#region Copyright notice and license | |
// Protocol Buffers - Google's data interchange format | |
// Copyright 2008 Google Inc. All rights reserved. | |
// http://github.com/jskeet/dotnet-protobufs/ | |
// Original C++/Java/Python code: | |
// http://code.google.com/p/protobuf/ | |
// | |
// Redistribution and use in source and binary forms, with or without | |
// modification, are permitted provided that the following conditions are | |
// met: | |
// | |
// * Redistributions of source code must retain the above copyright | |
// notice, this list of conditions and the following disclaimer. | |
// * Redistributions in binary form must reproduce the above | |
// copyright notice, this list of conditions and the following disclaimer | |
// in the documentation and/or other materials provided with the | |
// distribution. | |
// * Neither the name of Google Inc. nor the names of its | |
// contributors may be used to endorse or promote products derived from | |
// this software without specific prior written permission. | |
// | |
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
#endregion | |
using System; | |
using System.Collections.Generic; | |
using System.IO; | |
using System.Text; | |
using Google.ProtocolBuffers.Descriptors; | |
namespace Google.ProtocolBuffers | |
{ | |
/// <summary> | |
/// Readings and decodes protocol message fields. | |
/// </summary> | |
/// <remarks> | |
/// This class contains two kinds of methods: methods that read specific | |
/// protocol message constructs and field types (e.g. ReadTag and | |
/// ReadInt32) and methods that read low-level values (e.g. | |
/// ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol | |
/// messages, you should use the former methods, but if you are reading some | |
/// other format of your own design, use the latter. The names of the former | |
/// methods are taken from the protocol buffer type names, not .NET types. | |
/// (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.) | |
/// | |
/// TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly, | |
/// set at construction time. | |
/// </remarks> | |
public sealed partial class CodedInputStream | |
{ | |
private readonly byte[] buffer; | |
private int bufferSize; | |
private int bufferSizeAfterLimit = 0; | |
private int bufferPos = 0; | |
private readonly Stream input; | |
private uint lastTag = 0; | |
internal const int DefaultRecursionLimit = 64; | |
internal const int DefaultSizeLimit = 64 << 20; // 64MB | |
public const int BufferSize = 4096; | |
/// <summary> | |
/// The total number of bytes read before the current buffer. The | |
/// total bytes read up to the current position can be computed as | |
/// totalBytesRetired + bufferPos. | |
/// </summary> | |
private int totalBytesRetired = 0; | |
/// <summary> | |
/// The absolute position of the end of the current message. | |
/// </summary> | |
private int currentLimit = int.MaxValue; | |
/// <summary> | |
/// <see cref="SetRecursionLimit"/> | |
/// </summary> | |
private int recursionDepth = 0; | |
private int recursionLimit = DefaultRecursionLimit; | |
/// <summary> | |
/// <see cref="SetSizeLimit"/> | |
/// </summary> | |
private int sizeLimit = DefaultSizeLimit; | |
#region Construction | |
/// <summary> | |
/// Creates a new CodedInputStream reading data from the given | |
/// stream. | |
/// </summary> | |
public static CodedInputStream CreateInstance(Stream input) | |
{ | |
return new CodedInputStream(input); | |
} | |
/// <summary> | |
/// Creates a new CodedInputStream reading data from the given | |
/// byte array. | |
/// </summary> | |
public static CodedInputStream CreateInstance(byte[] buf) | |
{ | |
return new CodedInputStream(buf, 0, buf.Length); | |
} | |
/// <summary> | |
/// Creates a new CodedInputStream that reads from the given | |
/// byte array slice. | |
/// </summary> | |
public static CodedInputStream CreateInstance(byte[] buf, int offset, int length) | |
{ | |
return new CodedInputStream(buf, offset, length); | |
