blob: 6796f8adba9b078afbf18facb55c199bbedbd5ac [file] [log] [blame]
Christian Heimes3feef612008-02-11 06:19:17 +00001:mod:`decimal` --- Decimal fixed point and floating point arithmetic
2====================================================================
Georg Brandl116aa622007-08-15 14:28:22 +00003
4.. module:: decimal
5 :synopsis: Implementation of the General Decimal Arithmetic Specification.
6
Georg Brandl116aa622007-08-15 14:28:22 +00007.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
8.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
9.. moduleauthor:: Raymond Hettinger <python at rcn.com>
10.. moduleauthor:: Aahz <aahz at pobox.com>
11.. moduleauthor:: Tim Peters <tim.one at comcast.net>
Stefan Krah1919b7e2012-03-21 18:25:23 +010012.. moduleauthor:: Stefan Krah <skrah at bytereef.org>
Georg Brandl116aa622007-08-15 14:28:22 +000013.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
14
Andrew Kuchling2e3743c2014-03-19 16:23:01 -040015**Source code:** :source:`Lib/decimal.py`
16
Christian Heimesfe337bf2008-03-23 21:54:12 +000017.. import modules for testing inline doctests with the Sphinx doctest builder
18.. testsetup:: *
19
20 import decimal
21 import math
22 from decimal import *
23 # make sure each group gets a fresh context
24 setcontext(Context())
Georg Brandl116aa622007-08-15 14:28:22 +000025
Stefan Krah1919b7e2012-03-21 18:25:23 +010026The :mod:`decimal` module provides support for fast correctly-rounded
27decimal floating point arithmetic. It offers several advantages over the
28:class:`float` datatype:
Georg Brandl116aa622007-08-15 14:28:22 +000029
Christian Heimes3feef612008-02-11 06:19:17 +000030* Decimal "is based on a floating-point model which was designed with people
31 in mind, and necessarily has a paramount guiding principle -- computers must
32 provide an arithmetic that works in the same way as the arithmetic that
33 people learn at school." -- excerpt from the decimal arithmetic specification.
34
Georg Brandl116aa622007-08-15 14:28:22 +000035* Decimal numbers can be represented exactly. In contrast, numbers like
Terry Jan Reedya9314632012-01-13 23:43:13 -050036 :const:`1.1` and :const:`2.2` do not have exact representations in binary
Raymond Hettingerd258d1e2009-04-23 22:06:12 +000037 floating point. End users typically would not expect ``1.1 + 2.2`` to display
38 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl116aa622007-08-15 14:28:22 +000039
40* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Thomas Wouters1b7f8912007-09-19 03:06:30 +000041 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl116aa622007-08-15 14:28:22 +000042 is :const:`5.5511151231257827e-017`. While near to zero, the differences
43 prevent reliable equality testing and differences can accumulate. For this
Christian Heimes3feef612008-02-11 06:19:17 +000044 reason, decimal is preferred in accounting applications which have strict
Georg Brandl116aa622007-08-15 14:28:22 +000045 equality invariants.
46
47* The decimal module incorporates a notion of significant places so that ``1.30
48 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
49 This is the customary presentation for monetary applications. For
50 multiplication, the "schoolbook" approach uses all the figures in the
51 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
52 1.20`` gives :const:`1.5600`.
53
54* Unlike hardware based binary floating point, the decimal module has a user
Thomas Wouters1b7f8912007-09-19 03:06:30 +000055 alterable precision (defaulting to 28 places) which can be as large as needed for
Christian Heimesfe337bf2008-03-23 21:54:12 +000056 a given problem:
Georg Brandl116aa622007-08-15 14:28:22 +000057
Mark Dickinson43ef32a2010-11-07 11:24:44 +000058 >>> from decimal import *
Georg Brandl116aa622007-08-15 14:28:22 +000059 >>> getcontext().prec = 6
60 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000061 Decimal('0.142857')
Georg Brandl116aa622007-08-15 14:28:22 +000062 >>> getcontext().prec = 28
63 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000064 Decimal('0.1428571428571428571428571429')
Georg Brandl116aa622007-08-15 14:28:22 +000065
66* Both binary and decimal floating point are implemented in terms of published
67 standards. While the built-in float type exposes only a modest portion of its
68 capabilities, the decimal module exposes all required parts of the standard.
69 When needed, the programmer has full control over rounding and signal handling.
Christian Heimes3feef612008-02-11 06:19:17 +000070 This includes an option to enforce exact arithmetic by using exceptions
71 to block any inexact operations.
72
73* The decimal module was designed to support "without prejudice, both exact
74 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
75 and rounded floating-point arithmetic." -- excerpt from the decimal
76 arithmetic specification.
Georg Brandl116aa622007-08-15 14:28:22 +000077
78The module design is centered around three concepts: the decimal number, the
79context for arithmetic, and signals.
80
81A decimal number is immutable. It has a sign, coefficient digits, and an
82exponent. To preserve significance, the coefficient digits do not truncate
Thomas Wouters1b7f8912007-09-19 03:06:30 +000083trailing zeros. Decimals also include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +000084:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
85differentiates :const:`-0` from :const:`+0`.
86
87The context for arithmetic is an environment specifying precision, rounding
88rules, limits on exponents, flags indicating the results of operations, and trap
89enablers which determine whether signals are treated as exceptions. Rounding
90options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
91:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +000092:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl116aa622007-08-15 14:28:22 +000093
94Signals are groups of exceptional conditions arising during the course of
95computation. Depending on the needs of the application, signals may be ignored,
96considered as informational, or treated as exceptions. The signals in the
97decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
98:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
Stefan Krah1919b7e2012-03-21 18:25:23 +010099:const:`Overflow`, :const:`Underflow` and :const:`FloatOperation`.
Georg Brandl116aa622007-08-15 14:28:22 +0000100
101For each signal there is a flag and a trap enabler. When a signal is
Raymond Hettinger86173da2008-02-01 20:38:12 +0000102encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl116aa622007-08-15 14:28:22 +0000103set to one, an exception is raised. Flags are sticky, so the user needs to
104reset them before monitoring a calculation.
105
106
107.. seealso::
108
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000109 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettinger960dc362009-04-21 03:43:15 +0000110 Specification <http://speleotrove.com/decimal/decarith.html>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000111
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000112.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000113
114
115.. _decimal-tutorial:
116
117Quick-start Tutorial
118--------------------
119
120The usual start to using decimals is importing the module, viewing the current
121context with :func:`getcontext` and, if necessary, setting new values for
122precision, rounding, or enabled traps::
123
124 >>> from decimal import *
125 >>> getcontext()
Stefan Krah1919b7e2012-03-21 18:25:23 +0100126 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000127 capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
Christian Heimesfe337bf2008-03-23 21:54:12 +0000128 InvalidOperation])
Georg Brandl116aa622007-08-15 14:28:22 +0000129
130 >>> getcontext().prec = 7 # Set a new precision
131
Mark Dickinsone534a072010-04-04 22:13:14 +0000132Decimal instances can be constructed from integers, strings, floats, or tuples.
