blob: 8d113152b62555ff31fa8f0f209cc081deea2752 [file] [log] [blame]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001
Raymond Hettinger13a70752008-02-10 07:21:09 +00002:mod:`decimal` --- Decimal fixed point and floating point arithmetic
3====================================================================
Georg Brandl8ec7f652007-08-15 14:28:01 +00004
5.. module:: decimal
6 :synopsis: Implementation of the General Decimal Arithmetic Specification.
7
8
9.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
10.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
11.. moduleauthor:: Raymond Hettinger <python at rcn.com>
12.. moduleauthor:: Aahz <aahz at pobox.com>
13.. moduleauthor:: Tim Peters <tim.one at comcast.net>
14
15
16.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
17
Georg Brandl8ec7f652007-08-15 14:28:01 +000018.. versionadded:: 2.4
19
Georg Brandl9f662322008-03-22 11:47:10 +000020.. import modules for testing inline doctests with the Sphinx doctest builder
Georg Brandl17baef02008-03-22 10:56:23 +000021.. testsetup:: *
22
Georg Brandl9f662322008-03-22 11:47:10 +000023 import decimal
24 import math
Georg Brandl17baef02008-03-22 10:56:23 +000025 from decimal import *
Georg Brandl9f662322008-03-22 11:47:10 +000026 # make sure each group gets a fresh context
27 setcontext(Context())
Georg Brandl17baef02008-03-22 10:56:23 +000028
Georg Brandl8ec7f652007-08-15 14:28:01 +000029The :mod:`decimal` module provides support for decimal floating point
Facundo Batista7c82a3e92007-09-14 18:58:34 +000030arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl8ec7f652007-08-15 14:28:01 +000031
Raymond Hettinger13a70752008-02-10 07:21:09 +000032* Decimal "is based on a floating-point model which was designed with people
33 in mind, and necessarily has a paramount guiding principle -- computers must
34 provide an arithmetic that works in the same way as the arithmetic that
35 people learn at school." -- excerpt from the decimal arithmetic specification.
36
Georg Brandl8ec7f652007-08-15 14:28:01 +000037* Decimal numbers can be represented exactly. In contrast, numbers like
38 :const:`1.1` do not have an exact representation in binary floating point. End
39 users typically would not expect :const:`1.1` to display as
40 :const:`1.1000000000000001` as it does with binary floating point.
41
42* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Facundo Batista7c82a3e92007-09-14 18:58:34 +000043 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl8ec7f652007-08-15 14:28:01 +000044 is :const:`5.5511151231257827e-017`. While near to zero, the differences
45 prevent reliable equality testing and differences can accumulate. For this
Raymond Hettinger13a70752008-02-10 07:21:09 +000046 reason, decimal is preferred in accounting applications which have strict
Georg Brandl8ec7f652007-08-15 14:28:01 +000047 equality invariants.
48
49* The decimal module incorporates a notion of significant places so that ``1.30
50 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
51 This is the customary presentation for monetary applications. For
52 multiplication, the "schoolbook" approach uses all the figures in the
53 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
54 1.20`` gives :const:`1.5600`.
55
56* Unlike hardware based binary floating point, the decimal module has a user
Facundo Batista7c82a3e92007-09-14 18:58:34 +000057 alterable precision (defaulting to 28 places) which can be as large as needed for
Georg Brandl17baef02008-03-22 10:56:23 +000058 a given problem:
Georg Brandl8ec7f652007-08-15 14:28:01 +000059
60 >>> getcontext().prec = 6
61 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000062 Decimal('0.142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +000063 >>> getcontext().prec = 28
64 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +000065 Decimal('0.1428571428571428571428571429')
Georg Brandl8ec7f652007-08-15 14:28:01 +000066
67* Both binary and decimal floating point are implemented in terms of published
68 standards. While the built-in float type exposes only a modest portion of its
69 capabilities, the decimal module exposes all required parts of the standard.
70 When needed, the programmer has full control over rounding and signal handling.
Raymond Hettinger13a70752008-02-10 07:21:09 +000071 This includes an option to enforce exact arithmetic by using exceptions
72 to block any inexact operations.
73
74* The decimal module was designed to support "without prejudice, both exact
75 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
76 and rounded floating-point arithmetic." -- excerpt from the decimal
77 arithmetic specification.
Georg Brandl8ec7f652007-08-15 14:28:01 +000078
79The module design is centered around three concepts: the decimal number, the
80context for arithmetic, and signals.
81
82A decimal number is immutable. It has a sign, coefficient digits, and an
83exponent. To preserve significance, the coefficient digits do not truncate
Facundo Batista7c82a3e92007-09-14 18:58:34 +000084trailing zeros. Decimals also include special values such as
Georg Brandl8ec7f652007-08-15 14:28:01 +000085:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
86differentiates :const:`-0` from :const:`+0`.
87
88The context for arithmetic is an environment specifying precision, rounding
89rules, limits on exponents, flags indicating the results of operations, and trap
90enablers which determine whether signals are treated as exceptions. Rounding
91options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
92:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +000093:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl8ec7f652007-08-15 14:28:01 +000094
95Signals are groups of exceptional conditions arising during the course of
96computation. Depending on the needs of the application, signals may be ignored,
97considered as informational, or treated as exceptions. The signals in the
98decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
99:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
100:const:`Overflow`, and :const:`Underflow`.
101
102For each signal there is a flag and a trap enabler. When a signal is
Mark Dickinson1840c1a2008-05-03 18:23:14 +0000103encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000104set to one, an exception is raised. Flags are sticky, so the user needs to
105reset them before monitoring a calculation.
106
107
108.. seealso::
109
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000110 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettingerf345a212009-03-10 01:07:30 +0000111 Specification <http://speleotrove.com/decimal/>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000112
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000113 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Mark Dickinsonff6672f2008-02-07 01:14:23 +0000114 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000115
Georg Brandlb19be572007-12-29 10:57:00 +0000116.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000117
118
119.. _decimal-tutorial:
120
121Quick-start Tutorial
122--------------------
123
124The usual start to using decimals is importing the module, viewing the current
125context with :func:`getcontext` and, if necessary, setting new values for
Georg Brandl9f662322008-03-22 11:47:10 +0000126precision, rounding, or enabled traps::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000127
128 >>> from decimal import *
129 >>> getcontext()
130 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000131 capitals=1, flags=[], traps=[Overflow, DivisionByZero,
132 InvalidOperation])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000133
134 >>> getcontext().prec = 7 # Set a new precision
135
136Decimal instances can be constructed from integers, strings, or tuples. To
137create a Decimal from a :class:`float`, first convert it to a string. This
138serves as an explicit reminder of the details of the conversion (including
139representation error). Decimal numbers include special values such as
140:const:`NaN` which stands for "Not a number", positive and negative
Georg Brandl17baef02008-03-22 10:56:23 +0000141:const:`Infinity`, and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000142
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000143 >>> getcontext().prec = 28
Georg Brandl8ec7f652007-08-15 14:28:01 +0000144 >>> Decimal(10)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000145 Decimal('10')
146 >>> Decimal('3.14')
147 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000148 >>> Decimal((0, (3, 1, 4), -2))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000149 Decimal('3.14')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000150 >>> Decimal(str(2.0 ** 0.5))
Raymond Hettingerabe32372008-02-14 02:41:22 +0000151 Decimal('1.41421356237')
152 >>> Decimal(2) ** Decimal('0.5')
153 Decimal('1.414213562373095048801688724')
154 >>> Decimal('NaN')
155 Decimal('NaN')
156 >>> Decimal('-Infinity')
157 Decimal('-Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000158
159The significance of a new Decimal is determined solely by the number of digits
160input. Context precision and rounding only come into play during arithmetic
Georg Brandl17baef02008-03-22 10:56:23 +0000161operations.
