blob: 594ee92ce4e8450ba90389570c1ed96036371c1d [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
2:mod:`math` --- Mathematical functions
3======================================
4
5.. module:: math
6 :synopsis: Mathematical functions (sin() etc.).
7
8
9This module is always available. It provides access to the mathematical
10functions defined by the C standard.
11
12These functions cannot be used with complex numbers; use the functions of the
13same name from the :mod:`cmath` module if you require support for complex
14numbers. The distinction between functions which support complex numbers and
15those which don't is made since most users do not want to learn quite as much
16mathematics as required to understand complex numbers. Receiving an exception
17instead of a complex result allows earlier detection of the unexpected complex
18number used as a parameter, so that the programmer can determine how and why it
19was generated in the first place.
20
21The following functions are provided by this module. Except when explicitly
22noted otherwise, all return values are floats.
23
24Number-theoretic and representation functions:
25
26
27.. function:: ceil(x)
28
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000029 Return the ceiling of *x* as a float, the smallest integer value greater than or
30 equal to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000031
32
Christian Heimeseebb79c2008-01-03 22:32:26 +000033.. function:: copysign(x, y)
34
35 Return *x* with the sign of *y*. ``copysign`` copies the sign bit of an IEEE
36 754 float, ``copysign(1, -0.0)`` returns *-1.0*.
37
Andrew M. Kuchling54966a52008-01-04 18:25:05 +000038 .. versionadded:: 2.6
Christian Heimeseebb79c2008-01-03 22:32:26 +000039
40
Georg Brandl8ec7f652007-08-15 14:28:01 +000041.. function:: fabs(x)
42
43 Return the absolute value of *x*.
44
Georg Brandl5da652e2008-06-18 09:28:22 +000045
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000046.. function:: factorial(x)
47
Mark Dickinsonf88f7392008-06-18 09:20:17 +000048 Return *x* factorial. Raises :exc:`ValueError` if *x* is not integral or
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +000049 is negative.
Georg Brandl8ec7f652007-08-15 14:28:01 +000050
Georg Brandl5da652e2008-06-18 09:28:22 +000051 .. versionadded:: 2.6
52
53
Georg Brandl8ec7f652007-08-15 14:28:01 +000054.. function:: floor(x)
55
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +000056 Return the floor of *x* as a float, the largest integer value less than or equal
57 to *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +000058
Georg Brandl9749e152008-01-05 19:28:16 +000059 .. versionchanged:: 2.6
60 Added :meth:`__floor__` delegation.
61
Georg Brandl8ec7f652007-08-15 14:28:01 +000062
63.. function:: fmod(x, y)
64
65 Return ``fmod(x, y)``, as defined by the platform C library. Note that the
66 Python expression ``x % y`` may not return the same result. The intent of the C
67 standard is that ``fmod(x, y)`` be exactly (mathematically; to infinite
68 precision) equal to ``x - n*y`` for some integer *n* such that the result has
69 the same sign as *x* and magnitude less than ``abs(y)``. Python's ``x % y``
70 returns a result with the sign of *y* instead, and may not be exactly computable
71 for float arguments. For example, ``fmod(-1e-100, 1e100)`` is ``-1e-100``, but
72 the result of Python's ``-1e-100 % 1e100`` is ``1e100-1e-100``, which cannot be
73 represented exactly as a float, and rounds to the surprising ``1e100``. For
74 this reason, function :func:`fmod` is generally preferred when working with
75 floats, while Python's ``x % y`` is preferred when working with integers.
76
77
78.. function:: frexp(x)
79
80 Return the mantissa and exponent of *x* as the pair ``(m, e)``. *m* is a float
81 and *e* is an integer such that ``x == m * 2**e`` exactly. If *x* is zero,
82 returns ``(0.0, 0)``, otherwise ``0.5 <= abs(m) < 1``. This is used to "pick
83 apart" the internal representation of a float in a portable way.
84
85
Mark Dickinsonfef6b132008-07-30 16:20:10 +000086.. function:: fsum(iterable)
87
88 Return an accurate floating point sum of values in the iterable. Avoids
89 loss of precision by tracking multiple intermediate partial sums. The
90 algorithm's accuracy depends on IEEE-754 arithmetic guarantees and the
91 typical case where the rounding mode is half-even.
92
Mark Dickinson23957cb2008-07-30 20:23:15 +000093 .. note::
94
Mark Dickinsondadcd1f2008-08-01 09:13:07 +000095 The accuracy of fsum() may be impaired on builds that use
96 extended precision addition and then double-round the results.
