blob: 4af9af17717c79e0d3d8f7c941f6dce606e110b9 [file] [log] [blame]
Raymond Hettingerc46cb2a2004-04-19 19:06:21 +00001# -*- coding: Latin-1 -*-
2
3"""Heap queue algorithm (a.k.a. priority queue).
4
5Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
6all k, counting elements from 0. For the sake of comparison,
7non-existing elements are considered to be infinite. The interesting
8property of a heap is that a[0] is always its smallest element.
9
10Usage:
11
12heap = [] # creates an empty heap
13heappush(heap, item) # pushes a new item on the heap
14item = heappop(heap) # pops the smallest item from the heap
15item = heap[0] # smallest item on the heap without popping it
16heapify(x) # transforms list into a heap, in-place, in linear time
17item = heapreplace(heap, item) # pops and returns smallest item, and adds
18 # new item; the heap size is unchanged
19
20Our API differs from textbook heap algorithms as follows:
21
22- We use 0-based indexing. This makes the relationship between the
23 index for a node and the indexes for its children slightly less
24 obvious, but is more suitable since Python uses 0-based indexing.
25
26- Our heappop() method returns the smallest item, not the largest.
27
28These two make it possible to view the heap as a regular Python list
29without surprises: heap[0] is the smallest item, and heap.sort()
30maintains the heap invariant!
31"""
32
Raymond Hettinger33ecffb2004-06-10 05:03:17 +000033# Original code by Kevin O'Connor, augmented by Tim Peters and Raymond Hettinger
Raymond Hettingerc46cb2a2004-04-19 19:06:21 +000034
35__about__ = """Heap queues
36
37[explanation by François Pinard]
38
39Heaps are arrays for which a[k] <= a[2*k+1] and a[k] <= a[2*k+2] for
40all k, counting elements from 0. For the sake of comparison,
41non-existing elements are considered to be infinite. The interesting
42property of a heap is that a[0] is always its smallest element.
43
44The strange invariant above is meant to be an efficient memory
45representation for a tournament. The numbers below are `k', not a[k]:
46
47 0
48
49 1 2
50
51 3 4 5 6
52
53 7 8 9 10 11 12 13 14
54
55 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
56
57
58In the tree above, each cell `k' is topping `2*k+1' and `2*k+2'. In
59an usual binary tournament we see in sports, each cell is the winner
60over the two cells it tops, and we can trace the winner down the tree
61to see all opponents s/he had. However, in many computer applications
62of such tournaments, we do not need to trace the history of a winner.
63To be more memory efficient, when a winner is promoted, we try to
64replace it by something else at a lower level, and the rule becomes
65that a cell and the two cells it tops contain three different items,
66but the top cell "wins" over the two topped cells.
67
68If this heap invariant is protected at all time, index 0 is clearly
69the overall winner. The simplest algorithmic way to remove it and
70find the "next" winner is to move some loser (let's say cell 30 in the
71diagram above) into the 0 position, and then percolate this new 0 down
72the tree, exchanging values, until the invariant is re-established.
73This is clearly logarithmic on the total number of items in the tree.
74By iterating over all items, you get an O(n ln n) sort.
75
76A nice feature of this sort is that you can efficiently insert new
77items while the sort is going on, provided that the inserted items are
78not "better" than the last 0'th element you extracted. This is
79especially useful in simulation contexts, where the tree holds all
80incoming events, and the "win" condition means the smallest scheduled
81time. When an event schedule other events for execution, they are
82scheduled into the future, so they can easily go into the heap. So, a
83heap is a good structure for implementing schedulers (this is what I
84used for my MIDI sequencer :-).
85
86Various structures for implementing schedulers have been extensively
87studied, and heaps are good for this, as they are reasonably speedy,
88the speed is almost constant, and the worst case is not much different
89than the average case. However, there are other representations which
90are more efficient overall, yet the worst cases might be terrible.
91
92Heaps are also very useful in big disk sorts. You most probably all
93know that a big sort implies producing "runs" (which are pre-sorted
94sequences, which size is usually related to the amount of CPU memory),
95followed by a merging passes for these runs, which merging is often
96very cleverly organised[1]. It is very important that the initial
97sort produces the longest runs possible. Tournaments are a good way
98to that. If, using all the memory available to hold a tournament, you
99replace and percolate items that happen to fit the current run, you'll
100produce runs which are twice the size of the memory for random input,
101and much better for input fuzzily ordered.
102
103Moreover, if you output the 0'th item on disk and get an input which
104may not fit in the current tournament (because the value "wins" over
105the last output value), it cannot fit in the heap, so the size of the
106heap decreases. The freed memory could be cleverly reused immediately
107for progressively building a second heap, which grows at exactly the
108same rate the first heap is melting. When the first heap completely
109vanishes, you switch heaps and start a new run. Clever and quite
110effective!