133Construction from an integer or a float performs an exact conversion of the
134value of that integer or float. Decimal numbers include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +0000135:const:`NaN` which stands for "Not a number", positive and negative
Stefan Krah1919b7e2012-03-21 18:25:23 +0100136:const:`Infinity`, and :const:`-0`::
Georg Brandl116aa622007-08-15 14:28:22 +0000137
Facundo Batista789bdf02008-06-21 17:29:41 +0000138 >>> getcontext().prec = 28
Georg Brandl116aa622007-08-15 14:28:22 +0000139 >>> Decimal(10)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000140 Decimal('10')
141 >>> Decimal('3.14')
142 Decimal('3.14')
Mark Dickinsone534a072010-04-04 22:13:14 +0000143 >>> Decimal(3.14)
144 Decimal('3.140000000000000124344978758017532527446746826171875')
Georg Brandl116aa622007-08-15 14:28:22 +0000145 >>> Decimal((0, (3, 1, 4), -2))
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000146 Decimal('3.14')
Georg Brandl116aa622007-08-15 14:28:22 +0000147 >>> Decimal(str(2.0 ** 0.5))
Alexander Belopolsky287d1fd2011-01-12 16:37:14 +0000148 Decimal('1.4142135623730951')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000149 >>> Decimal(2) ** Decimal('0.5')
150 Decimal('1.414213562373095048801688724')
151 >>> Decimal('NaN')
152 Decimal('NaN')
153 >>> Decimal('-Infinity')
154 Decimal('-Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000155
Stefan Krah1919b7e2012-03-21 18:25:23 +0100156If the :exc:`FloatOperation` signal is trapped, accidental mixing of
157decimals and floats in constructors or ordering comparisons raises
158an exception::
159
160 >>> c = getcontext()
161 >>> c.traps[FloatOperation] = True
162 >>> Decimal(3.14)
163 Traceback (most recent call last):
164 File "<stdin>", line 1, in <module>
165 decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
166 >>> Decimal('3.5') < 3.7
167 Traceback (most recent call last):
168 File "<stdin>", line 1, in <module>
169 decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
170 >>> Decimal('3.5') == 3.5
171 True
172
173.. versionadded:: 3.3
174
Georg Brandl116aa622007-08-15 14:28:22 +0000175The significance of a new Decimal is determined solely by the number of digits
176input. Context precision and rounding only come into play during arithmetic
Christian Heimesfe337bf2008-03-23 21:54:12 +0000177operations.
178
179.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +0000180
181 >>> getcontext().prec = 6
182 >>> Decimal('3.0')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000183 Decimal('3.0')
Georg Brandl116aa622007-08-15 14:28:22 +0000184 >>> Decimal('3.1415926535')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000185 Decimal('3.1415926535')
Georg Brandl116aa622007-08-15 14:28:22 +0000186 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000187 Decimal('5.85987')
Georg Brandl116aa622007-08-15 14:28:22 +0000188 >>> getcontext().rounding = ROUND_UP
189 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000190 Decimal('5.85988')
Georg Brandl116aa622007-08-15 14:28:22 +0000191
Stefan Krah1919b7e2012-03-21 18:25:23 +0100192If the internal limits of the C version are exceeded, constructing
193a decimal raises :class:`InvalidOperation`::
194
195 >>> Decimal("1e9999999999999999999")
196 Traceback (most recent call last):
197 File "<stdin>", line 1, in <module>
198 decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]
199
200.. versionchanged:: 3.3
201
Georg Brandl116aa622007-08-15 14:28:22 +0000202Decimals interact well with much of the rest of Python. Here is a small decimal
Christian Heimesfe337bf2008-03-23 21:54:12 +0000203floating point flying circus:
204
205.. doctest::
206 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000207
Facundo Batista789bdf02008-06-21 17:29:41 +0000208 >>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
Georg Brandl116aa622007-08-15 14:28:22 +0000209 >>> max(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000210 Decimal('9.25')
Georg Brandl116aa622007-08-15 14:28:22 +0000211 >>> min(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000212 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +0000213 >>> sorted(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000214 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
215 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl116aa622007-08-15 14:28:22 +0000216 >>> sum(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000217 Decimal('19.29')
Georg Brandl116aa622007-08-15 14:28:22 +0000218 >>> a,b,c = data[:3]
219 >>> str(a)
220 '1.34'
221 >>> float(a)
Mark Dickinson8dad7df2009-06-28 20:36:54 +0000222 1.34
223 >>> round(a, 1)
224 Decimal('1.3')
Georg Brandl116aa622007-08-15 14:28:22 +0000225 >>> int(a)
226 1
227 >>> a * 5
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000228 Decimal('6.70')
Georg Brandl116aa622007-08-15 14:28:22 +0000229 >>> a * b
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000230 Decimal('2.5058')
Georg Brandl116aa622007-08-15 14:28:22 +0000231 >>> c % a
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000232 Decimal('0.77')
Georg Brandl116aa622007-08-15 14:28:22 +0000233
Christian Heimesfe337bf2008-03-23 21:54:12 +0000234And some mathematical functions are also available to Decimal:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000235
Facundo Batista789bdf02008-06-21 17:29:41 +0000236 >>> getcontext().prec = 28
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000237 >>> Decimal(2).sqrt()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000238 Decimal('1.414213562373095048801688724')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000239 >>> Decimal(1).exp()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000240 Decimal('2.718281828459045235360287471')
241 >>> Decimal('10').ln()
242 Decimal('2.302585092994045684017991455')
243 >>> Decimal('10').log10()
244 Decimal('1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000245
Georg Brandl116aa622007-08-15 14:28:22 +0000246The :meth:`quantize` method rounds a number to a fixed exponent. This method is
247useful for monetary applications that often round results to a fixed number of
Christian Heimesfe337bf2008-03-23 21:54:12 +0000248places:
Georg Brandl116aa622007-08-15 14:28:22 +0000249
250 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000251 Decimal('7.32')
Georg Brandl116aa622007-08-15 14:28:22 +0000252 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000253 Decimal('8')
Georg Brandl116aa622007-08-15 14:28:22 +0000254
255As shown above, the :func:`getcontext` function accesses the current context and
256allows the settings to be changed. This approach meets the needs of most
257applications.
258
259For more advanced work, it may be useful to create alternate contexts using the
260Context() constructor. To make an alternate active, use the :func:`setcontext`
261function.
