| /* $OpenBSD: key.c,v 1.97 2011/05/17 07:13:31 djm Exp $ */ |
| /* |
| * read_bignum(): |
| * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland |
| * |
| * As far as I am concerned, the code I have written for this software |
| * can be used freely for any purpose. Any derived versions of this |
| * software must be clearly marked as such, and if the derived work is |
| * incompatible with the protocol description in the RFC file, it must be |
| * called by a name other than "ssh" or "Secure Shell". |
| * |
| * |
| * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved. |
| * Copyright (c) 2008 Alexander von Gernler. All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions |
| * are met: |
| * 1. Redistributions of source code must retain the above copyright |
| * notice, this list of conditions and the following disclaimer. |
| * 2. Redistributions in binary form must reproduce the above copyright |
| * notice, this list of conditions and the following disclaimer in the |
| * documentation and/or other materials provided with the distribution. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| #include "includes.h" |
| |
| #include <sys/param.h> |
| #include <sys/types.h> |
| |
| #include <openssl/evp.h> |
| #include <openbsd-compat/openssl-compat.h> |
| |
| #include <stdarg.h> |
| #include <stdio.h> |
| #include <string.h> |
| |
| #include "xmalloc.h" |
| #include "key.h" |
| #include "rsa.h" |
| #include "uuencode.h" |
| #include "buffer.h" |
| #include "log.h" |
| #include "misc.h" |
| #include "ssh2.h" |
| |
| static struct KeyCert * |
| cert_new(void) |
| { |
| struct KeyCert *cert; |
| |
| cert = xcalloc(1, sizeof(*cert)); |
| buffer_init(&cert->certblob); |
| buffer_init(&cert->critical); |
| buffer_init(&cert->extensions); |
| cert->key_id = NULL; |
| cert->principals = NULL; |
| cert->signature_key = NULL; |
| return cert; |
| } |
| |
| Key * |
| key_new(int type) |
| { |
| Key *k; |
| RSA *rsa; |
| DSA *dsa; |
| k = xcalloc(1, sizeof(*k)); |
| k->type = type; |
| k->ecdsa = NULL; |
| k->ecdsa_nid = -1; |
| k->dsa = NULL; |
| k->rsa = NULL; |
| k->cert = NULL; |
| switch (k->type) { |
| case KEY_RSA1: |
| case KEY_RSA: |
| case KEY_RSA_CERT_V00: |
| case KEY_RSA_CERT: |
| if ((rsa = RSA_new()) == NULL) |
| fatal("key_new: RSA_new failed"); |
| if ((rsa->n = BN_new()) == NULL) |
| fatal("key_new: BN_new failed"); |
| if ((rsa->e = BN_new()) == NULL) |
| fatal("key_new: BN_new failed"); |
| k->rsa = rsa; |
| break; |
| case KEY_DSA: |
| case KEY_DSA_CERT_V00: |
| case KEY_DSA_CERT: |
| if ((dsa = DSA_new()) == NULL) |
| fatal("key_new: DSA_new failed"); |
| if ((dsa->p = BN_new()) == NULL) |
| fatal("key_new: BN_new failed"); |
| if ((dsa->q = BN_new()) == NULL) |
| fatal("key_new: BN_new failed"); |
| if ((dsa->g = BN_new()) == NULL) |
| fatal("key_new: BN_new failed"); |
| if ((dsa->pub_key = BN_new()) == NULL) |
| fatal("key_new: BN_new failed"); |
| k->dsa = dsa; |
| break; |
| #ifdef OPENSSL_HAS_ECC |
| case KEY_ECDSA: |
| case KEY_ECDSA_CERT: |
| /* Cannot do anything until we know the group */ |
| break; |
| #endif |
| case KEY_UNSPEC: |
| break; |
| default: |
| fatal("key_new: bad key type %d", k->type); |
| break; |
| } |
| |
| if (key_is_cert(k)) |
| k->cert = cert_new(); |
| |
| return k; |
| } |
| |
| void |
| key_add_private(Key *k) |
| { |
| switch (k->type) { |
| case KEY_RSA1: |
| case KEY_RSA: |
| case KEY_RSA_CERT_V00: |
| case KEY_RSA_CERT: |
| if ((k->rsa->d = BN_new()) == NULL) |
| fatal("key_new_private: BN_new failed"); |
| if ((k->rsa->iqmp = BN_new()) == NULL) |
| fatal("key_new_private: BN_new failed"); |
| if ((k->rsa->q = BN_new()) == NULL) |
| fatal("key_new_private: BN_new failed"); |
| if ((k->rsa->p = BN_new()) == NULL) |
| fatal("key_new_private: BN_new failed"); |
| if ((k->rsa->dmq1 = BN_new()) == NULL) |
| fatal("key_new_private: BN_new failed"); |
| if ((k->rsa->dmp1 = BN_new()) == NULL) |
| fatal("key_new_private: BN_new failed"); |
| break; |
| case KEY_DSA: |
| case KEY_DSA_CERT_V00: |
| case KEY_DSA_CERT: |
| if ((k->dsa->priv_key = BN_new()) == NULL) |
| fatal("key_new_private: BN_new failed"); |
| break; |
| case KEY_ECDSA: |
| case KEY_ECDSA_CERT: |
| /* Cannot do anything until we know the group */ |
| break; |
| case KEY_UNSPEC: |
| break; |
| default: |
| break; |
| } |
| } |
| |
| Key * |
| key_new_private(int type) |
| { |
| Key *k = key_new(type); |
| |
| key_add_private(k); |
| return k; |
| } |
| |
| static void |
| cert_free(struct KeyCert *cert) |
| { |
| u_int i; |
| |
| buffer_free(&cert->certblob); |
| buffer_free(&cert->critical); |
| buffer_free(&cert->extensions); |
| if (cert->key_id != NULL) |
| xfree(cert->key_id); |
| for (i = 0; i < cert->nprincipals; i++) |
| xfree(cert->principals[i]); |
| if (cert->principals != NULL) |
| xfree(cert->principals); |
| if (cert->signature_key != NULL) |
| key_free(cert->signature_key); |
| } |
| |
| void |
| key_free(Key *k) |
| { |
| if (k == NULL) |
| fatal("key_free: key is NULL"); |
| switch (k->type) { |
| case KEY_RSA1: |
| case KEY_RSA: |
| case KEY_RSA_CERT_V00: |
| case KEY_RSA_CERT: |
| if (k->rsa != NULL) |
| RSA_free(k->rsa); |
| k->rsa = NULL; |
| break; |
| case KEY_DSA: |
| case KEY_DSA_CERT_V00: |
| case KEY_DSA_CERT: |
| if (k->dsa != NULL) |
| DSA_free(k->dsa); |
| k->dsa = NULL; |
| break; |
| #ifdef OPENSSL_HAS_ECC |
| case KEY_ECDSA: |
| case KEY_ECDSA_CERT: |
| if (k->ecdsa != NULL) |
| EC_KEY_free(k->ecdsa); |
| k->ecdsa = NULL; |
| break; |
| #endif |
| case KEY_UNSPEC: |
| break; |
| default: |
| fatal("key_free: bad key type %d", k->type); |
| break; |
| } |
| if (key_is_cert(k)) { |
| if (k->cert != NULL) |
| cert_free(k->cert); |
| k->cert = NULL; |
| } |
| |
| xfree(k); |
| } |
| |
| static int |
| cert_compare(struct KeyCert *a, struct KeyCert *b) |
| { |
| if (a == NULL && b == NULL) |
| return 1; |
| if (a == NULL || b == NULL) |
| return 0; |
| if (buffer_len(&a->certblob) != buffer_len(&b->certblob)) |
| return 0; |
| if (timingsafe_bcmp(buffer_ptr(&a->certblob), buffer_ptr(&b->certblob), |
| buffer_len(&a->certblob)) != 0) |
| return 0; |
| return 1; |
| } |
| |
| /* |
| * Compare public portions of key only, allowing comparisons between |
| * certificates and plain keys too. |
| */ |
| int |
| key_equal_public(const Key *a, const Key *b) |
| { |
| #ifdef OPENSSL_HAS_ECC |
| BN_CTX *bnctx; |
| #endif |
| |
| if (a == NULL || b == NULL || |
| key_type_plain(a->type) != key_type_plain(b->type)) |
| return 0; |
| |
| switch (a->type) { |
| case KEY_RSA1: |
| case KEY_RSA_CERT_V00: |
| case KEY_RSA_CERT: |
| case KEY_RSA: |
| return a->rsa != NULL && b->rsa != NULL && |
| BN_cmp(a->rsa->e, b->rsa->e) == 0 && |
| BN_cmp(a->rsa->n, b->rsa->n) == 0; |
| case KEY_DSA_CERT_V00: |
| case KEY_DSA_CERT: |
| case KEY_DSA: |
| return a->dsa != NULL && b->dsa != NULL && |
| BN_cmp(a->dsa->p, b->dsa->p) == 0 && |
| BN_cmp(a->dsa->q, b->dsa->q) == 0 && |
| BN_cmp(a->dsa->g, b->dsa->g) == 0 && |
| BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0; |
| #ifdef OPENSSL_HAS_ECC |
| case KEY_ECDSA_CERT: |
| case KEY_ECDSA: |
| if (a->ecdsa == NULL || b->ecdsa == NULL || |
| EC_KEY_get0_public_key(a->ecdsa) == NULL || |
| EC_KEY_get0_public_key(b->ecdsa) == NULL) |
| return 0; |
| if ((bnctx = BN_CTX_new()) == NULL) |
| fatal("%s: BN_CTX_new failed", __func__); |
| if (EC_GROUP_cmp(EC_KEY_get0_group(a->ecdsa), |
| EC_KEY_get0_group(b->ecdsa), bnctx) != 0 || |
| EC_POINT_cmp(EC_KEY_get0_group(a->ecdsa), |
| EC_KEY_get0_public_key(a->ecdsa), |
| EC_KEY_get0_public_key(b->ecdsa), bnctx) != 0) { |
| BN_CTX_free(bnctx); |
| return 0; |
| } |
| BN_CTX_free(bnctx); |
