blob: 0e04e7c8ab9936e5f274729697e0d049af7430aa [file] [log] [blame]
Keith Whitwellad2ac212000-11-24 10:25:05 +00001/* $Id: m_matrix.c,v 1.4 2000/11/24 10:25:11 keithw Exp $ */
Keith Whitwell23caf202000-11-16 21:05:34 +00002
3/*
4 * Mesa 3-D graphics library
5 * Version: 3.5
6 *
7 * Copyright (C) 1999-2000 Brian Paul All Rights Reserved.
8 *
9 * Permission is hereby granted, free of charge, to any person obtaining a
10 * copy of this software and associated documentation files (the "Software"),
11 * to deal in the Software without restriction, including without limitation
12 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
13 * and/or sell copies of the Software, and to permit persons to whom the
14 * Software is furnished to do so, subject to the following conditions:
15 *
16 * The above copyright notice and this permission notice shall be included
17 * in all copies or substantial portions of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
22 * BRIAN PAUL BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN
23 * AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
24 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25 */
26
27
28/*
29 * Matrix operations
30 *
31 * NOTES:
32 * 1. 4x4 transformation matrices are stored in memory in column major order.
33 * 2. Points/vertices are to be thought of as column vectors.
34 * 3. Transformation of a point p by a matrix M is: p' = M * p
35 */
36
Keith Whitwell23caf202000-11-16 21:05:34 +000037#include "glheader.h"
38#include "macros.h"
39#include "mem.h"
40#include "mmath.h"
41
42#include "m_matrix.h"
43
Keith Whitwell23caf202000-11-16 21:05:34 +000044static const char *types[] = {
45 "MATRIX_GENERAL",
46 "MATRIX_IDENTITY",
47 "MATRIX_3D_NO_ROT",
48 "MATRIX_PERSPECTIVE",
49 "MATRIX_2D",
50 "MATRIX_2D_NO_ROT",
51 "MATRIX_3D"
52};
53
54
55static GLfloat Identity[16] = {
56 1.0, 0.0, 0.0, 0.0,
57 0.0, 1.0, 0.0, 0.0,
58 0.0, 0.0, 1.0, 0.0,
59 0.0, 0.0, 0.0, 1.0
60};
61
62
63
64
65/*
66 * This matmul was contributed by Thomas Malik
67 *
68 * Perform a 4x4 matrix multiplication (product = a x b).
69 * Input: a, b - matrices to multiply
70 * Output: product - product of a and b
71 * WARNING: (product != b) assumed
72 * NOTE: (product == a) allowed
73 *
74 * KW: 4*16 = 64 muls
75 */
76#define A(row,col) a[(col<<2)+row]
77#define B(row,col) b[(col<<2)+row]
78#define P(row,col) product[(col<<2)+row]
79
80static void matmul4( GLfloat *product, const GLfloat *a, const GLfloat *b )
81{
82 GLint i;
83 for (i = 0; i < 4; i++) {
84 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
85 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0) + ai3 * B(3,0);
86 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1) + ai3 * B(3,1);
87 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2) + ai3 * B(3,2);
88 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3 * B(3,3);
89 }
90}
91
92
93/* Multiply two matrices known to occupy only the top three rows, such
94 * as typical model matrices, and ortho matrices.
95 */
96static void matmul34( GLfloat *product, const GLfloat *a, const GLfloat *b )
97{
98 GLint i;
99 for (i = 0; i < 3; i++) {
100 const GLfloat ai0=A(i,0), ai1=A(i,1), ai2=A(i,2), ai3=A(i,3);
101 P(i,0) = ai0 * B(0,0) + ai1 * B(1,0) + ai2 * B(2,0);
102 P(i,1) = ai0 * B(0,1) + ai1 * B(1,1) + ai2 * B(2,1);
103 P(i,2) = ai0 * B(0,2) + ai1 * B(1,2) + ai2 * B(2,2);
104 P(i,3) = ai0 * B(0,3) + ai1 * B(1,3) + ai2 * B(2,3) + ai3;
105 }
106 P(3,0) = 0;
107 P(3,1) = 0;
108 P(3,2) = 0;
109 P(3,3) = 1;
110}
111
112
113#undef A
114#undef B
115#undef P
116
117
118/*
119 * Multiply a matrix by an array of floats with known properties.
120 */
121static void matrix_multf( GLmatrix *mat, const GLfloat *m, GLuint flags )
122{
123 mat->flags |= (flags | MAT_DIRTY_TYPE | MAT_DIRTY_INVERSE);
124
125 if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D))
126 matmul34( mat->m, mat->m, m );
127 else
128 matmul4( mat->m, mat->m, m );
129}
130
131
132static void print_matrix_floats( const GLfloat m[16] )
133{
134 int i;
135 for (i=0;i<4;i++) {
136 fprintf(stderr,"\t%f %f %f %f\n", m[i], m[4+i], m[8+i], m[12+i] );
137 }
138}
139
140void
141_math_matrix_print( const GLmatrix *m )
142{
143 fprintf(stderr, "Matrix type: %s, flags: %x\n", types[m->type], m->flags);
144 print_matrix_floats(m->m);
145 fprintf(stderr, "Inverse: \n");
146 if (m->inv) {
147 GLfloat prod[16];
148 print_matrix_floats(m->inv);
149 matmul4(prod, m->m, m->inv);
150 fprintf(stderr, "Mat * Inverse:\n");
151 print_matrix_floats(prod);
152 }
153 else {
154 fprintf(stderr, " - not available\n");
155 }
156}
157
158
159
160
161#define SWAP_ROWS(a, b) { GLfloat *_tmp = a; (a)=(b); (b)=_tmp; }
162#define MAT(m,r,c) (m)[(c)*4+(r)]
163
164/*
165 * Compute inverse of 4x4 transformation matrix.