} | |
private CodedInputStream(byte[] buffer, int offset, int length) | |
{ | |
this.buffer = buffer; | |
this.bufferPos = offset; | |
this.bufferSize = offset + length; | |
this.input = null; | |
} | |
private CodedInputStream(Stream input) | |
{ | |
this.buffer = new byte[BufferSize]; | |
this.bufferSize = 0; | |
this.input = input; | |
} | |
#endregion | |
#region Validation | |
/// <summary> | |
/// Verifies that the last call to ReadTag() returned the given tag value. | |
/// This is used to verify that a nested group ended with the correct | |
/// end tag. | |
/// </summary> | |
/// <exception cref="InvalidProtocolBufferException">The last | |
/// tag read was not the one specified</exception> | |
[CLSCompliant(false)] | |
public void CheckLastTagWas(uint value) | |
{ | |
if (lastTag != value) | |
{ | |
throw InvalidProtocolBufferException.InvalidEndTag(); | |
} | |
} | |
#endregion | |
#region Reading of tags etc | |
/// <summary> | |
/// Attempt to read a field tag, returning false if we have reached the end | |
/// of the input data. | |
/// </summary> | |
/// <remarks> | |
/// <para> | |
/// If fieldTag is non-zero and ReadTag returns true then the value in fieldName | |
/// may or may not be populated. However, if fieldTag is zero and ReadTag returns | |
/// true, then fieldName should be populated with a non-null field name. | |
/// </para><para> | |
/// In other words if ReadTag returns true then either fieldTag will be non-zero OR | |
/// fieldName will be non-zero. In some cases both may be populated, however the | |
/// builders will always prefer the fieldTag over fieldName. | |
/// </para> | |
/// </remarks> | |
[CLSCompliant(false)] | |
public bool ReadTag(out uint fieldTag, out string fieldName) | |
{ | |
fieldName = null; | |
if (IsAtEnd) | |
{ | |
lastTag = fieldTag = 0; | |
return false; | |
} | |
lastTag = fieldTag = ReadRawVarint32(); | |
if (lastTag == 0) | |
{ | |
// If we actually read zero, that's not a valid tag. | |
throw InvalidProtocolBufferException.InvalidTag(); | |
} | |
return true; | |
} | |
/// <summary> | |
/// Read a double field from the stream. | |
/// </summary> | |
public double ReadDouble() | |
{ | |
#if SILVERLIGHT2 || COMPACT_FRAMEWORK_35 | |
byte[] bytes = ReadRawBytes(8); | |
return BitConverter.ToDouble(bytes, 0); | |
#else | |
return BitConverter.Int64BitsToDouble((long) ReadRawLittleEndian64()); | |
#endif | |
} | |
/// <summary> | |
/// Read a float field from the stream. | |
/// </summary> | |
public float ReadFloat() | |
{ | |
// TODO(jonskeet): Test this on different endiannesses | |
uint raw = ReadRawLittleEndian32(); | |
byte[] rawBytes = BitConverter.GetBytes(raw); | |
return BitConverter.ToSingle(rawBytes, 0); | |
} | |
/// <summary> | |
/// Read a uint64 field from the stream. | |
/// </summary> | |
[CLSCompliant(false)] | |
public ulong ReadUInt64() | |
{ | |
return ReadRawVarint64(); | |
} | |
/// <summary> | |
/// Read an int64 field from the stream. | |
/// </summary> | |
public long ReadInt64() | |
{ | |
return (long) ReadRawVarint64(); | |
} | |
/// <summary> | |
/// Read an int32 field from the stream. | |
/// </summary> | |
public int ReadInt32() | |
{ | |
return (int) ReadRawVarint32(); | |
} | |
/// <summary> | |
/// Read a fixed64 field from the stream. | |
/// </summary> | |
[CLSCompliant(false)] | |
public ulong ReadFixed64() | |
{ | |
return ReadRawLittleEndian64(); | |
} | |
/// <summary> | |
/// Read a fixed32 field from the stream. | |
/// </summary> | |
[CLSCompliant(false)] | |
public uint ReadFixed32() | |
{ | |
return ReadRawLittleEndian32(); | |
} | |
/// <summary> | |
/// Read a bool field from the stream. | |
/// </summary> | |
public bool ReadBool() | |
{ | |
return ReadRawVarint32() != 0; | |
} | |
/// <summary> | |
/// Reads a string field from the stream. | |
/// </summary> | |
public String ReadString() | |
{ | |
int size = (int) ReadRawVarint32(); | |
// No need to read any data for an empty string. | |