| return 1; |
| #endif /* OPENSSL_HAS_ECC */ |
| default: |
| fatal("key_equal: bad key type %d", a->type); |
| } |
| /* NOTREACHED */ |
| } |
| |
| int |
| key_equal(const Key *a, const Key *b) |
| { |
| if (a == NULL || b == NULL || a->type != b->type) |
| return 0; |
| if (key_is_cert(a)) { |
| if (!cert_compare(a->cert, b->cert)) |
| return 0; |
| } |
| return key_equal_public(a, b); |
| } |
| |
| u_char* |
| key_fingerprint_raw(Key *k, enum fp_type dgst_type, u_int *dgst_raw_length) |
| { |
| const EVP_MD *md = NULL; |
| EVP_MD_CTX ctx; |
| u_char *blob = NULL; |
| u_char *retval = NULL; |
| u_int len = 0; |
| int nlen, elen, otype; |
| |
| *dgst_raw_length = 0; |
| |
| switch (dgst_type) { |
| case SSH_FP_MD5: |
| md = EVP_md5(); |
| break; |
| case SSH_FP_SHA1: |
| md = EVP_sha1(); |
| break; |
| default: |
| fatal("key_fingerprint_raw: bad digest type %d", |
| dgst_type); |
| } |
| switch (k->type) { |
| case KEY_RSA1: |
| nlen = BN_num_bytes(k->rsa->n); |
| elen = BN_num_bytes(k->rsa->e); |
| len = nlen + elen; |
| blob = xmalloc(len); |
| BN_bn2bin(k->rsa->n, blob); |
| BN_bn2bin(k->rsa->e, blob + nlen); |
| break; |
| case KEY_DSA: |
| case KEY_ECDSA: |
| case KEY_RSA: |
| key_to_blob(k, &blob, &len); |
| break; |
| case KEY_DSA_CERT_V00: |
| case KEY_RSA_CERT_V00: |
| case KEY_DSA_CERT: |
| case KEY_ECDSA_CERT: |
| case KEY_RSA_CERT: |
| /* We want a fingerprint of the _key_ not of the cert */ |
| otype = k->type; |
| k->type = key_type_plain(k->type); |
| key_to_blob(k, &blob, &len); |
| k->type = otype; |
| break; |
| case KEY_UNSPEC: |
| return retval; |
| default: |
| fatal("key_fingerprint_raw: bad key type %d", k->type); |
| break; |
| } |
| if (blob != NULL) { |
| retval = xmalloc(EVP_MAX_MD_SIZE); |
| EVP_DigestInit(&ctx, md); |
| EVP_DigestUpdate(&ctx, blob, len); |
| EVP_DigestFinal(&ctx, retval, dgst_raw_length); |
| memset(blob, 0, len); |
| xfree(blob); |
| } else { |
| fatal("key_fingerprint_raw: blob is null"); |
| } |
| return retval; |
| } |
| |
| static char * |
| key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len) |
| { |
| char *retval; |
| u_int i; |
| |
| retval = xcalloc(1, dgst_raw_len * 3 + 1); |
| for (i = 0; i < dgst_raw_len; i++) { |
| char hex[4]; |
| snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]); |
| strlcat(retval, hex, dgst_raw_len * 3 + 1); |
| } |
| |
| /* Remove the trailing ':' character */ |
| retval[(dgst_raw_len * 3) - 1] = '\0'; |
| return retval; |
| } |
| |
| static char * |
| key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len) |
| { |
| char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' }; |
| char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm', |
| 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' }; |
| u_int i, j = 0, rounds, seed = 1; |
| char *retval; |
| |
| rounds = (dgst_raw_len / 2) + 1; |
| retval = xcalloc((rounds * 6), sizeof(char)); |
| retval[j++] = 'x'; |
| for (i = 0; i < rounds; i++) { |
| u_int idx0, idx1, idx2, idx3, idx4; |
| if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) { |
| idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) + |
| seed) % 6; |
| idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15; |
| idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) + |
| (seed / 6)) % 6; |
| retval[j++] = vowels[idx0]; |
| retval[j++] = consonants[idx1]; |
| retval[j++] = vowels[idx2]; |
| if ((i + 1) < rounds) { |
| idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15; |
| idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15; |
| retval[j++] = consonants[idx3]; |
| retval[j++] = '-'; |
| retval[j++] = consonants[idx4]; |
| seed = ((seed * 5) + |
| ((((u_int)(dgst_raw[2 * i])) * 7) + |
| ((u_int)(dgst_raw[(2 * i) + 1])))) % 36; |
| } |
| } else { |
| idx0 = seed % 6; |
| idx1 = 16; |
| idx2 = seed / 6; |
| retval[j++] = vowels[idx0]; |
| retval[j++] = consonants[idx1]; |
| retval[j++] = vowels[idx2]; |
| } |
| } |
| retval[j++] = 'x'; |
| retval[j++] = '\0'; |
| return retval; |
| } |
| |
| /* |
| * Draw an ASCII-Art representing the fingerprint so human brain can |
| * profit from its built-in pattern recognition ability. |
| * This technique is called "random art" and can be found in some |
| * scientific publications like this original paper: |
| * |
| * "Hash Visualization: a New Technique to improve Real-World Security", |
| * Perrig A. and Song D., 1999, International Workshop on Cryptographic |
| * Techniques and E-Commerce (CrypTEC '99) |
| * sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf |
| * |
| * The subject came up in a talk by Dan Kaminsky, too. |
| * |
| * If you see the picture is different, the key is different. |
| * If the picture looks the same, you still know nothing. |
| * |
| * The algorithm used here is a worm crawling over a discrete plane, |
| * leaving a trace (augmenting the field) everywhere it goes. |
| * Movement is taken from dgst_raw 2bit-wise. Bumping into walls |
| * makes the respective movement vector be ignored for this turn. |
| * Graphs are not unambiguous, because circles in graphs can be |
| * walked in either direction. |
| */ |
| |
| /* |
| * Field sizes for the random art. Have to be odd, so the starting point |
| * can be in the exact middle of the picture, and FLDBASE should be >=8 . |
| * Else pictures would be too dense, and drawing the frame would |
| * fail, too, because the key type would not fit in anymore. |
| */ |
| #define FLDBASE 8 |
| #define FLDSIZE_Y (FLDBASE + 1) |
| #define FLDSIZE_X (FLDBASE * 2 + 1) |
| static char * |
| key_fingerprint_randomart(u_char *dgst_raw, u_int dgst_raw_len, const Key *k) |
| { |
| /* |
| * Chars to be used after each other every time the worm |
| * intersects with itself. Matter of taste. |
| */ |
| char *augmentation_string = " .o+=*BOX@%&#/^SE"; |
| char *retval, *p; |
| u_char field[FLDSIZE_X][FLDSIZE_Y]; |
| u_int i, b; |
| int x, y; |
| size_t len = strlen(augmentation_string) - 1; |
| |
| retval = xcalloc(1, (FLDSIZE_X + 3) * (FLDSIZE_Y + 2)); |
| |
| /* initialize field */ |
| memset(field, 0, FLDSIZE_X * FLDSIZE_Y * sizeof(char)); |
| x = FLDSIZE_X / 2; |
| y = FLDSIZE_Y / 2; |
| |
| /* process raw key */ |
| for (i = 0; i < dgst_raw_len; i++) { |
| int input; |
| /* each byte conveys four 2-bit move commands */ |
| input = dgst_raw[i]; |
| for (b = 0; b < 4; b++) { |
| /* evaluate 2 bit, rest is shifted later */ |
| x += (input & 0x1) ? 1 : -1; |
| y += (input & 0x2) ? 1 : -1; |
| |
| /* assure we are still in bounds */ |
| x = MAX(x, 0); |
| y = MAX(y, 0); |
| x = MIN(x, FLDSIZE_X - 1); |
| y = MIN(y, FLDSIZE_Y - 1); |
| |
| /* augment the field */ |
| if (field[x][y] < len - 2) |
| field[x][y]++; |
| input = input >> 2; |
| } |
| } |
| |
| /* mark starting point and end point*/ |
| field[FLDSIZE_X / 2][FLDSIZE_Y / 2] = len - 1; |
| field[x][y] = len; |
| |
| /* fill in retval */ |
| snprintf(retval, FLDSIZE_X, "+--[%4s %4u]", key_type(k), key_size(k)); |
| p = strchr(retval, '\0'); |
| |
| /* output upper border */ |
| for (i = p - retval - 1; i < FLDSIZE_X; i++) |
| *p++ = '-'; |
| *p++ = '+'; |
| *p++ = '\n'; |
| |
| /* output content */ |
| for (y = 0; y < FLDSIZE_Y; y++) { |
| *p++ = '|'; |
| for (x = 0; x < FLDSIZE_X; x++) |
| *p++ = augmentation_string[MIN(field[x][y], len)]; |
| *p++ = '|'; |
| *p++ = '\n'; |
| } |
| |
| /* output lower border */ |
| *p++ = '+'; |
| for (i = 0; i < FLDSIZE_X; i++) |
| *p++ = '-'; |
| *p++ = '+'; |
| |
| return retval; |
| } |
| |
| char * |
| key_fingerprint(Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep) |
| { |
| char *retval = NULL; |
| u_char *dgst_raw; |
| u_int dgst_raw_len; |
| |
| dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len); |
| if (!dgst_raw) |
| fatal("key_fingerprint: null from key_fingerprint_raw()"); |
| switch (dgst_rep) { |
| case SSH_FP_HEX: |
| retval = key_fingerprint_hex(dgst_raw, dgst_raw_len); |
| break; |
| case SSH_FP_BUBBLEBABBLE: |
| retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len); |
| break; |
| case SSH_FP_RANDOMART: |
| retval = key_fingerprint_randomart(dgst_raw, dgst_raw_len, k); |
| break; |
| default: |
| fatal("key_fingerprint: bad digest representation %d", |
| dgst_rep); |
| break; |
| } |
| memset(dgst_raw, 0, dgst_raw_len); |
| xfree(dgst_raw); |
| return retval; |
| } |
| |
| /* |
| * Reads a multiple-precision integer in decimal from the buffer, and advances |
| * the pointer. The integer must already be initialized. This function is |
| * permitted to modify the buffer. This leaves *cpp to point just beyond the |
| * last processed (and maybe modified) character. Note that this may modify |
| * the buffer containing the number. |
| */ |
| static int |
| read_bignum(char **cpp, BIGNUM * value) |
| { |
| char *cp = *cpp; |
| int old; |
| |
| /* Skip any leading whitespace. */ |
| for (; *cp == ' ' || *cp == '\t'; cp++) |
| ; |
| |
| /* Check that it begins with a decimal digit. */ |
| if (*cp < '0' || *cp > '9') |
| return 0; |
| |
| /* Save starting position. */ |
| *cpp = cp; |
| |
| /* Move forward until all decimal digits skipped. */ |
| for (; *cp >= '0' && *cp <= '9'; cp++) |
| ; |
| |
| /* Save the old terminating character, and replace it by \0. */ |
| old = *cp; |
| *cp = 0; |
| |
| /* Parse the number. */ |
| if (BN_dec2bn(&value, *cpp) == 0) |
| return 0; |
| |
| /* Restore old terminating character. */ |
| *cp = old; |
| |
| /* Move beyond the number and return success. */ |
| *cpp = cp; |
| return 1; |
| } |
| |
| static int |
| write_bignum(FILE *f, BIGNUM *num) |
| { |
| char *buf = BN_bn2dec(num); |
| if (buf == NULL) { |
| error("write_bignum: BN_bn2dec() failed"); |
| return 0; |
| } |
| fprintf(f, " %s", buf); |
| OPENSSL_free(buf); |
| return 1; |
| } |
| |
| /* returns 1 ok, -1 error */ |
| int |
| key_read(Key *ret, char **cpp) |
| { |
| Key *k; |
| int success = -1; |
| char *cp, *space; |
| int len, n, type; |
| u_int bits; |
| u_char *blob; |
| #ifdef OPENSSL_HAS_ECC |
| int curve_nid = -1; |
| #endif |
| |
| cp = *cpp; |
| |
| switch (ret->type) { |
| case KEY_RSA1: |
| /* Get number of bits. */ |
| if (*cp < '0' || *cp > '9') |
| return -1; /* Bad bit count... */ |
| for (bits = 0; *cp >= '0' && *cp <= '9'; cp++) |
| bits = 10 * bits + *cp - '0'; |
| if (bits == 0) |
| return -1; |
| *cpp = cp; |
| /* Get public exponent, public modulus. */ |
| if (!read_bignum(cpp, ret->rsa->e)) |
| return -1; |
| if (!read_bignum(cpp, ret->rsa->n)) |
| return -1; |
| /* validate the claimed number of bits */ |
| if ((u_int)BN_num_bits(ret->rsa->n) != bits) { |
| verbose("key_read: claimed key size %d does not match " |
| "actual %d", bits, BN_num_bits(ret->rsa->n)); |
| return -1; |
| } |
| success = 1; |
| break; |
| case KEY_UNSPEC: |
| case KEY_RSA: |
| case KEY_DSA: |
| case KEY_ECDSA: |
| case KEY_DSA_CERT_V00: |
| case KEY_RSA_CERT_V00: |
| case KEY_DSA_CERT: |
| case KEY_ECDSA_CERT: |
| case KEY_RSA_CERT: |
| space = strchr(cp, ' '); |
| if (space == NULL) { |
| debug3("key_read: missing whitespace"); |
| return -1; |
| } |
| *space = '\0'; |
| type = key_type_from_name(cp); |
| #ifdef OPENSSL_HAS_ECC |
| if (key_type_plain(type) == KEY_ECDSA && |
| (curve_nid = key_ecdsa_nid_from_name(cp)) == -1) { |
| debug("key_read: invalid curve"); |
| return -1; |
| } |
| #endif |
| *space = ' '; |
| if (type == KEY_UNSPEC) { |
| debug3("key_read: missing keytype"); |
| return -1; |
| } |
| cp = space+1; |
| if (*cp == '\0') { |
| debug3("key_read: short string"); |
| return -1; |
| } |
| if (ret->type == KEY_UNSPEC) { |
| ret->type = type; |
| } else if (ret->type != type) { |
| /* is a key, but different type */ |
| debug3("key_read: type mismatch"); |
| return -1; |
| } |
| len = 2*strlen(cp); |
| blob = xmalloc(len); |
| n = uudecode(cp, blob, len); |
| if (n < 0) { |
| error("key_read: uudecode %s failed", cp); |
| xfree(blob); |
| return -1; |
| } |
| k = key_from_blob(blob, (u_int)n); |
| xfree(blob); |
| if (k == NULL) { |
| error("key_read: key_from_blob %s failed", cp); |
| return -1; |
| } |
| if (k->type != type) { |
| error("key_read: type mismatch: encoding error"); |
| key_free(k); |
| return -1; |
| } |
| #ifdef OPENSSL_HAS_ECC |
| if (key_type_plain(type) == KEY_ECDSA && |
| curve_nid != k->ecdsa_nid) { |
| error("key_read: type mismatch: EC curve mismatch"); |
| key_free(k); |
| return -1; |
| } |
| #endif |
| /*XXXX*/ |
| if (key_is_cert(ret)) { |
| if (!key_is_cert(k)) { |
| error("key_read: loaded key is not a cert"); |
| key_free(k); |
| return -1; |
| } |
| if (ret->cert != NULL) |
| cert_free(ret->cert); |
| ret->cert = k->cert; |
| k->cert = NULL; |
| } |
| if (key_type_plain(ret->type) == KEY_RSA) { |
| if (ret->rsa != NULL) |
| RSA_free(ret->rsa); |
| ret->rsa = k->rsa; |
| k->rsa = NULL; |
| #ifdef DEBUG_PK |
| RSA_print_fp(stderr, ret->rsa, 8); |
| #endif |
| } |
| if (key_type_plain(ret->type) == KEY_DSA) { |
| if (ret->dsa != NULL) |
| DSA_free(ret->dsa); |
| ret->dsa = k->dsa; |
| k->dsa = NULL; |
| #ifdef DEBUG_PK |
| DSA_print_fp(stderr, ret->dsa, 8); |
| #endif |
| } |
| #ifdef OPENSSL_HAS_ECC |
| if (key_type_plain(ret->type) == KEY_ECDSA) { |
| if (ret->ecdsa != NULL) |
| EC_KEY_free(ret->ecdsa); |
| ret->ecdsa = k->ecdsa; |
| ret->ecdsa_nid = k->ecdsa_nid; |
| k->ecdsa = NULL; |
| k->ecdsa_nid = -1; |
| #ifdef DEBUG_PK |
| key_dump_ec_key(ret->ecdsa); |
| #endif |
| } |
| #endif |
| success = 1; |
| /*XXXX*/ |
| key_free(k); |
| if (success != 1) |
| break; |
| /* advance cp: skip whitespace and data */ |
| while (*cp == ' ' || *cp == '\t') |
| cp++; |
| while (*cp != '\0' && *cp != ' ' && *cp != '\t') |
| cp++; |
| *cpp = cp; |
| break; |
| default: |
| fatal("key_read: bad key type: %d", ret->type); |
| break; |
| } |
| return success; |
| } |
| |
| int |
| key_write(const Key *key, FILE *f) |
| { |
| int n, success = 0; |
| u_int len, bits = 0; |
| u_char *blob; |
| char *uu; |
| |
| if (key_is_cert(key)) { |
| if (key->cert == NULL) { |
| error("%s: no cert data", __func__); |
| return 0; |
| } |
| if (buffer_len(&key->cert->certblob) == 0) { |
| error("%s: no signed certificate blob", __func__); |
| return 0; |
| } |
| } |
| |
| switch (key->type) { |
| case KEY_RSA1: |
| if (key->rsa == NULL) |
| return 0; |
| /* size of modulus 'n' */ |
| bits = BN_num_bits(key->rsa->n); |
| fprintf(f, "%u", bits); |
| if (write_bignum(f, key->rsa->e) && |
| write_bignum(f, key->rsa->n)) |
| return 1; |
| error("key_write: failed for RSA key"); |
| return 0; |
| case KEY_DSA: |
| case KEY_DSA_CERT_V00: |
| case KEY_DSA_CERT: |
| if (key->dsa == NULL) |
| return 0; |
| break; |
| #ifdef OPENSSL_HAS_ECC |
| case KEY_ECDSA: |
| case KEY_ECDSA_CERT: |
| if (key->ecdsa == NULL) |
| return 0; |
| break; |
| #endif |
| case KEY_RSA: |
| case KEY_RSA_CERT_V00: |
| case KEY_RSA_CERT: |
| if (key->rsa == NULL) |
| return 0; |
| break; |
| default: |
| return 0; |
| } |
| |
| key_to_blob(key, &blob, &len); |
| uu = xmalloc(2*len); |
| n = uuencode(blob, len, uu, 2*len); |
| if (n > 0) { |
| fprintf(f, "%s %s", key_ssh_name(key), uu); |
| success = 1; |
| } |
| xfree(blob); |
| xfree(uu); |
| |
| return success; |
| } |
| |
| const char * |
| key_type(const Key *k) |
| { |
| switch (k->type) { |
| case KEY_RSA1: |
| return "RSA1"; |
| case KEY_RSA: |
| return "RSA"; |
| case KEY_DSA: |
| return "DSA"; |
| #ifdef OPENSSL_HAS_ECC |