166 * Code contributed by Jacques Leroy jle@star.be
167 * Return GL_TRUE for success, GL_FALSE for failure (singular matrix)
168 */
169static GLboolean invert_matrix_general( GLmatrix *mat )
170{
171 const GLfloat *m = mat->m;
172 GLfloat *out = mat->inv;
173 GLfloat wtmp[4][8];
174 GLfloat m0, m1, m2, m3, s;
175 GLfloat *r0, *r1, *r2, *r3;
176
177 r0 = wtmp[0], r1 = wtmp[1], r2 = wtmp[2], r3 = wtmp[3];
178
179 r0[0] = MAT(m,0,0), r0[1] = MAT(m,0,1),
180 r0[2] = MAT(m,0,2), r0[3] = MAT(m,0,3),
181 r0[4] = 1.0, r0[5] = r0[6] = r0[7] = 0.0,
182
183 r1[0] = MAT(m,1,0), r1[1] = MAT(m,1,1),
184 r1[2] = MAT(m,1,2), r1[3] = MAT(m,1,3),
185 r1[5] = 1.0, r1[4] = r1[6] = r1[7] = 0.0,
186
187 r2[0] = MAT(m,2,0), r2[1] = MAT(m,2,1),
188 r2[2] = MAT(m,2,2), r2[3] = MAT(m,2,3),
189 r2[6] = 1.0, r2[4] = r2[5] = r2[7] = 0.0,
190
191 r3[0] = MAT(m,3,0), r3[1] = MAT(m,3,1),
192 r3[2] = MAT(m,3,2), r3[3] = MAT(m,3,3),
193 r3[7] = 1.0, r3[4] = r3[5] = r3[6] = 0.0;
194
195 /* choose pivot - or die */
196 if (fabs(r3[0])>fabs(r2[0])) SWAP_ROWS(r3, r2);
197 if (fabs(r2[0])>fabs(r1[0])) SWAP_ROWS(r2, r1);
198 if (fabs(r1[0])>fabs(r0[0])) SWAP_ROWS(r1, r0);
199 if (0.0 == r0[0]) return GL_FALSE;
200
201 /* eliminate first variable */
202 m1 = r1[0]/r0[0]; m2 = r2[0]/r0[0]; m3 = r3[0]/r0[0];
203 s = r0[1]; r1[1] -= m1 * s; r2[1] -= m2 * s; r3[1] -= m3 * s;
204 s = r0[2]; r1[2] -= m1 * s; r2[2] -= m2 * s; r3[2] -= m3 * s;
205 s = r0[3]; r1[3] -= m1 * s; r2[3] -= m2 * s; r3[3] -= m3 * s;
206 s = r0[4];
207 if (s != 0.0) { r1[4] -= m1 * s; r2[4] -= m2 * s; r3[4] -= m3 * s; }
208 s = r0[5];
209 if (s != 0.0) { r1[5] -= m1 * s; r2[5] -= m2 * s; r3[5] -= m3 * s; }
210 s = r0[6];
211 if (s != 0.0) { r1[6] -= m1 * s; r2[6] -= m2 * s; r3[6] -= m3 * s; }
212 s = r0[7];
213 if (s != 0.0) { r1[7] -= m1 * s; r2[7] -= m2 * s; r3[7] -= m3 * s; }
214
215 /* choose pivot - or die */
216 if (fabs(r3[1])>fabs(r2[1])) SWAP_ROWS(r3, r2);
217 if (fabs(r2[1])>fabs(r1[1])) SWAP_ROWS(r2, r1);
218 if (0.0 == r1[1]) return GL_FALSE;
219
220 /* eliminate second variable */
221 m2 = r2[1]/r1[1]; m3 = r3[1]/r1[1];
222 r2[2] -= m2 * r1[2]; r3[2] -= m3 * r1[2];
223 r2[3] -= m2 * r1[3]; r3[3] -= m3 * r1[3];
224 s = r1[4]; if (0.0 != s) { r2[4] -= m2 * s; r3[4] -= m3 * s; }
225 s = r1[5]; if (0.0 != s) { r2[5] -= m2 * s; r3[5] -= m3 * s; }
226 s = r1[6]; if (0.0 != s) { r2[6] -= m2 * s; r3[6] -= m3 * s; }
227 s = r1[7]; if (0.0 != s) { r2[7] -= m2 * s; r3[7] -= m3 * s; }
228
229 /* choose pivot - or die */
230 if (fabs(r3[2])>fabs(r2[2])) SWAP_ROWS(r3, r2);
231 if (0.0 == r2[2]) return GL_FALSE;
232
233 /* eliminate third variable */
234 m3 = r3[2]/r2[2];
235 r3[3] -= m3 * r2[3], r3[4] -= m3 * r2[4],
236 r3[5] -= m3 * r2[5], r3[6] -= m3 * r2[6],
237 r3[7] -= m3 * r2[7];
238
239 /* last check */
240 if (0.0 == r3[3]) return GL_FALSE;
241
242 s = 1.0/r3[3]; /* now back substitute row 3 */
243 r3[4] *= s; r3[5] *= s; r3[6] *= s; r3[7] *= s;
244
245 m2 = r2[3]; /* now back substitute row 2 */
246 s = 1.0/r2[2];
247 r2[4] = s * (r2[4] - r3[4] * m2), r2[5] = s * (r2[5] - r3[5] * m2),
248 r2[6] = s * (r2[6] - r3[6] * m2), r2[7] = s * (r2[7] - r3[7] * m2);
249 m1 = r1[3];
250 r1[4] -= r3[4] * m1, r1[5] -= r3[5] * m1,
251 r1[6] -= r3[6] * m1, r1[7] -= r3[7] * m1;
252 m0 = r0[3];
253 r0[4] -= r3[4] * m0, r0[5] -= r3[5] * m0,
254 r0[6] -= r3[6] * m0, r0[7] -= r3[7] * m0;
255
256 m1 = r1[2]; /* now back substitute row 1 */
257 s = 1.0/r1[1];
258 r1[4] = s * (r1[4] - r2[4] * m1), r1[5] = s * (r1[5] - r2[5] * m1),
259 r1[6] = s * (r1[6] - r2[6] * m1), r1[7] = s * (r1[7] - r2[7] * m1);
260 m0 = r0[2];
261 r0[4] -= r2[4] * m0, r0[5] -= r2[5] * m0,
262 r0[6] -= r2[6] * m0, r0[7] -= r2[7] * m0;
263
264 m0 = r0[1]; /* now back substitute row 0 */
265 s = 1.0/r0[0];