262
Serhiy Storchakab19542d2015-03-14 21:32:57 +0200263In accordance with the standard, the :mod:`decimal` module provides two ready to
Georg Brandl116aa622007-08-15 14:28:22 +0000264use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
265former is especially useful for debugging because many of the traps are
Christian Heimesfe337bf2008-03-23 21:54:12 +0000266enabled:
267
268.. doctest:: newcontext
269 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000270
271 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
272 >>> setcontext(myothercontext)
273 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000274 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl116aa622007-08-15 14:28:22 +0000275
276 >>> ExtendedContext
Stefan Krah1919b7e2012-03-21 18:25:23 +0100277 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000278 capitals=1, clamp=0, flags=[], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000279 >>> setcontext(ExtendedContext)
280 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000281 Decimal('0.142857143')
Georg Brandl116aa622007-08-15 14:28:22 +0000282 >>> Decimal(42) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000283 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000284
285 >>> setcontext(BasicContext)
286 >>> Decimal(42) / Decimal(0)
287 Traceback (most recent call last):
288 File "<pyshell#143>", line 1, in -toplevel-
289 Decimal(42) / Decimal(0)
290 DivisionByZero: x / 0
291
292Contexts also have signal flags for monitoring exceptional conditions
293encountered during computations. The flags remain set until explicitly cleared,
294so it is best to clear the flags before each set of monitored computations by
295using the :meth:`clear_flags` method. ::
296
297 >>> setcontext(ExtendedContext)
298 >>> getcontext().clear_flags()
299 >>> Decimal(355) / Decimal(113)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000300 Decimal('3.14159292')
Georg Brandl116aa622007-08-15 14:28:22 +0000301 >>> getcontext()
Stefan Krah1919b7e2012-03-21 18:25:23 +0100302 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000303 capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000304
305The *flags* entry shows that the rational approximation to :const:`Pi` was
306rounded (digits beyond the context precision were thrown away) and that the
307result is inexact (some of the discarded digits were non-zero).
308
309Individual traps are set using the dictionary in the :attr:`traps` field of a
Christian Heimesfe337bf2008-03-23 21:54:12 +0000310context:
Georg Brandl116aa622007-08-15 14:28:22 +0000311
Christian Heimesfe337bf2008-03-23 21:54:12 +0000312.. doctest:: newcontext
313
314 >>> setcontext(ExtendedContext)
Georg Brandl116aa622007-08-15 14:28:22 +0000315 >>> Decimal(1) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000316 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000317 >>> getcontext().traps[DivisionByZero] = 1
318 >>> Decimal(1) / Decimal(0)
319 Traceback (most recent call last):
320 File "<pyshell#112>", line 1, in -toplevel-
321 Decimal(1) / Decimal(0)
322 DivisionByZero: x / 0
323
324Most programs adjust the current context only once, at the beginning of the
325program. And, in many applications, data is converted to :class:`Decimal` with
326a single cast inside a loop. With context set and decimals created, the bulk of
327the program manipulates the data no differently than with other Python numeric
328types.
329
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000330.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000331
332
333.. _decimal-decimal:
334
335Decimal objects
336---------------
337
338
Georg Brandlc2a4f4f2009-04-10 09:03:43 +0000339.. class:: Decimal(value="0", context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000340
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000341 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl116aa622007-08-15 14:28:22 +0000342
Raymond Hettinger96798592010-04-02 16:58:27 +0000343 *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000344 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Christian Heimesa62da1d2008-01-12 19:39:10 +0000345 string, it should conform to the decimal numeric string syntax after leading
346 and trailing whitespace characters are removed::
Georg Brandl116aa622007-08-15 14:28:22 +0000347
348 sign ::= '+' | '-'
349 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
350 indicator ::= 'e' | 'E'
351 digits ::= digit [digit]...
352 decimal-part ::= digits '.' [digits] | ['.'] digits
353 exponent-part ::= indicator [sign] digits
354 infinity ::= 'Infinity' | 'Inf'
355 nan ::= 'NaN' [digits] | 'sNaN' [digits]
356 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandl48310cd2009-01-03 21:18:54 +0000357 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl116aa622007-08-15 14:28:22 +0000358
Mark Dickinson345adc42009-08-02 10:14:23 +0000359 Other Unicode decimal digits are also permitted where ``digit``
360 appears above. These include decimal digits from various other
361 alphabets (for example, Arabic-Indic and Devanāgarī digits) along
362 with the fullwidth digits ``'\uff10'`` through ``'\uff19'``.
363
Georg Brandl116aa622007-08-15 14:28:22 +0000364 If *value* is a :class:`tuple`, it should have three components, a sign
365 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
366 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000367 returns ``Decimal('1.414')``.
Georg Brandl116aa622007-08-15 14:28:22 +0000368
Raymond Hettinger96798592010-04-02 16:58:27 +0000369 If *value* is a :class:`float`, the binary floating point value is losslessly
370 converted to its exact decimal equivalent. This conversion can often require
Mark Dickinsone534a072010-04-04 22:13:14 +0000371 53 or more digits of precision. For example, ``Decimal(float('1.1'))``
372 converts to
373 ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
Raymond Hettinger96798592010-04-02 16:58:27 +0000374
Georg Brandl116aa622007-08-15 14:28:22 +0000375 The *context* precision does not affect how many digits are stored. That is
376 determined exclusively by the number of digits in *value*. For example,
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000377 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl116aa622007-08-15 14:28:22 +0000378 only three.
379
380 The purpose of the *context* argument is determining what to do if *value* is a
381 malformed string. If the context traps :const:`InvalidOperation`, an exception
382 is raised; otherwise, the constructor returns a new Decimal with the value of
383 :const:`NaN`.
384
385 Once constructed, :class:`Decimal` objects are immutable.
386
Mark Dickinsone534a072010-04-04 22:13:14 +0000387 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000388 The argument to the constructor is now permitted to be a :class:`float`
389 instance.
Mark Dickinsone534a072010-04-04 22:13:14 +0000390
Stefan Krah1919b7e2012-03-21 18:25:23 +0100391 .. versionchanged:: 3.3
392 :class:`float` arguments raise an exception if the :exc:`FloatOperation`
393 trap is set. By default the trap is off.
394
Benjamin Petersone41251e2008-04-25 01:59:09 +0000395 Decimal floating point objects share many properties with the other built-in
396 numeric types such as :class:`float` and :class:`int`. All of the usual math
397 operations and special methods apply. Likewise, decimal objects can be
398 copied, pickled, printed, used as dictionary keys, used as set elements,
399 compared, sorted, and coerced to another type (such as :class:`float` or
Mark Dickinson5d233fd2010-02-18 14:54:37 +0000400 :class:`int`).
Christian Heimesa62da1d2008-01-12 19:39:10 +0000401
Mark Dickinsona3f37402012-11-18 10:22:05 +0000402 There are some small differences between arithmetic on Decimal objects and
403 arithmetic on integers and floats. When the remainder operator ``%`` is
404 applied to Decimal objects, the sign of the result is the sign of the
405 *dividend* rather than the sign of the divisor::
406
407 >>> (-7) % 4
408 1
409 >>> Decimal(-7) % Decimal(4)
410 Decimal('-3')
411
412 The integer division operator ``//`` behaves analogously, returning the
413 integer part of the true quotient (truncating towards zero) rather than its
Mark Dickinsonec967242012-11-18 10:42:07 +0000414 floor, so as to preserve the usual identity ``x == (x // y) * y + x % y``::
Mark Dickinsona3f37402012-11-18 10:22:05 +0000415
416 >>> -7 // 4
417 -2
418 >>> Decimal(-7) // Decimal(4)
419 Decimal('-1')
420
421 The ``%`` and ``//`` operators implement the ``remainder`` and
422 ``divide-integer`` operations (respectively) as described in the
423 specification.