| case KEY_ECDSA: |
| return "ECDSA"; |
| #endif |
| case KEY_RSA_CERT_V00: |
| return "RSA-CERT-V00"; |
| case KEY_DSA_CERT_V00: |
| return "DSA-CERT-V00"; |
| case KEY_RSA_CERT: |
| return "RSA-CERT"; |
| case KEY_DSA_CERT: |
| return "DSA-CERT"; |
| #ifdef OPENSSL_HAS_ECC |
| case KEY_ECDSA_CERT: |
| return "ECDSA-CERT"; |
| #endif |
| } |
| return "unknown"; |
| } |
| |
| const char * |
| key_cert_type(const Key *k) |
| { |
| switch (k->cert->type) { |
| case SSH2_CERT_TYPE_USER: |
| return "user"; |
| case SSH2_CERT_TYPE_HOST: |
| return "host"; |
| default: |
| return "unknown"; |
| } |
| } |
| |
| static const char * |
| key_ssh_name_from_type_nid(int type, int nid) |
| { |
| switch (type) { |
| case KEY_RSA: |
| return "ssh-rsa"; |
| case KEY_DSA: |
| return "ssh-dss"; |
| case KEY_RSA_CERT_V00: |
| return "ssh-rsa-cert-v00@openssh.com"; |
| case KEY_DSA_CERT_V00: |
| return "ssh-dss-cert-v00@openssh.com"; |
| case KEY_RSA_CERT: |
| return "ssh-rsa-cert-v01@openssh.com"; |
| case KEY_DSA_CERT: |
| return "ssh-dss-cert-v01@openssh.com"; |
| #ifdef OPENSSL_HAS_ECC |
| case KEY_ECDSA: |
| switch (nid) { |
| case NID_X9_62_prime256v1: |
| return "ecdsa-sha2-nistp256"; |
| case NID_secp384r1: |
| return "ecdsa-sha2-nistp384"; |
| case NID_secp521r1: |
| return "ecdsa-sha2-nistp521"; |
| default: |
| break; |
| } |
| break; |
| case KEY_ECDSA_CERT: |
| switch (nid) { |
| case NID_X9_62_prime256v1: |
| return "ecdsa-sha2-nistp256-cert-v01@openssh.com"; |
| case NID_secp384r1: |
| return "ecdsa-sha2-nistp384-cert-v01@openssh.com"; |
| case NID_secp521r1: |
| return "ecdsa-sha2-nistp521-cert-v01@openssh.com"; |
| default: |
| break; |
| } |
| break; |
| #endif /* OPENSSL_HAS_ECC */ |
| } |
| return "ssh-unknown"; |
| } |
| |
| const char * |
| key_ssh_name(const Key *k) |
| { |
| return key_ssh_name_from_type_nid(k->type, k->ecdsa_nid); |
| } |
| |
| const char * |
| key_ssh_name_plain(const Key *k) |
| { |
| return key_ssh_name_from_type_nid(key_type_plain(k->type), |
| k->ecdsa_nid); |
| } |
| |
| u_int |
| key_size(const Key *k) |
| { |
| switch (k->type) { |
| case KEY_RSA1: |
| case KEY_RSA: |
| case KEY_RSA_CERT_V00: |
| case KEY_RSA_CERT: |
| return BN_num_bits(k->rsa->n); |
| case KEY_DSA: |
| case KEY_DSA_CERT_V00: |
| case KEY_DSA_CERT: |
| return BN_num_bits(k->dsa->p); |
| #ifdef OPENSSL_HAS_ECC |
| case KEY_ECDSA: |
| case KEY_ECDSA_CERT: |
| return key_curve_nid_to_bits(k->ecdsa_nid); |
| #endif |
| } |
| return 0; |
| } |
| |
| static RSA * |
| rsa_generate_private_key(u_int bits) |
| { |
| RSA *private = RSA_new(); |
| BIGNUM *f4 = BN_new(); |
| |
| if (private == NULL) |
| fatal("%s: RSA_new failed", __func__); |
| if (f4 == NULL) |
| fatal("%s: BN_new failed", __func__); |
| if (!BN_set_word(f4, RSA_F4)) |
| fatal("%s: BN_new failed", __func__); |
| if (!RSA_generate_key_ex(private, bits, f4, NULL)) |
| fatal("%s: key generation failed.", __func__); |
| BN_free(f4); |
| return private; |
| } |
| |
| static DSA* |
| dsa_generate_private_key(u_int bits) |
| { |
| DSA *private = DSA_new(); |
| |
| if (private == NULL) |
| fatal("%s: DSA_new failed", __func__); |
| if (!DSA_generate_parameters_ex(private, bits, NULL, 0, NULL, |
| NULL, NULL)) |
| fatal("%s: DSA_generate_parameters failed", __func__); |
| if (!DSA_generate_key(private)) |
| fatal("%s: DSA_generate_key failed.", __func__); |
| return private; |
| } |
| |
| int |
| key_ecdsa_bits_to_nid(int bits) |
| { |
| switch (bits) { |
| #ifdef OPENSSL_HAS_ECC |
| case 256: |
| return NID_X9_62_prime256v1; |
| case 384: |
| return NID_secp384r1; |
| case 521: |
| return NID_secp521r1; |
| #endif |
| default: |
| return -1; |
| } |
| } |
| |
| #ifdef OPENSSL_HAS_ECC |
| int |
| key_ecdsa_key_to_nid(EC_KEY *k) |
| { |
| EC_GROUP *eg; |
| int nids[] = { |
| NID_X9_62_prime256v1, |
| NID_secp384r1, |
| NID_secp521r1, |
| -1 |
| }; |
| int nid; |
| u_int i; |
| BN_CTX *bnctx; |
| const EC_GROUP *g = EC_KEY_get0_group(k); |
| |
| /* |
| * The group may be stored in a ASN.1 encoded private key in one of two |
| * ways: as a "named group", which is reconstituted by ASN.1 object ID |
| * or explicit group parameters encoded into the key blob. Only the |
| * "named group" case sets the group NID for us, but we can figure |
| * it out for the other case by comparing against all the groups that |
| * are supported. |
| */ |
| if ((nid = EC_GROUP_get_curve_name(g)) > 0) |
| return nid; |
| if ((bnctx = BN_CTX_new()) == NULL) |
| fatal("%s: BN_CTX_new() failed", __func__); |
| for (i = 0; nids[i] != -1; i++) { |
| if ((eg = EC_GROUP_new_by_curve_name(nids[i])) == NULL) |
| fatal("%s: EC_GROUP_new_by_curve_name failed", |
| __func__); |
| if (EC_GROUP_cmp(g, eg, bnctx) == 0) |
| break; |
| EC_GROUP_free(eg); |
| } |
| BN_CTX_free(bnctx); |
| debug3("%s: nid = %d", __func__, nids[i]); |
| if (nids[i] != -1) { |
| /* Use the group with the NID attached */ |
| EC_GROUP_set_asn1_flag(eg, OPENSSL_EC_NAMED_CURVE); |
| if (EC_KEY_set_group(k, eg) != 1) |
| fatal("%s: EC_KEY_set_group", __func__); |
| } |
| return nids[i]; |
| } |
| |
| static EC_KEY* |
| ecdsa_generate_private_key(u_int bits, int *nid) |
| { |
| EC_KEY *private; |
| |
| if ((*nid = key_ecdsa_bits_to_nid(bits)) == -1) |
| fatal("%s: invalid key length", __func__); |
| if ((private = EC_KEY_new_by_curve_name(*nid)) == NULL) |
| fatal("%s: EC_KEY_new_by_curve_name failed", __func__); |
| if (EC_KEY_generate_key(private) != 1) |
| fatal("%s: EC_KEY_generate_key failed", __func__); |
| EC_KEY_set_asn1_flag(private, OPENSSL_EC_NAMED_CURVE); |
| return private; |
| } |
| #endif /* OPENSSL_HAS_ECC */ |
| |
| Key * |
| key_generate(int type, u_int bits) |
| { |
| Key *k = key_new(KEY_UNSPEC); |
| switch (type) { |
| case KEY_DSA: |
| k->dsa = dsa_generate_private_key(bits); |
| break; |
| #ifdef OPENSSL_HAS_ECC |
| case KEY_ECDSA: |
| k->ecdsa = ecdsa_generate_private_key(bits, &k->ecdsa_nid); |
| break; |
| #endif |
| case KEY_RSA: |
| case KEY_RSA1: |
| k->rsa = rsa_generate_private_key(bits); |
| break; |
| case KEY_RSA_CERT_V00: |
| case KEY_DSA_CERT_V00: |
| case KEY_RSA_CERT: |
| case KEY_DSA_CERT: |
| fatal("key_generate: cert keys cannot be generated directly"); |
| default: |
| fatal("key_generate: unknown type %d", type); |
| } |
| k->type = type; |
| return k; |
| } |
| |
| void |
| key_cert_copy(const Key *from_key, struct Key *to_key) |
| { |
| u_int i; |
| const struct KeyCert *from; |
| struct KeyCert *to; |
| |
| if (to_key->cert != NULL) { |
| cert_free(to_key->cert); |
| to_key->cert = NULL; |
| } |
| |
| if ((from = from_key->cert) == NULL) |
| return; |
| |
| to = to_key->cert = cert_new(); |
| |
| buffer_append(&to->certblob, buffer_ptr(&from->certblob), |
| buffer_len(&from->certblob)); |
| |
| buffer_append(&to->critical, |
| buffer_ptr(&from->critical), buffer_len(&from->critical)); |
| buffer_append(&to->extensions, |
| buffer_ptr(&from->extensions), buffer_len(&from->extensions)); |
| |
| to->serial = from->serial; |
| to->type = from->type; |
| to->key_id = from->key_id == NULL ? NULL : xstrdup(from->key_id); |
| to->valid_after = from->valid_after; |
| to->valid_before = from->valid_before; |
| to->signature_key = from->signature_key == NULL ? |
| NULL : key_from_private(from->signature_key); |
| |
| to->nprincipals = from->nprincipals; |
| if (to->nprincipals > CERT_MAX_PRINCIPALS) |
| fatal("%s: nprincipals (%u) > CERT_MAX_PRINCIPALS (%u)", |
| __func__, to->nprincipals, CERT_MAX_PRINCIPALS); |
| if (to->nprincipals > 0) { |
| to->principals = xcalloc(from->nprincipals, |
| sizeof(*to->principals)); |
| for (i = 0; i < to->nprincipals; i++) |
| to->principals[i] = xstrdup(from->principals[i]); |
