Mike Lockwood | 1305e95 | 2011-12-07 08:17:59 -0800 | [diff] [blame] | 1 | /* $OpenBSD: key.c,v 1.97 2011/05/17 07:13:31 djm Exp $ */ |
| 2 | /* |
| 3 | * read_bignum(): |
| 4 | * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland |
| 5 | * |
| 6 | * As far as I am concerned, the code I have written for this software |
| 7 | * can be used freely for any purpose. Any derived versions of this |
| 8 | * software must be clearly marked as such, and if the derived work is |
| 9 | * incompatible with the protocol description in the RFC file, it must be |
| 10 | * called by a name other than "ssh" or "Secure Shell". |
| 11 | * |
| 12 | * |
| 13 | * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved. |
| 14 | * Copyright (c) 2008 Alexander von Gernler. All rights reserved. |
| 15 | * |
| 16 | * Redistribution and use in source and binary forms, with or without |
| 17 | * modification, are permitted provided that the following conditions |
| 18 | * are met: |
| 19 | * 1. Redistributions of source code must retain the above copyright |
| 20 | * notice, this list of conditions and the following disclaimer. |
| 21 | * 2. Redistributions in binary form must reproduce the above copyright |
| 22 | * notice, this list of conditions and the following disclaimer in the |
| 23 | * documentation and/or other materials provided with the distribution. |
| 24 | * |
| 25 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR |
| 26 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES |
| 27 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. |
| 28 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, |
| 29 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT |
| 30 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
| 31 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
| 32 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
| 33 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF |
| 34 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 35 | */ |
| 36 | |
| 37 | #include "includes.h" |
| 38 | |
| 39 | #include <sys/param.h> |
| 40 | #include <sys/types.h> |
| 41 | |
| 42 | #include <openssl/evp.h> |
| 43 | #include <openbsd-compat/openssl-compat.h> |
| 44 | |
| 45 | #include <stdarg.h> |
| 46 | #include <stdio.h> |
| 47 | #include <string.h> |
| 48 | |
| 49 | #include "xmalloc.h" |
| 50 | #include "key.h" |
| 51 | #include "rsa.h" |
| 52 | #include "uuencode.h" |
| 53 | #include "buffer.h" |
| 54 | #include "log.h" |
| 55 | #include "misc.h" |
| 56 | #include "ssh2.h" |
| 57 | |
| 58 | static struct KeyCert * |
| 59 | cert_new(void) |
| 60 | { |
| 61 | struct KeyCert *cert; |
| 62 | |
| 63 | cert = xcalloc(1, sizeof(*cert)); |
| 64 | buffer_init(&cert->certblob); |
| 65 | buffer_init(&cert->critical); |
| 66 | buffer_init(&cert->extensions); |
| 67 | cert->key_id = NULL; |
| 68 | cert->principals = NULL; |
| 69 | cert->signature_key = NULL; |
| 70 | return cert; |
| 71 | } |
| 72 | |
| 73 | Key * |
| 74 | key_new(int type) |
| 75 | { |
| 76 | Key *k; |
| 77 | RSA *rsa; |
| 78 | DSA *dsa; |
| 79 | k = xcalloc(1, sizeof(*k)); |
| 80 | k->type = type; |
| 81 | k->ecdsa = NULL; |
| 82 | k->ecdsa_nid = -1; |
| 83 | k->dsa = NULL; |
| 84 | k->rsa = NULL; |
| 85 | k->cert = NULL; |
| 86 | switch (k->type) { |
| 87 | case KEY_RSA1: |
| 88 | case KEY_RSA: |
| 89 | case KEY_RSA_CERT_V00: |
| 90 | case KEY_RSA_CERT: |
| 91 | if ((rsa = RSA_new()) == NULL) |
| 92 | fatal("key_new: RSA_new failed"); |
| 93 | if ((rsa->n = BN_new()) == NULL) |
| 94 | fatal("key_new: BN_new failed"); |
| 95 | if ((rsa->e = BN_new()) == NULL) |
| 96 | fatal("key_new: BN_new failed"); |
| 97 | k->rsa = rsa; |
| 98 | break; |
| 99 | case KEY_DSA: |
| 100 | case KEY_DSA_CERT_V00: |
| 101 | case KEY_DSA_CERT: |
| 102 | if ((dsa = DSA_new()) == NULL) |
| 103 | fatal("key_new: DSA_new failed"); |
| 104 | if ((dsa->p = BN_new()) == NULL) |
| 105 | fatal("key_new: BN_new failed"); |
| 106 | if ((dsa->q = BN_new()) == NULL) |
| 107 | fatal("key_new: BN_new failed"); |
| 108 | if ((dsa->g = BN_new()) == NULL) |
| 109 | fatal("key_new: BN_new failed"); |
| 110 | if ((dsa->pub_key = BN_new()) == NULL) |
| 111 | fatal("key_new: BN_new failed"); |
| 112 | k->dsa = dsa; |
| 113 | break; |
| 114 | #ifdef OPENSSL_HAS_ECC |
| 115 | case KEY_ECDSA: |
| 116 | case KEY_ECDSA_CERT: |
| 117 | /* Cannot do anything until we know the group */ |
| 118 | break; |
| 119 | #endif |
| 120 | case KEY_UNSPEC: |
| 121 | break; |
| 122 | default: |
| 123 | fatal("key_new: bad key type %d", k->type); |
| 124 | break; |
| 125 | } |
| 126 | |
| 127 | if (key_is_cert(k)) |
| 128 | k->cert = cert_new(); |
| 129 | |
| 130 | return k; |
| 131 | } |
| 132 | |
| 133 | void |
| 134 | key_add_private(Key *k) |
| 135 | { |
| 136 | switch (k->type) { |
| 137 | case KEY_RSA1: |
| 138 | case KEY_RSA: |
| 139 | case KEY_RSA_CERT_V00: |
| 140 | case KEY_RSA_CERT: |
| 141 | if ((k->rsa->d = BN_new()) == NULL) |
| 142 | fatal("key_new_private: BN_new failed"); |
| 143 | if ((k->rsa->iqmp = BN_new()) == NULL) |
| 144 | fatal("key_new_private: BN_new failed"); |
| 145 | if ((k->rsa->q = BN_new()) == NULL) |
| 146 | fatal("key_new_private: BN_new failed"); |
| 147 | if ((k->rsa->p = BN_new()) == NULL) |
| 148 | fatal("key_new_private: BN_new failed"); |
| 149 | if ((k->rsa->dmq1 = BN_new()) == NULL) |
| 150 | fatal("key_new_private: BN_new failed"); |
| 151 | if ((k->rsa->dmp1 = BN_new()) == NULL) |
| 152 | fatal("key_new_private: BN_new failed"); |
| 153 | break; |
| 154 | case KEY_DSA: |
| 155 | case KEY_DSA_CERT_V00: |
| 156 | case KEY_DSA_CERT: |
| 157 | if ((k->dsa->priv_key = BN_new()) == NULL) |
| 158 | fatal("key_new_private: BN_new failed"); |
| 159 | break; |
| 160 | case KEY_ECDSA: |
| 161 | case KEY_ECDSA_CERT: |
| 162 | /* Cannot do anything until we know the group */ |
| 163 | break; |
| 164 | case KEY_UNSPEC: |
| 165 | break; |
| 166 | default: |
| 167 | break; |
| 168 | } |
| 169 | } |
| 170 | |
| 171 | Key * |
| 172 | key_new_private(int type) |
| 173 | { |
| 174 | Key *k = key_new(type); |
| 175 | |
| 176 | key_add_private(k); |
| 177 | return k; |
| 178 | } |
| 179 | |
| 180 | static void |
| 181 | cert_free(struct KeyCert *cert) |
| 182 | { |
| 183 | u_int i; |
| 184 | |
| 185 | buffer_free(&cert->certblob); |
| 186 | buffer_free(&cert->critical); |
| 187 | buffer_free(&cert->extensions); |
| 188 | if (cert->key_id != NULL) |
| 189 | xfree(cert->key_id); |
| 190 | for (i = 0; i < cert->nprincipals; i++) |
| 191 | xfree(cert->principals[i]); |
| 192 | if (cert->principals != NULL) |
| 193 | xfree(cert->principals); |
| 194 | if (cert->signature_key != NULL) |
| 195 | key_free(cert->signature_key); |
| 196 | } |
| 197 | |
| 198 | void |
| 199 | key_free(Key *k) |
| 200 | { |
| 201 | if (k == NULL) |
| 202 | fatal("key_free: key is NULL"); |
| 203 | switch (k->type) { |
| 204 | case KEY_RSA1: |
| 205 | case KEY_RSA: |
| 206 | case KEY_RSA_CERT_V00: |
| 207 | case KEY_RSA_CERT: |
| 208 | if (k->rsa != NULL) |
| 209 | RSA_free(k->rsa); |
| 210 | k->rsa = NULL; |
| 211 | break; |
| 212 | case KEY_DSA: |
| 213 | case KEY_DSA_CERT_V00: |
| 214 | case KEY_DSA_CERT: |
| 215 | if (k->dsa != NULL) |
| 216 | DSA_free(k->dsa); |
| 217 | k->dsa = NULL; |
| 218 | break; |
| 219 | #ifdef OPENSSL_HAS_ECC |
| 220 | case KEY_ECDSA: |
| 221 | case KEY_ECDSA_CERT: |
| 222 | if (k->ecdsa != NULL) |
| 223 | EC_KEY_free(k->ecdsa); |
| 224 | k->ecdsa = NULL; |
| 225 | break; |
| 226 | #endif |
| 227 | case KEY_UNSPEC: |
| 228 | break; |
| 229 | default: |
| 230 | fatal("key_free: bad key type %d", k->type); |
| 231 | break; |
| 232 | } |
| 233 | if (key_is_cert(k)) { |
| 234 | if (k->cert != NULL) |
| 235 | cert_free(k->cert); |
| 236 | k->cert = NULL; |
| 237 | } |
| 238 | |
| 239 | xfree(k); |
| 240 | } |
| 241 | |
| 242 | static int |
| 243 | cert_compare(struct KeyCert *a, struct KeyCert *b) |
| 244 | { |
| 245 | if (a == NULL && b == NULL) |
| 246 | return 1; |
| 247 | if (a == NULL || b == NULL) |
| 248 | return 0; |
| 249 | if (buffer_len(&a->certblob) != buffer_len(&b->certblob)) |
| 250 | return 0; |
| 251 | if (timingsafe_bcmp(buffer_ptr(&a->certblob), buffer_ptr(&b->certblob), |
| 252 | buffer_len(&a->certblob)) != 0) |
| 253 | return 0; |
| 254 | return 1; |
| 255 | } |
| 256 | |
| 257 | /* |
| 258 | * Compare public portions of key only, allowing comparisons between |
| 259 | * certificates and plain keys too. |
| 260 | */ |
| 261 | int |
| 262 | key_equal_public(const Key *a, const Key *b) |
| 263 | { |
| 264 | #ifdef OPENSSL_HAS_ECC |
| 265 | BN_CTX *bnctx; |
| 266 | #endif |
| 267 | |
| 268 | if (a == NULL || b == NULL || |
| 269 | key_type_plain(a->type) != key_type_plain(b->type)) |
| 270 | return 0; |
| 271 | |
| 272 | switch (a->type) { |
| 273 | case KEY_RSA1: |
| 274 | case KEY_RSA_CERT_V00: |
| 275 | case KEY_RSA_CERT: |
| 276 | case KEY_RSA: |
| 277 | return a->rsa != NULL && b->rsa != NULL && |
| 278 | BN_cmp(a->rsa->e, b->rsa->e) == 0 && |
| 279 | BN_cmp(a->rsa->n, b->rsa->n) == 0; |
| 280 | case KEY_DSA_CERT_V00: |
| 281 | case KEY_DSA_CERT: |
| 282 | case KEY_DSA: |
| 283 | return a->dsa != NULL && b->dsa != NULL && |
| 284 | BN_cmp(a->dsa->p, b->dsa->p) == 0 && |
| 285 | BN_cmp(a->dsa->q, b->dsa->q) == 0 && |
| 286 | BN_cmp(a->dsa->g, b->dsa->g) == 0 && |
| 287 | BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0; |
| 288 | #ifdef OPENSSL_HAS_ECC |
| 289 | case KEY_ECDSA_CERT: |
| 290 | case KEY_ECDSA: |
| 291 | if (a->ecdsa == NULL || b->ecdsa == NULL || |
| 292 | EC_KEY_get0_public_key(a->ecdsa) == NULL || |
| 293 | EC_KEY_get0_public_key(b->ecdsa) == NULL) |
