Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1 | /**************************************************************** |
| 2 | * |
| 3 | * The author of this software is David M. Gay. |
| 4 | * |
| 5 | * Copyright (c) 1991, 2000, 2001 by Lucent Technologies. |
| 6 | * |
| 7 | * Permission to use, copy, modify, and distribute this software for any |
| 8 | * purpose without fee is hereby granted, provided that this entire notice |
| 9 | * is included in all copies of any software which is or includes a copy |
| 10 | * or modification of this software and in all copies of the supporting |
| 11 | * documentation for such software. |
| 12 | * |
| 13 | * THIS SOFTWARE IS BEING PROVIDED "AS IS", WITHOUT ANY EXPRESS OR IMPLIED |
| 14 | * WARRANTY. IN PARTICULAR, NEITHER THE AUTHOR NOR LUCENT MAKES ANY |
| 15 | * REPRESENTATION OR WARRANTY OF ANY KIND CONCERNING THE MERCHANTABILITY |
| 16 | * OF THIS SOFTWARE OR ITS FITNESS FOR ANY PARTICULAR PURPOSE. |
| 17 | * |
| 18 | ***************************************************************/ |
| 19 | |
| 20 | /**************************************************************** |
| 21 | * This is dtoa.c by David M. Gay, downloaded from |
| 22 | * http://www.netlib.org/fp/dtoa.c on April 15, 2009 and modified for |
| 23 | * inclusion into the Python core by Mark E. T. Dickinson and Eric V. Smith. |
| 24 | * |
| 25 | * Please remember to check http://www.netlib.org/fp regularly (and especially |
| 26 | * before any Python release) for bugfixes and updates. |
| 27 | * |
| 28 | * The major modifications from Gay's original code are as follows: |
| 29 | * |
| 30 | * 0. The original code has been specialized to Python's needs by removing |
| 31 | * many of the #ifdef'd sections. In particular, code to support VAX and |
| 32 | * IBM floating-point formats, hex NaNs, hex floats, locale-aware |
| 33 | * treatment of the decimal point, and setting of the inexact flag have |
| 34 | * been removed. |
| 35 | * |
| 36 | * 1. We use PyMem_Malloc and PyMem_Free in place of malloc and free. |
| 37 | * |
| 38 | * 2. The public functions strtod, dtoa and freedtoa all now have |
| 39 | * a _Py_dg_ prefix. |
| 40 | * |
| 41 | * 3. Instead of assuming that PyMem_Malloc always succeeds, we thread |
| 42 | * PyMem_Malloc failures through the code. The functions |
| 43 | * |
| 44 | * Balloc, multadd, s2b, i2b, mult, pow5mult, lshift, diff, d2b |
| 45 | * |
| 46 | * of return type *Bigint all return NULL to indicate a malloc failure. |
| 47 | * Similarly, rv_alloc and nrv_alloc (return type char *) return NULL on |
| 48 | * failure. bigcomp now has return type int (it used to be void) and |
| 49 | * returns -1 on failure and 0 otherwise. _Py_dg_dtoa returns NULL |
| 50 | * on failure. _Py_dg_strtod indicates failure due to malloc failure |
| 51 | * by returning -1.0, setting errno=ENOMEM and *se to s00. |
| 52 | * |
| 53 | * 4. The static variable dtoa_result has been removed. Callers of |
| 54 | * _Py_dg_dtoa are expected to call _Py_dg_freedtoa to free |
| 55 | * the memory allocated by _Py_dg_dtoa. |
| 56 | * |
| 57 | * 5. The code has been reformatted to better fit with Python's |
| 58 | * C style guide (PEP 7). |
| 59 | * |
| 60 | * 6. A bug in the memory allocation has been fixed: to avoid FREEing memory |
| 61 | * that hasn't been MALLOC'ed, private_mem should only be used when k <= |
| 62 | * Kmax. |
| 63 | * |
| 64 | * 7. _Py_dg_strtod has been modified so that it doesn't accept strings with |
| 65 | * leading whitespace. |
| 66 | * |
| 67 | ***************************************************************/ |
| 68 | |
| 69 | /* Please send bug reports for the original dtoa.c code to David M. Gay (dmg |
| 70 | * at acm dot org, with " at " changed at "@" and " dot " changed to "."). |
| 71 | * Please report bugs for this modified version using the Python issue tracker |
| 72 | * (http://bugs.python.org). */ |
| 73 | |
| 74 | /* On a machine with IEEE extended-precision registers, it is |
| 75 | * necessary to specify double-precision (53-bit) rounding precision |
| 76 | * before invoking strtod or dtoa. If the machine uses (the equivalent |
| 77 | * of) Intel 80x87 arithmetic, the call |
| 78 | * _control87(PC_53, MCW_PC); |
| 79 | * does this with many compilers. Whether this or another call is |
| 80 | * appropriate depends on the compiler; for this to work, it may be |
| 81 | * necessary to #include "float.h" or another system-dependent header |
| 82 | * file. |
| 83 | */ |
| 84 | |
| 85 | /* strtod for IEEE-, VAX-, and IBM-arithmetic machines. |
| 86 | * |
| 87 | * This strtod returns a nearest machine number to the input decimal |
| 88 | * string (or sets errno to ERANGE). With IEEE arithmetic, ties are |
| 89 | * broken by the IEEE round-even rule. Otherwise ties are broken by |
| 90 | * biased rounding (add half and chop). |
| 91 | * |
| 92 | * Inspired loosely by William D. Clinger's paper "How to Read Floating |
| 93 | * Point Numbers Accurately" [Proc. ACM SIGPLAN '90, pp. 92-101]. |
| 94 | * |
| 95 | * Modifications: |
| 96 | * |
| 97 | * 1. We only require IEEE, IBM, or VAX double-precision |
| 98 | * arithmetic (not IEEE double-extended). |
| 99 | * 2. We get by with floating-point arithmetic in a case that |
| 100 | * Clinger missed -- when we're computing d * 10^n |
| 101 | * for a small integer d and the integer n is not too |
| 102 | * much larger than 22 (the maximum integer k for which |
| 103 | * we can represent 10^k exactly), we may be able to |
| 104 | * compute (d*10^k) * 10^(e-k) with just one roundoff. |
| 105 | * 3. Rather than a bit-at-a-time adjustment of the binary |
| 106 | * result in the hard case, we use floating-point |
| 107 | * arithmetic to determine the adjustment to within |
| 108 | * one bit; only in really hard cases do we need to |
| 109 | * compute a second residual. |
| 110 | * 4. Because of 3., we don't need a large table of powers of 10 |
| 111 | * for ten-to-e (just some small tables, e.g. of 10^k |
| 112 | * for 0 <= k <= 22). |
| 113 | */ |
| 114 | |
| 115 | /* Linking of Python's #defines to Gay's #defines starts here. */ |
| 116 | |
| 117 | #include "Python.h" |
| 118 | |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 119 | /* if PY_NO_SHORT_FLOAT_REPR is defined, then don't even try to compile |
| 120 | the following code */ |
| 121 | #ifndef PY_NO_SHORT_FLOAT_REPR |
| 122 | |
| 123 | #include "float.h" |
| 124 | |
| 125 | #define MALLOC PyMem_Malloc |
| 126 | #define FREE PyMem_Free |
| 127 | |
| 128 | /* This code should also work for ARM mixed-endian format on little-endian |
| 129 | machines, where doubles have byte order 45670123 (in increasing address |
| 130 | order, 0 being the least significant byte). */ |
| 131 | #ifdef DOUBLE_IS_LITTLE_ENDIAN_IEEE754 |
| 132 | # define IEEE_8087 |
| 133 | #endif |
| 134 | #if defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) || \ |
| 135 | defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754) |
| 136 | # define IEEE_MC68k |
| 137 | #endif |
| 138 | #if defined(IEEE_8087) + defined(IEEE_MC68k) != 1 |
| 139 | #error "Exactly one of IEEE_8087 or IEEE_MC68k should be defined." |
| 140 | #endif |
| 141 | |
| 142 | /* The code below assumes that the endianness of integers matches the |
| 143 | endianness of the two 32-bit words of a double. Check this. */ |
| 144 | #if defined(WORDS_BIGENDIAN) && (defined(DOUBLE_IS_LITTLE_ENDIAN_IEEE754) || \ |
| 145 | defined(DOUBLE_IS_ARM_MIXED_ENDIAN_IEEE754)) |
| 146 | #error "doubles and ints have incompatible endianness" |
| 147 | #endif |
| 148 | |
| 149 | #if !defined(WORDS_BIGENDIAN) && defined(DOUBLE_IS_BIG_ENDIAN_IEEE754) |
| 150 | #error "doubles and ints have incompatible endianness" |
| 151 | #endif |
| 152 | |
| 153 | |
| 154 | #if defined(HAVE_UINT32_T) && defined(HAVE_INT32_T) |
| 155 | typedef PY_UINT32_T ULong; |
| 156 | typedef PY_INT32_T Long; |
| 157 | #else |
| 158 | #error "Failed to find an exact-width 32-bit integer type" |
| 159 | #endif |
| 160 | |
| 161 | #if defined(HAVE_UINT64_T) |
| 162 | #define ULLong PY_UINT64_T |
| 163 | #else |
| 164 | #undef ULLong |
| 165 | #endif |
| 166 | |
| 167 | #undef DEBUG |
| 168 | #ifdef Py_DEBUG |
| 169 | #define DEBUG |
| 170 | #endif |
| 171 | |
| 172 | /* End Python #define linking */ |
| 173 | |
| 174 | #ifdef DEBUG |
| 175 | #define Bug(x) {fprintf(stderr, "%s\n", x); exit(1);} |
| 176 | #endif |
| 177 | |
| 178 | #ifndef PRIVATE_MEM |
| 179 | #define PRIVATE_MEM 2304 |
| 180 | #endif |
| 181 | #define PRIVATE_mem ((PRIVATE_MEM+sizeof(double)-1)/sizeof(double)) |
| 182 | static double private_mem[PRIVATE_mem], *pmem_next = private_mem; |
| 183 | |
| 184 | #ifdef __cplusplus |
| 185 | extern "C" { |
| 186 | #endif |
| 187 | |
| 188 | typedef union { double d; ULong L[2]; } U; |
| 189 | |
| 190 | #ifdef IEEE_8087 |
| 191 | #define word0(x) (x)->L[1] |
| 192 | #define word1(x) (x)->L[0] |
| 193 | #else |
| 194 | #define word0(x) (x)->L[0] |
| 195 | #define word1(x) (x)->L[1] |
| 196 | #endif |
| 197 | #define dval(x) (x)->d |
| 198 | |
| 199 | #ifndef STRTOD_DIGLIM |
| 200 | #define STRTOD_DIGLIM 40 |
| 201 | #endif |
| 202 | |
Mark Dickinson | 0ca7452 | 2010-01-11 17:15:13 +0000 | [diff] [blame] | 203 | /* maximum permitted exponent value for strtod; exponents larger than |
| 204 | MAX_ABS_EXP in absolute value get truncated to +-MAX_ABS_EXP. MAX_ABS_EXP |
| 205 | should fit into an int. */ |
| 206 | #ifndef MAX_ABS_EXP |
| 207 | #define MAX_ABS_EXP 19999U |
| 208 | #endif |
| 209 | |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 210 | /* The following definition of Storeinc is appropriate for MIPS processors. |
| 211 | * An alternative that might be better on some machines is |
| 212 | * #define Storeinc(a,b,c) (*a++ = b << 16 | c & 0xffff) |
| 213 | */ |
| 214 | #if defined(IEEE_8087) |
| 215 | #define Storeinc(a,b,c) (((unsigned short *)a)[1] = (unsigned short)b, \ |
| 216 | ((unsigned short *)a)[0] = (unsigned short)c, a++) |
| 217 | #else |
| 218 | #define Storeinc(a,b,c) (((unsigned short *)a)[0] = (unsigned short)b, \ |
| 219 | ((unsigned short *)a)[1] = (unsigned short)c, a++) |
| 220 | #endif |
| 221 | |
| 222 | /* #define P DBL_MANT_DIG */ |
| 223 | /* Ten_pmax = floor(P*log(2)/log(5)) */ |
| 224 | /* Bletch = (highest power of 2 < DBL_MAX_10_EXP) / 16 */ |
| 225 | /* Quick_max = floor((P-1)*log(FLT_RADIX)/log(10) - 1) */ |
| 226 | /* Int_max = floor(P*log(FLT_RADIX)/log(10) - 1) */ |
| 227 | |
| 228 | #define Exp_shift 20 |
| 229 | #define Exp_shift1 20 |
| 230 | #define Exp_msk1 0x100000 |
| 231 | #define Exp_msk11 0x100000 |
| 232 | #define Exp_mask 0x7ff00000 |
| 233 | #define P 53 |
| 234 | #define Nbits 53 |
| 235 | #define Bias 1023 |
| 236 | #define Emax 1023 |
| 237 | #define Emin (-1022) |
| 238 | #define Exp_1 0x3ff00000 |
| 239 | #define Exp_11 0x3ff00000 |
| 240 | #define Ebits 11 |
| 241 | #define Frac_mask 0xfffff |
| 242 | #define Frac_mask1 0xfffff |
| 243 | #define Ten_pmax 22 |
| 244 | #define Bletch 0x10 |
| 245 | #define Bndry_mask 0xfffff |
