blob: b1e45215f5cbce0e93370d25cf94ac587003730e [file] [log] [blame]
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001/* Math module -- standard C math library functions, pi and e */
2
Christian Heimes6f341092008-04-18 23:13:07 +00003/* Here are some comments from Tim Peters, extracted from the
4 discussion attached to http://bugs.python.org/issue1640. They
5 describe the general aims of the math module with respect to
6 special values, IEEE-754 floating-point exceptions, and Python
7 exceptions.
8
9These are the "spirit of 754" rules:
10
111. If the mathematical result is a real number, but of magnitude too
12large to approximate by a machine float, overflow is signaled and the
13result is an infinity (with the appropriate sign).
14
152. If the mathematical result is a real number, but of magnitude too
16small to approximate by a machine float, underflow is signaled and the
17result is a zero (with the appropriate sign).
18
193. At a singularity (a value x such that the limit of f(y) as y
20approaches x exists and is an infinity), "divide by zero" is signaled
21and the result is an infinity (with the appropriate sign). This is
22complicated a little by that the left-side and right-side limits may
23not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
24from the positive or negative directions. In that specific case, the
25sign of the zero determines the result of 1/0.
26
274. At a point where a function has no defined result in the extended
28reals (i.e., the reals plus an infinity or two), invalid operation is
29signaled and a NaN is returned.
30
31And these are what Python has historically /tried/ to do (but not
32always successfully, as platform libm behavior varies a lot):
33
34For #1, raise OverflowError.
35
36For #2, return a zero (with the appropriate sign if that happens by
37accident ;-)).
38
39For #3 and #4, raise ValueError. It may have made sense to raise
40Python's ZeroDivisionError in #3, but historically that's only been
41raised for division by zero and mod by zero.
42
43*/
44
45/*
46 In general, on an IEEE-754 platform the aim is to follow the C99
47 standard, including Annex 'F', whenever possible. Where the
48 standard recommends raising the 'divide-by-zero' or 'invalid'
49 floating-point exceptions, Python should raise a ValueError. Where
50 the standard recommends raising 'overflow', Python should raise an
51 OverflowError. In all other circumstances a value should be
52 returned.
53 */
54
Barry Warsaw8b43b191996-12-09 22:32:36 +000055#include "Python.h"
Michael W. Hudson9ef852c2005-04-06 13:05:18 +000056#include "longintrepr.h" /* just for SHIFT */
Guido van Rossum85a5fbb1990-10-14 12:07:46 +000057
Neal Norwitz5f95a792008-01-25 08:04:16 +000058#ifdef _OSF_SOURCE
59/* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */
60extern double copysign(double, double);
61#endif
62
Mark Dickinsonb93fff02009-09-28 18:54:55 +000063/*
64 sin(pi*x), giving accurate results for all finite x (especially x
65 integral or close to an integer). This is here for use in the
66 reflection formula for the gamma function. It conforms to IEEE
67 754-2008 for finite arguments, but not for infinities or nans.
68*/
Tim Petersa40c7932001-09-05 22:36:56 +000069
Mark Dickinsonb93fff02009-09-28 18:54:55 +000070static const double pi = 3.141592653589793238462643383279502884197;
71
72static double
73sinpi(double x)
74{
75 double y, r;
76 int n;
77 /* this function should only ever be called for finite arguments */
78 assert(Py_IS_FINITE(x));
79 y = fmod(fabs(x), 2.0);
80 n = (int)round(2.0*y);
81 assert(0 <= n && n <= 4);
82 switch (n) {
83 case 0:
84 r = sin(pi*y);
85 break;
86 case 1:
87 r = cos(pi*(y-0.5));
88 break;
89 case 2:
90 /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
91 -0.0 instead of 0.0 when y == 1.0. */
92 r = sin(pi*(1.0-y));
93 break;
94 case 3:
95 r = -cos(pi*(y-1.5));
96 break;
97 case 4:
98 r = sin(pi*(y-2.0));
99 break;
100 default:
101 assert(0); /* should never get here */
102 r = -1.23e200; /* silence gcc warning */
Tim Peters1d120612000-10-12 06:10:25 +0000103 }
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000104 return copysign(1.0, x)*r;
105}
106
107/* Implementation of the real gamma function. In extensive but non-exhaustive
108 random tests, this function proved accurate to within <= 10 ulps across the
109 entire float domain. Note that accuracy may depend on the quality of the
110 system math functions, the pow function in particular. Special cases
111 follow C99 annex F. The parameters and method are tailored to platforms
112 whose double format is the IEEE 754 binary64 format.
113
114 Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
115 and g=6.024680040776729583740234375; these parameters are amongst those
116 used by the Boost library. Following Boost (again), we re-express the
117 Lanczos sum as a rational function, and compute it that way. The
118 coefficients below were computed independently using MPFR, and have been
119 double-checked against the coefficients in the Boost source code.
120
121 For x < 0.0 we use the reflection formula.
122
123 There's one minor tweak that deserves explanation: Lanczos' formula for
124 Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
125 values, x+g-0.5 can be represented exactly. However, in cases where it
126 can't be represented exactly the small error in x+g-0.5 can be magnified
127 significantly by the pow and exp calls, especially for large x. A cheap
128 correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
129 involved in the computation of x+g-0.5 (that is, e = computed value of
130 x+g-0.5 - exact value of x+g-0.5). Here's the proof:
131
132 Correction factor
133 -----------------
134 Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
135 double, and e is tiny. Then:
136
137 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
138 = pow(y, x-0.5)/exp(y) * C,
139
140 where the correction_factor C is given by
141
142 C = pow(1-e/y, x-0.5) * exp(e)
143
144 Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
145
146 C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
147
148 But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
149
150 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
151
152 Note that for accuracy, when computing r*C it's better to do
153
154 r + e*g/y*r;
155
156 than
157
158 r * (1 + e*g/y);
159
160 since the addition in the latter throws away most of the bits of
161 information in e*g/y.
