target) && opcode != TGSI_OPCODE_LODQ) {
if (target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
address[count++] = lp_build_emit_fetch(bld_base, inst, 1, 0);
} else {
assert(ref_pos >= 0);
address[count++] = coords[ref_pos];
}
}
if (target == TGSI_TEXTURE_CUBE ||
target == TGSI_TEXTURE_CUBE_ARRAY ||
target == TGSI_TEXTURE_SHADOWCUBE ||
target == TGSI_TEXTURE_SHADOWCUBE_ARRAY)
radeon_llvm_emit_prepare_cube_coords(bld_base, emit_data, coords);
/* Pack user derivatives */
if (opcode == TGSI_OPCODE_TXD) {
int num_deriv_channels, param;
switch (target) {
case TGSI_TEXTURE_3D:
num_deriv_channels = 3;
break;
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
case TGSI_TEXTURE_CUBE:
case TGSI_TEXTURE_SHADOWCUBE:
case TGSI_TEXTURE_CUBE_ARRAY:
case TGSI_TEXTURE_SHADOWCUBE_ARRAY:
num_deriv_channels = 2;
break;
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
num_deriv_channels = 1;
break;
default:
assert(0); /* no other targets are valid here */
}
for (param = 1; param <= 2; param++)
for (chan = 0; chan < num_deriv_channels; chan++)
address[count++] = lp_build_emit_fetch(bld_base, inst, param, chan);
}
/* Pack texture coordinates */
address[count++] = coords[0];
if (num_coords > 1)
address[count++] = coords[1];
if (num_coords > 2)
address[count++] = coords[2];
/* Pack LOD or sample index */
if (opcode == TGSI_OPCODE_TXL || opcode == TGSI_OPCODE_TXF)
address[count++] = coords[3];
else if (opcode == TGSI_OPCODE_TXL2)
address[count++] = lp_build_emit_fetch(bld_base, inst, 1, 0);
if (count > 16) {
assert(!"Cannot handle more than 16 texture address parameters");
count = 16;
}
for (chan = 0; chan < count; chan++ ) {
address[chan] = LLVMBuildBitCast(gallivm->builder,
address[chan],
LLVMInt32TypeInContext(gallivm->context),
"");
}
/* Adjust the sample index according to FMASK.
*
* For uncompressed MSAA surfaces, FMASK should return 0x76543210,
* which is the identity mapping. Each nibble says which physical sample
* should be fetched to get that sample.
*
* For example, 0x11111100 means there are only 2 samples stored and
* the second sample covers 3/4 of the pixel. When reading samples 0
* and 1, return physical sample 0 (determined by the first two 0s
* in FMASK), otherwise return physical sample 1.
*
* The sample index should be adjusted as follows:
* sample_index = (fmask >> (sample_index * 4)) & 0xF;
*/
if (target == TGSI_TEXTURE_2D_MSAA ||
target == TGSI_TEXTURE_2D_ARRAY_MSAA) {
struct lp_build_context *uint_bld = &bld_base->uint_bld;
struct lp_build_emit_data txf_emit_data = *emit_data;
LLVMValueRef txf_address[4];
unsigned txf_count = count;
struct tgsi_full_instruction inst = {};
memcpy(txf_address, address, sizeof(txf_address));
if (target == TGSI_TEXTURE_2D_MSAA) {
txf_address[2] = bld_base->uint_bld.zero;
}
txf_address[3] = bld_base->uint_bld.zero;
/* Pad to a power-of-two size. */
while (txf_count < util_next_power_of_two(txf_count))
txf_address[txf_count++] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
/* Read FMASK using TXF. */
inst.Instruction.Opcode = TGSI_OPCODE_TXF;
inst.Texture.Texture = target == TGSI_TEXTURE_2D_MSAA ? TGSI_TEXTURE_2D : TGSI_TEXTURE_2D_ARRAY;
txf_emit_data.inst = &inst;
txf_emit_data.chan = 0;
txf_emit_data.dst_type = LLVMVectorType(
LLVMInt32TypeInContext(gallivm->context), 4);
txf_emit_data.args[0] = lp_build_gather_values(gallivm, txf_address, txf_count);
txf_emit_data.args[1] = si_shader_ctx->resources[SI_FMASK_TEX_OFFSET + sampler_index];
txf_emit_data.args[2] = lp_build_const_int32(gallivm, inst.Texture.Texture);
txf_emit_data.arg_count = 3;
build_tex_intrinsic(&tex_action, bld_base, &txf_emit_data);
/* Initialize some constants. */
LLVMValueRef four = LLVMConstInt(uint_bld->elem_type, 4, 0);
LLVMValueRef F = LLVMConstInt(uint_bld->elem_type, 0xF, 0);
/* Apply the formula. */
LLVMValueRef fmask =
LLVMBuildExtractElement(gallivm->builder,
txf_emit_data.output[0],
uint_bld->zero, "");
unsigned sample_chan = target == TGSI_TEXTURE_2D_MSAA ? 2 : 3;
LLVMValueRef sample_index4 =
LLVMBuildMul(gallivm->builder, address[sample_chan], four, "");
LLVMValueRef shifted_fmask =
LLVMBuildLShr(gallivm->builder, fmask, sample_index4, "");
LLVMValueRef final_sample =
LLVMBuildAnd(gallivm->builder, shifted_fmask, F, "");
/* Don't rewrite the sample index if WORD1.DATA_FORMAT of the FMASK
* resource descriptor is 0 (invalid),
*/
LLVMValueRef fmask_desc =
LLVMBuildBitCast(gallivm->builder,
si_shader_ctx->resources[SI_FMASK_TEX_OFFSET + sampler_index],
LLVMVectorType(uint_bld->elem_type, 8), "");
LLVMValueRef fmask_word1 =
LLVMBuildExtractElement(gallivm->builder, fmask_desc,