| 294 | return 0; |
| 295 | if ((bnctx = BN_CTX_new()) == NULL) |
| 296 | fatal("%s: BN_CTX_new failed", __func__); |
| 297 | if (EC_GROUP_cmp(EC_KEY_get0_group(a->ecdsa), |
| 298 | EC_KEY_get0_group(b->ecdsa), bnctx) != 0 || |
| 299 | EC_POINT_cmp(EC_KEY_get0_group(a->ecdsa), |
| 300 | EC_KEY_get0_public_key(a->ecdsa), |
| 301 | EC_KEY_get0_public_key(b->ecdsa), bnctx) != 0) { |
| 302 | BN_CTX_free(bnctx); |
| 303 | return 0; |
| 304 | } |
| 305 | BN_CTX_free(bnctx); |
| 306 | return 1; |
| 307 | #endif /* OPENSSL_HAS_ECC */ |
| 308 | default: |
| 309 | fatal("key_equal: bad key type %d", a->type); |
| 310 | } |
| 311 | /* NOTREACHED */ |
| 312 | } |
| 313 | |
| 314 | int |
| 315 | key_equal(const Key *a, const Key *b) |
| 316 | { |
| 317 | if (a == NULL || b == NULL || a->type != b->type) |
| 318 | return 0; |
| 319 | if (key_is_cert(a)) { |
| 320 | if (!cert_compare(a->cert, b->cert)) |
| 321 | return 0; |
| 322 | } |
| 323 | return key_equal_public(a, b); |
| 324 | } |
| 325 | |
| 326 | u_char* |
| 327 | key_fingerprint_raw(Key *k, enum fp_type dgst_type, u_int *dgst_raw_length) |
| 328 | { |
| 329 | const EVP_MD *md = NULL; |
| 330 | EVP_MD_CTX ctx; |
| 331 | u_char *blob = NULL; |
| 332 | u_char *retval = NULL; |
| 333 | u_int len = 0; |
| 334 | int nlen, elen, otype; |
| 335 | |
| 336 | *dgst_raw_length = 0; |
| 337 | |
| 338 | switch (dgst_type) { |
| 339 | case SSH_FP_MD5: |
| 340 | md = EVP_md5(); |
| 341 | break; |
| 342 | case SSH_FP_SHA1: |
| 343 | md = EVP_sha1(); |
| 344 | break; |
| 345 | default: |
| 346 | fatal("key_fingerprint_raw: bad digest type %d", |
| 347 | dgst_type); |
| 348 | } |
| 349 | switch (k->type) { |
| 350 | case KEY_RSA1: |
| 351 | nlen = BN_num_bytes(k->rsa->n); |
| 352 | elen = BN_num_bytes(k->rsa->e); |
| 353 | len = nlen + elen; |
| 354 | blob = xmalloc(len); |
| 355 | BN_bn2bin(k->rsa->n, blob); |
| 356 | BN_bn2bin(k->rsa->e, blob + nlen); |
| 357 | break; |
| 358 | case KEY_DSA: |
| 359 | case KEY_ECDSA: |
| 360 | case KEY_RSA: |
| 361 | key_to_blob(k, &blob, &len); |
| 362 | break; |
| 363 | case KEY_DSA_CERT_V00: |
| 364 | case KEY_RSA_CERT_V00: |
| 365 | case KEY_DSA_CERT: |
| 366 | case KEY_ECDSA_CERT: |
| 367 | case KEY_RSA_CERT: |
| 368 | /* We want a fingerprint of the _key_ not of the cert */ |
| 369 | otype = k->type; |
| 370 | k->type = key_type_plain(k->type); |
| 371 | key_to_blob(k, &blob, &len); |
| 372 | k->type = otype; |
| 373 | break; |
| 374 | case KEY_UNSPEC: |
| 375 | return retval; |
| 376 | default: |
| 377 | fatal("key_fingerprint_raw: bad key type %d", k->type); |
| 378 | break; |
| 379 | } |
| 380 | if (blob != NULL) { |
| 381 | retval = xmalloc(EVP_MAX_MD_SIZE); |
| 382 | EVP_DigestInit(&ctx, md); |
| 383 | EVP_DigestUpdate(&ctx, blob, len); |
| 384 | EVP_DigestFinal(&ctx, retval, dgst_raw_length); |
| 385 | memset(blob, 0, len); |
| 386 | xfree(blob); |
| 387 | } else { |
| 388 | fatal("key_fingerprint_raw: blob is null"); |
| 389 | } |
| 390 | return retval; |
| 391 | } |
| 392 | |
| 393 | static char * |
| 394 | key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len) |
| 395 | { |
| 396 | char *retval; |
| 397 | u_int i; |
| 398 | |
| 399 | retval = xcalloc(1, dgst_raw_len * 3 + 1); |
| 400 | for (i = 0; i < dgst_raw_len; i++) { |
| 401 | char hex[4]; |
| 402 | snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]); |
| 403 | strlcat(retval, hex, dgst_raw_len * 3 + 1); |
| 404 | } |
| 405 | |
| 406 | /* Remove the trailing ':' character */ |
| 407 | retval[(dgst_raw_len * 3) - 1] = '\0'; |
| 408 | return retval; |
| 409 | } |
| 410 | |
| 411 | static char * |
| 412 | key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len) |
| 413 | { |
| 414 | char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' }; |
| 415 | char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm', |
| 416 | 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' }; |
| 417 | u_int i, j = 0, rounds, seed = 1; |
| 418 | char *retval; |
| 419 | |
| 420 | rounds = (dgst_raw_len / 2) + 1; |
| 421 | retval = xcalloc((rounds * 6), sizeof(char)); |
| 422 | retval[j++] = 'x'; |
| 423 | for (i = 0; i < rounds; i++) { |
| 424 | u_int idx0, idx1, idx2, idx3, idx4; |
| 425 | if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) { |
| 426 | idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) + |
| 427 | seed) % 6; |
| 428 | idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15; |
| 429 | idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) + |
| 430 | (seed / 6)) % 6; |
| 431 | retval[j++] = vowels[idx0]; |
| 432 | retval[j++] = consonants[idx1]; |
| 433 | retval[j++] = vowels[idx2]; |
| 434 | if ((i + 1) < rounds) { |
| 435 | idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15; |
| 436 | idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15; |
| 437 | retval[j++] = consonants[idx3]; |
| 438 | retval[j++] = '-'; |
| 439 | retval[j++] = consonants[idx4]; |
| 440 | seed = ((seed * 5) + |
| 441 | ((((u_int)(dgst_raw[2 * i])) * 7) + |
| 442 | ((u_int)(dgst_raw[(2 * i) + 1])))) % 36; |
| 443 | } |
| 444 | } else { |
| 445 | idx0 = seed % 6; |
| 446 | idx1 = 16; |
| 447 | idx2 = seed / 6; |
| 448 | retval[j++] = vowels[idx0]; |
| 449 | retval[j++] = consonants[idx1]; |
| 450 | retval[j++] = vowels[idx2]; |
| 451 | } |
| 452 | } |
| 453 | retval[j++] = 'x'; |
| 454 | retval[j++] = '\0'; |
| 455 | return retval; |
| 456 | } |
| 457 | |
| 458 | /* |
| 459 | * Draw an ASCII-Art representing the fingerprint so human brain can |
| 460 | * profit from its built-in pattern recognition ability. |
| 461 | * This technique is called "random art" and can be found in some |
| 462 | * scientific publications like this original paper: |
| 463 | * |
| 464 | * "Hash Visualization: a New Technique to improve Real-World Security", |
| 465 | * Perrig A. and Song D., 1999, International Workshop on Cryptographic |
| 466 | * Techniques and E-Commerce (CrypTEC '99) |
| 467 | * sparrow.ece.cmu.edu/~adrian/projects/validation/validation.pdf |
| 468 | * |
| 469 | * The subject came up in a talk by Dan Kaminsky, too. |
| 470 | * |
| 471 | * If you see the picture is different, the key is different. |
| 472 | * If the picture looks the same, you still know nothing. |
| 473 | * |
| 474 | * The algorithm used here is a worm crawling over a discrete plane, |
| 475 | * leaving a trace (augmenting the field) everywhere it goes. |
| 476 | * Movement is taken from dgst_raw 2bit-wise. Bumping into walls |
| 477 | * makes the respective movement vector be ignored for this turn. |
| 478 | * Graphs are not unambiguous, because circles in graphs can be |
| 479 | * walked in either direction. |
| 480 | */ |
| 481 | |
| 482 | /* |
| 483 | * Field sizes for the random art. Have to be odd, so the starting point |
| 484 | * can be in the exact middle of the picture, and FLDBASE should be >=8 . |
| 485 | * Else pictures would be too dense, and drawing the frame would |
| 486 | * fail, too, because the key type would not fit in anymore. |
| 487 | */ |
| 488 | #define FLDBASE 8 |
| 489 | #define FLDSIZE_Y (FLDBASE + 1) |
| 490 | #define FLDSIZE_X (FLDBASE * 2 + 1) |
| 491 | static char * |
| 492 | key_fingerprint_randomart(u_char *dgst_raw, u_int dgst_raw_len, const Key *k) |
| 493 | { |
| 494 | /* |
| 495 | * Chars to be used after each other every time the worm |
| 496 | * intersects with itself. Matter of taste. |
| 497 | */ |
| 498 | char *augmentation_string = " .o+=*BOX@%&#/^SE"; |
| 499 | char *retval, *p; |
| 500 | u_char field[FLDSIZE_X][FLDSIZE_Y]; |
| 501 | u_int i, b; |
| 502 | int x, y; |
| 503 | size_t len = strlen(augmentation_string) - 1; |
| 504 | |
| 505 | retval = xcalloc(1, (FLDSIZE_X + 3) * (FLDSIZE_Y + 2)); |
| 506 | |
| 507 | /* initialize field */ |
| 508 | memset(field, 0, FLDSIZE_X * FLDSIZE_Y * sizeof(char)); |
| 509 | x = FLDSIZE_X / 2; |
| 510 | y = FLDSIZE_Y / 2; |
| 511 | |
| 512 | /* process raw key */ |
| 513 | for (i = 0; i < dgst_raw_len; i++) { |
| 514 | int input; |
| 515 | /* each byte conveys four 2-bit move commands */ |
| 516 | input = dgst_raw[i]; |
| 517 | for (b = 0; b < 4; b++) { |
| 518 | /* evaluate 2 bit, rest is shifted later */ |
| 519 | x += (input & 0x1) ? 1 : -1; |
| 520 | y += (input & 0x2) ? 1 : -1; |
| 521 | |
| 522 | /* assure we are still in bounds */ |
| 523 | x = MAX(x, 0); |
| 524 | y = MAX(y, 0); |
| 525 | x = MIN(x, FLDSIZE_X - 1); |
| 526 | y = MIN(y, FLDSIZE_Y - 1); |
| 527 | |
| 528 | /* augment the field */ |
| 529 | if (field[x][y] < len - 2) |
| 530 | field[x][y]++; |
| 531 | input = input >> 2; |
| 532 | } |
| 533 | } |
| 534 | |
| 535 | /* mark starting point and end point*/ |
| 536 | field[FLDSIZE_X / 2][FLDSIZE_Y / 2] = len - 1; |
| 537 | field[x][y] = len; |
| 538 | |
| 539 | /* fill in retval */ |
| 540 | snprintf(retval, FLDSIZE_X, "+--[%4s %4u]", key_type(k), key_size(k)); |
| 541 | p = strchr(retval, '\0'); |
| 542 | |
| 543 | /* output upper border */ |
| 544 | for (i = p - retval - 1; i < FLDSIZE_X; i++) |
| 545 | *p++ = '-'; |
| 546 | *p++ = '+'; |
| 547 | *p++ = '\n'; |
| 548 | |
| 549 | /* output content */ |
| 550 | for (y = 0; y < FLDSIZE_Y; y++) { |
| 551 | *p++ = '|'; |
| 552 | for (x = 0; x < FLDSIZE_X; x++) |
| 553 | *p++ = augmentation_string[MIN(field[x][y], len)]; |
| 554 | *p++ = '|'; |
| 555 | *p++ = '\n'; |
| 556 | } |
| 557 | |
| 558 | /* output lower border */ |
| 559 | *p++ = '+'; |
| 560 | for (i = 0; i < FLDSIZE_X; i++) |
| 561 | *p++ = '-'; |
| 562 | *p++ = '+'; |
| 563 | |
| 564 | return retval; |
| 565 | } |
| 566 | |
| 567 | char * |
| 568 | key_fingerprint(Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep) |