266 r0[4] = s * (r0[4] - r1[4] * m0), r0[5] = s * (r0[5] - r1[5] * m0),
267 r0[6] = s * (r0[6] - r1[6] * m0), r0[7] = s * (r0[7] - r1[7] * m0);
268
269 MAT(out,0,0) = r0[4]; MAT(out,0,1) = r0[5],
270 MAT(out,0,2) = r0[6]; MAT(out,0,3) = r0[7],
271 MAT(out,1,0) = r1[4]; MAT(out,1,1) = r1[5],
272 MAT(out,1,2) = r1[6]; MAT(out,1,3) = r1[7],
273 MAT(out,2,0) = r2[4]; MAT(out,2,1) = r2[5],
274 MAT(out,2,2) = r2[6]; MAT(out,2,3) = r2[7],
275 MAT(out,3,0) = r3[4]; MAT(out,3,1) = r3[5],
276 MAT(out,3,2) = r3[6]; MAT(out,3,3) = r3[7];
277
278 return GL_TRUE;
279}
280#undef SWAP_ROWS
281
282
283/* Adapted from graphics gems II.
284 */
285static GLboolean invert_matrix_3d_general( GLmatrix *mat )
286{
287 const GLfloat *in = mat->m;
288 GLfloat *out = mat->inv;
289 GLfloat pos, neg, t;
290 GLfloat det;
291
292 /* Calculate the determinant of upper left 3x3 submatrix and
293 * determine if the matrix is singular.
294 */
295 pos = neg = 0.0;
296 t = MAT(in,0,0) * MAT(in,1,1) * MAT(in,2,2);
297 if (t >= 0.0) pos += t; else neg += t;
298
299 t = MAT(in,1,0) * MAT(in,2,1) * MAT(in,0,2);
300 if (t >= 0.0) pos += t; else neg += t;
301
302 t = MAT(in,2,0) * MAT(in,0,1) * MAT(in,1,2);
303 if (t >= 0.0) pos += t; else neg += t;
304
305 t = -MAT(in,2,0) * MAT(in,1,1) * MAT(in,0,2);
306 if (t >= 0.0) pos += t; else neg += t;
307
308 t = -MAT(in,1,0) * MAT(in,0,1) * MAT(in,2,2);
309 if (t >= 0.0) pos += t; else neg += t;
310
311 t = -MAT(in,0,0) * MAT(in,2,1) * MAT(in,1,2);
312 if (t >= 0.0) pos += t; else neg += t;
313
314 det = pos + neg;
315
316 if (det*det < 1e-25)
317 return GL_FALSE;
318
319 det = 1.0 / det;
320 MAT(out,0,0) = ( (MAT(in,1,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,1,2) )*det);
321 MAT(out,0,1) = (- (MAT(in,0,1)*MAT(in,2,2) - MAT(in,2,1)*MAT(in,0,2) )*det);
322 MAT(out,0,2) = ( (MAT(in,0,1)*MAT(in,1,2) - MAT(in,1,1)*MAT(in,0,2) )*det);
323 MAT(out,1,0) = (- (MAT(in,1,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,1,2) )*det);
324 MAT(out,1,1) = ( (MAT(in,0,0)*MAT(in,2,2) - MAT(in,2,0)*MAT(in,0,2) )*det);
325 MAT(out,1,2) = (- (MAT(in,0,0)*MAT(in,1,2) - MAT(in,1,0)*MAT(in,0,2) )*det);
326 MAT(out,2,0) = ( (MAT(in,1,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,1,1) )*det);
327 MAT(out,2,1) = (- (MAT(in,0,0)*MAT(in,2,1) - MAT(in,2,0)*MAT(in,0,1) )*det);
328 MAT(out,2,2) = ( (MAT(in,0,0)*MAT(in,1,1) - MAT(in,1,0)*MAT(in,0,1) )*det);
329
330 /* Do the translation part */
331 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
332 MAT(in,1,3) * MAT(out,0,1) +
333 MAT(in,2,3) * MAT(out,0,2) );
334 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
335 MAT(in,1,3) * MAT(out,1,1) +
336 MAT(in,2,3) * MAT(out,1,2) );
337 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
338 MAT(in,1,3) * MAT(out,2,1) +
339 MAT(in,2,3) * MAT(out,2,2) );
340
341 return GL_TRUE;
342}
343
344
345static GLboolean invert_matrix_3d( GLmatrix *mat )
346{
347 const GLfloat *in = mat->m;
348 GLfloat *out = mat->inv;
349
350 if (!TEST_MAT_FLAGS(mat, MAT_FLAGS_ANGLE_PRESERVING)) {
351 return invert_matrix_3d_general( mat );
352 }
353
354 if (mat->flags & MAT_FLAG_UNIFORM_SCALE) {
355 GLfloat scale = (MAT(in,0,0) * MAT(in,0,0) +
356 MAT(in,0,1) * MAT(in,0,1) +
357 MAT(in,0,2) * MAT(in,0,2));
358
359 if (scale == 0.0)
360 return GL_FALSE;
361
362 scale = 1.0 / scale;
363
364 /* Transpose and scale the 3 by 3 upper-left submatrix. */
365 MAT(out,0,0) = scale * MAT(in,0,0);
366 MAT(out,1,0) = scale * MAT(in,0,1);
367 MAT(out,2,0) = scale * MAT(in,0,2);
368 MAT(out,0,1) = scale * MAT(in,1,0);
369 MAT(out,1,1) = scale * MAT(in,1,1);
370 MAT(out,2,1) = scale * MAT(in,1,2);
371 MAT(out,0,2) = scale * MAT(in,2,0);
372 MAT(out,1,2) = scale * MAT(in,2,1);
373 MAT(out,2,2) = scale * MAT(in,2,2);
374 }
375 else if (mat->flags & MAT_FLAG_ROTATION) {