uint_bld->one, "");
LLVMValueRef word1_is_nonzero =
LLVMBuildICmp(gallivm->builder, LLVMIntNE,
fmask_word1, uint_bld->zero, "");
/* Replace the MSAA sample index. */
address[sample_chan] =
LLVMBuildSelect(gallivm->builder, word1_is_nonzero,
final_sample, address[sample_chan], "");
}
/* Resource */
emit_data->args[1] = si_shader_ctx->resources[sampler_index];
if (opcode == TGSI_OPCODE_TXF) {
/* add tex offsets */
if (inst->Texture.NumOffsets) {
struct lp_build_context *uint_bld = &bld_base->uint_bld;
struct lp_build_tgsi_soa_context *bld = lp_soa_context(bld_base);
const struct tgsi_texture_offset * off = inst->TexOffsets;
assert(inst->Texture.NumOffsets == 1);
switch (target) {
case TGSI_TEXTURE_3D:
address[2] = lp_build_add(uint_bld, address[2],
bld->immediates[off->Index][off->SwizzleZ]);
/* fall through */
case TGSI_TEXTURE_2D:
case TGSI_TEXTURE_SHADOW2D:
case TGSI_TEXTURE_RECT:
case TGSI_TEXTURE_SHADOWRECT:
case TGSI_TEXTURE_2D_ARRAY:
case TGSI_TEXTURE_SHADOW2D_ARRAY:
address[1] =
lp_build_add(uint_bld, address[1],
bld->immediates[off->Index][off->SwizzleY]);
/* fall through */
case TGSI_TEXTURE_1D:
case TGSI_TEXTURE_SHADOW1D:
case TGSI_TEXTURE_1D_ARRAY:
case TGSI_TEXTURE_SHADOW1D_ARRAY:
address[0] =
lp_build_add(uint_bld, address[0],
bld->immediates[off->Index][off->SwizzleX]);
break;
/* texture offsets do not apply to other texture targets */
}
}
emit_data->args[2] = lp_build_const_int32(gallivm, target);
emit_data->arg_count = 3;
emit_data->dst_type = LLVMVectorType(
LLVMInt32TypeInContext(gallivm->context),
4);
} else if (opcode == TGSI_OPCODE_TG4 ||
opcode == TGSI_OPCODE_LODQ ||
has_offset) {
unsigned is_array = target == TGSI_TEXTURE_1D_ARRAY ||
target == TGSI_TEXTURE_SHADOW1D_ARRAY ||
target == TGSI_TEXTURE_2D_ARRAY ||
target == TGSI_TEXTURE_SHADOW2D_ARRAY ||
target == TGSI_TEXTURE_CUBE_ARRAY ||
target == TGSI_TEXTURE_SHADOWCUBE_ARRAY;
unsigned is_rect = target == TGSI_TEXTURE_RECT;
unsigned dmask = 0xf;
if (opcode == TGSI_OPCODE_TG4) {
unsigned gather_comp = 0;
/* DMASK was repurposed for GATHER4. 4 components are always
* returned and DMASK works like a swizzle - it selects
* the component to fetch. The only valid DMASK values are
* 1=red, 2=green, 4=blue, 8=alpha. (e.g. 1 returns
* (red,red,red,red) etc.) The ISA document doesn't mention
* this.
*/
/* Get the component index from src1.x for Gather4. */
if (!tgsi_is_shadow_sampler(target)) {
LLVMValueRef (*imms)[4] = lp_soa_context(bld_base)->immediates;
LLVMValueRef comp_imm;
struct tgsi_src_register src1 = inst->Src[1].Register;
assert(src1.File == TGSI_FILE_IMMEDIATE);
comp_imm = imms[src1.Index][src1.SwizzleX];
gather_comp = LLVMConstIntGetZExtValue(comp_imm);
gather_comp = CLAMP(gather_comp, 0, 3);
}
dmask = 1 << gather_comp;
}
emit_data->args[2] = si_shader_ctx->samplers[sampler_index];
emit_data->args[3] = lp_build_const_int32(gallivm, dmask);
emit_data->args[4] = lp_build_const_int32(gallivm, is_rect); /* unorm */
emit_data->args[5] = lp_build_const_int32(gallivm, 0); /* r128 */
emit_data->args[6] = lp_build_const_int32(gallivm, is_array); /* da */
emit_data->args[7] = lp_build_const_int32(gallivm, 0); /* glc */
emit_data->args[8] = lp_build_const_int32(gallivm, 0); /* slc */
emit_data->args[9] = lp_build_const_int32(gallivm, 0); /* tfe */
emit_data->args[10] = lp_build_const_int32(gallivm, 0); /* lwe */
emit_data->arg_count = 11;
emit_data->dst_type = LLVMVectorType(
LLVMFloatTypeInContext(gallivm->context),
4);
} else {
emit_data->args[2] = si_shader_ctx->samplers[sampler_index];
emit_data->args[3] = lp_build_const_int32(gallivm, target);
emit_data->arg_count = 4;
emit_data->dst_type = LLVMVectorType(
LLVMFloatTypeInContext(gallivm->context),
4);
}
/* The fetch opcode has been converted to a 2D array fetch.
* This simplifies the LLVM backend. */
if (target == TGSI_TEXTURE_CUBE_ARRAY)
target = TGSI_TEXTURE_2D_ARRAY;
else if (target == TGSI_TEXTURE_SHADOWCUBE_ARRAY)
target = TGSI_TEXTURE_SHADOW2D_ARRAY;
/* Pad to power of two vector */
while (count < util_next_power_of_two(count))
address[count++] = LLVMGetUndef(LLVMInt32TypeInContext(gallivm->context));
emit_data->args[0] = lp_build_gather_values(gallivm, address, count);
}
static void build_tex_intrinsic(const struct lp_build_tgsi_action * action,
struct lp_build_tgsi_context * bld_base,
struct lp_build_emit_data * emit_data)
{
struct lp_build_context * base = &bld_base->base;
unsigned opcode = emit_data->inst->Instruction.Opcode;
unsigned target = emit_data->inst->Texture.Texture;
char intr_name[127];
bool has_offset = HAVE_LLVM >= 0x0305 ?