| 569 | { |
| 570 | char *retval = NULL; |
| 571 | u_char *dgst_raw; |
| 572 | u_int dgst_raw_len; |
| 573 | |
| 574 | dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len); |
| 575 | if (!dgst_raw) |
| 576 | fatal("key_fingerprint: null from key_fingerprint_raw()"); |
| 577 | switch (dgst_rep) { |
| 578 | case SSH_FP_HEX: |
| 579 | retval = key_fingerprint_hex(dgst_raw, dgst_raw_len); |
| 580 | break; |
| 581 | case SSH_FP_BUBBLEBABBLE: |
| 582 | retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len); |
| 583 | break; |
| 584 | case SSH_FP_RANDOMART: |
| 585 | retval = key_fingerprint_randomart(dgst_raw, dgst_raw_len, k); |
| 586 | break; |
| 587 | default: |
| 588 | fatal("key_fingerprint: bad digest representation %d", |
| 589 | dgst_rep); |
| 590 | break; |
| 591 | } |
| 592 | memset(dgst_raw, 0, dgst_raw_len); |
| 593 | xfree(dgst_raw); |
| 594 | return retval; |
| 595 | } |
| 596 | |
| 597 | /* |
| 598 | * Reads a multiple-precision integer in decimal from the buffer, and advances |
| 599 | * the pointer. The integer must already be initialized. This function is |
| 600 | * permitted to modify the buffer. This leaves *cpp to point just beyond the |
| 601 | * last processed (and maybe modified) character. Note that this may modify |
| 602 | * the buffer containing the number. |
| 603 | */ |
| 604 | static int |
| 605 | read_bignum(char **cpp, BIGNUM * value) |
| 606 | { |
| 607 | char *cp = *cpp; |
| 608 | int old; |
| 609 | |
| 610 | /* Skip any leading whitespace. */ |
| 611 | for (; *cp == ' ' || *cp == '\t'; cp++) |
| 612 | ; |
| 613 | |
| 614 | /* Check that it begins with a decimal digit. */ |
| 615 | if (*cp < '0' || *cp > '9') |
| 616 | return 0; |
| 617 | |
| 618 | /* Save starting position. */ |
| 619 | *cpp = cp; |
| 620 | |
| 621 | /* Move forward until all decimal digits skipped. */ |
| 622 | for (; *cp >= '0' && *cp <= '9'; cp++) |
| 623 | ; |
| 624 | |
| 625 | /* Save the old terminating character, and replace it by \0. */ |
| 626 | old = *cp; |
| 627 | *cp = 0; |
| 628 | |
| 629 | /* Parse the number. */ |
| 630 | if (BN_dec2bn(&value, *cpp) == 0) |
| 631 | return 0; |
| 632 | |
| 633 | /* Restore old terminating character. */ |
| 634 | *cp = old; |
| 635 | |
| 636 | /* Move beyond the number and return success. */ |
| 637 | *cpp = cp; |
| 638 | return 1; |
| 639 | } |
| 640 | |
| 641 | static int |
| 642 | write_bignum(FILE *f, BIGNUM *num) |
| 643 | { |
| 644 | char *buf = BN_bn2dec(num); |
| 645 | if (buf == NULL) { |
| 646 | error("write_bignum: BN_bn2dec() failed"); |
| 647 | return 0; |
| 648 | } |
| 649 | fprintf(f, " %s", buf); |
| 650 | OPENSSL_free(buf); |
| 651 | return 1; |
| 652 | } |
| 653 | |
| 654 | /* returns 1 ok, -1 error */ |
| 655 | int |
| 656 | key_read(Key *ret, char **cpp) |
| 657 | { |
| 658 | Key *k; |
| 659 | int success = -1; |
| 660 | char *cp, *space; |
| 661 | int len, n, type; |
| 662 | u_int bits; |
| 663 | u_char *blob; |
| 664 | #ifdef OPENSSL_HAS_ECC |
| 665 | int curve_nid = -1; |
| 666 | #endif |
| 667 | |
| 668 | cp = *cpp; |
| 669 | |
| 670 | switch (ret->type) { |
| 671 | case KEY_RSA1: |
| 672 | /* Get number of bits. */ |
| 673 | if (*cp < '0' || *cp > '9') |
| 674 | return -1; /* Bad bit count... */ |
| 675 | for (bits = 0; *cp >= '0' && *cp <= '9'; cp++) |
| 676 | bits = 10 * bits + *cp - '0'; |
| 677 | if (bits == 0) |
| 678 | return -1; |
| 679 | *cpp = cp; |
| 680 | /* Get public exponent, public modulus. */ |
| 681 | if (!read_bignum(cpp, ret->rsa->e)) |
| 682 | return -1; |
| 683 | if (!read_bignum(cpp, ret->rsa->n)) |
| 684 | return -1; |
| 685 | /* validate the claimed number of bits */ |
| 686 | if ((u_int)BN_num_bits(ret->rsa->n) != bits) { |
| 687 | verbose("key_read: claimed key size %d does not match " |
| 688 | "actual %d", bits, BN_num_bits(ret->rsa->n)); |
| 689 | return -1; |
| 690 | } |
| 691 | success = 1; |
| 692 | break; |
| 693 | case KEY_UNSPEC: |
| 694 | case KEY_RSA: |
| 695 | case KEY_DSA: |
| 696 | case KEY_ECDSA: |
| 697 | case KEY_DSA_CERT_V00: |
| 698 | case KEY_RSA_CERT_V00: |
| 699 | case KEY_DSA_CERT: |
| 700 | case KEY_ECDSA_CERT: |
| 701 | case KEY_RSA_CERT: |
| 702 | space = strchr(cp, ' '); |
| 703 | if (space == NULL) { |
| 704 | debug3("key_read: missing whitespace"); |
| 705 | return -1; |
| 706 | } |
| 707 | *space = '\0'; |
| 708 | type = key_type_from_name(cp); |
| 709 | #ifdef OPENSSL_HAS_ECC |
| 710 | if (key_type_plain(type) == KEY_ECDSA && |
| 711 | (curve_nid = key_ecdsa_nid_from_name(cp)) == -1) { |
| 712 | debug("key_read: invalid curve"); |
| 713 | return -1; |
| 714 | } |
| 715 | #endif |
| 716 | *space = ' '; |
| 717 | if (type == KEY_UNSPEC) { |
| 718 | debug3("key_read: missing keytype"); |
| 719 | return -1; |
| 720 | } |
| 721 | cp = space+1; |
| 722 | if (*cp == '\0') { |
| 723 | debug3("key_read: short string"); |
| 724 | return -1; |
| 725 | } |
| 726 | if (ret->type == KEY_UNSPEC) { |
| 727 | ret->type = type; |
| 728 | } else if (ret->type != type) { |
| 729 | /* is a key, but different type */ |
| 730 | debug3("key_read: type mismatch"); |
| 731 | return -1; |
| 732 | } |
| 733 | len = 2*strlen(cp); |
| 734 | blob = xmalloc(len); |
| 735 | n = uudecode(cp, blob, len); |
| 736 | if (n < 0) { |
| 737 | error("key_read: uudecode %s failed", cp); |
| 738 | xfree(blob); |
| 739 | return -1; |
| 740 | } |
| 741 | k = key_from_blob(blob, (u_int)n); |
| 742 | xfree(blob); |
| 743 | if (k == NULL) { |
| 744 | error("key_read: key_from_blob %s failed", cp); |
| 745 | return -1; |
| 746 | } |
| 747 | if (k->type != type) { |
| 748 | error("key_read: type mismatch: encoding error"); |
| 749 | key_free(k); |
| 750 | return -1; |
| 751 | } |
| 752 | #ifdef OPENSSL_HAS_ECC |
| 753 | if (key_type_plain(type) == KEY_ECDSA && |
| 754 | curve_nid != k->ecdsa_nid) { |
| 755 | error("key_read: type mismatch: EC curve mismatch"); |
| 756 | key_free(k); |
| 757 | return -1; |
| 758 | } |
| 759 | #endif |
| 760 | /*XXXX*/ |
| 761 | if (key_is_cert(ret)) { |
| 762 | if (!key_is_cert(k)) { |
| 763 | error("key_read: loaded key is not a cert"); |
| 764 | key_free(k); |
| 765 | return -1; |
| 766 | } |
| 767 | if (ret->cert != NULL) |
| 768 | cert_free(ret->cert); |
| 769 | ret->cert = k->cert; |
| 770 | k->cert = NULL; |
| 771 | } |
| 772 | if (key_type_plain(ret->type) == KEY_RSA) { |
| 773 | if (ret->rsa != NULL) |
| 774 | RSA_free(ret->rsa); |
| 775 | ret->rsa = k->rsa; |
| 776 | k->rsa = NULL; |
| 777 | #ifdef DEBUG_PK |
| 778 | RSA_print_fp(stderr, ret->rsa, 8); |
| 779 | #endif |
| 780 | } |
| 781 | if (key_type_plain(ret->type) == KEY_DSA) { |
| 782 | if (ret->dsa != NULL) |
| 783 | DSA_free(ret->dsa); |
| 784 | ret->dsa = k->dsa; |
| 785 | k->dsa = NULL; |
| 786 | #ifdef DEBUG_PK |
| 787 | DSA_print_fp(stderr, ret->dsa, 8); |
| 788 | #endif |
| 789 | } |
| 790 | #ifdef OPENSSL_HAS_ECC |
| 791 | if (key_type_plain(ret->type) == KEY_ECDSA) { |
| 792 | if (ret->ecdsa != NULL) |
| 793 | EC_KEY_free(ret->ecdsa); |
| 794 | ret->ecdsa = k->ecdsa; |
| 795 | ret->ecdsa_nid = k->ecdsa_nid; |
| 796 | k->ecdsa = NULL; |
| 797 | k->ecdsa_nid = -1; |
| 798 | #ifdef DEBUG_PK |
| 799 | key_dump_ec_key(ret->ecdsa); |
| 800 | #endif |
| 801 | } |
| 802 | #endif |
| 803 | success = 1; |
| 804 | /*XXXX*/ |
| 805 | key_free(k); |
| 806 | if (success != 1) |
| 807 | break; |
| 808 | /* advance cp: skip whitespace and data */ |
| 809 | while (*cp == ' ' || *cp == '\t') |
| 810 | cp++; |
| 811 | while (*cp != '\0' && *cp != ' ' && *cp != '\t') |
| 812 | cp++; |
| 813 | *cpp = cp; |
| 814 | break; |
| 815 | default: |
| 816 | fatal("key_read: bad key type: %d", ret->type); |
| 817 | break; |
| 818 | } |
| 819 | return success; |
| 820 | } |
| 821 | |
| 822 | int |
| 823 | key_write(const Key *key, FILE *f) |
| 824 | { |
| 825 | int n, success = 0; |
| 826 | u_int len, bits = 0; |
| 827 | u_char *blob; |
| 828 | char *uu; |
| 829 | |
| 830 | if (key_is_cert(key)) { |
| 831 | if (key->cert == NULL) { |
| 832 | error("%s: no cert data", __func__); |
| 833 | return 0; |
| 834 | } |
| 835 | if (buffer_len(&key->cert->certblob) == 0) { |
| 836 | error("%s: no signed certificate blob", __func__); |
| 837 | return 0; |
| 838 | } |
| 839 | } |
| 840 | |
| 841 | switch (key->type) { |
| 842 | case KEY_RSA1: |
| 843 | if (key->rsa == NULL) |
| 844 | return 0; |
| 845 | /* size of modulus 'n' */ |
| 846 | bits = BN_num_bits(key->rsa->n); |
| 847 | fprintf(f, "%u", bits); |
| 848 | if (write_bignum(f, key->rsa->e) && |
| 849 | write_bignum(f, key->rsa->n)) |
| 850 | return 1; |
| 851 | error("key_write: failed for RSA key"); |
| 852 | return 0; |
| 853 | case KEY_DSA: |
| 854 | case KEY_DSA_CERT_V00: |
| 855 | case KEY_DSA_CERT: |
| 856 | if (key->dsa == NULL) |
| 857 | return 0; |
| 858 | break; |
| 859 | #ifdef OPENSSL_HAS_ECC |
| 860 | case KEY_ECDSA: |
| 861 | case KEY_ECDSA_CERT: |
| 862 | if (key->ecdsa == NULL) |
| 863 | return 0; |
| 864 | break; |
| 865 | #endif |
| 866 | case KEY_RSA: |
| 867 | case KEY_RSA_CERT_V00: |
| 868 | case KEY_RSA_CERT: |
| 869 | if (key->rsa == NULL) |
| 870 | return 0; |
| 871 | break; |
| 872 | default: |
| 873 | return 0; |
| 874 | } |
| 875 | |
| 876 | key_to_blob(key, &blob, &len); |
| 877 | uu = xmalloc(2*len); |
| 878 | n = uuencode(blob, len, uu, 2*len); |
| 879 | if (n > 0) { |
| 880 | fprintf(f, "%s %s", key_ssh_name(key), uu); |
| 881 | success = 1; |
| 882 | } |
| 883 | xfree(blob); |
| 884 | xfree(uu); |
| 885 | |
| 886 | return success; |
| 887 | } |
| 888 | |
| 889 | const char * |
| 890 | key_type(const Key *k) |
| 891 | { |
| 892 | switch (k->type) { |