376 /* Transpose the 3 by 3 upper-left submatrix. */
377 MAT(out,0,0) = MAT(in,0,0);
378 MAT(out,1,0) = MAT(in,0,1);
379 MAT(out,2,0) = MAT(in,0,2);
380 MAT(out,0,1) = MAT(in,1,0);
381 MAT(out,1,1) = MAT(in,1,1);
382 MAT(out,2,1) = MAT(in,1,2);
383 MAT(out,0,2) = MAT(in,2,0);
384 MAT(out,1,2) = MAT(in,2,1);
385 MAT(out,2,2) = MAT(in,2,2);
386 }
387 else {
388 /* pure translation */
389 MEMCPY( out, Identity, sizeof(Identity) );
390 MAT(out,0,3) = - MAT(in,0,3);
391 MAT(out,1,3) = - MAT(in,1,3);
392 MAT(out,2,3) = - MAT(in,2,3);
393 return GL_TRUE;
394 }
395
396 if (mat->flags & MAT_FLAG_TRANSLATION) {
397 /* Do the translation part */
398 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0) +
399 MAT(in,1,3) * MAT(out,0,1) +
400 MAT(in,2,3) * MAT(out,0,2) );
401 MAT(out,1,3) = - (MAT(in,0,3) * MAT(out,1,0) +
402 MAT(in,1,3) * MAT(out,1,1) +
403 MAT(in,2,3) * MAT(out,1,2) );
404 MAT(out,2,3) = - (MAT(in,0,3) * MAT(out,2,0) +
405 MAT(in,1,3) * MAT(out,2,1) +
406 MAT(in,2,3) * MAT(out,2,2) );
407 }
408 else {
409 MAT(out,0,3) = MAT(out,1,3) = MAT(out,2,3) = 0.0;
410 }
411
412 return GL_TRUE;
413}
414
415
416
417static GLboolean invert_matrix_identity( GLmatrix *mat )
418{
419 MEMCPY( mat->inv, Identity, sizeof(Identity) );
420 return GL_TRUE;
421}
422
423
424static GLboolean invert_matrix_3d_no_rot( GLmatrix *mat )
425{
426 const GLfloat *in = mat->m;
427 GLfloat *out = mat->inv;
428
429 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0 || MAT(in,2,2) == 0 )
430 return GL_FALSE;
431
432 MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
433 MAT(out,0,0) = 1.0 / MAT(in,0,0);
434 MAT(out,1,1) = 1.0 / MAT(in,1,1);
435 MAT(out,2,2) = 1.0 / MAT(in,2,2);
436
437 if (mat->flags & MAT_FLAG_TRANSLATION) {
438 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
439 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
440 MAT(out,2,3) = - (MAT(in,2,3) * MAT(out,2,2));
441 }
442
443 return GL_TRUE;
444}
445
446
447static GLboolean invert_matrix_2d_no_rot( GLmatrix *mat )
448{
449 const GLfloat *in = mat->m;
450 GLfloat *out = mat->inv;
451
452 if (MAT(in,0,0) == 0 || MAT(in,1,1) == 0)
453 return GL_FALSE;
454
455 MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
456 MAT(out,0,0) = 1.0 / MAT(in,0,0);
457 MAT(out,1,1) = 1.0 / MAT(in,1,1);
458
459 if (mat->flags & MAT_FLAG_TRANSLATION) {
460 MAT(out,0,3) = - (MAT(in,0,3) * MAT(out,0,0));
461 MAT(out,1,3) = - (MAT(in,1,3) * MAT(out,1,1));
462 }
463
464 return GL_TRUE;
465}
466
467
468static GLboolean invert_matrix_perspective( GLmatrix *mat )
469{
470 const GLfloat *in = mat->m;
471 GLfloat *out = mat->inv;
472
473 if (MAT(in,2,3) == 0)
474 return GL_FALSE;
475
476 MEMCPY( out, Identity, 16 * sizeof(GLfloat) );
477
478 MAT(out,0,0) = 1.0 / MAT(in,0,0);
479 MAT(out,1,1) = 1.0 / MAT(in,1,1);
480
481 MAT(out,0,3) = MAT(in,0,2);
482 MAT(out,1,3) = MAT(in,1,2);
483
484 MAT(out,2,2) = 0;
485 MAT(out,2,3) = -1;
486
487 MAT(out,3,2) = 1.0 / MAT(in,2,3);
488 MAT(out,3,3) = MAT(in,2,2) * MAT(out,3,2);
489
490 return GL_TRUE;
491}
492
493
494typedef GLboolean (*inv_mat_func)( GLmatrix *mat );
495
496
497static inv_mat_func inv_mat_tab[7] = {
498 invert_matrix_general,
499 invert_matrix_identity,
500 invert_matrix_3d_no_rot,
501 invert_matrix_perspective,
502 invert_matrix_3d, /* lazy! */
503 invert_matrix_2d_no_rot,
504 invert_matrix_3d
505};
506
507
508static GLboolean matrix_invert( GLmatrix *mat )
509{
510 if (inv_mat_tab[mat->type](mat)) {
511 mat->flags &= ~MAT_FLAG_SINGULAR;
512 return GL_TRUE;
513 } else {
514 mat->flags |= MAT_FLAG_SINGULAR;
515 MEMCPY( mat->inv, Identity, sizeof(Identity) );
516 return GL_FALSE;
517 }
518}
519
520
521
522
523
524
525/*
526 * Generate a 4x4 transformation matrix from glRotate parameters, and
527 * postmultiply the input matrix by it.
