| # Originally contributed by Sjoerd Mullender. |
| # Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>. |
| |
| """Rational, infinite-precision, real numbers.""" |
| |
| import math |
| import numbers |
| import operator |
| import re |
| |
| __all__ = ["Rational"] |
| |
| RationalAbc = numbers.Rational |
| |
| |
| def gcd(a, b): |
| """Calculate the Greatest Common Divisor of a and b. |
| |
| Unless b==0, the result will have the same sign as b (so that when |
| b is divided by it, the result comes out positive). |
| """ |
| while b: |
| a, b = b, a%b |
| return a |
| |
| |
| _RATIONAL_FORMAT = re.compile(r""" |
| \A\s* # optional whitespace at the start, then |
| (?P<sign>[-+]?) # an optional sign, then |
| (?=\d|\.\d) # lookahead for digit or .digit |
| (?P<num>\d*) # numerator (possibly empty) |
| (?: # followed by an optional |
| /(?P<denom>\d+) # / and denominator |
| | # or |
| \.(?P<decimal>\d*) # decimal point and fractional part |
| )? |
| \s*\Z # and optional whitespace to finish |
| """, re.VERBOSE) |
| |
| |
| class Rational(RationalAbc): |
| """This class implements rational numbers. |
| |
| Rational(8, 6) will produce a rational number equivalent to |
| 4/3. Both arguments must be Integral. The numerator defaults to 0 |
| and the denominator defaults to 1 so that Rational(3) == 3 and |
| Rational() == 0. |
| |
| Rationals can also be constructed from strings of the form |
| '[-+]?[0-9]+((/|.)[0-9]+)?', optionally surrounded by spaces. |
| |
| """ |
| |
| __slots__ = ('_numerator', '_denominator') |
| |
| # We're immutable, so use __new__ not __init__ |
| def __new__(cls, numerator=0, denominator=1): |
| """Constructs a Rational. |
| |
| Takes a string like '3/2' or '1.5', another Rational, or a |
| numerator/denominator pair. |
| |
| """ |
| self = super(Rational, cls).__new__(cls) |
| |
| if denominator == 1: |
| if isinstance(numerator, str): |
| # Handle construction from strings. |
| input = numerator |
| m = _RATIONAL_FORMAT.match(input) |
| if m is None: |
| raise ValueError('Invalid literal for Rational: ' + input) |
| numerator = m.group('num') |
| decimal = m.group('decimal') |
| if decimal: |
| # The literal is a decimal number. |
| numerator = int(numerator + decimal) |
| denominator = 10**len(decimal) |
| else: |
| # The literal is an integer or fraction. |
| numerator = int(numerator) |
| # Default denominator to 1. |
| denominator = int(m.group('denom') or 1) |
| |
| if m.group('sign') == '-': |
| numerator = -numerator |
| |
| elif (not isinstance(numerator, numbers.Integral) and |
| isinstance(numerator, RationalAbc)): |
| # Handle copies from other rationals. |
| other_rational = numerator |
| numerator = other_rational.numerator |
| denominator = other_rational.denominator |
| |
| if (not isinstance(numerator, numbers.Integral) or |
| not isinstance(denominator, numbers.Integral)): |
| raise TypeError("Rational(%(numerator)s, %(denominator)s):" |
| " Both arguments must be integral." % locals()) |
| |
| if denominator == 0: |
| raise ZeroDivisionError('Rational(%s, 0)' % numerator) |
| |
| g = gcd(numerator, denominator) |
| self._numerator = int(numerator // g) |
| self._denominator = int(denominator // g) |
| return self |
| |
| @classmethod |
| def from_float(cls, f): |
| """Converts a finite float to a rational number, exactly. |
| |
| Beware that Rational.from_float(0.3) != Rational(3, 10). |
| |
| """ |
| if not isinstance(f, float): |
| raise TypeError("%s.from_float() only takes floats, not %r (%s)" % |
| (cls.__name__, f, type(f).__name__)) |
| if math.isnan(f) or math.isinf(f): |
| raise TypeError("Cannot convert %r to %s." % (f, cls.__name__)) |
| return cls(*f.as_integer_ratio()) |
| |
| @classmethod |
| def from_decimal(cls, dec): |
| """Converts a finite Decimal instance to a rational number, exactly.""" |
| from decimal import Decimal |
| if not isinstance(dec, Decimal): |
| raise TypeError( |
| "%s.from_decimal() only takes Decimals, not %r (%s)" % |
| (cls.__name__, dec, type(dec).__name__)) |
| if not dec.is_finite(): |
| # Catches infinities and nans. |
| raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__)) |
| sign, digits, exp = dec.as_tuple() |