if (size == 0) | |
{ | |
return ""; | |
} | |
if (size <= bufferSize - bufferPos) | |
{ | |
// Fast path: We already have the bytes in a contiguous buffer, so | |
// just copy directly from it. | |
String result = Encoding.UTF8.GetString(buffer, bufferPos, size); | |
bufferPos += size; | |
return result; | |
} | |
// Slow path: Build a byte array first then copy it. | |
return Encoding.UTF8.GetString(ReadRawBytes(size), 0, size); | |
} | |
/// <summary> | |
/// Reads a group field value from the stream. | |
/// </summary> | |
public void ReadGroup(int fieldNumber, IBuilderLite builder, | |
ExtensionRegistry extensionRegistry) | |
{ | |
if (recursionDepth >= recursionLimit) | |
{ | |
throw InvalidProtocolBufferException.RecursionLimitExceeded(); | |
} | |
++recursionDepth; | |
builder.WeakMergeFrom(this, extensionRegistry); | |
CheckLastTagWas(WireFormat.MakeTag(fieldNumber, WireFormat.WireType.EndGroup)); | |
--recursionDepth; | |
} | |
/// <summary> | |
/// Reads a group field value from the stream and merges it into the given | |
/// UnknownFieldSet. | |
/// </summary> | |
[Obsolete] | |
public void ReadUnknownGroup(int fieldNumber, IBuilderLite builder) | |
{ | |
if (recursionDepth >= recursionLimit) | |
{ | |
throw InvalidProtocolBufferException.RecursionLimitExceeded(); | |
} | |
++recursionDepth; | |
builder.WeakMergeFrom(this); | |
CheckLastTagWas(WireFormat.MakeTag(fieldNumber, WireFormat.WireType.EndGroup)); | |
--recursionDepth; | |
} | |
/// <summary> | |
/// Reads an embedded message field value from the stream. | |
/// </summary> | |
public void ReadMessage(IBuilderLite builder, ExtensionRegistry extensionRegistry) | |
{ | |
int length = (int) ReadRawVarint32(); | |
if (recursionDepth >= recursionLimit) | |
{ | |
throw InvalidProtocolBufferException.RecursionLimitExceeded(); | |
} | |
int oldLimit = PushLimit(length); | |
++recursionDepth; | |
builder.WeakMergeFrom(this, extensionRegistry); | |
CheckLastTagWas(0); | |
--recursionDepth; | |
PopLimit(oldLimit); | |
} | |
/// <summary> | |
/// Reads a bytes field value from the stream. | |
/// </summary> | |
public ByteString ReadBytes() | |
{ | |
int size = (int) ReadRawVarint32(); | |
if (size < bufferSize - bufferPos && size > 0) | |
{ | |
// Fast path: We already have the bytes in a contiguous buffer, so | |
// just copy directly from it. | |
ByteString result = ByteString.CopyFrom(buffer, bufferPos, size); | |
bufferPos += size; | |
return result; | |
} | |
else | |
{ | |
// Slow path: Build a byte array first then copy it. | |
return ByteString.AttachBytes(ReadRawBytes(size)); | |
} | |
} | |
/// <summary> | |
/// Reads a uint32 field value from the stream. | |
/// </summary> | |
[CLSCompliant(false)] | |
public uint ReadUInt32() | |
{ | |
return ReadRawVarint32(); | |
} | |
/// <summary> | |
/// Reads an enum field value from the stream. The caller is responsible | |
/// for converting the numeric value to an actual enum. | |
/// </summary> | |
public int ReadEnum() | |
{ | |
return (int) ReadRawVarint32(); | |
} | |
/// <summary> | |
/// Reads an sfixed32 field value from the stream. | |
/// </summary> | |
public int ReadSFixed32() | |
{ | |
return (int) ReadRawLittleEndian32(); | |
} | |
/// <summary> | |
/// Reads an sfixed64 field value from the stream. | |
/// </summary> | |
public long ReadSFixed64() | |
{ | |
return (long) ReadRawLittleEndian64(); | |
} | |
/// <summary> | |
/// Reads an sint32 field value from the stream. | |
/// </summary> | |
public int ReadSInt32() | |
{ | |
return DecodeZigZag32(ReadRawVarint32()); | |
} | |
/// <summary> | |
/// Reads an sint64 field value from the stream. | |
/// </summary> | |
public long ReadSInt64() | |
{ | |
return DecodeZigZag64(ReadRawVarint64()); | |
} | |
/// <summary> | |
/// Reads a field of any primitive type. Enums, groups and embedded | |
/// messages are not handled by this method. | |
/// </summary> | |
public object ReadPrimitiveField(FieldType fieldType) | |
{ | |
switch (fieldType) | |