emit_data->inst->Texture.NumOffsets > 0 : false;
if (target == TGSI_TEXTURE_BUFFER) {
emit_data->output[emit_data->chan] = build_intrinsic(
base->gallivm->builder,
"llvm.SI.vs.load.input", emit_data->dst_type,
emit_data->args, emit_data->arg_count,
LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
return;
}
if (opcode == TGSI_OPCODE_TG4 ||
opcode == TGSI_OPCODE_LODQ ||
(opcode != TGSI_OPCODE_TXF && has_offset)) {
bool is_shadow = tgsi_is_shadow_sampler(target);
const char *name = "llvm.SI.image.sample";
const char *infix = "";
switch (opcode) {
case TGSI_OPCODE_TEX:
case TGSI_OPCODE_TEX2:
case TGSI_OPCODE_TXP:
break;
case TGSI_OPCODE_TXB:
case TGSI_OPCODE_TXB2:
infix = ".b";
break;
case TGSI_OPCODE_TXL:
case TGSI_OPCODE_TXL2:
infix = ".l";
break;
case TGSI_OPCODE_TXD:
infix = ".d";
break;
case TGSI_OPCODE_TG4:
name = "llvm.SI.gather4";
break;
case TGSI_OPCODE_LODQ:
name = "llvm.SI.getlod";
is_shadow = false;
has_offset = false;
break;
default:
assert(0);
return;
}
/* Add the type and suffixes .c, .o if needed. */
sprintf(intr_name, "%s%s%s%s.v%ui32", name,
is_shadow ? ".c" : "", infix, has_offset ? ".o" : "",
LLVMGetVectorSize(LLVMTypeOf(emit_data->args[0])));
emit_data->output[emit_data->chan] = build_intrinsic(
base->gallivm->builder, intr_name, emit_data->dst_type,
emit_data->args, emit_data->arg_count,
LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
} else {
LLVMTypeRef i8, v16i8, v32i8;
const char *name;
switch (opcode) {
case TGSI_OPCODE_TEX:
case TGSI_OPCODE_TEX2:
case TGSI_OPCODE_TXP:
name = "llvm.SI.sample";
break;
case TGSI_OPCODE_TXB:
case TGSI_OPCODE_TXB2:
name = "llvm.SI.sampleb";
break;
case TGSI_OPCODE_TXD:
name = "llvm.SI.sampled";
break;
case TGSI_OPCODE_TXF:
name = "llvm.SI.imageload";
break;
case TGSI_OPCODE_TXL:
case TGSI_OPCODE_TXL2:
name = "llvm.SI.samplel";
break;
default:
assert(0);
return;
}
i8 = LLVMInt8TypeInContext(base->gallivm->context);
v16i8 = LLVMVectorType(i8, 16);
v32i8 = LLVMVectorType(i8, 32);
emit_data->args[1] = LLVMBuildBitCast(base->gallivm->builder,
emit_data->args[1], v32i8, "");
if (opcode != TGSI_OPCODE_TXF) {
emit_data->args[2] = LLVMBuildBitCast(base->gallivm->builder,
emit_data->args[2], v16i8, "");
}
sprintf(intr_name, "%s.v%ui32", name,
LLVMGetVectorSize(LLVMTypeOf(emit_data->args[0])));
emit_data->output[emit_data->chan] = build_intrinsic(
base->gallivm->builder, intr_name, emit_data->dst_type,
emit_data->args, emit_data->arg_count,
LLVMReadNoneAttribute | LLVMNoUnwindAttribute);
}
}
static void txq_fetch_args(
struct lp_build_tgsi_context * bld_base,
struct lp_build_emit_data * emit_data)
{
struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
const struct tgsi_full_instruction *inst = emit_data->inst;
struct gallivm_state *gallivm = bld_base->base.gallivm;
unsigned target = inst->Texture.Texture;
if (target == TGSI_TEXTURE_BUFFER) {
LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context);
LLVMTypeRef v8i32 = LLVMVectorType(i32, 8);
/* Read the size from the buffer descriptor directly. */
LLVMValueRef size = si_shader_ctx->resources[inst->Src[1].Register.Index];
size = LLVMBuildBitCast(gallivm->builder, size, v8i32, "");
size = LLVMBuildExtractElement(gallivm->builder, size,
lp_build_const_int32(gallivm, 6), "");
emit_data->args[0] = size;
return;
}
/* Mip level */
emit_data->args[0] = lp_build_emit_fetch(bld_base, inst, 0, TGSI_CHAN_X);
/* Resource */
emit_data->args[1] = si_shader_ctx->resources[inst->Src[1].Register.Index];
/* Texture target */
if (target == TGSI_TEXTURE_CUBE_ARRAY ||
target == TGSI_TEXTURE_SHADOWCUBE_ARRAY)
target = TGSI_TEXTURE_2D_ARRAY;
emit_data->args[2] = lp_build_const_int32(bld_base->base.gallivm,
target);
emit_data->arg_count = 3;
emit_data->dst_type = LLVMVectorType(
LLVMInt32TypeInContext(bld_base->base.gallivm->context),
4);
}
static void build_txq_intrinsic(const struct lp_build_tgsi_action * action,
struct lp_build_tgsi_context * bld_base,
struct lp_build_emit_data * emit_data)
{
unsigned target = emit_data->inst->Texture.Texture;
if (target == TGSI_TEXTURE_BUFFER) {
/* Just return the buffer size. */
emit_data->output[emit_data->chan] = emit_data->args[0];
return;
}
build_tgsi_intrinsic_nomem(action, bld_base, emit_data);
/* Divide the number of layers by 6 to get the number of cubes. */
if (target == TGSI_TEXTURE_CUBE_ARRAY ||
target == TGSI_TEXTURE_SHADOWCUBE_ARRAY) {
LLVMBuilderRef builder = bld_base->base.gallivm->builder;
LLVMValueRef two = lp_build_const_int32(bld_base->base.gallivm, 2);
LLVMValueRef six = lp_build_const_int32(bld_base->base.gallivm, 6);
LLVMValueRef v4 = emit_data->output[emit_data->chan];
LLVMValueRef z = LLVMBuildExtractElement(builder, v4, two, "");
z = LLVMBuildSDiv(builder, z, six, "");
emit_data->output[emit_data->chan] =
LLVMBuildInsertElement(builder, v4, z, two, "");
}
}
static void si_llvm_emit_ddxy(
const struct lp_build_tgsi_action * action,
struct lp_build_tgsi_context * bld_base,
struct lp_build_emit_data * emit_data)
{
struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
struct lp_build_context * base = &bld_base->base;
const struct tgsi_full_instruction *inst = emit_data->inst;
unsigned opcode = inst->Instruction.Opcode;
LLVMValueRef indices[2];
LLVMValueRef store_ptr, load_ptr0, load_ptr1;
LLVMValueRef tl, trbl, result[4];
LLVMTypeRef i32;
unsigned swizzle[4];
unsigned c;
i32 = LLVMInt32TypeInContext(gallivm->context);
indices[0] = bld_base->uint_bld.zero;
indices[1] = build_intrinsic(gallivm->builder, "llvm.SI.tid", i32,
NULL, 0, LLVMReadNoneAttribute);
store_ptr = LLVMBuildGEP(gallivm->builder, si_shader_ctx->ddxy_lds,
indices, 2, "");
indices[1] = LLVMBuildAnd(gallivm->builder, indices[1],
lp_build_const_int32(gallivm, 0xfffffffc), "");
load_ptr0 = LLVMBuildGEP(gallivm->builder, si_shader_ctx->ddxy_lds,
indices, 2, "");
indices[1] = LLVMBuildAdd(gallivm->builder, indices[1],
lp_build_const_int32(gallivm,
opcode == TGSI_OPCODE_DDX ? 1 : 2),
"");
load_ptr1 = LLVMBuildGEP(gallivm->builder, si_shader_ctx->ddxy_lds,
indices, 2, "");
for (c = 0; c < 4; ++c) {
unsigned i;
swizzle[c] = tgsi_util_get_full_src_register_swizzle(&inst->Src[0], c);
for (i = 0; i < c; ++i) {
if (swizzle[i] == swizzle[c]) {
result[c] = result[i];
break;
}
}
if (i != c)
continue;
LLVMBuildStore(gallivm->builder,
LLVMBuildBitCast(gallivm->builder,
lp_build_emit_fetch(bld_base, inst, 0, c),
i32, ""),
store_ptr);
tl = LLVMBuildLoad(gallivm->builder, load_ptr0, "");
tl = LLVMBuildBitCast(gallivm->builder, tl, base->elem_type, "");
trbl = LLVMBuildLoad(gallivm->builder, load_ptr1, "");
trbl = LLVMBuildBitCast(gallivm->builder, trbl, base->elem_type, "");
result[c] = LLVMBuildFSub(gallivm->builder, trbl, tl, "");
}
emit_data->output[0] = lp_build_gather_values(gallivm, result, 4);
}
/* Emit one vertex from the geometry shader */
static void si_llvm_emit_vertex(
const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
struct lp_build_context *uint = &bld_base->uint_bld;
struct si_shader *shader = si_shader_ctx->shader;
struct tgsi_shader_info *info = &shader->selector->info;
struct gallivm_state *gallivm = bld_base->base.gallivm;
LLVMTypeRef i32 = LLVMInt32TypeInContext(gallivm->context);
LLVMValueRef soffset = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
SI_PARAM_GS2VS_OFFSET);
LLVMValueRef gs_next_vertex;
LLVMValueRef can_emit, kill;
LLVMValueRef args[2];
unsigned chan;
int i;
/* Write vertex attribute values to GSVS ring */
gs_next_vertex = LLVMBuildLoad(gallivm->builder, si_shader_ctx->gs_next_vertex, "");
/* If this thread has already emitted the declared maximum number of
* vertices, kill it: excessive vertex emissions are not supposed to
* have any effect, and GS threads have no externally observable
* effects other than emitting vertices.
