blob: aef6b9f8463412d50d6b6d0adae3ea884f558449 [file] [log] [blame]
Tim Peters1221c0a2002-03-23 00:20:15 +00001#include "Python.h"
2
3#ifdef WITH_PYMALLOC
4
Neil Schemenauera35c6882001-02-27 04:45:05 +00005/* An object allocator for Python.
6
7 Here is an introduction to the layers of the Python memory architecture,
8 showing where the object allocator is actually used (layer +2), It is
9 called for every object allocation and deallocation (PyObject_New/Del),
10 unless the object-specific allocators implement a proprietary allocation
11 scheme (ex.: ints use a simple free list). This is also the place where
12 the cyclic garbage collector operates selectively on container objects.
13
14
15 Object-specific allocators
16 _____ ______ ______ ________
17 [ int ] [ dict ] [ list ] ... [ string ] Python core |
18+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
19 _______________________________ | |
20 [ Python's object allocator ] | |
21+2 | ####### Object memory ####### | <------ Internal buffers ------> |
22 ______________________________________________________________ |
23 [ Python's raw memory allocator (PyMem_ API) ] |
24+1 | <----- Python memory (under PyMem manager's control) ------> | |
25 __________________________________________________________________
26 [ Underlying general-purpose allocator (ex: C library malloc) ]
27 0 | <------ Virtual memory allocated for the python process -------> |
28
29 =========================================================================
30 _______________________________________________________________________
31 [ OS-specific Virtual Memory Manager (VMM) ]
32-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
33 __________________________________ __________________________________
34 [ ] [ ]
35-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
36
37*/
38/*==========================================================================*/
39
40/* A fast, special-purpose memory allocator for small blocks, to be used
41 on top of a general-purpose malloc -- heavily based on previous art. */
42
43/* Vladimir Marangozov -- August 2000 */
44
45/*
46 * "Memory management is where the rubber meets the road -- if we do the wrong
47 * thing at any level, the results will not be good. And if we don't make the
48 * levels work well together, we are in serious trouble." (1)
49 *
50 * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
51 * "Dynamic Storage Allocation: A Survey and Critical Review",
52 * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
53 */
54
55/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
Neil Schemenauera35c6882001-02-27 04:45:05 +000056
57/*==========================================================================*/
58
59/*
Neil Schemenauera35c6882001-02-27 04:45:05 +000060 * Allocation strategy abstract:
61 *
62 * For small requests, the allocator sub-allocates <Big> blocks of memory.
63 * Requests greater than 256 bytes are routed to the system's allocator.
Tim Petersce7fb9b2002-03-23 00:28:57 +000064 *
Neil Schemenauera35c6882001-02-27 04:45:05 +000065 * Small requests are grouped in size classes spaced 8 bytes apart, due
66 * to the required valid alignment of the returned address. Requests of
67 * a particular size are serviced from memory pools of 4K (one VMM page).
68 * Pools are fragmented on demand and contain free lists of blocks of one
69 * particular size class. In other words, there is a fixed-size allocator
70 * for each size class. Free pools are shared by the different allocators
71 * thus minimizing the space reserved for a particular size class.
72 *
73 * This allocation strategy is a variant of what is known as "simple
74 * segregated storage based on array of free lists". The main drawback of
75 * simple segregated storage is that we might end up with lot of reserved
76 * memory for the different free lists, which degenerate in time. To avoid
77 * this, we partition each free list in pools and we share dynamically the
78 * reserved space between all free lists. This technique is quite efficient
79 * for memory intensive programs which allocate mainly small-sized blocks.
80 *
81 * For small requests we have the following table:
82 *
83 * Request in bytes Size of allocated block Size class idx
84 * ----------------------------------------------------------------
85 * 1-8 8 0
86 * 9-16 16 1
87 * 17-24 24 2
88 * 25-32 32 3
89 * 33-40 40 4
90 * 41-48 48 5
91 * 49-56 56 6
92 * 57-64 64 7
93 * 65-72 72 8
94 * ... ... ...
95 * 241-248 248 30
96 * 249-256 256 31
Tim Petersce7fb9b2002-03-23 00:28:57 +000097 *
Neil Schemenauera35c6882001-02-27 04:45:05 +000098 * 0, 257 and up: routed to the underlying allocator.
99 */
100
101/*==========================================================================*/
102
103/*
104 * -- Main tunable settings section --
105 */
106
107/*
108 * Alignment of addresses returned to the user. 8-bytes alignment works
109 * on most current architectures (with 32-bit or 64-bit address busses).
110 * The alignment value is also used for grouping small requests in size
111 * classes spaced ALIGNMENT bytes apart.
112 *
113 * You shouldn't change this unless you know what you are doing.
114 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000115#define ALIGNMENT 8 /* must be 2^N */
116#define ALIGNMENT_SHIFT 3
117#define ALIGNMENT_MASK (ALIGNMENT - 1)
118
Tim Peterse70ddf32002-04-05 04:32:29 +0000119/* Return the number of bytes in size class I, as a uint. */
120#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
121
Neil Schemenauera35c6882001-02-27 04:45:05 +0000122/*
123 * Max size threshold below which malloc requests are considered to be
124 * small enough in order to use preallocated memory pools. You can tune
125 * this value according to your application behaviour and memory needs.
126 *
127 * The following invariants must hold:
128 * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 256
Tim Petersd97a1c02002-03-30 06:09:22 +0000129 * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
Neil Schemenauera35c6882001-02-27 04:45:05 +0000130 *
131 * Although not required, for better performance and space efficiency,
132 * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
133 */
Tim Petersd97a1c02002-03-30 06:09:22 +0000134#define SMALL_REQUEST_THRESHOLD 256
Neil Schemenauera35c6882001-02-27 04:45:05 +0000135#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
136
137/*
138 * The system's VMM page size can be obtained on most unices with a
139 * getpagesize() call or deduced from various header files. To make
140 * things simpler, we assume that it is 4K, which is OK for most systems.
141 * It is probably better if this is the native page size, but it doesn't
142 * have to be.
143 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000144#define SYSTEM_PAGE_SIZE (4 * 1024)
145#define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1)
146
147/*
148 * Maximum amount of memory managed by the allocator for small requests.
149 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000150#ifdef WITH_MEMORY_LIMITS
151#ifndef SMALL_MEMORY_LIMIT
152#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
153#endif
154#endif
155
156/*
157 * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
158 * on a page boundary. This is a reserved virtual address space for the
159 * current process (obtained through a malloc call). In no way this means
160 * that the memory arenas will be used entirely. A malloc(<Big>) is usually
161 * an address range reservation for <Big> bytes, unless all pages within this
162 * space are referenced subsequently. So malloc'ing big blocks and not using
163 * them does not mean "wasting memory". It's an addressable range wastage...
164 *
165 * Therefore, allocating arenas with malloc is not optimal, because there is
166 * some address space wastage, but this is the most portable way to request
Tim Petersd97a1c02002-03-30 06:09:22 +0000167 * memory from the system across various platforms.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000168 */
Tim Peters3c83df22002-03-30 07:04:41 +0000169#define ARENA_SIZE (256 << 10) /* 256KB */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000170
171#ifdef WITH_MEMORY_LIMITS
172#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
173#endif
174
175/*
176 * Size of the pools used for small blocks. Should be a power of 2,
Tim Petersc2ce91a2002-03-30 21:36:04 +0000177 * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000178 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000179#define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */
180#define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK
Neil Schemenauera35c6882001-02-27 04:45:05 +0000181
182/*
183 * -- End of tunable settings section --
184 */
185
186/*==========================================================================*/
187
188/*
189 * Locking
190 *
191 * To reduce lock contention, it would probably be better to refine the
192 * crude function locking with per size class locking. I'm not positive
193 * however, whether it's worth switching to such locking policy because
194 * of the performance penalty it might introduce.
195 *
196 * The following macros describe the simplest (should also be the fastest)
197 * lock object on a particular platform and the init/fini/lock/unlock
198 * operations on it. The locks defined here are not expected to be recursive
199 * because it is assumed that they will always be called in the order:
200 * INIT, [LOCK, UNLOCK]*, FINI.
201 */
202
203/*
204 * Python's threads are serialized, so object malloc locking is disabled.
205 */
206#define SIMPLELOCK_DECL(lock) /* simple lock declaration */
207#define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */
208#define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */
209#define SIMPLELOCK_LOCK(lock) /* acquire released lock */
210#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
211
212/*
213 * Basic types
214 * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom.