{ | |
case FieldType.Double: | |
return ReadDouble(); | |
case FieldType.Float: | |
return ReadFloat(); | |
case FieldType.Int64: | |
return ReadInt64(); | |
case FieldType.UInt64: | |
return ReadUInt64(); | |
case FieldType.Int32: | |
return ReadInt32(); | |
case FieldType.Fixed64: | |
return ReadFixed64(); | |
case FieldType.Fixed32: | |
return ReadFixed32(); | |
case FieldType.Bool: | |
return ReadBool(); | |
case FieldType.String: | |
return ReadString(); | |
case FieldType.Bytes: | |
return ReadBytes(); | |
case FieldType.UInt32: | |
return ReadUInt32(); | |
case FieldType.SFixed32: | |
return ReadSFixed32(); | |
case FieldType.SFixed64: | |
return ReadSFixed64(); | |
case FieldType.SInt32: | |
return ReadSInt32(); | |
case FieldType.SInt64: | |
return ReadSInt64(); | |
case FieldType.Group: | |
throw new ArgumentException("ReadPrimitiveField() cannot handle nested groups."); | |
case FieldType.Message: | |
throw new ArgumentException("ReadPrimitiveField() cannot handle embedded messages."); | |
// We don't handle enums because we don't know what to do if the | |
// value is not recognized. | |
case FieldType.Enum: | |
throw new ArgumentException("ReadPrimitiveField() cannot handle enums."); | |
default: | |
throw new ArgumentOutOfRangeException("Invalid field type " + fieldType); | |
} | |
} | |
#endregion | |
#region Underlying reading primitives | |
/// <summary> | |
/// Same code as ReadRawVarint32, but read each byte individually, checking for | |
/// buffer overflow. | |
/// </summary> | |
private uint SlowReadRawVarint32() | |
{ | |
int tmp = ReadRawByte(); | |
if (tmp < 128) | |
{ | |
return (uint) tmp; | |
} | |
int result = tmp & 0x7f; | |
if ((tmp = ReadRawByte()) < 128) | |
{ | |
result |= tmp << 7; | |
} | |
else | |
{ | |
result |= (tmp & 0x7f) << 7; | |
if ((tmp = ReadRawByte()) < 128) | |
{ | |
result |= tmp << 14; | |
} | |
else | |
{ | |
result |= (tmp & 0x7f) << 14; | |
if ((tmp = ReadRawByte()) < 128) | |
{ | |
result |= tmp << 21; | |
} | |
else | |
{ | |
result |= (tmp & 0x7f) << 21; | |
result |= (tmp = ReadRawByte()) << 28; | |
if (tmp >= 128) | |
{ | |
// Discard upper 32 bits. | |
for (int i = 0; i < 5; i++) | |
{ | |
if (ReadRawByte() < 128) return (uint) result; | |
} | |
throw InvalidProtocolBufferException.MalformedVarint(); | |
} | |
} | |
} | |
} | |
return (uint) result; | |
} | |
/// <summary> | |
/// Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits. | |
/// This method is optimised for the case where we've got lots of data in the buffer. | |
/// That means we can check the size just once, then just read directly from the buffer | |
/// without constant rechecking of the buffer length. | |
/// </summary> | |
[CLSCompliant(false)] | |
public uint ReadRawVarint32() | |
{ | |
if (bufferPos + 5 > bufferSize) | |
{ | |
return SlowReadRawVarint32(); | |
} | |
int tmp = buffer[bufferPos++]; | |
if (tmp < 128) | |
{ | |
return (uint) tmp; | |
} | |
int result = tmp & 0x7f; | |
if ((tmp = buffer[bufferPos++]) < 128) | |
{ | |
result |= tmp << 7; | |
} | |
else | |
{ | |
result |= (tmp & 0x7f) << 7; | |
if ((tmp = buffer[bufferPos++]) < 128) | |
{ | |
result |= tmp << 14; | |
} | |
else | |
{ | |
result |= (tmp & 0x7f) << 14; | |
if ((tmp = buffer[bufferPos++]) < 128) | |
{ | |
result |= tmp << 21; | |
} | |
else | |
{ | |
result |= (tmp & 0x7f) << 21; | |
result |= (tmp = buffer[bufferPos++]) << 28; | |
if (tmp >= 128) | |
{ | |
// Discard upper 32 bits. | |
// Note that this has to use ReadRawByte() as we only ensure we've | |
// got at least 5 bytes at the start of the method. This lets us | |
// use the fast path in more cases, and we rarely hit this section of code. | |
for (int i = 0; i < 5; i++) | |
{ | |
if (ReadRawByte() < 128) return (uint) result; | |
} | |
throw InvalidProtocolBufferException.MalformedVarint(); | |
} | |
} | |
} | |
} | |
return (uint) result; | |
} | |
/// <summary> | |
/// Reads a varint from the input one byte at a time, so that it does not | |