162
163.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +0000164
165 >>> getcontext().prec = 6
166 >>> Decimal('3.0')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000167 Decimal('3.0')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000168 >>> Decimal('3.1415926535')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000169 Decimal('3.1415926535')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000170 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000171 Decimal('5.85987')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000172 >>> getcontext().rounding = ROUND_UP
173 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Raymond Hettingerabe32372008-02-14 02:41:22 +0000174 Decimal('5.85988')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000175
176Decimals interact well with much of the rest of Python. Here is a small decimal
Georg Brandl9f662322008-03-22 11:47:10 +0000177floating point flying circus:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000178
Georg Brandl838b4b02008-03-22 13:07:06 +0000179.. doctest::
180 :options: +NORMALIZE_WHITESPACE
181
Georg Brandl8ec7f652007-08-15 14:28:01 +0000182 >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split())
183 >>> max(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000184 Decimal('9.25')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000185 >>> min(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000186 Decimal('0.03')
Georg Brandl838b4b02008-03-22 13:07:06 +0000187 >>> sorted(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000188 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
189 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl8ec7f652007-08-15 14:28:01 +0000190 >>> sum(data)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000191 Decimal('19.29')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000192 >>> a,b,c = data[:3]
193 >>> str(a)
194 '1.34'
195 >>> float(a)
196 1.3400000000000001
197 >>> round(a, 1) # round() first converts to binary floating point
198 1.3
199 >>> int(a)
200 1
201 >>> a * 5
Raymond Hettingerabe32372008-02-14 02:41:22 +0000202 Decimal('6.70')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000203 >>> a * b
Raymond Hettingerabe32372008-02-14 02:41:22 +0000204 Decimal('2.5058')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000205 >>> c % a
Raymond Hettingerabe32372008-02-14 02:41:22 +0000206 Decimal('0.77')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000207
Georg Brandl9f662322008-03-22 11:47:10 +0000208And some mathematical functions are also available to Decimal:
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000209
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000210 >>> getcontext().prec = 28
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000211 >>> Decimal(2).sqrt()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000212 Decimal('1.414213562373095048801688724')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000213 >>> Decimal(1).exp()
Raymond Hettingerabe32372008-02-14 02:41:22 +0000214 Decimal('2.718281828459045235360287471')
215 >>> Decimal('10').ln()
216 Decimal('2.302585092994045684017991455')
217 >>> Decimal('10').log10()
218 Decimal('1')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000219
Georg Brandl8ec7f652007-08-15 14:28:01 +0000220The :meth:`quantize` method rounds a number to a fixed exponent. This method is
221useful for monetary applications that often round results to a fixed number of
Georg Brandl9f662322008-03-22 11:47:10 +0000222places:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000223
224 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000225 Decimal('7.32')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000226 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000227 Decimal('8')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000228
229As shown above, the :func:`getcontext` function accesses the current context and
230allows the settings to be changed. This approach meets the needs of most
231applications.
232
233For more advanced work, it may be useful to create alternate contexts using the
234Context() constructor. To make an alternate active, use the :func:`setcontext`
235function.
236
237In accordance with the standard, the :mod:`Decimal` module provides two ready to
238use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
239former is especially useful for debugging because many of the traps are
Georg Brandl9f662322008-03-22 11:47:10 +0000240enabled:
241
242.. doctest:: newcontext
243 :options: +NORMALIZE_WHITESPACE
Georg Brandl8ec7f652007-08-15 14:28:01 +0000244
245 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
246 >>> setcontext(myothercontext)
247 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000248 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000249
250 >>> ExtendedContext
251 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
252 capitals=1, flags=[], traps=[])
253 >>> setcontext(ExtendedContext)
254 >>> Decimal(1) / Decimal(7)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000255 Decimal('0.142857143')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000256 >>> Decimal(42) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000257 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000258
259 >>> setcontext(BasicContext)
260 >>> Decimal(42) / Decimal(0)
261 Traceback (most recent call last):
262 File "<pyshell#143>", line 1, in -toplevel-
263 Decimal(42) / Decimal(0)
264 DivisionByZero: x / 0
265
266Contexts also have signal flags for monitoring exceptional conditions
267encountered during computations. The flags remain set until explicitly cleared,
268so it is best to clear the flags before each set of monitored computations by
269using the :meth:`clear_flags` method. ::
270
271 >>> setcontext(ExtendedContext)
272 >>> getcontext().clear_flags()
273 >>> Decimal(355) / Decimal(113)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000274 Decimal('3.14159292')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000275 >>> getcontext()
276 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Georg Brandl9f662322008-03-22 11:47:10 +0000277 capitals=1, flags=[Rounded, Inexact], traps=[])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000278
279The *flags* entry shows that the rational approximation to :const:`Pi` was
280rounded (digits beyond the context precision were thrown away) and that the
281result is inexact (some of the discarded digits were non-zero).
282
283Individual traps are set using the dictionary in the :attr:`traps` field of a
Georg Brandl9f662322008-03-22 11:47:10 +0000284context:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000285
Georg Brandl9f662322008-03-22 11:47:10 +0000286.. doctest:: newcontext
287
288 >>> setcontext(ExtendedContext)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000289 >>> Decimal(1) / Decimal(0)
Raymond Hettingerabe32372008-02-14 02:41:22 +0000290 Decimal('Infinity')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000291 >>> getcontext().traps[DivisionByZero] = 1
292 >>> Decimal(1) / Decimal(0)
293 Traceback (most recent call last):
294 File "<pyshell#112>", line 1, in -toplevel-
295 Decimal(1) / Decimal(0)
296 DivisionByZero: x / 0
297
298Most programs adjust the current context only once, at the beginning of the
299program. And, in many applications, data is converted to :class:`Decimal` with
300a single cast inside a loop. With context set and decimals created, the bulk of
301the program manipulates the data no differently than with other Python numeric
302types.
303
Georg Brandlb19be572007-12-29 10:57:00 +0000304.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000305
306
307.. _decimal-decimal:
308
309Decimal objects
310---------------
311
312
313.. class:: Decimal([value [, context]])
314
Georg Brandlb19be572007-12-29 10:57:00 +0000315 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000316
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000317 *value* can be an integer, string, tuple, or another :class:`Decimal`
Raymond Hettingerabe32372008-02-14 02:41:22 +0000318 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000319 string, it should conform to the decimal numeric string syntax after leading
320 and trailing whitespace characters are removed::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000321
322 sign ::= '+' | '-'
323 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
324 indicator ::= 'e' | 'E'
325 digits ::= digit [digit]...
326 decimal-part ::= digits '.' [digits] | ['.'] digits
327 exponent-part ::= indicator [sign] digits
328 infinity ::= 'Infinity' | 'Inf'
329 nan ::= 'NaN' [digits] | 'sNaN' [digits]
330 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000331 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl8ec7f652007-08-15 14:28:01 +0000332
333 If *value* is a :class:`tuple`, it should have three components, a sign
334 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
335 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Raymond Hettingerabe32372008-02-14 02:41:22 +0000336 returns ``Decimal('1.414')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000337
338 The *context* precision does not affect how many digits are stored. That is
339 determined exclusively by the number of digits in *value*. For example,
Raymond Hettingerabe32372008-02-14 02:41:22 +0000340 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl8ec7f652007-08-15 14:28:01 +0000341 only three.
342
343 The purpose of the *context* argument is determining what to do if *value* is a
344 malformed string. If the context traps :const:`InvalidOperation`, an exception
345 is raised; otherwise, the constructor returns a new Decimal with the value of
346 :const:`NaN`.
347
348 Once constructed, :class:`Decimal` objects are immutable.
349
Mark Dickinson59bc20b2008-01-12 01:56:00 +0000350 .. versionchanged:: 2.6
351 leading and trailing whitespace characters are permitted when
352 creating a Decimal instance from a string.
353
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000354 Decimal floating point objects share many properties with the other built-in
355 numeric types such as :class:`float` and :class:`int`. All of the usual math
356 operations and special methods apply. Likewise, decimal objects can be
357 copied, pickled, printed, used as dictionary keys, used as set elements,
358 compared, sorted, and coerced to another type (such as :class:`float` or
359 :class:`long`).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000360
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000361 In addition to the standard numeric properties, decimal floating point
362 objects also have a number of specialized methods:
Georg Brandl8ec7f652007-08-15 14:28:01 +0000363
364
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000365 .. method:: adjusted()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000366
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000367 Return the adjusted exponent after shifting out the coefficient's
368 rightmost digits until only the lead digit remains:
369 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
370 position of the most significant digit with respect to the decimal point.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000371
372
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000373 .. method:: as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +0000374
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000375 Return a :term:`named tuple` representation of the number:
376 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandle3c3db52008-01-11 09:55:53 +0000377
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000378 .. versionchanged:: 2.6
379 Use a named tuple.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000380
381
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000382 .. method:: canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000383
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000384 Return the canonical encoding of the argument. Currently, the encoding of
385 a :class:`Decimal` instance is always canonical, so this operation returns
386 its argument unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000387
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000388 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000389
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000390 .. method:: compare(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000391
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000392 Compare the values of two Decimal instances. This operation behaves in
393 the same way as the usual comparison method :meth:`__cmp__`, except that
394 :meth:`compare` returns a Decimal instance rather than an integer, and if
395 either operand is a NaN then the result is a NaN::
Georg Brandl8ec7f652007-08-15 14:28:01 +0000396
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000397 a or b is a NaN ==> Decimal('NaN')
398 a < b ==> Decimal('-1')
399 a == b ==> Decimal('0')
400 a > b ==> Decimal('1')
Georg Brandl8ec7f652007-08-15 14:28:01 +0000401
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000402 .. method:: compare_signal(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000403
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000404 This operation is identical to the :meth:`compare` method, except that all
405 NaNs signal. That is, if neither operand is a signaling NaN then any
406 quiet NaN operand is treated as though it were a signaling NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000407
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000408 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000409
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000410 .. method:: compare_total(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000411
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000412 Compare two operands using their abstract representation rather than their
413 numerical value. Similar to the :meth:`compare` method, but the result
414 gives a total ordering on :class:`Decimal` instances. Two
415 :class:`Decimal` instances with the same numeric value but different
416 representations compare unequal in this ordering:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000417
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000418 >>> Decimal('12.0').compare_total(Decimal('12'))
419 Decimal('-1')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000420
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000421 Quiet and signaling NaNs are also included in the total ordering. The
422 result of this function is ``Decimal('0')`` if both operands have the same
423 representation, ``Decimal('-1')`` if the first operand is lower in the
424 total order than the second, and ``Decimal('1')`` if the first operand is
425 higher in the total order than the second operand. See the specification
426 for details of the total order.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000427
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000428 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000429
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000430 .. method:: compare_total_mag(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000431
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000432 Compare two operands using their abstract representation rather than their
433 value as in :meth:`compare_total`, but ignoring the sign of each operand.