| } |
| } |
| |
| Key * |
| key_from_private(const Key *k) |
| { |
| Key *n = NULL; |
| switch (k->type) { |
| case KEY_DSA: |
| case KEY_DSA_CERT_V00: |
| case KEY_DSA_CERT: |
| n = key_new(k->type); |
| if ((BN_copy(n->dsa->p, k->dsa->p) == NULL) || |
| (BN_copy(n->dsa->q, k->dsa->q) == NULL) || |
| (BN_copy(n->dsa->g, k->dsa->g) == NULL) || |
| (BN_copy(n->dsa->pub_key, k->dsa->pub_key) == NULL)) |
| fatal("key_from_private: BN_copy failed"); |
| break; |
| #ifdef OPENSSL_HAS_ECC |
| case KEY_ECDSA: |
| case KEY_ECDSA_CERT: |
| n = key_new(k->type); |
| n->ecdsa_nid = k->ecdsa_nid; |
| if ((n->ecdsa = EC_KEY_new_by_curve_name(k->ecdsa_nid)) == NULL) |
| fatal("%s: EC_KEY_new_by_curve_name failed", __func__); |
| if (EC_KEY_set_public_key(n->ecdsa, |
| EC_KEY_get0_public_key(k->ecdsa)) != 1) |
| fatal("%s: EC_KEY_set_public_key failed", __func__); |
| break; |
| #endif |
| case KEY_RSA: |
| case KEY_RSA1: |
| case KEY_RSA_CERT_V00: |
| case KEY_RSA_CERT: |
| n = key_new(k->type); |
| if ((BN_copy(n->rsa->n, k->rsa->n) == NULL) || |
| (BN_copy(n->rsa->e, k->rsa->e) == NULL)) |
| fatal("key_from_private: BN_copy failed"); |
| break; |
| default: |
| fatal("key_from_private: unknown type %d", k->type); |
| break; |
| } |
| if (key_is_cert(k)) |
| key_cert_copy(k, n); |
| return n; |
| } |
| |
| int |
| key_type_from_name(char *name) |
| { |
| if (strcmp(name, "rsa1") == 0) { |
| return KEY_RSA1; |
| } else if (strcmp(name, "rsa") == 0) { |
| return KEY_RSA; |
| } else if (strcmp(name, "dsa") == 0) { |
| return KEY_DSA; |
| } else if (strcmp(name, "ssh-rsa") == 0) { |
| return KEY_RSA; |
| } else if (strcmp(name, "ssh-dss") == 0) { |
| return KEY_DSA; |
| #ifdef OPENSSL_HAS_ECC |
| } else if (strcmp(name, "ecdsa") == 0 || |
| strcmp(name, "ecdsa-sha2-nistp256") == 0 || |
| strcmp(name, "ecdsa-sha2-nistp384") == 0 || |
| strcmp(name, "ecdsa-sha2-nistp521") == 0) { |
| return KEY_ECDSA; |
| #endif |
| } else if (strcmp(name, "ssh-rsa-cert-v00@openssh.com") == 0) { |
| return KEY_RSA_CERT_V00; |
| } else if (strcmp(name, "ssh-dss-cert-v00@openssh.com") == 0) { |
| return KEY_DSA_CERT_V00; |
| } else if (strcmp(name, "ssh-rsa-cert-v01@openssh.com") == 0) { |
| return KEY_RSA_CERT; |
| } else if (strcmp(name, "ssh-dss-cert-v01@openssh.com") == 0) { |
| return KEY_DSA_CERT; |
| #ifdef OPENSSL_HAS_ECC |
| } else if (strcmp(name, "ecdsa-sha2-nistp256-cert-v01@openssh.com") == 0 || |
| strcmp(name, "ecdsa-sha2-nistp384-cert-v01@openssh.com") == 0 || |
| strcmp(name, "ecdsa-sha2-nistp521-cert-v01@openssh.com") == 0) { |
| return KEY_ECDSA_CERT; |
| #endif |
| } |
| |
| debug2("key_type_from_name: unknown key type '%s'", name); |
| return KEY_UNSPEC; |
| } |
| |
| int |
| key_ecdsa_nid_from_name(const char *name) |
| { |
| #ifdef OPENSSL_HAS_ECC |
| if (strcmp(name, "ecdsa-sha2-nistp256") == 0 || |
| strcmp(name, "ecdsa-sha2-nistp256-cert-v01@openssh.com") == 0) |
| return NID_X9_62_prime256v1; |
| if (strcmp(name, "ecdsa-sha2-nistp384") == 0 || |
| strcmp(name, "ecdsa-sha2-nistp384-cert-v01@openssh.com") == 0) |
| return NID_secp384r1; |
| if (strcmp(name, "ecdsa-sha2-nistp521") == 0 || |
| strcmp(name, "ecdsa-sha2-nistp521-cert-v01@openssh.com") == 0) |
| return NID_secp521r1; |
| #endif /* OPENSSL_HAS_ECC */ |
| |
| debug2("%s: unknown/non-ECDSA key type '%s'", __func__, name); |
| return -1; |
| } |
| |
| int |
| key_names_valid2(const char *names) |
| { |
| char *s, *cp, *p; |
| |
| if (names == NULL || strcmp(names, "") == 0) |
| return 0; |
| s = cp = xstrdup(names); |
| for ((p = strsep(&cp, ",")); p && *p != '\0'; |
| (p = strsep(&cp, ","))) { |
| switch (key_type_from_name(p)) { |
| case KEY_RSA1: |
| case KEY_UNSPEC: |
| xfree(s); |
| return 0; |
| } |
| } |
| debug3("key names ok: [%s]", names); |
| xfree(s); |
| return 1; |
| } |
| |
| static int |
| cert_parse(Buffer *b, Key *key, const u_char *blob, u_int blen) |
| { |
| u_char *principals, *critical, *exts, *sig_key, *sig; |
| u_int signed_len, plen, clen, sklen, slen, kidlen, elen; |
| Buffer tmp; |
| char *principal; |
| int ret = -1; |
| int v00 = key->type == KEY_DSA_CERT_V00 || |
| key->type == KEY_RSA_CERT_V00; |
| |
| buffer_init(&tmp); |
| |
| /* Copy the entire key blob for verification and later serialisation */ |
| buffer_append(&key->cert->certblob, blob, blen); |
| |
| elen = 0; /* Not touched for v00 certs */ |
| principals = exts = critical = sig_key = sig = NULL; |
| if ((!v00 && buffer_get_int64_ret(&key->cert->serial, b) != 0) || |
| buffer_get_int_ret(&key->cert->type, b) != 0 || |
| (key->cert->key_id = buffer_get_cstring_ret(b, &kidlen)) == NULL || |
| (principals = buffer_get_string_ret(b, &plen)) == NULL || |
| buffer_get_int64_ret(&key->cert->valid_after, b) != 0 || |
| buffer_get_int64_ret(&key->cert->valid_before, b) != 0 || |
| (critical = buffer_get_string_ret(b, &clen)) == NULL || |
| (!v00 && (exts = buffer_get_string_ret(b, &elen)) == NULL) || |
| (v00 && buffer_get_string_ptr_ret(b, NULL) == NULL) || /* nonce */ |
| buffer_get_string_ptr_ret(b, NULL) == NULL || /* reserved */ |
| (sig_key = buffer_get_string_ret(b, &sklen)) == NULL) { |
| error("%s: parse error", __func__); |
| goto out; |
| } |
| |
| if (kidlen != strlen(key->cert->key_id)) { |
| error("%s: key ID contains \\0 character", __func__); |
| goto out; |
| } |
| |
| /* Signature is left in the buffer so we can calculate this length */ |
| signed_len = buffer_len(&key->cert->certblob) - buffer_len(b); |
| |
| if ((sig = buffer_get_string_ret(b, &slen)) == NULL) { |
| error("%s: parse error", __func__); |
| goto out; |
| } |
| |
| if (key->cert->type != SSH2_CERT_TYPE_USER && |
| key->cert->type != SSH2_CERT_TYPE_HOST) { |
| error("Unknown certificate type %u", key->cert->type); |
| goto out; |
| } |
| |
| buffer_append(&tmp, principals, plen); |
| while (buffer_len(&tmp) > 0) { |
| if (key->cert->nprincipals >= CERT_MAX_PRINCIPALS) { |
| error("%s: Too many principals", __func__); |
| goto out; |
| } |
| if ((principal = buffer_get_cstring_ret(&tmp, &plen)) == NULL) { |
| error("%s: Principals data invalid", __func__); |
| goto out; |
| } |
| key->cert->principals = xrealloc(key->cert->principals, |
| key->cert->nprincipals + 1, sizeof(*key->cert->principals)); |
| key->cert->principals[key->cert->nprincipals++] = principal; |
| } |
| |
| buffer_clear(&tmp); |
| |
| buffer_append(&key->cert->critical, critical, clen); |
| buffer_append(&tmp, critical, clen); |
| /* validate structure */ |
| while (buffer_len(&tmp) != 0) { |
| if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL || |
| buffer_get_string_ptr_ret(&tmp, NULL) == NULL) { |
| error("%s: critical option data invalid", __func__); |
| goto out; |
| } |
| } |
| buffer_clear(&tmp); |
| |
| buffer_append(&key->cert->extensions, exts, elen); |
| buffer_append(&tmp, exts, elen); |
| /* validate structure */ |
| while (buffer_len(&tmp) != 0) { |
| if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL || |
| buffer_get_string_ptr_ret(&tmp, NULL) == NULL) { |
| error("%s: extension data invalid", __func__); |
| goto out; |
| } |
| } |
| buffer_clear(&tmp); |
| |
| if ((key->cert->signature_key = key_from_blob(sig_key, |
| sklen)) == NULL) { |
| error("%s: Signature key invalid", __func__); |
| goto out; |
| } |
| if (key->cert->signature_key->type != KEY_RSA && |
| key->cert->signature_key->type != KEY_DSA && |
| key->cert->signature_key->type != KEY_ECDSA) { |
| error("%s: Invalid signature key type %s (%d)", __func__, |
| key_type(key->cert->signature_key), |
| key->cert->signature_key->type); |
| goto out; |
| } |
| |
| switch (key_verify(key->cert->signature_key, sig, slen, |