162*/
163
164#define LANCZOS_N 13
165static const double lanczos_g = 6.024680040776729583740234375;
166static const double lanczos_g_minus_half = 5.524680040776729583740234375;
167static const double lanczos_num_coeffs[LANCZOS_N] = {
168 23531376880.410759688572007674451636754734846804940,
169 42919803642.649098768957899047001988850926355848959,
170 35711959237.355668049440185451547166705960488635843,
171 17921034426.037209699919755754458931112671403265390,
172 6039542586.3520280050642916443072979210699388420708,
173 1439720407.3117216736632230727949123939715485786772,
174 248874557.86205415651146038641322942321632125127801,
175 31426415.585400194380614231628318205362874684987640,
176 2876370.6289353724412254090516208496135991145378768,
177 186056.26539522349504029498971604569928220784236328,
178 8071.6720023658162106380029022722506138218516325024,
179 210.82427775157934587250973392071336271166969580291,
180 2.5066282746310002701649081771338373386264310793408
181};
182
183/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
184static const double lanczos_den_coeffs[LANCZOS_N] = {
185 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
186 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
187
188/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
189#define NGAMMA_INTEGRAL 23
190static const double gamma_integral[NGAMMA_INTEGRAL] = {
191 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
192 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
193 1307674368000.0, 20922789888000.0, 355687428096000.0,
194 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
195 51090942171709440000.0, 1124000727777607680000.0,
196};
197
198/* Lanczos' sum L_g(x), for positive x */
199
200static double
201lanczos_sum(double x)
202{
203 double num = 0.0, den = 0.0;
204 int i;
205 assert(x > 0.0);
206 /* evaluate the rational function lanczos_sum(x). For large
207 x, the obvious algorithm risks overflow, so we instead
208 rescale the denominator and numerator of the rational
209 function by x**(1-LANCZOS_N) and treat this as a
210 rational function in 1/x. This also reduces the error for
211 larger x values. The choice of cutoff point (5.0 below) is
212 somewhat arbitrary; in tests, smaller cutoff values than
213 this resulted in lower accuracy. */
214 if (x < 5.0) {
215 for (i = LANCZOS_N; --i >= 0; ) {
216 num = num * x + lanczos_num_coeffs[i];
217 den = den * x + lanczos_den_coeffs[i];
218 }
219 }
220 else {
221 for (i = 0; i < LANCZOS_N; i++) {
222 num = num / x + lanczos_num_coeffs[i];
223 den = den / x + lanczos_den_coeffs[i];
224 }
225 }
226 return num/den;
227}
228
229static double
230m_tgamma(double x)
231{
232 double absx, r, y, z, sqrtpow;
233
234 /* special cases */
235 if (!Py_IS_FINITE(x)) {
236 if (Py_IS_NAN(x) || x > 0.0)
237 return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
238 else {
239 errno = EDOM;
240 return Py_NAN; /* tgamma(-inf) = nan, invalid */
241 }
242 }
243 if (x == 0.0) {
244 errno = EDOM;
245 return 1.0/x; /* tgamma(+-0.0) = +-inf, divide-by-zero */
246 }
247
248 /* integer arguments */
249 if (x == floor(x)) {
250 if (x < 0.0) {
251 errno = EDOM; /* tgamma(n) = nan, invalid for */
252 return Py_NAN; /* negative integers n */
253 }
254 if (x <= NGAMMA_INTEGRAL)
255 return gamma_integral[(int)x - 1];
256 }
257 absx = fabs(x);
258
259 /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
260 if (absx < 1e-20) {
261 r = 1.0/x;
262 if (Py_IS_INFINITY(r))
263 errno = ERANGE;
264 return r;
265 }
266
267 /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
268 x > 200, and underflows to +-0.0 for x < -200, not a negative
269 integer. */
270 if (absx > 200.0) {
271 if (x < 0.0) {
272 return 0.0/sinpi(x);
273 }
274 else {
275 errno = ERANGE;
276 return Py_HUGE_VAL;
277 }
278 }
279
280 y = absx + lanczos_g_minus_half;
281 /* compute error in sum */
282 if (absx > lanczos_g_minus_half) {
283 /* note: the correction can be foiled by an optimizing
284 compiler that (incorrectly) thinks that an expression like
285 a + b - a - b can be optimized to 0.0. This shouldn't
286 happen in a standards-conforming compiler. */
287 double q = y - absx;
288 z = q - lanczos_g_minus_half;
289 }
290 else {
291 double q = y - lanczos_g_minus_half;
292 z = q - absx;
293 }
294 z = z * lanczos_g / y;
295 if (x < 0.0) {
296 r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
297 r -= z * r;
298 if (absx < 140.0) {
299 r /= pow(y, absx - 0.5);
300 }
301 else {
302 sqrtpow = pow(y, absx / 2.0 - 0.25);
303 r /= sqrtpow;
304 r /= sqrtpow;
305 }
306 }
307 else {
308 r = lanczos_sum(absx) / exp(y);
309 r += z * r;
310 if (absx < 140.0) {
311 r *= pow(y, absx - 0.5);
312 }
313 else {
314 sqrtpow = pow(y, absx / 2.0 - 0.25);
315 r *= sqrtpow;
316 r *= sqrtpow;
317 }
318 }
319 if (Py_IS_INFINITY(r))
320 errno = ERANGE;
321 return r;
Guido van Rossum8832b621991-12-16 15:44:24 +0000322}
323
Christian Heimes6f341092008-04-18 23:13:07 +0000324/*
Mark Dickinson9be87bc2009-12-11 17:29:33 +0000325 lgamma: natural log of the absolute value of the Gamma function.
326 For large arguments, Lanczos' formula works extremely well here.
327*/
328
329static double
330m_lgamma(double x)
331{
332 double r, absx;
333
334 /* special cases */
335 if (!Py_IS_FINITE(x)) {
336 if (Py_IS_NAN(x))
337 return x; /* lgamma(nan) = nan */
338 else
339 return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
340 }
341
342 /* integer arguments */
343 if (x == floor(x) && x <= 2.0) {
344 if (x <= 0.0) {
345 errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */
346 return Py_HUGE_VAL; /* integers n <= 0 */
347 }
348 else {
349 return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
350 }
351 }
352
353 absx = fabs(x);
354 /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
355 if (absx < 1e-20)
356 return -log(absx);
357
358 /* Lanczos' formula */
359 if (x > 0.0) {
360 /* we could save a fraction of a ulp in accuracy by having a
361 second set of numerator coefficients for lanczos_sum that
362 absorbed the exp(-lanczos_g) term, and throwing out the
363 lanczos_g subtraction below; it's probably not worth it. */
364 r = log(lanczos_sum(x)) - lanczos_g +
365 (x-0.5)*(log(x+lanczos_g-0.5)-1);
366 }
367 else {
368 r = log(pi) - log(fabs(sinpi(absx))) - log(absx) -
369 (log(lanczos_sum(absx)) - lanczos_g +
370 (absx-0.5)*(log(absx+lanczos_g-0.5)-1));
371 }
372 if (Py_IS_INFINITY(r))
373 errno = ERANGE;
374 return r;
375}
376
377
378/*
Mark Dickinson92483cd2008-04-20 21:39:04 +0000379 wrapper for atan2 that deals directly with special cases before
380 delegating to the platform libm for the remaining cases. This
381 is necessary to get consistent behaviour across platforms.
382 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
383 always follow C99.
384*/
385
386static double
387m_atan2(double y, double x)
388{
389 if (Py_IS_NAN(x) || Py_IS_NAN(y))
390 return Py_NAN;
391 if (Py_IS_INFINITY(y)) {
392 if (Py_IS_INFINITY(x)) {
393 if (copysign(1., x) == 1.)
394 /* atan2(+-inf, +inf) == +-pi/4 */
395 return copysign(0.25*Py_MATH_PI, y);
396 else
397 /* atan2(+-inf, -inf) == +-pi*3/4 */
398 return copysign(0.75*Py_MATH_PI, y);
399 }
400 /* atan2(+-inf, x) == +-pi/2 for finite x */
401 return copysign(0.5*Py_MATH_PI, y);
402 }
403 if (Py_IS_INFINITY(x) || y == 0.) {
404 if (copysign(1., x) == 1.)
405 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
406 return copysign(0., y);
407 else
408 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
409 return copysign(Py_MATH_PI, y);
410 }
411 return atan2(y, x);
412}
413
414/*
Mark Dickinson4c96fa52008-12-11 19:28:08 +0000415 Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
416 log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
417 special values directly, passing positive non-special values through to
418 the system log/log10.
419 */
420
421static double
422m_log(double x)
423{
424 if (Py_IS_FINITE(x)) {
425 if (x > 0.0)
426 return log(x);
427 errno = EDOM;
428 if (x == 0.0)
429 return -Py_HUGE_VAL; /* log(0) = -inf */
430 else
431 return Py_NAN; /* log(-ve) = nan */
432 }
433 else if (Py_IS_NAN(x))
434 return x; /* log(nan) = nan */
435 else if (x > 0.0)
436 return x; /* log(inf) = inf */
437 else {
438 errno = EDOM;
439 return Py_NAN; /* log(-inf) = nan */
440 }
441}
442
443static double
444m_log10(double x)
445{
446 if (Py_IS_FINITE(x)) {
447 if (x > 0.0)
448 return log10(x);
449 errno = EDOM;
450 if (x == 0.0)
451 return -Py_HUGE_VAL; /* log10(0) = -inf */
452 else
453 return Py_NAN; /* log10(-ve) = nan */
454 }
455 else if (Py_IS_NAN(x))
456 return x; /* log10(nan) = nan */
457 else if (x > 0.0)
458 return x; /* log10(inf) = inf */
459 else {
460 errno = EDOM;
461 return Py_NAN; /* log10(-inf) = nan */
462 }
463}
464
465
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000466/* Call is_error when errno != 0, and where x is the result libm
467 * returned. is_error will usually set up an exception and return
468 * true (1), but may return false (0) without setting up an exception.
