blob: 221bef6d9cfa370cd4324fbc5bb01f932bddcfb7 [file] [log] [blame]
Guido van Rossumff03b1a1994-03-09 12:55:02 +00001# R A N D O M V A R I A B L E G E N E R A T O R S
2#
3# distributions on the real line:
4# ------------------------------
5# normal (Gaussian)
6# lognormal
7# negative exponential
8# gamma
Guido van Rossum95bfcda1994-03-09 14:21:05 +00009# beta
Guido van Rossumff03b1a1994-03-09 12:55:02 +000010#
11# distributions on the circle (angles 0 to 2pi)
12# ---------------------------------------------
13# circular uniform
14# von Mises
15
16# Translated from anonymously contributed C/C++ source.
17
18from whrandom import random, uniform, randint, choice # Also for export!
Guido van Rossum95bfcda1994-03-09 14:21:05 +000019from math import log, exp, pi, e, sqrt, acos, cos, sin
Guido van Rossumff03b1a1994-03-09 12:55:02 +000020
21# Housekeeping function to verify that magic constants have been
22# computed correctly
23
24def verify(name, expected):
25 computed = eval(name)
26 if abs(computed - expected) > 1e-7:
27 raise ValueError, \
28 'computed value for %s deviates too much (computed %g, expected %g)' % \
29 (name, computed, expected)
30
31# -------------------- normal distribution --------------------
32
Guido van Rossumcc32ac91994-03-15 16:10:24 +000033NV_MAGICCONST = 4*exp(-0.5)/sqrt(2.0)
Guido van Rossumff03b1a1994-03-09 12:55:02 +000034verify('NV_MAGICCONST', 1.71552776992141)
35def normalvariate(mu, sigma):
36 # mu = mean, sigma = standard deviation
37
38 # Uses Kinderman and Monahan method. Reference: Kinderman,
39 # A.J. and Monahan, J.F., "Computer generation of random
40 # variables using the ratio of uniform deviates", ACM Trans
41 # Math Software, 3, (1977), pp257-260.
42
43 while 1:
44 u1 = random()
45 u2 = random()
46 z = NV_MAGICCONST*(u1-0.5)/u2
Guido van Rossumcc32ac91994-03-15 16:10:24 +000047 zz = z*z/4.0
Guido van Rossumff03b1a1994-03-09 12:55:02 +000048 if zz <= -log(u2):
49 break
50 return mu+z*sigma
51
52# -------------------- lognormal distribution --------------------
53
54def lognormvariate(mu, sigma):
55 return exp(normalvariate(mu, sigma))
56
57# -------------------- circular uniform --------------------
58
59def cunifvariate(mean, arc):
60 # mean: mean angle (in radians between 0 and pi)
61 # arc: range of distribution (in radians between 0 and pi)
62
63 return (mean + arc * (random() - 0.5)) % pi
64
65# -------------------- exponential distribution --------------------
66
67def expovariate(lambd):
68 # lambd: rate lambd = 1/mean
69 # ('lambda' is a Python reserved word)
70
71 u = random()
72 while u <= 1e-7:
73 u = random()
74 return -log(u)/lambd
75
76# -------------------- von Mises distribution --------------------
77
Guido van Rossumcc32ac91994-03-15 16:10:24 +000078TWOPI = 2.0*pi
Guido van Rossumff03b1a1994-03-09 12:55:02 +000079verify('TWOPI', 6.28318530718)
80
81def vonmisesvariate(mu, kappa):
Guido van Rossum58102971998-04-06 14:12:13 +000082 # mu: mean angle (in radians between 0 and 2*pi)
Guido van Rossumff03b1a1994-03-09 12:55:02 +000083 # kappa: concentration parameter kappa (>= 0)
Guido van Rossumff03b1a1994-03-09 12:55:02 +000084 # if kappa = 0 generate uniform random angle
Guido van Rossum58102971998-04-06 14:12:13 +000085
86 # Based upon an algorithm published in: Fisher, N.I.,
87 # "Statistical Analysis of Circular Data", Cambridge
88 # University Press, 1993.