/// read any bytes after the end of the varint. If you simply wrapped the | |
/// stream in a CodedInputStream and used ReadRawVarint32(Stream)} | |
/// then you would probably end up reading past the end of the varint since | |
/// CodedInputStream buffers its input. | |
/// </summary> | |
/// <param name="input"></param> | |
/// <returns></returns> | |
[CLSCompliant(false)] | |
public static uint ReadRawVarint32(Stream input) | |
{ | |
int result = 0; | |
int offset = 0; | |
for (; offset < 32; offset += 7) | |
{ | |
int b = input.ReadByte(); | |
if (b == -1) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
result |= (b & 0x7f) << offset; | |
if ((b & 0x80) == 0) | |
{ | |
return (uint) result; | |
} | |
} | |
// Keep reading up to 64 bits. | |
for (; offset < 64; offset += 7) | |
{ | |
int b = input.ReadByte(); | |
if (b == -1) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
if ((b & 0x80) == 0) | |
{ | |
return (uint) result; | |
} | |
} | |
throw InvalidProtocolBufferException.MalformedVarint(); | |
} | |
/// <summary> | |
/// Read a raw varint from the stream. | |
/// </summary> | |
[CLSCompliant(false)] | |
public ulong ReadRawVarint64() | |
{ | |
int shift = 0; | |
ulong result = 0; | |
while (shift < 64) | |
{ | |
byte b = ReadRawByte(); | |
result |= (ulong) (b & 0x7F) << shift; | |
if ((b & 0x80) == 0) | |
{ | |
return result; | |
} | |
shift += 7; | |
} | |
throw InvalidProtocolBufferException.MalformedVarint(); | |
} | |
/// <summary> | |
/// Read a 32-bit little-endian integer from the stream. | |
/// </summary> | |
[CLSCompliant(false)] | |
public uint ReadRawLittleEndian32() | |
{ | |
uint b1 = ReadRawByte(); | |
uint b2 = ReadRawByte(); | |
uint b3 = ReadRawByte(); | |
uint b4 = ReadRawByte(); | |
return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24); | |
} | |
/// <summary> | |
/// Read a 64-bit little-endian integer from the stream. | |
/// </summary> | |
[CLSCompliant(false)] | |
public ulong ReadRawLittleEndian64() | |
{ | |
ulong b1 = ReadRawByte(); | |
ulong b2 = ReadRawByte(); | |
ulong b3 = ReadRawByte(); | |
ulong b4 = ReadRawByte(); | |
ulong b5 = ReadRawByte(); | |
ulong b6 = ReadRawByte(); | |
ulong b7 = ReadRawByte(); | |
ulong b8 = ReadRawByte(); | |
return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24) | |
| (b5 << 32) | (b6 << 40) | (b7 << 48) | (b8 << 56); | |
} | |
#endregion | |
/// <summary> | |
/// Decode a 32-bit value with ZigZag encoding. | |
/// </summary> | |
/// <remarks> | |
/// ZigZag encodes signed integers into values that can be efficiently | |
/// encoded with varint. (Otherwise, negative values must be | |
/// sign-extended to 64 bits to be varint encoded, thus always taking | |
/// 10 bytes on the wire.) | |
/// </remarks> | |
[CLSCompliant(false)] | |
public static int DecodeZigZag32(uint n) | |
{ | |
return (int) (n >> 1) ^ -(int) (n & 1); | |
} | |
/// <summary> | |
/// Decode a 32-bit value with ZigZag encoding. | |
/// </summary> | |
/// <remarks> | |
/// ZigZag encodes signed integers into values that can be efficiently | |
/// encoded with varint. (Otherwise, negative values must be | |
/// sign-extended to 64 bits to be varint encoded, thus always taking | |
/// 10 bytes on the wire.) | |
/// </remarks> | |
[CLSCompliant(false)] | |
public static long DecodeZigZag64(ulong n) | |
{ | |
return (long) (n >> 1) ^ -(long) (n & 1); | |
} | |
/// <summary> | |
/// Set the maximum message recursion depth. | |
/// </summary> | |
/// <remarks> | |
/// In order to prevent malicious | |
/// messages from causing stack overflows, CodedInputStream limits | |
/// how deeply messages may be nested. The default limit is 64. | |
/// </remarks> | |
public int SetRecursionLimit(int limit) | |
{ | |
if (limit < 0) | |
{ | |
throw new ArgumentOutOfRangeException("Recursion limit cannot be negative: " + limit); | |
} | |
int oldLimit = recursionLimit; | |
recursionLimit = limit; | |
return oldLimit; | |
} | |
/// <summary> | |
/// Set the maximum message size. | |
