csharptest | 71f662c | 2011-05-20 15:15:34 -0500 | [diff] [blame] | 1 | #region Copyright notice and license
|
| 2 |
|
| 3 | // Protocol Buffers - Google's data interchange format
|
| 4 | // Copyright 2008 Google Inc. All rights reserved.
|
| 5 | // http://github.com/jskeet/dotnet-protobufs/
|
| 6 | // Original C++/Java/Python code:
|
| 7 | // http://code.google.com/p/protobuf/
|
| 8 | //
|
| 9 | // Redistribution and use in source and binary forms, with or without
|
| 10 | // modification, are permitted provided that the following conditions are
|
| 11 | // met:
|
| 12 | //
|
| 13 | // * Redistributions of source code must retain the above copyright
|
| 14 | // notice, this list of conditions and the following disclaimer.
|
| 15 | // * Redistributions in binary form must reproduce the above
|
| 16 | // copyright notice, this list of conditions and the following disclaimer
|
| 17 | // in the documentation and/or other materials provided with the
|
| 18 | // distribution.
|
| 19 | // * Neither the name of Google Inc. nor the names of its
|
| 20 | // contributors may be used to endorse or promote products derived from
|
| 21 | // this software without specific prior written permission.
|
| 22 | //
|
| 23 | // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
| 24 | // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
| 25 | // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
| 26 | // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
| 27 | // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
| 28 | // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
| 29 | // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
| 30 | // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
| 31 | // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| 32 | // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| 33 | // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| 34 |
|
| 35 | #endregion
|
| 36 |
|
| 37 | using System;
|
| 38 | using System.Collections.Generic;
|
| 39 | using System.IO;
|
| 40 | using System.Text;
|
| 41 | using Google.ProtocolBuffers.Descriptors;
|
| 42 |
|
| 43 | namespace Google.ProtocolBuffers
|
| 44 | {
|
| 45 | /// <summary>
|
| 46 | /// Readings and decodes protocol message fields.
|
| 47 | /// </summary>
|
| 48 | /// <remarks>
|
| 49 | /// This class contains two kinds of methods: methods that read specific
|
| 50 | /// protocol message constructs and field types (e.g. ReadTag and
|
| 51 | /// ReadInt32) and methods that read low-level values (e.g.
|
| 52 | /// ReadRawVarint32 and ReadRawBytes). If you are reading encoded protocol
|
| 53 | /// messages, you should use the former methods, but if you are reading some
|
| 54 | /// other format of your own design, use the latter. The names of the former
|
| 55 | /// methods are taken from the protocol buffer type names, not .NET types.
|
| 56 | /// (Hence ReadFloat instead of ReadSingle, and ReadBool instead of ReadBoolean.)
|
| 57 | ///
|
| 58 | /// TODO(jonskeet): Consider whether recursion and size limits shouldn't be readonly,
|
| 59 | /// set at construction time.
|
| 60 | /// </remarks>
|
csharptest | 45a93fa | 2011-06-02 10:52:37 -0500 | [diff] [blame] | 61 | public sealed partial class CodedInputStream
|
csharptest | 71f662c | 2011-05-20 15:15:34 -0500 | [diff] [blame] | 62 | {
|
| 63 | private readonly byte[] buffer;
|
| 64 | private int bufferSize;
|
| 65 | private int bufferSizeAfterLimit = 0;
|
| 66 | private int bufferPos = 0;
|
| 67 | private readonly Stream input;
|
| 68 | private uint lastTag = 0;
|
| 69 |
|
| 70 | internal const int DefaultRecursionLimit = 64;
|
| 71 | internal const int DefaultSizeLimit = 64 << 20; // 64MB
|
| 72 | public const int BufferSize = 4096;
|
| 73 |
|
| 74 | /// <summary>
|
| 75 | /// The total number of bytes read before the current buffer. The
|
| 76 | /// total bytes read up to the current position can be computed as
|
| 77 | /// totalBytesRetired + bufferPos.
|
| 78 | /// </summary>
|
| 79 | private int totalBytesRetired = 0;
|
| 80 |
|
| 81 | /// <summary>
|
| 82 | /// The absolute position of the end of the current message.
|
| 83 | /// </summary>
|
| 84 | private int currentLimit = int.MaxValue;
|
| 85 |
|
| 86 | /// <summary>
|
| 87 | /// <see cref="SetRecursionLimit"/>
|
| 88 | /// </summary>
|
| 89 | private int recursionDepth = 0;
|
| 90 |
|
| 91 | private int recursionLimit = DefaultRecursionLimit;
|
| 92 |
|
| 93 | /// <summary>
|
| 94 | /// <see cref="SetSizeLimit"/>
|
| 95 | /// </summary>
|
| 96 | private int sizeLimit = DefaultSizeLimit;
|
| 97 |
|
| 98 | #region Construction
|
| 99 |
|
| 100 | /// <summary>
|
| 101 | /// Creates a new CodedInputStream reading data from the given
|
| 102 | /// stream.
|
| 103 | /// </summary>
|
| 104 | public static CodedInputStream CreateInstance(Stream input)
|
| 105 | {
|
| 106 | return new CodedInputStream(input);
|
| 107 | }
|
| 108 |
|
| 109 | /// <summary>
|
| 110 | /// Creates a new CodedInputStream reading data from the given
|
| 111 | /// byte array.
|
| 112 | /// </summary>
|
| 113 | public static CodedInputStream CreateInstance(byte[] buf)
|
| 114 | {
|
| 115 | return new CodedInputStream(buf, 0, buf.Length);
|
| 116 | }
|
| 117 |
|
| 118 | /// <summary>
|
| 119 | /// Creates a new CodedInputStream that reads from the given
|
| 120 | /// byte array slice.
|
| 121 | /// </summary>
|
| 122 | public static CodedInputStream CreateInstance(byte[] buf, int offset, int length)
|
| 123 | {
|
| 124 | return new CodedInputStream(buf, offset, length);
|
| 125 | }
|
| 126 |
|
| 127 | private CodedInputStream(byte[] buffer, int offset, int length)
|
| 128 | {
|
| 129 | this.buffer = buffer;
|
| 130 | this.bufferPos = offset;
|
| 131 | this.bufferSize = offset + length;
|
| 132 | this.input = null;
|
| 133 | }
|
| 134 |
|
| 135 | private CodedInputStream(Stream input)
|
| 136 | {
|
| 137 | this.buffer = new byte[BufferSize];
|
| 138 | this.bufferSize = 0;
|
| 139 | this.input = input;
|
| 140 | }
|
| 141 |
|
| 142 | #endregion
|
| 143 |
|
| 144 | #region Validation
|
| 145 |
|
| 146 | /// <summary>
|
| 147 | /// Verifies that the last call to ReadTag() returned the given tag value.