424
Mark Dickinson08ade6f2010-06-11 10:44:52 +0000425 Decimal objects cannot generally be combined with floats or
426 instances of :class:`fractions.Fraction` in arithmetic operations:
427 an attempt to add a :class:`Decimal` to a :class:`float`, for
428 example, will raise a :exc:`TypeError`. However, it is possible to
429 use Python's comparison operators to compare a :class:`Decimal`
430 instance ``x`` with another number ``y``. This avoids confusing results
431 when doing equality comparisons between numbers of different types.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000432
Ezio Melotti993a5ee2010-04-04 06:30:08 +0000433 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000434 Mixed-type comparisons between :class:`Decimal` instances and other
435 numeric types are now fully supported.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000436
Benjamin Petersone41251e2008-04-25 01:59:09 +0000437 In addition to the standard numeric properties, decimal floating point
438 objects also have a number of specialized methods:
Georg Brandl116aa622007-08-15 14:28:22 +0000439
Georg Brandl116aa622007-08-15 14:28:22 +0000440
Benjamin Petersone41251e2008-04-25 01:59:09 +0000441 .. method:: adjusted()
Georg Brandl116aa622007-08-15 14:28:22 +0000442
Benjamin Petersone41251e2008-04-25 01:59:09 +0000443 Return the adjusted exponent after shifting out the coefficient's
444 rightmost digits until only the lead digit remains:
445 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
446 position of the most significant digit with respect to the decimal point.
Georg Brandl116aa622007-08-15 14:28:22 +0000447
Stefan Krah53f2e0a2015-12-28 23:02:02 +0100448 .. method:: as_integer_ratio()
449
450 Return a pair ``(n, d)`` of integers that represent the given
451 :class:`Decimal` instance as a fraction, in lowest terms and
452 with a positive denominator::
453
454 >>> Decimal('-3.14').as_integer_ratio()
455 (-157, 50)
456
457 The conversion is exact. Raise OverflowError on infinities and ValueError
458 on NaNs.
459
460 .. versionadded:: 3.6
Georg Brandl116aa622007-08-15 14:28:22 +0000461
Benjamin Petersone41251e2008-04-25 01:59:09 +0000462 .. method:: as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +0000463
Benjamin Petersone41251e2008-04-25 01:59:09 +0000464 Return a :term:`named tuple` representation of the number:
465 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000466
Christian Heimes25bb7832008-01-11 16:17:00 +0000467
Benjamin Petersone41251e2008-04-25 01:59:09 +0000468 .. method:: canonical()
Georg Brandl116aa622007-08-15 14:28:22 +0000469
Benjamin Petersone41251e2008-04-25 01:59:09 +0000470 Return the canonical encoding of the argument. Currently, the encoding of
471 a :class:`Decimal` instance is always canonical, so this operation returns
472 its argument unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000473
Stefan Krah040e3112012-12-15 22:33:33 +0100474 .. method:: compare(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000475
Georg Brandl05f5ab72008-09-24 09:11:47 +0000476 Compare the values of two Decimal instances. :meth:`compare` returns a
477 Decimal instance, and if either operand is a NaN then the result is a
478 NaN::
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000479
Georg Brandl05f5ab72008-09-24 09:11:47 +0000480 a or b is a NaN ==> Decimal('NaN')
481 a < b ==> Decimal('-1')
482 a == b ==> Decimal('0')
483 a > b ==> Decimal('1')
Georg Brandl116aa622007-08-15 14:28:22 +0000484
Stefan Krah040e3112012-12-15 22:33:33 +0100485 .. method:: compare_signal(other, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000486
Benjamin Petersone41251e2008-04-25 01:59:09 +0000487 This operation is identical to the :meth:`compare` method, except that all
488 NaNs signal. That is, if neither operand is a signaling NaN then any
489 quiet NaN operand is treated as though it were a signaling NaN.
Georg Brandl116aa622007-08-15 14:28:22 +0000490
Stefan Krah040e3112012-12-15 22:33:33 +0100491 .. method:: compare_total(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000492
Benjamin Petersone41251e2008-04-25 01:59:09 +0000493 Compare two operands using their abstract representation rather than their
494 numerical value. Similar to the :meth:`compare` method, but the result
495 gives a total ordering on :class:`Decimal` instances. Two
496 :class:`Decimal` instances with the same numeric value but different
497 representations compare unequal in this ordering:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000498
Benjamin Petersone41251e2008-04-25 01:59:09 +0000499 >>> Decimal('12.0').compare_total(Decimal('12'))
500 Decimal('-1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000501
Benjamin Petersone41251e2008-04-25 01:59:09 +0000502 Quiet and signaling NaNs are also included in the total ordering. The
503 result of this function is ``Decimal('0')`` if both operands have the same
504 representation, ``Decimal('-1')`` if the first operand is lower in the
505 total order than the second, and ``Decimal('1')`` if the first operand is
506 higher in the total order than the second operand. See the specification
507 for details of the total order.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000508
Stefan Krah040e3112012-12-15 22:33:33 +0100509 This operation is unaffected by context and is quiet: no flags are changed
510 and no rounding is performed. As an exception, the C version may raise
511 InvalidOperation if the second operand cannot be converted exactly.
512
513 .. method:: compare_total_mag(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000514
Benjamin Petersone41251e2008-04-25 01:59:09 +0000515 Compare two operands using their abstract representation rather than their
516 value as in :meth:`compare_total`, but ignoring the sign of each operand.
517 ``x.compare_total_mag(y)`` is equivalent to
518 ``x.copy_abs().compare_total(y.copy_abs())``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000519
Stefan Krah040e3112012-12-15 22:33:33 +0100520 This operation is unaffected by context and is quiet: no flags are changed
521 and no rounding is performed. As an exception, the C version may raise
522 InvalidOperation if the second operand cannot be converted exactly.
523
Facundo Batista789bdf02008-06-21 17:29:41 +0000524 .. method:: conjugate()
525
Benjamin Petersondcf97b92008-07-02 17:30:14 +0000526 Just returns self, this method is only to comply with the Decimal
Facundo Batista789bdf02008-06-21 17:29:41 +0000527 Specification.