| 893 | case KEY_RSA1: |
| 894 | return "RSA1"; |
| 895 | case KEY_RSA: |
| 896 | return "RSA"; |
| 897 | case KEY_DSA: |
| 898 | return "DSA"; |
| 899 | #ifdef OPENSSL_HAS_ECC |
| 900 | case KEY_ECDSA: |
| 901 | return "ECDSA"; |
| 902 | #endif |
| 903 | case KEY_RSA_CERT_V00: |
| 904 | return "RSA-CERT-V00"; |
| 905 | case KEY_DSA_CERT_V00: |
| 906 | return "DSA-CERT-V00"; |
| 907 | case KEY_RSA_CERT: |
| 908 | return "RSA-CERT"; |
| 909 | case KEY_DSA_CERT: |
| 910 | return "DSA-CERT"; |
| 911 | #ifdef OPENSSL_HAS_ECC |
| 912 | case KEY_ECDSA_CERT: |
| 913 | return "ECDSA-CERT"; |
| 914 | #endif |
| 915 | } |
| 916 | return "unknown"; |
| 917 | } |
| 918 | |
| 919 | const char * |
| 920 | key_cert_type(const Key *k) |
| 921 | { |
| 922 | switch (k->cert->type) { |
| 923 | case SSH2_CERT_TYPE_USER: |
| 924 | return "user"; |
| 925 | case SSH2_CERT_TYPE_HOST: |
| 926 | return "host"; |
| 927 | default: |
| 928 | return "unknown"; |
| 929 | } |
| 930 | } |
| 931 | |
| 932 | static const char * |
| 933 | key_ssh_name_from_type_nid(int type, int nid) |
| 934 | { |
| 935 | switch (type) { |
| 936 | case KEY_RSA: |
| 937 | return "ssh-rsa"; |
| 938 | case KEY_DSA: |
| 939 | return "ssh-dss"; |
| 940 | case KEY_RSA_CERT_V00: |
| 941 | return "ssh-rsa-cert-v00@openssh.com"; |
| 942 | case KEY_DSA_CERT_V00: |
| 943 | return "ssh-dss-cert-v00@openssh.com"; |
| 944 | case KEY_RSA_CERT: |
| 945 | return "ssh-rsa-cert-v01@openssh.com"; |
| 946 | case KEY_DSA_CERT: |
| 947 | return "ssh-dss-cert-v01@openssh.com"; |
| 948 | #ifdef OPENSSL_HAS_ECC |
| 949 | case KEY_ECDSA: |
| 950 | switch (nid) { |
| 951 | case NID_X9_62_prime256v1: |
| 952 | return "ecdsa-sha2-nistp256"; |
| 953 | case NID_secp384r1: |
| 954 | return "ecdsa-sha2-nistp384"; |
| 955 | case NID_secp521r1: |
| 956 | return "ecdsa-sha2-nistp521"; |
| 957 | default: |
| 958 | break; |
| 959 | } |
| 960 | break; |
| 961 | case KEY_ECDSA_CERT: |
| 962 | switch (nid) { |
| 963 | case NID_X9_62_prime256v1: |
| 964 | return "ecdsa-sha2-nistp256-cert-v01@openssh.com"; |
| 965 | case NID_secp384r1: |
| 966 | return "ecdsa-sha2-nistp384-cert-v01@openssh.com"; |
| 967 | case NID_secp521r1: |
| 968 | return "ecdsa-sha2-nistp521-cert-v01@openssh.com"; |
| 969 | default: |
| 970 | break; |
| 971 | } |
| 972 | break; |
| 973 | #endif /* OPENSSL_HAS_ECC */ |
| 974 | } |
| 975 | return "ssh-unknown"; |
| 976 | } |
| 977 | |
| 978 | const char * |
| 979 | key_ssh_name(const Key *k) |
| 980 | { |
| 981 | return key_ssh_name_from_type_nid(k->type, k->ecdsa_nid); |
| 982 | } |
| 983 | |
| 984 | const char * |
| 985 | key_ssh_name_plain(const Key *k) |
| 986 | { |
| 987 | return key_ssh_name_from_type_nid(key_type_plain(k->type), |
| 988 | k->ecdsa_nid); |
| 989 | } |
| 990 | |
| 991 | u_int |
| 992 | key_size(const Key *k) |
| 993 | { |
| 994 | switch (k->type) { |
| 995 | case KEY_RSA1: |
| 996 | case KEY_RSA: |
| 997 | case KEY_RSA_CERT_V00: |
| 998 | case KEY_RSA_CERT: |
| 999 | return BN_num_bits(k->rsa->n); |
| 1000 | case KEY_DSA: |
| 1001 | case KEY_DSA_CERT_V00: |
| 1002 | case KEY_DSA_CERT: |
| 1003 | return BN_num_bits(k->dsa->p); |
| 1004 | #ifdef OPENSSL_HAS_ECC |
| 1005 | case KEY_ECDSA: |
| 1006 | case KEY_ECDSA_CERT: |
| 1007 | return key_curve_nid_to_bits(k->ecdsa_nid); |
| 1008 | #endif |
| 1009 | } |
| 1010 | return 0; |
| 1011 | } |
| 1012 | |
| 1013 | static RSA * |
| 1014 | rsa_generate_private_key(u_int bits) |
| 1015 | { |
| 1016 | RSA *private = RSA_new(); |
| 1017 | BIGNUM *f4 = BN_new(); |
| 1018 | |
| 1019 | if (private == NULL) |
| 1020 | fatal("%s: RSA_new failed", __func__); |
| 1021 | if (f4 == NULL) |
| 1022 | fatal("%s: BN_new failed", __func__); |
| 1023 | if (!BN_set_word(f4, RSA_F4)) |
| 1024 | fatal("%s: BN_new failed", __func__); |
| 1025 | if (!RSA_generate_key_ex(private, bits, f4, NULL)) |
| 1026 | fatal("%s: key generation failed.", __func__); |
| 1027 | BN_free(f4); |
| 1028 | return private; |
| 1029 | } |
| 1030 | |
| 1031 | static DSA* |
| 1032 | dsa_generate_private_key(u_int bits) |
| 1033 | { |
| 1034 | DSA *private = DSA_new(); |
| 1035 | |
| 1036 | if (private == NULL) |
| 1037 | fatal("%s: DSA_new failed", __func__); |
| 1038 | if (!DSA_generate_parameters_ex(private, bits, NULL, 0, NULL, |
| 1039 | NULL, NULL)) |
| 1040 | fatal("%s: DSA_generate_parameters failed", __func__); |
| 1041 | if (!DSA_generate_key(private)) |
| 1042 | fatal("%s: DSA_generate_key failed.", __func__); |
| 1043 | return private; |
| 1044 | } |
| 1045 | |
| 1046 | int |
| 1047 | key_ecdsa_bits_to_nid(int bits) |
| 1048 | { |
| 1049 | switch (bits) { |
| 1050 | #ifdef OPENSSL_HAS_ECC |
| 1051 | case 256: |
| 1052 | return NID_X9_62_prime256v1; |
| 1053 | case 384: |
| 1054 | return NID_secp384r1; |
| 1055 | case 521: |
| 1056 | return NID_secp521r1; |
| 1057 | #endif |
| 1058 | default: |
| 1059 | return -1; |
| 1060 | } |
| 1061 | } |
| 1062 | |
| 1063 | #ifdef OPENSSL_HAS_ECC |
| 1064 | int |
| 1065 | key_ecdsa_key_to_nid(EC_KEY *k) |
| 1066 | { |
| 1067 | EC_GROUP *eg; |
| 1068 | int nids[] = { |
| 1069 | NID_X9_62_prime256v1, |
| 1070 | NID_secp384r1, |
| 1071 | NID_secp521r1, |
| 1072 | -1 |
| 1073 | }; |
| 1074 | int nid; |
| 1075 | u_int i; |
| 1076 | BN_CTX *bnctx; |
| 1077 | const EC_GROUP *g = EC_KEY_get0_group(k); |
| 1078 | |
| 1079 | /* |
| 1080 | * The group may be stored in a ASN.1 encoded private key in one of two |
| 1081 | * ways: as a "named group", which is reconstituted by ASN.1 object ID |
| 1082 | * or explicit group parameters encoded into the key blob. Only the |
| 1083 | * "named group" case sets the group NID for us, but we can figure |
| 1084 | * it out for the other case by comparing against all the groups that |
| 1085 | * are supported. |
| 1086 | */ |
| 1087 | if ((nid = EC_GROUP_get_curve_name(g)) > 0) |
| 1088 | return nid; |
| 1089 | if ((bnctx = BN_CTX_new()) == NULL) |
| 1090 | fatal("%s: BN_CTX_new() failed", __func__); |
| 1091 | for (i = 0; nids[i] != -1; i++) { |
| 1092 | if ((eg = EC_GROUP_new_by_curve_name(nids[i])) == NULL) |
| 1093 | fatal("%s: EC_GROUP_new_by_curve_name failed", |
| 1094 | __func__); |
| 1095 | if (EC_GROUP_cmp(g, eg, bnctx) == 0) |
| 1096 | break; |
| 1097 | EC_GROUP_free(eg); |
| 1098 | } |
| 1099 | BN_CTX_free(bnctx); |
| 1100 | debug3("%s: nid = %d", __func__, nids[i]); |
| 1101 | if (nids[i] != -1) { |
| 1102 | /* Use the group with the NID attached */ |
| 1103 | EC_GROUP_set_asn1_flag(eg, OPENSSL_EC_NAMED_CURVE); |
| 1104 | if (EC_KEY_set_group(k, eg) != 1) |
| 1105 | fatal("%s: EC_KEY_set_group", __func__); |
| 1106 | } |
| 1107 | return nids[i]; |
| 1108 | } |
| 1109 | |
| 1110 | static EC_KEY* |
| 1111 | ecdsa_generate_private_key(u_int bits, int *nid) |
| 1112 | { |
| 1113 | EC_KEY *private; |
| 1114 | |
| 1115 | if ((*nid = key_ecdsa_bits_to_nid(bits)) == -1) |
| 1116 | fatal("%s: invalid key length", __func__); |
| 1117 | if ((private = EC_KEY_new_by_curve_name(*nid)) == NULL) |
| 1118 | fatal("%s: EC_KEY_new_by_curve_name failed", __func__); |
| 1119 | if (EC_KEY_generate_key(private) != 1) |
| 1120 | fatal("%s: EC_KEY_generate_key failed", __func__); |
| 1121 | EC_KEY_set_asn1_flag(private, OPENSSL_EC_NAMED_CURVE); |
| 1122 | return private; |
| 1123 | } |
| 1124 | #endif /* OPENSSL_HAS_ECC */ |
| 1125 | |
| 1126 | Key * |
| 1127 | key_generate(int type, u_int bits) |
| 1128 | { |
| 1129 | Key *k = key_new(KEY_UNSPEC); |
| 1130 | switch (type) { |
| 1131 | case KEY_DSA: |
| 1132 | k->dsa = dsa_generate_private_key(bits); |
| 1133 | break; |
| 1134 | #ifdef OPENSSL_HAS_ECC |
| 1135 | case KEY_ECDSA: |
| 1136 | k->ecdsa = ecdsa_generate_private_key(bits, &k->ecdsa_nid); |
| 1137 | break; |
| 1138 | #endif |
| 1139 | case KEY_RSA: |
| 1140 | case KEY_RSA1: |
| 1141 | k->rsa = rsa_generate_private_key(bits); |
| 1142 | break; |
| 1143 | case KEY_RSA_CERT_V00: |
| 1144 | case KEY_DSA_CERT_V00: |
| 1145 | case KEY_RSA_CERT: |
| 1146 | case KEY_DSA_CERT: |
| 1147 | fatal("key_generate: cert keys cannot be generated directly"); |
| 1148 | default: |
| 1149 | fatal("key_generate: unknown type %d", type); |
| 1150 | } |
| 1151 | k->type = type; |
| 1152 | return k; |
| 1153 | } |
| 1154 | |
| 1155 | void |
| 1156 | key_cert_copy(const Key *from_key, struct Key *to_key) |
| 1157 | { |
| 1158 | u_int i; |
| 1159 | const struct KeyCert *from; |
| 1160 | struct KeyCert *to; |
| 1161 | |
| 1162 | if (to_key->cert != NULL) { |
| 1163 | cert_free(to_key->cert); |
| 1164 | to_key->cert = NULL; |
| 1165 | } |
| 1166 | |
| 1167 | if ((from = from_key->cert) == NULL) |
| 1168 | return; |
| 1169 | |
| 1170 | to = to_key->cert = cert_new(); |
| 1171 | |
| 1172 | buffer_append(&to->certblob, buffer_ptr(&from->certblob), |
| 1173 | buffer_len(&from->certblob)); |
| 1174 | |
| 1175 | buffer_append(&to->critical, |
| 1176 | buffer_ptr(&from->critical), buffer_len(&from->critical)); |
| 1177 | buffer_append(&to->extensions, |
| 1178 | buffer_ptr(&from->extensions), buffer_len(&from->extensions)); |
| 1179 | |
| 1180 | to->serial = from->serial; |
| 1181 | to->type = from->type; |
| 1182 | to->key_id = from->key_id == NULL ? NULL : xstrdup(from->key_id); |
| 1183 | to->valid_after = from->valid_after; |
| 1184 | to->valid_before = from->valid_before; |
| 1185 | to->signature_key = from->signature_key == NULL ? |
| 1186 | NULL : key_from_private(from->signature_key); |
| 1187 | |
| 1188 | to->nprincipals = from->nprincipals; |
| 1189 | if (to->nprincipals > CERT_MAX_PRINCIPALS) |
| 1190 | fatal("%s: nprincipals (%u) > CERT_MAX_PRINCIPALS (%u)", |
| 1191 | __func__, to->nprincipals, CERT_MAX_PRINCIPALS); |
