Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 1 | # Originally contributed by Sjoerd Mullender. |
| 2 | # Significantly modified by Jeffrey Yasskin <jyasskin at gmail.com>. |
| 3 | |
| 4 | """Rational, infinite-precision, real numbers.""" |
| 5 | |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 6 | import math |
| 7 | import numbers |
| 8 | import operator |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 9 | import re |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 10 | |
| 11 | __all__ = ["Rational"] |
| 12 | |
| 13 | RationalAbc = numbers.Rational |
| 14 | |
| 15 | |
Christian Heimes | af98da1 | 2008-01-27 15:18:18 +0000 | [diff] [blame] | 16 | def gcd(a, b): |
| 17 | """Calculate the Greatest Common Divisor of a and b. |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 18 | |
| 19 | Unless b==0, the result will have the same sign as b (so that when |
| 20 | b is divided by it, the result comes out positive). |
| 21 | """ |
| 22 | while b: |
| 23 | a, b = b, a%b |
| 24 | return a |
| 25 | |
| 26 | |
Christian Heimes | 292d351 | 2008-02-03 16:51:08 +0000 | [diff] [blame] | 27 | _RATIONAL_FORMAT = re.compile(r""" |
| 28 | \A\s* # optional whitespace at the start, then |
| 29 | (?P<sign>[-+]?) # an optional sign, then |
| 30 | (?=\d|\.\d) # lookahead for digit or .digit |
| 31 | (?P<num>\d*) # numerator (possibly empty) |
| 32 | (?: # followed by an optional |
| 33 | /(?P<denom>\d+) # / and denominator |
| 34 | | # or |
| 35 | \.(?P<decimal>\d*) # decimal point and fractional part |
| 36 | )? |
| 37 | \s*\Z # and optional whitespace to finish |
| 38 | """, re.VERBOSE) |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 39 | |
| 40 | |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 41 | class Rational(RationalAbc): |
| 42 | """This class implements rational numbers. |
| 43 | |
| 44 | Rational(8, 6) will produce a rational number equivalent to |
| 45 | 4/3. Both arguments must be Integral. The numerator defaults to 0 |
| 46 | and the denominator defaults to 1 so that Rational(3) == 3 and |
| 47 | Rational() == 0. |
| 48 | |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 49 | Rationals can also be constructed from strings of the form |
Christian Heimes | af98da1 | 2008-01-27 15:18:18 +0000 | [diff] [blame] | 50 | '[-+]?[0-9]+((/|.)[0-9]+)?', optionally surrounded by spaces. |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 51 | |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 52 | """ |
| 53 | |
Christian Heimes | 400adb0 | 2008-02-01 08:12:03 +0000 | [diff] [blame] | 54 | __slots__ = ('_numerator', '_denominator') |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 55 | |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 56 | # We're immutable, so use __new__ not __init__ |
| 57 | def __new__(cls, numerator=0, denominator=1): |
| 58 | """Constructs a Rational. |
| 59 | |
Christian Heimes | af98da1 | 2008-01-27 15:18:18 +0000 | [diff] [blame] | 60 | Takes a string like '3/2' or '1.5', another Rational, or a |
| 61 | numerator/denominator pair. |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 62 | |
| 63 | """ |
| 64 | self = super(Rational, cls).__new__(cls) |
| 65 | |
| 66 | if denominator == 1: |
| 67 | if isinstance(numerator, str): |
| 68 | # Handle construction from strings. |
| 69 | input = numerator |
| 70 | m = _RATIONAL_FORMAT.match(input) |
| 71 | if m is None: |
| 72 | raise ValueError('Invalid literal for Rational: ' + input) |