528
Benjamin Petersone41251e2008-04-25 01:59:09 +0000529 .. method:: copy_abs()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000530
Benjamin Petersone41251e2008-04-25 01:59:09 +0000531 Return the absolute value of the argument. This operation is unaffected
532 by the context and is quiet: no flags are changed and no rounding is
533 performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000534
Benjamin Petersone41251e2008-04-25 01:59:09 +0000535 .. method:: copy_negate()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000536
Benjamin Petersone41251e2008-04-25 01:59:09 +0000537 Return the negation of the argument. This operation is unaffected by the
538 context and is quiet: no flags are changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000539
Stefan Krah040e3112012-12-15 22:33:33 +0100540 .. method:: copy_sign(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000541
Benjamin Petersone41251e2008-04-25 01:59:09 +0000542 Return a copy of the first operand with the sign set to be the same as the
543 sign of the second operand. For example:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000544
Benjamin Petersone41251e2008-04-25 01:59:09 +0000545 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
546 Decimal('-2.3')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000547
Stefan Krah040e3112012-12-15 22:33:33 +0100548 This operation is unaffected by context and is quiet: no flags are changed
549 and no rounding is performed. As an exception, the C version may raise
550 InvalidOperation if the second operand cannot be converted exactly.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000551
Stefan Krah040e3112012-12-15 22:33:33 +0100552 .. method:: exp(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000553
Benjamin Petersone41251e2008-04-25 01:59:09 +0000554 Return the value of the (natural) exponential function ``e**x`` at the
555 given number. The result is correctly rounded using the
556 :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000557
Benjamin Petersone41251e2008-04-25 01:59:09 +0000558 >>> Decimal(1).exp()
559 Decimal('2.718281828459045235360287471')
560 >>> Decimal(321).exp()
561 Decimal('2.561702493119680037517373933E+139')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000562
Raymond Hettinger771ed762009-01-03 19:20:32 +0000563 .. method:: from_float(f)
564
565 Classmethod that converts a float to a decimal number, exactly.
566
567 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
568 Since 0.1 is not exactly representable in binary floating point, the
569 value is stored as the nearest representable value which is
570 `0x1.999999999999ap-4`. That equivalent value in decimal is
571 `0.1000000000000000055511151231257827021181583404541015625`.
572
Mark Dickinsone534a072010-04-04 22:13:14 +0000573 .. note:: From Python 3.2 onwards, a :class:`Decimal` instance
574 can also be constructed directly from a :class:`float`.
575
Raymond Hettinger771ed762009-01-03 19:20:32 +0000576 .. doctest::
577
578 >>> Decimal.from_float(0.1)
579 Decimal('0.1000000000000000055511151231257827021181583404541015625')
580 >>> Decimal.from_float(float('nan'))
581 Decimal('NaN')
582 >>> Decimal.from_float(float('inf'))
583 Decimal('Infinity')
584 >>> Decimal.from_float(float('-inf'))
585 Decimal('-Infinity')
586
Georg Brandl45f53372009-01-03 21:15:20 +0000587 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +0000588
Stefan Krah040e3112012-12-15 22:33:33 +0100589 .. method:: fma(other, third, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000590
Benjamin Petersone41251e2008-04-25 01:59:09 +0000591 Fused multiply-add. Return self*other+third with no rounding of the
592 intermediate product self*other.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000593
Benjamin Petersone41251e2008-04-25 01:59:09 +0000594 >>> Decimal(2).fma(3, 5)
595 Decimal('11')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000596
Benjamin Petersone41251e2008-04-25 01:59:09 +0000597 .. method:: is_canonical()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000598
Benjamin Petersone41251e2008-04-25 01:59:09 +0000599 Return :const:`True` if the argument is canonical and :const:`False`
600 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
601 this operation always returns :const:`True`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000602
Benjamin Petersone41251e2008-04-25 01:59:09 +0000603 .. method:: is_finite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000604
Benjamin Petersone41251e2008-04-25 01:59:09 +0000605 Return :const:`True` if the argument is a finite number, and
606 :const:`False` if the argument is an infinity or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000607
Benjamin Petersone41251e2008-04-25 01:59:09 +0000608 .. method:: is_infinite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000609
Benjamin Petersone41251e2008-04-25 01:59:09 +0000610 Return :const:`True` if the argument is either positive or negative
611 infinity and :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000612
Benjamin Petersone41251e2008-04-25 01:59:09 +0000613 .. method:: is_nan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000614
Benjamin Petersone41251e2008-04-25 01:59:09 +0000615 Return :const:`True` if the argument is a (quiet or signaling) NaN and
616 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000617
Stefan Krah040e3112012-12-15 22:33:33 +0100618 .. method:: is_normal(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000619
Benjamin Petersone41251e2008-04-25 01:59:09 +0000620 Return :const:`True` if the argument is a *normal* finite number. Return
621 :const:`False` if the argument is zero, subnormal, infinite or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000622
Benjamin Petersone41251e2008-04-25 01:59:09 +0000623 .. method:: is_qnan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000624
Benjamin Petersone41251e2008-04-25 01:59:09 +0000625 Return :const:`True` if the argument is a quiet NaN, and
626 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000627
Benjamin Petersone41251e2008-04-25 01:59:09 +0000628 .. method:: is_signed()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000629
Benjamin Petersone41251e2008-04-25 01:59:09 +0000630 Return :const:`True` if the argument has a negative sign and
631 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000632
Benjamin Petersone41251e2008-04-25 01:59:09 +0000633 .. method:: is_snan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000634
Benjamin Petersone41251e2008-04-25 01:59:09 +0000635 Return :const:`True` if the argument is a signaling NaN and :const:`False`
636 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000637
Stefan Krah040e3112012-12-15 22:33:33 +0100638 .. method:: is_subnormal(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000639
Benjamin Petersone41251e2008-04-25 01:59:09 +0000640 Return :const:`True` if the argument is subnormal, and :const:`False`
641 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000642
Benjamin Petersone41251e2008-04-25 01:59:09 +0000643 .. method:: is_zero()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000644
Benjamin Petersone41251e2008-04-25 01:59:09 +0000645 Return :const:`True` if the argument is a (positive or negative) zero and
646 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000647
Stefan Krah040e3112012-12-15 22:33:33 +0100648 .. method:: ln(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000649
Benjamin Petersone41251e2008-04-25 01:59:09 +0000650 Return the natural (base e) logarithm of the operand. The result is
651 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000652
Stefan Krah040e3112012-12-15 22:33:33 +0100653 .. method:: log10(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000654
Benjamin Petersone41251e2008-04-25 01:59:09 +0000655 Return the base ten logarithm of the operand. The result is correctly
656 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000657
Stefan Krah040e3112012-12-15 22:33:33 +0100658 .. method:: logb(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000659
Benjamin Petersone41251e2008-04-25 01:59:09 +0000660 For a nonzero number, return the adjusted exponent of its operand as a
661 :class:`Decimal` instance. If the operand is a zero then
662 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
663 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
664 returned.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000665
Stefan Krah040e3112012-12-15 22:33:33 +0100666 .. method:: logical_and(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000667
Benjamin Petersone41251e2008-04-25 01:59:09 +0000668 :meth:`logical_and` is a logical operation which takes two *logical
669 operands* (see :ref:`logical_operands_label`). The result is the
670 digit-wise ``and`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000671
Stefan Krah040e3112012-12-15 22:33:33 +0100672 .. method:: logical_invert(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000673
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000674 :meth:`logical_invert` is a logical operation. The
Benjamin Petersone41251e2008-04-25 01:59:09 +0000675 result is the digit-wise inversion of the operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000676