|
| 148 | /// This is used to verify that a nested group ended with the correct
|
| 149 | /// end tag.
|
| 150 | /// </summary>
|
| 151 | /// <exception cref="InvalidProtocolBufferException">The last
|
| 152 | /// tag read was not the one specified</exception>
|
| 153 | [CLSCompliant(false)]
|
| 154 | public void CheckLastTagWas(uint value)
|
| 155 | {
|
| 156 | if (lastTag != value)
|
| 157 | {
|
| 158 | throw InvalidProtocolBufferException.InvalidEndTag();
|
| 159 | }
|
| 160 | }
|
| 161 |
|
| 162 | #endregion
|
| 163 |
|
| 164 | #region Reading of tags etc
|
csharptest | 123e534 | 2011-06-03 14:15:21 -0500 | [diff] [blame^] | 165 |
|
csharptest | 71f662c | 2011-05-20 15:15:34 -0500 | [diff] [blame] | 166 | /// <summary>
|
csharptest | 123e534 | 2011-06-03 14:15:21 -0500 | [diff] [blame^] | 167 | /// Attempt to read a field tag, returning false if we have reached the end
|
| 168 | /// of the input data.
|
csharptest | 71f662c | 2011-05-20 15:15:34 -0500 | [diff] [blame] | 169 | /// </summary>
|
csharptest | 123e534 | 2011-06-03 14:15:21 -0500 | [diff] [blame^] | 170 | /// <remarks>
|
| 171 | /// <para>
|
| 172 | /// If fieldTag is non-zero and ReadTag returns true then the value in fieldName
|
| 173 | /// may or may not be populated. However, if fieldTag is zero and ReadTag returns
|
| 174 | /// true, then fieldName should be populated with a non-null field name.
|
| 175 | /// </para><para>
|
| 176 | /// In other words if ReadTag returns true then either fieldTag will be non-zero OR
|
| 177 | /// fieldName will be non-zero. In some cases both may be populated, however the
|
| 178 | /// builders will always prefer the fieldTag over fieldName.
|
| 179 | /// </para>
|
| 180 | /// </remarks>
|
csharptest | 71f662c | 2011-05-20 15:15:34 -0500 | [diff] [blame] | 181 | [CLSCompliant(false)]
|
csharptest | 123e534 | 2011-06-03 14:15:21 -0500 | [diff] [blame^] | 182 | public bool ReadTag(out uint fieldTag, out string fieldName)
|
csharptest | 71f662c | 2011-05-20 15:15:34 -0500 | [diff] [blame] | 183 | {
|
csharptest | 123e534 | 2011-06-03 14:15:21 -0500 | [diff] [blame^] | 184 | fieldName = null;
|
| 185 |
|
csharptest | 71f662c | 2011-05-20 15:15:34 -0500 | [diff] [blame] | 186 | if (IsAtEnd)
|
| 187 | {
|
csharptest | 123e534 | 2011-06-03 14:15:21 -0500 | [diff] [blame^] | 188 | lastTag = fieldTag = 0;
|
| 189 | return false;
|
csharptest | 71f662c | 2011-05-20 15:15:34 -0500 | [diff] [blame] | 190 | }
|
| 191 |
|
csharptest | 123e534 | 2011-06-03 14:15:21 -0500 | [diff] [blame^] | 192 | lastTag = fieldTag = ReadRawVarint32();
|
csharptest | 71f662c | 2011-05-20 15:15:34 -0500 | [diff] [blame] | 193 | if (lastTag == 0)
|
| 194 | {
|
| 195 | // If we actually read zero, that's not a valid tag.
|
| 196 | throw InvalidProtocolBufferException.InvalidTag();
|
| 197 | }
|
csharptest | 123e534 | 2011-06-03 14:15:21 -0500 | [diff] [blame^] | 198 | return true;
|
csharptest | 71f662c | 2011-05-20 15:15:34 -0500 | [diff] [blame] | 199 | }
|
| 200 |
|
| 201 | /// <summary>
|
| 202 | /// Read a double field from the stream.
|
| 203 | /// </summary>
|
| 204 | public double ReadDouble()
|
| 205 | {
|
| 206 | #if SILVERLIGHT2 || COMPACT_FRAMEWORK_35
|
| 207 | byte[] bytes = ReadRawBytes(8);
|
| 208 | return BitConverter.ToDouble(bytes, 0);
|
| 209 | #else
|
| 210 | return BitConverter.Int64BitsToDouble((long) ReadRawLittleEndian64());
|
| 211 | #endif
|
| 212 | }
|
| 213 |
|
| 214 | /// <summary>
|
| 215 | /// Read a float field from the stream.
|
| 216 | /// </summary>
|
| 217 | public float ReadFloat()
|
| 218 | {
|
| 219 | // TODO(jonskeet): Test this on different endiannesses
|
| 220 | uint raw = ReadRawLittleEndian32();
|
| 221 | byte[] rawBytes = BitConverter.GetBytes(raw);
|
| 222 | return BitConverter.ToSingle(rawBytes, 0);
|
| 223 | }
|
| 224 |
|
| 225 | /// <summary>
|
| 226 | /// Read a uint64 field from the stream.
|
| 227 | /// </summary>
|
| 228 | [CLSCompliant(false)]
|
| 229 | public ulong ReadUInt64()
|
| 230 | {
|
| 231 | return ReadRawVarint64();
|
| 232 | }
|
| 233 |
|
| 234 | /// <summary>
|
| 235 | /// Read an int64 field from the stream.
|
| 236 | /// </summary>
|
| 237 | public long ReadInt64()
|
| 238 | {
|
| 239 | return (long) ReadRawVarint64();
|
| 240 | }
|
| 241 |
|
| 242 | /// <summary>
|
| 243 | /// Read an int32 field from the stream.
|
| 244 | /// </summary>
|
| 245 | public int ReadInt32()
|
| 246 | {
|
| 247 | return (int) ReadRawVarint32();
|
| 248 | }
|
| 249 |
|
| 250 | /// <summary>
|
| 251 | /// Read a fixed64 field from the stream.
|
| 252 | /// </summary>
|
| 253 | [CLSCompliant(false)]
|
| 254 | public ulong ReadFixed64()
|
| 255 | {
|
| 256 | return ReadRawLittleEndian64();
|
| 257 | }
|
| 258 |
|
| 259 | /// <summary>
|
| 260 | /// Read a fixed32 field from the stream.
|
| 261 | /// </summary>
|
| 262 | [CLSCompliant(false)]
|
| 263 | public uint ReadFixed32()
|
| 264 | {
|
| 265 | return ReadRawLittleEndian32();
|
| 266 | }
|
| 267 |
|
| 268 | /// <summary>
|
| 269 | /// Read a bool field from the stream.