Christian Heimes | af98da1 | 2008-01-27 15:18:18 +0000 | [diff] [blame] | 73 | numerator = m.group('num') |
| 74 | decimal = m.group('decimal') |
| 75 | if decimal: |
| 76 | # The literal is a decimal number. |
| 77 | numerator = int(numerator + decimal) |
| 78 | denominator = 10**len(decimal) |
| 79 | else: |
| 80 | # The literal is an integer or fraction. |
| 81 | numerator = int(numerator) |
| 82 | # Default denominator to 1. |
| 83 | denominator = int(m.group('denom') or 1) |
| 84 | |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 85 | if m.group('sign') == '-': |
| 86 | numerator = -numerator |
| 87 | |
| 88 | elif (not isinstance(numerator, numbers.Integral) and |
| 89 | isinstance(numerator, RationalAbc)): |
| 90 | # Handle copies from other rationals. |
| 91 | other_rational = numerator |
| 92 | numerator = other_rational.numerator |
| 93 | denominator = other_rational.denominator |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 94 | |
| 95 | if (not isinstance(numerator, numbers.Integral) or |
| 96 | not isinstance(denominator, numbers.Integral)): |
| 97 | raise TypeError("Rational(%(numerator)s, %(denominator)s):" |
| 98 | " Both arguments must be integral." % locals()) |
| 99 | |
| 100 | if denominator == 0: |
| 101 | raise ZeroDivisionError('Rational(%s, 0)' % numerator) |
| 102 | |
Christian Heimes | af98da1 | 2008-01-27 15:18:18 +0000 | [diff] [blame] | 103 | g = gcd(numerator, denominator) |
Christian Heimes | 400adb0 | 2008-02-01 08:12:03 +0000 | [diff] [blame] | 104 | self._numerator = int(numerator // g) |
| 105 | self._denominator = int(denominator // g) |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 106 | return self |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 107 | |
| 108 | @classmethod |
| 109 | def from_float(cls, f): |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 110 | """Converts a finite float to a rational number, exactly. |
| 111 | |
| 112 | Beware that Rational.from_float(0.3) != Rational(3, 10). |
| 113 | |
| 114 | """ |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 115 | if not isinstance(f, float): |
| 116 | raise TypeError("%s.from_float() only takes floats, not %r (%s)" % |
| 117 | (cls.__name__, f, type(f).__name__)) |
| 118 | if math.isnan(f) or math.isinf(f): |
| 119 | raise TypeError("Cannot convert %r to %s." % (f, cls.__name__)) |
Christian Heimes | 2685563 | 2008-01-27 23:50:43 +0000 | [diff] [blame] | 120 | return cls(*f.as_integer_ratio()) |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 121 | |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 122 | @classmethod |
| 123 | def from_decimal(cls, dec): |
| 124 | """Converts a finite Decimal instance to a rational number, exactly.""" |
| 125 | from decimal import Decimal |
| 126 | if not isinstance(dec, Decimal): |
| 127 | raise TypeError( |
| 128 | "%s.from_decimal() only takes Decimals, not %r (%s)" % |
| 129 | (cls.__name__, dec, type(dec).__name__)) |
| 130 | if not dec.is_finite(): |
| 131 | # Catches infinities and nans. |
| 132 | raise TypeError("Cannot convert %s to %s." % (dec, cls.__name__)) |
| 133 | sign, digits, exp = dec.as_tuple() |
| 134 | digits = int(''.join(map(str, digits))) |
| 135 | if sign: |
| 136 | digits = -digits |
| 137 | if exp >= 0: |
| 138 | return cls(digits * 10 ** exp) |
| 139 | else: |
| 140 | return cls(digits, 10 ** -exp) |
| 141 | |
Christian Heimes | bbffeb6 | 2008-01-24 09:42:52 +0000 | [diff] [blame] | 142 | @classmethod |
