| // Copyright (C) 2018 The Android Open Source Project |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| #include <gtest/gtest.h> |
| #include <random> |
| |
| #include "benchmark/benchmark.h" |
| #include "perfetto/base/time.h" |
| #include "perfetto/traced/traced.h" |
| #include "perfetto/tracing/core/trace_config.h" |
| #include "perfetto/tracing/core/trace_packet.h" |
| #include "src/base/test/test_task_runner.h" |
| #include "test/task_runner_thread.h" |
| #include "test/task_runner_thread_delegates.h" |
| #include "test/test_helper.h" |
| |
| #include "perfetto/trace/trace_packet.pb.h" |
| #include "perfetto/trace/trace_packet.pbzero.h" |
| |
| namespace perfetto { |
| |
| namespace { |
| |
| bool IsBenchmarkFunctionalOnly() { |
| return getenv("BENCHMARK_FUNCTIONAL_TEST_ONLY") != nullptr; |
| } |
| |
| void BenchmarkProducer(benchmark::State& state) { |
| base::TestTaskRunner task_runner; |
| |
| TestHelper helper(&task_runner); |
| helper.StartServiceIfRequired(); |
| |
| FakeProducer* producer = helper.ConnectFakeProducer(); |
| helper.ConnectConsumer(); |
| helper.WaitForConsumerConnect(); |
| |
| TraceConfig trace_config; |
| trace_config.add_buffers()->set_size_kb(512); |
| |
| auto* ds_config = trace_config.add_data_sources()->mutable_config(); |
| ds_config->set_name("android.perfetto.FakeProducer"); |
| ds_config->set_target_buffer(0); |
| |
| static constexpr uint32_t kRandomSeed = 42; |
| uint32_t message_count = static_cast<uint32_t>(state.range(0)); |
| uint32_t message_bytes = static_cast<uint32_t>(state.range(1)); |
| uint32_t mb_per_s = static_cast<uint32_t>(state.range(2)); |
| |
| uint32_t messages_per_s = mb_per_s * 1024 * 1024 / message_bytes; |
| uint32_t time_for_messages_ms = |
| 10000 + (messages_per_s == 0 ? 0 : message_count * 1000 / messages_per_s); |
| |
| ds_config->mutable_for_testing()->set_seed(kRandomSeed); |
| ds_config->mutable_for_testing()->set_message_count(message_count); |
| ds_config->mutable_for_testing()->set_message_size(message_bytes); |
| ds_config->mutable_for_testing()->set_max_messages_per_second(messages_per_s); |
| |
| helper.StartTracing(trace_config); |
| helper.WaitForProducerEnabled(); |
| |
| uint64_t wall_start_ns = static_cast<uint64_t>(base::GetWallTimeNs().count()); |
| uint64_t service_start_ns = helper.service_thread()->GetThreadCPUTimeNs(); |
| uint64_t producer_start_ns = helper.producer_thread()->GetThreadCPUTimeNs(); |
| uint32_t iterations = 0; |
| for (auto _ : state) { |
| auto cname = "produced.and.committed." + std::to_string(iterations++); |
| auto on_produced_and_committed = task_runner.CreateCheckpoint(cname); |
| producer->ProduceEventBatch(helper.WrapTask(on_produced_and_committed)); |
| task_runner.RunUntilCheckpoint(cname, time_for_messages_ms); |
| } |
| uint64_t service_ns = |
| helper.service_thread()->GetThreadCPUTimeNs() - service_start_ns; |
| uint64_t producer_ns = |
| helper.producer_thread()->GetThreadCPUTimeNs() - producer_start_ns; |
| uint64_t wall_ns = |
| static_cast<uint64_t>(base::GetWallTimeNs().count()) - wall_start_ns; |
| |
| state.counters["Ser CPU"] = benchmark::Counter(100.0 * service_ns / wall_ns); |
| state.counters["Ser ns/m"] = |
| benchmark::Counter(1.0 * service_ns / message_count); |
| state.counters["Pro CPU"] = benchmark::Counter(100.0 * producer_ns / wall_ns); |
| state.SetBytesProcessed(iterations * message_bytes * message_count); |
| |
| // Read back the buffer just to check correctness. |
| helper.ReadData(); |
| helper.WaitForReadData(); |
| |