Stefan Krah040e3112012-12-15 22:33:33 +0100677 .. method:: logical_or(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000678
Benjamin Petersone41251e2008-04-25 01:59:09 +0000679 :meth:`logical_or` is a logical operation which takes two *logical
680 operands* (see :ref:`logical_operands_label`). The result is the
681 digit-wise ``or`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000682
Stefan Krah040e3112012-12-15 22:33:33 +0100683 .. method:: logical_xor(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000684
Benjamin Petersone41251e2008-04-25 01:59:09 +0000685 :meth:`logical_xor` is a logical operation which takes two *logical
686 operands* (see :ref:`logical_operands_label`). The result is the
687 digit-wise exclusive or of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000688
Stefan Krah040e3112012-12-15 22:33:33 +0100689 .. method:: max(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000690
Benjamin Petersone41251e2008-04-25 01:59:09 +0000691 Like ``max(self, other)`` except that the context rounding rule is applied
692 before returning and that :const:`NaN` values are either signaled or
693 ignored (depending on the context and whether they are signaling or
694 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000695
Stefan Krah040e3112012-12-15 22:33:33 +0100696 .. method:: max_mag(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000697
Georg Brandl502d9a52009-07-26 15:02:41 +0000698 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000699 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000700
Stefan Krah040e3112012-12-15 22:33:33 +0100701 .. method:: min(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000702
Benjamin Petersone41251e2008-04-25 01:59:09 +0000703 Like ``min(self, other)`` except that the context rounding rule is applied
704 before returning and that :const:`NaN` values are either signaled or
705 ignored (depending on the context and whether they are signaling or
706 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000707
Stefan Krah040e3112012-12-15 22:33:33 +0100708 .. method:: min_mag(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000709
Georg Brandl502d9a52009-07-26 15:02:41 +0000710 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000711 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000712
Stefan Krah040e3112012-12-15 22:33:33 +0100713 .. method:: next_minus(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000714
Benjamin Petersone41251e2008-04-25 01:59:09 +0000715 Return the largest number representable in the given context (or in the
716 current thread's context if no context is given) that is smaller than the
717 given operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000718
Stefan Krah040e3112012-12-15 22:33:33 +0100719 .. method:: next_plus(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000720
Benjamin Petersone41251e2008-04-25 01:59:09 +0000721 Return the smallest number representable in the given context (or in the
722 current thread's context if no context is given) that is larger than the
723 given operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000724
Stefan Krah040e3112012-12-15 22:33:33 +0100725 .. method:: next_toward(other, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000726
Benjamin Petersone41251e2008-04-25 01:59:09 +0000727 If the two operands are unequal, return the number closest to the first
728 operand in the direction of the second operand. If both operands are
729 numerically equal, return a copy of the first operand with the sign set to
730 be the same as the sign of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000731
Stefan Krah040e3112012-12-15 22:33:33 +0100732 .. method:: normalize(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000733
Benjamin Petersone41251e2008-04-25 01:59:09 +0000734 Normalize the number by stripping the rightmost trailing zeros and
735 converting any result equal to :const:`Decimal('0')` to
Senthil Kumarana6bac952011-07-04 11:28:30 -0700736 :const:`Decimal('0e0')`. Used for producing canonical values for attributes
Benjamin Petersone41251e2008-04-25 01:59:09 +0000737 of an equivalence class. For example, ``Decimal('32.100')`` and
738 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
739 ``Decimal('32.1')``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000740
Stefan Krah040e3112012-12-15 22:33:33 +0100741 .. method:: number_class(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000742
Benjamin Petersone41251e2008-04-25 01:59:09 +0000743 Return a string describing the *class* of the operand. The returned value
744 is one of the following ten strings.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000745
Benjamin Petersone41251e2008-04-25 01:59:09 +0000746 * ``"-Infinity"``, indicating that the operand is negative infinity.
747 * ``"-Normal"``, indicating that the operand is a negative normal number.
748 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
749 * ``"-Zero"``, indicating that the operand is a negative zero.
750 * ``"+Zero"``, indicating that the operand is a positive zero.
751 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
752 * ``"+Normal"``, indicating that the operand is a positive normal number.
753 * ``"+Infinity"``, indicating that the operand is positive infinity.
754 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
755 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000756
Stefan Krahb151f8f2014-04-30 19:15:38 +0200757 .. method:: quantize(exp, rounding=None, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000758
Benjamin Petersone41251e2008-04-25 01:59:09 +0000759 Return a value equal to the first operand after rounding and having the
760 exponent of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000761
Benjamin Petersone41251e2008-04-25 01:59:09 +0000762 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
763 Decimal('1.414')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000764
Benjamin Petersone41251e2008-04-25 01:59:09 +0000765 Unlike other operations, if the length of the coefficient after the
766 quantize operation would be greater than precision, then an
767 :const:`InvalidOperation` is signaled. This guarantees that, unless there
768 is an error condition, the quantized exponent is always equal to that of
769 the right-hand operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000770
Benjamin Petersone41251e2008-04-25 01:59:09 +0000771 Also unlike other operations, quantize never signals Underflow, even if
772 the result is subnormal and inexact.
Georg Brandl116aa622007-08-15 14:28:22 +0000773
Benjamin Petersone41251e2008-04-25 01:59:09 +0000774 If the exponent of the second operand is larger than that of the first
775 then rounding may be necessary. In this case, the rounding mode is
776 determined by the ``rounding`` argument if given, else by the given
777 ``context`` argument; if neither argument is given the rounding mode of
778 the current thread's context is used.
Georg Brandl116aa622007-08-15 14:28:22 +0000779
Stefan Krahb151f8f2014-04-30 19:15:38 +0200780 An error is returned whenever the resulting exponent is greater than
781 :attr:`Emax` or less than :attr:`Etiny`.
Stefan Krahaf3f3a72012-08-30 12:33:55 +0200782
Benjamin Petersone41251e2008-04-25 01:59:09 +0000783 .. method:: radix()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000784
Benjamin Petersone41251e2008-04-25 01:59:09 +0000785 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
786 class does all its arithmetic. Included for compatibility with the
787 specification.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000788
Stefan Krah040e3112012-12-15 22:33:33 +0100789 .. method:: remainder_near(other, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000790
Mark Dickinson6ae568b2012-10-31 19:44:36 +0000791 Return the remainder from dividing *self* by *other*. This differs from
792 ``self % other`` in that the sign of the remainder is chosen so as to
793 minimize its absolute value. More precisely, the return value is
794 ``self - n * other`` where ``n`` is the integer nearest to the exact
795 value of ``self / other``, and if two integers are equally near then the
796 even one is chosen.
Georg Brandl116aa622007-08-15 14:28:22 +0000797
Mark Dickinson6ae568b2012-10-31 19:44:36 +0000798 If the result is zero then its sign will be the sign of *self*.
799
800 >>> Decimal(18).remainder_near(Decimal(10))
801 Decimal('-2')
802 >>> Decimal(25).remainder_near(Decimal(10))
803 Decimal('5')
804 >>> Decimal(35).remainder_near(Decimal(10))
805 Decimal('-5')
Georg Brandl116aa622007-08-15 14:28:22 +0000806
Stefan Krah040e3112012-12-15 22:33:33 +0100807 .. method:: rotate(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000808
Benjamin Petersone41251e2008-04-25 01:59:09 +0000809 Return the result of rotating the digits of the first operand by an amount
810 specified by the second operand. The second operand must be an integer in
811 the range -precision through precision. The absolute value of the second
812 operand gives the number of places to rotate. If the second operand is
813 positive then rotation is to the left; otherwise rotation is to the right.