89
90 # Thanks to Magnus Kessler for a correction to the
91 # implementation of step 4.
92
Guido van Rossumff03b1a1994-03-09 12:55:02 +000093 if kappa <= 1e-6:
94 return TWOPI * random()
95
Guido van Rossumcc32ac91994-03-15 16:10:24 +000096 a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa)
97 b = (a - sqrt(2.0 * a))/(2.0 * kappa)
98 r = (1.0 + b * b)/(2.0 * b)
Guido van Rossumff03b1a1994-03-09 12:55:02 +000099
100 while 1:
101 u1 = random()
102
103 z = cos(pi * u1)
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000104 f = (1.0 + r * z)/(r + z)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000105 c = kappa * (r - f)
106
107 u2 = random()
108
109 if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
110 break
111
112 u3 = random()
113 if u3 > 0.5:
Guido van Rossum58102971998-04-06 14:12:13 +0000114 theta = (mu % TWOPI) + acos(f)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000115 else:
Guido van Rossum58102971998-04-06 14:12:13 +0000116 theta = (mu % TWOPI) - acos(f)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000117
Guido van Rossum58102971998-04-06 14:12:13 +0000118 return theta
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000119
120# -------------------- gamma distribution --------------------
121
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000122LOG4 = log(4.0)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000123verify('LOG4', 1.38629436111989)
124
125def gammavariate(alpha, beta):
126 # beta times standard gamma
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000127 ainv = sqrt(2.0 * alpha - 1.0)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000128 return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
129
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000130SG_MAGICCONST = 1.0 + log(4.5)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000131verify('SG_MAGICCONST', 2.50407739677627)
132
133def stdgamma(alpha, ainv, bbb, ccc):
134 # ainv = sqrt(2 * alpha - 1)
135 # bbb = alpha - log(4)
136 # ccc = alpha + ainv
137
138 if alpha <= 0.0:
139 raise ValueError, 'stdgamma: alpha must be > 0.0'
140
141 if alpha > 1.0:
142
143 # Uses R.C.H. Cheng, "The generation of Gamma
144 # variables with non-integral shape parameters",
145 # Applied Statistics, (1977), 26, No. 1, p71-74
146
147 while 1:
148 u1 = random()
149 u2 = random()
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000150 v = log(u1/(1.0-u1))/ainv
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000151 x = alpha*exp(v)
152 z = u1*u1*u2
153 r = bbb+ccc*v-x
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000154 if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z):
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000155 return x
156
157 elif alpha == 1.0:
158 # expovariate(1)
159 u = random()
160 while u <= 1e-7:
161 u = random()
162 return -log(u)
163
164 else: # alpha is between 0 and 1 (exclusive)
165
166 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
167
168 while 1:
169 u = random()
170 b = (e + alpha)/e
171 p = b*u
172 if p <= 1.0:
173 x = pow(p, 1.0/alpha)
174 else:
175 # p > 1
176 x = -log((b-p)/alpha)
177 u1 = random()
178 if not (((p <= 1.0) and (u1 > exp(-x))) or
179 ((p > 1) and (u1 > pow(x, alpha - 1.0)))):
180 break
181 return x
182
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000183
184# -------------------- Gauss (faster alternative) --------------------
185
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000186gauss_next = None
187def gauss(mu, sigma):
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000188
189 # When x and y are two variables from [0, 1), uniformly
190 # distributed, then
191 #
Guido van Rossum72c2e1b1998-02-19 21:17:42 +0000192 # cos(2*pi*x)*sqrt(-2*log(1-y))
193 # sin(2*pi*x)*sqrt(-2*log(1-y))
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000194 #
195 # are two *independent* variables with normal distribution
196 # (mu = 0, sigma = 1).