| 246 | #define Bndry_mask1 0xfffff |
| 247 | #define LSB 1 |
| 248 | #define Sign_bit 0x80000000 |
| 249 | #define Log2P 1 |
| 250 | #define Tiny0 0 |
| 251 | #define Tiny1 1 |
| 252 | #define Quick_max 14 |
| 253 | #define Int_max 14 |
| 254 | |
| 255 | #ifndef Flt_Rounds |
| 256 | #ifdef FLT_ROUNDS |
| 257 | #define Flt_Rounds FLT_ROUNDS |
| 258 | #else |
| 259 | #define Flt_Rounds 1 |
| 260 | #endif |
| 261 | #endif /*Flt_Rounds*/ |
| 262 | |
| 263 | #define Rounding Flt_Rounds |
| 264 | |
| 265 | #define Big0 (Frac_mask1 | Exp_msk1*(DBL_MAX_EXP+Bias-1)) |
| 266 | #define Big1 0xffffffff |
| 267 | |
| 268 | /* struct BCinfo is used to pass information from _Py_dg_strtod to bigcomp */ |
| 269 | |
| 270 | typedef struct BCinfo BCinfo; |
| 271 | struct |
| 272 | BCinfo { |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 273 | int dsign, e0, nd, nd0, scale; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 274 | }; |
| 275 | |
| 276 | #define FFFFFFFF 0xffffffffUL |
| 277 | |
| 278 | #define Kmax 7 |
| 279 | |
| 280 | /* struct Bigint is used to represent arbitrary-precision integers. These |
| 281 | integers are stored in sign-magnitude format, with the magnitude stored as |
| 282 | an array of base 2**32 digits. Bigints are always normalized: if x is a |
| 283 | Bigint then x->wds >= 1, and either x->wds == 1 or x[wds-1] is nonzero. |
| 284 | |
| 285 | The Bigint fields are as follows: |
| 286 | |
| 287 | - next is a header used by Balloc and Bfree to keep track of lists |
| 288 | of freed Bigints; it's also used for the linked list of |
| 289 | powers of 5 of the form 5**2**i used by pow5mult. |
| 290 | - k indicates which pool this Bigint was allocated from |
| 291 | - maxwds is the maximum number of words space was allocated for |
| 292 | (usually maxwds == 2**k) |
| 293 | - sign is 1 for negative Bigints, 0 for positive. The sign is unused |
| 294 | (ignored on inputs, set to 0 on outputs) in almost all operations |
| 295 | involving Bigints: a notable exception is the diff function, which |
| 296 | ignores signs on inputs but sets the sign of the output correctly. |
| 297 | - wds is the actual number of significant words |
| 298 | - x contains the vector of words (digits) for this Bigint, from least |
| 299 | significant (x[0]) to most significant (x[wds-1]). |
| 300 | */ |
| 301 | |
| 302 | struct |
| 303 | Bigint { |
| 304 | struct Bigint *next; |
| 305 | int k, maxwds, sign, wds; |
| 306 | ULong x[1]; |
| 307 | }; |
| 308 | |
| 309 | typedef struct Bigint Bigint; |
| 310 | |
| 311 | /* Memory management: memory is allocated from, and returned to, Kmax+1 pools |
| 312 | of memory, where pool k (0 <= k <= Kmax) is for Bigints b with b->maxwds == |
| 313 | 1 << k. These pools are maintained as linked lists, with freelist[k] |
| 314 | pointing to the head of the list for pool k. |
| 315 | |
| 316 | On allocation, if there's no free slot in the appropriate pool, MALLOC is |
| 317 | called to get more memory. This memory is not returned to the system until |
| 318 | Python quits. There's also a private memory pool that's allocated from |
| 319 | in preference to using MALLOC. |
| 320 | |
| 321 | For Bigints with more than (1 << Kmax) digits (which implies at least 1233 |
| 322 | decimal digits), memory is directly allocated using MALLOC, and freed using |
| 323 | FREE. |
| 324 | |
| 325 | XXX: it would be easy to bypass this memory-management system and |
| 326 | translate each call to Balloc into a call to PyMem_Malloc, and each |
| 327 | Bfree to PyMem_Free. Investigate whether this has any significant |
| 328 | performance on impact. */ |
| 329 | |
| 330 | static Bigint *freelist[Kmax+1]; |
| 331 | |
| 332 | /* Allocate space for a Bigint with up to 1<<k digits */ |
| 333 | |
| 334 | static Bigint * |
| 335 | Balloc(int k) |
| 336 | { |
| 337 | int x; |
| 338 | Bigint *rv; |
| 339 | unsigned int len; |
| 340 | |
| 341 | if (k <= Kmax && (rv = freelist[k])) |
| 342 | freelist[k] = rv->next; |
| 343 | else { |
| 344 | x = 1 << k; |
| 345 | len = (sizeof(Bigint) + (x-1)*sizeof(ULong) + sizeof(double) - 1) |
| 346 | /sizeof(double); |
| 347 | if (k <= Kmax && pmem_next - private_mem + len <= PRIVATE_mem) { |
| 348 | rv = (Bigint*)pmem_next; |
| 349 | pmem_next += len; |
| 350 | } |
| 351 | else { |
| 352 | rv = (Bigint*)MALLOC(len*sizeof(double)); |
| 353 | if (rv == NULL) |
| 354 | return NULL; |
| 355 | } |
| 356 | rv->k = k; |
| 357 | rv->maxwds = x; |
| 358 | } |
| 359 | rv->sign = rv->wds = 0; |
| 360 | return rv; |
| 361 | } |
| 362 | |
| 363 | /* Free a Bigint allocated with Balloc */ |
| 364 | |
| 365 | static void |
| 366 | Bfree(Bigint *v) |
| 367 | { |
| 368 | if (v) { |
| 369 | if (v->k > Kmax) |
| 370 | FREE((void*)v); |
| 371 | else { |
| 372 | v->next = freelist[v->k]; |
| 373 | freelist[v->k] = v; |
| 374 | } |
| 375 | } |
| 376 | } |
| 377 | |
| 378 | #define Bcopy(x,y) memcpy((char *)&x->sign, (char *)&y->sign, \ |
| 379 | y->wds*sizeof(Long) + 2*sizeof(int)) |
| 380 | |
| 381 | /* Multiply a Bigint b by m and add a. Either modifies b in place and returns |
| 382 | a pointer to the modified b, or Bfrees b and returns a pointer to a copy. |
| 383 | On failure, return NULL. In this case, b will have been already freed. */ |
| 384 | |
| 385 | static Bigint * |
| 386 | multadd(Bigint *b, int m, int a) /* multiply by m and add a */ |
| 387 | { |
| 388 | int i, wds; |
| 389 | #ifdef ULLong |
| 390 | ULong *x; |
| 391 | ULLong carry, y; |
| 392 | #else |
| 393 | ULong carry, *x, y; |
| 394 | ULong xi, z; |
| 395 | #endif |
| 396 | Bigint *b1; |
| 397 | |
| 398 | wds = b->wds; |
| 399 | x = b->x; |
| 400 | i = 0; |
| 401 | carry = a; |
| 402 | do { |
| 403 | #ifdef ULLong |
| 404 | y = *x * (ULLong)m + carry; |
| 405 | carry = y >> 32; |
| 406 | *x++ = (ULong)(y & FFFFFFFF); |
| 407 | #else |
| 408 | xi = *x; |
| 409 | y = (xi & 0xffff) * m + carry; |
| 410 | z = (xi >> 16) * m + (y >> 16); |
| 411 | carry = z >> 16; |
| 412 | *x++ = (z << 16) + (y & 0xffff); |
| 413 | #endif |
| 414 | } |
| 415 | while(++i < wds); |
| 416 | if (carry) { |
| 417 | if (wds >= b->maxwds) { |
| 418 | b1 = Balloc(b->k+1); |
| 419 | if (b1 == NULL){ |
| 420 | Bfree(b); |
| 421 | return NULL; |
| 422 | } |
| 423 | Bcopy(b1, b); |
| 424 | Bfree(b); |
| 425 | b = b1; |
| 426 | } |
| 427 | b->x[wds++] = (ULong)carry; |
| 428 | b->wds = wds; |
| 429 | } |
| 430 | return b; |
| 431 | } |
| 432 | |
| 433 | /* convert a string s containing nd decimal digits (possibly containing a |
| 434 | decimal separator at position nd0, which is ignored) to a Bigint. This |
| 435 | function carries on where the parsing code in _Py_dg_strtod leaves off: on |
| 436 | entry, y9 contains the result of converting the first 9 digits. Returns |
| 437 | NULL on failure. */ |
| 438 | |
| 439 | static Bigint * |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 440 | s2b(const char *s, int nd0, int nd, ULong y9) |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 441 | { |
| 442 | Bigint *b; |
| 443 | int i, k; |
| 444 | Long x, y; |
| 445 | |
| 446 | x = (nd + 8) / 9; |
| 447 | for(k = 0, y = 1; x > y; y <<= 1, k++) ; |
| 448 | b = Balloc(k); |
| 449 | if (b == NULL) |
| 450 | return NULL; |
| 451 | b->x[0] = y9; |
| 452 | b->wds = 1; |
| 453 | |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 454 | if (nd <= 9) |
| 455 | return b; |
| 456 | |
| 457 | s += 9; |
| 458 | for (i = 9; i < nd0; i++) { |
| 459 | b = multadd(b, 10, *s++ - '0'); |
| 460 | if (b == NULL) |
| 461 | return NULL; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 462 | } |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 463 | s++; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 464 | for(; i < nd; i++) { |
| 465 | b = multadd(b, 10, *s++ - '0'); |
| 466 | if (b == NULL) |
| 467 | return NULL; |
| 468 | } |
| 469 | return b; |
| 470 | } |
| 471 | |
| 472 | /* count leading 0 bits in the 32-bit integer x. */ |
| 473 | |
| 474 | static int |
| 475 | hi0bits(ULong x) |
| 476 | { |
| 477 | int k = 0; |
| 478 | |
| 479 | if (!(x & 0xffff0000)) { |
| 480 | k = 16; |
| 481 | x <<= 16; |
| 482 | } |
| 483 | if (!(x & 0xff000000)) { |
| 484 | k += 8; |
| 485 | x <<= 8; |
| 486 | } |
| 487 | if (!(x & 0xf0000000)) { |
| 488 | k += 4; |
| 489 | x <<= 4; |
| 490 | } |
| 491 | if (!(x & 0xc0000000)) { |
| 492 | k += 2; |
| 493 | x <<= 2; |
| 494 | } |
| 495 | if (!(x & 0x80000000)) { |
| 496 | k++; |
| 497 | if (!(x & 0x40000000)) |
| 498 | return 32; |
| 499 | } |
| 500 | return k; |
| 501 | } |
| 502 | |
| 503 | /* count trailing 0 bits in the 32-bit integer y, and shift y right by that |
| 504 | number of bits. */ |
| 505 | |
| 506 | static int |
| 507 | lo0bits(ULong *y) |
| 508 | { |
| 509 | int k; |
| 510 | ULong x = *y; |
| 511 | |
| 512 | if (x & 7) { |
| 513 | if (x & 1) |
| 514 | return 0; |
| 515 | if (x & 2) { |
| 516 | *y = x >> 1; |
| 517 | return 1; |
| 518 | } |
| 519 | *y = x >> 2; |
| 520 | return 2; |
| 521 | } |
| 522 | k = 0; |
| 523 | if (!(x & 0xffff)) { |
| 524 | k = 16; |
| 525 | x >>= 16; |
| 526 | } |
| 527 | if (!(x & 0xff)) { |
| 528 | k += 8; |
| 529 | x >>= 8; |
| 530 | } |
| 531 | if (!(x & 0xf)) { |
| 532 | k += 4; |
| 533 | x >>= 4; |
| 534 | } |
| 535 | if (!(x & 0x3)) { |
| 536 | k += 2; |
| 537 | x >>= 2; |
| 538 | } |
| 539 | if (!(x & 1)) { |
| 540 | k++; |
| 541 | x >>= 1; |
| 542 | if (!x) |
| 543 | return 32; |
| 544 | } |
| 545 | *y = x; |
| 546 | return k; |
| 547 | } |
| 548 | |
| 549 | /* convert a small nonnegative integer to a Bigint */ |
| 550 | |
| 551 | static Bigint * |
| 552 | i2b(int i) |
| 553 | { |
| 554 | Bigint *b; |
| 555 | |
| 556 | b = Balloc(1); |
| 557 | if (b == NULL) |
| 558 | return NULL; |
| 559 | b->x[0] = i; |
| 560 | b->wds = 1; |
| 561 | return b; |
| 562 | } |
| 563 | |
| 564 | /* multiply two Bigints. Returns a new Bigint, or NULL on failure. Ignores |
| 565 | the signs of a and b. */ |
| 566 | |
| 567 | static Bigint * |
| 568 | mult(Bigint *a, Bigint *b) |
| 569 | { |
| 570 | Bigint *c; |
| 571 | int k, wa, wb, wc; |
| 572 | ULong *x, *xa, *xae, *xb, *xbe, *xc, *xc0; |
| 573 | ULong y; |
| 574 | #ifdef ULLong |
| 575 | ULLong carry, z; |
| 576 | #else |
| 577 | ULong carry, z; |
| 578 | ULong z2; |
| 579 | #endif |
| 580 | |
| 581 | if (a->wds < b->wds) { |
| 582 | c = a; |
| 583 | a = b; |
| 584 | b = c; |
| 585 | } |
| 586 | k = a->k; |
| 587 | wa = a->wds; |
| 588 | wb = b->wds; |
| 589 | wc = wa + wb; |
| 590 | if (wc > a->maxwds) |
| 591 | k++; |
| 592 | c = Balloc(k); |
| 593 | if (c == NULL) |
| 594 | return NULL; |
| 595 | for(x = c->x, xa = x + wc; x < xa; x++) |
| 596 | *x = 0; |
| 597 | xa = a->x; |
| 598 | xae = xa + wa; |
| 599 | xb = b->x; |
| 600 | xbe = xb + wb; |
| 601 | xc0 = c->x; |
| 602 | #ifdef ULLong |
| 603 | for(; xb < xbe; xc0++) { |
| 604 | if ((y = *xb++)) { |
| 605 | x = xa; |
| 606 | xc = xc0; |
| 607 | carry = 0; |
| 608 | do { |
| 609 | z = *x++ * (ULLong)y + *xc + carry; |
| 610 | carry = z >> 32; |
| 611 | *xc++ = (ULong)(z & FFFFFFFF); |