| digits = int(''.join(map(str, digits))) |
| if sign: |
| digits = -digits |
| if exp >= 0: |
| return cls(digits * 10 ** exp) |
| else: |
| return cls(digits, 10 ** -exp) |
| |
| @classmethod |
| def from_continued_fraction(cls, seq): |
| 'Build a Rational from a continued fraction expessed as a sequence' |
| n, d = 1, 0 |
| for e in reversed(seq): |
| n, d = d, n |
| n += e * d |
| return cls(n, d) if seq else cls(0) |
| |
| def as_continued_fraction(self): |
| 'Return continued fraction expressed as a list' |
| n = self.numerator |
| d = self.denominator |
| cf = [] |
| while d: |
| e = int(n // d) |
| cf.append(e) |
| n -= e * d |
| n, d = d, n |
| return cf |
| |
| def approximate(self, max_denominator): |
| 'Best rational approximation with a denominator <= max_denominator' |
| # XXX First cut at algorithm |
| # Still needs rounding rules as specified at |
| # http://en.wikipedia.org/wiki/Continued_fraction |
| if self.denominator <= max_denominator: |
| return self |
| cf = self.as_continued_fraction() |
| result = Rational(0) |
| for i in range(1, len(cf)): |
| new = self.from_continued_fraction(cf[:i]) |
| if new.denominator > max_denominator: |
| break |
| result = new |
| return result |
| |
| @property |
| def numerator(a): |
| return a._numerator |
| |
| @property |
| def denominator(a): |
| return a._denominator |
| |
| def __repr__(self): |
| """repr(self)""" |
| return ('Rational(%r,%r)' % (self.numerator, self.denominator)) |
| |
| def __str__(self): |
| """str(self)""" |
| if self.denominator == 1: |
| return str(self.numerator) |
| else: |
| return '%s/%s' % (self.numerator, self.denominator) |
| |
| def _operator_fallbacks(monomorphic_operator, fallback_operator): |
| """Generates forward and reverse operators given a purely-rational |
| operator and a function from the operator module. |
| |
| Use this like: |
| __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op) |
| |
| In general, we want to implement the arithmetic operations so |
| that mixed-mode operations either call an implementation whose |
| author knew about the types of both arguments, or convert both |
| to the nearest built in type and do the operation there. In |
| Rational, that means that we define __add__ and __radd__ as: |
| |
| def __add__(self, other): |
| # Both types have numerators/denominator attributes, |
| # so do the operation directly |
| if isinstance(other, (int, Rational)): |
| return Rational(self.numerator * other.denominator + |
| other.numerator * self.denominator, |
| self.denominator * other.denominator) |
| # float and complex don't have those operations, but we |
| # know about those types, so special case them. |
| elif isinstance(other, float): |
| return float(self) + other |
| elif isinstance(other, complex): |
| return complex(self) + other |
| # Let the other type take over. |
| return NotImplemented |
| |
| def __radd__(self, other): |
| # radd handles more types than add because there's |
| # nothing left to fall back to. |
| if isinstance(other, RationalAbc): |
| return Rational(self.numerator * other.denominator + |
| other.numerator * self.denominator, |
| self.denominator * other.denominator) |
| elif isinstance(other, Real): |
| return float(other) + float(self) |
| elif isinstance(other, Complex): |
| return complex(other) + complex(self) |
| return NotImplemented |
| |
| |
| There are 5 different cases for a mixed-type addition on |
| Rational. I'll refer to all of the above code that doesn't |
| refer to Rational, float, or complex as "boilerplate". 'r' |
| will be an instance of Rational, which is a subtype of |
| RationalAbc (r : Rational <: RationalAbc), and b : B <: |
| Complex. The first three involve 'r + b': |
| |
| 1. If B <: Rational, int, float, or complex, we handle |
| that specially, and all is well. |
| 2. If Rational falls back to the boilerplate code, and it |
| were to return a value from __add__, we'd miss the |
| possibility that B defines a more intelligent __radd__, |
| so the boilerplate should return NotImplemented from |
| __add__. In particular, we don't handle RationalAbc |
| here, even though we could get an exact answer, in case |