Mark Dickinson23957cb2008-07-30 20:23:15 +000097
Mark Dickinsonfef6b132008-07-30 16:20:10 +000098 .. versionadded:: 2.6
99
100
Christian Heimese2ca4242008-01-03 20:23:15 +0000101.. function:: isinf(x)
102
103 Checks if the float *x* is positive or negative infinite.
104
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000105 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000106
107
108.. function:: isnan(x)
109
110 Checks if the float *x* is a NaN (not a number). NaNs are part of the
111 IEEE 754 standards. Operation like but not limited to ``inf * 0``,
112 ``inf / inf`` or any operation involving a NaN, e.g. ``nan * 1``, return
113 a NaN.
114
Andrew M. Kuchling54966a52008-01-04 18:25:05 +0000115 .. versionadded:: 2.6
Christian Heimese2ca4242008-01-03 20:23:15 +0000116
117
Georg Brandl8ec7f652007-08-15 14:28:01 +0000118.. function:: ldexp(x, i)
119
120 Return ``x * (2**i)``. This is essentially the inverse of function
121 :func:`frexp`.
122
123
124.. function:: modf(x)
125
Benjamin Peterson2d54e722008-12-20 02:48:02 +0000126 Return the fractional and integer parts of *x*. Both results carry the sign
127 of *x*, and both are floats. The integer part is returned as a real.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000128
Georg Brandl5da652e2008-06-18 09:28:22 +0000129
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000130.. function:: trunc(x)
131
132 Return the :class:`Real` value *x* truncated to an :class:`Integral` (usually
133 a long integer). Delegates to ``x.__trunc__()``.
134
135 .. versionadded:: 2.6
136
Georg Brandl5da652e2008-06-18 09:28:22 +0000137
Georg Brandl8ec7f652007-08-15 14:28:01 +0000138Note that :func:`frexp` and :func:`modf` have a different call/return pattern
139than their C equivalents: they take a single argument and return a pair of
140values, rather than returning their second return value through an 'output
141parameter' (there is no such thing in Python).
142
143For the :func:`ceil`, :func:`floor`, and :func:`modf` functions, note that *all*
144floating-point numbers of sufficiently large magnitude are exact integers.
145Python floats typically carry no more than 53 bits of precision (the same as the
146platform C double type), in which case any float *x* with ``abs(x) >= 2**52``
147necessarily has no fractional bits.
148
149Power and logarithmic functions:
150
Georg Brandl8ec7f652007-08-15 14:28:01 +0000151.. function:: exp(x)
152
153 Return ``e**x``.
154
155
156.. function:: log(x[, base])
157
158 Return the logarithm of *x* to the given *base*. If the *base* is not specified,
159 return the natural logarithm of *x* (that is, the logarithm to base *e*).
160
161 .. versionchanged:: 2.3
162 *base* argument added.
163
164
Christian Heimes6f341092008-04-18 23:13:07 +0000165.. function:: log1p(x)
166
167 Return the natural logarithm of *1+x* (base *e*). The
168 result is calculated in a way which is accurate for *x* near zero.
169
170 .. versionadded:: 2.6
171
172
Georg Brandl8ec7f652007-08-15 14:28:01 +0000173.. function:: log10(x)
174
175 Return the base-10 logarithm of *x*.
176
177
178.. function:: pow(x, y)
179
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000180 Return ``x`` raised to the power ``y``. Exceptional cases follow
181 Annex 'F' of the C99 standard as far as possible. In particular,
182 ``pow(1.0, x)`` and ``pow(x, 0.0)`` always return ``1.0``, even
183 when ``x`` is a zero or a NaN. If both ``x`` and ``y`` are finite,
184 ``x`` is negative, and ``y`` is not an integer then ``pow(x, y)``
185 is undefined, and raises :exc:`ValueError`.
Christian Heimes6f341092008-04-18 23:13:07 +0000186
187 .. versionchanged:: 2.6
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000188 The outcome of ``1**nan`` and ``nan**0`` was undefined.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000189
190
191.. function:: sqrt(x)
192
193 Return the square root of *x*.
194
Georg Brandl8ec7f652007-08-15 14:28:01 +0000195
Georg Brandl5da652e2008-06-18 09:28:22 +0000196Trigonometric functions:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000197
198.. function:: acos(x)
199
200 Return the arc cosine of *x*, in radians.
201
202
203.. function:: asin(x)
204
205 Return the arc sine of *x*, in radians.
206
207
208.. function:: atan(x)
209
210 Return the arc tangent of *x*, in radians.
211
212
213.. function:: atan2(y, x)
214
215 Return ``atan(y / x)``, in radians. The result is between ``-pi`` and ``pi``.
216 The vector in the plane from the origin to point ``(x, y)`` makes this angle
217 with the positive X axis. The point of :func:`atan2` is that the signs of both
218 inputs are known to it, so it can compute the correct quadrant for the angle.