215 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000216#undef uchar
217#define uchar unsigned char /* assuming == 8 bits */
218
Neil Schemenauera35c6882001-02-27 04:45:05 +0000219#undef uint
220#define uint unsigned int /* assuming >= 16 bits */
221
222#undef ulong
223#define ulong unsigned long /* assuming >= 32 bits */
224
Tim Petersd97a1c02002-03-30 06:09:22 +0000225#undef uptr
226#define uptr Py_uintptr_t
227
Neil Schemenauera35c6882001-02-27 04:45:05 +0000228/* When you say memory, my mind reasons in terms of (pointers to) blocks */
229typedef uchar block;
230
Tim Peterse70ddf32002-04-05 04:32:29 +0000231/* Pool for small blocks. */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000232struct pool_header {
Tim Petersb2336522001-03-11 18:36:13 +0000233 union { block *_padding;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000234 uint count; } ref; /* number of allocated blocks */
235 block *freeblock; /* pool's free list head */
236 struct pool_header *nextpool; /* next pool of this size class */
237 struct pool_header *prevpool; /* previous pool "" */
Tim Peters1d99af82002-03-30 10:35:09 +0000238 uint arenaindex; /* index into arenas of base adr */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000239 uint szidx; /* block size class index */
Tim Peterse70ddf32002-04-05 04:32:29 +0000240 uint nextoffset; /* bytes to virgin block */
241 uint maxnextoffset; /* largest valid nextoffset */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000242};
243
244typedef struct pool_header *poolp;
245
246#undef ROUNDUP
247#define ROUNDUP(x) (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK)
248#define POOL_OVERHEAD ROUNDUP(sizeof(struct pool_header))
249
250#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
251
Tim Petersd97a1c02002-03-30 06:09:22 +0000252/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
Tim Peterse70ddf32002-04-05 04:32:29 +0000253#define POOL_ADDR(P) ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK))
254
Tim Peters16bcb6b2002-04-05 05:45:31 +0000255/* Return total number of blocks in pool of size index I, as a uint. */
256#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
Tim Petersd97a1c02002-03-30 06:09:22 +0000257
Neil Schemenauera35c6882001-02-27 04:45:05 +0000258/*==========================================================================*/
259
260/*
261 * This malloc lock
262 */
Tim Petersb2336522001-03-11 18:36:13 +0000263SIMPLELOCK_DECL(_malloc_lock);
264#define LOCK() SIMPLELOCK_LOCK(_malloc_lock)
265#define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock)
266#define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock)
267#define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000268
269/*
Tim Peters1e16db62002-03-31 01:05:22 +0000270 * Pool table -- headed, circular, doubly-linked lists of partially used pools.
271
272This is involved. For an index i, usedpools[i+i] is the header for a list of
273all partially used pools holding small blocks with "size class idx" i. So
274usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
27516, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
276
Tim Peters338e0102002-04-01 19:23:44 +0000277Pools are carved off the current arena highwater mark (file static arenabase)
278as needed. Once carved off, a pool is in one of three states forever after:
Tim Peters1e16db62002-03-31 01:05:22 +0000279
Tim Peters338e0102002-04-01 19:23:44 +0000280used == partially used, neither empty nor full
281 At least one block in the pool is currently allocated, and at least one
282 block in the pool is not currently allocated (note this implies a pool
283 has room for at least two blocks).
284 This is a pool's initial state, as a pool is created only when malloc
285 needs space.
286 The pool holds blocks of a fixed size, and is in the circular list headed
287 at usedpools[i] (see above). It's linked to the other used pools of the
288 same size class via the pool_header's nextpool and prevpool members.
289 If all but one block is currently allocated, a malloc can cause a
290 transition to the full state. If all but one block is not currently
291 allocated, a free can cause a transition to the empty state.
Tim Peters1e16db62002-03-31 01:05:22 +0000292
Tim Peters338e0102002-04-01 19:23:44 +0000293full == all the pool's blocks are currently allocated
294 On transition to full, a pool is unlinked from its usedpools[] list.
295 It's not linked to from anything then anymore, and its nextpool and
296 prevpool members are meaningless until it transitions back to used.
297 A free of a block in a full pool puts the pool back in the used state.
298 Then it's linked in at the front of the appropriate usedpools[] list, so
299 that the next allocation for its size class will reuse the freed block.
300
301empty == all the pool's blocks are currently available for allocation
302 On transition to empty, a pool is unlinked from its usedpools[] list,
303 and linked to the front of the (file static) singly-linked freepools list,
304 via its nextpool member. The prevpool member has no meaning in this case.
305 Empty pools have no inherent size class: the next time a malloc finds
306 an empty list in usedpools[], it takes the first pool off of freepools.
307 If the size class needed happens to be the same as the size class the pool
Tim Peterse70ddf32002-04-05 04:32:29 +0000308 last had, some pool initialization can be skipped.
Tim Peters338e0102002-04-01 19:23:44 +0000309
310
311Block Management
312
313Blocks within pools are again carved out as needed. pool->freeblock points to
314the start of a singly-linked list of free blocks within the pool. When a
315block is freed, it's inserted at the front of its pool's freeblock list. Note
316that the available blocks in a pool are *not* linked all together when a pool
Tim Peterse70ddf32002-04-05 04:32:29 +0000317is initialized. Instead only "the first two" (lowest addresses) blocks are
318set up, returning the first such block, and setting pool->freeblock to a
319one-block list holding the second such block. This is consistent with that
320pymalloc strives at all levels (arena, pool, and block) never to touch a piece
321of memory until it's actually needed.
322
323So long as a pool is in the used state, we're certain there *is* a block
Tim Peters52aefc82002-04-11 06:36:45 +0000324available for allocating, and pool->freeblock is not NULL. If pool->freeblock
325points to the end of the free list before we've carved the entire pool into
326blocks, that means we simply haven't yet gotten to one of the higher-address
327blocks. The offset from the pool_header to the start of "the next" virgin
328block is stored in the pool_header nextoffset member, and the largest value
329of nextoffset that makes sense is stored in the maxnextoffset member when a
330pool is initialized. All the blocks in a pool have been passed out at least
331once when and only when nextoffset > maxnextoffset.
Tim Peters338e0102002-04-01 19:23:44 +0000332
Tim Peters1e16db62002-03-31 01:05:22 +0000333
334Major obscurity: While the usedpools vector is declared to have poolp
335entries, it doesn't really. It really contains two pointers per (conceptual)
336poolp entry, the nextpool and prevpool members of a pool_header. The
337excruciating initialization code below fools C so that
338
339 usedpool[i+i]
340
341"acts like" a genuine poolp, but only so long as you only reference its
342nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is
343compensating for that a pool_header's nextpool and prevpool members
344immediately follow a pool_header's first two members:
345
346 union { block *_padding;
347 uint count; } ref;
348 block *freeblock;
349
350each of which consume sizeof(block *) bytes. So what usedpools[i+i] really
351contains is a fudged-up pointer p such that *if* C believes it's a poolp
352pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
353circular list is empty).
354
355It's unclear why the usedpools setup is so convoluted. It could be to
356minimize the amount of cache required to hold this heavily-referenced table
357(which only *needs* the two interpool pointer members of a pool_header). OTOH,
358referencing code has to remember to "double the index" and doing so isn't
359free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
360on that C doesn't insert any padding anywhere in a pool_header at or before
361the prevpool member.
362**************************************************************************** */
363
Neil Schemenauera35c6882001-02-27 04:45:05 +0000364#define PTA(x) ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
365#define PT(x) PTA(x), PTA(x)
366
367static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
368 PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
369#if NB_SMALL_SIZE_CLASSES > 8
370 , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
371#if NB_SMALL_SIZE_CLASSES > 16
372 , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
373#if NB_SMALL_SIZE_CLASSES > 24
374 , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
375#if NB_SMALL_SIZE_CLASSES > 32
376 , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
377#if NB_SMALL_SIZE_CLASSES > 40
378 , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
379#if NB_SMALL_SIZE_CLASSES > 48
380 , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
381#if NB_SMALL_SIZE_CLASSES > 56
382 , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
383#endif /* NB_SMALL_SIZE_CLASSES > 56 */
384#endif /* NB_SMALL_SIZE_CLASSES > 48 */
385#endif /* NB_SMALL_SIZE_CLASSES > 40 */
386#endif /* NB_SMALL_SIZE_CLASSES > 32 */
387#endif /* NB_SMALL_SIZE_CLASSES > 24 */
388#endif /* NB_SMALL_SIZE_CLASSES > 16 */
389#endif /* NB_SMALL_SIZE_CLASSES > 8 */
390};
391
392/*
393 * Free (cached) pools
394 */
395static poolp freepools = NULL; /* free list for cached pools */
396
Tim Petersd97a1c02002-03-30 06:09:22 +0000397/*==========================================================================*/
398/* Arena management. */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000399
Tim Petersd97a1c02002-03-30 06:09:22 +0000400/* arenas is a vector of arena base addresses, in order of allocation time.