| bool is_first_packet = true; |
| std::minstd_rand0 rnd_engine(kRandomSeed); |
| for (const auto& packet : helper.trace()) { |
| ASSERT_TRUE(packet.has_for_testing()); |
| if (is_first_packet) { |
| rnd_engine = std::minstd_rand0(packet.for_testing().seq_value()); |
| is_first_packet = false; |
| } else { |
| ASSERT_EQ(packet.for_testing().seq_value(), rnd_engine()); |
| } |
| } |
| } |
| |
| static void BenchmarkConsumer(benchmark::State& state) { |
| base::TestTaskRunner task_runner; |
| |
| TestHelper helper(&task_runner); |
| helper.StartServiceIfRequired(); |
| |
| FakeProducer* producer = helper.ConnectFakeProducer(); |
| helper.ConnectConsumer(); |
| helper.WaitForConsumerConnect(); |
| |
| TraceConfig trace_config; |
| |
| static const uint32_t kBufferSizeBytes = |
| IsBenchmarkFunctionalOnly() ? 16 * 1024 : 2 * 1024 * 1024; |
| trace_config.add_buffers()->set_size_kb(kBufferSizeBytes / 1024); |
| |
| static constexpr uint32_t kRandomSeed = 42; |
| uint32_t message_bytes = static_cast<uint32_t>(state.range(0)); |
| uint32_t mb_per_s = static_cast<uint32_t>(state.range(1)); |
| bool is_saturated_producer = mb_per_s == 0; |
| |
| uint32_t message_count = kBufferSizeBytes / message_bytes; |
| uint32_t messages_per_s = mb_per_s * 1024 * 1024 / message_bytes; |
| uint32_t number_of_batches = |
| is_saturated_producer ? 0 : std::max(1u, message_count / messages_per_s); |
| |
| auto* ds_config = trace_config.add_data_sources()->mutable_config(); |
| ds_config->set_name("android.perfetto.FakeProducer"); |
| ds_config->set_target_buffer(0); |
| ds_config->mutable_for_testing()->set_seed(kRandomSeed); |
| ds_config->mutable_for_testing()->set_message_count(message_count); |
| ds_config->mutable_for_testing()->set_message_size(message_bytes); |
| ds_config->mutable_for_testing()->set_max_messages_per_second(messages_per_s); |
| |
| helper.StartTracing(trace_config); |
| helper.WaitForProducerEnabled(); |
| |
| uint64_t wall_start_ns = static_cast<uint64_t>(base::GetWallTimeNs().count()); |
| uint64_t service_start_ns = |
| static_cast<uint64_t>(helper.service_thread()->GetThreadCPUTimeNs()); |
| uint64_t consumer_start_ns = |
| static_cast<uint64_t>(base::GetThreadCPUTimeNs().count()); |
| uint64_t read_time_taken_ns = 0; |
| |
| uint64_t iterations = 0; |
| uint32_t counter = 0; |
| for (auto _ : state) { |
| auto cname = "produced.and.committed." + std::to_string(iterations++); |
| auto on_produced_and_committed = task_runner.CreateCheckpoint(cname); |
| producer->ProduceEventBatch(helper.WrapTask(on_produced_and_committed)); |
| |
| if (is_saturated_producer) { |
| // If the producer is running in saturated mode, wait until it flushes |
| // data. |
| task_runner.RunUntilCheckpoint(cname); |
| |
| // Then time how long it takes to read back the data. |
| int64_t start = base::GetWallTimeNs().count(); |
| helper.ReadData(counter); |
| helper.WaitForReadData(counter++); |
| read_time_taken_ns += |
| static_cast<uint64_t>(base::GetWallTimeNs().count() - start); |
| } else { |
| // If the producer is not running in saturated mode, every second the |
| // producer will send a batch of data over. Wait for a second before |
| // performing readback; do this for each batch the producer sends. |
| for (uint32_t i = 0; i < number_of_batches; i++) { |
| auto batch_cname = "batch.checkpoint." + std::to_string(counter); |
| auto batch_checkpoint = task_runner.CreateCheckpoint(batch_cname); |
| task_runner.PostDelayedTask(batch_checkpoint, 1000); |
| task_runner.RunUntilCheckpoint(batch_cname); |
| |