| 1192 | if (to->nprincipals > 0) { |
| 1193 | to->principals = xcalloc(from->nprincipals, |
| 1194 | sizeof(*to->principals)); |
| 1195 | for (i = 0; i < to->nprincipals; i++) |
| 1196 | to->principals[i] = xstrdup(from->principals[i]); |
| 1197 | } |
| 1198 | } |
| 1199 | |
| 1200 | Key * |
| 1201 | key_from_private(const Key *k) |
| 1202 | { |
| 1203 | Key *n = NULL; |
| 1204 | switch (k->type) { |
| 1205 | case KEY_DSA: |
| 1206 | case KEY_DSA_CERT_V00: |
| 1207 | case KEY_DSA_CERT: |
| 1208 | n = key_new(k->type); |
| 1209 | if ((BN_copy(n->dsa->p, k->dsa->p) == NULL) || |
| 1210 | (BN_copy(n->dsa->q, k->dsa->q) == NULL) || |
| 1211 | (BN_copy(n->dsa->g, k->dsa->g) == NULL) || |
| 1212 | (BN_copy(n->dsa->pub_key, k->dsa->pub_key) == NULL)) |
| 1213 | fatal("key_from_private: BN_copy failed"); |
| 1214 | break; |
| 1215 | #ifdef OPENSSL_HAS_ECC |
| 1216 | case KEY_ECDSA: |
| 1217 | case KEY_ECDSA_CERT: |
| 1218 | n = key_new(k->type); |
| 1219 | n->ecdsa_nid = k->ecdsa_nid; |
| 1220 | if ((n->ecdsa = EC_KEY_new_by_curve_name(k->ecdsa_nid)) == NULL) |
| 1221 | fatal("%s: EC_KEY_new_by_curve_name failed", __func__); |
| 1222 | if (EC_KEY_set_public_key(n->ecdsa, |
| 1223 | EC_KEY_get0_public_key(k->ecdsa)) != 1) |
| 1224 | fatal("%s: EC_KEY_set_public_key failed", __func__); |
| 1225 | break; |
| 1226 | #endif |
| 1227 | case KEY_RSA: |
| 1228 | case KEY_RSA1: |
| 1229 | case KEY_RSA_CERT_V00: |
| 1230 | case KEY_RSA_CERT: |
| 1231 | n = key_new(k->type); |
| 1232 | if ((BN_copy(n->rsa->n, k->rsa->n) == NULL) || |
| 1233 | (BN_copy(n->rsa->e, k->rsa->e) == NULL)) |
| 1234 | fatal("key_from_private: BN_copy failed"); |
| 1235 | break; |
| 1236 | default: |
| 1237 | fatal("key_from_private: unknown type %d", k->type); |
| 1238 | break; |
| 1239 | } |
| 1240 | if (key_is_cert(k)) |
| 1241 | key_cert_copy(k, n); |
| 1242 | return n; |
| 1243 | } |
| 1244 | |
| 1245 | int |
| 1246 | key_type_from_name(char *name) |
| 1247 | { |
| 1248 | if (strcmp(name, "rsa1") == 0) { |
| 1249 | return KEY_RSA1; |
| 1250 | } else if (strcmp(name, "rsa") == 0) { |
| 1251 | return KEY_RSA; |
| 1252 | } else if (strcmp(name, "dsa") == 0) { |
| 1253 | return KEY_DSA; |
| 1254 | } else if (strcmp(name, "ssh-rsa") == 0) { |
| 1255 | return KEY_RSA; |
| 1256 | } else if (strcmp(name, "ssh-dss") == 0) { |
| 1257 | return KEY_DSA; |
| 1258 | #ifdef OPENSSL_HAS_ECC |
| 1259 | } else if (strcmp(name, "ecdsa") == 0 || |
| 1260 | strcmp(name, "ecdsa-sha2-nistp256") == 0 || |
| 1261 | strcmp(name, "ecdsa-sha2-nistp384") == 0 || |
| 1262 | strcmp(name, "ecdsa-sha2-nistp521") == 0) { |
| 1263 | return KEY_ECDSA; |
| 1264 | #endif |
| 1265 | } else if (strcmp(name, "ssh-rsa-cert-v00@openssh.com") == 0) { |
| 1266 | return KEY_RSA_CERT_V00; |
| 1267 | } else if (strcmp(name, "ssh-dss-cert-v00@openssh.com") == 0) { |
| 1268 | return KEY_DSA_CERT_V00; |
| 1269 | } else if (strcmp(name, "ssh-rsa-cert-v01@openssh.com") == 0) { |
| 1270 | return KEY_RSA_CERT; |
| 1271 | } else if (strcmp(name, "ssh-dss-cert-v01@openssh.com") == 0) { |
| 1272 | return KEY_DSA_CERT; |
| 1273 | #ifdef OPENSSL_HAS_ECC |
| 1274 | } else if (strcmp(name, "ecdsa-sha2-nistp256-cert-v01@openssh.com") == 0 || |
| 1275 | strcmp(name, "ecdsa-sha2-nistp384-cert-v01@openssh.com") == 0 || |
| 1276 | strcmp(name, "ecdsa-sha2-nistp521-cert-v01@openssh.com") == 0) { |
| 1277 | return KEY_ECDSA_CERT; |
| 1278 | #endif |
| 1279 | } |
| 1280 | |
| 1281 | debug2("key_type_from_name: unknown key type '%s'", name); |
| 1282 | return KEY_UNSPEC; |
| 1283 | } |
| 1284 | |
| 1285 | int |
| 1286 | key_ecdsa_nid_from_name(const char *name) |
| 1287 | { |
| 1288 | #ifdef OPENSSL_HAS_ECC |
| 1289 | if (strcmp(name, "ecdsa-sha2-nistp256") == 0 || |
| 1290 | strcmp(name, "ecdsa-sha2-nistp256-cert-v01@openssh.com") == 0) |
| 1291 | return NID_X9_62_prime256v1; |
| 1292 | if (strcmp(name, "ecdsa-sha2-nistp384") == 0 || |
| 1293 | strcmp(name, "ecdsa-sha2-nistp384-cert-v01@openssh.com") == 0) |
| 1294 | return NID_secp384r1; |
| 1295 | if (strcmp(name, "ecdsa-sha2-nistp521") == 0 || |
| 1296 | strcmp(name, "ecdsa-sha2-nistp521-cert-v01@openssh.com") == 0) |
| 1297 | return NID_secp521r1; |
| 1298 | #endif /* OPENSSL_HAS_ECC */ |
| 1299 | |
| 1300 | debug2("%s: unknown/non-ECDSA key type '%s'", __func__, name); |
| 1301 | return -1; |
| 1302 | } |
| 1303 | |
| 1304 | int |
| 1305 | key_names_valid2(const char *names) |
| 1306 | { |
| 1307 | char *s, *cp, *p; |
| 1308 | |
| 1309 | if (names == NULL || strcmp(names, "") == 0) |
| 1310 | return 0; |
| 1311 | s = cp = xstrdup(names); |
| 1312 | for ((p = strsep(&cp, ",")); p && *p != '\0'; |
| 1313 | (p = strsep(&cp, ","))) { |
| 1314 | switch (key_type_from_name(p)) { |
| 1315 | case KEY_RSA1: |
| 1316 | case KEY_UNSPEC: |
| 1317 | xfree(s); |
| 1318 | return 0; |
| 1319 | } |
| 1320 | } |
| 1321 | debug3("key names ok: [%s]", names); |
| 1322 | xfree(s); |
| 1323 | return 1; |
| 1324 | } |
| 1325 | |
| 1326 | static int |
| 1327 | cert_parse(Buffer *b, Key *key, const u_char *blob, u_int blen) |
| 1328 | { |
| 1329 | u_char *principals, *critical, *exts, *sig_key, *sig; |
| 1330 | u_int signed_len, plen, clen, sklen, slen, kidlen, elen; |
| 1331 | Buffer tmp; |
| 1332 | char *principal; |
| 1333 | int ret = -1; |
| 1334 | int v00 = key->type == KEY_DSA_CERT_V00 || |
| 1335 | key->type == KEY_RSA_CERT_V00; |
| 1336 | |
| 1337 | buffer_init(&tmp); |
| 1338 | |
| 1339 | /* Copy the entire key blob for verification and later serialisation */ |
| 1340 | buffer_append(&key->cert->certblob, blob, blen); |
| 1341 | |
| 1342 | elen = 0; /* Not touched for v00 certs */ |
| 1343 | principals = exts = critical = sig_key = sig = NULL; |
| 1344 | if ((!v00 && buffer_get_int64_ret(&key->cert->serial, b) != 0) || |
| 1345 | buffer_get_int_ret(&key->cert->type, b) != 0 || |
| 1346 | (key->cert->key_id = buffer_get_cstring_ret(b, &kidlen)) == NULL || |
| 1347 | (principals = buffer_get_string_ret(b, &plen)) == NULL || |
| 1348 | buffer_get_int64_ret(&key->cert->valid_after, b) != 0 || |
| 1349 | buffer_get_int64_ret(&key->cert->valid_before, b) != 0 || |
| 1350 | (critical = buffer_get_string_ret(b, &clen)) == NULL || |
| 1351 | (!v00 && (exts = buffer_get_string_ret(b, &elen)) == NULL) || |
| 1352 | (v00 && buffer_get_string_ptr_ret(b, NULL) == NULL) || /* nonce */ |
| 1353 | buffer_get_string_ptr_ret(b, NULL) == NULL || /* reserved */ |
| 1354 | (sig_key = buffer_get_string_ret(b, &sklen)) == NULL) { |
| 1355 | error("%s: parse error", __func__); |
| 1356 | goto out; |
| 1357 | } |
| 1358 | |
| 1359 | if (kidlen != strlen(key->cert->key_id)) { |
| 1360 | error("%s: key ID contains \\0 character", __func__); |
| 1361 | goto out; |
| 1362 | } |
| 1363 | |
| 1364 | /* Signature is left in the buffer so we can calculate this length */ |
| 1365 | signed_len = buffer_len(&key->cert->certblob) - buffer_len(b); |
| 1366 | |
| 1367 | if ((sig = buffer_get_string_ret(b, &slen)) == NULL) { |
| 1368 | error("%s: parse error", __func__); |
| 1369 | goto out; |
| 1370 | } |
| 1371 | |
| 1372 | if (key->cert->type != SSH2_CERT_TYPE_USER && |
| 1373 | key->cert->type != SSH2_CERT_TYPE_HOST) { |
| 1374 | error("Unknown certificate type %u", key->cert->type); |
| 1375 | goto out; |
| 1376 | } |
| 1377 | |
| 1378 | buffer_append(&tmp, principals, plen); |
| 1379 | while (buffer_len(&tmp) > 0) { |
| 1380 | if (key->cert->nprincipals >= CERT_MAX_PRINCIPALS) { |
| 1381 | error("%s: Too many principals", __func__); |
| 1382 | goto out; |
| 1383 | } |
| 1384 | if ((principal = buffer_get_cstring_ret(&tmp, &plen)) == NULL) { |
| 1385 | error("%s: Principals data invalid", __func__); |
| 1386 | goto out; |
| 1387 | } |
| 1388 | key->cert->principals = xrealloc(key->cert->principals, |
| 1389 | key->cert->nprincipals + 1, sizeof(*key->cert->principals)); |
| 1390 | key->cert->principals[key->cert->nprincipals++] = principal; |
| 1391 | } |
| 1392 | |
| 1393 | buffer_clear(&tmp); |
| 1394 | |
| 1395 | buffer_append(&key->cert->critical, critical, clen); |
| 1396 | buffer_append(&tmp, critical, clen); |
| 1397 | /* validate structure */ |
| 1398 | while (buffer_len(&tmp) != 0) { |
| 1399 | if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL || |
| 1400 | buffer_get_string_ptr_ret(&tmp, NULL) == NULL) { |
| 1401 | error("%s: critical option data invalid", __func__); |
| 1402 | goto out; |
| 1403 | } |
| 1404 | } |
| 1405 | buffer_clear(&tmp); |
| 1406 | |
| 1407 | buffer_append(&key->cert->extensions, exts, elen); |
| 1408 | buffer_append(&tmp, exts, elen); |
| 1409 | /* validate structure */ |
| 1410 | while (buffer_len(&tmp) != 0) { |
| 1411 | if (buffer_get_string_ptr_ret(&tmp, NULL) == NULL || |
| 1412 | buffer_get_string_ptr_ret(&tmp, NULL) == NULL) { |
| 1413 | error("%s: extension data invalid", __func__); |
| 1414 | goto out; |
| 1415 | } |
| 1416 | } |
| 1417 | buffer_clear(&tmp); |
| 1418 | |
| 1419 | if ((key->cert->signature_key = key_from_blob(sig_key, |
| 1420 | sklen)) == NULL) { |
| 1421 | error("%s: Signature key invalid", __func__); |
| 1422 | goto out; |
| 1423 | } |
| 1424 | if (key->cert->signature_key->type != KEY_RSA && |
| 1425 | key->cert->signature_key->type != KEY_DSA && |
| 1426 | key->cert->signature_key->type != KEY_ECDSA) { |
| 1427 | error("%s: Invalid signature key type %s (%d)", __func__, |
| 1428 | key_type(key->cert->signature_key), |
| 1429 | key->cert->signature_key->type); |
| 1430 | goto out; |
| 1431 | } |
| 1432 | |
| 1433 | switch (key_verify(key->cert->signature_key, sig, slen, |
| 1434 | buffer_ptr(&key->cert->certblob), signed_len)) { |
| 1435 | case 1: |