|
| 270 | /// </summary>
|
| 271 | public bool ReadBool()
|
| 272 | {
|
| 273 | return ReadRawVarint32() != 0;
|
| 274 | }
|
| 275 |
|
| 276 | /// <summary>
|
| 277 | /// Reads a string field from the stream.
|
| 278 | /// </summary>
|
| 279 | public String ReadString()
|
| 280 | {
|
| 281 | int size = (int) ReadRawVarint32();
|
| 282 | // No need to read any data for an empty string.
|
| 283 | if (size == 0)
|
| 284 | {
|
| 285 | return "";
|
| 286 | }
|
| 287 | if (size <= bufferSize - bufferPos)
|
| 288 | {
|
| 289 | // Fast path: We already have the bytes in a contiguous buffer, so
|
| 290 | // just copy directly from it.
|
| 291 | String result = Encoding.UTF8.GetString(buffer, bufferPos, size);
|
| 292 | bufferPos += size;
|
| 293 | return result;
|
| 294 | }
|
| 295 | // Slow path: Build a byte array first then copy it.
|
| 296 | return Encoding.UTF8.GetString(ReadRawBytes(size), 0, size);
|
| 297 | }
|
| 298 |
|
| 299 | /// <summary>
|
| 300 | /// Reads a group field value from the stream.
|
| 301 | /// </summary>
|
| 302 | public void ReadGroup(int fieldNumber, IBuilderLite builder,
|
| 303 | ExtensionRegistry extensionRegistry)
|
| 304 | {
|
| 305 | if (recursionDepth >= recursionLimit)
|
| 306 | {
|
| 307 | throw InvalidProtocolBufferException.RecursionLimitExceeded();
|
| 308 | }
|
| 309 | ++recursionDepth;
|
| 310 | builder.WeakMergeFrom(this, extensionRegistry);
|
| 311 | CheckLastTagWas(WireFormat.MakeTag(fieldNumber, WireFormat.WireType.EndGroup));
|
| 312 | --recursionDepth;
|
| 313 | }
|
| 314 |
|
| 315 | /// <summary>
|
| 316 | /// Reads a group field value from the stream and merges it into the given
|
| 317 | /// UnknownFieldSet.
|
| 318 | /// </summary>
|
| 319 | [Obsolete]
|
| 320 | public void ReadUnknownGroup(int fieldNumber, IBuilderLite builder)
|
| 321 | {
|
| 322 | if (recursionDepth >= recursionLimit)
|
| 323 | {
|
| 324 | throw InvalidProtocolBufferException.RecursionLimitExceeded();
|
| 325 | }
|
| 326 | ++recursionDepth;
|
| 327 | builder.WeakMergeFrom(this);
|
| 328 | CheckLastTagWas(WireFormat.MakeTag(fieldNumber, WireFormat.WireType.EndGroup));
|
| 329 | --recursionDepth;
|
| 330 | }
|
| 331 |
|
| 332 | /// <summary>
|
| 333 | /// Reads an embedded message field value from the stream.
|
| 334 | /// </summary>
|
| 335 | public void ReadMessage(IBuilderLite builder, ExtensionRegistry extensionRegistry)
|
| 336 | {
|
| 337 | int length = (int) ReadRawVarint32();
|
| 338 | if (recursionDepth >= recursionLimit)
|
| 339 | {
|
| 340 | throw InvalidProtocolBufferException.RecursionLimitExceeded();
|
| 341 | }
|
| 342 | int oldLimit = PushLimit(length);
|
| 343 | ++recursionDepth;
|
| 344 | builder.WeakMergeFrom(this, extensionRegistry);
|
| 345 | CheckLastTagWas(0);
|
| 346 | --recursionDepth;
|
| 347 | PopLimit(oldLimit);
|
| 348 | }
|
| 349 |
|
| 350 | /// <summary>
|
| 351 | /// Reads a bytes field value from the stream.
|
| 352 | /// </summary>
|
| 353 | public ByteString ReadBytes()
|
| 354 | {
|
| 355 | int size = (int) ReadRawVarint32();
|
| 356 | if (size < bufferSize - bufferPos && size > 0)
|
| 357 | {
|
| 358 | // Fast path: We already have the bytes in a contiguous buffer, so
|
| 359 | // just copy directly from it.
|
| 360 | ByteString result = ByteString.CopyFrom(buffer, bufferPos, size);
|
| 361 | bufferPos += size;
|
| 362 | return result;
|
| 363 | }
|
| 364 | else
|
| 365 | {
|
| 366 | // Slow path: Build a byte array first then copy it.
|
csharptest | 45a93fa | 2011-06-02 10:52:37 -0500 | [diff] [blame] | 367 | return ByteString.AttachBytes(ReadRawBytes(size));
|
csharptest | 71f662c | 2011-05-20 15:15:34 -0500 | [diff] [blame] | 368 | }
|
| 369 | }
|
| 370 |
|
| 371 | /// <summary>
|
| 372 | /// Reads a uint32 field value from the stream.
|
| 373 | /// </summary>
|
| 374 | [CLSCompliant(false)]
|
| 375 | public uint ReadUInt32()
|
| 376 | {
|
| 377 | return ReadRawVarint32();
|
| 378 | }
|
| 379 |
|
| 380 | /// <summary>
|
| 381 | /// Reads an enum field value from the stream. The caller is responsible
|
| 382 | /// for converting the numeric value to an actual enum.
|
| 383 | /// </summary>
|
| 384 | public int ReadEnum()
|
| 385 | {
|
| 386 | return (int) ReadRawVarint32();
|
| 387 | }
|
| 388 |
|
| 389 | /// <summary>
|
| 390 | /// Reads an sfixed32 field value from the stream.
|
| 391 | /// </summary>
|
| 392 | public int ReadSFixed32()
|
| 393 | {
|
| 394 | return (int) ReadRawLittleEndian32();
|
| 395 | }
|
| 396 |
|
| 397 | /// <summary>
|
| 398 | /// Reads an sfixed64 field value from the stream.
|
| 399 | /// </summary>
|
| 400 | public long ReadSFixed64()
|
| 401 | {
|
| 402 | return (long) ReadRawLittleEndian64();
|
| 403 | }
|
| 404 |
|
| 405 | /// <summary>
|
| 406 | /// Reads an sint32 field value from the stream.
|
| 407 | /// </summary>
|
| 408 | public int ReadSInt32()
|
| 409 | {
|
| 410 | return DecodeZigZag32(ReadRawVarint32());
|
| 411 | }
|
| 412 |
|
| 413 | /// <summary>
|
| 414 | /// Reads an sint64 field value from the stream.