| 143 | def from_continued_fraction(cls, seq): |
| 144 | 'Build a Rational from a continued fraction expessed as a sequence' |
| 145 | n, d = 1, 0 |
| 146 | for e in reversed(seq): |
| 147 | n, d = d, n |
| 148 | n += e * d |
| 149 | return cls(n, d) if seq else cls(0) |
| 150 | |
| 151 | def as_continued_fraction(self): |
| 152 | 'Return continued fraction expressed as a list' |
| 153 | n = self.numerator |
| 154 | d = self.denominator |
| 155 | cf = [] |
| 156 | while d: |
| 157 | e = int(n // d) |
| 158 | cf.append(e) |
| 159 | n -= e * d |
| 160 | n, d = d, n |
| 161 | return cf |
| 162 | |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 163 | def approximate(self, max_denominator): |
| 164 | 'Best rational approximation with a denominator <= max_denominator' |
Christian Heimes | bbffeb6 | 2008-01-24 09:42:52 +0000 | [diff] [blame] | 165 | # XXX First cut at algorithm |
| 166 | # Still needs rounding rules as specified at |
| 167 | # http://en.wikipedia.org/wiki/Continued_fraction |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 168 | if self.denominator <= max_denominator: |
| 169 | return self |
| 170 | cf = self.as_continued_fraction() |
Christian Heimes | bbffeb6 | 2008-01-24 09:42:52 +0000 | [diff] [blame] | 171 | result = Rational(0) |
| 172 | for i in range(1, len(cf)): |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 173 | new = self.from_continued_fraction(cf[:i]) |
Christian Heimes | bbffeb6 | 2008-01-24 09:42:52 +0000 | [diff] [blame] | 174 | if new.denominator > max_denominator: |
| 175 | break |
| 176 | result = new |
| 177 | return result |
| 178 | |
Christian Heimes | 400adb0 | 2008-02-01 08:12:03 +0000 | [diff] [blame] | 179 | @property |
| 180 | def numerator(a): |
| 181 | return a._numerator |
| 182 | |
| 183 | @property |
| 184 | def denominator(a): |
| 185 | return a._denominator |
| 186 | |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 187 | def __repr__(self): |
| 188 | """repr(self)""" |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 189 | return ('Rational(%r,%r)' % (self.numerator, self.denominator)) |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 190 | |
| 191 | def __str__(self): |
| 192 | """str(self)""" |
| 193 | if self.denominator == 1: |
| 194 | return str(self.numerator) |
| 195 | else: |
Christian Heimes | 587c2bf | 2008-01-19 16:21:02 +0000 | [diff] [blame] | 196 | return '%s/%s' % (self.numerator, self.denominator) |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 197 | |
| 198 | def _operator_fallbacks(monomorphic_operator, fallback_operator): |
| 199 | """Generates forward and reverse operators given a purely-rational |
| 200 | operator and a function from the operator module. |
| 201 | |
| 202 | Use this like: |
| 203 | __op__, __rop__ = _operator_fallbacks(just_rational_op, operator.op) |
| 204 | |
Christian Heimes | 7b3ce6a | 2008-01-31 14:31:45 +0000 | [diff] [blame] | 205 | In general, we want to implement the arithmetic operations so |
| 206 | that mixed-mode operations either call an implementation whose |
| 207 | author knew about the types of both arguments, or convert both |
| 208 | to the nearest built in type and do the operation there. In |
| 209 | Rational, that means that we define __add__ and __radd__ as: |
| 210 | |
| 211 | def __add__(self, other): |
Christian Heimes | 400adb0 | 2008-02-01 08:12:03 +0000 | [diff] [blame] | 212 | # Both types have numerators/denominator attributes, |
| 213 | # so do the operation directly |