*/
can_emit = LLVMBuildICmp(gallivm->builder, LLVMIntULE, gs_next_vertex,
lp_build_const_int32(gallivm,
shader->selector->gs_max_out_vertices), "");
kill = lp_build_select(&bld_base->base, can_emit,
lp_build_const_float(gallivm, 1.0f),
lp_build_const_float(gallivm, -1.0f));
build_intrinsic(gallivm->builder, "llvm.AMDGPU.kill",
LLVMVoidTypeInContext(gallivm->context), &kill, 1, 0);
for (i = 0; i < info->num_outputs; i++) {
LLVMValueRef *out_ptr =
si_shader_ctx->radeon_bld.soa.outputs[i];
for (chan = 0; chan < 4; chan++) {
LLVMValueRef out_val = LLVMBuildLoad(gallivm->builder, out_ptr[chan], "");
LLVMValueRef voffset =
lp_build_const_int32(gallivm, (i * 4 + chan) *
shader->selector->gs_max_out_vertices);
voffset = lp_build_add(uint, voffset, gs_next_vertex);
voffset = lp_build_mul_imm(uint, voffset, 4);
out_val = LLVMBuildBitCast(gallivm->builder, out_val, i32, "");
build_tbuffer_store(si_shader_ctx,
si_shader_ctx->gsvs_ring,
out_val, 1,
voffset, soffset, 0,
V_008F0C_BUF_DATA_FORMAT_32,
V_008F0C_BUF_NUM_FORMAT_UINT,
1, 0, 1, 1, 0);
}
}
gs_next_vertex = lp_build_add(uint, gs_next_vertex,
lp_build_const_int32(gallivm, 1));
LLVMBuildStore(gallivm->builder, gs_next_vertex, si_shader_ctx->gs_next_vertex);
/* Signal vertex emission */
args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_EMIT | SENDMSG_GS);
args[1] = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_GS_WAVE_ID);
build_intrinsic(gallivm->builder, "llvm.SI.sendmsg",
LLVMVoidTypeInContext(gallivm->context), args, 2,
LLVMNoUnwindAttribute);
}
/* Cut one primitive from the geometry shader */
static void si_llvm_emit_primitive(
const struct lp_build_tgsi_action *action,
struct lp_build_tgsi_context *bld_base,
struct lp_build_emit_data *emit_data)
{
struct si_shader_context *si_shader_ctx = si_shader_context(bld_base);
struct gallivm_state *gallivm = bld_base->base.gallivm;
LLVMValueRef args[2];
/* Signal primitive cut */
args[0] = lp_build_const_int32(gallivm, SENDMSG_GS_OP_CUT | SENDMSG_GS);
args[1] = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_GS_WAVE_ID);
build_intrinsic(gallivm->builder, "llvm.SI.sendmsg",
LLVMVoidTypeInContext(gallivm->context), args, 2,
LLVMNoUnwindAttribute);
}
static const struct lp_build_tgsi_action tex_action = {
.fetch_args = tex_fetch_args,
.emit = build_tex_intrinsic,
};
static const struct lp_build_tgsi_action txq_action = {
.fetch_args = txq_fetch_args,
.emit = build_txq_intrinsic,
.intr_name = "llvm.SI.resinfo"
};
static void create_meta_data(struct si_shader_context *si_shader_ctx)
{
struct gallivm_state *gallivm = si_shader_ctx->radeon_bld.soa.bld_base.base.gallivm;
LLVMValueRef args[3];
args[0] = LLVMMDStringInContext(gallivm->context, "const", 5);
args[1] = 0;
args[2] = lp_build_const_int32(gallivm, 1);
si_shader_ctx->const_md = LLVMMDNodeInContext(gallivm->context, args, 3);
}
static LLVMTypeRef const_array(LLVMTypeRef elem_type, int num_elements)
{
return LLVMPointerType(LLVMArrayType(elem_type, num_elements),
CONST_ADDR_SPACE);
}
static void create_function(struct si_shader_context *si_shader_ctx)
{
struct lp_build_tgsi_context *bld_base = &si_shader_ctx->radeon_bld.soa.bld_base;
struct gallivm_state *gallivm = bld_base->base.gallivm;
struct si_shader *shader = si_shader_ctx->shader;
LLVMTypeRef params[SI_NUM_PARAMS], f32, i8, i32, v2i32, v3i32, v16i8, v4i32, v8i32;
unsigned i, last_array_pointer, last_sgpr, num_params;
i8 = LLVMInt8TypeInContext(gallivm->context);
i32 = LLVMInt32TypeInContext(gallivm->context);
f32 = LLVMFloatTypeInContext(gallivm->context);
v2i32 = LLVMVectorType(i32, 2);
v3i32 = LLVMVectorType(i32, 3);
v4i32 = LLVMVectorType(i32, 4);
v8i32 = LLVMVectorType(i32, 8);
v16i8 = LLVMVectorType(i8, 16);
params[SI_PARAM_RW_BUFFERS] = const_array(v16i8, SI_NUM_RW_BUFFERS);
params[SI_PARAM_CONST] = const_array(v16i8, SI_NUM_CONST_BUFFERS);
params[SI_PARAM_SAMPLER] = const_array(v4i32, SI_NUM_SAMPLER_STATES);
params[SI_PARAM_RESOURCE] = const_array(v8i32, SI_NUM_SAMPLER_VIEWS);
last_array_pointer = SI_PARAM_RESOURCE;
switch (si_shader_ctx->type) {
case TGSI_PROCESSOR_VERTEX:
params[SI_PARAM_VERTEX_BUFFER] = const_array(v16i8, SI_NUM_VERTEX_BUFFERS);
last_array_pointer = SI_PARAM_VERTEX_BUFFER;
params[SI_PARAM_BASE_VERTEX] = i32;
params[SI_PARAM_START_INSTANCE] = i32;
num_params = SI_PARAM_START_INSTANCE+1;
if (shader->key.vs.as_es) {
params[SI_PARAM_ES2GS_OFFSET] = i32;
num_params++;
} else {
if (shader->is_gs_copy_shader) {
last_array_pointer = SI_PARAM_CONST;
num_params = SI_PARAM_CONST+1;
}
/* The locations of the other parameters are assigned dynamically. */
/* Streamout SGPRs. */
if (shader->selector->so.num_outputs) {
params[si_shader_ctx->param_streamout_config = num_params++] = i32;
params[si_shader_ctx->param_streamout_write_index = num_params++] = i32;
}
/* A streamout buffer offset is loaded if the stride is non-zero. */
for (i = 0; i < 4; i++) {