814 The coefficient of the first operand is padded on the left with zeros to
815 length precision if necessary. The sign and exponent of the first operand
816 are unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000817
Stefan Krah040e3112012-12-15 22:33:33 +0100818 .. method:: same_quantum(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000819
Benjamin Petersone41251e2008-04-25 01:59:09 +0000820 Test whether self and other have the same exponent or whether both are
821 :const:`NaN`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000822
Stefan Krah040e3112012-12-15 22:33:33 +0100823 This operation is unaffected by context and is quiet: no flags are changed
824 and no rounding is performed. As an exception, the C version may raise
825 InvalidOperation if the second operand cannot be converted exactly.
826
827 .. method:: scaleb(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000828
Benjamin Petersone41251e2008-04-25 01:59:09 +0000829 Return the first operand with exponent adjusted by the second.
830 Equivalently, return the first operand multiplied by ``10**other``. The
831 second operand must be an integer.
Georg Brandl116aa622007-08-15 14:28:22 +0000832
Stefan Krah040e3112012-12-15 22:33:33 +0100833 .. method:: shift(other, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000834
Benjamin Petersone41251e2008-04-25 01:59:09 +0000835 Return the result of shifting the digits of the first operand by an amount
836 specified by the second operand. The second operand must be an integer in
837 the range -precision through precision. The absolute value of the second
838 operand gives the number of places to shift. If the second operand is
839 positive then the shift is to the left; otherwise the shift is to the
840 right. Digits shifted into the coefficient are zeros. The sign and
841 exponent of the first operand are unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +0000842
Stefan Krah040e3112012-12-15 22:33:33 +0100843 .. method:: sqrt(context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000844
Benjamin Petersone41251e2008-04-25 01:59:09 +0000845 Return the square root of the argument to full precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000846
Georg Brandl116aa622007-08-15 14:28:22 +0000847
Stefan Krah040e3112012-12-15 22:33:33 +0100848 .. method:: to_eng_string(context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000849
Benjamin Petersone41251e2008-04-25 01:59:09 +0000850 Convert to an engineering-type string.
Georg Brandl116aa622007-08-15 14:28:22 +0000851
Benjamin Petersone41251e2008-04-25 01:59:09 +0000852 Engineering notation has an exponent which is a multiple of 3, so there
853 are up to 3 digits left of the decimal place. For example, converts
Martin Panterd21e0b52015-10-10 10:36:22 +0000854 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000855
Stefan Krah040e3112012-12-15 22:33:33 +0100856 .. method:: to_integral(rounding=None, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000857
Benjamin Petersone41251e2008-04-25 01:59:09 +0000858 Identical to the :meth:`to_integral_value` method. The ``to_integral``
859 name has been kept for compatibility with older versions.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000860
Stefan Krah040e3112012-12-15 22:33:33 +0100861 .. method:: to_integral_exact(rounding=None, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000862
Benjamin Petersone41251e2008-04-25 01:59:09 +0000863 Round to the nearest integer, signaling :const:`Inexact` or
864 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
865 determined by the ``rounding`` parameter if given, else by the given
866 ``context``. If neither parameter is given then the rounding mode of the
867 current context is used.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000868
Stefan Krah040e3112012-12-15 22:33:33 +0100869 .. method:: to_integral_value(rounding=None, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000870
Benjamin Petersone41251e2008-04-25 01:59:09 +0000871 Round to the nearest integer without signaling :const:`Inexact` or
872 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
873 rounding method in either the supplied *context* or the current context.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000874
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000875
876.. _logical_operands_label:
877
878Logical operands
879^^^^^^^^^^^^^^^^
880
881The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
882and :meth:`logical_xor` methods expect their arguments to be *logical
883operands*. A *logical operand* is a :class:`Decimal` instance whose
884exponent and sign are both zero, and whose digits are all either
885:const:`0` or :const:`1`.
886
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000887.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000888
889
890.. _decimal-context:
891
892Context objects
893---------------
894
895Contexts are environments for arithmetic operations. They govern precision, set
896rules for rounding, determine which signals are treated as exceptions, and limit
897the range for exponents.
898
899Each thread has its own current context which is accessed or changed using the
900:func:`getcontext` and :func:`setcontext` functions:
901
902
903.. function:: getcontext()
904
905 Return the current context for the active thread.
906
907
908.. function:: setcontext(c)
909
910 Set the current context for the active thread to *c*.
911
Georg Brandle6bcc912008-05-12 18:05:20 +0000912You can also use the :keyword:`with` statement and the :func:`localcontext`
913function to temporarily change the active context.
Georg Brandl116aa622007-08-15 14:28:22 +0000914
Stefan Krah040e3112012-12-15 22:33:33 +0100915.. function:: localcontext(ctx=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000916
917 Return a context manager that will set the current context for the active thread
Stefan Krah040e3112012-12-15 22:33:33 +0100918 to a copy of *ctx* on entry to the with-statement and restore the previous context
Georg Brandl116aa622007-08-15 14:28:22 +0000919 when exiting the with-statement. If no context is specified, a copy of the
920 current context is used.
921
Georg Brandl116aa622007-08-15 14:28:22 +0000922 For example, the following code sets the current decimal precision to 42 places,
923 performs a calculation, and then automatically restores the previous context::
924
Georg Brandl116aa622007-08-15 14:28:22 +0000925 from decimal import localcontext
926
927 with localcontext() as ctx:
928 ctx.prec = 42 # Perform a high precision calculation
929 s = calculate_something()
930 s = +s # Round the final result back to the default precision
931
932New contexts can also be created using the :class:`Context` constructor
933described below. In addition, the module provides three pre-made contexts:
934
935
936.. class:: BasicContext
937
938 This is a standard context defined by the General Decimal Arithmetic
939 Specification. Precision is set to nine. Rounding is set to
940 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
941 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
942 :const:`Subnormal`.
943
944 Because many of the traps are enabled, this context is useful for debugging.
945
946
947.. class:: ExtendedContext
948
949 This is a standard context defined by the General Decimal Arithmetic
950 Specification. Precision is set to nine. Rounding is set to
951 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
952 exceptions are not raised during computations).
953
Christian Heimes3feef612008-02-11 06:19:17 +0000954 Because the traps are disabled, this context is useful for applications that
Georg Brandl116aa622007-08-15 14:28:22 +0000955 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
956 raising exceptions. This allows an application to complete a run in the
957 presence of conditions that would otherwise halt the program.
958
959
960.. class:: DefaultContext
961
962 This context is used by the :class:`Context` constructor as a prototype for new
963 contexts. Changing a field (such a precision) has the effect of changing the
Stefan Kraha1193932010-05-29 12:59:18 +0000964 default for new contexts created by the :class:`Context` constructor.
Georg Brandl116aa622007-08-15 14:28:22 +0000965
966 This context is most useful in multi-threaded environments. Changing one of the
967 fields before threads are started has the effect of setting system-wide
968 defaults. Changing the fields after threads have started is not recommended as
969 it would require thread synchronization to prevent race conditions.