| int64_t start = base::GetWallTimeNs().count(); |
| helper.ReadData(counter); |
| helper.WaitForReadData(counter++); |
| read_time_taken_ns += |
| static_cast<uint64_t>(base::GetWallTimeNs().count() - start); |
| } |
| } |
| } |
| uint64_t service_ns = |
| helper.service_thread()->GetThreadCPUTimeNs() - service_start_ns; |
| uint64_t consumer_ns = |
| static_cast<uint64_t>(base::GetThreadCPUTimeNs().count()) - |
| consumer_start_ns; |
| uint64_t wall_ns = |
| static_cast<uint64_t>(base::GetWallTimeNs().count()) - wall_start_ns; |
| |
| state.counters["Ser CPU"] = benchmark::Counter(100.0 * service_ns / wall_ns); |
| state.counters["Ser ns/m"] = |
| benchmark::Counter(1.0 * service_ns / message_count); |
| state.counters["Con CPU"] = benchmark::Counter(100.0 * consumer_ns / wall_ns); |
| state.counters["Con Speed"] = |
| benchmark::Counter(iterations * 1000.0 * 1000 * 1000 * kBufferSizeBytes / |
| read_time_taken_ns); |
| } |
| |
| void SaturateCpuProducerArgs(benchmark::internal::Benchmark* b) { |
| int min_message_count = 16; |
| int max_message_count = IsBenchmarkFunctionalOnly() ? 1024 : 1024 * 1024; |
| int min_payload = 8; |
| int max_payload = IsBenchmarkFunctionalOnly() ? 256 : 2048; |
| for (int count = min_message_count; count <= max_message_count; count *= 2) { |
| for (int bytes = min_payload; bytes <= max_payload; bytes *= 2) { |
| b->Args({count, bytes, 0 /* speed */}); |
| } |
| } |
| } |
| |
| void ConstantRateProducerArgs(benchmark::internal::Benchmark* b) { |
| int message_count = IsBenchmarkFunctionalOnly() ? 2 * 1024 : 128 * 1024; |
| int min_speed = IsBenchmarkFunctionalOnly() ? 64 : 8; |
| int max_speed = 128; |
| for (int speed = min_speed; speed <= max_speed; speed *= 2) { |
| b->Args({message_count, 128, speed}); |
| b->Args({message_count, 256, speed}); |
| } |
| } |
| |
| void SaturateCpuConsumerArgs(benchmark::internal::Benchmark* b) { |
| int min_payload = 8; |
| int max_payload = IsBenchmarkFunctionalOnly() ? 16 : 64 * 1024; |
| for (int bytes = min_payload; bytes <= max_payload; bytes *= 2) { |
| b->Args({bytes, 0 /* speed */}); |
| } |
| } |
| |
| void ConstantRateConsumerArgs(benchmark::internal::Benchmark* b) { |
| int min_speed = IsBenchmarkFunctionalOnly() ? 128 : 1; |
| int max_speed = IsBenchmarkFunctionalOnly() ? 128 : 2; |
| for (int speed = min_speed; speed <= max_speed; speed *= 2) { |
| b->Args({2, speed}); |
| b->Args({4, speed}); |
| } |
| } |
| |
| } // namespace |
| |
| static void BM_EndToEnd_Producer_SaturateCpu(benchmark::State& state) { |
| BenchmarkProducer(state); |
| } |
| |
| BENCHMARK(BM_EndToEnd_Producer_SaturateCpu) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseRealTime() |
| ->Apply(SaturateCpuProducerArgs); |
| |
| static void BM_EndToEnd_Producer_ConstantRate(benchmark::State& state) { |
| BenchmarkProducer(state); |
| } |
| |
| BENCHMARK(BM_EndToEnd_Producer_ConstantRate) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseRealTime() |
| ->Apply(ConstantRateProducerArgs); |
| |
| static void BM_EndToEnd_Consumer_SaturateCpu(benchmark::State& state) { |
| BenchmarkConsumer(state); |
| } |
| |
| BENCHMARK(BM_EndToEnd_Consumer_SaturateCpu) |
| ->Unit(benchmark::kMicrosecond) |
| ->UseRealTime() |
| ->Apply(SaturateCpuConsumerArgs); |
| |
| static void BM_EndToEnd_Consumer_ConstantRate(benchmark::State& state) { |
| BenchmarkConsumer(state); |
| } |
| |
| BENCHMARK(BM_EndToEnd_Consumer_ConstantRate) |
| ->Unit(benchmark::kMillisecond) |
| ->UseRealTime() |
| ->Apply(ConstantRateConsumerArgs); |
| |
| } // namespace perfetto |