| 612 | } |
| 613 | while(x < xae); |
| 614 | *xc = (ULong)carry; |
| 615 | } |
| 616 | } |
| 617 | #else |
| 618 | for(; xb < xbe; xb++, xc0++) { |
| 619 | if (y = *xb & 0xffff) { |
| 620 | x = xa; |
| 621 | xc = xc0; |
| 622 | carry = 0; |
| 623 | do { |
| 624 | z = (*x & 0xffff) * y + (*xc & 0xffff) + carry; |
| 625 | carry = z >> 16; |
| 626 | z2 = (*x++ >> 16) * y + (*xc >> 16) + carry; |
| 627 | carry = z2 >> 16; |
| 628 | Storeinc(xc, z2, z); |
| 629 | } |
| 630 | while(x < xae); |
| 631 | *xc = carry; |
| 632 | } |
| 633 | if (y = *xb >> 16) { |
| 634 | x = xa; |
| 635 | xc = xc0; |
| 636 | carry = 0; |
| 637 | z2 = *xc; |
| 638 | do { |
| 639 | z = (*x & 0xffff) * y + (*xc >> 16) + carry; |
| 640 | carry = z >> 16; |
| 641 | Storeinc(xc, z, z2); |
| 642 | z2 = (*x++ >> 16) * y + (*xc & 0xffff) + carry; |
| 643 | carry = z2 >> 16; |
| 644 | } |
| 645 | while(x < xae); |
| 646 | *xc = z2; |
| 647 | } |
| 648 | } |
| 649 | #endif |
| 650 | for(xc0 = c->x, xc = xc0 + wc; wc > 0 && !*--xc; --wc) ; |
| 651 | c->wds = wc; |
| 652 | return c; |
| 653 | } |
| 654 | |
| 655 | /* p5s is a linked list of powers of 5 of the form 5**(2**i), i >= 2 */ |
| 656 | |
| 657 | static Bigint *p5s; |
| 658 | |
| 659 | /* multiply the Bigint b by 5**k. Returns a pointer to the result, or NULL on |
| 660 | failure; if the returned pointer is distinct from b then the original |
| 661 | Bigint b will have been Bfree'd. Ignores the sign of b. */ |
| 662 | |
| 663 | static Bigint * |
| 664 | pow5mult(Bigint *b, int k) |
| 665 | { |
| 666 | Bigint *b1, *p5, *p51; |
| 667 | int i; |
| 668 | static int p05[3] = { 5, 25, 125 }; |
| 669 | |
| 670 | if ((i = k & 3)) { |
| 671 | b = multadd(b, p05[i-1], 0); |
| 672 | if (b == NULL) |
| 673 | return NULL; |
| 674 | } |
| 675 | |
| 676 | if (!(k >>= 2)) |
| 677 | return b; |
| 678 | p5 = p5s; |
| 679 | if (!p5) { |
| 680 | /* first time */ |
| 681 | p5 = i2b(625); |
| 682 | if (p5 == NULL) { |
| 683 | Bfree(b); |
| 684 | return NULL; |
| 685 | } |
| 686 | p5s = p5; |
| 687 | p5->next = 0; |
| 688 | } |
| 689 | for(;;) { |
| 690 | if (k & 1) { |
| 691 | b1 = mult(b, p5); |
| 692 | Bfree(b); |
| 693 | b = b1; |
| 694 | if (b == NULL) |
| 695 | return NULL; |
| 696 | } |
| 697 | if (!(k >>= 1)) |
| 698 | break; |
| 699 | p51 = p5->next; |
| 700 | if (!p51) { |
| 701 | p51 = mult(p5,p5); |
| 702 | if (p51 == NULL) { |
| 703 | Bfree(b); |
| 704 | return NULL; |
| 705 | } |
| 706 | p51->next = 0; |
| 707 | p5->next = p51; |
| 708 | } |
| 709 | p5 = p51; |
| 710 | } |
| 711 | return b; |
| 712 | } |
| 713 | |
| 714 | /* shift a Bigint b left by k bits. Return a pointer to the shifted result, |
| 715 | or NULL on failure. If the returned pointer is distinct from b then the |
| 716 | original b will have been Bfree'd. Ignores the sign of b. */ |
| 717 | |
| 718 | static Bigint * |
| 719 | lshift(Bigint *b, int k) |
| 720 | { |
| 721 | int i, k1, n, n1; |
| 722 | Bigint *b1; |
| 723 | ULong *x, *x1, *xe, z; |
| 724 | |
| 725 | n = k >> 5; |
| 726 | k1 = b->k; |
| 727 | n1 = n + b->wds + 1; |
| 728 | for(i = b->maxwds; n1 > i; i <<= 1) |
| 729 | k1++; |
| 730 | b1 = Balloc(k1); |
| 731 | if (b1 == NULL) { |
| 732 | Bfree(b); |
| 733 | return NULL; |
| 734 | } |
| 735 | x1 = b1->x; |
| 736 | for(i = 0; i < n; i++) |
| 737 | *x1++ = 0; |
| 738 | x = b->x; |
| 739 | xe = x + b->wds; |
| 740 | if (k &= 0x1f) { |
| 741 | k1 = 32 - k; |
| 742 | z = 0; |
| 743 | do { |
| 744 | *x1++ = *x << k | z; |
| 745 | z = *x++ >> k1; |
| 746 | } |
| 747 | while(x < xe); |
| 748 | if ((*x1 = z)) |
| 749 | ++n1; |
| 750 | } |
| 751 | else do |
| 752 | *x1++ = *x++; |
| 753 | while(x < xe); |
| 754 | b1->wds = n1 - 1; |
| 755 | Bfree(b); |
| 756 | return b1; |
| 757 | } |
| 758 | |
| 759 | /* Do a three-way compare of a and b, returning -1 if a < b, 0 if a == b and |
| 760 | 1 if a > b. Ignores signs of a and b. */ |
| 761 | |
| 762 | static int |
| 763 | cmp(Bigint *a, Bigint *b) |
| 764 | { |
| 765 | ULong *xa, *xa0, *xb, *xb0; |
| 766 | int i, j; |
| 767 | |
| 768 | i = a->wds; |
| 769 | j = b->wds; |
| 770 | #ifdef DEBUG |
| 771 | if (i > 1 && !a->x[i-1]) |
| 772 | Bug("cmp called with a->x[a->wds-1] == 0"); |
| 773 | if (j > 1 && !b->x[j-1]) |
| 774 | Bug("cmp called with b->x[b->wds-1] == 0"); |
| 775 | #endif |
| 776 | if (i -= j) |
| 777 | return i; |
| 778 | xa0 = a->x; |
| 779 | xa = xa0 + j; |
| 780 | xb0 = b->x; |
| 781 | xb = xb0 + j; |
| 782 | for(;;) { |
| 783 | if (*--xa != *--xb) |
| 784 | return *xa < *xb ? -1 : 1; |
| 785 | if (xa <= xa0) |
| 786 | break; |
| 787 | } |
| 788 | return 0; |
| 789 | } |
| 790 | |
| 791 | /* Take the difference of Bigints a and b, returning a new Bigint. Returns |
| 792 | NULL on failure. The signs of a and b are ignored, but the sign of the |
| 793 | result is set appropriately. */ |
| 794 | |
| 795 | static Bigint * |
| 796 | diff(Bigint *a, Bigint *b) |
| 797 | { |
| 798 | Bigint *c; |
| 799 | int i, wa, wb; |
| 800 | ULong *xa, *xae, *xb, *xbe, *xc; |
| 801 | #ifdef ULLong |
| 802 | ULLong borrow, y; |
| 803 | #else |
| 804 | ULong borrow, y; |
| 805 | ULong z; |
| 806 | #endif |
| 807 | |
| 808 | i = cmp(a,b); |
| 809 | if (!i) { |
| 810 | c = Balloc(0); |
| 811 | if (c == NULL) |
| 812 | return NULL; |
| 813 | c->wds = 1; |
| 814 | c->x[0] = 0; |
| 815 | return c; |
| 816 | } |
| 817 | if (i < 0) { |
| 818 | c = a; |
| 819 | a = b; |
| 820 | b = c; |
| 821 | i = 1; |
| 822 | } |
| 823 | else |
| 824 | i = 0; |
| 825 | c = Balloc(a->k); |
| 826 | if (c == NULL) |
| 827 | return NULL; |
| 828 | c->sign = i; |
| 829 | wa = a->wds; |
| 830 | xa = a->x; |
| 831 | xae = xa + wa; |
| 832 | wb = b->wds; |
| 833 | xb = b->x; |
| 834 | xbe = xb + wb; |
| 835 | xc = c->x; |
| 836 | borrow = 0; |
| 837 | #ifdef ULLong |
| 838 | do { |
| 839 | y = (ULLong)*xa++ - *xb++ - borrow; |
| 840 | borrow = y >> 32 & (ULong)1; |
| 841 | *xc++ = (ULong)(y & FFFFFFFF); |
| 842 | } |
| 843 | while(xb < xbe); |
| 844 | while(xa < xae) { |
| 845 | y = *xa++ - borrow; |
| 846 | borrow = y >> 32 & (ULong)1; |
| 847 | *xc++ = (ULong)(y & FFFFFFFF); |
| 848 | } |
| 849 | #else |
| 850 | do { |
| 851 | y = (*xa & 0xffff) - (*xb & 0xffff) - borrow; |
| 852 | borrow = (y & 0x10000) >> 16; |
| 853 | z = (*xa++ >> 16) - (*xb++ >> 16) - borrow; |
| 854 | borrow = (z & 0x10000) >> 16; |
| 855 | Storeinc(xc, z, y); |
| 856 | } |
| 857 | while(xb < xbe); |
| 858 | while(xa < xae) { |
| 859 | y = (*xa & 0xffff) - borrow; |
| 860 | borrow = (y & 0x10000) >> 16; |
| 861 | z = (*xa++ >> 16) - borrow; |
| 862 | borrow = (z & 0x10000) >> 16; |
| 863 | Storeinc(xc, z, y); |
| 864 | } |
| 865 | #endif |
| 866 | while(!*--xc) |
| 867 | wa--; |
| 868 | c->wds = wa; |
| 869 | return c; |
| 870 | } |
| 871 | |
| 872 | /* Given a positive normal double x, return the difference between x and the next |
| 873 | double up. Doesn't give correct results for subnormals. */ |
| 874 | |
| 875 | static double |
| 876 | ulp(U *x) |
| 877 | { |
| 878 | Long L; |
| 879 | U u; |
| 880 | |
| 881 | L = (word0(x) & Exp_mask) - (P-1)*Exp_msk1; |
| 882 | word0(&u) = L; |
| 883 | word1(&u) = 0; |
| 884 | return dval(&u); |
| 885 | } |
| 886 | |
| 887 | /* Convert a Bigint to a double plus an exponent */ |
| 888 | |
| 889 | static double |
| 890 | b2d(Bigint *a, int *e) |
| 891 | { |
| 892 | ULong *xa, *xa0, w, y, z; |
| 893 | int k; |
| 894 | U d; |
| 895 | |
| 896 | xa0 = a->x; |
| 897 | xa = xa0 + a->wds; |
| 898 | y = *--xa; |
| 899 | #ifdef DEBUG |
| 900 | if (!y) Bug("zero y in b2d"); |
| 901 | #endif |
| 902 | k = hi0bits(y); |
| 903 | *e = 32 - k; |
| 904 | if (k < Ebits) { |
| 905 | word0(&d) = Exp_1 | y >> (Ebits - k); |
| 906 | w = xa > xa0 ? *--xa : 0; |
| 907 | word1(&d) = y << ((32-Ebits) + k) | w >> (Ebits - k); |
| 908 | goto ret_d; |
| 909 | } |
| 910 | z = xa > xa0 ? *--xa : 0; |
| 911 | if (k -= Ebits) { |
| 912 | word0(&d) = Exp_1 | y << k | z >> (32 - k); |
| 913 | y = xa > xa0 ? *--xa : 0; |
| 914 | word1(&d) = z << k | y >> (32 - k); |
| 915 | } |
| 916 | else { |
| 917 | word0(&d) = Exp_1 | y; |
| 918 | word1(&d) = z; |
| 919 | } |
| 920 | ret_d: |
| 921 | return dval(&d); |
| 922 | } |
| 923 | |
| 924 | /* Convert a double to a Bigint plus an exponent. Return NULL on failure. |
| 925 | |
| 926 | Given a finite nonzero double d, return an odd Bigint b and exponent *e |
| 927 | such that fabs(d) = b * 2**e. On return, *bbits gives the number of |
Mark Dickinson | 2bcd177 | 2010-01-04 21:32:02 +0000 | [diff] [blame] | 928 | significant bits of b; that is, 2**(*bbits-1) <= b < 2**(*bbits). |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 929 | |
| 930 | If d is zero, then b == 0, *e == -1010, *bbits = 0. |
| 931 | */ |
| 932 | |
| 933 | |
| 934 | static Bigint * |
| 935 | d2b(U *d, int *e, int *bits) |
| 936 | { |
| 937 | Bigint *b; |
| 938 | int de, k; |
| 939 | ULong *x, y, z; |
| 940 | int i; |
| 941 | |
| 942 | b = Balloc(1); |
| 943 | if (b == NULL) |
| 944 | return NULL; |
| 945 | x = b->x; |
| 946 | |
| 947 | z = word0(d) & Frac_mask; |
| 948 | word0(d) &= 0x7fffffff; /* clear sign bit, which we ignore */ |
| 949 | if ((de = (int)(word0(d) >> Exp_shift))) |
| 950 | z |= Exp_msk1; |
| 951 | if ((y = word1(d))) { |
| 952 | if ((k = lo0bits(&y))) { |
| 953 | x[0] = y | z << (32 - k); |
| 954 | z >>= k; |
| 955 | } |
| 956 | else |
| 957 | x[0] = y; |
| 958 | i = |
| 959 | b->wds = (x[1] = z) ? 2 : 1; |
| 960 | } |
| 961 | else { |
| 962 | k = lo0bits(&z); |
| 963 | x[0] = z; |
| 964 | i = |
| 965 | b->wds = 1; |
| 966 | k += 32; |
| 967 | } |
| 968 | if (de) { |
| 969 | *e = de - Bias - (P-1) + k; |
| 970 | *bits = P - k; |
| 971 | } |
| 972 | else { |
| 973 | *e = de - Bias - (P-1) + 1 + k; |
| 974 | *bits = 32*i - hi0bits(x[i-1]); |
| 975 | } |
| 976 | return b; |
| 977 | } |
| 978 | |
| 979 | /* Compute the ratio of two Bigints, as a double. The result may have an |
| 980 | error of up to 2.5 ulps. */ |
| 981 | |
| 982 | static double |
| 983 | ratio(Bigint *a, Bigint *b) |
| 984 | { |
| 985 | U da, db; |
| 986 | int k, ka, kb; |
| 987 | |
| 988 | dval(&da) = b2d(a, &ka); |
| 989 | dval(&db) = b2d(b, &kb); |
| 990 | k = ka - kb + 32*(a->wds - b->wds); |
| 991 | if (k > 0) |
| 992 | word0(&da) += k*Exp_msk1; |
| 993 | else { |
| 994 | k = -k; |
| 995 | word0(&db) += k*Exp_msk1; |
| 996 | } |
| 997 | return dval(&da) / dval(&db); |
| 998 | } |
| 999 | |
| 1000 | static const double |
| 1001 | tens[] = { |
| 1002 | 1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9, |
| 1003 | 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, |
| 1004 | 1e20, 1e21, 1e22 |
| 1005 | }; |
| 1006 | |
| 1007 | static const double |
| 1008 | bigtens[] = { 1e16, 1e32, 1e64, 1e128, 1e256 }; |
| 1009 | static const double tinytens[] = { 1e-16, 1e-32, 1e-64, 1e-128, |
| 1010 | 9007199254740992.*9007199254740992.e-256 |
| 1011 | /* = 2^106 * 1e-256 */ |
| 1012 | }; |
| 1013 | /* The factor of 2^53 in tinytens[4] helps us avoid setting the underflow */ |