if (!shader->selector->so.stride[i])
continue;
params[si_shader_ctx->param_streamout_offset[i] = num_params++] = i32;
}
}
last_sgpr = num_params-1;
/* VGPRs */
params[si_shader_ctx->param_vertex_id = num_params++] = i32;
params[num_params++] = i32; /* unused*/
params[num_params++] = i32; /* unused */
params[si_shader_ctx->param_instance_id = num_params++] = i32;
break;
case TGSI_PROCESSOR_GEOMETRY:
params[SI_PARAM_GS2VS_OFFSET] = i32;
params[SI_PARAM_GS_WAVE_ID] = i32;
last_sgpr = SI_PARAM_GS_WAVE_ID;
/* VGPRs */
params[SI_PARAM_VTX0_OFFSET] = i32;
params[SI_PARAM_VTX1_OFFSET] = i32;
params[SI_PARAM_PRIMITIVE_ID] = i32;
params[SI_PARAM_VTX2_OFFSET] = i32;
params[SI_PARAM_VTX3_OFFSET] = i32;
params[SI_PARAM_VTX4_OFFSET] = i32;
params[SI_PARAM_VTX5_OFFSET] = i32;
params[SI_PARAM_GS_INSTANCE_ID] = i32;
num_params = SI_PARAM_GS_INSTANCE_ID+1;
break;
case TGSI_PROCESSOR_FRAGMENT:
params[SI_PARAM_ALPHA_REF] = f32;
params[SI_PARAM_PRIM_MASK] = i32;
last_sgpr = SI_PARAM_PRIM_MASK;
params[SI_PARAM_PERSP_SAMPLE] = v2i32;
params[SI_PARAM_PERSP_CENTER] = v2i32;
params[SI_PARAM_PERSP_CENTROID] = v2i32;
params[SI_PARAM_PERSP_PULL_MODEL] = v3i32;
params[SI_PARAM_LINEAR_SAMPLE] = v2i32;
params[SI_PARAM_LINEAR_CENTER] = v2i32;
params[SI_PARAM_LINEAR_CENTROID] = v2i32;
params[SI_PARAM_LINE_STIPPLE_TEX] = f32;
params[SI_PARAM_POS_X_FLOAT] = f32;
params[SI_PARAM_POS_Y_FLOAT] = f32;
params[SI_PARAM_POS_Z_FLOAT] = f32;
params[SI_PARAM_POS_W_FLOAT] = f32;
params[SI_PARAM_FRONT_FACE] = f32;
params[SI_PARAM_ANCILLARY] = i32;
params[SI_PARAM_SAMPLE_COVERAGE] = f32;
params[SI_PARAM_POS_FIXED_PT] = f32;
num_params = SI_PARAM_POS_FIXED_PT+1;
break;
default:
assert(0 && "unimplemented shader");
return;
}
assert(num_params <= Elements(params));
radeon_llvm_create_func(&si_shader_ctx->radeon_bld, params, num_params);
radeon_llvm_shader_type(si_shader_ctx->radeon_bld.main_fn, si_shader_ctx->type);
if (shader->dx10_clamp_mode)
LLVMAddTargetDependentFunctionAttr(si_shader_ctx->radeon_bld.main_fn,
"enable-no-nans-fp-math", "true");
for (i = 0; i <= last_sgpr; ++i) {
LLVMValueRef P = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, i);
/* We tell llvm that array inputs are passed by value to allow Sinking pass
* to move load. Inputs are constant so this is fine. */
if (i <= last_array_pointer)
LLVMAddAttribute(P, LLVMByValAttribute);
else
LLVMAddAttribute(P, LLVMInRegAttribute);
}
if (bld_base->info &&
(bld_base->info->opcode_count[TGSI_OPCODE_DDX] > 0 ||
bld_base->info->opcode_count[TGSI_OPCODE_DDY] > 0))
si_shader_ctx->ddxy_lds =
LLVMAddGlobalInAddressSpace(gallivm->module,
LLVMArrayType(i32, 64),
"ddxy_lds",
LOCAL_ADDR_SPACE);
}
static void preload_constants(struct si_shader_context *si_shader_ctx)
{
struct lp_build_tgsi_context * bld_base = &si_shader_ctx->radeon_bld.soa.bld_base;
struct gallivm_state * gallivm = bld_base->base.gallivm;
const struct tgsi_shader_info * info = bld_base->info;
unsigned buf;
LLVMValueRef ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_CONST);
for (buf = 0; buf < SI_NUM_CONST_BUFFERS; buf++) {
unsigned i, num_const = info->const_file_max[buf] + 1;
if (num_const == 0)
continue;
/* Allocate space for the constant values */
si_shader_ctx->constants[buf] = CALLOC(num_const * 4, sizeof(LLVMValueRef));
/* Load the resource descriptor */
si_shader_ctx->const_resource[buf] =
build_indexed_load_const(si_shader_ctx, ptr, lp_build_const_int32(gallivm, buf));
/* Load the constants, we rely on the code sinking to do the rest */
for (i = 0; i < num_const * 4; ++i) {
si_shader_ctx->constants[buf][i] =
buffer_load_const(gallivm->builder,
si_shader_ctx->const_resource[buf],
lp_build_const_int32(gallivm, i * 4),
bld_base->base.elem_type);
}
}
}
static void preload_samplers(struct si_shader_context *si_shader_ctx)
{
struct lp_build_tgsi_context * bld_base = &si_shader_ctx->radeon_bld.soa.bld_base;
struct gallivm_state * gallivm = bld_base->base.gallivm;
const struct tgsi_shader_info * info = bld_base->info;
unsigned i, num_samplers = info->file_max[TGSI_FILE_SAMPLER] + 1;
LLVMValueRef res_ptr, samp_ptr;
LLVMValueRef offset;
if (num_samplers == 0)
return;
res_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_RESOURCE);
samp_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn, SI_PARAM_SAMPLER);
/* Load the resources and samplers, we rely on the code sinking to do the rest */
for (i = 0; i < num_samplers; ++i) {
/* Resource */
offset = lp_build_const_int32(gallivm, i);
si_shader_ctx->resources[i] = build_indexed_load_const(si_shader_ctx, res_ptr, offset);
/* Sampler */
offset = lp_build_const_int32(gallivm, i);
si_shader_ctx->samplers[i] = build_indexed_load_const(si_shader_ctx, samp_ptr, offset);
/* FMASK resource */
if (info->is_msaa_sampler[i]) {
offset = lp_build_const_int32(gallivm, SI_FMASK_TEX_OFFSET + i);
si_shader_ctx->resources[SI_FMASK_TEX_OFFSET + i] =