/// </summary> | |
/// <remarks> | |
/// In order to prevent malicious messages from exhausting memory or | |
/// causing integer overflows, CodedInputStream limits how large a message may be. | |
/// The default limit is 64MB. You should set this limit as small | |
/// as you can without harming your app's functionality. Note that | |
/// size limits only apply when reading from an InputStream, not | |
/// when constructed around a raw byte array (nor with ByteString.NewCodedInput). | |
/// If you want to read several messages from a single CodedInputStream, you | |
/// can call ResetSizeCounter() after each message to avoid hitting the | |
/// size limit. | |
/// </remarks> | |
public int SetSizeLimit(int limit) | |
{ | |
if (limit < 0) | |
{ | |
throw new ArgumentOutOfRangeException("Size limit cannot be negative: " + limit); | |
} | |
int oldLimit = sizeLimit; | |
sizeLimit = limit; | |
return oldLimit; | |
} | |
#region Internal reading and buffer management | |
/// <summary> | |
/// Resets the current size counter to zero (see SetSizeLimit). | |
/// </summary> | |
public void ResetSizeCounter() | |
{ | |
totalBytesRetired = 0; | |
} | |
/// <summary> | |
/// Sets currentLimit to (current position) + byteLimit. This is called | |
/// when descending into a length-delimited embedded message. The previous | |
/// limit is returned. | |
/// </summary> | |
/// <returns>The old limit.</returns> | |
public int PushLimit(int byteLimit) | |
{ | |
if (byteLimit < 0) | |
{ | |
throw InvalidProtocolBufferException.NegativeSize(); | |
} | |
byteLimit += totalBytesRetired + bufferPos; | |
int oldLimit = currentLimit; | |
if (byteLimit > oldLimit) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
currentLimit = byteLimit; | |
RecomputeBufferSizeAfterLimit(); | |
return oldLimit; | |
} | |
private void RecomputeBufferSizeAfterLimit() | |
{ | |
bufferSize += bufferSizeAfterLimit; | |
int bufferEnd = totalBytesRetired + bufferSize; | |
if (bufferEnd > currentLimit) | |
{ | |
// Limit is in current buffer. | |
bufferSizeAfterLimit = bufferEnd - currentLimit; | |
bufferSize -= bufferSizeAfterLimit; | |
} | |
else | |
{ | |
bufferSizeAfterLimit = 0; | |
} | |
} | |
/// <summary> | |
/// Discards the current limit, returning the previous limit. | |
/// </summary> | |
public void PopLimit(int oldLimit) | |
{ | |
currentLimit = oldLimit; | |
RecomputeBufferSizeAfterLimit(); | |
} | |
/// <summary> | |
/// Returns whether or not all the data before the limit has been read. | |
/// </summary> | |
/// <returns></returns> | |
public bool ReachedLimit | |
{ | |
get | |
{ | |
if (currentLimit == int.MaxValue) | |
{ | |
return false; | |
} | |
int currentAbsolutePosition = totalBytesRetired + bufferPos; | |
return currentAbsolutePosition >= currentLimit; | |
} | |
} | |
/// <summary> | |
/// Returns true if the stream has reached the end of the input. This is the | |
/// case if either the end of the underlying input source has been reached or | |
/// the stream has reached a limit created using PushLimit. | |
/// </summary> | |
public bool IsAtEnd | |
{ | |
get { return bufferPos == bufferSize && !RefillBuffer(false); } | |
} | |
/// <summary> | |
/// Called when buffer is empty to read more bytes from the | |
/// input. If <paramref name="mustSucceed"/> is true, RefillBuffer() gurantees that | |
/// either there will be at least one byte in the buffer when it returns | |
/// or it will throw an exception. If <paramref name="mustSucceed"/> is false, | |
/// RefillBuffer() returns false if no more bytes were available. | |
/// </summary> | |
/// <param name="mustSucceed"></param> | |
/// <returns></returns> | |
private bool RefillBuffer(bool mustSucceed) | |
{ | |
if (bufferPos < bufferSize) | |
{ | |
throw new InvalidOperationException("RefillBuffer() called when buffer wasn't empty."); | |
} | |
if (totalBytesRetired + bufferSize == currentLimit) | |
{ | |
// Oops, we hit a limit. | |