| buffer_ptr(&key->cert->certblob), signed_len)) { |
| case 1: |
| ret = 0; |
| break; /* Good signature */ |
| case 0: |
| error("%s: Invalid signature on certificate", __func__); |
| goto out; |
| case -1: |
| error("%s: Certificate signature verification failed", |
| __func__); |
| goto out; |
| } |
| |
| out: |
| buffer_free(&tmp); |
| if (principals != NULL) |
| xfree(principals); |
| if (critical != NULL) |
| xfree(critical); |
| if (exts != NULL) |
| xfree(exts); |
| if (sig_key != NULL) |
| xfree(sig_key); |
| if (sig != NULL) |
| xfree(sig); |
| return ret; |
| } |
| |
| Key * |
| key_from_blob(const u_char *blob, u_int blen) |
| { |
| Buffer b; |
| int rlen, type; |
| char *ktype = NULL, *curve = NULL; |
| Key *key = NULL; |
| #ifdef OPENSSL_HAS_ECC |
| EC_POINT *q = NULL; |
| int nid = -1; |
| #endif |
| |
| #ifdef DEBUG_PK |
| dump_base64(stderr, blob, blen); |
| #endif |
| buffer_init(&b); |
| buffer_append(&b, blob, blen); |
| if ((ktype = buffer_get_cstring_ret(&b, NULL)) == NULL) { |
| error("key_from_blob: can't read key type"); |
| goto out; |
| } |
| |
| type = key_type_from_name(ktype); |
| #ifdef OPENSSL_HAS_ECC |
| if (key_type_plain(type) == KEY_ECDSA) |
| nid = key_ecdsa_nid_from_name(ktype); |
| #endif |
| |
| switch (type) { |
| case KEY_RSA_CERT: |
| (void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */ |
| /* FALLTHROUGH */ |
| case KEY_RSA: |
| case KEY_RSA_CERT_V00: |
| key = key_new(type); |
| if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 || |
| buffer_get_bignum2_ret(&b, key->rsa->n) == -1) { |
| error("key_from_blob: can't read rsa key"); |
| badkey: |
| key_free(key); |
| key = NULL; |
| goto out; |
| } |
| #ifdef DEBUG_PK |
| RSA_print_fp(stderr, key->rsa, 8); |
| #endif |
| break; |
| case KEY_DSA_CERT: |
| (void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */ |
| /* FALLTHROUGH */ |
| case KEY_DSA: |
| case KEY_DSA_CERT_V00: |
| key = key_new(type); |
| if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 || |
| buffer_get_bignum2_ret(&b, key->dsa->q) == -1 || |
| buffer_get_bignum2_ret(&b, key->dsa->g) == -1 || |
| buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) { |
| error("key_from_blob: can't read dsa key"); |
| goto badkey; |
| } |
| #ifdef DEBUG_PK |
| DSA_print_fp(stderr, key->dsa, 8); |
| #endif |
| break; |
| #ifdef OPENSSL_HAS_ECC |
| case KEY_ECDSA_CERT: |
| (void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */ |
| /* FALLTHROUGH */ |
| case KEY_ECDSA: |
| key = key_new(type); |
| key->ecdsa_nid = nid; |
| if ((curve = buffer_get_string_ret(&b, NULL)) == NULL) { |
| error("key_from_blob: can't read ecdsa curve"); |
| goto badkey; |
| } |
| if (key->ecdsa_nid != key_curve_name_to_nid(curve)) { |
| error("key_from_blob: ecdsa curve doesn't match type"); |
| goto badkey; |
| } |
| if (key->ecdsa != NULL) |
| EC_KEY_free(key->ecdsa); |
| if ((key->ecdsa = EC_KEY_new_by_curve_name(key->ecdsa_nid)) |
| == NULL) |
| fatal("key_from_blob: EC_KEY_new_by_curve_name failed"); |
| if ((q = EC_POINT_new(EC_KEY_get0_group(key->ecdsa))) == NULL) |
| fatal("key_from_blob: EC_POINT_new failed"); |
| if (buffer_get_ecpoint_ret(&b, EC_KEY_get0_group(key->ecdsa), |
| q) == -1) { |
| error("key_from_blob: can't read ecdsa key point"); |
| goto badkey; |
| } |
| if (key_ec_validate_public(EC_KEY_get0_group(key->ecdsa), |
| q) != 0) |
| goto badkey; |
| if (EC_KEY_set_public_key(key->ecdsa, q) != 1) |
| fatal("key_from_blob: EC_KEY_set_public_key failed"); |
| #ifdef DEBUG_PK |
| key_dump_ec_point(EC_KEY_get0_group(key->ecdsa), q); |
| #endif |
| break; |
| #endif /* OPENSSL_HAS_ECC */ |
| case KEY_UNSPEC: |
| key = key_new(type); |
| break; |
| default: |
| error("key_from_blob: cannot handle type %s", ktype); |
| goto out; |
| } |
| if (key_is_cert(key) && cert_parse(&b, key, blob, blen) == -1) { |
| error("key_from_blob: can't parse cert data"); |
| goto badkey; |
| } |
| rlen = buffer_len(&b); |
| if (key != NULL && rlen != 0) |
| error("key_from_blob: remaining bytes in key blob %d", rlen); |
| out: |
| if (ktype != NULL) |
| xfree(ktype); |
| if (curve != NULL) |
| xfree(curve); |
| #ifdef OPENSSL_HAS_ECC |
| if (q != NULL) |
| EC_POINT_free(q); |
| #endif |
| buffer_free(&b); |
| return key; |
| } |
| |
| int |
| key_to_blob(const Key *key, u_char **blobp, u_int *lenp) |
| { |
| Buffer b; |
| int len; |
| |
| if (key == NULL) { |
| error("key_to_blob: key == NULL"); |
| return 0; |
| } |
| buffer_init(&b); |
| switch (key->type) { |
| case KEY_DSA_CERT_V00: |
| case KEY_RSA_CERT_V00: |
| case KEY_DSA_CERT: |
| case KEY_ECDSA_CERT: |
| case KEY_RSA_CERT: |
| /* Use the existing blob */ |
| buffer_append(&b, buffer_ptr(&key->cert->certblob), |
| buffer_len(&key->cert->certblob)); |
| break; |
| case KEY_DSA: |
| buffer_put_cstring(&b, key_ssh_name(key)); |
| buffer_put_bignum2(&b, key->dsa->p); |
| buffer_put_bignum2(&b, key->dsa->q); |
| buffer_put_bignum2(&b, key->dsa->g); |
| buffer_put_bignum2(&b, key->dsa->pub_key); |
| break; |
| #ifdef OPENSSL_HAS_ECC |
| case KEY_ECDSA: |
| buffer_put_cstring(&b, key_ssh_name(key)); |
| buffer_put_cstring(&b, key_curve_nid_to_name(key->ecdsa_nid)); |
| buffer_put_ecpoint(&b, EC_KEY_get0_group(key->ecdsa), |
| EC_KEY_get0_public_key(key->ecdsa)); |
| break; |
| #endif |
| case KEY_RSA: |
| buffer_put_cstring(&b, key_ssh_name(key)); |
| buffer_put_bignum2(&b, key->rsa->e); |
| buffer_put_bignum2(&b, key->rsa->n); |
| break; |
| default: |
| error("key_to_blob: unsupported key type %d", key->type); |
| buffer_free(&b); |
| return 0; |
| } |
| len = buffer_len(&b); |
| if (lenp != NULL) |
| *lenp = len; |
| if (blobp != NULL) { |
| *blobp = xmalloc(len); |
| memcpy(*blobp, buffer_ptr(&b), len); |
| } |
| memset(buffer_ptr(&b), 0, len); |
| buffer_free(&b); |
| return len; |
| } |
| |
| int |
| key_sign( |
| const Key *key, |
| u_char **sigp, u_int *lenp, |
| const u_char *data, u_int datalen) |
| { |
| switch (key->type) { |
| case KEY_DSA_CERT_V00: |
| case KEY_DSA_CERT: |
| case KEY_DSA: |
| return ssh_dss_sign(key, sigp, lenp, data, datalen); |
| #ifdef OPENSSL_HAS_ECC |
| case KEY_ECDSA_CERT: |
| case KEY_ECDSA: |
| return ssh_ecdsa_sign(key, sigp, lenp, data, datalen); |
| #endif |
| case KEY_RSA_CERT_V00: |
| case KEY_RSA_CERT: |
| case KEY_RSA: |
| return ssh_rsa_sign(key, sigp, lenp, data, datalen); |
| default: |
| error("key_sign: invalid key type %d", key->type); |
| return -1; |
| } |
| } |
| |
| /* |
| * key_verify returns 1 for a correct signature, 0 for an incorrect signature |
| * and -1 on error. |
| */ |
| int |
| key_verify( |
| const Key *key, |
| const u_char *signature, u_int signaturelen, |
| const u_char *data, u_int datalen) |
| { |
| if (signaturelen == 0) |
| return -1; |
| |
| switch (key->type) { |
| case KEY_DSA_CERT_V00: |
| case KEY_DSA_CERT: |
| case KEY_DSA: |
| return ssh_dss_verify(key, signature, signaturelen, data, datalen); |
| #ifdef OPENSSL_HAS_ECC |
| case KEY_ECDSA_CERT: |
| case KEY_ECDSA: |
| return ssh_ecdsa_verify(key, signature, signaturelen, data, datalen); |
| #endif |
| case KEY_RSA_CERT_V00: |
| case KEY_RSA_CERT: |
| case KEY_RSA: |
| return ssh_rsa_verify(key, signature, signaturelen, data, datalen); |
| default: |
| error("key_verify: invalid key type %d", key->type); |
| return -1; |
| } |
| } |
| |
| /* Converts a private to a public key */ |
| Key * |
| key_demote(const Key *k) |
| { |
| Key *pk; |
| |
| pk = xcalloc(1, sizeof(*pk)); |
| pk->type = k->type; |
| pk->flags = k->flags; |
| pk->ecdsa_nid = k->ecdsa_nid; |
| pk->dsa = NULL; |
| pk->ecdsa = NULL; |
| pk->rsa = NULL; |
| |
| switch (k->type) { |
| case KEY_RSA_CERT_V00: |
| case KEY_RSA_CERT: |