401 * arenas currently contains narenas entries, and has space allocated
402 * for at most maxarenas entries.
403 *
404 * CAUTION: See the long comment block about thread safety in new_arena():
405 * the code currently relies in deep ways on that this vector only grows,
406 * and only grows by appending at the end. For now we never return an arena
407 * to the OS.
408 */
Tim Petersc2ce91a2002-03-30 21:36:04 +0000409static uptr *volatile arenas = NULL; /* the pointer itself is volatile */
410static volatile uint narenas = 0;
Tim Peters1d99af82002-03-30 10:35:09 +0000411static uint maxarenas = 0;
Tim Petersd97a1c02002-03-30 06:09:22 +0000412
Tim Peters3c83df22002-03-30 07:04:41 +0000413/* Number of pools still available to be allocated in the current arena. */
414static uint nfreepools = 0;
Tim Petersd97a1c02002-03-30 06:09:22 +0000415
Tim Peters3c83df22002-03-30 07:04:41 +0000416/* Free space start address in current arena. This is pool-aligned. */
Tim Petersd97a1c02002-03-30 06:09:22 +0000417static block *arenabase = NULL;
418
419#if 0
420static ulong wasmine = 0;
421static ulong wasntmine = 0;
422
423static void
424dumpem(void *ptr)
425{
426 if (ptr)
427 printf("inserted new arena at %08x\n", ptr);
Tim Peters1d99af82002-03-30 10:35:09 +0000428 printf("# arenas %u\n", narenas);
Tim Petersd97a1c02002-03-30 06:09:22 +0000429 printf("was mine %lu wasn't mine %lu\n", wasmine, wasntmine);
430}
431#define INCMINE ++wasmine
432#define INCTHEIRS ++wasntmine
433
434#else
435#define dumpem(ptr)
436#define INCMINE
437#define INCTHEIRS
438#endif
439
440/* Allocate a new arena and return its base address. If we run out of
441 * memory, return NULL.
442 */
443static block *
444new_arena(void)
445{
Tim Peters3c83df22002-03-30 07:04:41 +0000446 uint excess; /* number of bytes above pool alignment */
Tim Peters84c1b972002-04-04 04:44:32 +0000447 block *bp = (block *)malloc(ARENA_SIZE);
Tim Petersd97a1c02002-03-30 06:09:22 +0000448 if (bp == NULL)
449 return NULL;
450
Tim Peters0e871182002-04-13 08:29:14 +0000451#ifdef PYMALLOC_DEBUG
452 if (Py_GETENV("PYTHONMALLOCSTATS"))
453 _PyObject_DebugMallocStats();
454#endif
455
Tim Peters3c83df22002-03-30 07:04:41 +0000456 /* arenabase <- first pool-aligned address in the arena
457 nfreepools <- number of whole pools that fit after alignment */
458 arenabase = bp;
459 nfreepools = ARENA_SIZE / POOL_SIZE;
Tim Petersc2ce91a2002-03-30 21:36:04 +0000460 assert(POOL_SIZE * nfreepools == ARENA_SIZE);
Tim Peters3c83df22002-03-30 07:04:41 +0000461 excess = (uint)bp & POOL_SIZE_MASK;
462 if (excess != 0) {
463 --nfreepools;
464 arenabase += POOL_SIZE - excess;
465 }
Tim Petersd97a1c02002-03-30 06:09:22 +0000466
467 /* Make room for a new entry in the arenas vector. */
468 if (arenas == NULL) {
Tim Petersc2ce91a2002-03-30 21:36:04 +0000469 assert(narenas == 0 && maxarenas == 0);
Tim Peters84c1b972002-04-04 04:44:32 +0000470 arenas = (uptr *)malloc(16 * sizeof(*arenas));
Tim Petersd97a1c02002-03-30 06:09:22 +0000471 if (arenas == NULL)
472 goto error;
473 maxarenas = 16;
Tim Petersd97a1c02002-03-30 06:09:22 +0000474 }
475 else if (narenas == maxarenas) {
Tim Peters52aefc82002-04-11 06:36:45 +0000476 /* Grow arenas.
Tim Petersc2ce91a2002-03-30 21:36:04 +0000477 *
Tim Petersd97a1c02002-03-30 06:09:22 +0000478 * Exceedingly subtle: Someone may be calling the pymalloc
479 * free via PyMem_{DEL, Del, FREE, Free} without holding the
480 *.GIL. Someone else may simultaneously be calling the
481 * pymalloc malloc while holding the GIL via, e.g.,
482 * PyObject_New. Now the pymalloc free may index into arenas
483 * for an address check, while the pymalloc malloc calls
484 * new_arena and we end up here to grow a new arena *and*
485 * grow the arenas vector. If the value for arenas pymalloc
486 * free picks up "vanishes" during this resize, anything may
487 * happen, and it would be an incredibly rare bug. Therefore
488 * the code here takes great pains to make sure that, at every
489 * moment, arenas always points to an intact vector of
490 * addresses. It doesn't matter whether arenas points to a
491 * wholly up-to-date vector when pymalloc free checks it in
492 * this case, because the only legal (and that even this is
493 * legal is debatable) way to call PyMem_{Del, etc} while not
494 * holding the GIL is if the memory being released is not
495 * object memory, i.e. if the address check in pymalloc free
496 * is supposed to fail. Having an incomplete vector can't
497 * make a supposed-to-fail case succeed by mistake (it could
498 * only make a supposed-to-succeed case fail by mistake).
Tim Petersc2ce91a2002-03-30 21:36:04 +0000499 *
500 * In addition, without a lock we can't know for sure when
501 * an old vector is no longer referenced, so we simply let
502 * old vectors leak.
503 *
504 * And on top of that, since narenas and arenas can't be
505 * changed as-a-pair atomically without a lock, we're also
506 * careful to declare them volatile and ensure that we change
507 * arenas first. This prevents another thread from picking
508 * up an narenas value too large for the arenas value it
509 * reads up (arenas never shrinks).
510 *
Tim Petersd97a1c02002-03-30 06:09:22 +0000511 * Read the above 50 times before changing anything in this
512 * block.
513 */
Tim Peters1d99af82002-03-30 10:35:09 +0000514 uptr *p;
Tim Petersc2ce91a2002-03-30 21:36:04 +0000515 uint newmax = maxarenas << 1;
Tim Peters1d99af82002-03-30 10:35:09 +0000516 if (newmax <= maxarenas) /* overflow */
517 goto error;
Tim Peters84c1b972002-04-04 04:44:32 +0000518 p = (uptr *)malloc(newmax * sizeof(*arenas));
Tim Petersd97a1c02002-03-30 06:09:22 +0000519 if (p == NULL)
520 goto error;
521 memcpy(p, arenas, narenas * sizeof(*arenas));
Tim Petersc2ce91a2002-03-30 21:36:04 +0000522 arenas = p; /* old arenas deliberately leaked */
Tim Petersd97a1c02002-03-30 06:09:22 +0000523 maxarenas = newmax;
524 }
525
526 /* Append the new arena address to arenas. */
527 assert(narenas < maxarenas);
528 arenas[narenas] = (uptr)bp;
Tim Peters1d99af82002-03-30 10:35:09 +0000529 ++narenas; /* can't overflow, since narenas < maxarenas before */
Tim Petersd97a1c02002-03-30 06:09:22 +0000530 dumpem(bp);
531 return bp;
532
533error:
Tim Peters84c1b972002-04-04 04:44:32 +0000534 free(bp);
Tim Peters7b85b4a2002-03-30 10:42:09 +0000535 nfreepools = 0;
Tim Petersd97a1c02002-03-30 06:09:22 +0000536 return NULL;
537}
538
539/* Return true if and only if P is an address that was allocated by
540 * pymalloc. I must be the index into arenas that the address claims
541 * to come from.