| 1014 | /* flag unnecessarily. It leads to a song and dance at the end of strtod. */ |
| 1015 | #define Scale_Bit 0x10 |
| 1016 | #define n_bigtens 5 |
| 1017 | |
| 1018 | #define ULbits 32 |
| 1019 | #define kshift 5 |
| 1020 | #define kmask 31 |
| 1021 | |
| 1022 | |
| 1023 | static int |
| 1024 | dshift(Bigint *b, int p2) |
| 1025 | { |
| 1026 | int rv = hi0bits(b->x[b->wds-1]) - 4; |
| 1027 | if (p2 > 0) |
| 1028 | rv -= p2; |
| 1029 | return rv & kmask; |
| 1030 | } |
| 1031 | |
| 1032 | /* special case of Bigint division. The quotient is always in the range 0 <= |
| 1033 | quotient < 10, and on entry the divisor S is normalized so that its top 4 |
| 1034 | bits (28--31) are zero and bit 27 is set. */ |
| 1035 | |
| 1036 | static int |
| 1037 | quorem(Bigint *b, Bigint *S) |
| 1038 | { |
| 1039 | int n; |
| 1040 | ULong *bx, *bxe, q, *sx, *sxe; |
| 1041 | #ifdef ULLong |
| 1042 | ULLong borrow, carry, y, ys; |
| 1043 | #else |
| 1044 | ULong borrow, carry, y, ys; |
| 1045 | ULong si, z, zs; |
| 1046 | #endif |
| 1047 | |
| 1048 | n = S->wds; |
| 1049 | #ifdef DEBUG |
| 1050 | /*debug*/ if (b->wds > n) |
| 1051 | /*debug*/ Bug("oversize b in quorem"); |
| 1052 | #endif |
| 1053 | if (b->wds < n) |
| 1054 | return 0; |
| 1055 | sx = S->x; |
| 1056 | sxe = sx + --n; |
| 1057 | bx = b->x; |
| 1058 | bxe = bx + n; |
| 1059 | q = *bxe / (*sxe + 1); /* ensure q <= true quotient */ |
| 1060 | #ifdef DEBUG |
| 1061 | /*debug*/ if (q > 9) |
| 1062 | /*debug*/ Bug("oversized quotient in quorem"); |
| 1063 | #endif |
| 1064 | if (q) { |
| 1065 | borrow = 0; |
| 1066 | carry = 0; |
| 1067 | do { |
| 1068 | #ifdef ULLong |
| 1069 | ys = *sx++ * (ULLong)q + carry; |
| 1070 | carry = ys >> 32; |
| 1071 | y = *bx - (ys & FFFFFFFF) - borrow; |
| 1072 | borrow = y >> 32 & (ULong)1; |
| 1073 | *bx++ = (ULong)(y & FFFFFFFF); |
| 1074 | #else |
| 1075 | si = *sx++; |
| 1076 | ys = (si & 0xffff) * q + carry; |
| 1077 | zs = (si >> 16) * q + (ys >> 16); |
| 1078 | carry = zs >> 16; |
| 1079 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
| 1080 | borrow = (y & 0x10000) >> 16; |
| 1081 | z = (*bx >> 16) - (zs & 0xffff) - borrow; |
| 1082 | borrow = (z & 0x10000) >> 16; |
| 1083 | Storeinc(bx, z, y); |
| 1084 | #endif |
| 1085 | } |
| 1086 | while(sx <= sxe); |
| 1087 | if (!*bxe) { |
| 1088 | bx = b->x; |
| 1089 | while(--bxe > bx && !*bxe) |
| 1090 | --n; |
| 1091 | b->wds = n; |
| 1092 | } |
| 1093 | } |
| 1094 | if (cmp(b, S) >= 0) { |
| 1095 | q++; |
| 1096 | borrow = 0; |
| 1097 | carry = 0; |
| 1098 | bx = b->x; |
| 1099 | sx = S->x; |
| 1100 | do { |
| 1101 | #ifdef ULLong |
| 1102 | ys = *sx++ + carry; |
| 1103 | carry = ys >> 32; |
| 1104 | y = *bx - (ys & FFFFFFFF) - borrow; |
| 1105 | borrow = y >> 32 & (ULong)1; |
| 1106 | *bx++ = (ULong)(y & FFFFFFFF); |
| 1107 | #else |
| 1108 | si = *sx++; |
| 1109 | ys = (si & 0xffff) + carry; |
| 1110 | zs = (si >> 16) + (ys >> 16); |
| 1111 | carry = zs >> 16; |
| 1112 | y = (*bx & 0xffff) - (ys & 0xffff) - borrow; |
| 1113 | borrow = (y & 0x10000) >> 16; |
| 1114 | z = (*bx >> 16) - (zs & 0xffff) - borrow; |
| 1115 | borrow = (z & 0x10000) >> 16; |
| 1116 | Storeinc(bx, z, y); |
| 1117 | #endif |
| 1118 | } |
| 1119 | while(sx <= sxe); |
| 1120 | bx = b->x; |
| 1121 | bxe = bx + n; |
| 1122 | if (!*bxe) { |
| 1123 | while(--bxe > bx && !*bxe) |
| 1124 | --n; |
| 1125 | b->wds = n; |
| 1126 | } |
| 1127 | } |
| 1128 | return q; |
| 1129 | } |
| 1130 | |
Mark Dickinson | 5818e01 | 2010-01-13 19:02:37 +0000 | [diff] [blame] | 1131 | /* sulp(x) is a version of ulp(x) that takes bc.scale into account. |
Mark Dickinson | 5ff4f27 | 2010-01-12 22:55:51 +0000 | [diff] [blame] | 1132 | |
Mark Dickinson | 5818e01 | 2010-01-13 19:02:37 +0000 | [diff] [blame] | 1133 | Assuming that x is finite and nonnegative (positive zero is fine |
| 1134 | here) and x / 2^bc.scale is exactly representable as a double, |
| 1135 | sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */ |
Mark Dickinson | 5ff4f27 | 2010-01-12 22:55:51 +0000 | [diff] [blame] | 1136 | |
| 1137 | static double |
| 1138 | sulp(U *x, BCinfo *bc) |
| 1139 | { |
| 1140 | U u; |
| 1141 | |
Mark Dickinson | 02139d7 | 2010-01-13 22:15:53 +0000 | [diff] [blame] | 1142 | if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) { |
Mark Dickinson | 5ff4f27 | 2010-01-12 22:55:51 +0000 | [diff] [blame] | 1143 | /* rv/2^bc->scale is subnormal */ |
| 1144 | word0(&u) = (P+2)*Exp_msk1; |
| 1145 | word1(&u) = 0; |
| 1146 | return u.d; |
| 1147 | } |
Mark Dickinson | 5818e01 | 2010-01-13 19:02:37 +0000 | [diff] [blame] | 1148 | else { |
| 1149 | assert(word0(x) || word1(x)); /* x != 0.0 */ |
Mark Dickinson | 5ff4f27 | 2010-01-12 22:55:51 +0000 | [diff] [blame] | 1150 | return ulp(x); |
Mark Dickinson | 5818e01 | 2010-01-13 19:02:37 +0000 | [diff] [blame] | 1151 | } |
Mark Dickinson | 5ff4f27 | 2010-01-12 22:55:51 +0000 | [diff] [blame] | 1152 | } |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1153 | |
Mark Dickinson | b26d56a | 2010-01-13 18:21:53 +0000 | [diff] [blame] | 1154 | /* The bigcomp function handles some hard cases for strtod, for inputs |
| 1155 | with more than STRTOD_DIGLIM digits. It's called once an initial |
| 1156 | estimate for the double corresponding to the input string has |
| 1157 | already been obtained by the code in _Py_dg_strtod. |
| 1158 | |
| 1159 | The bigcomp function is only called after _Py_dg_strtod has found a |
| 1160 | double value rv such that either rv or rv + 1ulp represents the |
| 1161 | correctly rounded value corresponding to the original string. It |
| 1162 | determines which of these two values is the correct one by |
| 1163 | computing the decimal digits of rv + 0.5ulp and comparing them with |
Mark Dickinson | 6e0d3d6 | 2010-01-13 20:55:03 +0000 | [diff] [blame] | 1164 | the corresponding digits of s0. |
Mark Dickinson | b26d56a | 2010-01-13 18:21:53 +0000 | [diff] [blame] | 1165 | |
| 1166 | In the following, write dv for the absolute value of the number represented |
| 1167 | by the input string. |
| 1168 | |
| 1169 | Inputs: |
| 1170 | |
| 1171 | s0 points to the first significant digit of the input string. |
| 1172 | |
| 1173 | rv is a (possibly scaled) estimate for the closest double value to the |
| 1174 | value represented by the original input to _Py_dg_strtod. If |
| 1175 | bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to |
| 1176 | the input value. |
| 1177 | |
| 1178 | bc is a struct containing information gathered during the parsing and |
| 1179 | estimation steps of _Py_dg_strtod. Description of fields follows: |
| 1180 | |
Mark Dickinson | b26d56a | 2010-01-13 18:21:53 +0000 | [diff] [blame] | 1181 | bc->dsign is 1 if rv < decimal value, 0 if rv >= decimal value. In |
| 1182 | normal use, it should almost always be 1 when bigcomp is entered. |
| 1183 | |
| 1184 | bc->e0 gives the exponent of the input value, such that dv = (integer |
| 1185 | given by the bd->nd digits of s0) * 10**e0 |
| 1186 | |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 1187 | bc->nd gives the total number of significant digits of s0. It will |
| 1188 | be at least 1. |
Mark Dickinson | b26d56a | 2010-01-13 18:21:53 +0000 | [diff] [blame] | 1189 | |
| 1190 | bc->nd0 gives the number of significant digits of s0 before the |
| 1191 | decimal separator. If there's no decimal separator, bc->nd0 == |
| 1192 | bc->nd. |
| 1193 | |
| 1194 | bc->scale is the value used to scale rv to avoid doing arithmetic with |
| 1195 | subnormal values. It's either 0 or 2*P (=106). |
| 1196 | |
| 1197 | Outputs: |
| 1198 | |
| 1199 | On successful exit, rv/2^(bc->scale) is the closest double to dv. |
| 1200 | |
| 1201 | Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */ |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1202 | |
| 1203 | static int |
| 1204 | bigcomp(U *rv, const char *s0, BCinfo *bc) |
| 1205 | { |
| 1206 | Bigint *b, *d; |
Mark Dickinson | 50b60c6 | 2010-01-14 13:14:49 +0000 | [diff] [blame] | 1207 | int b2, bbits, d2, dd, i, nd, nd0, odd, p2, p5; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1208 | |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 1209 | dd = 0; /* silence compiler warning about possibly unused variable */ |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1210 | nd = bc->nd; |
| 1211 | nd0 = bc->nd0; |
Mark Dickinson | 8efef5c | 2010-01-12 22:23:56 +0000 | [diff] [blame] | 1212 | p5 = nd + bc->e0; |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 1213 | if (rv->d == 0.) { |
| 1214 | /* special case because d2b doesn't handle 0.0 */ |
Mark Dickinson | 6e0d3d6 | 2010-01-13 20:55:03 +0000 | [diff] [blame] | 1215 | b = i2b(0); |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1216 | if (b == NULL) |
| 1217 | return -1; |
Mark Dickinson | 6e0d3d6 | 2010-01-13 20:55:03 +0000 | [diff] [blame] | 1218 | p2 = Emin - P + 1; /* = -1074 for IEEE 754 binary64 */ |
| 1219 | bbits = 0; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1220 | } |
Mark Dickinson | 6e0d3d6 | 2010-01-13 20:55:03 +0000 | [diff] [blame] | 1221 | else { |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1222 | b = d2b(rv, &p2, &bbits); |
| 1223 | if (b == NULL) |
| 1224 | return -1; |
Mark Dickinson | 6e0d3d6 | 2010-01-13 20:55:03 +0000 | [diff] [blame] | 1225 | p2 -= bc->scale; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1226 | } |
Mark Dickinson | 6e0d3d6 | 2010-01-13 20:55:03 +0000 | [diff] [blame] | 1227 | /* now rv/2^(bc->scale) = b * 2**p2, and b has bbits significant bits */ |
| 1228 | |
| 1229 | /* Replace (b, p2) by (b << i, p2 - i), with i the largest integer such |
| 1230 | that b << i has at most P significant bits and p2 - i >= Emin - P + |
| 1231 | 1. */ |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1232 | i = P - bbits; |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 1233 | if (i > p2 - (Emin - P + 1)) |
| 1234 | i = p2 - (Emin - P + 1); |
Mark Dickinson | 6e0d3d6 | 2010-01-13 20:55:03 +0000 | [diff] [blame] | 1235 | /* increment i so that we shift b by an extra bit; then or-ing a 1 into |
| 1236 | the lsb of b gives us rv/2^(bc->scale) + 0.5ulp. */ |
| 1237 | b = lshift(b, ++i); |
| 1238 | if (b == NULL) |
| 1239 | return -1; |
Mark Dickinson | 50b60c6 | 2010-01-14 13:14:49 +0000 | [diff] [blame] | 1240 | /* record whether the lsb of rv/2^(bc->scale) is odd: in the exact halfway |
| 1241 | case, this is used for round to even. */ |
| 1242 | odd = b->x[0] & 2; |
Mark Dickinson | 6e0d3d6 | 2010-01-13 20:55:03 +0000 | [diff] [blame] | 1243 | b->x[0] |= 1; |
| 1244 | |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1245 | p2 -= p5 + i; |
| 1246 | d = i2b(1); |
| 1247 | if (d == NULL) { |
| 1248 | Bfree(b); |
| 1249 | return -1; |
| 1250 | } |
| 1251 | /* Arrange for convenient computation of quotients: |
| 1252 | * shift left if necessary so divisor has 4 leading 0 bits. |
| 1253 | */ |
| 1254 | if (p5 > 0) { |
| 1255 | d = pow5mult(d, p5); |
| 1256 | if (d == NULL) { |
| 1257 | Bfree(b); |
| 1258 | return -1; |
| 1259 | } |
| 1260 | } |
| 1261 | else if (p5 < 0) { |