111
112In a word, heaps are useful memory structures to know. I use them in
113a few applications, and I think it is good to keep a `heap' module
114around. :-)
115
116--------------------
117[1] The disk balancing algorithms which are current, nowadays, are
118more annoying than clever, and this is a consequence of the seeking
119capabilities of the disks. On devices which cannot seek, like big
120tape drives, the story was quite different, and one had to be very
121clever to ensure (far in advance) that each tape movement will be the
122most effective possible (that is, will best participate at
123"progressing" the merge). Some tapes were even able to read
124backwards, and this was also used to avoid the rewinding time.
125Believe me, real good tape sorts were quite spectacular to watch!
126From all times, sorting has always been a Great Art! :-)
127"""
128
Raymond Hettinger00166c52007-02-19 04:08:43 +0000129__all__ = ['heappush', 'heappop', 'heapify', 'heapreplace', 'merge',
Raymond Hettinger53bdf092008-03-13 19:03:51 +0000130 'nlargest', 'nsmallest', 'heappushpop']
Raymond Hettinger33ecffb2004-06-10 05:03:17 +0000131
Raymond Hettinger4901a1f2004-12-02 08:59:14 +0000132from itertools import islice, repeat, count, imap, izip, tee
Raymond Hettinger769a40a2007-01-04 17:53:34 +0000133from operator import itemgetter, neg
Raymond Hettingerb25aa362004-06-12 08:33:36 +0000134import bisect
Raymond Hettingerc46cb2a2004-04-19 19:06:21 +0000135
136def heappush(heap, item):
137 """Push item onto heap, maintaining the heap invariant."""
138 heap.append(item)
139 _siftdown(heap, 0, len(heap)-1)
140
141def heappop(heap):
142 """Pop the smallest item off the heap, maintaining the heap invariant."""
143 lastelt = heap.pop() # raises appropriate IndexError if heap is empty
144 if heap:
145 returnitem = heap[0]
146 heap[0] = lastelt
147 _siftup(heap, 0)
148 else:
149 returnitem = lastelt
150 return returnitem
151
152def heapreplace(heap, item):
153 """Pop and return the current smallest value, and add the new item.
154
155 This is more efficient than heappop() followed by heappush(), and can be
156 more appropriate when using a fixed-size heap. Note that the value
157 returned may be larger than item! That constrains reasonable uses of
Raymond Hettinger8158e842004-09-06 07:04:09 +0000158 this routine unless written as part of a conditional replacement:
Raymond Hettinger28224f82004-06-20 09:07:53 +0000159
Raymond Hettinger8158e842004-09-06 07:04:09 +0000160 if item > heap[0]:
161 item = heapreplace(heap, item)
Raymond Hettingerc46cb2a2004-04-19 19:06:21 +0000162 """
163 returnitem = heap[0] # raises appropriate IndexError if heap is empty
164 heap[0] = item
165 _siftup(heap, 0)
166 return returnitem
167
Raymond Hettinger53bdf092008-03-13 19:03:51 +0000168def heappushpop(heap, item):
169 """Fast version of a heappush followed by a heappop."""
170 if heap and item > heap[0]:
171 item, heap[0] = heap[0], item
172 _siftup(heap, 0)
173 return item
174
Raymond Hettingerc46cb2a2004-04-19 19:06:21 +0000175def heapify(x):
176 """Transform list into a heap, in-place, in O(len(heap)) time."""
177 n = len(x)
178 # Transform bottom-up. The largest index there's any point to looking at
179 # is the largest with a child index in-range, so must have 2*i + 1 < n,
180 # or i < (n-1)/2. If n is even = 2*j, this is (2*j-1)/2 = j-1/2 so
181 # j-1 is the largest, which is n//2 - 1. If n is odd = 2*j+1, this is
182 # (2*j+1-1)/2 = j so j-1 is the largest, and that's again n//2-1.
183 for i in reversed(xrange(n//2)):
184 _siftup(x, i)
185
Raymond Hettingere1defa42004-11-29 05:54:48 +0000186def nlargest(n, iterable):
Raymond Hettinger33ecffb2004-06-10 05:03:17 +0000187 """Find the n largest elements in a dataset.
188
189 Equivalent to: sorted(iterable, reverse=True)[:n]
190 """
191 it = iter(iterable)
192 result = list(islice(it, n))
193 if not result:
194 return result
195 heapify(result)
Raymond Hettinger83aa6a32008-03-13 19:33:34 +0000196 _heappushpop = heappushpop
Raymond Hettinger33ecffb2004-06-10 05:03:17 +0000197 for elem in it:
Raymond Hettinger83aa6a32008-03-13 19:33:34 +0000198 heappushpop(result, elem)
Raymond Hettinger33ecffb2004-06-10 05:03:17 +0000199 result.sort(reverse=True)
200 return result
201
Raymond Hettingere1defa42004-11-29 05:54:48 +0000202def nsmallest(n, iterable):
Raymond Hettinger33ecffb2004-06-10 05:03:17 +0000203 """Find the n smallest elements in a dataset.