Tim Petersc2ce91a2002-03-30 21:36:04 +0000542 *
Tim Petersd97a1c02002-03-30 06:09:22 +0000543 * Tricky: Letting B be the arena base address in arenas[I], P belongs to the
544 * arena if and only if
Tim Peters3c83df22002-03-30 07:04:41 +0000545 * B <= P < B + ARENA_SIZE
Tim Petersd97a1c02002-03-30 06:09:22 +0000546 * Subtracting B throughout, this is true iff
Tim Peters3c83df22002-03-30 07:04:41 +0000547 * 0 <= P-B < ARENA_SIZE
Tim Petersd97a1c02002-03-30 06:09:22 +0000548 * By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
Tim Petersc2ce91a2002-03-30 21:36:04 +0000549 *
550 * Obscure: A PyMem "free memory" function can call the pymalloc free or
551 * realloc before the first arena has been allocated. arenas is still
552 * NULL in that case. We're relying on that narenas is also 0 in that case,
553 * so the (I) < narenas must be false, saving us from trying to index into
554 * a NULL arenas.
Tim Petersd97a1c02002-03-30 06:09:22 +0000555 */
556#define ADDRESS_IN_RANGE(P, I) \
Tim Peters3c83df22002-03-30 07:04:41 +0000557 ((I) < narenas && (uptr)(P) - arenas[I] < (uptr)ARENA_SIZE)
Tim Peters338e0102002-04-01 19:23:44 +0000558
Neil Schemenauera35c6882001-02-27 04:45:05 +0000559/*==========================================================================*/
560
Tim Peters84c1b972002-04-04 04:44:32 +0000561/* malloc. Note that nbytes==0 tries to return a non-NULL pointer, distinct
562 * from all other currently live pointers. This may not be possible.
563 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000564
565/*
566 * The basic blocks are ordered by decreasing execution frequency,
567 * which minimizes the number of jumps in the most common cases,
568 * improves branching prediction and instruction scheduling (small
569 * block allocations typically result in a couple of instructions).
570 * Unless the optimizer reorders everything, being too smart...
571 */
572
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000573#undef PyObject_Malloc
Neil Schemenauera35c6882001-02-27 04:45:05 +0000574void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000575PyObject_Malloc(size_t nbytes)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000576{
577 block *bp;
578 poolp pool;
579 poolp next;
580 uint size;
581
Neil Schemenauera35c6882001-02-27 04:45:05 +0000582 /*
Tim Peters84c1b972002-04-04 04:44:32 +0000583 * This implicitly redirects malloc(0).
Neil Schemenauera35c6882001-02-27 04:45:05 +0000584 */
585 if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) {
586 LOCK();
587 /*
588 * Most frequent paths first
589 */
590 size = (uint )(nbytes - 1) >> ALIGNMENT_SHIFT;
591 pool = usedpools[size + size];
592 if (pool != pool->nextpool) {
593 /*
594 * There is a used pool for this size class.
595 * Pick up the head block of its free list.
596 */
597 ++pool->ref.count;
598 bp = pool->freeblock;
Tim Peters52aefc82002-04-11 06:36:45 +0000599 assert(bp != NULL);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000600 if ((pool->freeblock = *(block **)bp) != NULL) {
601 UNLOCK();
602 return (void *)bp;
603 }
604 /*
605 * Reached the end of the free list, try to extend it
606 */
Tim Peterse70ddf32002-04-05 04:32:29 +0000607 if (pool->nextoffset <= pool->maxnextoffset) {
Neil Schemenauera35c6882001-02-27 04:45:05 +0000608 /*
609 * There is room for another block
610 */
Tim Peterse70ddf32002-04-05 04:32:29 +0000611 pool->freeblock = (block *)pool +
612 pool->nextoffset;
613 pool->nextoffset += INDEX2SIZE(size);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000614 *(block **)(pool->freeblock) = NULL;
615 UNLOCK();
616 return (void *)bp;
617 }
618 /*
619 * Pool is full, unlink from used pools
620 */
621 next = pool->nextpool;
622 pool = pool->prevpool;
623 next->prevpool = pool;
624 pool->nextpool = next;
625 UNLOCK();
626 return (void *)bp;
627 }
628 /*
629 * Try to get a cached free pool
630 */
631 pool = freepools;
632 if (pool != NULL) {
633 /*
634 * Unlink from cached pools
635 */
636 freepools = pool->nextpool;
637 init_pool:
638 /*
639 * Frontlink to used pools
640 */
641 next = usedpools[size + size]; /* == prev */
642 pool->nextpool = next;
643 pool->prevpool = next;
644 next->nextpool = pool;
645 next->prevpool = pool;
646 pool->ref.count = 1;
647 if (pool->szidx == size) {
648 /*
649 * Luckily, this pool last contained blocks
650 * of the same size class, so its header
651 * and free list are already initialized.
652 */
653 bp = pool->freeblock;
654 pool->freeblock = *(block **)bp;
655 UNLOCK();
656 return (void *)bp;
657 }
658 /*
Tim Peterse70ddf32002-04-05 04:32:29 +0000659 * Initialize the pool header, set up the free list to
660 * contain just the second block, and return the first
661 * block.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000662 */
663 pool->szidx = size;
Tim Peterse70ddf32002-04-05 04:32:29 +0000664 size = INDEX2SIZE(size);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000665 bp = (block *)pool + POOL_OVERHEAD;
Tim Peterse70ddf32002-04-05 04:32:29 +0000666 pool->nextoffset = POOL_OVERHEAD + (size << 1);
667 pool->maxnextoffset = POOL_SIZE - size;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000668 pool->freeblock = bp + size;
669 *(block **)(pool->freeblock) = NULL;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000670 UNLOCK();
671 return (void *)bp;
672 }
673 /*
674 * Allocate new pool
675 */
Tim Peters3c83df22002-03-30 07:04:41 +0000676 if (nfreepools) {
Neil Schemenauera35c6882001-02-27 04:45:05 +0000677 commit_pool:
Tim Peters3c83df22002-03-30 07:04:41 +0000678 --nfreepools;
679 pool = (poolp)arenabase;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000680 arenabase += POOL_SIZE;
Tim Petersd97a1c02002-03-30 06:09:22 +0000681 pool->arenaindex = narenas - 1;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000682 pool->szidx = DUMMY_SIZE_IDX;
683 goto init_pool;
684 }
685 /*
686 * Allocate new arena
687 */
688#ifdef WITH_MEMORY_LIMITS
Tim Petersd97a1c02002-03-30 06:09:22 +0000689 if (!(narenas < MAX_ARENAS)) {
Neil Schemenauera35c6882001-02-27 04:45:05 +0000690 UNLOCK();
691 goto redirect;
692 }
693#endif
Tim Petersd97a1c02002-03-30 06:09:22 +0000694 bp = new_arena();
695 if (bp != NULL)
696 goto commit_pool;
697 UNLOCK();
698 goto redirect;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000699 }
700
701 /* The small block allocator ends here. */
702
Tim Petersd97a1c02002-03-30 06:09:22 +0000703redirect:
Neil Schemenauera35c6882001-02-27 04:45:05 +0000704 /*
705 * Redirect the original request to the underlying (libc) allocator.
706 * We jump here on bigger requests, on error in the code above (as a
707 * last chance to serve the request) or when the max memory limit
708 * has been reached.
709 */
Tim Peters84c1b972002-04-04 04:44:32 +0000710 return (void *)malloc(nbytes ? nbytes : 1);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000711}
712
713/* free */
714
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000715#undef PyObject_Free
Neil Schemenauera35c6882001-02-27 04:45:05 +0000716void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000717PyObject_Free(void *p)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000718{
719 poolp pool;
Tim Peters2c95c992002-03-31 02:18:01 +0000720 block *lastfree;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000721 poolp next, prev;
722 uint size;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000723
Neil Schemenauera35c6882001-02-27 04:45:05 +0000724 if (p == NULL) /* free(NULL) has no effect */
725 return;
726
Tim Petersd97a1c02002-03-30 06:09:22 +0000727 pool = POOL_ADDR(p);
728 if (ADDRESS_IN_RANGE(p, pool->arenaindex)) {
729 /* We allocated this address. */
Tim Petersd97a1c02002-03-30 06:09:22 +0000730 LOCK();
Tim Peters1e16db62002-03-31 01:05:22 +0000731 INCMINE;
Tim Petersd97a1c02002-03-30 06:09:22 +0000732 /*
Tim Peters2c95c992002-03-31 02:18:01 +0000733 * Link p to the start of the pool's freeblock list. Since
734 * the pool had at least the p block outstanding, the pool
735 * wasn't empty (so it's already in a usedpools[] list, or
736 * was full and is in no list -- it's not in the freeblocks
737 * list in any case).