| 1262 | b = pow5mult(b, -p5); |
| 1263 | if (b == NULL) { |
| 1264 | Bfree(d); |
| 1265 | return -1; |
| 1266 | } |
| 1267 | } |
| 1268 | if (p2 > 0) { |
| 1269 | b2 = p2; |
| 1270 | d2 = 0; |
| 1271 | } |
| 1272 | else { |
| 1273 | b2 = 0; |
| 1274 | d2 = -p2; |
| 1275 | } |
| 1276 | i = dshift(d, d2); |
| 1277 | if ((b2 += i) > 0) { |
| 1278 | b = lshift(b, b2); |
| 1279 | if (b == NULL) { |
| 1280 | Bfree(d); |
| 1281 | return -1; |
| 1282 | } |
| 1283 | } |
| 1284 | if ((d2 += i) > 0) { |
| 1285 | d = lshift(d, d2); |
| 1286 | if (d == NULL) { |
| 1287 | Bfree(b); |
| 1288 | return -1; |
| 1289 | } |
| 1290 | } |
| 1291 | |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 1292 | /* if b >= d, round down */ |
Mark Dickinson | 8efef5c | 2010-01-12 22:23:56 +0000 | [diff] [blame] | 1293 | if (cmp(b, d) >= 0) { |
| 1294 | dd = -1; |
| 1295 | goto ret; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1296 | } |
Mark Dickinson | 50b60c6 | 2010-01-14 13:14:49 +0000 | [diff] [blame] | 1297 | |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1298 | /* Compare b/d with s0 */ |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 1299 | for(i = 0; i < nd0; i++) { |
| 1300 | b = multadd(b, 10, 0); |
| 1301 | if (b == NULL) { |
| 1302 | Bfree(d); |
| 1303 | return -1; |
| 1304 | } |
| 1305 | dd = *s0++ - '0' - quorem(b, d); |
| 1306 | if (dd) |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1307 | goto ret; |
| 1308 | if (!b->x[0] && b->wds == 1) { |
Mark Dickinson | 03774fa | 2010-01-14 13:02:36 +0000 | [diff] [blame] | 1309 | if (i < nd - 1) |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1310 | dd = 1; |
| 1311 | goto ret; |
| 1312 | } |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1313 | } |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 1314 | s0++; |
| 1315 | for(; i < nd; i++) { |
| 1316 | b = multadd(b, 10, 0); |
| 1317 | if (b == NULL) { |
| 1318 | Bfree(d); |
| 1319 | return -1; |
| 1320 | } |
| 1321 | dd = *s0++ - '0' - quorem(b, d); |
| 1322 | if (dd) |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1323 | goto ret; |
| 1324 | if (!b->x[0] && b->wds == 1) { |
Mark Dickinson | 03774fa | 2010-01-14 13:02:36 +0000 | [diff] [blame] | 1325 | if (i < nd - 1) |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1326 | dd = 1; |
| 1327 | goto ret; |
| 1328 | } |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1329 | } |
| 1330 | if (b->x[0] || b->wds > 1) |
| 1331 | dd = -1; |
| 1332 | ret: |
| 1333 | Bfree(b); |
| 1334 | Bfree(d); |
Mark Dickinson | 50b60c6 | 2010-01-14 13:14:49 +0000 | [diff] [blame] | 1335 | if (dd > 0 || (dd == 0 && odd)) |
Mark Dickinson | 6e0d3d6 | 2010-01-13 20:55:03 +0000 | [diff] [blame] | 1336 | dval(rv) += sulp(rv, bc); |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1337 | return 0; |
| 1338 | } |
| 1339 | |
| 1340 | double |
| 1341 | _Py_dg_strtod(const char *s00, char **se) |
| 1342 | { |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 1343 | int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dp0, dp1, dplen, e, e1, error; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1344 | int esign, i, j, k, nd, nd0, nf, nz, nz0, sign; |
| 1345 | const char *s, *s0, *s1; |
| 1346 | double aadj, aadj1; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1347 | U aadj2, adj, rv, rv0; |
Mark Dickinson | 0ca7452 | 2010-01-11 17:15:13 +0000 | [diff] [blame] | 1348 | ULong y, z, L; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1349 | BCinfo bc; |
| 1350 | Bigint *bb, *bb1, *bd, *bd0, *bs, *delta; |
| 1351 | |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 1352 | sign = nz0 = nz = dplen = 0; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1353 | dval(&rv) = 0.; |
| 1354 | for(s = s00;;s++) switch(*s) { |
| 1355 | case '-': |
| 1356 | sign = 1; |
| 1357 | /* no break */ |
| 1358 | case '+': |
| 1359 | if (*++s) |
| 1360 | goto break2; |
| 1361 | /* no break */ |
| 1362 | case 0: |
| 1363 | goto ret0; |
| 1364 | /* modify original dtoa.c so that it doesn't accept leading whitespace |
| 1365 | case '\t': |
| 1366 | case '\n': |
| 1367 | case '\v': |
| 1368 | case '\f': |
| 1369 | case '\r': |
| 1370 | case ' ': |
| 1371 | continue; |
| 1372 | */ |
| 1373 | default: |
| 1374 | goto break2; |
| 1375 | } |
| 1376 | break2: |
| 1377 | if (*s == '0') { |
| 1378 | nz0 = 1; |
| 1379 | while(*++s == '0') ; |
| 1380 | if (!*s) |
| 1381 | goto ret; |
| 1382 | } |
| 1383 | s0 = s; |
| 1384 | y = z = 0; |
| 1385 | for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++) |
| 1386 | if (nd < 9) |
| 1387 | y = 10*y + c - '0'; |
| 1388 | else if (nd < 16) |
| 1389 | z = 10*z + c - '0'; |
| 1390 | nd0 = nd; |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 1391 | dp0 = dp1 = s - s0; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1392 | if (c == '.') { |
| 1393 | c = *++s; |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 1394 | dp1 = s - s0; |
| 1395 | dplen = 1; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1396 | if (!nd) { |
| 1397 | for(; c == '0'; c = *++s) |
| 1398 | nz++; |
| 1399 | if (c > '0' && c <= '9') { |
| 1400 | s0 = s; |
| 1401 | nf += nz; |
| 1402 | nz = 0; |
| 1403 | goto have_dig; |
| 1404 | } |
| 1405 | goto dig_done; |
| 1406 | } |
| 1407 | for(; c >= '0' && c <= '9'; c = *++s) { |
| 1408 | have_dig: |
| 1409 | nz++; |
| 1410 | if (c -= '0') { |
| 1411 | nf += nz; |
| 1412 | for(i = 1; i < nz; i++) |
| 1413 | if (nd++ < 9) |
| 1414 | y *= 10; |
| 1415 | else if (nd <= DBL_DIG + 1) |
| 1416 | z *= 10; |
| 1417 | if (nd++ < 9) |
| 1418 | y = 10*y + c; |
| 1419 | else if (nd <= DBL_DIG + 1) |
| 1420 | z = 10*z + c; |
| 1421 | nz = 0; |
| 1422 | } |
| 1423 | } |
| 1424 | } |
| 1425 | dig_done: |
| 1426 | e = 0; |
| 1427 | if (c == 'e' || c == 'E') { |
| 1428 | if (!nd && !nz && !nz0) { |
| 1429 | goto ret0; |
| 1430 | } |
| 1431 | s00 = s; |
| 1432 | esign = 0; |
| 1433 | switch(c = *++s) { |
| 1434 | case '-': |
| 1435 | esign = 1; |
| 1436 | case '+': |
| 1437 | c = *++s; |
| 1438 | } |
| 1439 | if (c >= '0' && c <= '9') { |
| 1440 | while(c == '0') |
| 1441 | c = *++s; |
| 1442 | if (c > '0' && c <= '9') { |
| 1443 | L = c - '0'; |
| 1444 | s1 = s; |
| 1445 | while((c = *++s) >= '0' && c <= '9') |
| 1446 | L = 10*L + c - '0'; |
Mark Dickinson | 0ca7452 | 2010-01-11 17:15:13 +0000 | [diff] [blame] | 1447 | if (s - s1 > 8 || L > MAX_ABS_EXP) |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1448 | /* Avoid confusion from exponents |
| 1449 | * so large that e might overflow. |
| 1450 | */ |
Mark Dickinson | 0ca7452 | 2010-01-11 17:15:13 +0000 | [diff] [blame] | 1451 | e = (int)MAX_ABS_EXP; /* safe for 16 bit ints */ |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1452 | else |
| 1453 | e = (int)L; |
| 1454 | if (esign) |
| 1455 | e = -e; |
| 1456 | } |
| 1457 | else |
| 1458 | e = 0; |
| 1459 | } |
| 1460 | else |
| 1461 | s = s00; |
| 1462 | } |
| 1463 | if (!nd) { |
| 1464 | if (!nz && !nz0) { |
| 1465 | ret0: |
| 1466 | s = s00; |
| 1467 | sign = 0; |
| 1468 | } |
| 1469 | goto ret; |
| 1470 | } |
| 1471 | bc.e0 = e1 = e -= nf; |
| 1472 | |
| 1473 | /* Now we have nd0 digits, starting at s0, followed by a |
| 1474 | * decimal point, followed by nd-nd0 digits. The number we're |
| 1475 | * after is the integer represented by those digits times |
| 1476 | * 10**e */ |
| 1477 | |
| 1478 | if (!nd0) |
| 1479 | nd0 = nd; |
| 1480 | k = nd < DBL_DIG + 1 ? nd : DBL_DIG + 1; |
| 1481 | dval(&rv) = y; |
| 1482 | if (k > 9) { |
| 1483 | dval(&rv) = tens[k - 9] * dval(&rv) + z; |
| 1484 | } |
| 1485 | bd0 = 0; |
| 1486 | if (nd <= DBL_DIG |
| 1487 | && Flt_Rounds == 1 |
| 1488 | ) { |
| 1489 | if (!e) |
| 1490 | goto ret; |
| 1491 | if (e > 0) { |
| 1492 | if (e <= Ten_pmax) { |
| 1493 | dval(&rv) *= tens[e]; |
| 1494 | goto ret; |
| 1495 | } |
| 1496 | i = DBL_DIG - nd; |
| 1497 | if (e <= Ten_pmax + i) { |
| 1498 | /* A fancier test would sometimes let us do |
| 1499 | * this for larger i values. |
| 1500 | */ |
| 1501 | e -= i; |
| 1502 | dval(&rv) *= tens[i]; |
| 1503 | dval(&rv) *= tens[e]; |
| 1504 | goto ret; |
| 1505 | } |
| 1506 | } |
| 1507 | else if (e >= -Ten_pmax) { |
| 1508 | dval(&rv) /= tens[-e]; |
| 1509 | goto ret; |
| 1510 | } |
| 1511 | } |
| 1512 | e1 += nd - k; |
| 1513 | |
| 1514 | bc.scale = 0; |
| 1515 | |
| 1516 | /* Get starting approximation = rv * 10**e1 */ |
| 1517 | |
| 1518 | if (e1 > 0) { |
| 1519 | if ((i = e1 & 15)) |
| 1520 | dval(&rv) *= tens[i]; |
| 1521 | if (e1 &= ~15) { |
| 1522 | if (e1 > DBL_MAX_10_EXP) { |
| 1523 | ovfl: |
| 1524 | errno = ERANGE; |
| 1525 | /* Can't trust HUGE_VAL */ |
| 1526 | word0(&rv) = Exp_mask; |
| 1527 | word1(&rv) = 0; |
| 1528 | goto ret; |
| 1529 | } |
| 1530 | e1 >>= 4; |
| 1531 | for(j = 0; e1 > 1; j++, e1 >>= 1) |
| 1532 | if (e1 & 1) |
| 1533 | dval(&rv) *= bigtens[j]; |
| 1534 | /* The last multiplication could overflow. */ |
| 1535 | word0(&rv) -= P*Exp_msk1; |
| 1536 | dval(&rv) *= bigtens[j]; |
| 1537 | if ((z = word0(&rv) & Exp_mask) |
| 1538 | > Exp_msk1*(DBL_MAX_EXP+Bias-P)) |
| 1539 | goto ovfl; |
| 1540 | if (z > Exp_msk1*(DBL_MAX_EXP+Bias-1-P)) { |
| 1541 | /* set to largest number */ |
| 1542 | /* (Can't trust DBL_MAX) */ |
| 1543 | word0(&rv) = Big0; |
| 1544 | word1(&rv) = Big1; |
| 1545 | } |
| 1546 | else |
| 1547 | word0(&rv) += P*Exp_msk1; |
| 1548 | } |
| 1549 | } |
| 1550 | else if (e1 < 0) { |
| 1551 | e1 = -e1; |
| 1552 | if ((i = e1 & 15)) |
| 1553 | dval(&rv) /= tens[i]; |
| 1554 | if (e1 >>= 4) { |
| 1555 | if (e1 >= 1 << n_bigtens) |
| 1556 | goto undfl; |
| 1557 | if (e1 & Scale_Bit) |
| 1558 | bc.scale = 2*P; |
| 1559 | for(j = 0; e1 > 0; j++, e1 >>= 1) |
| 1560 | if (e1 & 1) |
| 1561 | dval(&rv) *= tinytens[j]; |
| 1562 | if (bc.scale && (j = 2*P + 1 - ((word0(&rv) & Exp_mask) |
| 1563 | >> Exp_shift)) > 0) { |
| 1564 | /* scaled rv is denormal; clear j low bits */ |
| 1565 | if (j >= 32) { |
| 1566 | word1(&rv) = 0; |
| 1567 | if (j >= 53) |
| 1568 | word0(&rv) = (P+2)*Exp_msk1; |
| 1569 | else |
| 1570 | word0(&rv) &= 0xffffffff << (j-32); |
| 1571 | } |
| 1572 | else |
| 1573 | word1(&rv) &= 0xffffffff << j; |
| 1574 | } |
| 1575 | if (!dval(&rv)) { |
| 1576 | undfl: |
| 1577 | dval(&rv) = 0.; |
| 1578 | errno = ERANGE; |
| 1579 | goto ret; |
| 1580 | } |
| 1581 | } |
| 1582 | } |
| 1583 | |
| 1584 | /* Now the hard part -- adjusting rv to the correct value.*/ |
| 1585 | |
| 1586 | /* Put digits into bd: true value = bd * 10^e */ |
| 1587 | |
| 1588 | bc.nd = nd; |
Mark Dickinson | 5a0b399 | 2010-01-10 13:06:31 +0000 | [diff] [blame] | 1589 | bc.nd0 = nd0; /* Only needed if nd > STRTOD_DIGLIM, but done here */ |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1590 | /* to silence an erroneous warning about bc.nd0 */ |
| 1591 | /* possibly not being initialized. */ |
Mark Dickinson | 5a0b399 | 2010-01-10 13:06:31 +0000 | [diff] [blame] | 1592 | if (nd > STRTOD_DIGLIM) { |
