blob: d95c324061714eb0a538b73297c3f52f3569f6d5 [file] [log] [blame]
Guido van Rossumff03b1a1994-03-09 12:55:02 +00001# R A N D O M V A R I A B L E G E N E R A T O R S
2#
3# distributions on the real line:
4# ------------------------------
5# normal (Gaussian)
6# lognormal
7# negative exponential
8# gamma
Guido van Rossum95bfcda1994-03-09 14:21:05 +00009# beta
Guido van Rossumff03b1a1994-03-09 12:55:02 +000010#
11# distributions on the circle (angles 0 to 2pi)
12# ---------------------------------------------
13# circular uniform
14# von Mises
15
16# Translated from anonymously contributed C/C++ source.
17
Guido van Rossum33d7f1a1998-05-20 16:28:24 +000018import whrandom
Guido van Rossumff03b1a1994-03-09 12:55:02 +000019from whrandom import random, uniform, randint, choice # Also for export!
Guido van Rossum95bfcda1994-03-09 14:21:05 +000020from math import log, exp, pi, e, sqrt, acos, cos, sin
Guido van Rossumff03b1a1994-03-09 12:55:02 +000021
Guido van Rossum33d7f1a1998-05-20 16:28:24 +000022# Interfaces to replace remaining needs for importing whrandom
23# XXX TO DO: make the distribution functions below into methods.
24
25def makeseed(a=None):
26 """Turn a hashable value into three seed values for whrandom.seed().
27
28 None or no argument returns (0, 0, 0), to seed from current time.
29
30 """
31 if a is None:
32 return (0, 0, 0)
33 a = hash(a)
34 a, x = divmod(a, 256)
35 a, y = divmod(a, 256)
36 a, z = divmod(a, 256)
37 x = (x + a) % 256 or 1
38 y = (y + a) % 256 or 1
39 z = (z + a) % 256 or 1
40 return (x, y, z)
41
42def seed(a=None):
43 """Seed the default generator from any hashable value.
44
45 None or no argument returns (0, 0, 0) to seed from current time.
46
47 """
48 x, y, z = makeseed(a)
49 whrandom.seed(x, y, z)
50
51class generator(whrandom.whrandom):
52 """Random generator class."""
53
54 def __init__(self, a=None):
55 """Constructor. Seed from current time or hashable value."""
56 self.seed(a)
57
58 def seed(self, a=None):
59 """Seed the generator from current time or hashable value."""
60 x, y, z = makeseed(a)
61 whrandom.whrandom.seed(self, x, y, z)
62
63def new_generator(a=None):
64 """Return a new random generator instance."""
65 return generator(a)
66
Guido van Rossumff03b1a1994-03-09 12:55:02 +000067# Housekeeping function to verify that magic constants have been
68# computed correctly
69
70def verify(name, expected):
71 computed = eval(name)
72 if abs(computed - expected) > 1e-7:
73 raise ValueError, \
74 'computed value for %s deviates too much (computed %g, expected %g)' % \
75 (name, computed, expected)
76
77# -------------------- normal distribution --------------------
78
Guido van Rossumcc32ac91994-03-15 16:10:24 +000079NV_MAGICCONST = 4*exp(-0.5)/sqrt(2.0)
Guido van Rossumff03b1a1994-03-09 12:55:02 +000080verify('NV_MAGICCONST', 1.71552776992141)
81def normalvariate(mu, sigma):
82 # mu = mean, sigma = standard deviation
83
84 # Uses Kinderman and Monahan method. Reference: Kinderman,
85 # A.J. and Monahan, J.F., "Computer generation of random
86 # variables using the ratio of uniform deviates", ACM Trans
87 # Math Software, 3, (1977), pp257-260.