528 */
529void
530_math_matrix_rotate( GLmatrix *mat,
531 GLfloat angle, GLfloat x, GLfloat y, GLfloat z )
532{
533 /* This function contributed by Erich Boleyn (erich@uruk.org) */
534 GLfloat mag, s, c;
535 GLfloat xx, yy, zz, xy, yz, zx, xs, ys, zs, one_c;
536 GLfloat m[16];
537
538 s = sin( angle * DEG2RAD );
539 c = cos( angle * DEG2RAD );
540
541 mag = GL_SQRT( x*x + y*y + z*z );
542
543 if (mag <= 1.0e-4) {
544 /* generate an identity matrix and return */
545 MEMCPY(m, Identity, sizeof(GLfloat)*16);
546 return;
547 }
548
549 x /= mag;
550 y /= mag;
551 z /= mag;
552
553#define M(row,col) m[col*4+row]
554
555 /*
556 * Arbitrary axis rotation matrix.
557 *
558 * This is composed of 5 matrices, Rz, Ry, T, Ry', Rz', multiplied
559 * like so: Rz * Ry * T * Ry' * Rz'. T is the final rotation
560 * (which is about the X-axis), and the two composite transforms
561 * Ry' * Rz' and Rz * Ry are (respectively) the rotations necessary
562 * from the arbitrary axis to the X-axis then back. They are
563 * all elementary rotations.
564 *
565 * Rz' is a rotation about the Z-axis, to bring the axis vector
566 * into the x-z plane. Then Ry' is applied, rotating about the
567 * Y-axis to bring the axis vector parallel with the X-axis. The
568 * rotation about the X-axis is then performed. Ry and Rz are
569 * simply the respective inverse transforms to bring the arbitrary
570 * axis back to it's original orientation. The first transforms
571 * Rz' and Ry' are considered inverses, since the data from the
572 * arbitrary axis gives you info on how to get to it, not how
573 * to get away from it, and an inverse must be applied.
574 *
575 * The basic calculation used is to recognize that the arbitrary
576 * axis vector (x, y, z), since it is of unit length, actually
577 * represents the sines and cosines of the angles to rotate the
578 * X-axis to the same orientation, with theta being the angle about
579 * Z and phi the angle about Y (in the order described above)
580 * as follows:
581 *
582 * cos ( theta ) = x / sqrt ( 1 - z^2 )
583 * sin ( theta ) = y / sqrt ( 1 - z^2 )
584 *
585 * cos ( phi ) = sqrt ( 1 - z^2 )
586 * sin ( phi ) = z
587 *
588 * Note that cos ( phi ) can further be inserted to the above
589 * formulas:
590 *
591 * cos ( theta ) = x / cos ( phi )
592 * sin ( theta ) = y / sin ( phi )
593 *
594 * ...etc. Because of those relations and the standard trigonometric
595 * relations, it is pssible to reduce the transforms down to what
596 * is used below. It may be that any primary axis chosen will give the
597 * same results (modulo a sign convention) using thie method.
598 *
599 * Particularly nice is to notice that all divisions that might
600 * have caused trouble when parallel to certain planes or
601 * axis go away with care paid to reducing the expressions.
602 * After checking, it does perform correctly under all cases, since
603 * in all the cases of division where the denominator would have
604 * been zero, the numerator would have been zero as well, giving
605 * the expected result.
606 */
607
608 xx = x * x;
609 yy = y * y;
610 zz = z * z;
611 xy = x * y;
612 yz = y * z;
613 zx = z * x;
614 xs = x * s;
615 ys = y * s;
616 zs = z * s;
617 one_c = 1.0F - c;
618
619 M(0,0) = (one_c * xx) + c;
620 M(0,1) = (one_c * xy) - zs;
621 M(0,2) = (one_c * zx) + ys;
622 M(0,3) = 0.0F;
623
624 M(1,0) = (one_c * xy) + zs;
625 M(1,1) = (one_c * yy) + c;
626 M(1,2) = (one_c * yz) - xs;
627 M(1,3) = 0.0F;
628
629 M(2,0) = (one_c * zx) - ys;
630 M(2,1) = (one_c * yz) + xs;
631 M(2,2) = (one_c * zz) + c;
632 M(2,3) = 0.0F;
633
634 M(3,0) = 0.0F;
635 M(3,1) = 0.0F;
636 M(3,2) = 0.0F;
637 M(3,3) = 1.0F;
638
639#undef M
640
641 matrix_multf( mat, m, MAT_FLAG_ROTATION );
642}
643
644
645void
646_math_matrix_frustrum( GLmatrix *mat,
647 GLfloat left, GLfloat right,
648 GLfloat bottom, GLfloat top,
649 GLfloat nearval, GLfloat farval )
650{
651 GLfloat x, y, a, b, c, d;
652 GLfloat m[16];