204
205 Equivalent to: sorted(iterable)[:n]
206 """
Raymond Hettingerb25aa362004-06-12 08:33:36 +0000207 if hasattr(iterable, '__len__') and n * 10 <= len(iterable):
208 # For smaller values of n, the bisect method is faster than a minheap.
209 # It is also memory efficient, consuming only n elements of space.
210 it = iter(iterable)
211 result = sorted(islice(it, 0, n))
212 if not result:
213 return result
214 insort = bisect.insort
215 pop = result.pop
216 los = result[-1] # los --> Largest of the nsmallest
217 for elem in it:
218 if los <= elem:
219 continue
220 insort(result, elem)
221 pop()
222 los = result[-1]
223 return result
224 # An alternative approach manifests the whole iterable in memory but
225 # saves comparisons by heapifying all at once. Also, saves time
226 # over bisect.insort() which has O(n) data movement time for every
227 # insertion. Finding the n smallest of an m length iterable requires
228 # O(m) + O(n log m) comparisons.
Raymond Hettinger33ecffb2004-06-10 05:03:17 +0000229 h = list(iterable)
230 heapify(h)
231 return map(heappop, repeat(h, min(n, len(h))))
232
Raymond Hettingerc46cb2a2004-04-19 19:06:21 +0000233# 'heap' is a heap at all indices >= startpos, except possibly for pos. pos
234# is the index of a leaf with a possibly out-of-order value. Restore the
235# heap invariant.
236def _siftdown(heap, startpos, pos):
237 newitem = heap[pos]
238 # Follow the path to the root, moving parents down until finding a place
239 # newitem fits.
240 while pos > startpos:
241 parentpos = (pos - 1) >> 1
242 parent = heap[parentpos]
243 if parent <= newitem:
244 break
245 heap[pos] = parent
246 pos = parentpos
247 heap[pos] = newitem
248
249# The child indices of heap index pos are already heaps, and we want to make
250# a heap at index pos too. We do this by bubbling the smaller child of
251# pos up (and so on with that child's children, etc) until hitting a leaf,
252# then using _siftdown to move the oddball originally at index pos into place.
253#
254# We *could* break out of the loop as soon as we find a pos where newitem <=
255# both its children, but turns out that's not a good idea, and despite that
256# many books write the algorithm that way. During a heap pop, the last array
257# element is sifted in, and that tends to be large, so that comparing it
258# against values starting from the root usually doesn't pay (= usually doesn't
259# get us out of the loop early). See Knuth, Volume 3, where this is
260# explained and quantified in an exercise.
261#
262# Cutting the # of comparisons is important, since these routines have no
263# way to extract "the priority" from an array element, so that intelligence
264# is likely to be hiding in custom __cmp__ methods, or in array elements
265# storing (priority, record) tuples. Comparisons are thus potentially
266# expensive.
267#
268# On random arrays of length 1000, making this change cut the number of
269# comparisons made by heapify() a little, and those made by exhaustive
270# heappop() a lot, in accord with theory. Here are typical results from 3
271# runs (3 just to demonstrate how small the variance is):
272#
273# Compares needed by heapify Compares needed by 1000 heappops
274# -------------------------- --------------------------------
275# 1837 cut to 1663 14996 cut to 8680
276# 1855 cut to 1659 14966 cut to 8678
277# 1847 cut to 1660 15024 cut to 8703
278#
279# Building the heap by using heappush() 1000 times instead required
280# 2198, 2148, and 2219 compares: heapify() is more efficient, when
281# you can use it.
282#
283# The total compares needed by list.sort() on the same lists were 8627,
284# 8627, and 8632 (this should be compared to the sum of heapify() and
285# heappop() compares): list.sort() is (unsurprisingly!) more efficient
286# for sorting.
287
288def _siftup(heap, pos):
289 endpos = len(heap)
290 startpos = pos
291 newitem = heap[pos]
292 # Bubble up the smaller child until hitting a leaf.
293 childpos = 2*pos + 1 # leftmost child position
294 while childpos < endpos:
295 # Set childpos to index of smaller child.
296 rightpos = childpos + 1
297 if rightpos < endpos and heap[rightpos] <= heap[childpos]:
298 childpos = rightpos
299 # Move the smaller child up.