Christian Heimes | 7b3ce6a | 2008-01-31 14:31:45 +0000 | [diff] [blame] | 214 | if isinstance(other, (int, Rational)): |
Christian Heimes | 7b3ce6a | 2008-01-31 14:31:45 +0000 | [diff] [blame] | 215 | return Rational(self.numerator * other.denominator + |
| 216 | other.numerator * self.denominator, |
| 217 | self.denominator * other.denominator) |
Christian Heimes | 400adb0 | 2008-02-01 08:12:03 +0000 | [diff] [blame] | 218 | # float and complex don't have those operations, but we |
| 219 | # know about those types, so special case them. |
Christian Heimes | 7b3ce6a | 2008-01-31 14:31:45 +0000 | [diff] [blame] | 220 | elif isinstance(other, float): |
| 221 | return float(self) + other |
| 222 | elif isinstance(other, complex): |
| 223 | return complex(self) + other |
Christian Heimes | 400adb0 | 2008-02-01 08:12:03 +0000 | [diff] [blame] | 224 | # Let the other type take over. |
| 225 | return NotImplemented |
Christian Heimes | 7b3ce6a | 2008-01-31 14:31:45 +0000 | [diff] [blame] | 226 | |
| 227 | def __radd__(self, other): |
| 228 | # radd handles more types than add because there's |
| 229 | # nothing left to fall back to. |
| 230 | if isinstance(other, RationalAbc): |
| 231 | return Rational(self.numerator * other.denominator + |
| 232 | other.numerator * self.denominator, |
| 233 | self.denominator * other.denominator) |
| 234 | elif isinstance(other, Real): |
| 235 | return float(other) + float(self) |
| 236 | elif isinstance(other, Complex): |
| 237 | return complex(other) + complex(self) |
Christian Heimes | 400adb0 | 2008-02-01 08:12:03 +0000 | [diff] [blame] | 238 | return NotImplemented |
Christian Heimes | 7b3ce6a | 2008-01-31 14:31:45 +0000 | [diff] [blame] | 239 | |
| 240 | |
| 241 | There are 5 different cases for a mixed-type addition on |
| 242 | Rational. I'll refer to all of the above code that doesn't |
| 243 | refer to Rational, float, or complex as "boilerplate". 'r' |
| 244 | will be an instance of Rational, which is a subtype of |
| 245 | RationalAbc (r : Rational <: RationalAbc), and b : B <: |
| 246 | Complex. The first three involve 'r + b': |
| 247 | |
| 248 | 1. If B <: Rational, int, float, or complex, we handle |
| 249 | that specially, and all is well. |
| 250 | 2. If Rational falls back to the boilerplate code, and it |
| 251 | were to return a value from __add__, we'd miss the |
| 252 | possibility that B defines a more intelligent __radd__, |
| 253 | so the boilerplate should return NotImplemented from |
| 254 | __add__. In particular, we don't handle RationalAbc |
| 255 | here, even though we could get an exact answer, in case |
| 256 | the other type wants to do something special. |
| 257 | 3. If B <: Rational, Python tries B.__radd__ before |
| 258 | Rational.__add__. This is ok, because it was |
| 259 | implemented with knowledge of Rational, so it can |
| 260 | handle those instances before delegating to Real or |
| 261 | Complex. |
| 262 | |
| 263 | The next two situations describe 'b + r'. We assume that b |
| 264 | didn't know about Rational in its implementation, and that it |
| 265 | uses similar boilerplate code: |
| 266 | |
| 267 | 4. If B <: RationalAbc, then __radd_ converts both to the |
| 268 | builtin rational type (hey look, that's us) and |
| 269 | proceeds. |
| 270 | 5. Otherwise, __radd__ tries to find the nearest common |
| 271 | base ABC, and fall back to its builtin type. Since this |
| 272 | class doesn't subclass a concrete type, there's no |