if (mustSucceed) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
else | |
{ | |
return false; | |
} | |
} | |
totalBytesRetired += bufferSize; | |
bufferPos = 0; | |
bufferSize = (input == null) ? 0 : input.Read(buffer, 0, buffer.Length); | |
if (bufferSize < 0) | |
{ | |
throw new InvalidOperationException("Stream.Read returned a negative count"); | |
} | |
if (bufferSize == 0) | |
{ | |
if (mustSucceed) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
else | |
{ | |
return false; | |
} | |
} | |
else | |
{ | |
RecomputeBufferSizeAfterLimit(); | |
int totalBytesRead = | |
totalBytesRetired + bufferSize + bufferSizeAfterLimit; | |
if (totalBytesRead > sizeLimit || totalBytesRead < 0) | |
{ | |
throw InvalidProtocolBufferException.SizeLimitExceeded(); | |
} | |
return true; | |
} | |
} | |
/// <summary> | |
/// Read one byte from the input. | |
/// </summary> | |
/// <exception cref="InvalidProtocolBufferException"> | |
/// the end of the stream or the current limit was reached | |
/// </exception> | |
public byte ReadRawByte() | |
{ | |
if (bufferPos == bufferSize) | |
{ | |
RefillBuffer(true); | |
} | |
return buffer[bufferPos++]; | |
} | |
/// <summary> | |
/// Read a fixed size of bytes from the input. | |
/// </summary> | |
/// <exception cref="InvalidProtocolBufferException"> | |
/// the end of the stream or the current limit was reached | |
/// </exception> | |
public byte[] ReadRawBytes(int size) | |
{ | |
if (size < 0) | |
{ | |
throw InvalidProtocolBufferException.NegativeSize(); | |
} | |
if (totalBytesRetired + bufferPos + size > currentLimit) | |
{ | |
// Read to the end of the stream anyway. | |
SkipRawBytes(currentLimit - totalBytesRetired - bufferPos); | |
// Then fail. | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
if (size <= bufferSize - bufferPos) | |
{ | |
// We have all the bytes we need already. | |
byte[] bytes = new byte[size]; | |
Array.Copy(buffer, bufferPos, bytes, 0, size); | |
bufferPos += size; | |
return bytes; | |
} | |
else if (size < BufferSize) | |
{ | |
// Reading more bytes than are in the buffer, but not an excessive number | |
// of bytes. We can safely allocate the resulting array ahead of time. | |
// First copy what we have. | |
byte[] bytes = new byte[size]; | |
int pos = bufferSize - bufferPos; | |
Array.Copy(buffer, bufferPos, bytes, 0, pos); | |
bufferPos = bufferSize; | |
// We want to use RefillBuffer() and then copy from the buffer into our | |
// byte array rather than reading directly into our byte array because | |
// the input may be unbuffered. | |
RefillBuffer(true); | |
while (size - pos > bufferSize) | |
{ | |
Array.Copy(buffer, 0, bytes, pos, bufferSize); | |
pos += bufferSize; | |
bufferPos = bufferSize; | |
RefillBuffer(true); | |
} | |
Array.Copy(buffer, 0, bytes, pos, size - pos); | |
bufferPos = size - pos; | |
return bytes; | |
} | |
else | |
{ | |
// The size is very large. For security reasons, we can't allocate the | |
// entire byte array yet. The size comes directly from the input, so a | |
// maliciously-crafted message could provide a bogus very large size in | |
// order to trick the app into allocating a lot of memory. We avoid this | |
// by allocating and reading only a small chunk at a time, so that the | |
// malicious message must actually *be* extremely large to cause | |
// problems. Meanwhile, we limit the allowed size of a message elsewhere. | |
// Remember the buffer markers since we'll have to copy the bytes out of | |
// it later. | |
int originalBufferPos = bufferPos; | |
int originalBufferSize = bufferSize; | |
// Mark the current buffer consumed. | |
totalBytesRetired += bufferSize; | |
bufferPos = 0; | |
bufferSize = 0; | |
// Read all the rest of the bytes we need. | |
int sizeLeft = size - (originalBufferSize - originalBufferPos); | |
List<byte[]> chunks = new List<byte[]>(); | |
while (sizeLeft > 0) | |
{ | |
byte[] chunk = new byte[Math.Min(sizeLeft, BufferSize)]; | |
int pos = 0; | |
while (pos < chunk.Length) | |
{ | |