| 1436 | ret = 0; |
| 1437 | break; /* Good signature */ |
| 1438 | case 0: |
| 1439 | error("%s: Invalid signature on certificate", __func__); |
| 1440 | goto out; |
| 1441 | case -1: |
| 1442 | error("%s: Certificate signature verification failed", |
| 1443 | __func__); |
| 1444 | goto out; |
| 1445 | } |
| 1446 | |
| 1447 | out: |
| 1448 | buffer_free(&tmp); |
| 1449 | if (principals != NULL) |
| 1450 | xfree(principals); |
| 1451 | if (critical != NULL) |
| 1452 | xfree(critical); |
| 1453 | if (exts != NULL) |
| 1454 | xfree(exts); |
| 1455 | if (sig_key != NULL) |
| 1456 | xfree(sig_key); |
| 1457 | if (sig != NULL) |
| 1458 | xfree(sig); |
| 1459 | return ret; |
| 1460 | } |
| 1461 | |
| 1462 | Key * |
| 1463 | key_from_blob(const u_char *blob, u_int blen) |
| 1464 | { |
| 1465 | Buffer b; |
| 1466 | int rlen, type; |
| 1467 | char *ktype = NULL, *curve = NULL; |
| 1468 | Key *key = NULL; |
| 1469 | #ifdef OPENSSL_HAS_ECC |
| 1470 | EC_POINT *q = NULL; |
| 1471 | int nid = -1; |
| 1472 | #endif |
| 1473 | |
| 1474 | #ifdef DEBUG_PK |
| 1475 | dump_base64(stderr, blob, blen); |
| 1476 | #endif |
| 1477 | buffer_init(&b); |
| 1478 | buffer_append(&b, blob, blen); |
| 1479 | if ((ktype = buffer_get_cstring_ret(&b, NULL)) == NULL) { |
| 1480 | error("key_from_blob: can't read key type"); |
| 1481 | goto out; |
| 1482 | } |
| 1483 | |
| 1484 | type = key_type_from_name(ktype); |
| 1485 | #ifdef OPENSSL_HAS_ECC |
| 1486 | if (key_type_plain(type) == KEY_ECDSA) |
| 1487 | nid = key_ecdsa_nid_from_name(ktype); |
| 1488 | #endif |
| 1489 | |
| 1490 | switch (type) { |
| 1491 | case KEY_RSA_CERT: |
| 1492 | (void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */ |
| 1493 | /* FALLTHROUGH */ |
| 1494 | case KEY_RSA: |
| 1495 | case KEY_RSA_CERT_V00: |
| 1496 | key = key_new(type); |
| 1497 | if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 || |
| 1498 | buffer_get_bignum2_ret(&b, key->rsa->n) == -1) { |
| 1499 | error("key_from_blob: can't read rsa key"); |
| 1500 | badkey: |
| 1501 | key_free(key); |
| 1502 | key = NULL; |
| 1503 | goto out; |
| 1504 | } |
| 1505 | #ifdef DEBUG_PK |
| 1506 | RSA_print_fp(stderr, key->rsa, 8); |
| 1507 | #endif |
| 1508 | break; |
| 1509 | case KEY_DSA_CERT: |
| 1510 | (void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */ |
| 1511 | /* FALLTHROUGH */ |
| 1512 | case KEY_DSA: |
| 1513 | case KEY_DSA_CERT_V00: |
| 1514 | key = key_new(type); |
| 1515 | if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 || |
| 1516 | buffer_get_bignum2_ret(&b, key->dsa->q) == -1 || |
| 1517 | buffer_get_bignum2_ret(&b, key->dsa->g) == -1 || |
| 1518 | buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) { |
| 1519 | error("key_from_blob: can't read dsa key"); |
| 1520 | goto badkey; |
| 1521 | } |
| 1522 | #ifdef DEBUG_PK |
| 1523 | DSA_print_fp(stderr, key->dsa, 8); |
| 1524 | #endif |
| 1525 | break; |
| 1526 | #ifdef OPENSSL_HAS_ECC |
| 1527 | case KEY_ECDSA_CERT: |
| 1528 | (void)buffer_get_string_ptr_ret(&b, NULL); /* Skip nonce */ |
| 1529 | /* FALLTHROUGH */ |
| 1530 | case KEY_ECDSA: |
| 1531 | key = key_new(type); |
| 1532 | key->ecdsa_nid = nid; |
| 1533 | if ((curve = buffer_get_string_ret(&b, NULL)) == NULL) { |
| 1534 | error("key_from_blob: can't read ecdsa curve"); |
| 1535 | goto badkey; |
| 1536 | } |
| 1537 | if (key->ecdsa_nid != key_curve_name_to_nid(curve)) { |
| 1538 | error("key_from_blob: ecdsa curve doesn't match type"); |
| 1539 | goto badkey; |
| 1540 | } |
| 1541 | if (key->ecdsa != NULL) |
| 1542 | EC_KEY_free(key->ecdsa); |
| 1543 | if ((key->ecdsa = EC_KEY_new_by_curve_name(key->ecdsa_nid)) |
| 1544 | == NULL) |
| 1545 | fatal("key_from_blob: EC_KEY_new_by_curve_name failed"); |
| 1546 | if ((q = EC_POINT_new(EC_KEY_get0_group(key->ecdsa))) == NULL) |
| 1547 | fatal("key_from_blob: EC_POINT_new failed"); |
| 1548 | if (buffer_get_ecpoint_ret(&b, EC_KEY_get0_group(key->ecdsa), |
| 1549 | q) == -1) { |
| 1550 | error("key_from_blob: can't read ecdsa key point"); |
| 1551 | goto badkey; |
| 1552 | } |
| 1553 | if (key_ec_validate_public(EC_KEY_get0_group(key->ecdsa), |
| 1554 | q) != 0) |
| 1555 | goto badkey; |
| 1556 | if (EC_KEY_set_public_key(key->ecdsa, q) != 1) |
| 1557 | fatal("key_from_blob: EC_KEY_set_public_key failed"); |
| 1558 | #ifdef DEBUG_PK |
| 1559 | key_dump_ec_point(EC_KEY_get0_group(key->ecdsa), q); |
| 1560 | #endif |
| 1561 | break; |
| 1562 | #endif /* OPENSSL_HAS_ECC */ |
| 1563 | case KEY_UNSPEC: |
| 1564 | key = key_new(type); |
| 1565 | break; |
| 1566 | default: |
| 1567 | error("key_from_blob: cannot handle type %s", ktype); |
| 1568 | goto out; |
| 1569 | } |
| 1570 | if (key_is_cert(key) && cert_parse(&b, key, blob, blen) == -1) { |
| 1571 | error("key_from_blob: can't parse cert data"); |
| 1572 | goto badkey; |
| 1573 | } |
| 1574 | rlen = buffer_len(&b); |
| 1575 | if (key != NULL && rlen != 0) |
| 1576 | error("key_from_blob: remaining bytes in key blob %d", rlen); |
| 1577 | out: |
| 1578 | if (ktype != NULL) |
| 1579 | xfree(ktype); |
| 1580 | if (curve != NULL) |
| 1581 | xfree(curve); |
| 1582 | #ifdef OPENSSL_HAS_ECC |
| 1583 | if (q != NULL) |
| 1584 | EC_POINT_free(q); |
| 1585 | #endif |
| 1586 | buffer_free(&b); |
| 1587 | return key; |
| 1588 | } |
| 1589 | |
| 1590 | int |
| 1591 | key_to_blob(const Key *key, u_char **blobp, u_int *lenp) |
| 1592 | { |
| 1593 | Buffer b; |
| 1594 | int len; |
| 1595 | |
| 1596 | if (key == NULL) { |
| 1597 | error("key_to_blob: key == NULL"); |
| 1598 | return 0; |
| 1599 | } |
| 1600 | buffer_init(&b); |
| 1601 | switch (key->type) { |
| 1602 | case KEY_DSA_CERT_V00: |
| 1603 | case KEY_RSA_CERT_V00: |
| 1604 | case KEY_DSA_CERT: |
| 1605 | case KEY_ECDSA_CERT: |
| 1606 | case KEY_RSA_CERT: |
| 1607 | /* Use the existing blob */ |
| 1608 | buffer_append(&b, buffer_ptr(&key->cert->certblob), |
| 1609 | buffer_len(&key->cert->certblob)); |
| 1610 | break; |
| 1611 | case KEY_DSA: |
| 1612 | buffer_put_cstring(&b, key_ssh_name(key)); |
| 1613 | buffer_put_bignum2(&b, key->dsa->p); |
| 1614 | buffer_put_bignum2(&b, key->dsa->q); |
| 1615 | buffer_put_bignum2(&b, key->dsa->g); |
| 1616 | buffer_put_bignum2(&b, key->dsa->pub_key); |
| 1617 | break; |
| 1618 | #ifdef OPENSSL_HAS_ECC |
| 1619 | case KEY_ECDSA: |
| 1620 | buffer_put_cstring(&b, key_ssh_name(key)); |
| 1621 | buffer_put_cstring(&b, key_curve_nid_to_name(key->ecdsa_nid)); |
| 1622 | buffer_put_ecpoint(&b, EC_KEY_get0_group(key->ecdsa), |
| 1623 | EC_KEY_get0_public_key(key->ecdsa)); |
| 1624 | break; |
| 1625 | #endif |
| 1626 | case KEY_RSA: |
| 1627 | buffer_put_cstring(&b, key_ssh_name(key)); |
| 1628 | buffer_put_bignum2(&b, key->rsa->e); |
| 1629 | buffer_put_bignum2(&b, key->rsa->n); |
| 1630 | break; |
| 1631 | default: |
| 1632 | error("key_to_blob: unsupported key type %d", key->type); |
| 1633 | buffer_free(&b); |
| 1634 | return 0; |
| 1635 | } |
| 1636 | len = buffer_len(&b); |
| 1637 | if (lenp != NULL) |
| 1638 | *lenp = len; |
| 1639 | if (blobp != NULL) { |
| 1640 | *blobp = xmalloc(len); |
| 1641 | memcpy(*blobp, buffer_ptr(&b), len); |
| 1642 | } |
| 1643 | memset(buffer_ptr(&b), 0, len); |
| 1644 | buffer_free(&b); |
| 1645 | return len; |
| 1646 | } |
| 1647 | |
| 1648 | int |
| 1649 | key_sign( |
| 1650 | const Key *key, |
| 1651 | u_char **sigp, u_int *lenp, |
| 1652 | const u_char *data, u_int datalen) |
| 1653 | { |
| 1654 | switch (key->type) { |
| 1655 | case KEY_DSA_CERT_V00: |
| 1656 | case KEY_DSA_CERT: |
| 1657 | case KEY_DSA: |
| 1658 | return ssh_dss_sign(key, sigp, lenp, data, datalen); |
| 1659 | #ifdef OPENSSL_HAS_ECC |
| 1660 | case KEY_ECDSA_CERT: |
| 1661 | case KEY_ECDSA: |
| 1662 | return ssh_ecdsa_sign(key, sigp, lenp, data, datalen); |
| 1663 | #endif |
| 1664 | case KEY_RSA_CERT_V00: |
| 1665 | case KEY_RSA_CERT: |
| 1666 | case KEY_RSA: |
| 1667 | return ssh_rsa_sign(key, sigp, lenp, data, datalen); |
| 1668 | default: |
| 1669 | error("key_sign: invalid key type %d", key->type); |
| 1670 | return -1; |
| 1671 | } |
| 1672 | } |
| 1673 | |
| 1674 | /* |
| 1675 | * key_verify returns 1 for a correct signature, 0 for an incorrect signature |
| 1676 | * and -1 on error. |
| 1677 | */ |
| 1678 | int |
| 1679 | key_verify( |
| 1680 | const Key *key, |
| 1681 | const u_char *signature, u_int signaturelen, |
| 1682 | const u_char *data, u_int datalen) |
| 1683 | { |
| 1684 | if (signaturelen == 0) |
| 1685 | return -1; |
| 1686 | |
| 1687 | switch (key->type) { |
| 1688 | case KEY_DSA_CERT_V00: |
| 1689 | case KEY_DSA_CERT: |
| 1690 | case KEY_DSA: |
| 1691 | return ssh_dss_verify(key, signature, signaturelen, data, datalen); |
| 1692 | #ifdef OPENSSL_HAS_ECC |
| 1693 | case KEY_ECDSA_CERT: |
| 1694 | case KEY_ECDSA: |
| 1695 | return ssh_ecdsa_verify(key, signature, signaturelen, data, datalen); |
| 1696 | #endif |
| 1697 | case KEY_RSA_CERT_V00: |
| 1698 | case KEY_RSA_CERT: |
| 1699 | case KEY_RSA: |
| 1700 | return ssh_rsa_verify(key, signature, signaturelen, data, datalen); |
| 1701 | default: |
| 1702 | error("key_verify: invalid key type %d", key->type); |
| 1703 | return -1; |
| 1704 | } |
| 1705 | } |
| 1706 | |
| 1707 | /* Converts a private to a public key */ |
| 1708 | Key * |
| 1709 | key_demote(const Key *k) |
| 1710 | { |
| 1711 | Key *pk; |
| 1712 | |
| 1713 | pk = xcalloc(1, sizeof(*pk)); |
| 1714 | pk->type = k->type; |
| 1715 | pk->flags = k->flags; |
| 1716 | pk->ecdsa_nid = k->ecdsa_nid; |
| 1717 | pk->dsa = NULL; |
| 1718 | pk->ecdsa = NULL; |
| 1719 | pk->rsa = NULL; |
| 1720 | |
| 1721 | switch (k->type) { |
| 1722 | case KEY_RSA_CERT_V00: |