469 */
470static int
471is_error(double x)
472{
473 int result = 1; /* presumption of guilt */
474 assert(errno); /* non-zero errno is a precondition for calling */
475 if (errno == EDOM)
476 PyErr_SetString(PyExc_ValueError, "math domain error");
477
478 else if (errno == ERANGE) {
479 /* ANSI C generally requires libm functions to set ERANGE
480 * on overflow, but also generally *allows* them to set
481 * ERANGE on underflow too. There's no consistency about
482 * the latter across platforms.
483 * Alas, C99 never requires that errno be set.
484 * Here we suppress the underflow errors (libm functions
485 * should return a zero on underflow, and +- HUGE_VAL on
486 * overflow, so testing the result for zero suffices to
487 * distinguish the cases).
488 *
489 * On some platforms (Ubuntu/ia64) it seems that errno can be
490 * set to ERANGE for subnormal results that do *not* underflow
491 * to zero. So to be safe, we'll ignore ERANGE whenever the
492 * function result is less than one in absolute value.
493 */
494 if (fabs(x) < 1.0)
495 result = 0;
496 else
497 PyErr_SetString(PyExc_OverflowError,
498 "math range error");
499 }
500 else
501 /* Unexpected math error */
502 PyErr_SetFromErrno(PyExc_ValueError);
503 return result;
504}
505
Mark Dickinson4c96fa52008-12-11 19:28:08 +0000506/*
Christian Heimes6f341092008-04-18 23:13:07 +0000507 math_1 is used to wrap a libm function f that takes a double
508 arguments and returns a double.
509
510 The error reporting follows these rules, which are designed to do
511 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
512 platforms.
513
514 - a NaN result from non-NaN inputs causes ValueError to be raised
515 - an infinite result from finite inputs causes OverflowError to be
516 raised if can_overflow is 1, or raises ValueError if can_overflow
517 is 0.
518 - if the result is finite and errno == EDOM then ValueError is
519 raised
520 - if the result is finite and nonzero and errno == ERANGE then
521 OverflowError is raised
522
523 The last rule is used to catch overflow on platforms which follow
524 C89 but for which HUGE_VAL is not an infinity.
525
526 For the majority of one-argument functions these rules are enough
527 to ensure that Python's functions behave as specified in 'Annex F'
528 of the C99 standard, with the 'invalid' and 'divide-by-zero'
529 floating-point exceptions mapping to Python's ValueError and the
530 'overflow' floating-point exception mapping to OverflowError.
531 math_1 only works for functions that don't have singularities *and*
532 the possibility of overflow; fortunately, that covers everything we
533 care about right now.
534*/
535
Barry Warsaw8b43b191996-12-09 22:32:36 +0000536static PyObject *
Christian Heimes6f341092008-04-18 23:13:07 +0000537math_1(PyObject *arg, double (*func) (double), int can_overflow)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000538{
Christian Heimes6f341092008-04-18 23:13:07 +0000539 double x, r;
540 x = PyFloat_AsDouble(arg);
Neal Norwitz45e230a2006-11-19 21:26:53 +0000541 if (x == -1.0 && PyErr_Occurred())
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000542 return NULL;
543 errno = 0;
Christian Heimes6f341092008-04-18 23:13:07 +0000544 PyFPE_START_PROTECT("in math_1", return 0);
545 r = (*func)(x);
546 PyFPE_END_PROTECT(r);
547 if (Py_IS_NAN(r)) {
548 if (!Py_IS_NAN(x))
549 errno = EDOM;
550 else
551 errno = 0;
552 }
553 else if (Py_IS_INFINITY(r)) {
554 if (Py_IS_FINITE(x))
555 errno = can_overflow ? ERANGE : EDOM;
556 else
557 errno = 0;
558 }
559 if (errno && is_error(r))
Tim Peters1d120612000-10-12 06:10:25 +0000560 return NULL;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000561 else
Christian Heimes6f341092008-04-18 23:13:07 +0000562 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000563}
564
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000565/* variant of math_1, to be used when the function being wrapped is known to
566 set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
567 errno = ERANGE for overflow). */
568
569static PyObject *
570math_1a(PyObject *arg, double (*func) (double))
571{
572 double x, r;
573 x = PyFloat_AsDouble(arg);
574 if (x == -1.0 && PyErr_Occurred())
575 return NULL;
576 errno = 0;
577 PyFPE_START_PROTECT("in math_1a", return 0);
578 r = (*func)(x);
579 PyFPE_END_PROTECT(r);
580 if (errno && is_error(r))
581 return NULL;
582 return PyFloat_FromDouble(r);
583}
584
Christian Heimes6f341092008-04-18 23:13:07 +0000585/*
586 math_2 is used to wrap a libm function f that takes two double
587 arguments and returns a double.
588
589 The error reporting follows these rules, which are designed to do
590 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
591 platforms.
592
593 - a NaN result from non-NaN inputs causes ValueError to be raised
594 - an infinite result from finite inputs causes OverflowError to be
595 raised.
596 - if the result is finite and errno == EDOM then ValueError is
597 raised
598 - if the result is finite and nonzero and errno == ERANGE then
599 OverflowError is raised
600
601 The last rule is used to catch overflow on platforms which follow
602 C89 but for which HUGE_VAL is not an infinity.
603
604 For most two-argument functions (copysign, fmod, hypot, atan2)
605 these rules are enough to ensure that Python's functions behave as
606 specified in 'Annex F' of the C99 standard, with the 'invalid' and
607 'divide-by-zero' floating-point exceptions mapping to Python's
608 ValueError and the 'overflow' floating-point exception mapping to
609 OverflowError.
610*/
611
Barry Warsaw8b43b191996-12-09 22:32:36 +0000612static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +0000613math_2(PyObject *args, double (*func) (double, double), char *funcname)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000614{
Neal Norwitz45e230a2006-11-19 21:26:53 +0000615 PyObject *ox, *oy;
Christian Heimes6f341092008-04-18 23:13:07 +0000616 double x, y, r;
Neal Norwitz45e230a2006-11-19 21:26:53 +0000617 if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
618 return NULL;
619 x = PyFloat_AsDouble(ox);
620 y = PyFloat_AsDouble(oy);
621 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000622 return NULL;
623 errno = 0;
Christian Heimes6f341092008-04-18 23:13:07 +0000624 PyFPE_START_PROTECT("in math_2", return 0);
625 r = (*func)(x, y);
626 PyFPE_END_PROTECT(r);
627 if (Py_IS_NAN(r)) {
628 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
629 errno = EDOM;
630 else
631 errno = 0;
632 }
633 else if (Py_IS_INFINITY(r)) {
634 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
635 errno = ERANGE;
636 else
637 errno = 0;
638 }
639 if (errno && is_error(r))
Tim Peters1d120612000-10-12 06:10:25 +0000640 return NULL;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000641 else
Christian Heimes6f341092008-04-18 23:13:07 +0000642 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000643}
644
Christian Heimes6f341092008-04-18 23:13:07 +0000645#define FUNC1(funcname, func, can_overflow, docstring) \
Fred Drake40c48682000-07-03 18:11:56 +0000646 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
Christian Heimes6f341092008-04-18 23:13:07 +0000647 return math_1(args, func, can_overflow); \
Guido van Rossumc6e22901998-12-04 19:26:43 +0000648 }\
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000649 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000650
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000651#define FUNC1A(funcname, func, docstring) \
652 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
653 return math_1a(args, func); \
654 }\
655 PyDoc_STRVAR(math_##funcname##_doc, docstring);
656
Fred Drake40c48682000-07-03 18:11:56 +0000657#define FUNC2(funcname, func, docstring) \
658 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
Neal Norwitz45e230a2006-11-19 21:26:53 +0000659 return math_2(args, func, #funcname); \
Guido van Rossumc6e22901998-12-04 19:26:43 +0000660 }\
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +0000661 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000662
Christian Heimes6f341092008-04-18 23:13:07 +0000663FUNC1(acos, acos, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000664 "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000665FUNC1(acosh, acosh, 0,
666 "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
667FUNC1(asin, asin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000668 "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000669FUNC1(asinh, asinh, 0,
670 "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
671FUNC1(atan, atan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000672 "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
Mark Dickinson92483cd2008-04-20 21:39:04 +0000673FUNC2(atan2, m_atan2,
Tim Petersfe71f812001-08-07 22:10:00 +0000674 "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
675 "Unlike atan(y/x), the signs of both x and y are considered.")