| the other type wants to do something special. |
| 3. If B <: Rational, Python tries B.__radd__ before |
| Rational.__add__. This is ok, because it was |
| implemented with knowledge of Rational, so it can |
| handle those instances before delegating to Real or |
| Complex. |
| |
| The next two situations describe 'b + r'. We assume that b |
| didn't know about Rational in its implementation, and that it |
| uses similar boilerplate code: |
| |
| 4. If B <: RationalAbc, then __radd_ converts both to the |
| builtin rational type (hey look, that's us) and |
| proceeds. |
| 5. Otherwise, __radd__ tries to find the nearest common |
| base ABC, and fall back to its builtin type. Since this |
| class doesn't subclass a concrete type, there's no |
| implementation to fall back to, so we need to try as |
| hard as possible to return an actual value, or the user |
| will get a TypeError. |
| |
| """ |
| def forward(a, b): |
| if isinstance(b, (int, Rational)): |
| return monomorphic_operator(a, b) |
| elif isinstance(b, float): |
| return fallback_operator(float(a), b) |
| elif isinstance(b, complex): |
| return fallback_operator(complex(a), b) |
| else: |
| return NotImplemented |
| forward.__name__ = '__' + fallback_operator.__name__ + '__' |
| forward.__doc__ = monomorphic_operator.__doc__ |
| |
| def reverse(b, a): |
| if isinstance(a, RationalAbc): |
| # Includes ints. |
| return monomorphic_operator(a, b) |
| elif isinstance(a, numbers.Real): |
| return fallback_operator(float(a), float(b)) |
| elif isinstance(a, numbers.Complex): |
| return fallback_operator(complex(a), complex(b)) |
| else: |
| return NotImplemented |
| reverse.__name__ = '__r' + fallback_operator.__name__ + '__' |
| reverse.__doc__ = monomorphic_operator.__doc__ |
| |
| return forward, reverse |
| |
| def _add(a, b): |
| """a + b""" |
| return Rational(a.numerator * b.denominator + |
| b.numerator * a.denominator, |
| a.denominator * b.denominator) |
| |
| __add__, __radd__ = _operator_fallbacks(_add, operator.add) |
| |
| def _sub(a, b): |
| """a - b""" |
| return Rational(a.numerator * b.denominator - |
| b.numerator * a.denominator, |
| a.denominator * b.denominator) |
| |
| __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub) |
| |
| def _mul(a, b): |
| """a * b""" |
| return Rational(a.numerator * b.numerator, a.denominator * b.denominator) |
| |
| __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul) |
| |
| def _div(a, b): |
| """a / b""" |
| return Rational(a.numerator * b.denominator, |
| a.denominator * b.numerator) |
| |
| __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv) |
| |
| def __floordiv__(a, b): |
| """a // b""" |
| return math.floor(a / b) |
| |
| def __rfloordiv__(b, a): |
| """a // b""" |
| return math.floor(a / b) |
| |
| def __mod__(a, b): |
| """a % b""" |
| div = a // b |
| return a - b * div |
| |
| def __rmod__(b, a): |
| """a % b""" |
| div = a // b |
| return a - b * div |
| |
| def __pow__(a, b): |
| """a ** b |
| |
| If b is not an integer, the result will be a float or complex |
| since roots are generally irrational. If b is an integer, the |
| result will be rational. |
| |
| """ |
| if isinstance(b, RationalAbc): |
| if b.denominator == 1: |
| power = b.numerator |
| if power >= 0: |
| return Rational(a.numerator ** power, |
| a.denominator ** power) |
| else: |
| return Rational(a.denominator ** -power, |
| a.numerator ** -power) |
| else: |
| # A fractional power will generally produce an |
| # irrational number. |
| return float(a) ** float(b) |
| else: |
| return float(a) ** b |
| |
| def __rpow__(b, a): |
| """a ** b""" |
| if b.denominator == 1 and b.numerator >= 0: |
| # If a is an int, keep it that way if possible. |
| return a ** b.numerator |
| |
| if isinstance(a, RationalAbc): |
| return Rational(a.numerator, a.denominator) ** b |
| |
| if b.denominator == 1: |
| return a ** b.numerator |
| |
| return a ** float(b) |
| |
| def __pos__(a): |
| """+a: Coerces a subclass instance to Rational""" |
| return Rational(a.numerator, a.denominator) |
| |
| def __neg__(a): |
| """-a""" |
| return Rational(-a.numerator, a.denominator) |
| |
| def __abs__(a): |