|
| 415 | /// </summary>
|
| 416 | public long ReadSInt64()
|
| 417 | {
|
| 418 | return DecodeZigZag64(ReadRawVarint64());
|
| 419 | }
|
| 420 |
|
| 421 | /// <summary>
|
| 422 | /// Reads a field of any primitive type. Enums, groups and embedded
|
| 423 | /// messages are not handled by this method.
|
| 424 | /// </summary>
|
| 425 | public object ReadPrimitiveField(FieldType fieldType)
|
| 426 | {
|
| 427 | switch (fieldType)
|
| 428 | {
|
| 429 | case FieldType.Double:
|
| 430 | return ReadDouble();
|
| 431 | case FieldType.Float:
|
| 432 | return ReadFloat();
|
| 433 | case FieldType.Int64:
|
| 434 | return ReadInt64();
|
| 435 | case FieldType.UInt64:
|
| 436 | return ReadUInt64();
|
| 437 | case FieldType.Int32:
|
| 438 | return ReadInt32();
|
| 439 | case FieldType.Fixed64:
|
| 440 | return ReadFixed64();
|
| 441 | case FieldType.Fixed32:
|
| 442 | return ReadFixed32();
|
| 443 | case FieldType.Bool:
|
| 444 | return ReadBool();
|
| 445 | case FieldType.String:
|
| 446 | return ReadString();
|
| 447 | case FieldType.Bytes:
|
| 448 | return ReadBytes();
|
| 449 | case FieldType.UInt32:
|
| 450 | return ReadUInt32();
|
| 451 | case FieldType.SFixed32:
|
| 452 | return ReadSFixed32();
|
| 453 | case FieldType.SFixed64:
|
| 454 | return ReadSFixed64();
|
| 455 | case FieldType.SInt32:
|
| 456 | return ReadSInt32();
|
| 457 | case FieldType.SInt64:
|
| 458 | return ReadSInt64();
|
| 459 | case FieldType.Group:
|
| 460 | throw new ArgumentException("ReadPrimitiveField() cannot handle nested groups.");
|
| 461 | case FieldType.Message:
|
| 462 | throw new ArgumentException("ReadPrimitiveField() cannot handle embedded messages.");
|
| 463 | // We don't handle enums because we don't know what to do if the
|
| 464 | // value is not recognized.
|
| 465 | case FieldType.Enum:
|
| 466 | throw new ArgumentException("ReadPrimitiveField() cannot handle enums.");
|
| 467 | default:
|
| 468 | throw new ArgumentOutOfRangeException("Invalid field type " + fieldType);
|
| 469 | }
|
| 470 | }
|
| 471 |
|
| 472 | #endregion
|
| 473 |
|
| 474 | #region Underlying reading primitives
|
| 475 |
|
| 476 | /// <summary>
|
| 477 | /// Same code as ReadRawVarint32, but read each byte individually, checking for
|
| 478 | /// buffer overflow.
|
| 479 | /// </summary>
|
| 480 | private uint SlowReadRawVarint32()
|
| 481 | {
|
| 482 | int tmp = ReadRawByte();
|
| 483 | if (tmp < 128)
|
| 484 | {
|
| 485 | return (uint) tmp;
|
| 486 | }
|
| 487 | int result = tmp & 0x7f;
|
| 488 | if ((tmp = ReadRawByte()) < 128)
|
| 489 | {
|
| 490 | result |= tmp << 7;
|
| 491 | }
|
| 492 | else
|
| 493 | {
|
| 494 | result |= (tmp & 0x7f) << 7;
|
| 495 | if ((tmp = ReadRawByte()) < 128)
|
| 496 | {
|
| 497 | result |= tmp << 14;
|
| 498 | }
|
| 499 | else
|
| 500 | {
|
| 501 | result |= (tmp & 0x7f) << 14;
|
| 502 | if ((tmp = ReadRawByte()) < 128)
|
| 503 | {
|
| 504 | result |= tmp << 21;
|
| 505 | }
|
| 506 | else
|
| 507 | {
|
| 508 | result |= (tmp & 0x7f) << 21;
|
| 509 | result |= (tmp = ReadRawByte()) << 28;
|
| 510 | if (tmp >= 128)
|
| 511 | {
|
| 512 | // Discard upper 32 bits.
|
| 513 | for (int i = 0; i < 5; i++)
|
| 514 | {
|
| 515 | if (ReadRawByte() < 128) return (uint) result;
|
| 516 | }
|
| 517 | throw InvalidProtocolBufferException.MalformedVarint();
|
| 518 | }
|
| 519 | }
|
| 520 | }
|
| 521 | }
|
| 522 | return (uint) result;
|
| 523 | }
|
| 524 |
|
| 525 | /// <summary>
|
| 526 | /// Read a raw Varint from the stream. If larger than 32 bits, discard the upper bits.
|
| 527 | /// This method is optimised for the case where we've got lots of data in the buffer.
|
| 528 | /// That means we can check the size just once, then just read directly from the buffer
|
| 529 | /// without constant rechecking of the buffer length.
|
| 530 | /// </summary>
|
| 531 | [CLSCompliant(false)]
|
| 532 | public uint ReadRawVarint32()
|
| 533 | {
|
| 534 | if (bufferPos + 5 > bufferSize)
|
| 535 | {
|
| 536 | return SlowReadRawVarint32();
|
| 537 | }
|
| 538 |
|
| 539 | int tmp = buffer[bufferPos++];
|
| 540 | if (tmp < 128)
|
| 541 | {
|
| 542 | return (uint) tmp;
|
| 543 | }
|
| 544 | int result = tmp & 0x7f;
|
| 545 | if ((tmp = buffer[bufferPos++]) < 128)
|
| 546 | {
|
| 547 | result |= tmp << 7;
|
| 548 | }
|
| 549 | else
|
| 550 | {
|
| 551 | result |= (tmp & 0x7f) << 7;
|
| 552 | if ((tmp = buffer[bufferPos++]) < 128)
|
| 553 | {
|
| 554 | result |= tmp << 14;
|
| 555 | }
|
| 556 | else
|
| 557 | {
|
| 558 | result |= (tmp & 0x7f) << 14;
|
| 559 | if ((tmp = buffer[bufferPos++]) < 128)
|
| 560 | {
|
| 561 | result |= tmp << 21;
|
| 562 | }
|
| 563 | else
|
| 564 | {
|
| 565 | result |= (tmp & 0x7f) << 21;
|
| 566 | result |= (tmp = buffer[bufferPos++]) << 28;
|
| 567 | if (tmp >= 128)
|
| 568 | {
|
| 569 | // Discard upper 32 bits.
|
| 570 | // Note that this has to use ReadRawByte() as we only ensure we've
|
| 571 | // got at least 5 bytes at the start of the method. This lets us
|
| 572 | // use the fast path in more cases, and we rarely hit this section of code.