88
89 while 1:
90 u1 = random()
91 u2 = random()
92 z = NV_MAGICCONST*(u1-0.5)/u2
Guido van Rossumcc32ac91994-03-15 16:10:24 +000093 zz = z*z/4.0
Guido van Rossumff03b1a1994-03-09 12:55:02 +000094 if zz <= -log(u2):
95 break
96 return mu+z*sigma
97
98# -------------------- lognormal distribution --------------------
99
100def lognormvariate(mu, sigma):
101 return exp(normalvariate(mu, sigma))
102
103# -------------------- circular uniform --------------------
104
105def cunifvariate(mean, arc):
106 # mean: mean angle (in radians between 0 and pi)
107 # arc: range of distribution (in radians between 0 and pi)
108
109 return (mean + arc * (random() - 0.5)) % pi
110
111# -------------------- exponential distribution --------------------
112
113def expovariate(lambd):
114 # lambd: rate lambd = 1/mean
115 # ('lambda' is a Python reserved word)
116
117 u = random()
118 while u <= 1e-7:
119 u = random()
120 return -log(u)/lambd
121
122# -------------------- von Mises distribution --------------------
123
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000124TWOPI = 2.0*pi
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000125verify('TWOPI', 6.28318530718)
126
127def vonmisesvariate(mu, kappa):
Guido van Rossum58102971998-04-06 14:12:13 +0000128 # mu: mean angle (in radians between 0 and 2*pi)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000129 # kappa: concentration parameter kappa (>= 0)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000130 # if kappa = 0 generate uniform random angle
Guido van Rossum58102971998-04-06 14:12:13 +0000131
132 # Based upon an algorithm published in: Fisher, N.I.,
133 # "Statistical Analysis of Circular Data", Cambridge
134 # University Press, 1993.
135
136 # Thanks to Magnus Kessler for a correction to the
137 # implementation of step 4.
138
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000139 if kappa <= 1e-6:
140 return TWOPI * random()
141
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000142 a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa)
143 b = (a - sqrt(2.0 * a))/(2.0 * kappa)
144 r = (1.0 + b * b)/(2.0 * b)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000145
146 while 1:
147 u1 = random()
148
149 z = cos(pi * u1)
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000150 f = (1.0 + r * z)/(r + z)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000151 c = kappa * (r - f)
152
153 u2 = random()
154
155 if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
156 break
157
158 u3 = random()
159 if u3 > 0.5:
Guido van Rossum58102971998-04-06 14:12:13 +0000160 theta = (mu % TWOPI) + acos(f)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000161 else:
Guido van Rossum58102971998-04-06 14:12:13 +0000162 theta = (mu % TWOPI) - acos(f)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000163
Guido van Rossum58102971998-04-06 14:12:13 +0000164 return theta
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000165
166# -------------------- gamma distribution --------------------
167
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000168LOG4 = log(4.0)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000169verify('LOG4', 1.38629436111989)
170
171def gammavariate(alpha, beta):
172 # beta times standard gamma
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000173 ainv = sqrt(2.0 * alpha - 1.0)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000174 return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
175
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000176SG_MAGICCONST = 1.0 + log(4.5)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000177verify('SG_MAGICCONST', 2.50407739677627)
178
179def stdgamma(alpha, ainv, bbb, ccc):
180 # ainv = sqrt(2 * alpha - 1)
181 # bbb = alpha - log(4)
182 # ccc = alpha + ainv
183
184 if alpha <= 0.0:
185 raise ValueError, 'stdgamma: alpha must be > 0.0'
186
187 if alpha > 1.0:
188
189 # Uses R.C.H. Cheng, "The generation of Gamma
190 # variables with non-integral shape parameters",
191 # Applied Statistics, (1977), 26, No. 1, p71-74
192
193 while 1:
194 u1 = random()
195 u2 = random()
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000196 v = log(u1/(1.0-u1))/ainv
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000197 x = alpha*exp(v)
198 z = u1*u1*u2
199 r = bbb+ccc*v-x
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000200 if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z):
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000201 return x
202
203 elif alpha == 1.0:
204 # expovariate(1)
205 u = random()
206 while u <= 1e-7:
207 u = random()
208 return -log(u)
209
210 else: # alpha is between 0 and 1 (exclusive)
211
212 # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
213
214 while 1:
215 u = random()
216 b = (e + alpha)/e
217 p = b*u
218 if p <= 1.0:
219 x = pow(p, 1.0/alpha)
220 else:
221 # p > 1
222 x = -log((b-p)/alpha)
223 u1 = random()
224 if not (((p <= 1.0) and (u1 > exp(-x))) or
225 ((p > 1) and (u1 > pow(x, alpha - 1.0)))):
226 break
227 return x
228
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000229
230# -------------------- Gauss (faster alternative) --------------------
231
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000232gauss_next = None
233def gauss(mu, sigma):
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000234
235 # When x and y are two variables from [0, 1), uniformly
236 # distributed, then
237 #
Guido van Rossum72c2e1b1998-02-19 21:17:42 +0000238 # cos(2*pi*x)*sqrt(-2*log(1-y))
239 # sin(2*pi*x)*sqrt(-2*log(1-y))
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000240 #
241 # are two *independent* variables with normal distribution
242 # (mu = 0, sigma = 1).