219 For example, ``atan(1``) and ``atan2(1, 1)`` are both ``pi/4``, but ``atan2(-1,
220 -1)`` is ``-3*pi/4``.
221
222
223.. function:: cos(x)
224
225 Return the cosine of *x* radians.
226
227
228.. function:: hypot(x, y)
229
230 Return the Euclidean norm, ``sqrt(x*x + y*y)``. This is the length of the vector
231 from the origin to point ``(x, y)``.
232
233
234.. function:: sin(x)
235
236 Return the sine of *x* radians.
237
238
239.. function:: tan(x)
240
241 Return the tangent of *x* radians.
242
Georg Brandl8ec7f652007-08-15 14:28:01 +0000243
Georg Brandl5da652e2008-06-18 09:28:22 +0000244Angular conversion:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000245
246.. function:: degrees(x)
247
248 Converts angle *x* from radians to degrees.
249
250
251.. function:: radians(x)
252
253 Converts angle *x* from degrees to radians.
254
Georg Brandl8ec7f652007-08-15 14:28:01 +0000255
Georg Brandl5da652e2008-06-18 09:28:22 +0000256Hyperbolic functions:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000257
Mark Dickinson47a84aa2008-04-19 21:49:22 +0000258.. function:: acosh(x)
259
260 Return the inverse hyperbolic cosine of *x*.
261
262 .. versionadded:: 2.6
263
264
265.. function:: asinh(x)
266
267 Return the inverse hyperbolic sine of *x*.
268
269 .. versionadded:: 2.6
270
271
272.. function:: atanh(x)
273
274 Return the inverse hyperbolic tangent of *x*.
275
276 .. versionadded:: 2.6
277
278
Georg Brandl8ec7f652007-08-15 14:28:01 +0000279.. function:: cosh(x)
280
281 Return the hyperbolic cosine of *x*.
282
283
284.. function:: sinh(x)
285
286 Return the hyperbolic sine of *x*.
287
288
289.. function:: tanh(x)
290
291 Return the hyperbolic tangent of *x*.
292
Christian Heimes6f341092008-04-18 23:13:07 +0000293
Georg Brandl8ec7f652007-08-15 14:28:01 +0000294The module also defines two mathematical constants:
295
Georg Brandl8ec7f652007-08-15 14:28:01 +0000296.. data:: pi
297
298 The mathematical constant *pi*.
299
300
301.. data:: e
302
303 The mathematical constant *e*.
304
Christian Heimes6f341092008-04-18 23:13:07 +0000305
Georg Brandl8ec7f652007-08-15 14:28:01 +0000306.. note::
307
308 The :mod:`math` module consists mostly of thin wrappers around the platform C
309 math library functions. Behavior in exceptional cases is loosely specified
310 by the C standards, and Python inherits much of its math-function
311 error-reporting behavior from the platform C implementation. As a result,
312 the specific exceptions raised in error cases (and even whether some
313 arguments are considered to be exceptional at all) are not defined in any
314 useful cross-platform or cross-release way. For example, whether
315 ``math.log(0)`` returns ``-Inf`` or raises :exc:`ValueError` or
316 :exc:`OverflowError` isn't defined, and in cases where ``math.log(0)`` raises
317 :exc:`OverflowError`, ``math.log(0L)`` may raise :exc:`ValueError` instead.
318
Mark Dickinson48f7a4a2008-04-19 21:35:35 +0000319 All functions return a quiet *NaN* if at least one of the args is *NaN*.
Georg Brandl9481ba32008-08-30 22:00:28 +0000320 Signaling *NaN*\s raise an exception. The exception type still depends on the
Christian Heimes6f341092008-04-18 23:13:07 +0000321 platform and libm implementation. It's usually :exc:`ValueError` for *EDOM*
322 and :exc:`OverflowError` for errno *ERANGE*.
323
Georg Brandl173b7392008-05-12 17:43:13 +0000324 .. versionchanged:: 2.6
Christian Heimes6f341092008-04-18 23:13:07 +0000325 In earlier versions of Python the outcome of an operation with NaN as
326 input depended on platform and libm implementation.
327
Georg Brandl8ec7f652007-08-15 14:28:01 +0000328
329.. seealso::
330
331 Module :mod:`cmath`
332 Complex number versions of many of these functions.