Christian Heimes6f341092008-04-18 23:13:07 +0000676FUNC1(atanh, atanh, 0,
677 "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
678FUNC1(ceil, ceil, 0,
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +0000679 "ceil(x)\n\nReturn the ceiling of x as a float.\n"
680 "This is the smallest integral value >= x.")
Christian Heimeseebb79c2008-01-03 22:32:26 +0000681FUNC2(copysign, copysign,
Georg Brandla8f8bed22009-10-29 20:54:03 +0000682 "copysign(x, y)\n\nReturn x with the sign of y.")
Christian Heimes6f341092008-04-18 23:13:07 +0000683FUNC1(cos, cos, 0,
684 "cos(x)\n\nReturn the cosine of x (measured in radians).")
685FUNC1(cosh, cosh, 1,
686 "cosh(x)\n\nReturn the hyperbolic cosine of x.")
687FUNC1(exp, exp, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000688 "exp(x)\n\nReturn e raised to the power of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000689FUNC1(fabs, fabs, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000690 "fabs(x)\n\nReturn the absolute value of the float x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000691FUNC1(floor, floor, 0,
Jeffrey Yasskin9871d8f2008-01-05 08:47:13 +0000692 "floor(x)\n\nReturn the floor of x as a float.\n"
693 "This is the largest integral value <= x.")
Mark Dickinsonb93fff02009-09-28 18:54:55 +0000694FUNC1A(gamma, m_tgamma,
695 "gamma(x)\n\nGamma function at x.")
Mark Dickinson9be87bc2009-12-11 17:29:33 +0000696FUNC1A(lgamma, m_lgamma,
697 "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000698FUNC1(log1p, log1p, 1,
Georg Brandla8f8bed22009-10-29 20:54:03 +0000699 "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n"
700 "The result is computed in a way which is accurate for x near zero.")
Christian Heimes6f341092008-04-18 23:13:07 +0000701FUNC1(sin, sin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000702 "sin(x)\n\nReturn the sine of x (measured in radians).")
Christian Heimes6f341092008-04-18 23:13:07 +0000703FUNC1(sinh, sinh, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000704 "sinh(x)\n\nReturn the hyperbolic sine of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000705FUNC1(sqrt, sqrt, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000706 "sqrt(x)\n\nReturn the square root of x.")
Christian Heimes6f341092008-04-18 23:13:07 +0000707FUNC1(tan, tan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000708 "tan(x)\n\nReturn the tangent of x (measured in radians).")
Christian Heimes6f341092008-04-18 23:13:07 +0000709FUNC1(tanh, tanh, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000710 "tanh(x)\n\nReturn the hyperbolic tangent of x.")
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000711
Mark Dickinson99dfe922008-05-23 01:35:30 +0000712/* Precision summation function as msum() by Raymond Hettinger in
713 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
714 enhanced with the exact partials sum and roundoff from Mark
715 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000716 See those links for more details, proofs and other references.
Mark Dickinson99dfe922008-05-23 01:35:30 +0000717
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000718 Note 1: IEEE 754R floating point semantics are assumed,
719 but the current implementation does not re-establish special
720 value semantics across iterations (i.e. handling -Inf + Inf).
Mark Dickinson99dfe922008-05-23 01:35:30 +0000721
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000722 Note 2: No provision is made for intermediate overflow handling;
Raymond Hettinger2a9179a2008-05-29 08:38:23 +0000723 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000724 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
725 overflow of the first partial sum.
Mark Dickinson99dfe922008-05-23 01:35:30 +0000726
Andrew M. Kuchling5f198be2008-06-20 02:11:42 +0000727 Note 3: The intermediate values lo, yr, and hi are declared volatile so
Mark Dickinson2fcd8c92008-06-20 15:26:19 +0000728 aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
Raymond Hettingerd6234142008-06-09 11:24:47 +0000729 Also, the volatile declaration forces the values to be stored in memory as
730 regular doubles instead of extended long precision (80-bit) values. This
Andrew M. Kuchling5f198be2008-06-20 02:11:42 +0000731 prevents double rounding because any addition or subtraction of two doubles
Raymond Hettingerd6234142008-06-09 11:24:47 +0000732 can be resolved exactly into double-sized hi and lo values. As long as the
733 hi value gets forced into a double before yr and lo are computed, the extra
734 bits in downstream extended precision operations (x87 for example) will be
735 exactly zero and therefore can be losslessly stored back into a double,
736 thereby preventing double rounding.
Mark Dickinson99dfe922008-05-23 01:35:30 +0000737
Raymond Hettingerd6234142008-06-09 11:24:47 +0000738 Note 4: A similar implementation is in Modules/cmathmodule.c.
739 Be sure to update both when making changes.
Mark Dickinson99dfe922008-05-23 01:35:30 +0000740
Mark Dickinsonff3fdce2008-07-30 16:25:16 +0000741 Note 5: The signature of math.fsum() differs from __builtin__.sum()
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000742 because the start argument doesn't make sense in the context of
743 accurate summation. Since the partials table is collapsed before
744 returning a result, sum(seq2, start=sum(seq1)) may not equal the
745 accurate result returned by sum(itertools.chain(seq1, seq2)).
Mark Dickinson99dfe922008-05-23 01:35:30 +0000746*/
747
748#define NUM_PARTIALS 32 /* initial partials array size, on stack */
749
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000750/* Extend the partials array p[] by doubling its size. */
751static int /* non-zero on error */
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000752_fsum_realloc(double **p_ptr, Py_ssize_t n,
Raymond Hettingerd6234142008-06-09 11:24:47 +0000753 double *ps, Py_ssize_t *m_ptr)
Mark Dickinson99dfe922008-05-23 01:35:30 +0000754{
755 void *v = NULL;
756 Py_ssize_t m = *m_ptr;
757
Raymond Hettingerd6234142008-06-09 11:24:47 +0000758 m += m; /* double */
759 if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
760 double *p = *p_ptr;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000761 if (p == ps) {
Raymond Hettingerd6234142008-06-09 11:24:47 +0000762 v = PyMem_Malloc(sizeof(double) * m);
Mark Dickinson99dfe922008-05-23 01:35:30 +0000763 if (v != NULL)
Raymond Hettingerd6234142008-06-09 11:24:47 +0000764 memcpy(v, ps, sizeof(double) * n);
Mark Dickinson99dfe922008-05-23 01:35:30 +0000765 }
766 else
Raymond Hettingerd6234142008-06-09 11:24:47 +0000767 v = PyMem_Realloc(p, sizeof(double) * m);
Mark Dickinson99dfe922008-05-23 01:35:30 +0000768 }
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000769 if (v == NULL) { /* size overflow or no memory */
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000770 PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
Mark Dickinson99dfe922008-05-23 01:35:30 +0000771 return 1;
772 }
Raymond Hettingerd6234142008-06-09 11:24:47 +0000773 *p_ptr = (double*) v;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000774 *m_ptr = m;
775 return 0;
776}
777
778/* Full precision summation of a sequence of floats.
779
780 def msum(iterable):
781 partials = [] # sorted, non-overlapping partial sums
782 for x in iterable:
783 i = 0
784 for y in partials:
785 if abs(x) < abs(y):
786 x, y = y, x
787 hi = x + y
788 lo = y - (hi - x)
789 if lo:
790 partials[i] = lo
791 i += 1
792 x = hi
793 partials[i:] = [x]
794 return sum_exact(partials)
795
796 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
797 are exactly equal to x+y. The inner loop applies hi/lo summation to each
798 partial so that the list of partial sums remains exact.