434 ``x.compare_total_mag(y)`` is equivalent to
435 ``x.copy_abs().compare_total(y.copy_abs())``.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000436
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000437 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000438
Facundo Batista8e1c52a2008-06-21 17:30:06 +0000439 .. method:: conjugate()
440
441 Just returns self, this method is only to comply with the Decimal
442 Specification.
443
444 .. versionadded:: 2.6
445
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000446 .. method:: copy_abs()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000447
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000448 Return the absolute value of the argument. This operation is unaffected
449 by the context and is quiet: no flags are changed and no rounding is
450 performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000451
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000452 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000453
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000454 .. method:: copy_negate()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000455
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000456 Return the negation of the argument. This operation is unaffected by the
457 context and is quiet: no flags are changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000458
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000459 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000460
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000461 .. method:: copy_sign(other)
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000462
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000463 Return a copy of the first operand with the sign set to be the same as the
464 sign of the second operand. For example:
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000465
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000466 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
467 Decimal('-2.3')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000468
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000469 This operation is unaffected by the context and is quiet: no flags are
470 changed and no rounding is performed.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000471
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000472 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000473
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000474 .. method:: exp([context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000475
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000476 Return the value of the (natural) exponential function ``e**x`` at the
477 given number. The result is correctly rounded using the
478 :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000479
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000480 >>> Decimal(1).exp()
481 Decimal('2.718281828459045235360287471')
482 >>> Decimal(321).exp()
483 Decimal('2.561702493119680037517373933E+139')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000484
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000485 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000486
Raymond Hettingerf4d85972009-01-03 19:02:23 +0000487 .. method:: from_float(f)
488
489 Classmethod that converts a float to a decimal number, exactly.
490
491 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
492 Since 0.1 is not exactly representable in binary floating point, the
493 value is stored as the nearest representable value which is
494 `0x1.999999999999ap-4`. That equivalent value in decimal is
495 `0.1000000000000000055511151231257827021181583404541015625`.
496
497 .. doctest::
498
499 >>> Decimal.from_float(0.1)
500 Decimal('0.1000000000000000055511151231257827021181583404541015625')
501 >>> Decimal.from_float(float('nan'))
502 Decimal('NaN')
503 >>> Decimal.from_float(float('inf'))
504 Decimal('Infinity')
505 >>> Decimal.from_float(float('-inf'))
506 Decimal('-Infinity')
507
508 .. versionadded:: 2.7
509
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000510 .. method:: fma(other, third[, context])
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000511
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000512 Fused multiply-add. Return self*other+third with no rounding of the
513 intermediate product self*other.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000514
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000515 >>> Decimal(2).fma(3, 5)
516 Decimal('11')
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000517
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000518 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000519
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000520 .. method:: is_canonical()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000521
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000522 Return :const:`True` if the argument is canonical and :const:`False`
523 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
524 this operation always returns :const:`True`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000525
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000526 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000527
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000528 .. method:: is_finite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000529
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000530 Return :const:`True` if the argument is a finite number, and
531 :const:`False` if the argument is an infinity or a NaN.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000532
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000533 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000534
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000535 .. method:: is_infinite()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000536
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000537 Return :const:`True` if the argument is either positive or negative
538 infinity and :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000539
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000540 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000541
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000542 .. method:: is_nan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000543
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000544 Return :const:`True` if the argument is a (quiet or signaling) NaN and
545 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000546
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000547 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000548
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000549 .. method:: is_normal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000550
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000551 Return :const:`True` if the argument is a *normal* finite non-zero
552 number with an adjusted exponent greater than or equal to *Emin*.
553 Return :const:`False` if the argument is zero, subnormal, infinite or a
554 NaN. Note, the term *normal* is used here in a different sense with
555 the :meth:`normalize` method which is used to create canonical values.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000556
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000557 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000558
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000559 .. method:: is_qnan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000560
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000561 Return :const:`True` if the argument is a quiet NaN, and
562 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000563
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000564 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000565
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000566 .. method:: is_signed()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000567
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000568 Return :const:`True` if the argument has a negative sign and
569 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000570
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000571 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000572
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000573 .. method:: is_snan()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000574
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000575 Return :const:`True` if the argument is a signaling NaN and :const:`False`
576 otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000577
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000578 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000579
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000580 .. method:: is_subnormal()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000581
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000582 Return :const:`True` if the argument is subnormal, and :const:`False`
Raymond Hettingereecd1dc62009-03-10 04:40:24 +0000583 otherwise. A number is subnormal is if it is nonzero, finite, and has an
584 adjusted exponent less than *Emin*.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000585
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000586 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000587
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000588 .. method:: is_zero()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000589
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000590 Return :const:`True` if the argument is a (positive or negative) zero and
591 :const:`False` otherwise.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000592
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000593 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000594
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000595 .. method:: ln([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000596
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000597 Return the natural (base e) logarithm of the operand. The result is
598 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000599
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000600 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000601
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000602 .. method:: log10([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000603
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000604 Return the base ten logarithm of the operand. The result is correctly
605 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000606
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000607 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000608
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000609 .. method:: logb([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000610
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000611 For a nonzero number, return the adjusted exponent of its operand as a
612 :class:`Decimal` instance. If the operand is a zero then
613 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
614 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
615 returned.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000616
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000617 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000618
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000619 .. method:: logical_and(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000620
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000621 :meth:`logical_and` is a logical operation which takes two *logical
622 operands* (see :ref:`logical_operands_label`). The result is the
623 digit-wise ``and`` of the two operands.
624
625 .. versionadded:: 2.6
626
627 .. method:: logical_invert(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000628
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000629 :meth:`logical_invert` is a logical operation. The argument must
630 be a *logical operand* (see :ref:`logical_operands_label`). The
631 result is the digit-wise inversion of the operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000632
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000633 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000634
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000635 .. method:: logical_or(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000636
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000637 :meth:`logical_or` is a logical operation which takes two *logical
638 operands* (see :ref:`logical_operands_label`). The result is the
639 digit-wise ``or`` of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000640
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000641 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000642
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000643 .. method:: logical_xor(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000644
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000645 :meth:`logical_xor` is a logical operation which takes two *logical
646 operands* (see :ref:`logical_operands_label`). The result is the
647 digit-wise exclusive or of the two operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000648
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000649 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000650
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000651 .. method:: max(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000652
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000653 Like ``max(self, other)`` except that the context rounding rule is applied
654 before returning and that :const:`NaN` values are either signaled or
655 ignored (depending on the context and whether they are signaling or
656 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000657
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000658 .. method:: max_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000659
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000660 Similar to the :meth:`max` method, but the comparison is done using the
661 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000662
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000663 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000664
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000665 .. method:: min(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000666
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000667 Like ``min(self, other)`` except that the context rounding rule is applied
668 before returning and that :const:`NaN` values are either signaled or
669 ignored (depending on the context and whether they are signaling or
670 quiet).