| key_cert_copy(k, pk); |
| /* FALLTHROUGH */ |
| case KEY_RSA1: |
| case KEY_RSA: |
| if ((pk->rsa = RSA_new()) == NULL) |
| fatal("key_demote: RSA_new failed"); |
| if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL) |
| fatal("key_demote: BN_dup failed"); |
| if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL) |
| fatal("key_demote: BN_dup failed"); |
| break; |
| case KEY_DSA_CERT_V00: |
| case KEY_DSA_CERT: |
| key_cert_copy(k, pk); |
| /* FALLTHROUGH */ |
| case KEY_DSA: |
| if ((pk->dsa = DSA_new()) == NULL) |
| fatal("key_demote: DSA_new failed"); |
| if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL) |
| fatal("key_demote: BN_dup failed"); |
| if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL) |
| fatal("key_demote: BN_dup failed"); |
| if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL) |
| fatal("key_demote: BN_dup failed"); |
| if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL) |
| fatal("key_demote: BN_dup failed"); |
| break; |
| #ifdef OPENSSL_HAS_ECC |
| case KEY_ECDSA_CERT: |
| key_cert_copy(k, pk); |
| /* FALLTHROUGH */ |
| case KEY_ECDSA: |
| if ((pk->ecdsa = EC_KEY_new_by_curve_name(pk->ecdsa_nid)) == NULL) |
| fatal("key_demote: EC_KEY_new_by_curve_name failed"); |
| if (EC_KEY_set_public_key(pk->ecdsa, |
| EC_KEY_get0_public_key(k->ecdsa)) != 1) |
| fatal("key_demote: EC_KEY_set_public_key failed"); |
| break; |
| #endif |
| default: |
| fatal("key_free: bad key type %d", k->type); |
| break; |
| } |
| |
| return (pk); |
| } |
| |
| int |
| key_is_cert(const Key *k) |
| { |
| if (k == NULL) |
| return 0; |
| switch (k->type) { |
| case KEY_RSA_CERT_V00: |
| case KEY_DSA_CERT_V00: |
| case KEY_RSA_CERT: |
| case KEY_DSA_CERT: |
| case KEY_ECDSA_CERT: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| /* Return the cert-less equivalent to a certified key type */ |
| int |
| key_type_plain(int type) |
| { |
| switch (type) { |
| case KEY_RSA_CERT_V00: |
| case KEY_RSA_CERT: |
| return KEY_RSA; |
| case KEY_DSA_CERT_V00: |
| case KEY_DSA_CERT: |
| return KEY_DSA; |
| case KEY_ECDSA_CERT: |
| return KEY_ECDSA; |
| default: |
| return type; |
| } |
| } |
| |
| /* Convert a KEY_RSA or KEY_DSA to their _CERT equivalent */ |
| int |
| key_to_certified(Key *k, int legacy) |
| { |
| switch (k->type) { |
| case KEY_RSA: |
| k->cert = cert_new(); |
| k->type = legacy ? KEY_RSA_CERT_V00 : KEY_RSA_CERT; |
| return 0; |
| case KEY_DSA: |
| k->cert = cert_new(); |
| k->type = legacy ? KEY_DSA_CERT_V00 : KEY_DSA_CERT; |
| return 0; |
| case KEY_ECDSA: |
| if (legacy) |
| fatal("%s: legacy ECDSA certificates are not supported", |
| __func__); |
| k->cert = cert_new(); |
| k->type = KEY_ECDSA_CERT; |
| return 0; |
| default: |
| error("%s: key has incorrect type %s", __func__, key_type(k)); |
| return -1; |
| } |
| } |
| |
| /* Convert a KEY_RSA_CERT or KEY_DSA_CERT to their raw key equivalent */ |
| int |
| key_drop_cert(Key *k) |
| { |
| switch (k->type) { |
| case KEY_RSA_CERT_V00: |
| case KEY_RSA_CERT: |
| cert_free(k->cert); |
| k->type = KEY_RSA; |
| return 0; |
| case KEY_DSA_CERT_V00: |
| case KEY_DSA_CERT: |
| cert_free(k->cert); |
| k->type = KEY_DSA; |
| return 0; |
| case KEY_ECDSA_CERT: |
| cert_free(k->cert); |
| k->type = KEY_ECDSA; |
| return 0; |
| default: |
| error("%s: key has incorrect type %s", __func__, key_type(k)); |
| return -1; |
| } |
| } |
| |
| /* |
| * Sign a KEY_RSA_CERT, KEY_DSA_CERT or KEY_ECDSA_CERT, (re-)generating |
| * the signed certblob |
| */ |
| int |
| key_certify(Key *k, Key *ca) |
| { |
| Buffer principals; |
| u_char *ca_blob, *sig_blob, nonce[32]; |
| u_int i, ca_len, sig_len; |
| |
| if (k->cert == NULL) { |
| error("%s: key lacks cert info", __func__); |
| return -1; |
| } |
| |
| if (!key_is_cert(k)) { |
| error("%s: certificate has unknown type %d", __func__, |
| k->cert->type); |
| return -1; |
| } |
| |
| if (ca->type != KEY_RSA && ca->type != KEY_DSA && |
| ca->type != KEY_ECDSA) { |
| error("%s: CA key has unsupported type %s", __func__, |
| key_type(ca)); |
| return -1; |
| } |
| |
| key_to_blob(ca, &ca_blob, &ca_len); |
| |
| buffer_clear(&k->cert->certblob); |
| buffer_put_cstring(&k->cert->certblob, key_ssh_name(k)); |
| |
| /* -v01 certs put nonce first */ |
| arc4random_buf(&nonce, sizeof(nonce)); |
| if (!key_cert_is_legacy(k)) |
| buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce)); |
| |
| switch (k->type) { |
| case KEY_DSA_CERT_V00: |
| case KEY_DSA_CERT: |
| buffer_put_bignum2(&k->cert->certblob, k->dsa->p); |
| buffer_put_bignum2(&k->cert->certblob, k->dsa->q); |
| buffer_put_bignum2(&k->cert->certblob, k->dsa->g); |
| buffer_put_bignum2(&k->cert->certblob, k->dsa->pub_key); |
| break; |
| #ifdef OPENSSL_HAS_ECC |
| case KEY_ECDSA_CERT: |
| buffer_put_cstring(&k->cert->certblob, |
| key_curve_nid_to_name(k->ecdsa_nid)); |
| buffer_put_ecpoint(&k->cert->certblob, |
| EC_KEY_get0_group(k->ecdsa), |
| EC_KEY_get0_public_key(k->ecdsa)); |
| break; |
| #endif |
| case KEY_RSA_CERT_V00: |
| case KEY_RSA_CERT: |
| buffer_put_bignum2(&k->cert->certblob, k->rsa->e); |
| buffer_put_bignum2(&k->cert->certblob, k->rsa->n); |
| break; |
| default: |
| error("%s: key has incorrect type %s", __func__, key_type(k)); |
| buffer_clear(&k->cert->certblob); |
| xfree(ca_blob); |
| return -1; |
| } |
| |
| /* -v01 certs have a serial number next */ |
| if (!key_cert_is_legacy(k)) |
| buffer_put_int64(&k->cert->certblob, k->cert->serial); |
| |
| buffer_put_int(&k->cert->certblob, k->cert->type); |
| buffer_put_cstring(&k->cert->certblob, k->cert->key_id); |
| |
| buffer_init(&principals); |
| for (i = 0; i < k->cert->nprincipals; i++) |
| buffer_put_cstring(&principals, k->cert->principals[i]); |
| buffer_put_string(&k->cert->certblob, buffer_ptr(&principals), |
| buffer_len(&principals)); |
| buffer_free(&principals); |
| |
| buffer_put_int64(&k->cert->certblob, k->cert->valid_after); |
| buffer_put_int64(&k->cert->certblob, k->cert->valid_before); |
| buffer_put_string(&k->cert->certblob, |
| buffer_ptr(&k->cert->critical), buffer_len(&k->cert->critical)); |
| |
| /* -v01 certs have non-critical options here */ |
| if (!key_cert_is_legacy(k)) { |
| buffer_put_string(&k->cert->certblob, |
| buffer_ptr(&k->cert->extensions), |
| buffer_len(&k->cert->extensions)); |
| } |
| |
| /* -v00 certs put the nonce at the end */ |
| if (key_cert_is_legacy(k)) |
| buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce)); |
| |
| buffer_put_string(&k->cert->certblob, NULL, 0); /* reserved */ |
| buffer_put_string(&k->cert->certblob, ca_blob, ca_len); |
| xfree(ca_blob); |
| |
| /* Sign the whole mess */ |
| if (key_sign(ca, &sig_blob, &sig_len, buffer_ptr(&k->cert->certblob), |
| buffer_len(&k->cert->certblob)) != 0) { |
| error("%s: signature operation failed", __func__); |
| buffer_clear(&k->cert->certblob); |
| return -1; |
| } |
| /* Append signature and we are done */ |
| buffer_put_string(&k->cert->certblob, sig_blob, sig_len); |
| xfree(sig_blob); |
| |
| return 0; |
| } |
| |
| int |
| key_cert_check_authority(const Key *k, int want_host, int require_principal, |
| const char *name, const char **reason) |
| { |
| u_int i, principal_matches; |
| time_t now = time(NULL); |
| |
| if (want_host) { |
| if (k->cert->type != SSH2_CERT_TYPE_HOST) { |
| *reason = "Certificate invalid: not a host certificate"; |
| return -1; |
| } |
| } else { |
| if (k->cert->type != SSH2_CERT_TYPE_USER) { |
| *reason = "Certificate invalid: not a user certificate"; |
| return -1; |
| } |
| } |
| if (now < 0) { |
| error("%s: system clock lies before epoch", __func__); |
| *reason = "Certificate invalid: not yet valid"; |