799
800 Sum_exact() adds the partial sums exactly and correctly rounds the final
801 result (using the round-half-to-even rule). The items in partials remain
802 non-zero, non-special, non-overlapping and strictly increasing in
803 magnitude, but possibly not all having the same sign.
804
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000805 Depends on IEEE 754 arithmetic guarantees and half-even rounding.
806*/
807
Mark Dickinson99dfe922008-05-23 01:35:30 +0000808static PyObject*
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000809math_fsum(PyObject *self, PyObject *seq)
Mark Dickinson99dfe922008-05-23 01:35:30 +0000810{
811 PyObject *item, *iter, *sum = NULL;
812 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
Raymond Hettingerd6234142008-06-09 11:24:47 +0000813 double x, y, t, ps[NUM_PARTIALS], *p = ps;
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000814 double xsave, special_sum = 0.0, inf_sum = 0.0;
Raymond Hettingerd6234142008-06-09 11:24:47 +0000815 volatile double hi, yr, lo;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000816
817 iter = PyObject_GetIter(seq);
818 if (iter == NULL)
819 return NULL;
820
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000821 PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
Mark Dickinson99dfe922008-05-23 01:35:30 +0000822
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000823 for(;;) { /* for x in iterable */
Mark Dickinson99dfe922008-05-23 01:35:30 +0000824 assert(0 <= n && n <= m);
825 assert((m == NUM_PARTIALS && p == ps) ||
826 (m > NUM_PARTIALS && p != NULL));
827
828 item = PyIter_Next(iter);
829 if (item == NULL) {
830 if (PyErr_Occurred())
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000831 goto _fsum_error;
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000832 break;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000833 }
Raymond Hettingerd6234142008-06-09 11:24:47 +0000834 x = PyFloat_AsDouble(item);
Mark Dickinson99dfe922008-05-23 01:35:30 +0000835 Py_DECREF(item);
836 if (PyErr_Occurred())
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000837 goto _fsum_error;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000838
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000839 xsave = x;
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000840 for (i = j = 0; j < n; j++) { /* for y in partials */
Mark Dickinson99dfe922008-05-23 01:35:30 +0000841 y = p[j];
Raymond Hettingeref712d62008-05-30 18:20:50 +0000842 if (fabs(x) < fabs(y)) {
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000843 t = x; x = y; y = t;
Raymond Hettingeref712d62008-05-30 18:20:50 +0000844 }
Mark Dickinson99dfe922008-05-23 01:35:30 +0000845 hi = x + y;
Raymond Hettingeref712d62008-05-30 18:20:50 +0000846 yr = hi - x;
847 lo = y - yr;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000848 if (lo != 0.0)
849 p[i++] = lo;
850 x = hi;
851 }
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000852
853 n = i; /* ps[i:] = [x] */
Mark Dickinson99dfe922008-05-23 01:35:30 +0000854 if (x != 0.0) {
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000855 if (! Py_IS_FINITE(x)) {
856 /* a nonfinite x could arise either as
857 a result of intermediate overflow, or
858 as a result of a nan or inf in the
859 summands */
860 if (Py_IS_FINITE(xsave)) {
861 PyErr_SetString(PyExc_OverflowError,
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000862 "intermediate overflow in fsum");
863 goto _fsum_error;
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000864 }
865 if (Py_IS_INFINITY(xsave))
866 inf_sum += xsave;
867 special_sum += xsave;
868 /* reset partials */
Mark Dickinson99dfe922008-05-23 01:35:30 +0000869 n = 0;
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000870 }
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000871 else if (n >= m && _fsum_realloc(&p, n, ps, &m))
872 goto _fsum_error;
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000873 else
874 p[n++] = x;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000875 }
876 }
Mark Dickinson99dfe922008-05-23 01:35:30 +0000877
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000878 if (special_sum != 0.0) {
879 if (Py_IS_NAN(inf_sum))
880 PyErr_SetString(PyExc_ValueError,
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000881 "-inf + inf in fsum");
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000882 else
883 sum = PyFloat_FromDouble(special_sum);
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000884 goto _fsum_error;
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000885 }
886
Raymond Hettingeref712d62008-05-30 18:20:50 +0000887 hi = 0.0;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000888 if (n > 0) {
889 hi = p[--n];
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000890 /* sum_exact(ps, hi) from the top, stop when the sum becomes
891 inexact. */
892 while (n > 0) {
893 x = hi;
894 y = p[--n];
895 assert(fabs(y) < fabs(x));
896 hi = x + y;
897 yr = hi - x;
898 lo = y - yr;
899 if (lo != 0.0)
900 break;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000901 }
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000902 /* Make half-even rounding work across multiple partials.
903 Needed so that sum([1e-16, 1, 1e16]) will round-up the last
904 digit to two instead of down to zero (the 1e-16 makes the 1
905 slightly closer to two). With a potential 1 ULP rounding
Mark Dickinsonff3fdce2008-07-30 16:25:16 +0000906 error fixed-up, math.fsum() can guarantee commutativity. */
Mark Dickinsonabe0aee2008-07-30 12:01:41 +0000907 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
908 (lo > 0.0 && p[n-1] > 0.0))) {
909 y = lo * 2.0;
910 x = hi + y;
911 yr = x - hi;
912 if (y == yr)
913 hi = x;
Mark Dickinson99dfe922008-05-23 01:35:30 +0000914 }
915 }
Raymond Hettingerd6234142008-06-09 11:24:47 +0000916 sum = PyFloat_FromDouble(hi);
Mark Dickinson99dfe922008-05-23 01:35:30 +0000917
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000918_fsum_error:
Mark Dickinson99dfe922008-05-23 01:35:30 +0000919 PyFPE_END_PROTECT(hi)
Mark Dickinson99dfe922008-05-23 01:35:30 +0000920 Py_DECREF(iter);
921 if (p != ps)
922 PyMem_Free(p);
923 return sum;
924}
925
926#undef NUM_PARTIALS
927
Mark Dickinsonfef6b132008-07-30 16:20:10 +0000928PyDoc_STRVAR(math_fsum_doc,
Georg Brandl40777e62009-10-29 20:38:32 +0000929"fsum(iterable)\n\n\
Raymond Hettinger778d5cc2008-05-23 04:32:43 +0000930Return an accurate floating point sum of values in the iterable.\n\
931Assumes IEEE-754 floating point arithmetic.");
Mark Dickinson99dfe922008-05-23 01:35:30 +0000932
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +0000933static PyObject *
934math_factorial(PyObject *self, PyObject *arg)
935{
936 long i, x;
937 PyObject *result, *iobj, *newresult;
938
939 if (PyFloat_Check(arg)) {
940 double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
941 if (dx != floor(dx)) {
942 PyErr_SetString(PyExc_ValueError,
943 "factorial() only accepts integral values");
944 return NULL;
945 }
946 }
947
948 x = PyInt_AsLong(arg);
949 if (x == -1 && PyErr_Occurred())
950 return NULL;
951 if (x < 0) {
952 PyErr_SetString(PyExc_ValueError,
953 "factorial() not defined for negative values");
954 return NULL;
955 }
956
957 result = (PyObject *)PyInt_FromLong(1);
958 if (result == NULL)
959 return NULL;
960 for (i=1 ; i<=x ; i++) {
961 iobj = (PyObject *)PyInt_FromLong(i);
962 if (iobj == NULL)
963 goto error;
964 newresult = PyNumber_Multiply(result, iobj);