| 1723 | case KEY_RSA_CERT: |
| 1724 | key_cert_copy(k, pk); |
| 1725 | /* FALLTHROUGH */ |
| 1726 | case KEY_RSA1: |
| 1727 | case KEY_RSA: |
| 1728 | if ((pk->rsa = RSA_new()) == NULL) |
| 1729 | fatal("key_demote: RSA_new failed"); |
| 1730 | if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL) |
| 1731 | fatal("key_demote: BN_dup failed"); |
| 1732 | if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL) |
| 1733 | fatal("key_demote: BN_dup failed"); |
| 1734 | break; |
| 1735 | case KEY_DSA_CERT_V00: |
| 1736 | case KEY_DSA_CERT: |
| 1737 | key_cert_copy(k, pk); |
| 1738 | /* FALLTHROUGH */ |
| 1739 | case KEY_DSA: |
| 1740 | if ((pk->dsa = DSA_new()) == NULL) |
| 1741 | fatal("key_demote: DSA_new failed"); |
| 1742 | if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL) |
| 1743 | fatal("key_demote: BN_dup failed"); |
| 1744 | if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL) |
| 1745 | fatal("key_demote: BN_dup failed"); |
| 1746 | if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL) |
| 1747 | fatal("key_demote: BN_dup failed"); |
| 1748 | if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL) |
| 1749 | fatal("key_demote: BN_dup failed"); |
| 1750 | break; |
| 1751 | #ifdef OPENSSL_HAS_ECC |
| 1752 | case KEY_ECDSA_CERT: |
| 1753 | key_cert_copy(k, pk); |
| 1754 | /* FALLTHROUGH */ |
| 1755 | case KEY_ECDSA: |
| 1756 | if ((pk->ecdsa = EC_KEY_new_by_curve_name(pk->ecdsa_nid)) == NULL) |
| 1757 | fatal("key_demote: EC_KEY_new_by_curve_name failed"); |
| 1758 | if (EC_KEY_set_public_key(pk->ecdsa, |
| 1759 | EC_KEY_get0_public_key(k->ecdsa)) != 1) |
| 1760 | fatal("key_demote: EC_KEY_set_public_key failed"); |
| 1761 | break; |
| 1762 | #endif |
| 1763 | default: |
| 1764 | fatal("key_free: bad key type %d", k->type); |
| 1765 | break; |
| 1766 | } |
| 1767 | |
| 1768 | return (pk); |
| 1769 | } |
| 1770 | |
| 1771 | int |
| 1772 | key_is_cert(const Key *k) |
| 1773 | { |
| 1774 | if (k == NULL) |
| 1775 | return 0; |
| 1776 | switch (k->type) { |
| 1777 | case KEY_RSA_CERT_V00: |
| 1778 | case KEY_DSA_CERT_V00: |
| 1779 | case KEY_RSA_CERT: |
| 1780 | case KEY_DSA_CERT: |
| 1781 | case KEY_ECDSA_CERT: |
| 1782 | return 1; |
| 1783 | default: |
| 1784 | return 0; |
| 1785 | } |
| 1786 | } |
| 1787 | |
| 1788 | /* Return the cert-less equivalent to a certified key type */ |
| 1789 | int |
| 1790 | key_type_plain(int type) |
| 1791 | { |
| 1792 | switch (type) { |
| 1793 | case KEY_RSA_CERT_V00: |
| 1794 | case KEY_RSA_CERT: |
| 1795 | return KEY_RSA; |
| 1796 | case KEY_DSA_CERT_V00: |
| 1797 | case KEY_DSA_CERT: |
| 1798 | return KEY_DSA; |
| 1799 | case KEY_ECDSA_CERT: |
| 1800 | return KEY_ECDSA; |
| 1801 | default: |
| 1802 | return type; |
| 1803 | } |
| 1804 | } |
| 1805 | |
| 1806 | /* Convert a KEY_RSA or KEY_DSA to their _CERT equivalent */ |
| 1807 | int |
| 1808 | key_to_certified(Key *k, int legacy) |
| 1809 | { |
| 1810 | switch (k->type) { |
| 1811 | case KEY_RSA: |
| 1812 | k->cert = cert_new(); |
| 1813 | k->type = legacy ? KEY_RSA_CERT_V00 : KEY_RSA_CERT; |
| 1814 | return 0; |
| 1815 | case KEY_DSA: |
| 1816 | k->cert = cert_new(); |
| 1817 | k->type = legacy ? KEY_DSA_CERT_V00 : KEY_DSA_CERT; |
| 1818 | return 0; |
| 1819 | case KEY_ECDSA: |
| 1820 | if (legacy) |
| 1821 | fatal("%s: legacy ECDSA certificates are not supported", |
| 1822 | __func__); |
| 1823 | k->cert = cert_new(); |
| 1824 | k->type = KEY_ECDSA_CERT; |
| 1825 | return 0; |
| 1826 | default: |
| 1827 | error("%s: key has incorrect type %s", __func__, key_type(k)); |
| 1828 | return -1; |
| 1829 | } |
| 1830 | } |
| 1831 | |
| 1832 | /* Convert a KEY_RSA_CERT or KEY_DSA_CERT to their raw key equivalent */ |
| 1833 | int |
| 1834 | key_drop_cert(Key *k) |
| 1835 | { |
| 1836 | switch (k->type) { |
| 1837 | case KEY_RSA_CERT_V00: |
| 1838 | case KEY_RSA_CERT: |
| 1839 | cert_free(k->cert); |
| 1840 | k->type = KEY_RSA; |
| 1841 | return 0; |
| 1842 | case KEY_DSA_CERT_V00: |
| 1843 | case KEY_DSA_CERT: |
| 1844 | cert_free(k->cert); |
| 1845 | k->type = KEY_DSA; |
| 1846 | return 0; |
| 1847 | case KEY_ECDSA_CERT: |
| 1848 | cert_free(k->cert); |
| 1849 | k->type = KEY_ECDSA; |
| 1850 | return 0; |
| 1851 | default: |
| 1852 | error("%s: key has incorrect type %s", __func__, key_type(k)); |
| 1853 | return -1; |
| 1854 | } |
| 1855 | } |
| 1856 | |
| 1857 | /* |
| 1858 | * Sign a KEY_RSA_CERT, KEY_DSA_CERT or KEY_ECDSA_CERT, (re-)generating |
| 1859 | * the signed certblob |
| 1860 | */ |
| 1861 | int |
| 1862 | key_certify(Key *k, Key *ca) |
| 1863 | { |
| 1864 | Buffer principals; |
| 1865 | u_char *ca_blob, *sig_blob, nonce[32]; |
| 1866 | u_int i, ca_len, sig_len; |
| 1867 | |
| 1868 | if (k->cert == NULL) { |
| 1869 | error("%s: key lacks cert info", __func__); |
| 1870 | return -1; |
| 1871 | } |
| 1872 | |
| 1873 | if (!key_is_cert(k)) { |
| 1874 | error("%s: certificate has unknown type %d", __func__, |
| 1875 | k->cert->type); |
| 1876 | return -1; |
| 1877 | } |
| 1878 | |
| 1879 | if (ca->type != KEY_RSA && ca->type != KEY_DSA && |
| 1880 | ca->type != KEY_ECDSA) { |
| 1881 | error("%s: CA key has unsupported type %s", __func__, |
| 1882 | key_type(ca)); |
| 1883 | return -1; |
| 1884 | } |
| 1885 | |
| 1886 | key_to_blob(ca, &ca_blob, &ca_len); |
| 1887 | |
| 1888 | buffer_clear(&k->cert->certblob); |
| 1889 | buffer_put_cstring(&k->cert->certblob, key_ssh_name(k)); |
| 1890 | |
| 1891 | /* -v01 certs put nonce first */ |
| 1892 | arc4random_buf(&nonce, sizeof(nonce)); |
| 1893 | if (!key_cert_is_legacy(k)) |
| 1894 | buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce)); |
| 1895 | |
| 1896 | switch (k->type) { |
| 1897 | case KEY_DSA_CERT_V00: |
| 1898 | case KEY_DSA_CERT: |
| 1899 | buffer_put_bignum2(&k->cert->certblob, k->dsa->p); |
| 1900 | buffer_put_bignum2(&k->cert->certblob, k->dsa->q); |
| 1901 | buffer_put_bignum2(&k->cert->certblob, k->dsa->g); |
| 1902 | buffer_put_bignum2(&k->cert->certblob, k->dsa->pub_key); |
| 1903 | break; |
| 1904 | #ifdef OPENSSL_HAS_ECC |
| 1905 | case KEY_ECDSA_CERT: |
| 1906 | buffer_put_cstring(&k->cert->certblob, |
| 1907 | key_curve_nid_to_name(k->ecdsa_nid)); |
| 1908 | buffer_put_ecpoint(&k->cert->certblob, |
| 1909 | EC_KEY_get0_group(k->ecdsa), |
| 1910 | EC_KEY_get0_public_key(k->ecdsa)); |
| 1911 | break; |
| 1912 | #endif |
| 1913 | case KEY_RSA_CERT_V00: |
| 1914 | case KEY_RSA_CERT: |
| 1915 | buffer_put_bignum2(&k->cert->certblob, k->rsa->e); |
| 1916 | buffer_put_bignum2(&k->cert->certblob, k->rsa->n); |
| 1917 | break; |
| 1918 | default: |
| 1919 | error("%s: key has incorrect type %s", __func__, key_type(k)); |
| 1920 | buffer_clear(&k->cert->certblob); |
| 1921 | xfree(ca_blob); |
| 1922 | return -1; |
| 1923 | } |
| 1924 | |
| 1925 | /* -v01 certs have a serial number next */ |
| 1926 | if (!key_cert_is_legacy(k)) |
| 1927 | buffer_put_int64(&k->cert->certblob, k->cert->serial); |
| 1928 | |
| 1929 | buffer_put_int(&k->cert->certblob, k->cert->type); |
| 1930 | buffer_put_cstring(&k->cert->certblob, k->cert->key_id); |
| 1931 | |
| 1932 | buffer_init(&principals); |
| 1933 | for (i = 0; i < k->cert->nprincipals; i++) |
| 1934 | buffer_put_cstring(&principals, k->cert->principals[i]); |
| 1935 | buffer_put_string(&k->cert->certblob, buffer_ptr(&principals), |
| 1936 | buffer_len(&principals)); |
| 1937 | buffer_free(&principals); |
| 1938 | |
| 1939 | buffer_put_int64(&k->cert->certblob, k->cert->valid_after); |
| 1940 | buffer_put_int64(&k->cert->certblob, k->cert->valid_before); |
| 1941 | buffer_put_string(&k->cert->certblob, |
| 1942 | buffer_ptr(&k->cert->critical), buffer_len(&k->cert->critical)); |
| 1943 | |
| 1944 | /* -v01 certs have non-critical options here */ |
| 1945 | if (!key_cert_is_legacy(k)) { |
| 1946 | buffer_put_string(&k->cert->certblob, |
| 1947 | buffer_ptr(&k->cert->extensions), |
| 1948 | buffer_len(&k->cert->extensions)); |
| 1949 | } |
| 1950 | |
| 1951 | /* -v00 certs put the nonce at the end */ |
| 1952 | if (key_cert_is_legacy(k)) |
| 1953 | buffer_put_string(&k->cert->certblob, nonce, sizeof(nonce)); |
| 1954 | |
| 1955 | buffer_put_string(&k->cert->certblob, NULL, 0); /* reserved */ |
| 1956 | buffer_put_string(&k->cert->certblob, ca_blob, ca_len); |
| 1957 | xfree(ca_blob); |
| 1958 | |
| 1959 | /* Sign the whole mess */ |
| 1960 | if (key_sign(ca, &sig_blob, &sig_len, buffer_ptr(&k->cert->certblob), |
| 1961 | buffer_len(&k->cert->certblob)) != 0) { |
| 1962 | error("%s: signature operation failed", __func__); |
| 1963 | buffer_clear(&k->cert->certblob); |
| 1964 | return -1; |
| 1965 | } |
| 1966 | /* Append signature and we are done */ |
| 1967 | buffer_put_string(&k->cert->certblob, sig_blob, sig_len); |
| 1968 | xfree(sig_blob); |
| 1969 | |
| 1970 | return 0; |
| 1971 | } |
| 1972 | |
| 1973 | int |
| 1974 | key_cert_check_authority(const Key *k, int want_host, int require_principal, |
| 1975 | const char *name, const char **reason) |
| 1976 | { |
| 1977 | u_int i, principal_matches; |
| 1978 | time_t now = time(NULL); |
| 1979 | |
| 1980 | if (want_host) { |
| 1981 | if (k->cert->type != SSH2_CERT_TYPE_HOST) { |
| 1982 | *reason = "Certificate invalid: not a host certificate"; |
| 1983 | return -1; |
| 1984 | } |
| 1985 | } else { |
| 1986 | if (k->cert->type != SSH2_CERT_TYPE_USER) { |
| 1987 | *reason = "Certificate invalid: not a user certificate"; |
| 1988 | return -1; |
| 1989 | } |
| 1990 | } |
| 1991 | if (now < 0) { |
| 1992 | error("%s: system clock lies before epoch", __func__); |
| 1993 | *reason = "Certificate invalid: not yet valid"; |
| 1994 | return -1; |