build_indexed_load_const(si_shader_ctx, res_ptr, offset);
}
}
}
static void preload_streamout_buffers(struct si_shader_context *si_shader_ctx)
{
struct lp_build_tgsi_context * bld_base = &si_shader_ctx->radeon_bld.soa.bld_base;
struct gallivm_state * gallivm = bld_base->base.gallivm;
unsigned i;
if (si_shader_ctx->type != TGSI_PROCESSOR_VERTEX ||
si_shader_ctx->shader->key.vs.as_es ||
!si_shader_ctx->shader->selector->so.num_outputs)
return;
LLVMValueRef buf_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
SI_PARAM_RW_BUFFERS);
/* Load the resources, we rely on the code sinking to do the rest */
for (i = 0; i < 4; ++i) {
if (si_shader_ctx->shader->selector->so.stride[i]) {
LLVMValueRef offset = lp_build_const_int32(gallivm,
SI_SO_BUF_OFFSET + i);
si_shader_ctx->so_buffers[i] = build_indexed_load_const(si_shader_ctx, buf_ptr, offset);
}
}
}
/**
* Load ESGS and GSVS ring buffer resource descriptors and save the variables
* for later use.
*/
static void preload_ring_buffers(struct si_shader_context *si_shader_ctx)
{
struct gallivm_state *gallivm =
si_shader_ctx->radeon_bld.soa.bld_base.base.gallivm;
LLVMValueRef buf_ptr = LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
SI_PARAM_RW_BUFFERS);
if ((si_shader_ctx->type == TGSI_PROCESSOR_VERTEX &&
si_shader_ctx->shader->key.vs.as_es) ||
si_shader_ctx->type == TGSI_PROCESSOR_GEOMETRY) {
LLVMValueRef offset = lp_build_const_int32(gallivm, SI_RING_ESGS);
si_shader_ctx->esgs_ring =
build_indexed_load_const(si_shader_ctx, buf_ptr, offset);
}
if (si_shader_ctx->type == TGSI_PROCESSOR_GEOMETRY ||
si_shader_ctx->shader->is_gs_copy_shader) {
LLVMValueRef offset = lp_build_const_int32(gallivm, SI_RING_GSVS);
si_shader_ctx->gsvs_ring =
build_indexed_load_const(si_shader_ctx, buf_ptr, offset);
}
}
void si_shader_binary_read_config(const struct si_screen *sscreen,
struct si_shader *shader,
unsigned symbol_offset)
{
unsigned i;
const unsigned char *config =
radeon_shader_binary_config_start(&shader->binary,
symbol_offset);
/* XXX: We may be able to emit some of these values directly rather than
* extracting fields to be emitted later.
*/
for (i = 0; i < shader->binary.config_size_per_symbol; i+= 8) {
unsigned reg = util_le32_to_cpu(*(uint32_t*)(config + i));
unsigned value = util_le32_to_cpu(*(uint32_t*)(config + i + 4));
switch (reg) {
case R_00B028_SPI_SHADER_PGM_RSRC1_PS:
case R_00B128_SPI_SHADER_PGM_RSRC1_VS:
case R_00B228_SPI_SHADER_PGM_RSRC1_GS:
case R_00B848_COMPUTE_PGM_RSRC1:
shader->num_sgprs = MAX2(shader->num_sgprs, (G_00B028_SGPRS(value) + 1) * 8);
shader->num_vgprs = MAX2(shader->num_vgprs, (G_00B028_VGPRS(value) + 1) * 4);
shader->float_mode = G_00B028_FLOAT_MODE(value);
break;
case R_00B02C_SPI_SHADER_PGM_RSRC2_PS:
shader->lds_size = MAX2(shader->lds_size, G_00B02C_EXTRA_LDS_SIZE(value));
break;
case R_00B84C_COMPUTE_PGM_RSRC2:
shader->lds_size = MAX2(shader->lds_size, G_00B84C_LDS_SIZE(value));
break;
case R_0286CC_SPI_PS_INPUT_ENA:
shader->spi_ps_input_ena = value;
break;
case R_0286E8_SPI_TMPRING_SIZE:
case R_00B860_COMPUTE_TMPRING_SIZE:
/* WAVESIZE is in units of 256 dwords. */
shader->scratch_bytes_per_wave =
G_00B860_WAVESIZE(value) * 256 * 4 * 1;
break;
default:
fprintf(stderr, "Warning: Compiler emitted unknown "
"config register: 0x%x\n", reg);
break;
}
}
}
void si_shader_apply_scratch_relocs(struct si_context *sctx,
struct si_shader *shader,
uint64_t scratch_va)
{
unsigned i;
uint32_t scratch_rsrc_dword0 = scratch_va & 0xffffffff;
uint32_t scratch_rsrc_dword1 =
S_008F04_BASE_ADDRESS_HI(scratch_va >> 32)
| S_008F04_STRIDE(shader->scratch_bytes_per_wave / 64);
for (i = 0 ; i < shader->binary.reloc_count; i++) {
const struct radeon_shader_reloc *reloc =
&shader->binary.relocs[i];
if (!strcmp(scratch_rsrc_dword0_symbol, reloc->name)) {
util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
&scratch_rsrc_dword0, 4);
} else if (!strcmp(scratch_rsrc_dword1_symbol, reloc->name)) {
util_memcpy_cpu_to_le32(shader->binary.code + reloc->offset,
&scratch_rsrc_dword1, 4);
}
}
}
int si_shader_binary_read(struct si_screen *sscreen,
struct si_shader *shader,
const struct radeon_shader_binary *binary)
{
unsigned i;
unsigned code_size;
unsigned char *ptr;
bool dump = r600_can_dump_shader(&sscreen->b,
shader->selector ? shader->selector->tokens : NULL);
si_shader_binary_read_config(sscreen, shader, 0);
if (dump) {
if (!binary->disassembled) {
fprintf(stderr, "SI CODE:\n");
for (i = 0; i < binary->code_size; i+=4 ) {
fprintf(stderr, "@0x%x: %02x%02x%02x%02x\n", i, binary->code[i + 3],
binary->code[i + 2], binary->code[i + 1],
binary->code[i]);
}
}
fprintf(stderr, "SGPRS: %d\nVGPRS: %d\nCode Size: %d bytes\nLDS: %d blocks\n"
"Scratch: %d bytes per wave\n",
shader->num_sgprs, shader->num_vgprs, binary->code_size,
shader->lds_size, shader->scratch_bytes_per_wave);
}
/* copy new shader */
code_size = binary->code_size + binary->rodata_size;