| 273 | implementation to fall back to, so we need to try as |
| 274 | hard as possible to return an actual value, or the user |
| 275 | will get a TypeError. |
| 276 | |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 277 | """ |
| 278 | def forward(a, b): |
Christian Heimes | 7b3ce6a | 2008-01-31 14:31:45 +0000 | [diff] [blame] | 279 | if isinstance(b, (int, Rational)): |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 280 | return monomorphic_operator(a, b) |
| 281 | elif isinstance(b, float): |
| 282 | return fallback_operator(float(a), b) |
| 283 | elif isinstance(b, complex): |
| 284 | return fallback_operator(complex(a), b) |
| 285 | else: |
| 286 | return NotImplemented |
| 287 | forward.__name__ = '__' + fallback_operator.__name__ + '__' |
| 288 | forward.__doc__ = monomorphic_operator.__doc__ |
| 289 | |
| 290 | def reverse(b, a): |
| 291 | if isinstance(a, RationalAbc): |
| 292 | # Includes ints. |
| 293 | return monomorphic_operator(a, b) |
| 294 | elif isinstance(a, numbers.Real): |
| 295 | return fallback_operator(float(a), float(b)) |
| 296 | elif isinstance(a, numbers.Complex): |
| 297 | return fallback_operator(complex(a), complex(b)) |
| 298 | else: |
| 299 | return NotImplemented |
| 300 | reverse.__name__ = '__r' + fallback_operator.__name__ + '__' |
| 301 | reverse.__doc__ = monomorphic_operator.__doc__ |
| 302 | |
| 303 | return forward, reverse |
| 304 | |
| 305 | def _add(a, b): |
| 306 | """a + b""" |
| 307 | return Rational(a.numerator * b.denominator + |
| 308 | b.numerator * a.denominator, |
| 309 | a.denominator * b.denominator) |
| 310 | |
| 311 | __add__, __radd__ = _operator_fallbacks(_add, operator.add) |
| 312 | |
| 313 | def _sub(a, b): |
| 314 | """a - b""" |
| 315 | return Rational(a.numerator * b.denominator - |
| 316 | b.numerator * a.denominator, |
| 317 | a.denominator * b.denominator) |
| 318 | |
| 319 | __sub__, __rsub__ = _operator_fallbacks(_sub, operator.sub) |
| 320 | |
| 321 | def _mul(a, b): |
| 322 | """a * b""" |
| 323 | return Rational(a.numerator * b.numerator, a.denominator * b.denominator) |
| 324 | |
| 325 | __mul__, __rmul__ = _operator_fallbacks(_mul, operator.mul) |
| 326 | |
| 327 | def _div(a, b): |
| 328 | """a / b""" |
| 329 | return Rational(a.numerator * b.denominator, |
| 330 | a.denominator * b.numerator) |
| 331 | |
| 332 | __truediv__, __rtruediv__ = _operator_fallbacks(_div, operator.truediv) |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 333 | |
| 334 | def __floordiv__(a, b): |
| 335 | """a // b""" |
Jeffrey Yasskin | 9893de1 | 2008-01-17 07:36:30 +0000 | [diff] [blame] | 336 | return math.floor(a / b) |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 337 | |
| 338 | def __rfloordiv__(b, a): |
| 339 | """a // b""" |
Jeffrey Yasskin | 9893de1 | 2008-01-17 07:36:30 +0000 | [diff] [blame] | 340 | return math.floor(a / b) |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 341 | |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 342 | def __mod__(a, b): |
| 343 | """a % b""" |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 344 | div = a // b |
| 345 | return a - b * div |
| 346 | |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 347 | def __rmod__(b, a): |
| 348 | """a % b""" |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 349 | div = a // b |
| 350 | return a - b * div |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 351 | |
| 352 | def __pow__(a, b): |
| 353 | """a ** b |
| 354 | |
| 355 | If b is not an integer, the result will be a float or complex |