| 1593 | /* ASSERT(STRTOD_DIGLIM >= 18); 18 == one more than the */ |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1594 | /* minimum number of decimal digits to distinguish double values */ |
| 1595 | /* in IEEE arithmetic. */ |
| 1596 | i = j = 18; |
| 1597 | if (i > nd0) |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 1598 | j += dplen; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1599 | for(;;) { |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 1600 | if (--j <= dp1 && j >= dp0) |
| 1601 | j = dp0 - 1; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1602 | if (s0[j] != '0') |
| 1603 | break; |
| 1604 | --i; |
| 1605 | } |
| 1606 | e += nd - i; |
| 1607 | nd = i; |
| 1608 | if (nd0 > nd) |
| 1609 | nd0 = nd; |
| 1610 | if (nd < 9) { /* must recompute y */ |
| 1611 | y = 0; |
| 1612 | for(i = 0; i < nd0; ++i) |
| 1613 | y = 10*y + s0[i] - '0'; |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 1614 | for(j = dp1; i < nd; ++i) |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1615 | y = 10*y + s0[j++] - '0'; |
| 1616 | } |
| 1617 | } |
Mark Dickinson | d2a9940 | 2010-01-13 22:20:10 +0000 | [diff] [blame] | 1618 | bd0 = s2b(s0, nd0, nd, y); |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1619 | if (bd0 == NULL) |
| 1620 | goto failed_malloc; |
| 1621 | |
| 1622 | for(;;) { |
| 1623 | bd = Balloc(bd0->k); |
| 1624 | if (bd == NULL) { |
| 1625 | Bfree(bd0); |
| 1626 | goto failed_malloc; |
| 1627 | } |
| 1628 | Bcopy(bd, bd0); |
| 1629 | bb = d2b(&rv, &bbe, &bbbits); /* rv = bb * 2^bbe */ |
| 1630 | if (bb == NULL) { |
| 1631 | Bfree(bd); |
| 1632 | Bfree(bd0); |
| 1633 | goto failed_malloc; |
| 1634 | } |
| 1635 | bs = i2b(1); |
| 1636 | if (bs == NULL) { |
| 1637 | Bfree(bb); |
| 1638 | Bfree(bd); |
| 1639 | Bfree(bd0); |
| 1640 | goto failed_malloc; |
| 1641 | } |
| 1642 | |
| 1643 | if (e >= 0) { |
| 1644 | bb2 = bb5 = 0; |
| 1645 | bd2 = bd5 = e; |
| 1646 | } |
| 1647 | else { |
| 1648 | bb2 = bb5 = -e; |
| 1649 | bd2 = bd5 = 0; |
| 1650 | } |
| 1651 | if (bbe >= 0) |
| 1652 | bb2 += bbe; |
| 1653 | else |
| 1654 | bd2 -= bbe; |
| 1655 | bs2 = bb2; |
| 1656 | j = bbe - bc.scale; |
| 1657 | i = j + bbbits - 1; /* logb(rv) */ |
| 1658 | if (i < Emin) /* denormal */ |
| 1659 | j += P - Emin; |
| 1660 | else |
| 1661 | j = P + 1 - bbbits; |
| 1662 | bb2 += j; |
| 1663 | bd2 += j; |
| 1664 | bd2 += bc.scale; |
| 1665 | i = bb2 < bd2 ? bb2 : bd2; |
| 1666 | if (i > bs2) |
| 1667 | i = bs2; |
| 1668 | if (i > 0) { |
| 1669 | bb2 -= i; |
| 1670 | bd2 -= i; |
| 1671 | bs2 -= i; |
| 1672 | } |
| 1673 | if (bb5 > 0) { |
| 1674 | bs = pow5mult(bs, bb5); |
| 1675 | if (bs == NULL) { |
| 1676 | Bfree(bb); |
| 1677 | Bfree(bd); |
| 1678 | Bfree(bd0); |
| 1679 | goto failed_malloc; |
| 1680 | } |
| 1681 | bb1 = mult(bs, bb); |
| 1682 | Bfree(bb); |
| 1683 | bb = bb1; |
| 1684 | if (bb == NULL) { |
| 1685 | Bfree(bs); |
| 1686 | Bfree(bd); |
| 1687 | Bfree(bd0); |
| 1688 | goto failed_malloc; |
| 1689 | } |
| 1690 | } |
| 1691 | if (bb2 > 0) { |
| 1692 | bb = lshift(bb, bb2); |
| 1693 | if (bb == NULL) { |
| 1694 | Bfree(bs); |
| 1695 | Bfree(bd); |
| 1696 | Bfree(bd0); |
| 1697 | goto failed_malloc; |
| 1698 | } |
| 1699 | } |
| 1700 | if (bd5 > 0) { |
| 1701 | bd = pow5mult(bd, bd5); |
| 1702 | if (bd == NULL) { |
| 1703 | Bfree(bb); |
| 1704 | Bfree(bs); |
| 1705 | Bfree(bd0); |
| 1706 | goto failed_malloc; |
| 1707 | } |
| 1708 | } |
| 1709 | if (bd2 > 0) { |
| 1710 | bd = lshift(bd, bd2); |
| 1711 | if (bd == NULL) { |
| 1712 | Bfree(bb); |
| 1713 | Bfree(bs); |
| 1714 | Bfree(bd0); |
| 1715 | goto failed_malloc; |
| 1716 | } |
| 1717 | } |
| 1718 | if (bs2 > 0) { |
| 1719 | bs = lshift(bs, bs2); |
| 1720 | if (bs == NULL) { |
| 1721 | Bfree(bb); |
| 1722 | Bfree(bd); |
| 1723 | Bfree(bd0); |
| 1724 | goto failed_malloc; |
| 1725 | } |
| 1726 | } |
| 1727 | delta = diff(bb, bd); |
| 1728 | if (delta == NULL) { |
| 1729 | Bfree(bb); |
| 1730 | Bfree(bs); |
| 1731 | Bfree(bd); |
| 1732 | Bfree(bd0); |
| 1733 | goto failed_malloc; |
| 1734 | } |
| 1735 | bc.dsign = delta->sign; |
| 1736 | delta->sign = 0; |
| 1737 | i = cmp(delta, bs); |
| 1738 | if (bc.nd > nd && i <= 0) { |
| 1739 | if (bc.dsign) |
| 1740 | break; /* Must use bigcomp(). */ |
Mark Dickinson | f8747c1 | 2010-01-14 14:40:20 +0000 | [diff] [blame] | 1741 | |
| 1742 | /* Here rv overestimates the truncated decimal value by at most |
| 1743 | 0.5 ulp(rv). Hence rv either overestimates the true decimal |
| 1744 | value by <= 0.5 ulp(rv), or underestimates it by some small |
| 1745 | amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of |
| 1746 | the true decimal value, so it's possible to exit. |
| 1747 | |
| 1748 | Exception: if scaled rv is a normal exact power of 2, but not |
| 1749 | DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the |
| 1750 | next double, so the correctly rounded result is either rv - 0.5 |
| 1751 | ulp(rv) or rv; in this case, use bigcomp to distinguish. */ |
| 1752 | |
| 1753 | if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) { |
| 1754 | /* rv can't be 0, since it's an overestimate for some |
| 1755 | nonzero value. So rv is a normal power of 2. */ |
| 1756 | j = (int)(word0(&rv) & Exp_mask) >> Exp_shift; |
| 1757 | /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if |
| 1758 | rv / 2^bc.scale >= 2^-1021. */ |
| 1759 | if (j - bc.scale >= 2) { |
| 1760 | dval(&rv) -= 0.5 * sulp(&rv, &bc); |
| 1761 | break; |
| 1762 | } |
| 1763 | } |
| 1764 | |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1765 | { |
| 1766 | bc.nd = nd; |
| 1767 | i = -1; /* Discarded digits make delta smaller. */ |
| 1768 | } |
| 1769 | } |
| 1770 | |
| 1771 | if (i < 0) { |
| 1772 | /* Error is less than half an ulp -- check for |
| 1773 | * special case of mantissa a power of two. |
| 1774 | */ |
| 1775 | if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask |
| 1776 | || (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1 |
| 1777 | ) { |
| 1778 | break; |
| 1779 | } |
| 1780 | if (!delta->x[0] && delta->wds <= 1) { |
| 1781 | /* exact result */ |
| 1782 | break; |
| 1783 | } |
| 1784 | delta = lshift(delta,Log2P); |
| 1785 | if (delta == NULL) { |
| 1786 | Bfree(bb); |
| 1787 | Bfree(bs); |
| 1788 | Bfree(bd); |
| 1789 | Bfree(bd0); |
| 1790 | goto failed_malloc; |
| 1791 | } |
| 1792 | if (cmp(delta, bs) > 0) |
| 1793 | goto drop_down; |
| 1794 | break; |
| 1795 | } |
| 1796 | if (i == 0) { |
| 1797 | /* exactly half-way between */ |
| 1798 | if (bc.dsign) { |
| 1799 | if ((word0(&rv) & Bndry_mask1) == Bndry_mask1 |
| 1800 | && word1(&rv) == ( |
| 1801 | (bc.scale && |
| 1802 | (y = word0(&rv) & Exp_mask) <= 2*P*Exp_msk1) ? |
| 1803 | (0xffffffff & (0xffffffff << (2*P+1-(y>>Exp_shift)))) : |
| 1804 | 0xffffffff)) { |
| 1805 | /*boundary case -- increment exponent*/ |
| 1806 | word0(&rv) = (word0(&rv) & Exp_mask) |
| 1807 | + Exp_msk1 |
| 1808 | ; |
| 1809 | word1(&rv) = 0; |
| 1810 | bc.dsign = 0; |
| 1811 | break; |
| 1812 | } |
| 1813 | } |
| 1814 | else if (!(word0(&rv) & Bndry_mask) && !word1(&rv)) { |
| 1815 | drop_down: |
| 1816 | /* boundary case -- decrement exponent */ |
| 1817 | if (bc.scale) { |
| 1818 | L = word0(&rv) & Exp_mask; |
| 1819 | if (L <= (2*P+1)*Exp_msk1) { |
| 1820 | if (L > (P+2)*Exp_msk1) |
| 1821 | /* round even ==> */ |
| 1822 | /* accept rv */ |
| 1823 | break; |
| 1824 | /* rv = smallest denormal */ |
Mark Dickinson | 5a0b399 | 2010-01-10 13:06:31 +0000 | [diff] [blame] | 1825 | if (bc.nd >nd) |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1826 | break; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1827 | goto undfl; |
| 1828 | } |
| 1829 | } |
| 1830 | L = (word0(&rv) & Exp_mask) - Exp_msk1; |
| 1831 | word0(&rv) = L | Bndry_mask1; |
| 1832 | word1(&rv) = 0xffffffff; |
| 1833 | break; |
| 1834 | } |
| 1835 | if (!(word1(&rv) & LSB)) |
| 1836 | break; |
| 1837 | if (bc.dsign) |
| 1838 | dval(&rv) += ulp(&rv); |
| 1839 | else { |
| 1840 | dval(&rv) -= ulp(&rv); |
| 1841 | if (!dval(&rv)) { |
Mark Dickinson | 5a0b399 | 2010-01-10 13:06:31 +0000 | [diff] [blame] | 1842 | if (bc.nd >nd) |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1843 | break; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1844 | goto undfl; |
| 1845 | } |
| 1846 | } |
| 1847 | bc.dsign = 1 - bc.dsign; |
| 1848 | break; |
| 1849 | } |
| 1850 | if ((aadj = ratio(delta, bs)) <= 2.) { |
| 1851 | if (bc.dsign) |
| 1852 | aadj = aadj1 = 1.; |
| 1853 | else if (word1(&rv) || word0(&rv) & Bndry_mask) { |
| 1854 | if (word1(&rv) == Tiny1 && !word0(&rv)) { |
Mark Dickinson | 5a0b399 | 2010-01-10 13:06:31 +0000 | [diff] [blame] | 1855 | if (bc.nd >nd) |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1856 | break; |
Mark Dickinson | bb28285 | 2009-10-24 12:13:30 +0000 | [diff] [blame] | 1857 | goto undfl; |
| 1858 | } |
| 1859 | aadj = 1.; |
| 1860 | aadj1 = -1.; |
| 1861 | } |
| 1862 | else { |
| 1863 | /* special case -- power of FLT_RADIX to be */ |
| 1864 | /* rounded down... */ |
| 1865 | |
| 1866 | if (aadj < 2./FLT_RADIX) |
| 1867 | aadj = 1./FLT_RADIX; |
| 1868 | else |
| 1869 | aadj *= 0.5; |
| 1870 | aadj1 = -aadj; |
| 1871 | } |
| 1872 | } |
| 1873 | else { |
| 1874 | aadj *= 0.5; |
| 1875 | aadj1 = bc.dsign ? aadj : -aadj; |
| 1876 | if (Flt_Rounds == 0) |
| 1877 | aadj1 += 0.5; |
| 1878 | } |
| 1879 | y = word0(&rv) & Exp_mask; |
| 1880 | |
| 1881 | /* Check for overflow */ |
| 1882 | |
| 1883 | if (y == Exp_msk1*(DBL_MAX_EXP+Bias-1)) { |
| 1884 | dval(&rv0) = dval(&rv); |
| 1885 | word0(&rv) -= P*Exp_msk1; |
| 1886 | adj.d = aadj1 * ulp(&rv); |
| 1887 | dval(&rv) += adj.d; |
| 1888 | if ((word0(&rv) & Exp_mask) >= |
| 1889 | Exp_msk1*(DBL_MAX_EXP+Bias-P)) { |
| 1890 | if (word0(&rv0) == Big0 && word1(&rv0) == Big1) |
| 1891 | goto ovfl; |
| 1892 | word0(&rv) = Big0; |
| 1893 | word1(&rv) = Big1; |
| 1894 | goto cont; |
| 1895 | } |
| 1896 | else |
| 1897 | word0(&rv) += P*Exp_msk1; |
| 1898 | } |
| 1899 | else { |
| 1900 | if (bc.scale && y <= 2*P*Exp_msk1) { |
| 1901 | if (aadj <= 0x7fffffff) { |
| 1902 | if ((z = (ULong)aadj) <= 0) |
| 1903 | z = 1; |
| 1904 | aadj = z; |
| 1905 | aadj1 = bc.dsign ? aadj : -aadj; |
| 1906 | } |
| 1907 | dval(&aadj2) = aadj1; |
| 1908 | word0(&aadj2) += (2*P+1)*Exp_msk1 - y; |
| 1909 | aadj1 = dval(&aadj2); |
| 1910 | } |
| 1911 | adj.d = aadj1 * ulp(&rv); |
| 1912 | dval(&rv) += adj.d; |
| 1913 | } |
| 1914 | z = word0(&rv) & Exp_mask; |
| 1915 | if (bc.nd == nd) { |
| 1916 | if (!bc.scale) |
| 1917 | if (y == z) { |
| 1918 | /* Can we stop now? */ |
| 1919 | L = (Long)aadj; |
| 1920 | aadj -= L; |
| 1921 | /* The tolerances below are conservative. */ |
| 1922 | if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) { |
| 1923 | if (aadj < .4999999 || aadj > .5000001) |
| 1924 | break; |
| 1925 | } |
| 1926 | else if (aadj < .4999999/FLT_RADIX) |
| 1927 | break; |
| 1928 | } |
| 1929 | } |
| 1930 | cont: |
| 1931 | Bfree(bb); |
| 1932 | Bfree(bd); |
| 1933 | Bfree(bs); |
| 1934 | Bfree(delta); |
| 1935 | } |
| 1936 | Bfree(bb); |
| 1937 | Bfree(bd); |
| 1938 | Bfree(bs); |
| 1939 | Bfree(bd0); |