|
| 573 | for (int i = 0; i < 5; i++)
|
| 574 | {
|
| 575 | if (ReadRawByte() < 128) return (uint) result;
|
| 576 | }
|
| 577 | throw InvalidProtocolBufferException.MalformedVarint();
|
| 578 | }
|
| 579 | }
|
| 580 | }
|
| 581 | }
|
| 582 | return (uint) result;
|
| 583 | }
|
| 584 |
|
| 585 | /// <summary>
|
| 586 | /// Reads a varint from the input one byte at a time, so that it does not
|
| 587 | /// read any bytes after the end of the varint. If you simply wrapped the
|
| 588 | /// stream in a CodedInputStream and used ReadRawVarint32(Stream)}
|
| 589 | /// then you would probably end up reading past the end of the varint since
|
| 590 | /// CodedInputStream buffers its input.
|
| 591 | /// </summary>
|
| 592 | /// <param name="input"></param>
|
| 593 | /// <returns></returns>
|
| 594 | [CLSCompliant(false)]
|
| 595 | public static uint ReadRawVarint32(Stream input)
|
| 596 | {
|
| 597 | int result = 0;
|
| 598 | int offset = 0;
|
| 599 | for (; offset < 32; offset += 7)
|
| 600 | {
|
| 601 | int b = input.ReadByte();
|
| 602 | if (b == -1)
|
| 603 | {
|
| 604 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 605 | }
|
| 606 | result |= (b & 0x7f) << offset;
|
| 607 | if ((b & 0x80) == 0)
|
| 608 | {
|
| 609 | return (uint) result;
|
| 610 | }
|
| 611 | }
|
| 612 | // Keep reading up to 64 bits.
|
| 613 | for (; offset < 64; offset += 7)
|
| 614 | {
|
| 615 | int b = input.ReadByte();
|
| 616 | if (b == -1)
|
| 617 | {
|
| 618 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 619 | }
|
| 620 | if ((b & 0x80) == 0)
|
| 621 | {
|
| 622 | return (uint) result;
|
| 623 | }
|
| 624 | }
|
| 625 | throw InvalidProtocolBufferException.MalformedVarint();
|
| 626 | }
|
| 627 |
|
| 628 | /// <summary>
|
| 629 | /// Read a raw varint from the stream.
|
| 630 | /// </summary>
|
| 631 | [CLSCompliant(false)]
|
| 632 | public ulong ReadRawVarint64()
|
| 633 | {
|
| 634 | int shift = 0;
|
| 635 | ulong result = 0;
|
| 636 | while (shift < 64)
|
| 637 | {
|
| 638 | byte b = ReadRawByte();
|
| 639 | result |= (ulong) (b & 0x7F) << shift;
|
| 640 | if ((b & 0x80) == 0)
|
| 641 | {
|
| 642 | return result;
|
| 643 | }
|
| 644 | shift += 7;
|
| 645 | }
|
| 646 | throw InvalidProtocolBufferException.MalformedVarint();
|
| 647 | }
|
| 648 |
|
| 649 | /// <summary>
|
| 650 | /// Read a 32-bit little-endian integer from the stream.
|
| 651 | /// </summary>
|
| 652 | [CLSCompliant(false)]
|
| 653 | public uint ReadRawLittleEndian32()
|
| 654 | {
|
| 655 | uint b1 = ReadRawByte();
|
| 656 | uint b2 = ReadRawByte();
|
| 657 | uint b3 = ReadRawByte();
|
| 658 | uint b4 = ReadRawByte();
|
| 659 | return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24);
|
| 660 | }
|
| 661 |
|
| 662 | /// <summary>
|
| 663 | /// Read a 64-bit little-endian integer from the stream.
|
| 664 | /// </summary>
|
| 665 | [CLSCompliant(false)]
|
| 666 | public ulong ReadRawLittleEndian64()
|
| 667 | {
|
| 668 | ulong b1 = ReadRawByte();
|
| 669 | ulong b2 = ReadRawByte();
|
| 670 | ulong b3 = ReadRawByte();
|
| 671 | ulong b4 = ReadRawByte();
|
| 672 | ulong b5 = ReadRawByte();
|
| 673 | ulong b6 = ReadRawByte();
|
| 674 | ulong b7 = ReadRawByte();
|
| 675 | ulong b8 = ReadRawByte();
|
| 676 | return b1 | (b2 << 8) | (b3 << 16) | (b4 << 24)
|
| 677 | | (b5 << 32) | (b6 << 40) | (b7 << 48) | (b8 << 56);
|
| 678 | }
|
| 679 |
|
| 680 | #endregion
|
| 681 |
|
| 682 | /// <summary>
|
| 683 | /// Decode a 32-bit value with ZigZag encoding.
|
| 684 | /// </summary>
|
| 685 | /// <remarks>
|
| 686 | /// ZigZag encodes signed integers into values that can be efficiently
|
| 687 | /// encoded with varint. (Otherwise, negative values must be
|
| 688 | /// sign-extended to 64 bits to be varint encoded, thus always taking
|
| 689 | /// 10 bytes on the wire.)
|
| 690 | /// </remarks>
|
| 691 | [CLSCompliant(false)]
|
| 692 | public static int DecodeZigZag32(uint n)
|
| 693 | {
|
| 694 | return (int) (n >> 1) ^ -(int) (n & 1);
|
| 695 | }
|
| 696 |
|
| 697 | /// <summary>
|
| 698 | /// Decode a 32-bit value with ZigZag encoding.
|
| 699 | /// </summary>
|
| 700 | /// <remarks>
|
| 701 | /// ZigZag encodes signed integers into values that can be efficiently
|
| 702 | /// encoded with varint. (Otherwise, negative values must be
|
| 703 | /// sign-extended to 64 bits to be varint encoded, thus always taking
|
| 704 | /// 10 bytes on the wire.)
|
| 705 | /// </remarks>
|
| 706 | [CLSCompliant(false)]
|
| 707 | public static long DecodeZigZag64(ulong n)
|
| 708 | {
|
| 709 | return (long) (n >> 1) ^ -(long) (n & 1);
|
| 710 | }
|
| 711 |
|
| 712 | /// <summary>
|
| 713 | /// Set the maximum message recursion depth.
|
| 714 | /// </summary>
|
| 715 | /// <remarks>
|
| 716 | /// In order to prevent malicious
|
| 717 | /// messages from causing stack overflows, CodedInputStream limits
|
| 718 | /// how deeply messages may be nested. The default limit is 64.
|
| 719 | /// </remarks>
|
| 720 | public int SetRecursionLimit(int limit)
|
| 721 | {
|
| 722 | if (limit < 0)
|
| 723 | {
|
| 724 | throw new ArgumentOutOfRangeException("Recursion limit cannot be negative: " + limit);
|
| 725 | }
|
| 726 | int oldLimit = recursionLimit;
|
| 727 | recursionLimit = limit;
|
| 728 | return oldLimit;
|
| 729 | }
|
| 730 |
|
| 731 | /// <summary>
|
| 732 | /// Set the maximum message size.