653
654 x = (2.0*nearval) / (right-left);
655 y = (2.0*nearval) / (top-bottom);
656 a = (right+left) / (right-left);
657 b = (top+bottom) / (top-bottom);
658 c = -(farval+nearval) / ( farval-nearval);
659 d = -(2.0*farval*nearval) / (farval-nearval); /* error? */
660
661#define M(row,col) m[col*4+row]
662 M(0,0) = x; M(0,1) = 0.0F; M(0,2) = a; M(0,3) = 0.0F;
663 M(1,0) = 0.0F; M(1,1) = y; M(1,2) = b; M(1,3) = 0.0F;
664 M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = c; M(2,3) = d;
665 M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = -1.0F; M(3,3) = 0.0F;
666#undef M
667
668 matrix_multf( mat, m, MAT_FLAG_PERSPECTIVE );
669}
670
671void
672_math_matrix_ortho( GLmatrix *mat,
673 GLfloat left, GLfloat right,
674 GLfloat bottom, GLfloat top,
675 GLfloat nearval, GLfloat farval )
676{
677 GLfloat x, y, z;
678 GLfloat tx, ty, tz;
679 GLfloat m[16];
680
681 x = 2.0 / (right-left);
682 y = 2.0 / (top-bottom);
683 z = -2.0 / (farval-nearval);
684 tx = -(right+left) / (right-left);
685 ty = -(top+bottom) / (top-bottom);
686 tz = -(farval+nearval) / (farval-nearval);
687
688#define M(row,col) m[col*4+row]
689 M(0,0) = x; M(0,1) = 0.0F; M(0,2) = 0.0F; M(0,3) = tx;
690 M(1,0) = 0.0F; M(1,1) = y; M(1,2) = 0.0F; M(1,3) = ty;
691 M(2,0) = 0.0F; M(2,1) = 0.0F; M(2,2) = z; M(2,3) = tz;
692 M(3,0) = 0.0F; M(3,1) = 0.0F; M(3,2) = 0.0F; M(3,3) = 1.0F;
693#undef M
694
695 matrix_multf( mat, m, (MAT_FLAG_GENERAL_SCALE|MAT_FLAG_TRANSLATION));
696}
697
698
699#define ZERO(x) (1<<x)
700#define ONE(x) (1<<(x+16))
701
702#define MASK_NO_TRX (ZERO(12) | ZERO(13) | ZERO(14))
703#define MASK_NO_2D_SCALE ( ONE(0) | ONE(5))
704
705#define MASK_IDENTITY ( ONE(0) | ZERO(4) | ZERO(8) | ZERO(12) |\
706 ZERO(1) | ONE(5) | ZERO(9) | ZERO(13) |\
707 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
708 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
709
710#define MASK_2D_NO_ROT ( ZERO(4) | ZERO(8) | \
711 ZERO(1) | ZERO(9) | \
712 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
713 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
714
715#define MASK_2D ( ZERO(8) | \
716 ZERO(9) | \
717 ZERO(2) | ZERO(6) | ONE(10) | ZERO(14) |\
718 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
719
720
721#define MASK_3D_NO_ROT ( ZERO(4) | ZERO(8) | \
722 ZERO(1) | ZERO(9) | \
723 ZERO(2) | ZERO(6) | \
724 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
725
726#define MASK_3D ( \
727 \
728 \
729 ZERO(3) | ZERO(7) | ZERO(11) | ONE(15) )
730
731
732#define MASK_PERSPECTIVE ( ZERO(4) | ZERO(12) |\
733 ZERO(1) | ZERO(13) |\
734 ZERO(2) | ZERO(6) | \
735 ZERO(3) | ZERO(7) | ZERO(15) )
736
737#define SQ(x) ((x)*(x))
738
739/* Determine type and flags from scratch. This is expensive enough to
740 * only want to do it once.
741 */
Keith Whitwellad2ac212000-11-24 10:25:05 +0000742static void analyse_from_scratch( GLmatrix *mat )
Keith Whitwell23caf202000-11-16 21:05:34 +0000743{
744 const GLfloat *m = mat->m;
745 GLuint mask = 0;
746 GLuint i;
747
748 for (i = 0 ; i < 16 ; i++) {
749 if (m[i] == 0.0) mask |= (1<<i);
750 }
751
752 if (m[0] == 1.0F) mask |= (1<<16);
753 if (m[5] == 1.0F) mask |= (1<<21);
754 if (m[10] == 1.0F) mask |= (1<<26);
755 if (m[15] == 1.0F) mask |= (1<<31);
756
757 mat->flags &= ~MAT_FLAGS_GEOMETRY;
758
759 /* Check for translation - no-one really cares
760 */
761 if ((mask & MASK_NO_TRX) != MASK_NO_TRX)
762 mat->flags |= MAT_FLAG_TRANSLATION;
763
764 /* Do the real work
765 */
766 if (mask == MASK_IDENTITY) {
767 mat->type = MATRIX_IDENTITY;
768 }
769 else if ((mask & MASK_2D_NO_ROT) == MASK_2D_NO_ROT) {
770 mat->type = MATRIX_2D_NO_ROT;
771
772 if ((mask & MASK_NO_2D_SCALE) != MASK_NO_2D_SCALE)
773 mat->flags = MAT_FLAG_GENERAL_SCALE;
774 }
775 else if ((mask & MASK_2D) == MASK_2D) {
776 GLfloat mm = DOT2(m, m);
777 GLfloat m4m4 = DOT2(m+4,m+4);
778 GLfloat mm4 = DOT2(m,m+4);
779
780 mat->type = MATRIX_2D;
781
782 /* Check for scale */
783 if (SQ(mm-1) > SQ(1e-6) ||