965 Py_DECREF(iobj);
966 if (newresult == NULL)
967 goto error;
968 Py_DECREF(result);
969 result = newresult;
970 }
971 return result;
972
973error:
974 Py_DECREF(result);
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +0000975 return NULL;
976}
977
Benjamin Petersonfed67fd2008-12-20 02:57:19 +0000978PyDoc_STRVAR(math_factorial_doc,
979"factorial(x) -> Integral\n"
980"\n"
981"Find x!. Raise a ValueError if x is negative or non-integral.");
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +0000982
Barry Warsaw8b43b191996-12-09 22:32:36 +0000983static PyObject *
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000984math_trunc(PyObject *self, PyObject *number)
985{
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000986 return PyObject_CallMethod(number, "__trunc__", NULL);
987}
988
989PyDoc_STRVAR(math_trunc_doc,
990"trunc(x:Real) -> Integral\n"
991"\n"
Raymond Hettingerfe424f72008-02-02 05:24:44 +0000992"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
Jeffrey Yasskinca2b69f2008-02-01 06:22:46 +0000993
994static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +0000995math_frexp(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +0000996{
Guido van Rossumd18ad581991-10-24 14:57:21 +0000997 int i;
Neal Norwitz45e230a2006-11-19 21:26:53 +0000998 double x = PyFloat_AsDouble(arg);
999 if (x == -1.0 && PyErr_Occurred())
Guido van Rossumd18ad581991-10-24 14:57:21 +00001000 return NULL;
Christian Heimes6f341092008-04-18 23:13:07 +00001001 /* deal with special cases directly, to sidestep platform
1002 differences */
1003 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
1004 i = 0;
1005 }
1006 else {
1007 PyFPE_START_PROTECT("in math_frexp", return 0);
1008 x = frexp(x, &i);
1009 PyFPE_END_PROTECT(x);
1010 }
1011 return Py_BuildValue("(di)", x, i);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001012}
1013
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001014PyDoc_STRVAR(math_frexp_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001015"frexp(x)\n"
1016"\n"
1017"Return the mantissa and exponent of x, as pair (m, e).\n"
1018"m is a float and e is an int, such that x = m * 2.**e.\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001019"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001020
Barry Warsaw8b43b191996-12-09 22:32:36 +00001021static PyObject *
Fred Drake40c48682000-07-03 18:11:56 +00001022math_ldexp(PyObject *self, PyObject *args)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001023{
Christian Heimes6f341092008-04-18 23:13:07 +00001024 double x, r;
Mark Dickinsonf8476c12008-05-09 17:54:23 +00001025 PyObject *oexp;
1026 long exp;
1027 if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
Guido van Rossumd18ad581991-10-24 14:57:21 +00001028 return NULL;
Mark Dickinsonf8476c12008-05-09 17:54:23 +00001029
1030 if (PyLong_Check(oexp)) {
1031 /* on overflow, replace exponent with either LONG_MAX
1032 or LONG_MIN, depending on the sign. */
1033 exp = PyLong_AsLong(oexp);
1034 if (exp == -1 && PyErr_Occurred()) {
1035 if (PyErr_ExceptionMatches(PyExc_OverflowError)) {
1036 if (Py_SIZE(oexp) < 0) {
1037 exp = LONG_MIN;
1038 }
1039 else {
1040 exp = LONG_MAX;
1041 }
1042 PyErr_Clear();
1043 }
1044 else {
1045 /* propagate any unexpected exception */
1046 return NULL;
1047 }
1048 }
1049 }
1050 else if (PyInt_Check(oexp)) {
1051 exp = PyInt_AS_LONG(oexp);
1052 }
1053 else {
1054 PyErr_SetString(PyExc_TypeError,
1055 "Expected an int or long as second argument "
1056 "to ldexp.");
1057 return NULL;
1058 }
1059
1060 if (x == 0. || !Py_IS_FINITE(x)) {
1061 /* NaNs, zeros and infinities are returned unchanged */
1062 r = x;
Christian Heimes6f341092008-04-18 23:13:07 +00001063 errno = 0;
Mark Dickinsonf8476c12008-05-09 17:54:23 +00001064 } else if (exp > INT_MAX) {
1065 /* overflow */
1066 r = copysign(Py_HUGE_VAL, x);
1067 errno = ERANGE;
1068 } else if (exp < INT_MIN) {
1069 /* underflow to +-0 */
1070 r = copysign(0., x);
1071 errno = 0;
1072 } else {
1073 errno = 0;
1074 PyFPE_START_PROTECT("in math_ldexp", return 0);
1075 r = ldexp(x, (int)exp);
1076 PyFPE_END_PROTECT(r);
1077 if (Py_IS_INFINITY(r))
1078 errno = ERANGE;
1079 }
1080
Christian Heimes6f341092008-04-18 23:13:07 +00001081 if (errno && is_error(r))
Tim Peters1d120612000-10-12 06:10:25 +00001082 return NULL;
Mark Dickinsonf8476c12008-05-09 17:54:23 +00001083 return PyFloat_FromDouble(r);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001084}
1085
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001086PyDoc_STRVAR(math_ldexp_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001087"ldexp(x, i)\n\n\
1088Return x * (2**i).");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001089
Barry Warsaw8b43b191996-12-09 22:32:36 +00001090static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +00001091math_modf(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001092{
Neal Norwitz45e230a2006-11-19 21:26:53 +00001093 double y, x = PyFloat_AsDouble(arg);
1094 if (x == -1.0 && PyErr_Occurred())
Guido van Rossumd18ad581991-10-24 14:57:21 +00001095 return NULL;
Mark Dickinsonb2f70902008-04-20 01:39:24 +00001096 /* some platforms don't do the right thing for NaNs and
1097 infinities, so we take care of special cases directly. */
1098 if (!Py_IS_FINITE(x)) {
1099 if (Py_IS_INFINITY(x))
1100 return Py_BuildValue("(dd)", copysign(0., x), x);
1101 else if (Py_IS_NAN(x))
1102 return Py_BuildValue("(dd)", x, x);
1103 }
1104
Guido van Rossumd18ad581991-10-24 14:57:21 +00001105 errno = 0;
Christian Heimes6f341092008-04-18 23:13:07 +00001106 PyFPE_START_PROTECT("in math_modf", return 0);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001107 x = modf(x, &y);
Christian Heimes6f341092008-04-18 23:13:07 +00001108 PyFPE_END_PROTECT(x);
1109 return Py_BuildValue("(dd)", x, y);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001110}
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001111
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001112PyDoc_STRVAR(math_modf_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001113"modf(x)\n"
1114"\n"
1115"Return the fractional and integer parts of x. Both results carry the sign\n"
Benjamin Peterson9de72982008-12-20 22:49:24 +00001116"of x and are floats.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001117
Tim Peters78526162001-09-05 00:53:45 +00001118/* A decent logarithm is easy to compute even for huge longs, but libm can't
1119 do that by itself -- loghelper can. func is log or log10, and name is
1120 "log" or "log10". Note that overflow isn't possible: a long can contain
1121 no more than INT_MAX * SHIFT bits, so has value certainly less than
1122 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
1123 small enough to fit in an IEEE single. log and log10 are even smaller.
1124*/
1125
1126static PyObject*
Neal Norwitz45e230a2006-11-19 21:26:53 +00001127loghelper(PyObject* arg, double (*func)(double), char *funcname)
Tim Peters78526162001-09-05 00:53:45 +00001128{
Tim Peters78526162001-09-05 00:53:45 +00001129 /* If it is long, do it ourselves. */
1130 if (PyLong_Check(arg)) {
1131 double x;
1132 int e;
1133 x = _PyLong_AsScaledDouble(arg, &e);
1134 if (x <= 0.0) {
1135 PyErr_SetString(PyExc_ValueError,
1136 "math domain error");
1137 return NULL;
1138 }
Christian Heimes543cabc2008-01-25 14:54:23 +00001139 /* Value is ~= x * 2**(e*PyLong_SHIFT), so the log ~=
1140 log(x) + log(2) * e * PyLong_SHIFT.