Georg Brandl8ec7f652007-08-15 14:28:01 +0000671
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000672 .. method:: min_mag(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000673
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000674 Similar to the :meth:`min` method, but the comparison is done using the
675 absolute values of the operands.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000676
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000677 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000678
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000679 .. method:: next_minus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000680
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000681 Return the largest number representable in the given context (or in the
682 current thread's context if no context is given) that is smaller than the
683 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000684
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000685 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000686
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000687 .. method:: next_plus([context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000688
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000689 Return the smallest number representable in the given context (or in the
690 current thread's context if no context is given) that is larger than the
691 given operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000692
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000693 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000694
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000695 .. method:: next_toward(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000696
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000697 If the two operands are unequal, return the number closest to the first
698 operand in the direction of the second operand. If both operands are
699 numerically equal, return a copy of the first operand with the sign set to
700 be the same as the sign of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000701
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000702 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000703
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000704 .. method:: normalize([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000705
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000706 Normalize the number by stripping the rightmost trailing zeros and
707 converting any result equal to :const:`Decimal('0')` to
708 :const:`Decimal('0e0')`. Used for producing canonical values for members
709 of an equivalence class. For example, ``Decimal('32.100')`` and
710 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
711 ``Decimal('32.1')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000712
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000713 .. method:: number_class([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000714
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000715 Return a string describing the *class* of the operand. The returned value
716 is one of the following ten strings.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000717
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000718 * ``"-Infinity"``, indicating that the operand is negative infinity.
719 * ``"-Normal"``, indicating that the operand is a negative normal number.
720 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
721 * ``"-Zero"``, indicating that the operand is a negative zero.
722 * ``"+Zero"``, indicating that the operand is a positive zero.
723 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
724 * ``"+Normal"``, indicating that the operand is a positive normal number.
725 * ``"+Infinity"``, indicating that the operand is positive infinity.
726 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
727 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000728
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000729 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000730
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000731 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000732
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000733 Return a value equal to the first operand after rounding and having the
734 exponent of the second operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000735
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000736 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
737 Decimal('1.414')
Facundo Batistae90bc3c2007-09-14 21:29:52 +0000738
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000739 Unlike other operations, if the length of the coefficient after the
740 quantize operation would be greater than precision, then an
741 :const:`InvalidOperation` is signaled. This guarantees that, unless there
742 is an error condition, the quantized exponent is always equal to that of
743 the right-hand operand.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000744
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000745 Also unlike other operations, quantize never signals Underflow, even if
746 the result is subnormal and inexact.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000747
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000748 If the exponent of the second operand is larger than that of the first
749 then rounding may be necessary. In this case, the rounding mode is
750 determined by the ``rounding`` argument if given, else by the given
751 ``context`` argument; if neither argument is given the rounding mode of
752 the current thread's context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000753
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000754 If *watchexp* is set (default), then an error is returned whenever the
755 resulting exponent is greater than :attr:`Emax` or less than
756 :attr:`Etiny`.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000757
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000758 .. method:: radix()
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000759
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000760 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
761 class does all its arithmetic. Included for compatibility with the
762 specification.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000763
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000764 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000765
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000766 .. method:: remainder_near(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000767
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000768 Compute the modulo as either a positive or negative value depending on
769 which is closest to zero. For instance, ``Decimal(10).remainder_near(6)``
770 returns ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000771
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000772 If both are equally close, the one chosen will have the same sign as
773 *self*.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000774
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000775 .. method:: rotate(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000776
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000777 Return the result of rotating the digits of the first operand by an amount
778 specified by the second operand. The second operand must be an integer in
779 the range -precision through precision. The absolute value of the second
780 operand gives the number of places to rotate. If the second operand is
781 positive then rotation is to the left; otherwise rotation is to the right.
782 The coefficient of the first operand is padded on the left with zeros to
783 length precision if necessary. The sign and exponent of the first operand
784 are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000785
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000786 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000787
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000788 .. method:: same_quantum(other[, context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000789
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000790 Test whether self and other have the same exponent or whether both are
791 :const:`NaN`.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000792
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000793 .. method:: scaleb(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000794
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000795 Return the first operand with exponent adjusted by the second.
796 Equivalently, return the first operand multiplied by ``10**other``. The
797 second operand must be an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000798
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000799 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000800
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000801 .. method:: shift(other[, context])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000802
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000803 Return the result of shifting the digits of the first operand by an amount
804 specified by the second operand. The second operand must be an integer in
805 the range -precision through precision. The absolute value of the second
806 operand gives the number of places to shift. If the second operand is
807 positive then the shift is to the left; otherwise the shift is to the
808 right. Digits shifted into the coefficient are zeros. The sign and
809 exponent of the first operand are unchanged.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000810
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000811 .. versionadded:: 2.6
Georg Brandl8ec7f652007-08-15 14:28:01 +0000812
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000813 .. method:: sqrt([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000814
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000815 Return the square root of the argument to full precision.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000816
817
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000818 .. method:: to_eng_string([context])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000819
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000820 Convert to an engineering-type string.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000821
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000822 Engineering notation has an exponent which is a multiple of 3, so there
823 are up to 3 digits left of the decimal place. For example, converts
824 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Georg Brandl8ec7f652007-08-15 14:28:01 +0000825
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000826 .. method:: to_integral([rounding[, context]])
Georg Brandl8ec7f652007-08-15 14:28:01 +0000827
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000828 Identical to the :meth:`to_integral_value` method. The ``to_integral``
829 name has been kept for compatibility with older versions.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000830
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000831 .. method:: to_integral_exact([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000832
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000833 Round to the nearest integer, signaling :const:`Inexact` or
834 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
835 determined by the ``rounding`` parameter if given, else by the given
836 ``context``. If neither parameter is given then the rounding mode of the
837 current context is used.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000838
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000839 .. versionadded:: 2.6
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000840
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000841 .. method:: to_integral_value([rounding[, context]])
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000842
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000843 Round to the nearest integer without signaling :const:`Inexact` or
844 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
845 rounding method in either the supplied *context* or the current context.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000846
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000847 .. versionchanged:: 2.6
848 renamed from ``to_integral`` to ``to_integral_value``. The old name
849 remains valid for compatibility.
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000850
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000851.. _logical_operands_label:
852
853Logical operands
854^^^^^^^^^^^^^^^^
855
856The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
857and :meth:`logical_xor` methods expect their arguments to be *logical
858operands*. A *logical operand* is a :class:`Decimal` instance whose
859exponent and sign are both zero, and whose digits are all either
860:const:`0` or :const:`1`.
861
Georg Brandlb19be572007-12-29 10:57:00 +0000862.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +0000863
864
865.. _decimal-context:
866
867Context objects
868---------------
869
870Contexts are environments for arithmetic operations. They govern precision, set
871rules for rounding, determine which signals are treated as exceptions, and limit
872the range for exponents.
873
874Each thread has its own current context which is accessed or changed using the
875:func:`getcontext` and :func:`setcontext` functions:
876
877
878.. function:: getcontext()
879
880 Return the current context for the active thread.
881
882
883.. function:: setcontext(c)
884
885 Set the current context for the active thread to *c*.
886
887Beginning with Python 2.5, you can also use the :keyword:`with` statement and
888the :func:`localcontext` function to temporarily change the active context.
889
890
891.. function:: localcontext([c])
892
893 Return a context manager that will set the current context for the active thread
894 to a copy of *c* on entry to the with-statement and restore the previous context
895 when exiting the with-statement. If no context is specified, a copy of the
896 current context is used.
897
898 .. versionadded:: 2.5
899
900 For example, the following code sets the current decimal precision to 42 places,
901 performs a calculation, and then automatically restores the previous context::
902
Georg Brandl8ec7f652007-08-15 14:28:01 +0000903 from decimal import localcontext
904
905 with localcontext() as ctx:
906 ctx.prec = 42 # Perform a high precision calculation
907 s = calculate_something()
908 s = +s # Round the final result back to the default precision
909
910New contexts can also be created using the :class:`Context` constructor
911described below. In addition, the module provides three pre-made contexts:
912
913
914.. class:: BasicContext
915
916 This is a standard context defined by the General Decimal Arithmetic
917 Specification. Precision is set to nine. Rounding is set to
918 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
919 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
920 :const:`Subnormal`.
921
922 Because many of the traps are enabled, this context is useful for debugging.
923
924
925.. class:: ExtendedContext
926
927 This is a standard context defined by the General Decimal Arithmetic
928 Specification. Precision is set to nine. Rounding is set to
929 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
930 exceptions are not raised during computations).
931
Mark Dickinson3a94ee02008-02-10 15:19:58 +0000932 Because the traps are disabled, this context is useful for applications that
Georg Brandl8ec7f652007-08-15 14:28:01 +0000933 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
934 raising exceptions. This allows an application to complete a run in the
935 presence of conditions that would otherwise halt the program.