|
| 733 | /// </summary>
|
| 734 | /// <remarks>
|
| 735 | /// In order to prevent malicious messages from exhausting memory or
|
| 736 | /// causing integer overflows, CodedInputStream limits how large a message may be.
|
| 737 | /// The default limit is 64MB. You should set this limit as small
|
| 738 | /// as you can without harming your app's functionality. Note that
|
| 739 | /// size limits only apply when reading from an InputStream, not
|
| 740 | /// when constructed around a raw byte array (nor with ByteString.NewCodedInput).
|
| 741 | /// If you want to read several messages from a single CodedInputStream, you
|
| 742 | /// can call ResetSizeCounter() after each message to avoid hitting the
|
| 743 | /// size limit.
|
| 744 | /// </remarks>
|
| 745 | public int SetSizeLimit(int limit)
|
| 746 | {
|
| 747 | if (limit < 0)
|
| 748 | {
|
| 749 | throw new ArgumentOutOfRangeException("Size limit cannot be negative: " + limit);
|
| 750 | }
|
| 751 | int oldLimit = sizeLimit;
|
| 752 | sizeLimit = limit;
|
| 753 | return oldLimit;
|
| 754 | }
|
| 755 |
|
| 756 | #region Internal reading and buffer management
|
| 757 |
|
| 758 | /// <summary>
|
| 759 | /// Resets the current size counter to zero (see SetSizeLimit).
|
| 760 | /// </summary>
|
| 761 | public void ResetSizeCounter()
|
| 762 | {
|
| 763 | totalBytesRetired = 0;
|
| 764 | }
|
| 765 |
|
| 766 | /// <summary>
|
| 767 | /// Sets currentLimit to (current position) + byteLimit. This is called
|
| 768 | /// when descending into a length-delimited embedded message. The previous
|
| 769 | /// limit is returned.
|
| 770 | /// </summary>
|
| 771 | /// <returns>The old limit.</returns>
|
| 772 | public int PushLimit(int byteLimit)
|
| 773 | {
|
| 774 | if (byteLimit < 0)
|
| 775 | {
|
| 776 | throw InvalidProtocolBufferException.NegativeSize();
|
| 777 | }
|
| 778 | byteLimit += totalBytesRetired + bufferPos;
|
| 779 | int oldLimit = currentLimit;
|
| 780 | if (byteLimit > oldLimit)
|
| 781 | {
|
| 782 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 783 | }
|
| 784 | currentLimit = byteLimit;
|
| 785 |
|
| 786 | RecomputeBufferSizeAfterLimit();
|
| 787 |
|
| 788 | return oldLimit;
|
| 789 | }
|
| 790 |
|
| 791 | private void RecomputeBufferSizeAfterLimit()
|
| 792 | {
|
| 793 | bufferSize += bufferSizeAfterLimit;
|
| 794 | int bufferEnd = totalBytesRetired + bufferSize;
|
| 795 | if (bufferEnd > currentLimit)
|
| 796 | {
|
| 797 | // Limit is in current buffer.
|
| 798 | bufferSizeAfterLimit = bufferEnd - currentLimit;
|
| 799 | bufferSize -= bufferSizeAfterLimit;
|
| 800 | }
|
| 801 | else
|
| 802 | {
|
| 803 | bufferSizeAfterLimit = 0;
|
| 804 | }
|
| 805 | }
|
| 806 |
|
| 807 | /// <summary>
|
| 808 | /// Discards the current limit, returning the previous limit.
|
| 809 | /// </summary>
|
| 810 | public void PopLimit(int oldLimit)
|
| 811 | {
|
| 812 | currentLimit = oldLimit;
|
| 813 | RecomputeBufferSizeAfterLimit();
|
| 814 | }
|
| 815 |
|
| 816 | /// <summary>
|
| 817 | /// Returns whether or not all the data before the limit has been read.
|
| 818 | /// </summary>
|
| 819 | /// <returns></returns>
|
| 820 | public bool ReachedLimit
|
| 821 | {
|
| 822 | get
|
| 823 | {
|
| 824 | if (currentLimit == int.MaxValue)
|
| 825 | {
|
| 826 | return false;
|
| 827 | }
|
| 828 | int currentAbsolutePosition = totalBytesRetired + bufferPos;
|
| 829 | return currentAbsolutePosition >= currentLimit;
|
| 830 | }
|
| 831 | }
|
| 832 |
|
| 833 | /// <summary>
|
| 834 | /// Returns true if the stream has reached the end of the input. This is the
|
| 835 | /// case if either the end of the underlying input source has been reached or
|
| 836 | /// the stream has reached a limit created using PushLimit.
|
| 837 | /// </summary>
|
| 838 | public bool IsAtEnd
|
| 839 | {
|
| 840 | get { return bufferPos == bufferSize && !RefillBuffer(false); }
|
| 841 | }
|
| 842 |
|
| 843 | /// <summary>
|
| 844 | /// Called when buffer is empty to read more bytes from the
|
| 845 | /// input. If <paramref name="mustSucceed"/> is true, RefillBuffer() gurantees that
|
| 846 | /// either there will be at least one byte in the buffer when it returns
|
| 847 | /// or it will throw an exception. If <paramref name="mustSucceed"/> is false,
|
| 848 | /// RefillBuffer() returns false if no more bytes were available.
|
| 849 | /// </summary>
|
| 850 | /// <param name="mustSucceed"></param>
|
| 851 | /// <returns></returns>
|
| 852 | private bool RefillBuffer(bool mustSucceed)
|
| 853 | {
|
| 854 | if (bufferPos < bufferSize)
|
| 855 | {
|
| 856 | throw new InvalidOperationException("RefillBuffer() called when buffer wasn't empty.");
|
| 857 | }
|
| 858 |
|
| 859 | if (totalBytesRetired + bufferSize == currentLimit)
|
| 860 | {
|
| 861 | // Oops, we hit a limit.