300 heap[pos] = heap[childpos]
301 pos = childpos
302 childpos = 2*pos + 1
303 # The leaf at pos is empty now. Put newitem there, and bubble it up
304 # to its final resting place (by sifting its parents down).
305 heap[pos] = newitem
306 _siftdown(heap, startpos, pos)
307
308# If available, use C implementation
309try:
Raymond Hettinger53bdf092008-03-13 19:03:51 +0000310 from _heapq import heappush, heappop, heapify, heapreplace, nlargest, nsmallest, heappushpop
Raymond Hettingerc46cb2a2004-04-19 19:06:21 +0000311except ImportError:
312 pass
313
Raymond Hettinger00166c52007-02-19 04:08:43 +0000314def merge(*iterables):
315 '''Merge multiple sorted inputs into a single sorted output.
316
Raymond Hettinger3035d232007-02-28 18:27:41 +0000317 Similar to sorted(itertools.chain(*iterables)) but returns a generator,
Raymond Hettingercbac8ce2007-02-19 18:15:04 +0000318 does not pull the data into memory all at once, and assumes that each of
319 the input streams is already sorted (smallest to largest).
Raymond Hettinger00166c52007-02-19 04:08:43 +0000320
321 >>> list(merge([1,3,5,7], [0,2,4,8], [5,10,15,20], [], [25]))
322 [0, 1, 2, 3, 4, 5, 5, 7, 8, 10, 15, 20, 25]
323
324 '''
Raymond Hettinger45eb0f12007-02-19 06:59:32 +0000325 _heappop, _heapreplace, _StopIteration = heappop, heapreplace, StopIteration
Raymond Hettinger00166c52007-02-19 04:08:43 +0000326
327 h = []
328 h_append = h.append
Raymond Hettinger54da9812007-02-19 05:28:28 +0000329 for itnum, it in enumerate(map(iter, iterables)):
Raymond Hettinger00166c52007-02-19 04:08:43 +0000330 try:
331 next = it.next
Raymond Hettinger54da9812007-02-19 05:28:28 +0000332 h_append([next(), itnum, next])
Raymond Hettinger00166c52007-02-19 04:08:43 +0000333 except _StopIteration:
334 pass
335 heapify(h)
336
337 while 1:
338 try:
339 while 1:
Raymond Hettinger54da9812007-02-19 05:28:28 +0000340 v, itnum, next = s = h[0] # raises IndexError when h is empty
Raymond Hettinger00166c52007-02-19 04:08:43 +0000341 yield v
Raymond Hettinger54da9812007-02-19 05:28:28 +0000342 s[0] = next() # raises StopIteration when exhausted
Raymond Hettinger45eb0f12007-02-19 06:59:32 +0000343 _heapreplace(h, s) # restore heap condition
Raymond Hettinger00166c52007-02-19 04:08:43 +0000344 except _StopIteration:
Raymond Hettinger54da9812007-02-19 05:28:28 +0000345 _heappop(h) # remove empty iterator
Raymond Hettinger00166c52007-02-19 04:08:43 +0000346 except IndexError:
347 return
348
Raymond Hettinger4901a1f2004-12-02 08:59:14 +0000349# Extend the implementations of nsmallest and nlargest to use a key= argument
350_nsmallest = nsmallest
351def nsmallest(n, iterable, key=None):
352 """Find the n smallest elements in a dataset.
353
354 Equivalent to: sorted(iterable, key=key)[:n]
355 """
Raymond Hettinger4901a1f2004-12-02 08:59:14 +0000356 in1, in2 = tee(iterable)
357 it = izip(imap(key, in1), count(), in2) # decorate
358 result = _nsmallest(n, it)
359 return map(itemgetter(2), result) # undecorate
360
361_nlargest = nlargest
362def nlargest(n, iterable, key=None):
363 """Find the n largest elements in a dataset.
364
365 Equivalent to: sorted(iterable, key=key, reverse=True)[:n]
366 """
Raymond Hettinger4901a1f2004-12-02 08:59:14 +0000367 in1, in2 = tee(iterable)
Raymond Hettinger769a40a2007-01-04 17:53:34 +0000368 it = izip(imap(key, in1), imap(neg, count()), in2) # decorate
Raymond Hettinger4901a1f2004-12-02 08:59:14 +0000369 result = _nlargest(n, it)
370 return map(itemgetter(2), result) # undecorate
371
Raymond Hettingerc46cb2a2004-04-19 19:06:21 +0000372if __name__ == "__main__":
373 # Simple sanity test
374 heap = []
375 data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]
376 for item in data:
377 heappush(heap, item)
378 sort = []
379 while heap:
380 sort.append(heappop(heap))
381 print sort
Raymond Hettinger00166c52007-02-19 04:08:43 +0000382
383 import doctest
384 doctest.testmod()