| 356 | since roots are generally irrational. If b is an integer, the |
| 357 | result will be rational. |
| 358 | |
| 359 | """ |
| 360 | if isinstance(b, RationalAbc): |
| 361 | if b.denominator == 1: |
| 362 | power = b.numerator |
| 363 | if power >= 0: |
| 364 | return Rational(a.numerator ** power, |
| 365 | a.denominator ** power) |
| 366 | else: |
| 367 | return Rational(a.denominator ** -power, |
| 368 | a.numerator ** -power) |
| 369 | else: |
| 370 | # A fractional power will generally produce an |
| 371 | # irrational number. |
| 372 | return float(a) ** float(b) |
| 373 | else: |
| 374 | return float(a) ** b |
| 375 | |
| 376 | def __rpow__(b, a): |
| 377 | """a ** b""" |
| 378 | if b.denominator == 1 and b.numerator >= 0: |
| 379 | # If a is an int, keep it that way if possible. |
| 380 | return a ** b.numerator |
| 381 | |
| 382 | if isinstance(a, RationalAbc): |
| 383 | return Rational(a.numerator, a.denominator) ** b |
| 384 | |
| 385 | if b.denominator == 1: |
| 386 | return a ** b.numerator |
| 387 | |
| 388 | return a ** float(b) |
| 389 | |
| 390 | def __pos__(a): |
| 391 | """+a: Coerces a subclass instance to Rational""" |
| 392 | return Rational(a.numerator, a.denominator) |
| 393 | |
| 394 | def __neg__(a): |
| 395 | """-a""" |
| 396 | return Rational(-a.numerator, a.denominator) |
| 397 | |
| 398 | def __abs__(a): |
| 399 | """abs(a)""" |
| 400 | return Rational(abs(a.numerator), a.denominator) |
| 401 | |
| 402 | def __trunc__(a): |
| 403 | """trunc(a)""" |
| 404 | if a.numerator < 0: |
| 405 | return -(-a.numerator // a.denominator) |
| 406 | else: |
| 407 | return a.numerator // a.denominator |
| 408 | |
| 409 | def __floor__(a): |
| 410 | """Will be math.floor(a) in 3.0.""" |
| 411 | return a.numerator // a.denominator |
| 412 | |
| 413 | def __ceil__(a): |
| 414 | """Will be math.ceil(a) in 3.0.""" |
| 415 | # The negations cleverly convince floordiv to return the ceiling. |
| 416 | return -(-a.numerator // a.denominator) |
| 417 | |
| 418 | def __round__(self, ndigits=None): |
| 419 | """Will be round(self, ndigits) in 3.0. |
| 420 | |
| 421 | Rounds half toward even. |
| 422 | """ |
| 423 | if ndigits is None: |
| 424 | floor, remainder = divmod(self.numerator, self.denominator) |
| 425 | if remainder * 2 < self.denominator: |
| 426 | return floor |
| 427 | elif remainder * 2 > self.denominator: |
| 428 | return floor + 1 |
| 429 | # Deal with the half case: |
| 430 | elif floor % 2 == 0: |
| 431 | return floor |
| 432 | else: |
| 433 | return floor + 1 |
| 434 | shift = 10**abs(ndigits) |
| 435 | # See _operator_fallbacks.forward to check that the results of |
| 436 | # these operations will always be Rational and therefore have |
Jeffrey Yasskin | 9893de1 | 2008-01-17 07:36:30 +0000 | [diff] [blame] | 437 | # round(). |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 438 | if ndigits > 0: |
Jeffrey Yasskin | 9893de1 | 2008-01-17 07:36:30 +0000 | [diff] [blame] | 439 | return Rational(round(self * shift), shift) |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 440 | else: |
Jeffrey Yasskin | 9893de1 | 2008-01-17 07:36:30 +0000 | [diff] [blame] | 441 | return Rational(round(self / shift) * shift) |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 442 | |
| 443 | def __hash__(self): |
| 444 | """hash(self) |
| 445 | |
| 446 | Tricky because values that are exactly representable as a |
| 447 | float must have the same hash as that float. |