| 1940 | Bfree(delta); |
| 1941 | if (bc.nd > nd) { |
| 1942 | error = bigcomp(&rv, s0, &bc); |
| 1943 | if (error) |
| 1944 | goto failed_malloc; |
| 1945 | } |
| 1946 | |
| 1947 | if (bc.scale) { |
| 1948 | word0(&rv0) = Exp_1 - 2*P*Exp_msk1; |
| 1949 | word1(&rv0) = 0; |
| 1950 | dval(&rv) *= dval(&rv0); |
| 1951 | /* try to avoid the bug of testing an 8087 register value */ |
| 1952 | if (!(word0(&rv) & Exp_mask)) |
| 1953 | errno = ERANGE; |
| 1954 | } |
| 1955 | ret: |
| 1956 | if (se) |
| 1957 | *se = (char *)s; |
| 1958 | return sign ? -dval(&rv) : dval(&rv); |
| 1959 | |
| 1960 | failed_malloc: |
| 1961 | if (se) |
| 1962 | *se = (char *)s00; |
| 1963 | errno = ENOMEM; |
| 1964 | return -1.0; |
| 1965 | } |
| 1966 | |
| 1967 | static char * |
| 1968 | rv_alloc(int i) |
| 1969 | { |
| 1970 | int j, k, *r; |
| 1971 | |
| 1972 | j = sizeof(ULong); |
| 1973 | for(k = 0; |
| 1974 | sizeof(Bigint) - sizeof(ULong) - sizeof(int) + j <= (unsigned)i; |
| 1975 | j <<= 1) |
| 1976 | k++; |
| 1977 | r = (int*)Balloc(k); |
| 1978 | if (r == NULL) |
| 1979 | return NULL; |
| 1980 | *r = k; |
| 1981 | return (char *)(r+1); |
| 1982 | } |
| 1983 | |
| 1984 | static char * |
| 1985 | nrv_alloc(char *s, char **rve, int n) |
| 1986 | { |
| 1987 | char *rv, *t; |
| 1988 | |
| 1989 | rv = rv_alloc(n); |
| 1990 | if (rv == NULL) |
| 1991 | return NULL; |
| 1992 | t = rv; |
| 1993 | while((*t = *s++)) t++; |
| 1994 | if (rve) |
| 1995 | *rve = t; |
| 1996 | return rv; |
| 1997 | } |
| 1998 | |
| 1999 | /* freedtoa(s) must be used to free values s returned by dtoa |
| 2000 | * when MULTIPLE_THREADS is #defined. It should be used in all cases, |
| 2001 | * but for consistency with earlier versions of dtoa, it is optional |
| 2002 | * when MULTIPLE_THREADS is not defined. |
| 2003 | */ |
| 2004 | |
| 2005 | void |
| 2006 | _Py_dg_freedtoa(char *s) |
| 2007 | { |
| 2008 | Bigint *b = (Bigint *)((int *)s - 1); |
| 2009 | b->maxwds = 1 << (b->k = *(int*)b); |
| 2010 | Bfree(b); |
| 2011 | } |
| 2012 | |
| 2013 | /* dtoa for IEEE arithmetic (dmg): convert double to ASCII string. |
| 2014 | * |
| 2015 | * Inspired by "How to Print Floating-Point Numbers Accurately" by |
| 2016 | * Guy L. Steele, Jr. and Jon L. White [Proc. ACM SIGPLAN '90, pp. 112-126]. |
| 2017 | * |
| 2018 | * Modifications: |
| 2019 | * 1. Rather than iterating, we use a simple numeric overestimate |
| 2020 | * to determine k = floor(log10(d)). We scale relevant |
| 2021 | * quantities using O(log2(k)) rather than O(k) multiplications. |
| 2022 | * 2. For some modes > 2 (corresponding to ecvt and fcvt), we don't |
| 2023 | * try to generate digits strictly left to right. Instead, we |
| 2024 | * compute with fewer bits and propagate the carry if necessary |
| 2025 | * when rounding the final digit up. This is often faster. |
| 2026 | * 3. Under the assumption that input will be rounded nearest, |
| 2027 | * mode 0 renders 1e23 as 1e23 rather than 9.999999999999999e22. |
| 2028 | * That is, we allow equality in stopping tests when the |
| 2029 | * round-nearest rule will give the same floating-point value |
| 2030 | * as would satisfaction of the stopping test with strict |
| 2031 | * inequality. |
| 2032 | * 4. We remove common factors of powers of 2 from relevant |
| 2033 | * quantities. |
| 2034 | * 5. When converting floating-point integers less than 1e16, |
| 2035 | * we use floating-point arithmetic rather than resorting |
| 2036 | * to multiple-precision integers. |
| 2037 | * 6. When asked to produce fewer than 15 digits, we first try |
| 2038 | * to get by with floating-point arithmetic; we resort to |
| 2039 | * multiple-precision integer arithmetic only if we cannot |
| 2040 | * guarantee that the floating-point calculation has given |
| 2041 | * the correctly rounded result. For k requested digits and |
| 2042 | * "uniformly" distributed input, the probability is |
| 2043 | * something like 10^(k-15) that we must resort to the Long |
| 2044 | * calculation. |
| 2045 | */ |
| 2046 | |
| 2047 | /* Additional notes (METD): (1) returns NULL on failure. (2) to avoid memory |
| 2048 | leakage, a successful call to _Py_dg_dtoa should always be matched by a |
| 2049 | call to _Py_dg_freedtoa. */ |
| 2050 | |
| 2051 | char * |
| 2052 | _Py_dg_dtoa(double dd, int mode, int ndigits, |
| 2053 | int *decpt, int *sign, char **rve) |
| 2054 | { |
| 2055 | /* Arguments ndigits, decpt, sign are similar to those |
| 2056 | of ecvt and fcvt; trailing zeros are suppressed from |
| 2057 | the returned string. If not null, *rve is set to point |
| 2058 | to the end of the return value. If d is +-Infinity or NaN, |
| 2059 | then *decpt is set to 9999. |
| 2060 | |
| 2061 | mode: |
| 2062 | 0 ==> shortest string that yields d when read in |
| 2063 | and rounded to nearest. |
| 2064 | 1 ==> like 0, but with Steele & White stopping rule; |
| 2065 | e.g. with IEEE P754 arithmetic , mode 0 gives |
| 2066 | 1e23 whereas mode 1 gives 9.999999999999999e22. |
| 2067 | 2 ==> max(1,ndigits) significant digits. This gives a |
| 2068 | return value similar to that of ecvt, except |
| 2069 | that trailing zeros are suppressed. |
| 2070 | 3 ==> through ndigits past the decimal point. This |
| 2071 | gives a return value similar to that from fcvt, |
| 2072 | except that trailing zeros are suppressed, and |
| 2073 | ndigits can be negative. |
| 2074 | 4,5 ==> similar to 2 and 3, respectively, but (in |
| 2075 | round-nearest mode) with the tests of mode 0 to |
| 2076 | possibly return a shorter string that rounds to d. |
| 2077 | With IEEE arithmetic and compilation with |
| 2078 | -DHonor_FLT_ROUNDS, modes 4 and 5 behave the same |
| 2079 | as modes 2 and 3 when FLT_ROUNDS != 1. |
| 2080 | 6-9 ==> Debugging modes similar to mode - 4: don't try |
| 2081 | fast floating-point estimate (if applicable). |
| 2082 | |
| 2083 | Values of mode other than 0-9 are treated as mode 0. |
| 2084 | |
| 2085 | Sufficient space is allocated to the return value |
| 2086 | to hold the suppressed trailing zeros. |
| 2087 | */ |
| 2088 | |
| 2089 | int bbits, b2, b5, be, dig, i, ieps, ilim, ilim0, ilim1, |
| 2090 | j, j1, k, k0, k_check, leftright, m2, m5, s2, s5, |
| 2091 | spec_case, try_quick; |
| 2092 | Long L; |
| 2093 | int denorm; |
| 2094 | ULong x; |
| 2095 | Bigint *b, *b1, *delta, *mlo, *mhi, *S; |
| 2096 | U d2, eps, u; |
| 2097 | double ds; |
| 2098 | char *s, *s0; |
| 2099 | |
| 2100 | /* set pointers to NULL, to silence gcc compiler warnings and make |
| 2101 | cleanup easier on error */ |
| 2102 | mlo = mhi = b = S = 0; |
| 2103 | s0 = 0; |
| 2104 | |
| 2105 | u.d = dd; |
| 2106 | if (word0(&u) & Sign_bit) { |
| 2107 | /* set sign for everything, including 0's and NaNs */ |
| 2108 | *sign = 1; |
| 2109 | word0(&u) &= ~Sign_bit; /* clear sign bit */ |
| 2110 | } |
| 2111 | else |
| 2112 | *sign = 0; |
| 2113 | |
| 2114 | /* quick return for Infinities, NaNs and zeros */ |
| 2115 | if ((word0(&u) & Exp_mask) == Exp_mask) |
| 2116 | { |
| 2117 | /* Infinity or NaN */ |
| 2118 | *decpt = 9999; |
| 2119 | if (!word1(&u) && !(word0(&u) & 0xfffff)) |
| 2120 | return nrv_alloc("Infinity", rve, 8); |
| 2121 | return nrv_alloc("NaN", rve, 3); |
| 2122 | } |
| 2123 | if (!dval(&u)) { |
| 2124 | *decpt = 1; |
| 2125 | return nrv_alloc("0", rve, 1); |
| 2126 | } |
| 2127 | |
| 2128 | /* compute k = floor(log10(d)). The computation may leave k |
| 2129 | one too large, but should never leave k too small. */ |
| 2130 | b = d2b(&u, &be, &bbits); |
| 2131 | if (b == NULL) |
| 2132 | goto failed_malloc; |
| 2133 | if ((i = (int)(word0(&u) >> Exp_shift1 & (Exp_mask>>Exp_shift1)))) { |
| 2134 | dval(&d2) = dval(&u); |
| 2135 | word0(&d2) &= Frac_mask1; |
| 2136 | word0(&d2) |= Exp_11; |
| 2137 | |
| 2138 | /* log(x) ~=~ log(1.5) + (x-1.5)/1.5 |
| 2139 | * log10(x) = log(x) / log(10) |
| 2140 | * ~=~ log(1.5)/log(10) + (x-1.5)/(1.5*log(10)) |
| 2141 | * log10(d) = (i-Bias)*log(2)/log(10) + log10(d2) |
| 2142 | * |
| 2143 | * This suggests computing an approximation k to log10(d) by |
| 2144 | * |
| 2145 | * k = (i - Bias)*0.301029995663981 |
| 2146 | * + ( (d2-1.5)*0.289529654602168 + 0.176091259055681 ); |
| 2147 | * |
| 2148 | * We want k to be too large rather than too small. |
| 2149 | * The error in the first-order Taylor series approximation |
| 2150 | * is in our favor, so we just round up the constant enough |
| 2151 | * to compensate for any error in the multiplication of |
| 2152 | * (i - Bias) by 0.301029995663981; since |i - Bias| <= 1077, |
| 2153 | * and 1077 * 0.30103 * 2^-52 ~=~ 7.2e-14, |
| 2154 | * adding 1e-13 to the constant term more than suffices. |
| 2155 | * Hence we adjust the constant term to 0.1760912590558. |
| 2156 | * (We could get a more accurate k by invoking log10, |
| 2157 | * but this is probably not worthwhile.) |
| 2158 | */ |
| 2159 | |
| 2160 | i -= Bias; |
| 2161 | denorm = 0; |
| 2162 | } |
| 2163 | else { |
| 2164 | /* d is denormalized */ |
| 2165 | |
| 2166 | i = bbits + be + (Bias + (P-1) - 1); |
| 2167 | x = i > 32 ? word0(&u) << (64 - i) | word1(&u) >> (i - 32) |
| 2168 | : word1(&u) << (32 - i); |
| 2169 | dval(&d2) = x; |
| 2170 | word0(&d2) -= 31*Exp_msk1; /* adjust exponent */ |
| 2171 | i -= (Bias + (P-1) - 1) + 1; |
| 2172 | denorm = 1; |
| 2173 | } |
| 2174 | ds = (dval(&d2)-1.5)*0.289529654602168 + 0.1760912590558 + |
| 2175 | i*0.301029995663981; |
| 2176 | k = (int)ds; |
| 2177 | if (ds < 0. && ds != k) |
| 2178 | k--; /* want k = floor(ds) */ |
| 2179 | k_check = 1; |
| 2180 | if (k >= 0 && k <= Ten_pmax) { |
| 2181 | if (dval(&u) < tens[k]) |
| 2182 | k--; |
| 2183 | k_check = 0; |
| 2184 | } |
| 2185 | j = bbits - i - 1; |
| 2186 | if (j >= 0) { |
| 2187 | b2 = 0; |
| 2188 | s2 = j; |
| 2189 | } |
| 2190 | else { |
| 2191 | b2 = -j; |
| 2192 | s2 = 0; |
| 2193 | } |
| 2194 | if (k >= 0) { |
| 2195 | b5 = 0; |
| 2196 | s5 = k; |
| 2197 | s2 += k; |
| 2198 | } |
| 2199 | else { |
| 2200 | b2 -= k; |
| 2201 | b5 = -k; |
| 2202 | s5 = 0; |
| 2203 | } |
| 2204 | if (mode < 0 || mode > 9) |
| 2205 | mode = 0; |
| 2206 | |
| 2207 | try_quick = 1; |
| 2208 | |
| 2209 | if (mode > 5) { |
| 2210 | mode -= 4; |
| 2211 | try_quick = 0; |
| 2212 | } |
| 2213 | leftright = 1; |
| 2214 | ilim = ilim1 = -1; /* Values for cases 0 and 1; done here to */ |
| 2215 | /* silence erroneous "gcc -Wall" warning. */ |
| 2216 | switch(mode) { |
| 2217 | case 0: |
| 2218 | case 1: |
| 2219 | i = 18; |
| 2220 | ndigits = 0; |
| 2221 | break; |
| 2222 | case 2: |
| 2223 | leftright = 0; |
| 2224 | /* no break */ |
| 2225 | case 4: |
| 2226 | if (ndigits <= 0) |
| 2227 | ndigits = 1; |
| 2228 | ilim = ilim1 = i = ndigits; |
| 2229 | break; |
| 2230 | case 3: |
| 2231 | leftright = 0; |
| 2232 | /* no break */ |
| 2233 | case 5: |
| 2234 | i = ndigits + k + 1; |
| 2235 | ilim = i; |
| 2236 | ilim1 = i - 1; |
| 2237 | if (i <= 0) |
| 2238 | i = 1; |
| 2239 | } |
| 2240 | s0 = rv_alloc(i); |
| 2241 | if (s0 == NULL) |
| 2242 | goto failed_malloc; |
| 2243 | s = s0; |