Tim Petersd97a1c02002-03-30 06:09:22 +0000738 */
Tim Peters57b17ad2002-03-31 02:59:48 +0000739 assert(pool->ref.count > 0); /* else it was empty */
Tim Peters2c95c992002-03-31 02:18:01 +0000740 *(block **)p = lastfree = pool->freeblock;
Tim Petersd97a1c02002-03-30 06:09:22 +0000741 pool->freeblock = (block *)p;
Tim Peters2c95c992002-03-31 02:18:01 +0000742 if (lastfree) {
743 /*
744 * freeblock wasn't NULL, so the pool wasn't full,
745 * and the pool is in a usedpools[] list.
746 */
Tim Peters2c95c992002-03-31 02:18:01 +0000747 if (--pool->ref.count != 0) {
748 /* pool isn't empty: leave it in usedpools */
749 UNLOCK();
750 return;
751 }
752 /*
753 * Pool is now empty: unlink from usedpools, and
Tim Petersb1da0502002-03-31 02:51:40 +0000754 * link to the front of freepools. This ensures that
Tim Peters2c95c992002-03-31 02:18:01 +0000755 * previously freed pools will be allocated later
756 * (being not referenced, they are perhaps paged out).
757 */
758 next = pool->nextpool;
759 prev = pool->prevpool;
760 next->prevpool = prev;
761 prev->nextpool = next;
762 /* Link to freepools. This is a singly-linked list,
763 * and pool->prevpool isn't used there.
764 */
765 pool->nextpool = freepools;
766 freepools = pool;
Tim Petersd97a1c02002-03-30 06:09:22 +0000767 UNLOCK();
768 return;
769 }
770 /*
Tim Peters2c95c992002-03-31 02:18:01 +0000771 * Pool was full, so doesn't currently live in any list:
772 * link it to the front of the appropriate usedpools[] list.
773 * This mimics LRU pool usage for new allocations and
774 * targets optimal filling when several pools contain
775 * blocks of the same size class.
Tim Petersd97a1c02002-03-30 06:09:22 +0000776 */
Tim Peters2c95c992002-03-31 02:18:01 +0000777 --pool->ref.count;
778 assert(pool->ref.count > 0); /* else the pool is empty */
779 size = pool->szidx;
780 next = usedpools[size + size];
781 prev = next->prevpool;
782 /* insert pool before next: prev <-> pool <-> next */
783 pool->nextpool = next;
784 pool->prevpool = prev;
785 next->prevpool = pool;
786 prev->nextpool = pool;
Tim Petersd97a1c02002-03-30 06:09:22 +0000787 UNLOCK();
Neil Schemenauera35c6882001-02-27 04:45:05 +0000788 return;
789 }
790
Tim Peters2c95c992002-03-31 02:18:01 +0000791 /* We didn't allocate this address. */
Tim Petersd97a1c02002-03-30 06:09:22 +0000792 INCTHEIRS;
Tim Peters84c1b972002-04-04 04:44:32 +0000793 free(p);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000794}
795
Tim Peters84c1b972002-04-04 04:44:32 +0000796/* realloc. If p is NULL, this acts like malloc(nbytes). Else if nbytes==0,
797 * then as the Python docs promise, we do not treat this like free(p), and
798 * return a non-NULL result.
799 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000800
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000801#undef PyObject_Realloc
Neil Schemenauera35c6882001-02-27 04:45:05 +0000802void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000803PyObject_Realloc(void *p, size_t nbytes)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000804{
Tim Peters84c1b972002-04-04 04:44:32 +0000805 void *bp;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000806 poolp pool;
807 uint size;
808
Neil Schemenauera35c6882001-02-27 04:45:05 +0000809 if (p == NULL)
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000810 return PyObject_Malloc(nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000811
Tim Petersd97a1c02002-03-30 06:09:22 +0000812 pool = POOL_ADDR(p);
813 if (ADDRESS_IN_RANGE(p, pool->arenaindex)) {
Neil Schemenauera35c6882001-02-27 04:45:05 +0000814 /* We're in charge of this block */
Tim Petersd97a1c02002-03-30 06:09:22 +0000815 INCMINE;
Tim Peterse70ddf32002-04-05 04:32:29 +0000816 size = INDEX2SIZE(pool->szidx);
Tim Peters84c1b972002-04-04 04:44:32 +0000817 if (size >= nbytes)
818 /* Don't bother if a smaller size was requested. */
819 return p;
820 /* We need more memory. */
821 assert(nbytes != 0);
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000822 bp = PyObject_Malloc(nbytes);
Tim Peters84c1b972002-04-04 04:44:32 +0000823 if (bp != NULL) {
824 memcpy(bp, p, size);
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000825 PyObject_Free(p);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000826 }
Tim Peters84c1b972002-04-04 04:44:32 +0000827 return bp;
828 }
829 /* We're not managing this block. */
830 INCTHEIRS;
831 if (nbytes <= SMALL_REQUEST_THRESHOLD) {
832 /* Take over this block. */
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000833 bp = PyObject_Malloc(nbytes ? nbytes : 1);
Tim Peters84c1b972002-04-04 04:44:32 +0000834 if (bp != NULL) {
835 memcpy(bp, p, nbytes);
836 free(p);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000837 }
Tim Peters84c1b972002-04-04 04:44:32 +0000838 else if (nbytes == 0) {
839 /* Meet the doc's promise that nbytes==0 will
840 * never return a NULL pointer when p isn't NULL.
841 */
842 bp = p;
843 }
844
Neil Schemenauera35c6882001-02-27 04:45:05 +0000845 }
Tim Petersd97a1c02002-03-30 06:09:22 +0000846 else {
Tim Peters84c1b972002-04-04 04:44:32 +0000847 assert(nbytes != 0);
848 bp = realloc(p, nbytes);
Tim Petersd97a1c02002-03-30 06:09:22 +0000849 }
Tim Peters84c1b972002-04-04 04:44:32 +0000850 return bp;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000851}
852
Tim Peters1221c0a2002-03-23 00:20:15 +0000853#else /* ! WITH_PYMALLOC */
Tim Petersddea2082002-03-23 10:03:50 +0000854
855/*==========================================================================*/
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000856/* pymalloc not enabled: Redirect the entry points to malloc. These will
857 * only be used by extensions that are compiled with pymalloc enabled. */
Tim Peters62c06ba2002-03-23 22:28:18 +0000858
Tim Petersce7fb9b2002-03-23 00:28:57 +0000859void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000860PyObject_Malloc(size_t n)
Tim Peters1221c0a2002-03-23 00:20:15 +0000861{
862 return PyMem_MALLOC(n);
863}
864
Tim Petersce7fb9b2002-03-23 00:28:57 +0000865void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000866PyObject_Realloc(void *p, size_t n)
Tim Peters1221c0a2002-03-23 00:20:15 +0000867{
868 return PyMem_REALLOC(p, n);
869}
870
871void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000872PyObject_Free(void *p)
Tim Peters1221c0a2002-03-23 00:20:15 +0000873{
874 PyMem_FREE(p);
875}
876#endif /* WITH_PYMALLOC */
877
Tim Petersddea2082002-03-23 10:03:50 +0000878#ifdef PYMALLOC_DEBUG
879/*==========================================================================*/
Tim Peters62c06ba2002-03-23 22:28:18 +0000880/* A x-platform debugging allocator. This doesn't manage memory directly,
881 * it wraps a real allocator, adding extra debugging info to the memory blocks.
882 */
Tim Petersddea2082002-03-23 10:03:50 +0000883
Tim Petersf6fb5012002-04-12 07:38:53 +0000884/* Special bytes broadcast into debug memory blocks at appropriate times.
885 * Strings of these are unlikely to be valid addresses, floats, ints or
886 * 7-bit ASCII.