r600_resource_reference(&shader->bo, NULL);
shader->bo = si_resource_create_custom(&sscreen->b.b, PIPE_USAGE_IMMUTABLE,
code_size);
if (shader->bo == NULL) {
return -ENOMEM;
}
ptr = sscreen->b.ws->buffer_map(shader->bo->cs_buf, NULL, PIPE_TRANSFER_READ_WRITE);
util_memcpy_cpu_to_le32(ptr, binary->code, binary->code_size);
if (binary->rodata_size > 0) {
ptr += binary->code_size;
util_memcpy_cpu_to_le32(ptr, binary->rodata, binary->rodata_size);
}
sscreen->b.ws->buffer_unmap(shader->bo->cs_buf);
return 0;
}
int si_compile_llvm(struct si_screen *sscreen, struct si_shader *shader,
LLVMModuleRef mod)
{
int r = 0;
bool dump = r600_can_dump_shader(&sscreen->b,
shader->selector ? shader->selector->tokens : NULL);
r = radeon_llvm_compile(mod, &shader->binary,
r600_get_llvm_processor_name(sscreen->b.family), dump, sscreen->tm);
if (r) {
return r;
}
r = si_shader_binary_read(sscreen, shader, &shader->binary);
FREE(shader->binary.config);
FREE(shader->binary.rodata);
FREE(shader->binary.global_symbol_offsets);
if (shader->scratch_bytes_per_wave == 0) {
FREE(shader->binary.code);
FREE(shader->binary.relocs);
memset(&shader->binary, 0, sizeof(shader->binary));
}
return r;
}
/* Generate code for the hardware VS shader stage to go with a geometry shader */
static int si_generate_gs_copy_shader(struct si_screen *sscreen,
struct si_shader_context *si_shader_ctx,
struct si_shader *gs, bool dump)
{
struct gallivm_state *gallivm = &si_shader_ctx->radeon_bld.gallivm;
struct lp_build_tgsi_context *bld_base = &si_shader_ctx->radeon_bld.soa.bld_base;
struct lp_build_context *base = &bld_base->base;
struct lp_build_context *uint = &bld_base->uint_bld;
struct si_shader *shader = si_shader_ctx->shader;
struct si_shader_output_values *outputs;
struct tgsi_shader_info *gsinfo = &gs->selector->info;
LLVMValueRef args[9];
int i, r;
outputs = MALLOC(gsinfo->num_outputs * sizeof(outputs[0]));
si_shader_ctx->type = TGSI_PROCESSOR_VERTEX;
shader->is_gs_copy_shader = true;
radeon_llvm_context_init(&si_shader_ctx->radeon_bld);
create_meta_data(si_shader_ctx);
create_function(si_shader_ctx);
preload_streamout_buffers(si_shader_ctx);
preload_ring_buffers(si_shader_ctx);
args[0] = si_shader_ctx->gsvs_ring;
args[1] = lp_build_mul_imm(uint,
LLVMGetParam(si_shader_ctx->radeon_bld.main_fn,
si_shader_ctx->param_vertex_id),
4);
args[3] = uint->zero;
args[4] = uint->one; /* OFFEN */
args[5] = uint->zero; /* IDXEN */
args[6] = uint->one; /* GLC */
args[7] = uint->one; /* SLC */
args[8] = uint->zero; /* TFE */
/* Fetch vertex data from GSVS ring */
for (i = 0; i < gsinfo->num_outputs; ++i) {
unsigned chan;
outputs[i].name = gsinfo->output_semantic_name[i];
outputs[i].sid = gsinfo->output_semantic_index[i];
for (chan = 0; chan < 4; chan++) {
args[2] = lp_build_const_int32(gallivm,
(i * 4 + chan) *
gs->selector->gs_max_out_vertices * 16 * 4);
outputs[i].values[chan] =
LLVMBuildBitCast(gallivm->builder,
build_intrinsic(gallivm->builder,
"llvm.SI.buffer.load.dword.i32.i32",
LLVMInt32TypeInContext(gallivm->context),
args, 9,
LLVMReadOnlyAttribute | LLVMNoUnwindAttribute),
base->elem_type, "");
}
}
si_llvm_export_vs(bld_base, outputs, gsinfo->num_outputs);
radeon_llvm_finalize_module(&si_shader_ctx->radeon_bld);
if (dump)
fprintf(stderr, "Copy Vertex Shader for Geometry Shader:\n\n");
r = si_compile_llvm(sscreen, si_shader_ctx->shader,
bld_base->base.gallivm->module);
radeon_llvm_dispose(&si_shader_ctx->radeon_bld);
FREE(outputs);
return r;
}
static void si_dump_key(unsigned shader, union si_shader_key *key)
{
int i;
fprintf(stderr, "SHADER KEY\n");
switch (shader) {
case PIPE_SHADER_VERTEX:
fprintf(stderr, " instance_divisors = {");
for (i = 0; i < Elements(key->vs.instance_divisors); i++)
fprintf(stderr, !i ? "%u" : ", %u",
key->vs.instance_divisors[i]);
fprintf(stderr, "}\n");
if (key->vs.as_es)
fprintf(stderr, " gs_used_inputs = 0x%"PRIx64"\n",
key->vs.gs_used_inputs);
fprintf(stderr, " as_es = %u\n", key->vs.as_es);
break;
case PIPE_SHADER_GEOMETRY:
break;
case PIPE_SHADER_FRAGMENT:
fprintf(stderr, " export_16bpc = 0x%X\n", key->ps.export_16bpc);
fprintf(stderr, " last_cbuf = %u\n", key->ps.last_cbuf);
fprintf(stderr, " color_two_side = %u\n", key->ps.color_two_side);
fprintf(stderr, " alpha_func = %u\n", key->ps.alpha_func);
fprintf(stderr, " alpha_to_one = %u\n", key->ps.alpha_to_one);
fprintf(stderr, " poly_stipple = %u\n", key->ps.poly_stipple);
break;
default:
assert(0);
}
}
int si_shader_create(struct si_screen *sscreen, struct si_shader *shader)
{
struct si_shader_selector *sel = shader->selector;
struct tgsi_token *tokens = sel->tokens;
struct si_shader_context si_shader_ctx;
struct lp_build_tgsi_context * bld_base;
struct tgsi_shader_info stipple_shader_info;
LLVMModuleRef mod;
int r = 0;
bool poly_stipple = sel->type == PIPE_SHADER_FRAGMENT &&
shader->key.ps.poly_stipple;
bool dump = r600_can_dump_shader(&sscreen->b, sel->tokens);