784 SQ(m4m4-1) > SQ(1e-6))
785 mat->flags |= MAT_FLAG_GENERAL_SCALE;
786
787 /* Check for rotation */
788 if (SQ(mm4) > SQ(1e-6))
789 mat->flags |= MAT_FLAG_GENERAL_3D;
790 else
791 mat->flags |= MAT_FLAG_ROTATION;
792
793 }
794 else if ((mask & MASK_3D_NO_ROT) == MASK_3D_NO_ROT) {
795 mat->type = MATRIX_3D_NO_ROT;
796
797 /* Check for scale */
798 if (SQ(m[0]-m[5]) < SQ(1e-6) &&
799 SQ(m[0]-m[10]) < SQ(1e-6)) {
800 if (SQ(m[0]-1.0) > SQ(1e-6)) {
801 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
802 }
803 }
804 else {
805 mat->flags |= MAT_FLAG_GENERAL_SCALE;
806 }
807 }
808 else if ((mask & MASK_3D) == MASK_3D) {
809 GLfloat c1 = DOT3(m,m);
810 GLfloat c2 = DOT3(m+4,m+4);
811 GLfloat c3 = DOT3(m+8,m+8);
812 GLfloat d1 = DOT3(m, m+4);
813 GLfloat cp[3];
814
815 mat->type = MATRIX_3D;
816
817 /* Check for scale */
818 if (SQ(c1-c2) < SQ(1e-6) && SQ(c1-c3) < SQ(1e-6)) {
819 if (SQ(c1-1.0) > SQ(1e-6))
820 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
821 /* else no scale at all */
822 }
823 else {
824 mat->flags |= MAT_FLAG_GENERAL_SCALE;
825 }
826
827 /* Check for rotation */
828 if (SQ(d1) < SQ(1e-6)) {
829 CROSS3( cp, m, m+4 );
830 SUB_3V( cp, cp, (m+8) );
831 if (LEN_SQUARED_3FV(cp) < SQ(1e-6))
832 mat->flags |= MAT_FLAG_ROTATION;
833 else
834 mat->flags |= MAT_FLAG_GENERAL_3D;
835 }
836 else {
837 mat->flags |= MAT_FLAG_GENERAL_3D; /* shear, etc */
838 }
839 }
840 else if ((mask & MASK_PERSPECTIVE) == MASK_PERSPECTIVE && m[11]==-1.0F) {
841 mat->type = MATRIX_PERSPECTIVE;
842 mat->flags |= MAT_FLAG_GENERAL;
843 }
844 else {
845 mat->type = MATRIX_GENERAL;
846 mat->flags |= MAT_FLAG_GENERAL;
847 }
848}
849
850
851/* Analyse a matrix given that its flags are accurate - this is the
852 * more common operation, hopefully.
853 */
Keith Whitwellad2ac212000-11-24 10:25:05 +0000854static void analyse_from_flags( GLmatrix *mat )
Keith Whitwell23caf202000-11-16 21:05:34 +0000855{
856 const GLfloat *m = mat->m;
857
858 if (TEST_MAT_FLAGS(mat, 0)) {
859 mat->type = MATRIX_IDENTITY;
860 }
861 else if (TEST_MAT_FLAGS(mat, (MAT_FLAG_TRANSLATION |
862 MAT_FLAG_UNIFORM_SCALE |
863 MAT_FLAG_GENERAL_SCALE))) {
864 if ( m[10]==1.0F && m[14]==0.0F ) {
865 mat->type = MATRIX_2D_NO_ROT;
866 }
867 else {
868 mat->type = MATRIX_3D_NO_ROT;
869 }
870 }
871 else if (TEST_MAT_FLAGS(mat, MAT_FLAGS_3D)) {
872 if ( m[ 8]==0.0F
873 && m[ 9]==0.0F
874 && m[2]==0.0F && m[6]==0.0F && m[10]==1.0F && m[14]==0.0F) {
875 mat->type = MATRIX_2D;
876 }
877 else {
878 mat->type = MATRIX_3D;
879 }
880 }
881 else if ( m[4]==0.0F && m[12]==0.0F
882 && m[1]==0.0F && m[13]==0.0F
883 && m[2]==0.0F && m[6]==0.0F
884 && m[3]==0.0F && m[7]==0.0F && m[11]==-1.0F && m[15]==0.0F) {
885 mat->type = MATRIX_PERSPECTIVE;
886 }
887 else {
888 mat->type = MATRIX_GENERAL;
889 }
890}
891
892
893void
Keith Whitwellad2ac212000-11-24 10:25:05 +0000894_math_matrix_analyse( GLmatrix *mat )
Keith Whitwell23caf202000-11-16 21:05:34 +0000895{
896 if (mat->flags & MAT_DIRTY_TYPE) {
897 if (mat->flags & MAT_DIRTY_FLAGS)
Keith Whitwellad2ac212000-11-24 10:25:05 +0000898 analyse_from_scratch( mat );
Keith Whitwell23caf202000-11-16 21:05:34 +0000899 else
Keith Whitwellad2ac212000-11-24 10:25:05 +0000900 analyse_from_flags( mat );
Keith Whitwell23caf202000-11-16 21:05:34 +0000901 }
902
903 if (mat->inv && (mat->flags & MAT_DIRTY_INVERSE)) {
904 matrix_invert( mat );
905 }
906
907 mat->flags &= ~(MAT_DIRTY_FLAGS|
908 MAT_DIRTY_TYPE|
909 MAT_DIRTY_INVERSE);
910}
911
912
913void
914_math_matrix_copy( GLmatrix *to, const GLmatrix *from )
915{
916 MEMCPY( to->m, from->m, sizeof(Identity) );
917 to->flags = from->flags;
918 to->type = from->type;
919
920 if (to->inv != 0) {
921 if (from->inv == 0) {
922 matrix_invert( to );
923 }
924 else {
925 MEMCPY(to->inv, from->inv, sizeof(GLfloat)*16);
926 }
927 }
928}
929
930
931void
932_math_matrix_scale( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
933{
934 GLfloat *m = mat->m;