| 448 | |
| 449 | """ |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 450 | # XXX since this method is expensive, consider caching the result |
Guido van Rossum | 7736b5b | 2008-01-15 21:44:53 +0000 | [diff] [blame] | 451 | if self.denominator == 1: |
| 452 | # Get integers right. |
| 453 | return hash(self.numerator) |
| 454 | # Expensive check, but definitely correct. |
| 455 | if self == float(self): |
| 456 | return hash(float(self)) |
| 457 | else: |
| 458 | # Use tuple's hash to avoid a high collision rate on |
| 459 | # simple fractions. |
| 460 | return hash((self.numerator, self.denominator)) |
| 461 | |
| 462 | def __eq__(a, b): |
| 463 | """a == b""" |
| 464 | if isinstance(b, RationalAbc): |
| 465 | return (a.numerator == b.numerator and |
| 466 | a.denominator == b.denominator) |
| 467 | if isinstance(b, numbers.Complex) and b.imag == 0: |
| 468 | b = b.real |
| 469 | if isinstance(b, float): |
| 470 | return a == a.from_float(b) |
| 471 | else: |
| 472 | # XXX: If b.__eq__ is implemented like this method, it may |
| 473 | # give the wrong answer after float(a) changes a's |
| 474 | # value. Better ways of doing this are welcome. |
| 475 | return float(a) == b |
| 476 | |
| 477 | def _subtractAndCompareToZero(a, b, op): |
| 478 | """Helper function for comparison operators. |
| 479 | |
| 480 | Subtracts b from a, exactly if possible, and compares the |
| 481 | result with 0 using op, in such a way that the comparison |
| 482 | won't recurse. If the difference raises a TypeError, returns |
| 483 | NotImplemented instead. |
| 484 | |
| 485 | """ |
| 486 | if isinstance(b, numbers.Complex) and b.imag == 0: |
| 487 | b = b.real |
| 488 | if isinstance(b, float): |
| 489 | b = a.from_float(b) |
| 490 | try: |
| 491 | # XXX: If b <: Real but not <: RationalAbc, this is likely |
| 492 | # to fall back to a float. If the actual values differ by |
| 493 | # less than MIN_FLOAT, this could falsely call them equal, |
| 494 | # which would make <= inconsistent with ==. Better ways of |
| 495 | # doing this are welcome. |
| 496 | diff = a - b |
| 497 | except TypeError: |
| 498 | return NotImplemented |
| 499 | if isinstance(diff, RationalAbc): |
| 500 | return op(diff.numerator, 0) |
| 501 | return op(diff, 0) |
| 502 | |
| 503 | def __lt__(a, b): |
| 504 | """a < b""" |
| 505 | return a._subtractAndCompareToZero(b, operator.lt) |
| 506 | |
| 507 | def __gt__(a, b): |
| 508 | """a > b""" |
| 509 | return a._subtractAndCompareToZero(b, operator.gt) |
| 510 | |
| 511 | def __le__(a, b): |
| 512 | """a <= b""" |
| 513 | return a._subtractAndCompareToZero(b, operator.le) |
| 514 | |
| 515 | def __ge__(a, b): |
| 516 | """a >= b""" |
| 517 | return a._subtractAndCompareToZero(b, operator.ge) |
| 518 | |
| 519 | def __bool__(a): |
| 520 | """a != 0""" |
| 521 | return a.numerator != 0 |
Christian Heimes | 969fe57 | 2008-01-25 11:23:10 +0000 | [diff] [blame] | 522 | |
| 523 | # support for pickling, copy, and deepcopy |
| 524 | |
| 525 | def __reduce__(self): |
| 526 | return (self.__class__, (str(self),)) |
| 527 | |
| 528 | def __copy__(self): |
| 529 | if type(self) == Rational: |
| 530 | return self # I'm immutable; therefore I am my own clone |
| 531 | return self.__class__(self.numerator, self.denominator) |
| 532 | |
| 533 | def __deepcopy__(self, memo): |
| 534 | if type(self) == Rational: |
| 535 | return self # My components are also immutable |
| 536 | return self.__class__(self.numerator, self.denominator) |