243 # (Lambert Meertens)
Guido van Rossum72c2e1b1998-02-19 21:17:42 +0000244 # (corrected version; bug discovered by Mike Miller, fixed by LM)
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000245
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000246 global gauss_next
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000247
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000248 if gauss_next != None:
249 z = gauss_next
250 gauss_next = None
251 else:
252 x2pi = random() * TWOPI
Guido van Rossum72c2e1b1998-02-19 21:17:42 +0000253 g2rad = sqrt(-2.0 * log(1.0 - random()))
254 z = cos(x2pi) * g2rad
255 gauss_next = sin(x2pi) * g2rad
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000256
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000257 return mu + z*sigma
258
259# -------------------- beta --------------------
260
261def betavariate(alpha, beta):
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000262
263 # Discrete Event Simulation in C, pp 87-88.
264
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000265 y = expovariate(alpha)
266 z = expovariate(1.0/beta)
267 return z/(y+z)
268
Guido van Rossum5bdea891997-12-09 19:43:18 +0000269# -------------------- Pareto --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000270
271def paretovariate(alpha):
272 # Jain, pg. 495
273
274 u = random()
275 return 1.0 / pow(u, 1.0/alpha)
276
Guido van Rossum5bdea891997-12-09 19:43:18 +0000277# -------------------- Weibull --------------------
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000278
279def weibullvariate(alpha, beta):
280 # Jain, pg. 499; bug fix courtesy Bill Arms
281
282 u = random()
283 return alpha * pow(-log(u), 1.0/beta)
284
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000285# -------------------- test program --------------------
286
Guido van Rossum2922c6d1994-05-06 14:28:19 +0000287def test(N = 200):
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000288 print 'TWOPI =', TWOPI
289 print 'LOG4 =', LOG4
290 print 'NV_MAGICCONST =', NV_MAGICCONST
291 print 'SG_MAGICCONST =', SG_MAGICCONST
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000292 test_generator(N, 'random()')
293 test_generator(N, 'normalvariate(0.0, 1.0)')
294 test_generator(N, 'lognormvariate(0.0, 1.0)')
295 test_generator(N, 'cunifvariate(0.0, 1.0)')
296 test_generator(N, 'expovariate(1.0)')
297 test_generator(N, 'vonmisesvariate(0.0, 1.0)')
298 test_generator(N, 'gammavariate(0.5, 1.0)')
299 test_generator(N, 'gammavariate(0.9, 1.0)')
300 test_generator(N, 'gammavariate(1.0, 1.0)')
301 test_generator(N, 'gammavariate(2.0, 1.0)')
302 test_generator(N, 'gammavariate(20.0, 1.0)')
303 test_generator(N, 'gammavariate(200.0, 1.0)')
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000304 test_generator(N, 'gauss(0.0, 1.0)')
305 test_generator(N, 'betavariate(3.0, 3.0)')
Guido van Rossumcf4559a1997-12-02 02:47:39 +0000306 test_generator(N, 'paretovariate(1.0)')
307 test_generator(N, 'weibullvariate(1.0, 1.0)')
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000308
309def test_generator(n, funccall):
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000310 import time
311 print n, 'times', funccall
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000312 code = compile(funccall, funccall, 'eval')
313 sum = 0.0
314 sqsum = 0.0
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000315 smallest = 1e10
Guido van Rossumcc32ac91994-03-15 16:10:24 +0000316 largest = -1e10
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000317 t0 = time.time()
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000318 for i in range(n):
319 x = eval(code)
320 sum = sum + x
321 sqsum = sqsum + x*x
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000322 smallest = min(x, smallest)
323 largest = max(x, largest)
324 t1 = time.time()
325 print round(t1-t0, 3), 'sec,',
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000326 avg = sum/n
327 stddev = sqrt(sqsum/n - avg*avg)
Guido van Rossum95bfcda1994-03-09 14:21:05 +0000328 print 'avg %g, stddev %g, min %g, max %g' % \
329 (avg, stddev, smallest, largest)
Guido van Rossumff03b1a1994-03-09 12:55:02 +0000330
331if __name__ == '__main__':
332 test()