| 1995 | } |
| 1996 | if ((u_int64_t)now < k->cert->valid_after) { |
| 1997 | *reason = "Certificate invalid: not yet valid"; |
| 1998 | return -1; |
| 1999 | } |
| 2000 | if ((u_int64_t)now >= k->cert->valid_before) { |
| 2001 | *reason = "Certificate invalid: expired"; |
| 2002 | return -1; |
| 2003 | } |
| 2004 | if (k->cert->nprincipals == 0) { |
| 2005 | if (require_principal) { |
| 2006 | *reason = "Certificate lacks principal list"; |
| 2007 | return -1; |
| 2008 | } |
| 2009 | } else if (name != NULL) { |
| 2010 | principal_matches = 0; |
| 2011 | for (i = 0; i < k->cert->nprincipals; i++) { |
| 2012 | if (strcmp(name, k->cert->principals[i]) == 0) { |
| 2013 | principal_matches = 1; |
| 2014 | break; |
| 2015 | } |
| 2016 | } |
| 2017 | if (!principal_matches) { |
| 2018 | *reason = "Certificate invalid: name is not a listed " |
| 2019 | "principal"; |
| 2020 | return -1; |
| 2021 | } |
| 2022 | } |
| 2023 | return 0; |
| 2024 | } |
| 2025 | |
| 2026 | int |
| 2027 | key_cert_is_legacy(Key *k) |
| 2028 | { |
| 2029 | switch (k->type) { |
| 2030 | case KEY_DSA_CERT_V00: |
| 2031 | case KEY_RSA_CERT_V00: |
| 2032 | return 1; |
| 2033 | default: |
| 2034 | return 0; |
| 2035 | } |
| 2036 | } |
| 2037 | |
| 2038 | /* XXX: these are really begging for a table-driven approach */ |
| 2039 | int |
| 2040 | key_curve_name_to_nid(const char *name) |
| 2041 | { |
| 2042 | #ifdef OPENSSL_HAS_ECC |
| 2043 | if (strcmp(name, "nistp256") == 0) |
| 2044 | return NID_X9_62_prime256v1; |
| 2045 | else if (strcmp(name, "nistp384") == 0) |
| 2046 | return NID_secp384r1; |
| 2047 | else if (strcmp(name, "nistp521") == 0) |
| 2048 | return NID_secp521r1; |
| 2049 | #endif |
| 2050 | |
| 2051 | debug("%s: unsupported EC curve name \"%.100s\"", __func__, name); |
| 2052 | return -1; |
| 2053 | } |
| 2054 | |
| 2055 | u_int |
| 2056 | key_curve_nid_to_bits(int nid) |
| 2057 | { |
| 2058 | switch (nid) { |
| 2059 | #ifdef OPENSSL_HAS_ECC |
| 2060 | case NID_X9_62_prime256v1: |
| 2061 | return 256; |
| 2062 | case NID_secp384r1: |
| 2063 | return 384; |
| 2064 | case NID_secp521r1: |
| 2065 | return 521; |
| 2066 | #endif |
| 2067 | default: |
| 2068 | error("%s: unsupported EC curve nid %d", __func__, nid); |
| 2069 | return 0; |
| 2070 | } |
| 2071 | } |
| 2072 | |
| 2073 | const char * |
| 2074 | key_curve_nid_to_name(int nid) |
| 2075 | { |
| 2076 | #ifdef OPENSSL_HAS_ECC |
| 2077 | if (nid == NID_X9_62_prime256v1) |
| 2078 | return "nistp256"; |
| 2079 | else if (nid == NID_secp384r1) |
| 2080 | return "nistp384"; |
| 2081 | else if (nid == NID_secp521r1) |
| 2082 | return "nistp521"; |
| 2083 | #endif |
| 2084 | error("%s: unsupported EC curve nid %d", __func__, nid); |
| 2085 | return NULL; |
| 2086 | } |
| 2087 | |
| 2088 | #ifdef OPENSSL_HAS_ECC |
| 2089 | const EVP_MD * |
| 2090 | key_ec_nid_to_evpmd(int nid) |
| 2091 | { |
| 2092 | int kbits = key_curve_nid_to_bits(nid); |
| 2093 | |
| 2094 | if (kbits == 0) |
| 2095 | fatal("%s: invalid nid %d", __func__, nid); |
| 2096 | /* RFC5656 section 6.2.1 */ |
| 2097 | if (kbits <= 256) |
| 2098 | return EVP_sha256(); |
| 2099 | else if (kbits <= 384) |
| 2100 | return EVP_sha384(); |
| 2101 | else |
| 2102 | return EVP_sha512(); |
| 2103 | } |
| 2104 | |
| 2105 | int |
| 2106 | key_ec_validate_public(const EC_GROUP *group, const EC_POINT *public) |
| 2107 | { |
| 2108 | BN_CTX *bnctx; |
| 2109 | EC_POINT *nq = NULL; |
| 2110 | BIGNUM *order, *x, *y, *tmp; |
| 2111 | int ret = -1; |
| 2112 | |
| 2113 | if ((bnctx = BN_CTX_new()) == NULL) |
| 2114 | fatal("%s: BN_CTX_new failed", __func__); |
| 2115 | BN_CTX_start(bnctx); |
| 2116 | |
| 2117 | /* |
| 2118 | * We shouldn't ever hit this case because bignum_get_ecpoint() |
| 2119 | * refuses to load GF2m points. |
| 2120 | */ |
| 2121 | if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != |
| 2122 | NID_X9_62_prime_field) { |
| 2123 | error("%s: group is not a prime field", __func__); |
| 2124 | goto out; |
| 2125 | } |
| 2126 | |
| 2127 | /* Q != infinity */ |
| 2128 | if (EC_POINT_is_at_infinity(group, public)) { |
| 2129 | error("%s: received degenerate public key (infinity)", |
| 2130 | __func__); |
| 2131 | goto out; |
| 2132 | } |
| 2133 | |
| 2134 | if ((x = BN_CTX_get(bnctx)) == NULL || |
| 2135 | (y = BN_CTX_get(bnctx)) == NULL || |
| 2136 | (order = BN_CTX_get(bnctx)) == NULL || |
| 2137 | (tmp = BN_CTX_get(bnctx)) == NULL) |
| 2138 | fatal("%s: BN_CTX_get failed", __func__); |
| 2139 | |
| 2140 | /* log2(x) > log2(order)/2, log2(y) > log2(order)/2 */ |
| 2141 | if (EC_GROUP_get_order(group, order, bnctx) != 1) |
| 2142 | fatal("%s: EC_GROUP_get_order failed", __func__); |
| 2143 | if (EC_POINT_get_affine_coordinates_GFp(group, public, |
| 2144 | x, y, bnctx) != 1) |
| 2145 | fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__); |
| 2146 | if (BN_num_bits(x) <= BN_num_bits(order) / 2) { |
| 2147 | error("%s: public key x coordinate too small: " |
| 2148 | "bits(x) = %d, bits(order)/2 = %d", __func__, |
| 2149 | BN_num_bits(x), BN_num_bits(order) / 2); |
| 2150 | goto out; |
| 2151 | } |
| 2152 | if (BN_num_bits(y) <= BN_num_bits(order) / 2) { |
| 2153 | error("%s: public key y coordinate too small: " |
| 2154 | "bits(y) = %d, bits(order)/2 = %d", __func__, |
| 2155 | BN_num_bits(x), BN_num_bits(order) / 2); |
| 2156 | goto out; |
| 2157 | } |
| 2158 | |
| 2159 | /* nQ == infinity (n == order of subgroup) */ |
| 2160 | if ((nq = EC_POINT_new(group)) == NULL) |
| 2161 | fatal("%s: BN_CTX_tmp failed", __func__); |
| 2162 | if (EC_POINT_mul(group, nq, NULL, public, order, bnctx) != 1) |
| 2163 | fatal("%s: EC_GROUP_mul failed", __func__); |
| 2164 | if (EC_POINT_is_at_infinity(group, nq) != 1) { |
| 2165 | error("%s: received degenerate public key (nQ != infinity)", |
| 2166 | __func__); |
| 2167 | goto out; |
| 2168 | } |
| 2169 | |
| 2170 | /* x < order - 1, y < order - 1 */ |
| 2171 | if (!BN_sub(tmp, order, BN_value_one())) |
| 2172 | fatal("%s: BN_sub failed", __func__); |
| 2173 | if (BN_cmp(x, tmp) >= 0) { |
| 2174 | error("%s: public key x coordinate >= group order - 1", |
| 2175 | __func__); |
| 2176 | goto out; |
| 2177 | } |
| 2178 | if (BN_cmp(y, tmp) >= 0) { |
| 2179 | error("%s: public key y coordinate >= group order - 1", |
| 2180 | __func__); |
| 2181 | goto out; |
| 2182 | } |
| 2183 | ret = 0; |
| 2184 | out: |
| 2185 | BN_CTX_free(bnctx); |
| 2186 | EC_POINT_free(nq); |
| 2187 | return ret; |
| 2188 | } |
| 2189 | |
| 2190 | int |
| 2191 | key_ec_validate_private(const EC_KEY *key) |
| 2192 | { |
| 2193 | BN_CTX *bnctx; |
| 2194 | BIGNUM *order, *tmp; |
| 2195 | int ret = -1; |
| 2196 | |
| 2197 | if ((bnctx = BN_CTX_new()) == NULL) |
| 2198 | fatal("%s: BN_CTX_new failed", __func__); |
| 2199 | BN_CTX_start(bnctx); |
| 2200 | |
| 2201 | if ((order = BN_CTX_get(bnctx)) == NULL || |
| 2202 | (tmp = BN_CTX_get(bnctx)) == NULL) |
| 2203 | fatal("%s: BN_CTX_get failed", __func__); |
| 2204 | |
| 2205 | /* log2(private) > log2(order)/2 */ |
| 2206 | if (EC_GROUP_get_order(EC_KEY_get0_group(key), order, bnctx) != 1) |
| 2207 | fatal("%s: EC_GROUP_get_order failed", __func__); |
| 2208 | if (BN_num_bits(EC_KEY_get0_private_key(key)) <= |
| 2209 | BN_num_bits(order) / 2) { |
| 2210 | error("%s: private key too small: " |
| 2211 | "bits(y) = %d, bits(order)/2 = %d", __func__, |
| 2212 | BN_num_bits(EC_KEY_get0_private_key(key)), |
| 2213 | BN_num_bits(order) / 2); |
| 2214 | goto out; |
| 2215 | } |
| 2216 | |
| 2217 | /* private < order - 1 */ |
| 2218 | if (!BN_sub(tmp, order, BN_value_one())) |
| 2219 | fatal("%s: BN_sub failed", __func__); |
| 2220 | if (BN_cmp(EC_KEY_get0_private_key(key), tmp) >= 0) { |
| 2221 | error("%s: private key >= group order - 1", __func__); |
| 2222 | goto out; |
| 2223 | } |
| 2224 | ret = 0; |
| 2225 | out: |
| 2226 | BN_CTX_free(bnctx); |
| 2227 | return ret; |
| 2228 | } |
| 2229 | |
| 2230 | #if defined(DEBUG_KEXECDH) || defined(DEBUG_PK) |
| 2231 | void |
| 2232 | key_dump_ec_point(const EC_GROUP *group, const EC_POINT *point) |
| 2233 | { |
| 2234 | BIGNUM *x, *y; |
| 2235 | BN_CTX *bnctx; |
| 2236 | |
| 2237 | if (point == NULL) { |
| 2238 | fputs("point=(NULL)\n", stderr); |
| 2239 | return; |
| 2240 | } |
| 2241 | if ((bnctx = BN_CTX_new()) == NULL) |
| 2242 | fatal("%s: BN_CTX_new failed", __func__); |
| 2243 | BN_CTX_start(bnctx); |
| 2244 | if ((x = BN_CTX_get(bnctx)) == NULL || (y = BN_CTX_get(bnctx)) == NULL) |
| 2245 | fatal("%s: BN_CTX_get failed", __func__); |
| 2246 | if (EC_METHOD_get_field_type(EC_GROUP_method_of(group)) != |
| 2247 | NID_X9_62_prime_field) |
| 2248 | fatal("%s: group is not a prime field", __func__); |
| 2249 | if (EC_POINT_get_affine_coordinates_GFp(group, point, x, y, bnctx) != 1) |
| 2250 | fatal("%s: EC_POINT_get_affine_coordinates_GFp", __func__); |
| 2251 | fputs("x=", stderr); |
| 2252 | BN_print_fp(stderr, x); |
| 2253 | fputs("\ny=", stderr); |
| 2254 | BN_print_fp(stderr, y); |
| 2255 | fputs("\n", stderr); |
| 2256 | BN_CTX_free(bnctx); |
| 2257 | } |
| 2258 | |
| 2259 | void |
| 2260 | key_dump_ec_key(const EC_KEY *key) |
| 2261 | { |
| 2262 | const BIGNUM *exponent; |
| 2263 | |
| 2264 | key_dump_ec_point(EC_KEY_get0_group(key), EC_KEY_get0_public_key(key)); |
| 2265 | fputs("exponent=", stderr); |
| 2266 | if ((exponent = EC_KEY_get0_private_key(key)) == NULL) |
| 2267 | fputs("(NULL)", stderr); |
| 2268 | else |
| 2269 | BN_print_fp(stderr, EC_KEY_get0_private_key(key)); |
| 2270 | fputs("\n", stderr); |
| 2271 | } |
| 2272 | #endif /* defined(DEBUG_KEXECDH) || defined(DEBUG_PK) */ |
| 2273 | #endif /* OPENSSL_HAS_ECC */ |