1141 CAUTION: e*PyLong_SHIFT may overflow using int arithmetic,
Tim Peters78526162001-09-05 00:53:45 +00001142 so force use of double. */
Christian Heimes543cabc2008-01-25 14:54:23 +00001143 x = func(x) + (e * (double)PyLong_SHIFT) * func(2.0);
Tim Peters78526162001-09-05 00:53:45 +00001144 return PyFloat_FromDouble(x);
1145 }
1146
1147 /* Else let libm handle it by itself. */
Christian Heimes6f341092008-04-18 23:13:07 +00001148 return math_1(arg, func, 0);
Tim Peters78526162001-09-05 00:53:45 +00001149}
1150
1151static PyObject *
1152math_log(PyObject *self, PyObject *args)
1153{
Raymond Hettinger866964c2002-12-14 19:51:34 +00001154 PyObject *arg;
1155 PyObject *base = NULL;
1156 PyObject *num, *den;
1157 PyObject *ans;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001158
Raymond Hettingerea3fdf42002-12-29 16:33:45 +00001159 if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
Raymond Hettinger866964c2002-12-14 19:51:34 +00001160 return NULL;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001161
Mark Dickinson4c96fa52008-12-11 19:28:08 +00001162 num = loghelper(arg, m_log, "log");
Neal Norwitz45e230a2006-11-19 21:26:53 +00001163 if (num == NULL || base == NULL)
1164 return num;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001165
Mark Dickinson4c96fa52008-12-11 19:28:08 +00001166 den = loghelper(base, m_log, "log");
Raymond Hettinger866964c2002-12-14 19:51:34 +00001167 if (den == NULL) {
1168 Py_DECREF(num);
1169 return NULL;
1170 }
1171
1172 ans = PyNumber_Divide(num, den);
1173 Py_DECREF(num);
1174 Py_DECREF(den);
1175 return ans;
Tim Peters78526162001-09-05 00:53:45 +00001176}
1177
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001178PyDoc_STRVAR(math_log_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001179"log(x[, base])\n\n\
1180Return the logarithm of x to the given base.\n\
Raymond Hettinger866964c2002-12-14 19:51:34 +00001181If the base not specified, returns the natural logarithm (base e) of x.");
Tim Peters78526162001-09-05 00:53:45 +00001182
1183static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +00001184math_log10(PyObject *self, PyObject *arg)
Tim Peters78526162001-09-05 00:53:45 +00001185{
Mark Dickinson4c96fa52008-12-11 19:28:08 +00001186 return loghelper(arg, m_log10, "log10");
Tim Peters78526162001-09-05 00:53:45 +00001187}
1188
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001189PyDoc_STRVAR(math_log10_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001190"log10(x)\n\nReturn the base 10 logarithm of x.");
Tim Peters78526162001-09-05 00:53:45 +00001191
Christian Heimes6f341092008-04-18 23:13:07 +00001192static PyObject *
1193math_fmod(PyObject *self, PyObject *args)
1194{
1195 PyObject *ox, *oy;
1196 double r, x, y;
1197 if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
1198 return NULL;
1199 x = PyFloat_AsDouble(ox);
1200 y = PyFloat_AsDouble(oy);
1201 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1202 return NULL;
1203 /* fmod(x, +/-Inf) returns x for finite x. */
1204 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
1205 return PyFloat_FromDouble(x);
1206 errno = 0;
1207 PyFPE_START_PROTECT("in math_fmod", return 0);
1208 r = fmod(x, y);
1209 PyFPE_END_PROTECT(r);
1210 if (Py_IS_NAN(r)) {
1211 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1212 errno = EDOM;
1213 else
1214 errno = 0;
1215 }
1216 if (errno && is_error(r))
1217 return NULL;
1218 else
1219 return PyFloat_FromDouble(r);
1220}
1221
1222PyDoc_STRVAR(math_fmod_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001223"fmod(x, y)\n\nReturn fmod(x, y), according to platform C."
Christian Heimes6f341092008-04-18 23:13:07 +00001224" x % y may differ.");
1225
1226static PyObject *
1227math_hypot(PyObject *self, PyObject *args)
1228{
1229 PyObject *ox, *oy;
1230 double r, x, y;
1231 if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
1232 return NULL;
1233 x = PyFloat_AsDouble(ox);
1234 y = PyFloat_AsDouble(oy);
1235 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1236 return NULL;
1237 /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
1238 if (Py_IS_INFINITY(x))
1239 return PyFloat_FromDouble(fabs(x));
1240 if (Py_IS_INFINITY(y))
1241 return PyFloat_FromDouble(fabs(y));
1242 errno = 0;
1243 PyFPE_START_PROTECT("in math_hypot", return 0);
1244 r = hypot(x, y);
1245 PyFPE_END_PROTECT(r);
1246 if (Py_IS_NAN(r)) {
1247 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1248 errno = EDOM;
1249 else
1250 errno = 0;
1251 }
1252 else if (Py_IS_INFINITY(r)) {
1253 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
1254 errno = ERANGE;
1255 else
1256 errno = 0;
1257 }
1258 if (errno && is_error(r))
1259 return NULL;
1260 else
1261 return PyFloat_FromDouble(r);
1262}
1263
1264PyDoc_STRVAR(math_hypot_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001265"hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
Christian Heimes6f341092008-04-18 23:13:07 +00001266
1267/* pow can't use math_2, but needs its own wrapper: the problem is
1268 that an infinite result can arise either as a result of overflow
1269 (in which case OverflowError should be raised) or as a result of
1270 e.g. 0.**-5. (for which ValueError needs to be raised.)
1271*/
1272
1273static PyObject *
1274math_pow(PyObject *self, PyObject *args)
1275{
1276 PyObject *ox, *oy;
1277 double r, x, y;
Mark Dickinsoncec3f132008-04-20 04:13:13 +00001278 int odd_y;
Christian Heimes6f341092008-04-18 23:13:07 +00001279
1280 if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
1281 return NULL;
1282 x = PyFloat_AsDouble(ox);
1283 y = PyFloat_AsDouble(oy);
1284 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1285 return NULL;
Mark Dickinsona1293eb2008-04-19 19:41:52 +00001286
Mark Dickinsoncec3f132008-04-20 04:13:13 +00001287 /* deal directly with IEEE specials, to cope with problems on various
1288 platforms whose semantics don't exactly match C99 */
Mark Dickinson0da94c82008-04-21 01:55:50 +00001289 r = 0.; /* silence compiler warning */
Mark Dickinsoncec3f132008-04-20 04:13:13 +00001290 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
1291 errno = 0;
1292 if (Py_IS_NAN(x))
1293 r = y == 0. ? 1. : x; /* NaN**0 = 1 */
1294 else if (Py_IS_NAN(y))
1295 r = x == 1. ? 1. : y; /* 1**NaN = 1 */
1296 else if (Py_IS_INFINITY(x)) {
1297 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
1298 if (y > 0.)
1299 r = odd_y ? x : fabs(x);
1300 else if (y == 0.)
1301 r = 1.;
1302 else /* y < 0. */
1303 r = odd_y ? copysign(0., x) : 0.;
1304 }
1305 else if (Py_IS_INFINITY(y)) {
1306 if (fabs(x) == 1.0)
1307 r = 1.;
1308 else if (y > 0. && fabs(x) > 1.0)
1309 r = y;
1310 else if (y < 0. && fabs(x) < 1.0) {
1311 r = -y; /* result is +inf */
1312 if (x == 0.) /* 0**-inf: divide-by-zero */
1313 errno = EDOM;
1314 }
1315 else
1316 r = 0.;
1317 }
Mark Dickinsone941d972008-04-19 18:51:48 +00001318 }
Mark Dickinsoncec3f132008-04-20 04:13:13 +00001319 else {
1320 /* let libm handle finite**finite */
1321 errno = 0;
1322 PyFPE_START_PROTECT("in math_pow", return 0);
1323 r = pow(x, y);
1324 PyFPE_END_PROTECT(r);
1325 /* a NaN result should arise only from (-ve)**(finite
1326 non-integer); in this case we want to raise ValueError. */
1327 if (!Py_IS_FINITE(r)) {
1328 if (Py_IS_NAN(r)) {
1329 errno = EDOM;
1330 }
1331 /*
1332 an infinite result here arises either from:
1333 (A) (+/-0.)**negative (-> divide-by-zero)
1334 (B) overflow of x**y with x and y finite
1335 */
1336 else if (Py_IS_INFINITY(r)) {
1337 if (x == 0.)