| """abs(a)""" |
| return Rational(abs(a.numerator), a.denominator) |
| |
| def __trunc__(a): |
| """trunc(a)""" |
| if a.numerator < 0: |
| return -(-a.numerator // a.denominator) |
| else: |
| return a.numerator // a.denominator |
| |
| def __floor__(a): |
| """Will be math.floor(a) in 3.0.""" |
| return a.numerator // a.denominator |
| |
| def __ceil__(a): |
| """Will be math.ceil(a) in 3.0.""" |
| # The negations cleverly convince floordiv to return the ceiling. |
| return -(-a.numerator // a.denominator) |
| |
| def __round__(self, ndigits=None): |
| """Will be round(self, ndigits) in 3.0. |
| |
| Rounds half toward even. |
| """ |
| if ndigits is None: |
| floor, remainder = divmod(self.numerator, self.denominator) |
| if remainder * 2 < self.denominator: |
| return floor |
| elif remainder * 2 > self.denominator: |
| return floor + 1 |
| # Deal with the half case: |
| elif floor % 2 == 0: |
| return floor |
| else: |
| return floor + 1 |
| shift = 10**abs(ndigits) |
| # See _operator_fallbacks.forward to check that the results of |
| # these operations will always be Rational and therefore have |
| # round(). |
| if ndigits > 0: |
| return Rational(round(self * shift), shift) |
| else: |
| return Rational(round(self / shift) * shift) |
| |
| def __hash__(self): |
| """hash(self) |
| |
| Tricky because values that are exactly representable as a |
| float must have the same hash as that float. |
| |
| """ |
| # XXX since this method is expensive, consider caching the result |
| if self.denominator == 1: |
| # Get integers right. |
| return hash(self.numerator) |
| # Expensive check, but definitely correct. |
| if self == float(self): |
| return hash(float(self)) |
| else: |
| # Use tuple's hash to avoid a high collision rate on |
| # simple fractions. |
| return hash((self.numerator, self.denominator)) |
| |
| def __eq__(a, b): |
| """a == b""" |
| if isinstance(b, RationalAbc): |
| return (a.numerator == b.numerator and |
| a.denominator == b.denominator) |
| if isinstance(b, numbers.Complex) and b.imag == 0: |
| b = b.real |
| if isinstance(b, float): |
| return a == a.from_float(b) |
| else: |
| # XXX: If b.__eq__ is implemented like this method, it may |
| # give the wrong answer after float(a) changes a's |
| # value. Better ways of doing this are welcome. |
| return float(a) == b |
| |
| def _subtractAndCompareToZero(a, b, op): |
| """Helper function for comparison operators. |
| |
| Subtracts b from a, exactly if possible, and compares the |
| result with 0 using op, in such a way that the comparison |
| won't recurse. If the difference raises a TypeError, returns |
| NotImplemented instead. |
| |
| """ |
| if isinstance(b, numbers.Complex) and b.imag == 0: |
| b = b.real |
| if isinstance(b, float): |
| b = a.from_float(b) |
| try: |
| # XXX: If b <: Real but not <: RationalAbc, this is likely |
| # to fall back to a float. If the actual values differ by |
| # less than MIN_FLOAT, this could falsely call them equal, |
| # which would make <= inconsistent with ==. Better ways of |
| # doing this are welcome. |
| diff = a - b |
| except TypeError: |
| return NotImplemented |
| if isinstance(diff, RationalAbc): |
| return op(diff.numerator, 0) |
| return op(diff, 0) |
| |
| def __lt__(a, b): |
| """a < b""" |
| return a._subtractAndCompareToZero(b, operator.lt) |
| |
| def __gt__(a, b): |
| """a > b""" |
| return a._subtractAndCompareToZero(b, operator.gt) |
| |
| def __le__(a, b): |
| """a <= b""" |
| return a._subtractAndCompareToZero(b, operator.le) |
| |
| def __ge__(a, b): |
| """a >= b""" |
| return a._subtractAndCompareToZero(b, operator.ge) |
| |
| def __bool__(a): |
| """a != 0""" |
| return a.numerator != 0 |
| |
| # support for pickling, copy, and deepcopy |
| |
| def __reduce__(self): |
| return (self.__class__, (str(self),)) |
| |
| def __copy__(self): |
| if type(self) == Rational: |
| return self # I'm immutable; therefore I am my own clone |
| return self.__class__(self.numerator, self.denominator) |
| |
| def __deepcopy__(self, memo): |
| if type(self) == Rational: |
| return self # My components are also immutable |
| return self.__class__(self.numerator, self.denominator) |