887 */
888#undef CLEANBYTE
889#undef DEADBYTE
890#undef FORBIDDENBYTE
891#define CLEANBYTE 0xCB /* clean (newly allocated) memory */
892#define DEADBYTE 0xDB /* deed (newly freed) memory */
893#define FORBIDDENBYTE 0xFB /* untouchable bytes at each end of a block */
Tim Petersddea2082002-03-23 10:03:50 +0000894
895static ulong serialno = 0; /* incremented on each debug {m,re}alloc */
896
Tim Peterse0850172002-03-24 00:34:21 +0000897/* serialno is always incremented via calling this routine. The point is
898 to supply a single place to set a breakpoint.
899*/
900static void
Neil Schemenauerbd02b142002-03-28 21:05:38 +0000901bumpserialno(void)
Tim Peterse0850172002-03-24 00:34:21 +0000902{
903 ++serialno;
904}
905
906
Tim Petersddea2082002-03-23 10:03:50 +0000907/* Read 4 bytes at p as a big-endian ulong. */
908static ulong
909read4(const void *p)
910{
Tim Peters62c06ba2002-03-23 22:28:18 +0000911 const uchar *q = (const uchar *)p;
Tim Petersddea2082002-03-23 10:03:50 +0000912 return ((ulong)q[0] << 24) |
913 ((ulong)q[1] << 16) |
914 ((ulong)q[2] << 8) |
915 (ulong)q[3];
916}
917
918/* Write the 4 least-significant bytes of n as a big-endian unsigned int,
919 MSB at address p, LSB at p+3. */
920static void
921write4(void *p, ulong n)
922{
Tim Peters62c06ba2002-03-23 22:28:18 +0000923 uchar *q = (uchar *)p;
924 q[0] = (uchar)((n >> 24) & 0xff);
925 q[1] = (uchar)((n >> 16) & 0xff);
926 q[2] = (uchar)((n >> 8) & 0xff);
927 q[3] = (uchar)( n & 0xff);
Tim Petersddea2082002-03-23 10:03:50 +0000928}
929
Tim Petersddea2082002-03-23 10:03:50 +0000930/* The debug malloc asks for 16 extra bytes and fills them with useful stuff,
931 here calling the underlying malloc's result p:
932
933p[0:4]
934 Number of bytes originally asked for. 4-byte unsigned integer,
935 big-endian (easier to read in a memory dump).
Tim Petersd1139e02002-03-28 07:32:11 +0000936p[4:8]
Tim Petersf6fb5012002-04-12 07:38:53 +0000937 Copies of FORBIDDENBYTE. Used to catch under- writes and reads.
Tim Petersddea2082002-03-23 10:03:50 +0000938p[8:8+n]
Tim Petersf6fb5012002-04-12 07:38:53 +0000939 The requested memory, filled with copies of CLEANBYTE.
Tim Petersddea2082002-03-23 10:03:50 +0000940 Used to catch reference to uninitialized memory.
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000941 &p[8] is returned. Note that this is 8-byte aligned if pymalloc
Tim Petersddea2082002-03-23 10:03:50 +0000942 handled the request itself.
943p[8+n:8+n+4]
Tim Petersf6fb5012002-04-12 07:38:53 +0000944 Copies of FORBIDDENBYTE. Used to catch over- writes and reads.
Tim Petersddea2082002-03-23 10:03:50 +0000945p[8+n+4:8+n+8]
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000946 A serial number, incremented by 1 on each call to _PyObject_DebugMalloc
947 and _PyObject_DebugRealloc.
Tim Petersddea2082002-03-23 10:03:50 +0000948 4-byte unsigned integer, big-endian.
949 If "bad memory" is detected later, the serial number gives an
950 excellent way to set a breakpoint on the next run, to capture the
951 instant at which this block was passed out.
952*/
953
954void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000955_PyObject_DebugMalloc(size_t nbytes)
Tim Petersddea2082002-03-23 10:03:50 +0000956{
957 uchar *p; /* base address of malloc'ed block */
Tim Peters62c06ba2002-03-23 22:28:18 +0000958 uchar *tail; /* p + 8 + nbytes == pointer to tail pad bytes */
Tim Petersddea2082002-03-23 10:03:50 +0000959 size_t total; /* nbytes + 16 */
960
Tim Peterse0850172002-03-24 00:34:21 +0000961 bumpserialno();
Tim Petersddea2082002-03-23 10:03:50 +0000962 total = nbytes + 16;
963 if (total < nbytes || (total >> 31) > 1) {
964 /* overflow, or we can't represent it in 4 bytes */
965 /* Obscure: can't do (total >> 32) != 0 instead, because
966 C doesn't define what happens for a right-shift of 32
967 when size_t is a 32-bit type. At least C guarantees
968 size_t is an unsigned type. */
969 return NULL;
970 }
971
Tim Peters8a8cdfd2002-04-12 20:49:36 +0000972 p = (uchar *)PyObject_Malloc(total);
Tim Petersddea2082002-03-23 10:03:50 +0000973 if (p == NULL)
974 return NULL;
975
976 write4(p, nbytes);
Tim Petersf6fb5012002-04-12 07:38:53 +0000977 p[4] = p[5] = p[6] = p[7] = FORBIDDENBYTE;
Tim Petersddea2082002-03-23 10:03:50 +0000978
979 if (nbytes > 0)
Tim Petersf6fb5012002-04-12 07:38:53 +0000980 memset(p+8, CLEANBYTE, nbytes);
Tim Petersddea2082002-03-23 10:03:50 +0000981
Tim Peters62c06ba2002-03-23 22:28:18 +0000982 tail = p + 8 + nbytes;
Tim Petersf6fb5012002-04-12 07:38:53 +0000983 tail[0] = tail[1] = tail[2] = tail[3] = FORBIDDENBYTE;
Tim Peters62c06ba2002-03-23 22:28:18 +0000984 write4(tail + 4, serialno);
Tim Petersddea2082002-03-23 10:03:50 +0000985
986 return p+8;
987}
988
Tim Peters62c06ba2002-03-23 22:28:18 +0000989/* The debug free first checks the 8 bytes on each end for sanity (in
Tim Petersf6fb5012002-04-12 07:38:53 +0000990 particular, that the FORBIDDENBYTEs are still intact).
991 Then fills the original bytes with DEADBYTE.
Tim Petersddea2082002-03-23 10:03:50 +0000992 Then calls the underlying free.
993*/
994void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000995_PyObject_DebugFree(void *p)
Tim Petersddea2082002-03-23 10:03:50 +0000996{
Tim Peters62c06ba2002-03-23 22:28:18 +0000997 uchar *q = (uchar *)p;
Tim Petersddea2082002-03-23 10:03:50 +0000998 size_t nbytes;
999
Tim Petersddea2082002-03-23 10:03:50 +00001000 if (p == NULL)
1001 return;
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001002 _PyObject_DebugCheckAddress(p);
Tim Petersddea2082002-03-23 10:03:50 +00001003 nbytes = read4(q-8);
1004 if (nbytes > 0)
Tim Petersf6fb5012002-04-12 07:38:53 +00001005 memset(q, DEADBYTE, nbytes);
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001006 PyObject_Free(q-8);
Tim Petersddea2082002-03-23 10:03:50 +00001007}
1008
1009void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001010_PyObject_DebugRealloc(void *p, size_t nbytes)
Tim Petersddea2082002-03-23 10:03:50 +00001011{
1012 uchar *q = (uchar *)p;
Tim Peters85cc1c42002-04-12 08:52:50 +00001013 uchar *tail;
1014 size_t total; /* nbytes + 16 */
Tim Petersddea2082002-03-23 10:03:50 +00001015 size_t original_nbytes;
Tim Petersddea2082002-03-23 10:03:50 +00001016
Tim Petersddea2082002-03-23 10:03:50 +00001017 if (p == NULL)
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001018 return _PyObject_DebugMalloc(nbytes);
Tim Petersddea2082002-03-23 10:03:50 +00001019
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001020 _PyObject_DebugCheckAddress(p);
Tim Peters85cc1c42002-04-12 08:52:50 +00001021 bumpserialno();
Tim Petersddea2082002-03-23 10:03:50 +00001022 original_nbytes = read4(q-8);
Tim Peters85cc1c42002-04-12 08:52:50 +00001023 total = nbytes + 16;
1024 if (total < nbytes || (total >> 31) > 1) {
1025 /* overflow, or we can't represent it in 4 bytes */
1026 return NULL;
Tim Petersddea2082002-03-23 10:03:50 +00001027 }
1028
1029 if (nbytes < original_nbytes) {
Tim Peters85cc1c42002-04-12 08:52:50 +00001030 /* shrinking: mark old extra memory dead */
1031 memset(q + nbytes, DEADBYTE, original_nbytes - nbytes);
Tim Petersddea2082002-03-23 10:03:50 +00001032 }
1033
Tim Peters85cc1c42002-04-12 08:52:50 +00001034 /* Resize and add decorations. */
1035 q = (uchar *)PyObject_Realloc(q-8, total);
1036 if (q == NULL)
1037 return NULL;
1038
1039 write4(q, nbytes);
1040 assert(q[4] == FORBIDDENBYTE &&
1041 q[5] == FORBIDDENBYTE &&
1042 q[6] == FORBIDDENBYTE &&
1043 q[7] == FORBIDDENBYTE);
1044 q += 8;
1045 tail = q + nbytes;
1046 tail[0] = tail[1] = tail[2] = tail[3] = FORBIDDENBYTE;
1047 write4(tail + 4, serialno);
1048
1049 if (nbytes > original_nbytes) {
1050 /* growing: mark new extra memory clean */
1051 memset(q + original_nbytes, CLEANBYTE,
1052 nbytes - original_nbytes);
Tim Peters52aefc82002-04-11 06:36:45 +00001053 }
Tim Peters85cc1c42002-04-12 08:52:50 +00001054
1055 return q;
Tim Petersddea2082002-03-23 10:03:50 +00001056}
1057
Tim Peters7ccfadf2002-04-01 06:04:21 +00001058/* Check the forbidden bytes on both ends of the memory allocated for p.