1338 errno = EDOM;
1339 else
1340 errno = ERANGE;
1341 }
1342 }
Christian Heimes6f341092008-04-18 23:13:07 +00001343 }
1344
1345 if (errno && is_error(r))
1346 return NULL;
1347 else
1348 return PyFloat_FromDouble(r);
1349}
1350
1351PyDoc_STRVAR(math_pow_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001352"pow(x, y)\n\nReturn x**y (x to the power of y).");
Christian Heimes6f341092008-04-18 23:13:07 +00001353
Christian Heimese2ca4242008-01-03 20:23:15 +00001354static const double degToRad = Py_MATH_PI / 180.0;
1355static const double radToDeg = 180.0 / Py_MATH_PI;
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001356
1357static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +00001358math_degrees(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001359{
Neal Norwitz45e230a2006-11-19 21:26:53 +00001360 double x = PyFloat_AsDouble(arg);
1361 if (x == -1.0 && PyErr_Occurred())
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001362 return NULL;
Christian Heimese2ca4242008-01-03 20:23:15 +00001363 return PyFloat_FromDouble(x * radToDeg);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001364}
1365
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001366PyDoc_STRVAR(math_degrees_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001367"degrees(x)\n\n\
1368Convert angle x from radians to degrees.");
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001369
1370static PyObject *
Neal Norwitz45e230a2006-11-19 21:26:53 +00001371math_radians(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001372{
Neal Norwitz45e230a2006-11-19 21:26:53 +00001373 double x = PyFloat_AsDouble(arg);
1374 if (x == -1.0 && PyErr_Occurred())
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001375 return NULL;
1376 return PyFloat_FromDouble(x * degToRad);
1377}
1378
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001379PyDoc_STRVAR(math_radians_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001380"radians(x)\n\n\
1381Convert angle x from degrees to radians.");
Tim Peters78526162001-09-05 00:53:45 +00001382
Christian Heimese2ca4242008-01-03 20:23:15 +00001383static PyObject *
1384math_isnan(PyObject *self, PyObject *arg)
1385{
1386 double x = PyFloat_AsDouble(arg);
1387 if (x == -1.0 && PyErr_Occurred())
1388 return NULL;
1389 return PyBool_FromLong((long)Py_IS_NAN(x));
1390}
1391
1392PyDoc_STRVAR(math_isnan_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001393"isnan(x) -> bool\n\n\
1394Check if float x is not a number (NaN).");
Christian Heimese2ca4242008-01-03 20:23:15 +00001395
1396static PyObject *
1397math_isinf(PyObject *self, PyObject *arg)
1398{
1399 double x = PyFloat_AsDouble(arg);
1400 if (x == -1.0 && PyErr_Occurred())
1401 return NULL;
1402 return PyBool_FromLong((long)Py_IS_INFINITY(x));
1403}
1404
1405PyDoc_STRVAR(math_isinf_doc,
Georg Brandla8f8bed22009-10-29 20:54:03 +00001406"isinf(x) -> bool\n\n\
1407Check if float x is infinite (positive or negative).");
Christian Heimese2ca4242008-01-03 20:23:15 +00001408
Barry Warsaw8b43b191996-12-09 22:32:36 +00001409static PyMethodDef math_methods[] = {
Neal Norwitz45e230a2006-11-19 21:26:53 +00001410 {"acos", math_acos, METH_O, math_acos_doc},
Christian Heimes6f341092008-04-18 23:13:07 +00001411 {"acosh", math_acosh, METH_O, math_acosh_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001412 {"asin", math_asin, METH_O, math_asin_doc},
Christian Heimes6f341092008-04-18 23:13:07 +00001413 {"asinh", math_asinh, METH_O, math_asinh_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001414 {"atan", math_atan, METH_O, math_atan_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001415 {"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
Christian Heimes6f341092008-04-18 23:13:07 +00001416 {"atanh", math_atanh, METH_O, math_atanh_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001417 {"ceil", math_ceil, METH_O, math_ceil_doc},
Christian Heimeseebb79c2008-01-03 22:32:26 +00001418 {"copysign", math_copysign, METH_VARARGS, math_copysign_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001419 {"cos", math_cos, METH_O, math_cos_doc},
1420 {"cosh", math_cosh, METH_O, math_cosh_doc},
1421 {"degrees", math_degrees, METH_O, math_degrees_doc},
1422 {"exp", math_exp, METH_O, math_exp_doc},
1423 {"fabs", math_fabs, METH_O, math_fabs_doc},
Raymond Hettingerecbdd2e2008-06-09 06:54:45 +00001424 {"factorial", math_factorial, METH_O, math_factorial_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001425 {"floor", math_floor, METH_O, math_floor_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001426 {"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001427 {"frexp", math_frexp, METH_O, math_frexp_doc},
Mark Dickinsonfef6b132008-07-30 16:20:10 +00001428 {"fsum", math_fsum, METH_O, math_fsum_doc},
Mark Dickinsonb93fff02009-09-28 18:54:55 +00001429 {"gamma", math_gamma, METH_O, math_gamma_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001430 {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
Christian Heimese2ca4242008-01-03 20:23:15 +00001431 {"isinf", math_isinf, METH_O, math_isinf_doc},
1432 {"isnan", math_isnan, METH_O, math_isnan_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001433 {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
Mark Dickinson9be87bc2009-12-11 17:29:33 +00001434 {"lgamma", math_lgamma, METH_O, math_lgamma_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001435 {"log", math_log, METH_VARARGS, math_log_doc},
Christian Heimes6f341092008-04-18 23:13:07 +00001436 {"log1p", math_log1p, METH_O, math_log1p_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001437 {"log10", math_log10, METH_O, math_log10_doc},
1438 {"modf", math_modf, METH_O, math_modf_doc},
Fred Drake40c48682000-07-03 18:11:56 +00001439 {"pow", math_pow, METH_VARARGS, math_pow_doc},
Neal Norwitz45e230a2006-11-19 21:26:53 +00001440 {"radians", math_radians, METH_O, math_radians_doc},
1441 {"sin", math_sin, METH_O, math_sin_doc},
1442 {"sinh", math_sinh, METH_O, math_sinh_doc},
1443 {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
1444 {"tan", math_tan, METH_O, math_tan_doc},
1445 {"tanh", math_tanh, METH_O, math_tanh_doc},
Mark Dickinsonfef6b132008-07-30 16:20:10 +00001446 {"trunc", math_trunc, METH_O, math_trunc_doc},
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001447 {NULL, NULL} /* sentinel */
1448};
1449
Guido van Rossumc6e22901998-12-04 19:26:43 +00001450
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001451PyDoc_STRVAR(module_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001452"This module is always available. It provides access to the\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001453"mathematical functions defined by the C standard.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001454
Mark Hammondfe51c6d2002-08-02 02:27:13 +00001455PyMODINIT_FUNC
Thomas Woutersf3f33dc2000-07-21 06:00:07 +00001456initmath(void)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001457{
Christian Heimes6f341092008-04-18 23:13:07 +00001458 PyObject *m;
Tim Petersfe71f812001-08-07 22:10:00 +00001459
Guido van Rossumc6e22901998-12-04 19:26:43 +00001460 m = Py_InitModule3("math", math_methods, module_doc);
Neal Norwitz1ac754f2006-01-19 06:09:39 +00001461 if (m == NULL)
1462 goto finally;
Barry Warsawfc93f751996-12-17 00:47:03 +00001463
Christian Heimes6f341092008-04-18 23:13:07 +00001464 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
1465 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
Barry Warsawfc93f751996-12-17 00:47:03 +00001466
Christian Heimes6f341092008-04-18 23:13:07 +00001467 finally:
Barry Warsaw9bfd2bf2000-09-01 09:01:32 +00001468 return;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001469}