| return -1; |
| } |
| if ((u_int64_t)now < k->cert->valid_after) { |
| *reason = "Certificate invalid: not yet valid"; |
| return -1; |
| } |
| if ((u_int64_t)now >= k->cert->valid_before) { |
| *reason = "Certificate invalid: expired"; |
| return -1; |
| } |
| if (k->cert->nprincipals == 0) { |
| if (require_principal) { |
| *reason = "Certificate lacks principal list"; |
| return -1; |
| } |
| } else if (name != NULL) { |
| principal_matches = 0; |
| for (i = 0; i < k->cert->nprincipals; i++) { |
| if (strcmp(name, k->cert->principals[i]) == 0) { |
| principal_matches = 1; |
| break; |
| } |
| } |
| if (!principal_matches) { |
| *reason = "Certificate invalid: name is not a listed " |
| "principal"; |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| int |
| key_cert_is_legacy(Key *k) |
| { |
| switch (k->type) { |
| case KEY_DSA_CERT_V00: |
| case KEY_RSA_CERT_V00: |
| return 1; |
| default: |
| return 0; |
| } |
| } |
| |
| /* XXX: these are really begging for a table-driven approach */ |
| int |
| key_curve_name_to_nid(const char *name) |
| { |
| #ifdef OPENSSL_HAS_ECC |
| if (strcmp(name, "nistp256") == 0) |
| return NID_X9_62_prime256v1; |
| else if (strcmp(name, "nistp384") == 0) |
| return NID_secp384r1; |
| else if (strcmp(name, "nistp521") == 0) |
| return NID_secp521r1; |
| #endif |
| |
| debug("%s: unsupported EC curve name \"%.100s\"", __func__, name); |
| return -1; |
| } |
| |
| u_int |
| key_curve_nid_to_bits(int nid) |
| { |
| switch (nid) { |
| #ifdef OPENSSL_HAS_ECC |
| case NID_X9_62_prime256v1: |
| return 256; |
| case NID_secp384r1: |
| return 384; |
| case NID_secp521r1: |
| return 521; |
| #endif |
| default: |
| error("%s: unsupported EC curve nid %d", __func__, nid); |
| return 0; |
| } |
| } |
| |
| const char * |
| key_curve_nid_to_name(int nid) |
| { |
| #ifdef OPENSSL_HAS_ECC |
| if (nid == NID_X9_62_prime256v1) |
| return "nistp256"; |
| else if (nid == NID_secp384r1) |
| return "nistp384"; |
| else if (nid == NID_secp521r1) |
| return "nistp521"; |
| #endif |
| error("%s: unsupported EC curve nid %d", __func__, nid); |
| return NULL; |
| } |
| |
| #ifdef OPENSSL_HAS_ECC |
| const EVP_MD * |
| key_ec_nid_to_evpmd(int nid) |
| { |
| int kbits = key_curve_nid_to_bits(nid); |
| |
| if (kbits == 0) |
| fatal("%s: invalid nid %d", __func__, nid); |
| /* RFC5656 section 6.2.1 */ |
| if (kbits <= 256) |
| return EVP_sha256(); |
| else if (kbits <= 384) |
| return EVP_sha384(); |
| else |
| return EVP_sha512(); |
| } |
| |
| int |
| key_ec_validate_public(const EC_GROUP *group, const EC_POINT *public) |
| { |
| BN_CTX *bnctx; |
| EC_POINT *nq = NULL; |
| BIGNUM *order, *x, *y, *tmp; |
| int ret = -1; |
| |
| if ((bnctx = BN_CTX_new()) == NULL) |
| fatal("%s: BN_CTX_new failed", __func__); |
| BN_CTX_start(bnctx); |
| |
| /* |
| * We shouldn't ever hit this case because bignum_get_ecpoint() |
| * refuses to load GF2m points. |
| */ |
| if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != |
| NID_X9_62_prime_field) { |
| error("%s: group is not a prime field", __func__); |
| goto out; |
| } |
| |
| /* Q != infinity */ |
| if (EC_POINT_is_at_infinity(group, public)) { |
| error("%s: received degenerate public key (infinity)", |
| __func__); |
| goto out; |
| } |
| |
| if ((x = BN_CTX_get(bnctx)) == NULL || |
| (y = BN_CTX_get(bnctx)) == NULL || |
| (order = BN_CTX_get(bnctx)) == NULL || |
| (tmp = BN_CTX_get(bnctx)) == NULL) |
| fatal("%s: BN_CTX_get failed", __func__); |
| |
| /* log2(x) > log2(order)/2, log2(y) > log2(order)/2 */ |
| if (EC_GROUP_get_order(group, order, bnctx) != 1) |
| fatal("%s: EC_GROUP_get_order failed", __func__); |
| if (EC_POINT_get_affine_coordinates_GFp(group, public, |
| x, y, bnctx) != 1) |
| fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__); |
| if (BN_num_bits(x) <= BN_num_bits(order) / 2) { |
| error("%s: public key x coordinate too small: " |
| "bits(x) = %d, bits(order)/2 = %d", __func__, |
| BN_num_bits(x), BN_num_bits(order) / 2); |
| goto out; |
| } |
| if (BN_num_bits(y) <= BN_num_bits(order) / 2) { |
| error("%s: public key y coordinate too small: " |
| "bits(y) = %d, bits(order)/2 = %d", __func__, |
| BN_num_bits(x), BN_num_bits(order) / 2); |
| goto out; |
| } |
| |
| /* nQ == infinity (n == order of subgroup) */ |
| if ((nq = EC_POINT_new(group)) == NULL) |
| fatal("%s: BN_CTX_tmp failed", __func__); |
| if (EC_POINT_mul(group, nq, NULL, public, order, bnctx) != 1) |
| fatal("%s: EC_GROUP_mul failed", __func__); |
| if (EC_POINT_is_at_infinity(group, nq) != 1) { |
| error("%s: received degenerate public key (nQ != infinity)", |
| __func__); |
| goto out; |
| } |
| |
| /* x < order - 1, y < order - 1 */ |
| if (!BN_sub(tmp, order, BN_value_one())) |
| fatal("%s: BN_sub failed", __func__); |
| if (BN_cmp(x, tmp) >= 0) { |
| error("%s: public key x coordinate >= group order - 1", |
| __func__); |
| goto out; |
| } |
| if (BN_cmp(y, tmp) >= 0) { |
| error("%s: public key y coordinate >= group order - 1", |
| __func__); |
| goto out; |
| } |
| ret = 0; |
| out: |
| BN_CTX_free(bnctx); |
| EC_POINT_free(nq); |
| return ret; |
| } |
| |
| int |
| key_ec_validate_private(const EC_KEY *key) |
| { |
| BN_CTX *bnctx; |
| BIGNUM *order, *tmp; |
| int ret = -1; |
| |
| if ((bnctx = BN_CTX_new()) == NULL) |
| fatal("%s: BN_CTX_new failed", __func__); |
| BN_CTX_start(bnctx); |
| |
| if ((order = BN_CTX_get(bnctx)) == NULL || |
| (tmp = BN_CTX_get(bnctx)) == NULL) |
| fatal("%s: BN_CTX_get failed", __func__); |
| |
| /* log2(private) > log2(order)/2 */ |
| if (EC_GROUP_get_order(EC_KEY_get0_group(key), order, bnctx) != 1) |
| fatal("%s: EC_GROUP_get_order failed", __func__); |
| if (BN_num_bits(EC_KEY_get0_private_key(key)) <= |
| BN_num_bits(order) / 2) { |
| error("%s: private key too small: " |
| "bits(y) = %d, bits(order)/2 = %d", __func__, |
| BN_num_bits(EC_KEY_get0_private_key(key)), |
| BN_num_bits(order) / 2); |
| goto out; |
| } |
| |
| /* private < order - 1 */ |
| if (!BN_sub(tmp, order, BN_value_one())) |
| fatal("%s: BN_sub failed", __func__); |
| if (BN_cmp(EC_KEY_get0_private_key(key), tmp) >= 0) { |
| error("%s: private key >= group order - 1", __func__); |
| goto out; |
| } |
| ret = 0; |
| out: |
| BN_CTX_free(bnctx); |
| return ret; |
| } |
| |
| #if defined(DEBUG_KEXECDH) || defined(DEBUG_PK) |
| void |
| key_dump_ec_point(const EC_GROUP *group, const EC_POINT *point) |
| { |
| BIGNUM *x, *y; |
| BN_CTX *bnctx; |
| |
| if (point == NULL) { |
| fputs("point=(NULL)\n", stderr); |
| return; |
| } |
| if ((bnctx = BN_CTX_new()) == NULL) |
| fatal("%s: BN_CTX_new failed", __func__); |
| BN_CTX_start(bnctx); |
| if ((x = BN_CTX_get(bnctx)) == NULL || (y = BN_CTX_get(bnctx)) == NULL) |
| fatal("%s: BN_CTX_get failed", __func__); |
| if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != |
| NID_X9_62_prime_field) |
| fatal("%s: group is not a prime field", __func__); |
| if (EC_POINT_get_affine_coordinates_GFp(group, point, x, y, bnctx) != 1) |
| fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__); |
| fputs("x=", stderr); |
| BN_print_fp(stderr, x); |
| fputs("\ny=", stderr); |
| BN_print_fp(stderr, y); |
| fputs("\n", stderr); |
| BN_CTX_free(bnctx); |
| } |
| |
| void |
| key_dump_ec_key(const EC_KEY *key) |
| { |
| const BIGNUM *exponent; |
| |
| key_dump_ec_point(EC_KEY_get0_group(key), EC_KEY_get0_public_key(key)); |
| fputs("exponent=", stderr); |
| if ((exponent = EC_KEY_get0_private_key(key)) == NULL) |
| fputs("(NULL)", stderr); |
| else |
| BN_print_fp(stderr, EC_KEY_get0_private_key(key)); |
| fputs("\n", stderr); |
| } |
| #endif /* defined(DEBUG_KEXECDH) || defined(DEBUG_PK) */ |
| #endif /* OPENSSL_HAS_ECC */ |