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001059 * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
Tim Peters7ccfadf2002-04-01 06:04:21 +00001060 * and call Py_FatalError to kill the program.
1061 */
1062 void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001063_PyObject_DebugCheckAddress(const void *p)
Tim Petersddea2082002-03-23 10:03:50 +00001064{
1065 const uchar *q = (const uchar *)p;
Tim Petersd1139e02002-03-28 07:32:11 +00001066 char *msg;
1067 int i;
Tim Petersddea2082002-03-23 10:03:50 +00001068
Tim Petersd1139e02002-03-28 07:32:11 +00001069 if (p == NULL) {
Tim Petersddea2082002-03-23 10:03:50 +00001070 msg = "didn't expect a NULL pointer";
Tim Petersd1139e02002-03-28 07:32:11 +00001071 goto error;
1072 }
Tim Petersddea2082002-03-23 10:03:50 +00001073
Tim Petersd1139e02002-03-28 07:32:11 +00001074 for (i = 4; i >= 1; --i) {
Tim Petersf6fb5012002-04-12 07:38:53 +00001075 if (*(q-i) != FORBIDDENBYTE) {
Tim Petersd1139e02002-03-28 07:32:11 +00001076 msg = "bad leading pad byte";
1077 goto error;
1078 }
1079 }
Tim Petersddea2082002-03-23 10:03:50 +00001080
Tim Petersd1139e02002-03-28 07:32:11 +00001081 {
Tim Petersddea2082002-03-23 10:03:50 +00001082 const ulong nbytes = read4(q-8);
1083 const uchar *tail = q + nbytes;
Tim Petersddea2082002-03-23 10:03:50 +00001084 for (i = 0; i < 4; ++i) {
Tim Petersf6fb5012002-04-12 07:38:53 +00001085 if (tail[i] != FORBIDDENBYTE) {
Tim Petersddea2082002-03-23 10:03:50 +00001086 msg = "bad trailing pad byte";
Tim Petersd1139e02002-03-28 07:32:11 +00001087 goto error;
Tim Petersddea2082002-03-23 10:03:50 +00001088 }
1089 }
1090 }
1091
Tim Petersd1139e02002-03-28 07:32:11 +00001092 return;
1093
1094error:
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001095 _PyObject_DebugDumpAddress(p);
Tim Petersd1139e02002-03-28 07:32:11 +00001096 Py_FatalError(msg);
Tim Petersddea2082002-03-23 10:03:50 +00001097}
1098
Tim Peters7ccfadf2002-04-01 06:04:21 +00001099/* Display info to stderr about the memory block at p. */
Tim Petersddea2082002-03-23 10:03:50 +00001100void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001101_PyObject_DebugDumpAddress(const void *p)
Tim Petersddea2082002-03-23 10:03:50 +00001102{
1103 const uchar *q = (const uchar *)p;
1104 const uchar *tail;
1105 ulong nbytes, serial;
Tim Petersd1139e02002-03-28 07:32:11 +00001106 int i;
Tim Petersddea2082002-03-23 10:03:50 +00001107
1108 fprintf(stderr, "Debug memory block at address p=%p:\n", p);
1109 if (p == NULL)
1110 return;
1111
1112 nbytes = read4(q-8);
Tim Petersf539c682002-04-12 07:43:07 +00001113 fprintf(stderr, " %lu bytes originally requested\n", nbytes);
Tim Petersddea2082002-03-23 10:03:50 +00001114
1115 /* In case this is nuts, check the pad bytes before trying to read up
1116 the serial number (the address deref could blow up). */
1117
Tim Petersd1139e02002-03-28 07:32:11 +00001118 fputs(" the 4 pad bytes at p-4 are ", stderr);
Tim Petersf6fb5012002-04-12 07:38:53 +00001119 if (*(q-4) == FORBIDDENBYTE &&
1120 *(q-3) == FORBIDDENBYTE &&
1121 *(q-2) == FORBIDDENBYTE &&
1122 *(q-1) == FORBIDDENBYTE) {
1123 fputs("FORBIDDENBYTE, as expected\n", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001124 }
1125 else {
Tim Petersf6fb5012002-04-12 07:38:53 +00001126 fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
1127 FORBIDDENBYTE);
Tim Petersd1139e02002-03-28 07:32:11 +00001128 for (i = 4; i >= 1; --i) {
Tim Petersddea2082002-03-23 10:03:50 +00001129 const uchar byte = *(q-i);
1130 fprintf(stderr, " at p-%d: 0x%02x", i, byte);
Tim Petersf6fb5012002-04-12 07:38:53 +00001131 if (byte != FORBIDDENBYTE)
Tim Petersddea2082002-03-23 10:03:50 +00001132 fputs(" *** OUCH", stderr);
1133 fputc('\n', stderr);
1134 }
1135 }
1136
1137 tail = q + nbytes;
1138 fprintf(stderr, " the 4 pad bytes at tail=%p are ", tail);
Tim Petersf6fb5012002-04-12 07:38:53 +00001139 if (tail[0] == FORBIDDENBYTE &&
1140 tail[1] == FORBIDDENBYTE &&
1141 tail[2] == FORBIDDENBYTE &&
1142 tail[3] == FORBIDDENBYTE) {
1143 fputs("FORBIDDENBYTE, as expected\n", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001144 }
1145 else {
Tim Petersf6fb5012002-04-12 07:38:53 +00001146 fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
1147 FORBIDDENBYTE);
Tim Petersddea2082002-03-23 10:03:50 +00001148 for (i = 0; i < 4; ++i) {
1149 const uchar byte = tail[i];
1150 fprintf(stderr, " at tail+%d: 0x%02x",
1151 i, byte);
Tim Petersf6fb5012002-04-12 07:38:53 +00001152 if (byte != FORBIDDENBYTE)
Tim Petersddea2082002-03-23 10:03:50 +00001153 fputs(" *** OUCH", stderr);
1154 fputc('\n', stderr);
1155 }
1156 }
1157
1158 serial = read4(tail+4);
1159 fprintf(stderr, " the block was made by call #%lu to "
1160 "debug malloc/realloc\n", serial);
1161
1162 if (nbytes > 0) {
1163 int i = 0;
Tim Peters62c06ba2002-03-23 22:28:18 +00001164 fputs(" data at p:", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001165 /* print up to 8 bytes at the start */
1166 while (q < tail && i < 8) {
1167 fprintf(stderr, " %02x", *q);
1168 ++i;
1169 ++q;
1170 }
1171 /* and up to 8 at the end */
1172 if (q < tail) {
1173 if (tail - q > 8) {
Tim Peters62c06ba2002-03-23 22:28:18 +00001174 fputs(" ...", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001175 q = tail - 8;
1176 }
1177 while (q < tail) {
1178 fprintf(stderr, " %02x", *q);
1179 ++q;
1180 }
1181 }
Tim Peters62c06ba2002-03-23 22:28:18 +00001182 fputc('\n', stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001183 }
1184}
1185
Tim Peters16bcb6b2002-04-05 05:45:31 +00001186static ulong
1187printone(const char* msg, ulong value)
1188{
Tim Peters49f26812002-04-06 01:45:35 +00001189 int i, k;
1190 char buf[100];
1191 ulong origvalue = value;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001192
1193 fputs(msg, stderr);
Tim Peters49f26812002-04-06 01:45:35 +00001194 for (i = (int)strlen(msg); i < 35; ++i)
Tim Peters16bcb6b2002-04-05 05:45:31 +00001195 fputc(' ', stderr);
Tim Peters49f26812002-04-06 01:45:35 +00001196 fputc('=', stderr);
1197
1198 /* Write the value with commas. */
1199 i = 22;
1200 buf[i--] = '\0';
1201 buf[i--] = '\n';
1202 k = 3;
1203 do {
1204 ulong nextvalue = value / 10UL;