if (poly_stipple) {
tokens = util_pstipple_create_fragment_shader(tokens, NULL,
SI_POLY_STIPPLE_SAMPLER);
tgsi_scan_shader(tokens, &stipple_shader_info);
}
/* Dump TGSI code before doing TGSI->LLVM conversion in case the
* conversion fails. */
if (dump) {
si_dump_key(sel->type, &shader->key);
tgsi_dump(tokens, 0);
si_dump_streamout(&sel->so);
}
assert(shader->nparam == 0);
memset(&si_shader_ctx, 0, sizeof(si_shader_ctx));
radeon_llvm_context_init(&si_shader_ctx.radeon_bld);
bld_base = &si_shader_ctx.radeon_bld.soa.bld_base;
if (sel->type != PIPE_SHADER_COMPUTE)
shader->dx10_clamp_mode = true;
if (sel->info.uses_kill)
shader->db_shader_control |= S_02880C_KILL_ENABLE(1);
shader->uses_instanceid = sel->info.uses_instanceid;
bld_base->info = poly_stipple ? &stipple_shader_info : &sel->info;
bld_base->emit_fetch_funcs[TGSI_FILE_CONSTANT] = fetch_constant;
bld_base->op_actions[TGSI_OPCODE_TEX] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TEX2] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXB] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXB2] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXD] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXF] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXL] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXL2] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXP] = tex_action;
bld_base->op_actions[TGSI_OPCODE_TXQ] = txq_action;
bld_base->op_actions[TGSI_OPCODE_TG4] = tex_action;
bld_base->op_actions[TGSI_OPCODE_LODQ] = tex_action;
bld_base->op_actions[TGSI_OPCODE_DDX].emit = si_llvm_emit_ddxy;
bld_base->op_actions[TGSI_OPCODE_DDY].emit = si_llvm_emit_ddxy;
bld_base->op_actions[TGSI_OPCODE_EMIT].emit = si_llvm_emit_vertex;
bld_base->op_actions[TGSI_OPCODE_ENDPRIM].emit = si_llvm_emit_primitive;
if (HAVE_LLVM >= 0x0306) {
bld_base->op_actions[TGSI_OPCODE_MAX].emit = build_tgsi_intrinsic_nomem;
bld_base->op_actions[TGSI_OPCODE_MAX].intr_name = "llvm.maxnum.f32";
bld_base->op_actions[TGSI_OPCODE_MIN].emit = build_tgsi_intrinsic_nomem;
bld_base->op_actions[TGSI_OPCODE_MIN].intr_name = "llvm.minnum.f32";
}
si_shader_ctx.radeon_bld.load_system_value = declare_system_value;
si_shader_ctx.shader = shader;
si_shader_ctx.type = tgsi_get_processor_type(tokens);
si_shader_ctx.screen = sscreen;
switch (si_shader_ctx.type) {
case TGSI_PROCESSOR_VERTEX:
si_shader_ctx.radeon_bld.load_input = declare_input_vs;
if (shader->key.vs.as_es) {
bld_base->emit_epilogue = si_llvm_emit_es_epilogue;
} else {
bld_base->emit_epilogue = si_llvm_emit_vs_epilogue;
}
break;
case TGSI_PROCESSOR_GEOMETRY:
bld_base->emit_fetch_funcs[TGSI_FILE_INPUT] = fetch_input_gs;
bld_base->emit_epilogue = si_llvm_emit_gs_epilogue;
break;
case TGSI_PROCESSOR_FRAGMENT:
si_shader_ctx.radeon_bld.load_input = declare_input_fs;
bld_base->emit_epilogue = si_llvm_emit_fs_epilogue;
switch (sel->info.properties[TGSI_PROPERTY_FS_DEPTH_LAYOUT]) {
case TGSI_FS_DEPTH_LAYOUT_GREATER:
shader->db_shader_control |=
S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_GREATER_THAN_Z);
break;
case TGSI_FS_DEPTH_LAYOUT_LESS:
shader->db_shader_control |=
S_02880C_CONSERVATIVE_Z_EXPORT(V_02880C_EXPORT_LESS_THAN_Z);
break;
}
break;
default:
assert(!"Unsupported shader type");
return -1;
}
create_meta_data(&si_shader_ctx);
create_function(&si_shader_ctx);
preload_constants(&si_shader_ctx);
preload_samplers(&si_shader_ctx);
preload_streamout_buffers(&si_shader_ctx);
preload_ring_buffers(&si_shader_ctx);
if (si_shader_ctx.type == TGSI_PROCESSOR_GEOMETRY) {
si_shader_ctx.gs_next_vertex =
lp_build_alloca(bld_base->base.gallivm,
bld_base->uint_bld.elem_type, "");
}
if (!lp_build_tgsi_llvm(bld_base, tokens)) {
fprintf(stderr, "Failed to translate shader from TGSI to LLVM\n");
goto out;
}
radeon_llvm_finalize_module(&si_shader_ctx.radeon_bld);
mod = bld_base->base.gallivm->module;
r = si_compile_llvm(sscreen, shader, mod);
if (r) {
fprintf(stderr, "LLVM failed to compile shader\n");
goto out;
}
radeon_llvm_dispose(&si_shader_ctx.radeon_bld);
if (si_shader_ctx.type == TGSI_PROCESSOR_GEOMETRY) {
shader->gs_copy_shader = CALLOC_STRUCT(si_shader);
shader->gs_copy_shader->selector = shader->selector;
shader->gs_copy_shader->key = shader->key;
si_shader_ctx.shader = shader->gs_copy_shader;
if ((r = si_generate_gs_copy_shader(sscreen, &si_shader_ctx,
shader, dump))) {
free(shader->gs_copy_shader);
shader->gs_copy_shader = NULL;
goto out;
}
}
out:
for (int i = 0; i < SI_NUM_CONST_BUFFERS; i++)
FREE(si_shader_ctx.constants[i]);
if (poly_stipple)
tgsi_free_tokens(tokens);
return r;
}
void si_shader_destroy(struct pipe_context *ctx, struct si_shader *shader)
{
if (shader->gs_copy_shader)
si_shader_destroy(ctx, shader->gs_copy_shader);
if (shader->scratch_bo)
r600_resource_reference(&shader->scratch_bo, NULL);
r600_resource_reference(&shader->bo, NULL);
FREE(shader->binary.code);
FREE(shader->binary.relocs);
}