936
937
938.. class:: DefaultContext
939
940 This context is used by the :class:`Context` constructor as a prototype for new
941 contexts. Changing a field (such a precision) has the effect of changing the
942 default for new contexts creating by the :class:`Context` constructor.
943
944 This context is most useful in multi-threaded environments. Changing one of the
945 fields before threads are started has the effect of setting system-wide
946 defaults. Changing the fields after threads have started is not recommended as
947 it would require thread synchronization to prevent race conditions.
948
949 In single threaded environments, it is preferable to not use this context at
950 all. Instead, simply create contexts explicitly as described below.
951
952 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
953 for Overflow, InvalidOperation, and DivisionByZero.
954
955In addition to the three supplied contexts, new contexts can be created with the
956:class:`Context` constructor.
957
958
959.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
960
961 Creates a new context. If a field is not specified or is :const:`None`, the
962 default values are copied from the :const:`DefaultContext`. If the *flags*
963 field is not specified or is :const:`None`, all flags are cleared.
964
965 The *prec* field is a positive integer that sets the precision for arithmetic
966 operations in the context.
967
968 The *rounding* option is one of:
969
970 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
971 * :const:`ROUND_DOWN` (towards zero),
972 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
973 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
974 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
975 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
976 * :const:`ROUND_UP` (away from zero).
Georg Brandlc62ef8b2009-01-03 20:55:06 +0000977 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000978 would have been 0 or 5; otherwise towards zero)
Georg Brandl8ec7f652007-08-15 14:28:01 +0000979
980 The *traps* and *flags* fields list any signals to be set. Generally, new
981 contexts should only set traps and leave the flags clear.
982
983 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
984 for exponents.
985
986 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
987 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
988 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
989
Facundo Batista7c82a3e92007-09-14 18:58:34 +0000990 .. versionchanged:: 2.6
991 The :const:`ROUND_05UP` rounding mode was added.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000992
Benjamin Petersonc7b05922008-04-25 01:29:10 +0000993 The :class:`Context` class defines several general purpose methods as well as
994 a large number of methods for doing arithmetic directly in a given context.
995 In addition, for each of the :class:`Decimal` methods described above (with
996 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
997 a corresponding :class:`Context` method. For example, ``C.exp(x)`` is
998 equivalent to ``x.exp(context=C)``.
Georg Brandl8ec7f652007-08-15 14:28:01 +0000999
1000
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001001 .. method:: clear_flags()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001002
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001003 Resets all of the flags to :const:`0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001004
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001005 .. method:: copy()
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001006
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001007 Return a duplicate of the context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001008
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001009 .. method:: copy_decimal(num)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001010
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001011 Return a copy of the Decimal instance num.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001012
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001013 .. method:: create_decimal(num)
Georg Brandl9f662322008-03-22 11:47:10 +00001014
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001015 Creates a new Decimal instance from *num* but using *self* as
1016 context. Unlike the :class:`Decimal` constructor, the context precision,
1017 rounding method, flags, and traps are applied to the conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001018
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001019 This is useful because constants are often given to a greater precision
1020 than is needed by the application. Another benefit is that rounding
1021 immediately eliminates unintended effects from digits beyond the current
1022 precision. In the following example, using unrounded inputs means that
1023 adding zero to a sum can change the result:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001024
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001025 .. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001026
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001027 >>> getcontext().prec = 3
1028 >>> Decimal('3.4445') + Decimal('1.0023')
1029 Decimal('4.45')
1030 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1031 Decimal('4.44')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001032
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001033 This method implements the to-number operation of the IBM specification.
1034 If the argument is a string, no leading or trailing whitespace is
1035 permitted.
1036
Georg Brandlaa5bb322009-01-03 19:44:48 +00001037 .. method:: create_decimal_from_float(f)
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001038
1039 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandla24067e2009-01-03 20:15:14 +00001040 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001041 the context precision, rounding method, flags, and traps are applied to
1042 the conversion.
1043
1044 .. doctest::
1045
Georg Brandlaa5bb322009-01-03 19:44:48 +00001046 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1047 >>> context.create_decimal_from_float(math.pi)
1048 Decimal('3.1415')
1049 >>> context = Context(prec=5, traps=[Inexact])
1050 >>> context.create_decimal_from_float(math.pi)
1051 Traceback (most recent call last):
1052 ...
1053 Inexact: None
Raymond Hettingerf4d85972009-01-03 19:02:23 +00001054
1055 .. versionadded:: 2.7
1056
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001057 .. method:: Etiny()
1058
1059 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1060 value for subnormal results. When underflow occurs, the exponent is set
1061 to :const:`Etiny`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001062
1063
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001064 .. method:: Etop()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001065
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001066 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001067
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001068 The usual approach to working with decimals is to create :class:`Decimal`
1069 instances and then apply arithmetic operations which take place within the
1070 current context for the active thread. An alternative approach is to use
1071 context methods for calculating within a specific context. The methods are
1072 similar to those for the :class:`Decimal` class and are only briefly
1073 recounted here.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001074
1075
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001076 .. method:: abs(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001077
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001078 Returns the absolute value of *x*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001079
1080
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001081 .. method:: add(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001082
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001083 Return the sum of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001084
1085
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001086 .. method:: canonical(x)
1087
1088 Returns the same Decimal object *x*.
1089
1090
1091 .. method:: compare(x, y)
1092
1093 Compares *x* and *y* numerically.
1094
1095
1096 .. method:: compare_signal(x, y)
1097
1098 Compares the values of the two operands numerically.
1099
1100
1101 .. method:: compare_total(x, y)
1102
1103 Compares two operands using their abstract representation.
1104
1105
1106 .. method:: compare_total_mag(x, y)
1107
1108 Compares two operands using their abstract representation, ignoring sign.
1109
1110
1111 .. method:: copy_abs(x)
1112
1113 Returns a copy of *x* with the sign set to 0.
1114
1115
1116 .. method:: copy_negate(x)
1117
1118 Returns a copy of *x* with the sign inverted.
1119
1120
1121 .. method:: copy_sign(x, y)
1122
1123 Copies the sign from *y* to *x*.
1124
1125
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001126 .. method:: divide(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001127
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001128 Return *x* divided by *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001129
1130
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001131 .. method:: divide_int(x, y)
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001132
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001133 Return *x* divided by *y*, truncated to an integer.
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001134
1135
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001136 .. method:: divmod(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001137
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001138 Divides two numbers and returns the integer part of the result.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001139
1140
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001141 .. method:: exp(x)
1142
1143 Returns `e ** x`.
1144
1145
1146 .. method:: fma(x, y, z)
1147
1148 Returns *x* multiplied by *y*, plus *z*.
1149
1150
1151 .. method:: is_canonical(x)
1152
1153 Returns True if *x* is canonical; otherwise returns False.
1154
1155
1156 .. method:: is_finite(x)
1157
1158 Returns True if *x* is finite; otherwise returns False.
1159
1160
1161 .. method:: is_infinite(x)
1162
1163 Returns True if *x* is infinite; otherwise returns False.
1164
1165
1166 .. method:: is_nan(x)
1167
1168 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1169
1170
1171 .. method:: is_normal(x)
1172
1173 Returns True if *x* is a normal number; otherwise returns False.
1174
1175
1176 .. method:: is_qnan(x)
1177
1178 Returns True if *x* is a quiet NaN; otherwise returns False.
1179
1180
1181 .. method:: is_signed(x)
1182
1183 Returns True if *x* is negative; otherwise returns False.
1184
1185
1186 .. method:: is_snan(x)
1187
1188 Returns True if *x* is a signaling NaN; otherwise returns False.
1189
1190
1191 .. method:: is_subnormal(x)
1192
1193 Returns True if *x* is subnormal; otherwise returns False.
1194
1195
1196 .. method:: is_zero(x)
1197
1198 Returns True if *x* is a zero; otherwise returns False.
1199
1200
1201 .. method:: ln(x)
1202
1203 Returns the natural (base e) logarithm of *x*.
1204
1205
1206 .. method:: log10(x)
1207
1208 Returns the base 10 logarithm of *x*.
1209
1210
1211 .. method:: logb(x)
1212
1213 Returns the exponent of the magnitude of the operand's MSD.
1214
1215
1216 .. method:: logical_and(x, y)
1217
Georg Brandle92818f2009-01-03 20:47:01 +00001218 Applies the logical operation *and* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001219
1220
1221 .. method:: logical_invert(x)
1222
1223 Invert all the digits in *x*.
1224
1225
1226 .. method:: logical_or(x, y)
1227
Georg Brandle92818f2009-01-03 20:47:01 +00001228 Applies the logical operation *or* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001229
1230
1231 .. method:: logical_xor(x, y)
1232
Georg Brandle92818f2009-01-03 20:47:01 +00001233 Applies the logical operation *xor* between each operand's digits.