935 m[0] *= x; m[4] *= y; m[8] *= z;
936 m[1] *= x; m[5] *= y; m[9] *= z;
937 m[2] *= x; m[6] *= y; m[10] *= z;
938 m[3] *= x; m[7] *= y; m[11] *= z;
939
940 if (fabs(x - y) < 1e-8 && fabs(x - z) < 1e-8)
941 mat->flags |= MAT_FLAG_UNIFORM_SCALE;
942 else
943 mat->flags |= MAT_FLAG_GENERAL_SCALE;
944
945 mat->flags |= (MAT_DIRTY_TYPE |
946 MAT_DIRTY_INVERSE);
947}
948
949
950void
951_math_matrix_translate( GLmatrix *mat, GLfloat x, GLfloat y, GLfloat z )
952{
953 GLfloat *m = mat->m;
954 m[12] = m[0] * x + m[4] * y + m[8] * z + m[12];
955 m[13] = m[1] * x + m[5] * y + m[9] * z + m[13];
956 m[14] = m[2] * x + m[6] * y + m[10] * z + m[14];
957 m[15] = m[3] * x + m[7] * y + m[11] * z + m[15];
958
959 mat->flags |= (MAT_FLAG_TRANSLATION |
960 MAT_DIRTY_TYPE |
961 MAT_DIRTY_INVERSE);
962}
963
964
965void
966_math_matrix_loadf( GLmatrix *mat, const GLfloat *m )
967{
968 MEMCPY( mat->m, m, 16*sizeof(GLfloat) );
969 mat->flags = (MAT_FLAG_GENERAL | MAT_DIRTY);
970}
971
972void
973_math_matrix_ctr( GLmatrix *m )
974{
975 if ( m->m == 0 ) {
976 m->m = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 );
977 }
978 MEMCPY( m->m, Identity, sizeof(Identity) );
979 m->inv = 0;
980 m->type = MATRIX_IDENTITY;
981 m->flags = 0;
982}
983
984void
985_math_matrix_dtr( GLmatrix *m )
986{
987 if ( m->m != 0 ) {
988 ALIGN_FREE( m->m );
989 m->m = 0;
990 }
991 if ( m->inv != 0 ) {
992 ALIGN_FREE( m->inv );
993 m->inv = 0;
994 }
995}
996
997
998void
999_math_matrix_alloc_inv( GLmatrix *m )
1000{
1001 if ( m->inv == 0 ) {
1002 m->inv = (GLfloat *) ALIGN_MALLOC( 16 * sizeof(GLfloat), 16 );
1003 MEMCPY( m->inv, Identity, 16 * sizeof(GLfloat) );
1004 }
1005}
1006
1007
1008void
1009_math_matrix_mul_matrix( GLmatrix *dest, const GLmatrix *a, const GLmatrix *b )
1010{
1011 dest->flags = (a->flags |
1012 b->flags |
1013 MAT_DIRTY_TYPE |
1014 MAT_DIRTY_INVERSE);
1015
1016 if (TEST_MAT_FLAGS(dest, MAT_FLAGS_3D))
1017 matmul34( dest->m, a->m, b->m );
1018 else
1019 matmul4( dest->m, a->m, b->m );
1020}
1021
1022
1023void
1024_math_matrix_mul_floats( GLmatrix *dest, const GLfloat *m )
1025{
1026 dest->flags |= (MAT_FLAG_GENERAL |
1027 MAT_DIRTY_TYPE |
1028 MAT_DIRTY_INVERSE);
1029
1030 matmul4( dest->m, dest->m, m );
1031}
1032
1033void
1034_math_matrix_set_identity( GLmatrix *mat )
1035{
1036 MEMCPY( mat->m, Identity, 16*sizeof(GLfloat) );
1037
1038 if (mat->inv)
1039 MEMCPY( mat->inv, Identity, 16*sizeof(GLfloat) );
1040
1041 mat->type = MATRIX_IDENTITY;
1042 mat->flags &= ~(MAT_DIRTY_FLAGS|
1043 MAT_DIRTY_TYPE|
1044 MAT_DIRTY_INVERSE);
1045}
1046
1047
1048
1049void
1050_math_transposef( GLfloat to[16], const GLfloat from[16] )
1051{
1052 to[0] = from[0];
1053 to[1] = from[4];
1054 to[2] = from[8];
1055 to[3] = from[12];
1056 to[4] = from[1];
1057 to[5] = from[5];
1058 to[6] = from[9];
1059 to[7] = from[13];
1060 to[8] = from[2];
1061 to[9] = from[6];
1062 to[10] = from[10];
1063 to[11] = from[14];
1064 to[12] = from[3];
1065 to[13] = from[7];
1066 to[14] = from[11];
1067 to[15] = from[15];
1068}
1069
1070
1071void
1072_math_transposed( GLdouble to[16], const GLdouble from[16] )
1073{
1074 to[0] = from[0];
1075 to[1] = from[4];
1076 to[2] = from[8];
1077 to[3] = from[12];
1078 to[4] = from[1];
1079 to[5] = from[5];
1080 to[6] = from[9];
1081 to[7] = from[13];
1082 to[8] = from[2];
1083 to[9] = from[6];
1084 to[10] = from[10];
1085 to[11] = from[14];
1086 to[12] = from[3];
1087 to[13] = from[7];
1088 to[14] = from[11];
1089 to[15] = from[15];
1090}
1091
1092void
1093_math_transposefd( GLfloat to[16], const GLdouble from[16] )
1094{
1095 to[0] = from[0];
1096 to[1] = from[4];
1097 to[2] = from[8];
1098 to[3] = from[12];
1099 to[4] = from[1];
1100 to[5] = from[5];
1101 to[6] = from[9];
1102 to[7] = from[13];
1103 to[8] = from[2];
1104 to[9] = from[6];
1105 to[10] = from[10];
1106 to[11] = from[14];
1107 to[12] = from[3];
1108 to[13] = from[7];
1109 to[14] = from[11];
1110 to[15] = from[15];
1111}