int n = (input == null) ? -1 : input.Read(chunk, pos, chunk.Length - pos); | |
if (n <= 0) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
totalBytesRetired += n; | |
pos += n; | |
} | |
sizeLeft -= chunk.Length; | |
chunks.Add(chunk); | |
} | |
// OK, got everything. Now concatenate it all into one buffer. | |
byte[] bytes = new byte[size]; | |
// Start by copying the leftover bytes from this.buffer. | |
int newPos = originalBufferSize - originalBufferPos; | |
Array.Copy(buffer, originalBufferPos, bytes, 0, newPos); | |
// And now all the chunks. | |
foreach (byte[] chunk in chunks) | |
{ | |
Array.Copy(chunk, 0, bytes, newPos, chunk.Length); | |
newPos += chunk.Length; | |
} | |
// Done. | |
return bytes; | |
} | |
} | |
/// <summary> | |
/// Reads and discards a single field, given its tag value. | |
/// </summary> | |
/// <returns>false if the tag is an end-group tag, in which case | |
/// nothing is skipped. Otherwise, returns true.</returns> | |
[CLSCompliant(false)] | |
public bool SkipField() | |
{ | |
uint tag = lastTag; | |
switch (WireFormat.GetTagWireType(tag)) | |
{ | |
case WireFormat.WireType.Varint: | |
ReadInt32(); | |
return true; | |
case WireFormat.WireType.Fixed64: | |
ReadRawLittleEndian64(); | |
return true; | |
case WireFormat.WireType.LengthDelimited: | |
SkipRawBytes((int) ReadRawVarint32()); | |
return true; | |
case WireFormat.WireType.StartGroup: | |
SkipMessage(); | |
CheckLastTagWas( | |
WireFormat.MakeTag(WireFormat.GetTagFieldNumber(tag), | |
WireFormat.WireType.EndGroup)); | |
return true; | |
case WireFormat.WireType.EndGroup: | |
return false; | |
case WireFormat.WireType.Fixed32: | |
ReadRawLittleEndian32(); | |
return true; | |
default: | |
throw InvalidProtocolBufferException.InvalidWireType(); | |
} | |
} | |
/// <summary> | |
/// Reads and discards an entire message. This will read either until EOF | |
/// or until an endgroup tag, whichever comes first. | |
/// </summary> | |
public void SkipMessage() | |
{ | |
uint tag; | |
string name; | |
while (ReadTag(out tag, out name)) | |
{ | |
if (!SkipField()) | |
{ | |
return; | |
} | |
} | |
} | |
/// <summary> | |
/// Reads and discards <paramref name="size"/> bytes. | |
/// </summary> | |
/// <exception cref="InvalidProtocolBufferException">the end of the stream | |
/// or the current limit was reached</exception> | |
public void SkipRawBytes(int size) | |
{ | |
if (size < 0) | |
{ | |
throw InvalidProtocolBufferException.NegativeSize(); | |
} | |
if (totalBytesRetired + bufferPos + size > currentLimit) | |
{ | |
// Read to the end of the stream anyway. | |
SkipRawBytes(currentLimit - totalBytesRetired - bufferPos); | |
// Then fail. | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
if (size <= bufferSize - bufferPos) | |
{ | |
// We have all the bytes we need already. | |
bufferPos += size; | |
} | |
else | |
{ | |
// Skipping more bytes than are in the buffer. First skip what we have. | |
int pos = bufferSize - bufferPos; | |
totalBytesRetired += pos; | |
bufferPos = 0; | |
bufferSize = 0; | |
// Then skip directly from the InputStream for the rest. | |
if (pos < size) | |
{ | |
if (input == null) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
SkipImpl(size - pos); | |
totalBytesRetired += size - pos; | |
} | |
} | |
} | |
/// <summary> | |
/// Abstraction of skipping to cope with streams which can't really skip. | |
/// </summary> | |
private void SkipImpl(int amountToSkip) | |
{ | |
if (input.CanSeek) | |
{ | |
long previousPosition = input.Position; | |
input.Position += amountToSkip; | |
if (input.Position != previousPosition + amountToSkip) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
} | |
else | |
{ | |
byte[] skipBuffer = new byte[1024]; | |
while (amountToSkip > 0) | |
{ | |
int bytesRead = input.Read(skipBuffer, 0, skipBuffer.Length); | |
if (bytesRead <= 0) | |
{ | |
throw InvalidProtocolBufferException.TruncatedMessage(); | |
} | |
amountToSkip -= bytesRead; | |
} | |
} | |
} | |
#endregion | |
} | |
} |