|
| 862 | if (mustSucceed)
|
| 863 | {
|
| 864 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 865 | }
|
| 866 | else
|
| 867 | {
|
| 868 | return false;
|
| 869 | }
|
| 870 | }
|
| 871 |
|
| 872 | totalBytesRetired += bufferSize;
|
| 873 |
|
| 874 | bufferPos = 0;
|
| 875 | bufferSize = (input == null) ? 0 : input.Read(buffer, 0, buffer.Length);
|
| 876 | if (bufferSize < 0)
|
| 877 | {
|
| 878 | throw new InvalidOperationException("Stream.Read returned a negative count");
|
| 879 | }
|
| 880 | if (bufferSize == 0)
|
| 881 | {
|
| 882 | if (mustSucceed)
|
| 883 | {
|
| 884 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 885 | }
|
| 886 | else
|
| 887 | {
|
| 888 | return false;
|
| 889 | }
|
| 890 | }
|
| 891 | else
|
| 892 | {
|
| 893 | RecomputeBufferSizeAfterLimit();
|
| 894 | int totalBytesRead =
|
| 895 | totalBytesRetired + bufferSize + bufferSizeAfterLimit;
|
| 896 | if (totalBytesRead > sizeLimit || totalBytesRead < 0)
|
| 897 | {
|
| 898 | throw InvalidProtocolBufferException.SizeLimitExceeded();
|
| 899 | }
|
| 900 | return true;
|
| 901 | }
|
| 902 | }
|
| 903 |
|
| 904 | /// <summary>
|
| 905 | /// Read one byte from the input.
|
| 906 | /// </summary>
|
| 907 | /// <exception cref="InvalidProtocolBufferException">
|
| 908 | /// the end of the stream or the current limit was reached
|
| 909 | /// </exception>
|
| 910 | public byte ReadRawByte()
|
| 911 | {
|
| 912 | if (bufferPos == bufferSize)
|
| 913 | {
|
| 914 | RefillBuffer(true);
|
| 915 | }
|
| 916 | return buffer[bufferPos++];
|
| 917 | }
|
| 918 |
|
| 919 | /// <summary>
|
| 920 | /// Read a fixed size of bytes from the input.
|
| 921 | /// </summary>
|
| 922 | /// <exception cref="InvalidProtocolBufferException">
|
| 923 | /// the end of the stream or the current limit was reached
|
| 924 | /// </exception>
|
| 925 | public byte[] ReadRawBytes(int size)
|
| 926 | {
|
| 927 | if (size < 0)
|
| 928 | {
|
| 929 | throw InvalidProtocolBufferException.NegativeSize();
|
| 930 | }
|
| 931 |
|
| 932 | if (totalBytesRetired + bufferPos + size > currentLimit)
|
| 933 | {
|
| 934 | // Read to the end of the stream anyway.
|
| 935 | SkipRawBytes(currentLimit - totalBytesRetired - bufferPos);
|
| 936 | // Then fail.
|
| 937 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 938 | }
|
| 939 |
|
| 940 | if (size <= bufferSize - bufferPos)
|
| 941 | {
|
| 942 | // We have all the bytes we need already.
|
| 943 | byte[] bytes = new byte[size];
|
| 944 | Array.Copy(buffer, bufferPos, bytes, 0, size);
|
| 945 | bufferPos += size;
|
| 946 | return bytes;
|
| 947 | }
|
| 948 | else if (size < BufferSize)
|
| 949 | {
|
| 950 | // Reading more bytes than are in the buffer, but not an excessive number
|
| 951 | // of bytes. We can safely allocate the resulting array ahead of time.
|
| 952 |
|
| 953 | // First copy what we have.
|
| 954 | byte[] bytes = new byte[size];
|
| 955 | int pos = bufferSize - bufferPos;
|
| 956 | Array.Copy(buffer, bufferPos, bytes, 0, pos);
|
| 957 | bufferPos = bufferSize;
|
| 958 |
|
| 959 | // We want to use RefillBuffer() and then copy from the buffer into our
|
| 960 | // byte array rather than reading directly into our byte array because
|
| 961 | // the input may be unbuffered.
|
| 962 | RefillBuffer(true);
|
| 963 |
|
| 964 | while (size - pos > bufferSize)
|
| 965 | {
|
| 966 | Array.Copy(buffer, 0, bytes, pos, bufferSize);
|
| 967 | pos += bufferSize;
|
| 968 | bufferPos = bufferSize;
|
| 969 | RefillBuffer(true);
|
| 970 | }
|
| 971 |
|
| 972 | Array.Copy(buffer, 0, bytes, pos, size - pos);
|
| 973 | bufferPos = size - pos;
|
| 974 |
|
| 975 | return bytes;
|
| 976 | }
|
| 977 | else
|
| 978 | {
|
| 979 | // The size is very large. For security reasons, we can't allocate the
|
| 980 | // entire byte array yet. The size comes directly from the input, so a
|
| 981 | // maliciously-crafted message could provide a bogus very large size in
|
| 982 | // order to trick the app into allocating a lot of memory. We avoid this
|
| 983 | // by allocating and reading only a small chunk at a time, so that the
|
| 984 | // malicious message must actually *be* extremely large to cause
|
| 985 | // problems. Meanwhile, we limit the allowed size of a message elsewhere.
|
| 986 |
|
| 987 | // Remember the buffer markers since we'll have to copy the bytes out of
|
| 988 | // it later.
|
| 989 | int originalBufferPos = bufferPos;
|
| 990 | int originalBufferSize = bufferSize;
|
| 991 |
|
| 992 | // Mark the current buffer consumed.
|
| 993 | totalBytesRetired += bufferSize;
|
| 994 | bufferPos = 0;
|
| 995 | bufferSize = 0;
|
| 996 |
|
| 997 | // Read all the rest of the bytes we need.
|
| 998 | int sizeLeft = size - (originalBufferSize - originalBufferPos);
|
| 999 | List<byte[]> chunks = new List<byte[]>();
|
| 1000 |
|
| 1001 | while (sizeLeft > 0)
|
| 1002 | {
|
| 1003 | byte[] chunk = new byte[Math.Min(sizeLeft, BufferSize)];
|
| 1004 | int pos = 0;
|
| 1005 | while (pos < chunk.Length)
|
| 1006 | {
|
| 1007 | int n = (input == null) ? -1 : input.Read(chunk, pos, chunk.Length - pos);
|
| 1008 | if (n <= 0)
|
| 1009 | {
|
| 1010 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 1011 | }
|
| 1012 | totalBytesRetired += n;
|
| 1013 | pos += n;
|
| 1014 | }
|
| 1015 | sizeLeft -= chunk.Length;
|
| 1016 | chunks.Add(chunk);
|
| 1017 | }
|
| 1018 |
|
| 1019 | // OK, got everything. Now concatenate it all into one buffer.
|
| 1020 | byte[] bytes = new byte[size];
|
| 1021 |
|
| 1022 | // Start by copying the leftover bytes from this.buffer.
|
| 1023 | int newPos = originalBufferSize - originalBufferPos;
|
| 1024 | Array.Copy(buffer, originalBufferPos, bytes, 0, newPos);
|
| 1025 |
|
| 1026 | // And now all the chunks.