197 # (Lambert Meertens)
Guido van Rossum72c2e1b1998-02-19 21:17:42 +0000198 # (corrected version; bug discovered by Mike Miller, fixed by LM)
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000199
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000200 global gauss_next
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000201
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000202 if gauss_next != None:
203 z = gauss_next
204 gauss_next = None
205 else:
206 x2pi = random() * TWOPI
Guido van Rossum72c2e1b1998-02-19 21:17:42 +0000207 g2rad = sqrt(-2.0 * log(1.0 - random()))
208 z = cos(x2pi) * g2rad
209 gauss_next = sin(x2pi) * g2rad
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000210
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000211 return mu + z*sigma
212
213# -------------------- beta --------------------
214
215def betavariate(alpha, beta):
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000216
217 # Discrete Event Simulation in C, pp 87-88.
218
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000219 y = expovariate(alpha)
220 z = expovariate(1.0/beta)
221 return z/(y+z)
222
Guido van Rossum5bdea891997-12-09 19:43:18 +0000223# -------------------- Pareto --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000224
225def paretovariate(alpha):
226 # Jain, pg. 495
227
228 u = random()
229 return 1.0 / pow(u, 1.0/alpha)
230
Guido van Rossum5bdea891997-12-09 19:43:18 +0000231# -------------------- Weibull --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000232
233def weibullvariate(alpha, beta):
234 # Jain, pg. 499; bug fix courtesy Bill Arms
235
236 u = random()
237 return alpha * pow(-log(u), 1.0/beta)
238
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000239# -------------------- test program --------------------
240
Guido van Rossum2922c6d1994-05-06 14:28:19 +0000241def test(N = 200):
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000242 print 'TWOPI =', TWOPI
243 print 'LOG4 =', LOG4
244 print 'NV_MAGICCONST =', NV_MAGICCONST
245 print 'SG_MAGICCONST =', SG_MAGICCONST
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000246 test_generator(N, 'random()')
247 test_generator(N, 'normalvariate(0.0, 1.0)')
248 test_generator(N, 'lognormvariate(0.0, 1.0)')
249 test_generator(N, 'cunifvariate(0.0, 1.0)')
250 test_generator(N, 'expovariate(1.0)')
251 test_generator(N, 'vonmisesvariate(0.0, 1.0)')
252 test_generator(N, 'gammavariate(0.5, 1.0)')
253 test_generator(N, 'gammavariate(0.9, 1.0)')
254 test_generator(N, 'gammavariate(1.0, 1.0)')
255 test_generator(N, 'gammavariate(2.0, 1.0)')
256 test_generator(N, 'gammavariate(20.0, 1.0)')
257 test_generator(N, 'gammavariate(200.0, 1.0)')
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000258 test_generator(N, 'gauss(0.0, 1.0)')
259 test_generator(N, 'betavariate(3.0, 3.0)')
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000260 test_generator(N, 'paretovariate(1.0)')
261 test_generator(N, 'weibullvariate(1.0, 1.0)')
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000262
263def test_generator(n, funccall):
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000264 import time
265 print n, 'times', funccall
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000266 code = compile(funccall, funccall, 'eval')
267 sum = 0.0
268 sqsum = 0.0
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000269 smallest = 1e10
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000270 largest = -1e10
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000271 t0 = time.time()
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000272 for i in range(n):
273 x = eval(code)
274 sum = sum + x
275 sqsum = sqsum + x*x
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000276 smallest = min(x, smallest)
277 largest = max(x, largest)
278 t1 = time.time()
279 print round(t1-t0, 3), 'sec,',
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000280 avg = sum/n
281 stddev = sqrt(sqsum/n - avg*avg)
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000282 print 'avg %g, stddev %g, min %g, max %g' % \
283 (avg, stddev, smallest, largest)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000284
285if __name__ == '__main__':
286 test()