| 2244 | |
| 2245 | |
| 2246 | if (ilim >= 0 && ilim <= Quick_max && try_quick) { |
| 2247 | |
| 2248 | /* Try to get by with floating-point arithmetic. */ |
| 2249 | |
| 2250 | i = 0; |
| 2251 | dval(&d2) = dval(&u); |
| 2252 | k0 = k; |
| 2253 | ilim0 = ilim; |
| 2254 | ieps = 2; /* conservative */ |
| 2255 | if (k > 0) { |
| 2256 | ds = tens[k&0xf]; |
| 2257 | j = k >> 4; |
| 2258 | if (j & Bletch) { |
| 2259 | /* prevent overflows */ |
| 2260 | j &= Bletch - 1; |
| 2261 | dval(&u) /= bigtens[n_bigtens-1]; |
| 2262 | ieps++; |
| 2263 | } |
| 2264 | for(; j; j >>= 1, i++) |
| 2265 | if (j & 1) { |
| 2266 | ieps++; |
| 2267 | ds *= bigtens[i]; |
| 2268 | } |
| 2269 | dval(&u) /= ds; |
| 2270 | } |
| 2271 | else if ((j1 = -k)) { |
| 2272 | dval(&u) *= tens[j1 & 0xf]; |
| 2273 | for(j = j1 >> 4; j; j >>= 1, i++) |
| 2274 | if (j & 1) { |
| 2275 | ieps++; |
| 2276 | dval(&u) *= bigtens[i]; |
| 2277 | } |
| 2278 | } |
| 2279 | if (k_check && dval(&u) < 1. && ilim > 0) { |
| 2280 | if (ilim1 <= 0) |
| 2281 | goto fast_failed; |
| 2282 | ilim = ilim1; |
| 2283 | k--; |
| 2284 | dval(&u) *= 10.; |
| 2285 | ieps++; |
| 2286 | } |
| 2287 | dval(&eps) = ieps*dval(&u) + 7.; |
| 2288 | word0(&eps) -= (P-1)*Exp_msk1; |
| 2289 | if (ilim == 0) { |
| 2290 | S = mhi = 0; |
| 2291 | dval(&u) -= 5.; |
| 2292 | if (dval(&u) > dval(&eps)) |
| 2293 | goto one_digit; |
| 2294 | if (dval(&u) < -dval(&eps)) |
| 2295 | goto no_digits; |
| 2296 | goto fast_failed; |
| 2297 | } |
| 2298 | if (leftright) { |
| 2299 | /* Use Steele & White method of only |
| 2300 | * generating digits needed. |
| 2301 | */ |
| 2302 | dval(&eps) = 0.5/tens[ilim-1] - dval(&eps); |
| 2303 | for(i = 0;;) { |
| 2304 | L = (Long)dval(&u); |
| 2305 | dval(&u) -= L; |
| 2306 | *s++ = '0' + (int)L; |
| 2307 | if (dval(&u) < dval(&eps)) |
| 2308 | goto ret1; |
| 2309 | if (1. - dval(&u) < dval(&eps)) |
| 2310 | goto bump_up; |
| 2311 | if (++i >= ilim) |
| 2312 | break; |
| 2313 | dval(&eps) *= 10.; |
| 2314 | dval(&u) *= 10.; |
| 2315 | } |
| 2316 | } |
| 2317 | else { |
| 2318 | /* Generate ilim digits, then fix them up. */ |
| 2319 | dval(&eps) *= tens[ilim-1]; |
| 2320 | for(i = 1;; i++, dval(&u) *= 10.) { |
| 2321 | L = (Long)(dval(&u)); |
| 2322 | if (!(dval(&u) -= L)) |
| 2323 | ilim = i; |
| 2324 | *s++ = '0' + (int)L; |
| 2325 | if (i == ilim) { |
| 2326 | if (dval(&u) > 0.5 + dval(&eps)) |
| 2327 | goto bump_up; |
| 2328 | else if (dval(&u) < 0.5 - dval(&eps)) { |
| 2329 | while(*--s == '0'); |
| 2330 | s++; |
| 2331 | goto ret1; |
| 2332 | } |
| 2333 | break; |
| 2334 | } |
| 2335 | } |
| 2336 | } |
| 2337 | fast_failed: |
| 2338 | s = s0; |
| 2339 | dval(&u) = dval(&d2); |
| 2340 | k = k0; |
| 2341 | ilim = ilim0; |
| 2342 | } |
| 2343 | |
| 2344 | /* Do we have a "small" integer? */ |
| 2345 | |
| 2346 | if (be >= 0 && k <= Int_max) { |
| 2347 | /* Yes. */ |
| 2348 | ds = tens[k]; |
| 2349 | if (ndigits < 0 && ilim <= 0) { |
| 2350 | S = mhi = 0; |
| 2351 | if (ilim < 0 || dval(&u) <= 5*ds) |
| 2352 | goto no_digits; |
| 2353 | goto one_digit; |
| 2354 | } |
| 2355 | for(i = 1;; i++, dval(&u) *= 10.) { |
| 2356 | L = (Long)(dval(&u) / ds); |
| 2357 | dval(&u) -= L*ds; |
| 2358 | *s++ = '0' + (int)L; |
| 2359 | if (!dval(&u)) { |
| 2360 | break; |
| 2361 | } |
| 2362 | if (i == ilim) { |
| 2363 | dval(&u) += dval(&u); |
| 2364 | if (dval(&u) > ds || (dval(&u) == ds && L & 1)) { |
| 2365 | bump_up: |
| 2366 | while(*--s == '9') |
| 2367 | if (s == s0) { |
| 2368 | k++; |
| 2369 | *s = '0'; |
| 2370 | break; |
| 2371 | } |
| 2372 | ++*s++; |
| 2373 | } |
| 2374 | break; |
| 2375 | } |
| 2376 | } |
| 2377 | goto ret1; |
| 2378 | } |
| 2379 | |
| 2380 | m2 = b2; |
| 2381 | m5 = b5; |
| 2382 | if (leftright) { |
| 2383 | i = |
| 2384 | denorm ? be + (Bias + (P-1) - 1 + 1) : |
| 2385 | 1 + P - bbits; |
| 2386 | b2 += i; |
| 2387 | s2 += i; |
| 2388 | mhi = i2b(1); |
| 2389 | if (mhi == NULL) |
| 2390 | goto failed_malloc; |
| 2391 | } |
| 2392 | if (m2 > 0 && s2 > 0) { |
| 2393 | i = m2 < s2 ? m2 : s2; |
| 2394 | b2 -= i; |
| 2395 | m2 -= i; |
| 2396 | s2 -= i; |
| 2397 | } |
| 2398 | if (b5 > 0) { |
| 2399 | if (leftright) { |
| 2400 | if (m5 > 0) { |
| 2401 | mhi = pow5mult(mhi, m5); |
| 2402 | if (mhi == NULL) |
| 2403 | goto failed_malloc; |
| 2404 | b1 = mult(mhi, b); |
| 2405 | Bfree(b); |
| 2406 | b = b1; |
| 2407 | if (b == NULL) |
| 2408 | goto failed_malloc; |
| 2409 | } |
| 2410 | if ((j = b5 - m5)) { |
| 2411 | b = pow5mult(b, j); |
| 2412 | if (b == NULL) |
| 2413 | goto failed_malloc; |
| 2414 | } |
| 2415 | } |
| 2416 | else { |
| 2417 | b = pow5mult(b, b5); |
| 2418 | if (b == NULL) |
| 2419 | goto failed_malloc; |
| 2420 | } |
| 2421 | } |
| 2422 | S = i2b(1); |
| 2423 | if (S == NULL) |
| 2424 | goto failed_malloc; |
| 2425 | if (s5 > 0) { |
| 2426 | S = pow5mult(S, s5); |
| 2427 | if (S == NULL) |
| 2428 | goto failed_malloc; |
| 2429 | } |
| 2430 | |
| 2431 | /* Check for special case that d is a normalized power of 2. */ |
| 2432 | |
| 2433 | spec_case = 0; |
| 2434 | if ((mode < 2 || leftright) |
| 2435 | ) { |
| 2436 | if (!word1(&u) && !(word0(&u) & Bndry_mask) |
| 2437 | && word0(&u) & (Exp_mask & ~Exp_msk1) |
| 2438 | ) { |
| 2439 | /* The special case */ |
| 2440 | b2 += Log2P; |
| 2441 | s2 += Log2P; |
| 2442 | spec_case = 1; |
| 2443 | } |
| 2444 | } |
| 2445 | |
| 2446 | /* Arrange for convenient computation of quotients: |
| 2447 | * shift left if necessary so divisor has 4 leading 0 bits. |
| 2448 | * |
| 2449 | * Perhaps we should just compute leading 28 bits of S once |
| 2450 | * and for all and pass them and a shift to quorem, so it |
| 2451 | * can do shifts and ors to compute the numerator for q. |
| 2452 | */ |
| 2453 | if ((i = ((s5 ? 32 - hi0bits(S->x[S->wds-1]) : 1) + s2) & 0x1f)) |
| 2454 | i = 32 - i; |
| 2455 | #define iInc 28 |
| 2456 | i = dshift(S, s2); |
| 2457 | b2 += i; |
| 2458 | m2 += i; |
| 2459 | s2 += i; |
| 2460 | if (b2 > 0) { |
| 2461 | b = lshift(b, b2); |
| 2462 | if (b == NULL) |
| 2463 | goto failed_malloc; |
| 2464 | } |
| 2465 | if (s2 > 0) { |
| 2466 | S = lshift(S, s2); |
| 2467 | if (S == NULL) |
| 2468 | goto failed_malloc; |
| 2469 | } |
| 2470 | if (k_check) { |
| 2471 | if (cmp(b,S) < 0) { |
| 2472 | k--; |
| 2473 | b = multadd(b, 10, 0); /* we botched the k estimate */ |
| 2474 | if (b == NULL) |
| 2475 | goto failed_malloc; |
| 2476 | if (leftright) { |
| 2477 | mhi = multadd(mhi, 10, 0); |
| 2478 | if (mhi == NULL) |
| 2479 | goto failed_malloc; |
| 2480 | } |
| 2481 | ilim = ilim1; |
| 2482 | } |
| 2483 | } |
| 2484 | if (ilim <= 0 && (mode == 3 || mode == 5)) { |
| 2485 | if (ilim < 0) { |
| 2486 | /* no digits, fcvt style */ |
| 2487 | no_digits: |
| 2488 | k = -1 - ndigits; |
| 2489 | goto ret; |
| 2490 | } |
| 2491 | else { |
| 2492 | S = multadd(S, 5, 0); |
| 2493 | if (S == NULL) |
| 2494 | goto failed_malloc; |
| 2495 | if (cmp(b, S) <= 0) |
| 2496 | goto no_digits; |
| 2497 | } |
| 2498 | one_digit: |
| 2499 | *s++ = '1'; |
| 2500 | k++; |
| 2501 | goto ret; |
| 2502 | } |
| 2503 | if (leftright) { |
| 2504 | if (m2 > 0) { |
| 2505 | mhi = lshift(mhi, m2); |
| 2506 | if (mhi == NULL) |
| 2507 | goto failed_malloc; |
| 2508 | } |
| 2509 | |
| 2510 | /* Compute mlo -- check for special case |
| 2511 | * that d is a normalized power of 2. |
| 2512 | */ |
| 2513 | |
| 2514 | mlo = mhi; |
| 2515 | if (spec_case) { |
| 2516 | mhi = Balloc(mhi->k); |
| 2517 | if (mhi == NULL) |
| 2518 | goto failed_malloc; |
| 2519 | Bcopy(mhi, mlo); |
| 2520 | mhi = lshift(mhi, Log2P); |
| 2521 | if (mhi == NULL) |
| 2522 | goto failed_malloc; |
| 2523 | } |
| 2524 | |
| 2525 | for(i = 1;;i++) { |
| 2526 | dig = quorem(b,S) + '0'; |
| 2527 | /* Do we yet have the shortest decimal string |
| 2528 | * that will round to d? |
| 2529 | */ |
| 2530 | j = cmp(b, mlo); |
| 2531 | delta = diff(S, mhi); |
| 2532 | if (delta == NULL) |
| 2533 | goto failed_malloc; |
| 2534 | j1 = delta->sign ? 1 : cmp(b, delta); |
| 2535 | Bfree(delta); |
| 2536 | if (j1 == 0 && mode != 1 && !(word1(&u) & 1) |
| 2537 | ) { |
| 2538 | if (dig == '9') |
| 2539 | goto round_9_up; |
| 2540 | if (j > 0) |
| 2541 | dig++; |
| 2542 | *s++ = dig; |
| 2543 | goto ret; |
| 2544 | } |
| 2545 | if (j < 0 || (j == 0 && mode != 1 |
| 2546 | && !(word1(&u) & 1) |
| 2547 | )) { |
| 2548 | if (!b->x[0] && b->wds <= 1) { |
| 2549 | goto accept_dig; |
| 2550 | } |
| 2551 | if (j1 > 0) { |
| 2552 | b = lshift(b, 1); |
| 2553 | if (b == NULL) |
| 2554 | goto failed_malloc; |
| 2555 | j1 = cmp(b, S); |
| 2556 | if ((j1 > 0 || (j1 == 0 && dig & 1)) |
| 2557 | && dig++ == '9') |
| 2558 | goto round_9_up; |
| 2559 | } |
| 2560 | accept_dig: |
| 2561 | *s++ = dig; |
| 2562 | goto ret; |
| 2563 | } |
| 2564 | if (j1 > 0) { |
| 2565 | if (dig == '9') { /* possible if i == 1 */ |
| 2566 | round_9_up: |
| 2567 | *s++ = '9'; |
| 2568 | goto roundoff; |
| 2569 | } |
| 2570 | *s++ = dig + 1; |
| 2571 | goto ret; |
| 2572 | } |
| 2573 | *s++ = dig; |
| 2574 | if (i == ilim) |
| 2575 | break; |
| 2576 | b = multadd(b, 10, 0); |
| 2577 | if (b == NULL) |
| 2578 | goto failed_malloc; |
| 2579 | if (mlo == mhi) { |
| 2580 | mlo = mhi = multadd(mhi, 10, 0); |
| 2581 | if (mlo == NULL) |
| 2582 | goto failed_malloc; |
| 2583 | } |
| 2584 | else { |
| 2585 | mlo = multadd(mlo, 10, 0); |
| 2586 | if (mlo == NULL) |
| 2587 | goto failed_malloc; |
| 2588 | mhi = multadd(mhi, 10, 0); |
| 2589 | if (mhi == NULL) |
| 2590 | goto failed_malloc; |
| 2591 | } |
| 2592 | } |
| 2593 | } |
| 2594 | else |
| 2595 | for(i = 1;; i++) { |
| 2596 | *s++ = dig = quorem(b,S) + '0'; |
| 2597 | if (!b->x[0] && b->wds <= 1) { |
| 2598 | goto ret; |
| 2599 | } |
| 2600 | if (i >= ilim) |
| 2601 | break; |
| 2602 | b = multadd(b, 10, 0); |
| 2603 | if (b == NULL) |
| 2604 | goto failed_malloc; |
| 2605 | } |
| 2606 | |
| 2607 | /* Round off last digit */ |
| 2608 | |
| 2609 | b = lshift(b, 1); |
| 2610 | if (b == NULL) |
| 2611 | goto failed_malloc; |
| 2612 | j = cmp(b, S); |
| 2613 | if (j > 0 || (j == 0 && dig & 1)) { |
| 2614 | roundoff: |
| 2615 | while(*--s == '9') |
| 2616 | if (s == s0) { |
| 2617 | k++; |
| 2618 | *s++ = '1'; |
| 2619 | goto ret; |
| 2620 | } |
| 2621 | ++*s++; |
| 2622 | } |
| 2623 | else { |
| 2624 | while(*--s == '0'); |
| 2625 | s++; |
| 2626 | } |
| 2627 | ret: |
| 2628 | Bfree(S); |
| 2629 | if (mhi) { |
| 2630 | if (mlo && mlo != mhi) |
| 2631 | Bfree(mlo); |
| 2632 | Bfree(mhi); |
| 2633 | } |
| 2634 | ret1: |
| 2635 | Bfree(b); |
| 2636 | *s = 0; |
| 2637 | *decpt = k + 1; |
| 2638 | if (rve) |
| 2639 | *rve = s; |
| 2640 | return s0; |
| 2641 | failed_malloc: |
| 2642 | if (S) |
| 2643 | Bfree(S); |
| 2644 | if (mlo && mlo != mhi) |
| 2645 | Bfree(mlo); |
| 2646 | if (mhi) |
| 2647 | Bfree(mhi); |
| 2648 | if (b) |
| 2649 | Bfree(b); |
| 2650 | if (s0) |
| 2651 | _Py_dg_freedtoa(s0); |
| 2652 | return NULL; |
| 2653 | } |
| 2654 | #ifdef __cplusplus |
| 2655 | } |
| 2656 | #endif |
| 2657 | |
| 2658 | #endif /* PY_NO_SHORT_FLOAT_REPR */ |