|
| 1027 | foreach (byte[] chunk in chunks)
|
| 1028 | {
|
| 1029 | Array.Copy(chunk, 0, bytes, newPos, chunk.Length);
|
| 1030 | newPos += chunk.Length;
|
| 1031 | }
|
| 1032 |
|
| 1033 | // Done.
|
| 1034 | return bytes;
|
| 1035 | }
|
| 1036 | }
|
| 1037 |
|
| 1038 | /// <summary>
|
| 1039 | /// Reads and discards a single field, given its tag value.
|
| 1040 | /// </summary>
|
| 1041 | /// <returns>false if the tag is an end-group tag, in which case
|
| 1042 | /// nothing is skipped. Otherwise, returns true.</returns>
|
| 1043 | [CLSCompliant(false)]
|
csharptest | 123e534 | 2011-06-03 14:15:21 -0500 | [diff] [blame^] | 1044 | public bool SkipField()
|
csharptest | 71f662c | 2011-05-20 15:15:34 -0500 | [diff] [blame] | 1045 | {
|
csharptest | 123e534 | 2011-06-03 14:15:21 -0500 | [diff] [blame^] | 1046 | uint tag = lastTag;
|
csharptest | 71f662c | 2011-05-20 15:15:34 -0500 | [diff] [blame] | 1047 | switch (WireFormat.GetTagWireType(tag))
|
| 1048 | {
|
| 1049 | case WireFormat.WireType.Varint:
|
| 1050 | ReadInt32();
|
| 1051 | return true;
|
| 1052 | case WireFormat.WireType.Fixed64:
|
| 1053 | ReadRawLittleEndian64();
|
| 1054 | return true;
|
| 1055 | case WireFormat.WireType.LengthDelimited:
|
| 1056 | SkipRawBytes((int) ReadRawVarint32());
|
| 1057 | return true;
|
| 1058 | case WireFormat.WireType.StartGroup:
|
| 1059 | SkipMessage();
|
| 1060 | CheckLastTagWas(
|
| 1061 | WireFormat.MakeTag(WireFormat.GetTagFieldNumber(tag),
|
| 1062 | WireFormat.WireType.EndGroup));
|
| 1063 | return true;
|
| 1064 | case WireFormat.WireType.EndGroup:
|
| 1065 | return false;
|
| 1066 | case WireFormat.WireType.Fixed32:
|
| 1067 | ReadRawLittleEndian32();
|
| 1068 | return true;
|
| 1069 | default:
|
| 1070 | throw InvalidProtocolBufferException.InvalidWireType();
|
| 1071 | }
|
| 1072 | }
|
| 1073 |
|
| 1074 | /// <summary>
|
| 1075 | /// Reads and discards an entire message. This will read either until EOF
|
| 1076 | /// or until an endgroup tag, whichever comes first.
|
| 1077 | /// </summary>
|
| 1078 | public void SkipMessage()
|
| 1079 | {
|
csharptest | 123e534 | 2011-06-03 14:15:21 -0500 | [diff] [blame^] | 1080 | uint tag;
|
| 1081 | string name;
|
| 1082 | while (ReadTag(out tag, out name))
|
csharptest | 71f662c | 2011-05-20 15:15:34 -0500 | [diff] [blame] | 1083 | {
|
csharptest | 123e534 | 2011-06-03 14:15:21 -0500 | [diff] [blame^] | 1084 | if (!SkipField())
|
csharptest | 71f662c | 2011-05-20 15:15:34 -0500 | [diff] [blame] | 1085 | {
|
| 1086 | return;
|
| 1087 | }
|
| 1088 | }
|
| 1089 | }
|
| 1090 |
|
| 1091 | /// <summary>
|
| 1092 | /// Reads and discards <paramref name="size"/> bytes.
|
| 1093 | /// </summary>
|
| 1094 | /// <exception cref="InvalidProtocolBufferException">the end of the stream
|
| 1095 | /// or the current limit was reached</exception>
|
| 1096 | public void SkipRawBytes(int size)
|
| 1097 | {
|
| 1098 | if (size < 0)
|
| 1099 | {
|
| 1100 | throw InvalidProtocolBufferException.NegativeSize();
|
| 1101 | }
|
| 1102 |
|
| 1103 | if (totalBytesRetired + bufferPos + size > currentLimit)
|
| 1104 | {
|
| 1105 | // Read to the end of the stream anyway.
|
| 1106 | SkipRawBytes(currentLimit - totalBytesRetired - bufferPos);
|
| 1107 | // Then fail.
|
| 1108 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 1109 | }
|
| 1110 |
|
| 1111 | if (size <= bufferSize - bufferPos)
|
| 1112 | {
|
| 1113 | // We have all the bytes we need already.
|
| 1114 | bufferPos += size;
|
| 1115 | }
|
| 1116 | else
|
| 1117 | {
|
| 1118 | // Skipping more bytes than are in the buffer. First skip what we have.
|
| 1119 | int pos = bufferSize - bufferPos;
|
| 1120 | totalBytesRetired += pos;
|
| 1121 | bufferPos = 0;
|
| 1122 | bufferSize = 0;
|
| 1123 |
|
| 1124 | // Then skip directly from the InputStream for the rest.
|
| 1125 | if (pos < size)
|
| 1126 | {
|
| 1127 | if (input == null)
|
| 1128 | {
|
| 1129 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 1130 | }
|
| 1131 | SkipImpl(size - pos);
|
| 1132 | totalBytesRetired += size - pos;
|
| 1133 | }
|
| 1134 | }
|
| 1135 | }
|
| 1136 |
|
| 1137 | /// <summary>
|
| 1138 | /// Abstraction of skipping to cope with streams which can't really skip.
|
| 1139 | /// </summary>
|
| 1140 | private void SkipImpl(int amountToSkip)
|
| 1141 | {
|
| 1142 | if (input.CanSeek)
|
| 1143 | {
|
| 1144 | long previousPosition = input.Position;
|
| 1145 | input.Position += amountToSkip;
|
| 1146 | if (input.Position != previousPosition + amountToSkip)
|
| 1147 | {
|
| 1148 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 1149 | }
|
| 1150 | }
|
| 1151 | else
|
| 1152 | {
|
| 1153 | byte[] skipBuffer = new byte[1024];
|
| 1154 | while (amountToSkip > 0)
|
| 1155 | {
|
| 1156 | int bytesRead = input.Read(skipBuffer, 0, skipBuffer.Length);
|
| 1157 | if (bytesRead <= 0)
|
| 1158 | {
|
| 1159 | throw InvalidProtocolBufferException.TruncatedMessage();
|
| 1160 | }
|
| 1161 | amountToSkip -= bytesRead;
|
| 1162 | }
|
| 1163 | }
|
| 1164 | }
|
| 1165 |
|
| 1166 | #endregion
|
| 1167 | }
|
| 1168 | } |