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001234
1235
1236 .. method:: max(x, y)
1237
1238 Compares two values numerically and returns the maximum.
1239
1240
1241 .. method:: max_mag(x, y)
1242
1243 Compares the values numerically with their sign ignored.
1244
1245
1246 .. method:: min(x, y)
1247
1248 Compares two values numerically and returns the minimum.
1249
1250
1251 .. method:: min_mag(x, y)
1252
1253 Compares the values numerically with their sign ignored.
1254
1255
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001256 .. method:: minus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001257
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001258 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001259
1260
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001261 .. method:: multiply(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001262
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001263 Return the product of *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001264
1265
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001266 .. method:: next_minus(x)
1267
1268 Returns the largest representable number smaller than *x*.
1269
1270
1271 .. method:: next_plus(x)
1272
1273 Returns the smallest representable number larger than *x*.
1274
1275
1276 .. method:: next_toward(x, y)
1277
1278 Returns the number closest to *x*, in direction towards *y*.
1279
1280
1281 .. method:: normalize(x)
1282
1283 Reduces *x* to its simplest form.
1284
1285
1286 .. method:: number_class(x)
1287
1288 Returns an indication of the class of *x*.
1289
1290
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001291 .. method:: plus(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001292
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001293 Plus corresponds to the unary prefix plus operator in Python. This
1294 operation applies the context precision and rounding, so it is *not* an
1295 identity operation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001296
1297
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001298 .. method:: power(x, y[, modulo])
Georg Brandl8ec7f652007-08-15 14:28:01 +00001299
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001300 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001301
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001302 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1303 must be integral. The result will be inexact unless ``y`` is integral and
1304 the result is finite and can be expressed exactly in 'precision' digits.
1305 The result should always be correctly rounded, using the rounding mode of
1306 the current thread's context.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001307
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001308 With three arguments, compute ``(x**y) % modulo``. For the three argument
1309 form, the following restrictions on the arguments hold:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001310
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001311 - all three arguments must be integral
1312 - ``y`` must be nonnegative
1313 - at least one of ``x`` or ``y`` must be nonzero
1314 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl8ec7f652007-08-15 14:28:01 +00001315
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001316 The result of ``Context.power(x, y, modulo)`` is identical to the result
1317 that would be obtained by computing ``(x**y) % modulo`` with unbounded
1318 precision, but is computed more efficiently. It is always exact.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001319
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001320 .. versionchanged:: 2.6
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001321 ``y`` may now be nonintegral in ``x**y``.
1322 Stricter requirements for the three-argument version.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001323
1324
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001325 .. method:: quantize(x, y)
1326
1327 Returns a value equal to *x* (rounded), having the exponent of *y*.
1328
1329
1330 .. method:: radix()
1331
1332 Just returns 10, as this is Decimal, :)
1333
1334
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001335 .. method:: remainder(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001336
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001337 Returns the remainder from integer division.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001338
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001339 The sign of the result, if non-zero, is the same as that of the original
1340 dividend.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001341
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001342 .. method:: remainder_near(x, y)
1343
Georg Brandle92818f2009-01-03 20:47:01 +00001344 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1345 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001346
1347
1348 .. method:: rotate(x, y)
1349
1350 Returns a rotated copy of *x*, *y* times.
1351
1352
1353 .. method:: same_quantum(x, y)
1354
1355 Returns True if the two operands have the same exponent.
1356
1357
1358 .. method:: scaleb (x, y)
1359
1360 Returns the first operand after adding the second value its exp.
1361
1362
1363 .. method:: shift(x, y)
1364
1365 Returns a shifted copy of *x*, *y* times.
1366
1367
1368 .. method:: sqrt(x)
1369
1370 Square root of a non-negative number to context precision.
1371
1372
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001373 .. method:: subtract(x, y)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001374
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001375 Return the difference between *x* and *y*.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001376
Facundo Batista8e1c52a2008-06-21 17:30:06 +00001377
1378 .. method:: to_eng_string(x)
1379
1380 Converts a number to a string, using scientific notation.
1381
1382
1383 .. method:: to_integral_exact(x)
1384
1385 Rounds to an integer.
1386
1387
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001388 .. method:: to_sci_string(x)
Georg Brandl8ec7f652007-08-15 14:28:01 +00001389
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001390 Converts a number to a string using scientific notation.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001391
Georg Brandlb19be572007-12-29 10:57:00 +00001392.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001393
1394
1395.. _decimal-signals:
1396
1397Signals
1398-------
1399
1400Signals represent conditions that arise during computation. Each corresponds to
1401one context flag and one context trap enabler.
1402
Mark Dickinson1840c1a2008-05-03 18:23:14 +00001403The context flag is set whenever the condition is encountered. After the
Georg Brandl8ec7f652007-08-15 14:28:01 +00001404computation, flags may be checked for informational purposes (for instance, to
1405determine whether a computation was exact). After checking the flags, be sure to
1406clear all flags before starting the next computation.
1407
1408If the context's trap enabler is set for the signal, then the condition causes a
1409Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1410is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1411condition.
1412
1413
1414.. class:: Clamped
1415
1416 Altered an exponent to fit representation constraints.
1417
1418 Typically, clamping occurs when an exponent falls outside the context's
1419 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001420 fit by adding zeros to the coefficient.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001421
1422
1423.. class:: DecimalException
1424
1425 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1426
1427
1428.. class:: DivisionByZero
1429
1430 Signals the division of a non-infinite number by zero.
1431
1432 Can occur with division, modulo division, or when raising a number to a negative
1433 power. If this signal is not trapped, returns :const:`Infinity` or
1434 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1435
1436
1437.. class:: Inexact
1438
1439 Indicates that rounding occurred and the result is not exact.
1440
1441 Signals when non-zero digits were discarded during rounding. The rounded result
1442 is returned. The signal flag or trap is used to detect when results are
1443 inexact.
1444
1445
1446.. class:: InvalidOperation
1447
1448 An invalid operation was performed.
1449
1450 Indicates that an operation was requested that does not make sense. If not
1451 trapped, returns :const:`NaN`. Possible causes include::
1452
1453 Infinity - Infinity
1454 0 * Infinity
1455 Infinity / Infinity
1456 x % 0
1457 Infinity % x
1458 x._rescale( non-integer )
1459 sqrt(-x) and x > 0
1460 0 ** 0
1461 x ** (non-integer)
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001462 x ** Infinity
Georg Brandl8ec7f652007-08-15 14:28:01 +00001463
1464
1465.. class:: Overflow
1466
1467 Numerical overflow.
1468
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001469 Indicates the exponent is larger than :attr:`Emax` after rounding has
1470 occurred. If not trapped, the result depends on the rounding mode, either
1471 pulling inward to the largest representable finite number or rounding outward
1472 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1473 are also signaled.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001474
1475
1476.. class:: Rounded
1477
1478 Rounding occurred though possibly no information was lost.
1479
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001480 Signaled whenever rounding discards digits; even if those digits are zero
1481 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1482 the result unchanged. This signal is used to detect loss of significant
1483 digits.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001484
1485
1486.. class:: Subnormal
1487
1488 Exponent was lower than :attr:`Emin` prior to rounding.
1489
Benjamin Petersonc7b05922008-04-25 01:29:10 +00001490 Occurs when an operation result is subnormal (the exponent is too small). If
1491 not trapped, returns the result unchanged.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001492
1493
1494.. class:: Underflow
1495
1496 Numerical underflow with result rounded to zero.
1497
1498 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1499 and :class:`Subnormal` are also signaled.
1500
1501The following table summarizes the hierarchy of signals::
1502
1503 exceptions.ArithmeticError(exceptions.StandardError)
1504 DecimalException
1505 Clamped
1506 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1507 Inexact
1508 Overflow(Inexact, Rounded)
1509 Underflow(Inexact, Rounded, Subnormal)
1510 InvalidOperation
1511 Rounded
1512 Subnormal
1513
Georg Brandlb19be572007-12-29 10:57:00 +00001514.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001515
1516
1517.. _decimal-notes:
1518
1519Floating Point Notes
1520--------------------
1521
1522
1523Mitigating round-off error with increased precision
1524^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1525
1526The use of decimal floating point eliminates decimal representation error
1527(making it possible to represent :const:`0.1` exactly); however, some operations
1528can still incur round-off error when non-zero digits exceed the fixed precision.
1529
1530The effects of round-off error can be amplified by the addition or subtraction
1531of nearly offsetting quantities resulting in loss of significance. Knuth
1532provides two instructive examples where rounded floating point arithmetic with
1533insufficient precision causes the breakdown of the associative and distributive
Georg Brandl9f662322008-03-22 11:47:10 +00001534properties of addition:
1535
1536.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001537
1538 # Examples from Seminumerical Algorithms, Section 4.2.2.