1205 uint digit = value - nextvalue * 10UL;
1206 value = nextvalue;
1207 buf[i--] = (char)(digit + '0');
1208 --k;
1209 if (k == 0 && value && i >= 0) {
1210 k = 3;
1211 buf[i--] = ',';
1212 }
1213 } while (value && i >= 0);
1214
1215 while (i >= 0)
1216 buf[i--] = ' ';
1217 fputs(buf, stderr);
1218
1219 return origvalue;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001220}
1221
Tim Peters7ccfadf2002-04-01 06:04:21 +00001222/* Print summary info to stderr about the state of pymalloc's structures. */
1223void
Tim Peters0e871182002-04-13 08:29:14 +00001224_PyObject_DebugMallocStats(void)
Tim Peters7ccfadf2002-04-01 06:04:21 +00001225{
1226 uint i;
1227 const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001228 /* # of pools, allocated blocks, and free blocks per class index */
Tim Peters7ccfadf2002-04-01 06:04:21 +00001229 ulong numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
Tim Peters7ccfadf2002-04-01 06:04:21 +00001230 ulong numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
Tim Peters7ccfadf2002-04-01 06:04:21 +00001231 ulong numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
Tim Peters16bcb6b2002-04-05 05:45:31 +00001232 /* total # of allocated bytes in used and full pools */
1233 ulong allocated_bytes = 0;
1234 /* total # of available bytes in used pools */
1235 ulong available_bytes = 0;
1236 /* # of free pools + pools not yet carved out of current arena */
1237 uint numfreepools = 0;
1238 /* # of bytes for arena alignment padding */
Tim Peters8a8cdfd2002-04-12 20:49:36 +00001239 ulong arena_alignment = 0;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001240 /* # of bytes in used and full pools used for pool_headers */
1241 ulong pool_header_bytes = 0;
1242 /* # of bytes in used and full pools wasted due to quantization,
1243 * i.e. the necessarily leftover space at the ends of used and
1244 * full pools.
1245 */
1246 ulong quantization = 0;
1247 /* running total -- should equal narenas * ARENA_SIZE */
1248 ulong total;
1249 char buf[128];
Tim Peters7ccfadf2002-04-01 06:04:21 +00001250
Tim Peters7ccfadf2002-04-01 06:04:21 +00001251 fprintf(stderr, "Small block threshold = %d, in %u size classes.\n",
1252 SMALL_REQUEST_THRESHOLD, numclasses);
Tim Peters7ccfadf2002-04-01 06:04:21 +00001253
1254 for (i = 0; i < numclasses; ++i)
1255 numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
1256
Tim Peters6169f092002-04-01 20:12:59 +00001257 /* Because full pools aren't linked to from anything, it's easiest
1258 * to march over all the arenas. If we're lucky, most of the memory
1259 * will be living in full pools -- would be a shame to miss them.
Tim Peters7ccfadf2002-04-01 06:04:21 +00001260 */
1261 for (i = 0; i < narenas; ++i) {
1262 uint poolsinarena;
1263 uint j;
1264 uptr base = arenas[i];
1265
1266 /* round up to pool alignment */
1267 poolsinarena = ARENA_SIZE / POOL_SIZE;
1268 if (base & (uptr)POOL_SIZE_MASK) {
1269 --poolsinarena;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001270 arena_alignment += POOL_SIZE;
Tim Peters7ccfadf2002-04-01 06:04:21 +00001271 base &= ~(uptr)POOL_SIZE_MASK;
1272 base += POOL_SIZE;
1273 }
1274
1275 if (i == narenas - 1) {
1276 /* current arena may have raw memory at the end */
1277 numfreepools += nfreepools;
1278 poolsinarena -= nfreepools;
1279 }
1280
1281 /* visit every pool in the arena */
1282 for (j = 0; j < poolsinarena; ++j, base += POOL_SIZE) {
1283 poolp p = (poolp)base;
1284 if (p->ref.count == 0) {
1285 /* currently unused */
1286 ++numfreepools;
1287 continue;
1288 }
1289 ++numpools[p->szidx];
1290 numblocks[p->szidx] += p->ref.count;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001291 numfreeblocks[p->szidx] += NUMBLOCKS(p->szidx) -
1292 p->ref.count;
Tim Peters7ccfadf2002-04-01 06:04:21 +00001293 }
1294 }
1295
1296 fputc('\n', stderr);
Tim Peters49f26812002-04-06 01:45:35 +00001297 fputs("class size num pools blocks in use avail blocks\n"
1298 "----- ---- --------- ------------- ------------\n",
Tim Peters7ccfadf2002-04-01 06:04:21 +00001299 stderr);
1300
Tim Peters7ccfadf2002-04-01 06:04:21 +00001301 for (i = 0; i < numclasses; ++i) {
1302 ulong p = numpools[i];
1303 ulong b = numblocks[i];
1304 ulong f = numfreeblocks[i];
Tim Peterse70ddf32002-04-05 04:32:29 +00001305 uint size = INDEX2SIZE(i);
Tim Peters7ccfadf2002-04-01 06:04:21 +00001306 if (p == 0) {
1307 assert(b == 0 && f == 0);
1308 continue;
1309 }
Tim Peters49f26812002-04-06 01:45:35 +00001310 fprintf(stderr, "%5u %6u %11lu %15lu %13lu\n",
Tim Peters7ccfadf2002-04-01 06:04:21 +00001311 i, size, p, b, f);
Tim Peters16bcb6b2002-04-05 05:45:31 +00001312 allocated_bytes += b * size;
1313 available_bytes += f * size;
1314 pool_header_bytes += p * POOL_OVERHEAD;
1315 quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
Tim Peters7ccfadf2002-04-01 06:04:21 +00001316 }
1317 fputc('\n', stderr);
Tim Peters0e871182002-04-13 08:29:14 +00001318 (void)printone("# times object malloc called", serialno);
Tim Peters16bcb6b2002-04-05 05:45:31 +00001319
1320 PyOS_snprintf(buf, sizeof(buf),
1321 "%u arenas * %d bytes/arena", narenas, ARENA_SIZE);
1322 (void)printone(buf, (ulong)narenas * ARENA_SIZE);
1323
1324 fputc('\n', stderr);
1325
Tim Peters49f26812002-04-06 01:45:35 +00001326 total = printone("# bytes in allocated blocks", allocated_bytes);
Tim Peters0e871182002-04-13 08:29:14 +00001327 total += printone("# bytes in available blocks", available_bytes);
Tim Peters49f26812002-04-06 01:45:35 +00001328
Tim Peters16bcb6b2002-04-05 05:45:31 +00001329 PyOS_snprintf(buf, sizeof(buf),
1330 "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
Tim Peters49f26812002-04-06 01:45:35 +00001331 total += printone(buf, (ulong)numfreepools * POOL_SIZE);
Tim Peters16bcb6b2002-04-05 05:45:31 +00001332
Tim Peters16bcb6b2002-04-05 05:45:31 +00001333 total += printone("# bytes lost to pool headers", pool_header_bytes);
1334 total += printone("# bytes lost to quantization", quantization);
1335 total += printone("# bytes lost to arena alignment", arena_alignment);
1336 (void)printone("Total", total);
Tim Peters7ccfadf2002-04-01 06:04:21 +00001337}
1338
Tim Petersddea2082002-03-23 10:03:50 +00001339#endif /* PYMALLOC_DEBUG */