1539 >>> from decimal import Decimal, getcontext
1540 >>> getcontext().prec = 8
1541
1542 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1543 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001544 Decimal('9.5111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001545 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001546 Decimal('10')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001547
1548 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1549 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001550 Decimal('0.01')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001551 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001552 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001553
1554The :mod:`decimal` module makes it possible to restore the identities by
Georg Brandl9f662322008-03-22 11:47:10 +00001555expanding the precision sufficiently to avoid loss of significance:
1556
1557.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001558
1559 >>> getcontext().prec = 20
1560 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1561 >>> (u + v) + w
Raymond Hettingerabe32372008-02-14 02:41:22 +00001562 Decimal('9.51111111')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001563 >>> u + (v + w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001564 Decimal('9.51111111')
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001565 >>>
Georg Brandl8ec7f652007-08-15 14:28:01 +00001566 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1567 >>> (u*v) + (u*w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001568 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001569 >>> u * (v+w)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001570 Decimal('0.0060000')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001571
1572
1573Special values
1574^^^^^^^^^^^^^^
1575
1576The number system for the :mod:`decimal` module provides special values
1577including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Facundo Batista7c82a3e92007-09-14 18:58:34 +00001578and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001579
1580Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1581they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1582not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1583can result from rounding beyond the limits of the largest representable number.
1584
1585The infinities are signed (affine) and can be used in arithmetic operations
1586where they get treated as very large, indeterminate numbers. For instance,
1587adding a constant to infinity gives another infinite result.
1588
1589Some operations are indeterminate and return :const:`NaN`, or if the
1590:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1591``0/0`` returns :const:`NaN` which means "not a number". This variety of
1592:const:`NaN` is quiet and, once created, will flow through other computations
1593always resulting in another :const:`NaN`. This behavior can be useful for a
1594series of computations that occasionally have missing inputs --- it allows the
1595calculation to proceed while flagging specific results as invalid.
1596
1597A variant is :const:`sNaN` which signals rather than remaining quiet after every
1598operation. This is a useful return value when an invalid result needs to
1599interrupt a calculation for special handling.
1600
Mark Dickinson2fc92632008-02-06 22:10:50 +00001601The behavior of Python's comparison operators can be a little surprising where a
1602:const:`NaN` is involved. A test for equality where one of the operands is a
1603quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1604``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
Mark Dickinsonbafa9422008-02-06 22:25:16 +00001605:const:`True`. An attempt to compare two Decimals using any of the ``<``,
Mark Dickinson00c2e652008-02-07 01:42:06 +00001606``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1607if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Mark Dickinson3a94ee02008-02-10 15:19:58 +00001608not trapped. Note that the General Decimal Arithmetic specification does not
Mark Dickinson00c2e652008-02-07 01:42:06 +00001609specify the behavior of direct comparisons; these rules for comparisons
1610involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1611section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
Mark Dickinson2fc92632008-02-06 22:10:50 +00001612and :meth:`compare-signal` methods instead.
1613
Georg Brandl8ec7f652007-08-15 14:28:01 +00001614The signed zeros can result from calculations that underflow. They keep the sign
1615that would have resulted if the calculation had been carried out to greater
1616precision. Since their magnitude is zero, both positive and negative zeros are
1617treated as equal and their sign is informational.
1618
1619In addition to the two signed zeros which are distinct yet equal, there are
1620various representations of zero with differing precisions yet equivalent in
1621value. This takes a bit of getting used to. For an eye accustomed to
1622normalized floating point representations, it is not immediately obvious that
Georg Brandl9f662322008-03-22 11:47:10 +00001623the following calculation returns a value equal to zero:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001624
1625 >>> 1 / Decimal('Infinity')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001626 Decimal('0E-1000000026')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001627
Georg Brandlb19be572007-12-29 10:57:00 +00001628.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001629
1630
1631.. _decimal-threads:
1632
1633Working with threads
1634--------------------
1635
1636The :func:`getcontext` function accesses a different :class:`Context` object for
1637each thread. Having separate thread contexts means that threads may make
1638changes (such as ``getcontext.prec=10``) without interfering with other threads.
1639
1640Likewise, the :func:`setcontext` function automatically assigns its target to
1641the current thread.
1642
1643If :func:`setcontext` has not been called before :func:`getcontext`, then
1644:func:`getcontext` will automatically create a new context for use in the
1645current thread.
1646
1647The new context is copied from a prototype context called *DefaultContext*. To
1648control the defaults so that each thread will use the same values throughout the
1649application, directly modify the *DefaultContext* object. This should be done
1650*before* any threads are started so that there won't be a race condition between
1651threads calling :func:`getcontext`. For example::
1652
1653 # Set applicationwide defaults for all threads about to be launched
1654 DefaultContext.prec = 12
1655 DefaultContext.rounding = ROUND_DOWN
1656 DefaultContext.traps = ExtendedContext.traps.copy()
1657 DefaultContext.traps[InvalidOperation] = 1
1658 setcontext(DefaultContext)
1659
1660 # Afterwards, the threads can be started
1661 t1.start()
1662 t2.start()
1663 t3.start()
1664 . . .
1665
Georg Brandlb19be572007-12-29 10:57:00 +00001666.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001667
1668
1669.. _decimal-recipes:
1670
1671Recipes
1672-------
1673
1674Here are a few recipes that serve as utility functions and that demonstrate ways
1675to work with the :class:`Decimal` class::
1676
1677 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1678 pos='', neg='-', trailneg=''):
1679 """Convert Decimal to a money formatted string.
1680
1681 places: required number of places after the decimal point
1682 curr: optional currency symbol before the sign (may be blank)
1683 sep: optional grouping separator (comma, period, space, or blank)
1684 dp: decimal point indicator (comma or period)
1685 only specify as blank when places is zero
1686 pos: optional sign for positive numbers: '+', space or blank
1687 neg: optional sign for negative numbers: '-', '(', space or blank
1688 trailneg:optional trailing minus indicator: '-', ')', space or blank
1689
1690 >>> d = Decimal('-1234567.8901')
1691 >>> moneyfmt(d, curr='$')
1692 '-$1,234,567.89'
1693 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1694 '1.234.568-'
1695 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1696 '($1,234,567.89)'
1697 >>> moneyfmt(Decimal(123456789), sep=' ')
1698 '123 456 789.00'
1699 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001700 '<0.02>'
Georg Brandl8ec7f652007-08-15 14:28:01 +00001701
1702 """
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001703 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001704 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001705 result = []
1706 digits = map(str, digits)
1707 build, next = result.append, digits.pop
1708 if sign:
1709 build(trailneg)
1710 for i in range(places):
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001711 build(next() if digits else '0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001712 build(dp)
Raymond Hettinger5eaffc42008-04-17 10:48:31 +00001713 if not digits:
1714 build('0')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001715 i = 0
1716 while digits:
1717 build(next())
1718 i += 1
1719 if i == 3 and digits:
1720 i = 0
1721 build(sep)
1722 build(curr)
Raymond Hettinger0cd71702008-02-14 12:49:37 +00001723 build(neg if sign else pos)
1724 return ''.join(reversed(result))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001725
1726 def pi():
1727 """Compute Pi to the current precision.
1728
1729 >>> print pi()
1730 3.141592653589793238462643383
1731
1732 """
1733 getcontext().prec += 2 # extra digits for intermediate steps
1734 three = Decimal(3) # substitute "three=3.0" for regular floats
1735 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1736 while s != lasts:
1737 lasts = s
1738 n, na = n+na, na+8
1739 d, da = d+da, da+32
1740 t = (t * n) / d
1741 s += t
1742 getcontext().prec -= 2
1743 return +s # unary plus applies the new precision
1744
1745 def exp(x):
1746 """Return e raised to the power of x. Result type matches input type.
1747
1748 >>> print exp(Decimal(1))
1749 2.718281828459045235360287471
1750 >>> print exp(Decimal(2))
1751 7.389056098930650227230427461
1752 >>> print exp(2.0)
1753 7.38905609893
1754 >>> print exp(2+0j)
1755 (7.38905609893+0j)
1756
1757 """
1758 getcontext().prec += 2
1759 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1760 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001761 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001762 i += 1
1763 fact *= i
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001764 num *= x
1765 s += num / fact
1766 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001767 return +s
1768
1769 def cos(x):
1770 """Return the cosine of x as measured in radians.
1771
1772 >>> print cos(Decimal('0.5'))
1773 0.8775825618903727161162815826
1774 >>> print cos(0.5)
1775 0.87758256189
1776 >>> print cos(0.5+0j)
1777 (0.87758256189+0j)
1778
1779 """
1780 getcontext().prec += 2
1781 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1782 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001783 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001784 i += 2
1785 fact *= i * (i-1)
1786 num *= x * x
1787 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001788 s += num / fact * sign
1789 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001790 return +s
1791
1792 def sin(x):
1793 """Return the sine of x as measured in radians.
1794
1795 >>> print sin(Decimal('0.5'))
1796 0.4794255386042030002732879352
1797 >>> print sin(0.5)
1798 0.479425538604
1799 >>> print sin(0.5+0j)
1800 (0.479425538604+0j)
1801
1802 """
1803 getcontext().prec += 2
1804 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1805 while s != lasts:
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001806 lasts = s
Georg Brandl8ec7f652007-08-15 14:28:01 +00001807 i += 2
1808 fact *= i * (i-1)
1809 num *= x * x
1810 sign *= -1
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001811 s += num / fact * sign
1812 getcontext().prec -= 2
Georg Brandl8ec7f652007-08-15 14:28:01 +00001813 return +s
1814
1815
Georg Brandlb19be572007-12-29 10:57:00 +00001816.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl8ec7f652007-08-15 14:28:01 +00001817
1818
1819.. _decimal-faq:
1820
1821Decimal FAQ
1822-----------
1823
1824Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1825minimize typing when using the interactive interpreter?
1826
Georg Brandl9f662322008-03-22 11:47:10 +00001827A. Some users abbreviate the constructor to just a single letter:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001828
1829 >>> D = decimal.Decimal
1830 >>> D('1.23') + D('3.45')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001831 Decimal('4.68')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001832
1833Q. In a fixed-point application with two decimal places, some inputs have many
1834places and need to be rounded. Others are not supposed to have excess digits
1835and need to be validated. What methods should be used?
1836
1837A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Georg Brandl9f662322008-03-22 11:47:10 +00001838the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001839
1840 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1841
1842 >>> # Round to two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001843 >>> Decimal('3.214').quantize(TWOPLACES)
1844 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001845
Georg Brandlc62ef8b2009-01-03 20:55:06 +00001846 >>> # Validate that a number does not exceed two places
Raymond Hettingerabe32372008-02-14 02:41:22 +00001847 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1848 Decimal('3.21')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001849
Raymond Hettingerabe32372008-02-14 02:41:22 +00001850 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl8ec7f652007-08-15 14:28:01 +00001851 Traceback (most recent call last):
1852 ...
Georg Brandlf6dab952009-04-28 21:48:35 +00001853 Inexact: None
Georg Brandl8ec7f652007-08-15 14:28:01 +00001854
1855Q. Once I have valid two place inputs, how do I maintain that invariant
1856throughout an application?
1857
Raymond Hettinger46314812008-02-14 10:46:57 +00001858A. Some operations like addition, subtraction, and multiplication by an integer
1859will automatically preserve fixed point. Others operations, like division and
1860non-integer multiplication, will change the number of decimal places and need to
Georg Brandl9f662322008-03-22 11:47:10 +00001861be followed-up with a :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001862
1863 >>> a = Decimal('102.72') # Initial fixed-point values
1864 >>> b = Decimal('3.17')
1865 >>> a + b # Addition preserves fixed-point
1866 Decimal('105.89')
1867 >>> a - b
1868 Decimal('99.55')
1869 >>> a * 42 # So does integer multiplication
1870 Decimal('4314.24')
1871 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1872 Decimal('325.62')
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001873 >>> (b / a).quantize(TWOPLACES) # And quantize division
Raymond Hettinger46314812008-02-14 10:46:57 +00001874 Decimal('0.03')
1875
1876In developing fixed-point applications, it is convenient to define functions
Georg Brandl9f662322008-03-22 11:47:10 +00001877to handle the :meth:`quantize` step:
Raymond Hettinger46314812008-02-14 10:46:57 +00001878
Raymond Hettinger27a90d92008-02-14 11:01:10 +00001879 >>> def mul(x, y, fp=TWOPLACES):
1880 ... return (x * y).quantize(fp)
1881 >>> def div(x, y, fp=TWOPLACES):
1882 ... return (x / y).quantize(fp)
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001883
Raymond Hettinger46314812008-02-14 10:46:57 +00001884 >>> mul(a, b) # Automatically preserve fixed-point
1885 Decimal('325.62')
1886 >>> div(b, a)
1887 Decimal('0.03')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001888
1889Q. There are many ways to express the same value. The numbers :const:`200`,
1890:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1891various precisions. Is there a way to transform them to a single recognizable
1892canonical value?
1893
1894A. The :meth:`normalize` method maps all equivalent values to a single
Georg Brandl9f662322008-03-22 11:47:10 +00001895representative:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001896
1897 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1898 >>> [v.normalize() for v in values]
Raymond Hettingerabe32372008-02-14 02:41:22 +00001899 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl8ec7f652007-08-15 14:28:01 +00001900
1901Q. Some decimal values always print with exponential notation. Is there a way
1902to get a non-exponential representation?
1903
1904A. For some values, exponential notation is the only way to express the number
1905of significant places in the coefficient. For example, expressing
1906:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1907original's two-place significance.
1908
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001909If an application does not care about tracking significance, it is easy to
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001910remove the exponent and trailing zeros, losing significance, but keeping the
1911value unchanged::
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001912
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001913 def remove_exponent(d):
1914 '''Remove exponent and trailing zeros.
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001915
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001916 >>> remove_exponent(Decimal('5E+3'))
1917 Decimal('5000')
Raymond Hettingerd68bf022008-02-14 11:57:25 +00001918
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001919 '''
1920 return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
Georg Brandl8ec7f652007-08-15 14:28:01 +00001921
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001922Q. Is there a way to convert a regular float to a Decimal?
Georg Brandl9f662322008-03-22 11:47:10 +00001923
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001924A. Yes, the classmethod :meth:`from_float` makes an exact conversion.
Georg Brandl8ec7f652007-08-15 14:28:01 +00001925
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001926The regular decimal constructor does not do this by default because there is
1927some question about whether it is advisable to mix binary and decimal floating
1928point. Also, its use requires some care to avoid the representation issues
1929associated with binary floating point:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001930
Raymond Hettingerced6b1d2009-03-10 08:16:05 +00001931 >>> Decimal.from_float(1.1)
Raymond Hettingerabe32372008-02-14 02:41:22 +00001932 Decimal('1.100000000000000088817841970012523233890533447265625')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001933
1934Q. Within a complex calculation, how can I make sure that I haven't gotten a
1935spurious result because of insufficient precision or rounding anomalies.
1936
1937A. The decimal module makes it easy to test results. A best practice is to
1938re-run calculations using greater precision and with various rounding modes.
1939Widely differing results indicate insufficient precision, rounding mode issues,
1940ill-conditioned inputs, or a numerically unstable algorithm.
1941
1942Q. I noticed that context precision is applied to the results of operations but
1943not to the inputs. Is there anything to watch out for when mixing values of
1944different precisions?
1945
1946A. Yes. The principle is that all values are considered to be exact and so is
1947the arithmetic on those values. Only the results are rounded. The advantage
1948for inputs is that "what you type is what you get". A disadvantage is that the
Georg Brandl9f662322008-03-22 11:47:10 +00001949results can look odd if you forget that the inputs haven't been rounded:
1950
1951.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001952
1953 >>> getcontext().prec = 3
Georg Brandl9f662322008-03-22 11:47:10 +00001954 >>> Decimal('3.104') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001955 Decimal('5.21')
Georg Brandl9f662322008-03-22 11:47:10 +00001956 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001957 Decimal('5.20')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001958
1959The solution is either to increase precision or to force rounding of inputs
Georg Brandl9f662322008-03-22 11:47:10 +00001960using the unary plus operation:
1961
1962.. doctest:: newcontext
Georg Brandl8ec7f652007-08-15 14:28:01 +00001963
1964 >>> getcontext().prec = 3
1965 >>> +Decimal('1.23456789') # unary plus triggers rounding
Raymond Hettingerabe32372008-02-14 02:41:22 +00001966 Decimal('1.23')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001967
1968Alternatively, inputs can be rounded upon creation using the
Georg Brandl9f662322008-03-22 11:47:10 +00001969:meth:`Context.create_decimal` method:
Georg Brandl8ec7f652007-08-15 14:28:01 +00001970
1971 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Raymond Hettingerabe32372008-02-14 02:41:22 +00001972 Decimal('1.2345')
Georg Brandl8ec7f652007-08-15 14:28:01 +00001973