970
971 In single threaded environments, it is preferable to not use this context at
972 all. Instead, simply create contexts explicitly as described below.
973
Stefan Krah1919b7e2012-03-21 18:25:23 +0100974 The default values are :attr:`prec`\ =\ :const:`28`,
975 :attr:`rounding`\ =\ :const:`ROUND_HALF_EVEN`,
976 and enabled traps for :class:`Overflow`, :class:`InvalidOperation`, and
977 :class:`DivisionByZero`.
Georg Brandl116aa622007-08-15 14:28:22 +0000978
979In addition to the three supplied contexts, new contexts can be created with the
980:class:`Context` constructor.
981
982
Stefan Krah1919b7e2012-03-21 18:25:23 +0100983.. class:: Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000984
985 Creates a new context. If a field is not specified or is :const:`None`, the
986 default values are copied from the :const:`DefaultContext`. If the *flags*
987 field is not specified or is :const:`None`, all flags are cleared.
988
Stefan Krah1919b7e2012-03-21 18:25:23 +0100989 *prec* is an integer in the range [:const:`1`, :const:`MAX_PREC`] that sets
990 the precision for arithmetic operations in the context.
Georg Brandl116aa622007-08-15 14:28:22 +0000991
Stefan Krah1919b7e2012-03-21 18:25:23 +0100992 The *rounding* option is one of the constants listed in the section
993 `Rounding Modes`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000994
995 The *traps* and *flags* fields list any signals to be set. Generally, new
996 contexts should only set traps and leave the flags clear.
997
998 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
Stefan Krah1919b7e2012-03-21 18:25:23 +0100999 for exponents. *Emin* must be in the range [:const:`MIN_EMIN`, :const:`0`],
1000 *Emax* in the range [:const:`0`, :const:`MAX_EMAX`].
Georg Brandl116aa622007-08-15 14:28:22 +00001001
1002 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
1003 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
1004 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
1005
Mark Dickinsonb1d8e322010-05-22 18:35:36 +00001006 The *clamp* field is either :const:`0` (the default) or :const:`1`.
1007 If set to :const:`1`, the exponent ``e`` of a :class:`Decimal`
1008 instance representable in this context is strictly limited to the
1009 range ``Emin - prec + 1 <= e <= Emax - prec + 1``. If *clamp* is
1010 :const:`0` then a weaker condition holds: the adjusted exponent of
1011 the :class:`Decimal` instance is at most ``Emax``. When *clamp* is
1012 :const:`1`, a large normal number will, where possible, have its
1013 exponent reduced and a corresponding number of zeros added to its
1014 coefficient, in order to fit the exponent constraints; this
1015 preserves the value of the number but loses information about
1016 significant trailing zeros. For example::
1017
1018 >>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999')
1019 Decimal('1.23000E+999')
1020
1021 A *clamp* value of :const:`1` allows compatibility with the
1022 fixed-width decimal interchange formats specified in IEEE 754.
Georg Brandl116aa622007-08-15 14:28:22 +00001023
Benjamin Petersone41251e2008-04-25 01:59:09 +00001024 The :class:`Context` class defines several general purpose methods as well as
1025 a large number of methods for doing arithmetic directly in a given context.
1026 In addition, for each of the :class:`Decimal` methods described above (with
1027 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
Mark Dickinson84230a12010-02-18 14:49:50 +00001028 a corresponding :class:`Context` method. For example, for a :class:`Context`
1029 instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
1030 equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
Mark Dickinson5d233fd2010-02-18 14:54:37 +00001031 Python integer (an instance of :class:`int`) anywhere that a
Mark Dickinson84230a12010-02-18 14:49:50 +00001032 Decimal instance is accepted.
Georg Brandl116aa622007-08-15 14:28:22 +00001033
1034
Benjamin Petersone41251e2008-04-25 01:59:09 +00001035 .. method:: clear_flags()
Georg Brandl116aa622007-08-15 14:28:22 +00001036
Benjamin Petersone41251e2008-04-25 01:59:09 +00001037 Resets all of the flags to :const:`0`.
Georg Brandl116aa622007-08-15 14:28:22 +00001038
Stefan Krah1919b7e2012-03-21 18:25:23 +01001039 .. method:: clear_traps()
1040
1041 Resets all of the traps to :const:`0`.
1042
1043 .. versionadded:: 3.3
1044
Benjamin Petersone41251e2008-04-25 01:59:09 +00001045 .. method:: copy()
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001046
Benjamin Petersone41251e2008-04-25 01:59:09 +00001047 Return a duplicate of the context.
Georg Brandl116aa622007-08-15 14:28:22 +00001048
Benjamin Petersone41251e2008-04-25 01:59:09 +00001049 .. method:: copy_decimal(num)
Georg Brandl116aa622007-08-15 14:28:22 +00001050
Benjamin Petersone41251e2008-04-25 01:59:09 +00001051 Return a copy of the Decimal instance num.
Georg Brandl116aa622007-08-15 14:28:22 +00001052
Benjamin Petersone41251e2008-04-25 01:59:09 +00001053 .. method:: create_decimal(num)
Christian Heimesfe337bf2008-03-23 21:54:12 +00001054
Benjamin Petersone41251e2008-04-25 01:59:09 +00001055 Creates a new Decimal instance from *num* but using *self* as
1056 context. Unlike the :class:`Decimal` constructor, the context precision,
1057 rounding method, flags, and traps are applied to the conversion.
Georg Brandl116aa622007-08-15 14:28:22 +00001058
Benjamin Petersone41251e2008-04-25 01:59:09 +00001059 This is useful because constants are often given to a greater precision
1060 than is needed by the application. Another benefit is that rounding
1061 immediately eliminates unintended effects from digits beyond the current
1062 precision. In the following example, using unrounded inputs means that
1063 adding zero to a sum can change the result:
Georg Brandl116aa622007-08-15 14:28:22 +00001064
Benjamin Petersone41251e2008-04-25 01:59:09 +00001065 .. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001066
Benjamin Petersone41251e2008-04-25 01:59:09 +00001067 >>> getcontext().prec = 3
1068 >>> Decimal('3.4445') + Decimal('1.0023')
1069 Decimal('4.45')
1070 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1071 Decimal('4.44')
Georg Brandl116aa622007-08-15 14:28:22 +00001072
Benjamin Petersone41251e2008-04-25 01:59:09 +00001073 This method implements the to-number operation of the IBM specification.
1074 If the argument is a string, no leading or trailing whitespace is
1075 permitted.
1076
Georg Brandl45f53372009-01-03 21:15:20 +00001077 .. method:: create_decimal_from_float(f)
Raymond Hettinger771ed762009-01-03 19:20:32 +00001078
1079 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandl45f53372009-01-03 21:15:20 +00001080 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettinger771ed762009-01-03 19:20:32 +00001081 the context precision, rounding method, flags, and traps are applied to
1082 the conversion.
1083
1084 .. doctest::
1085
Georg Brandl45f53372009-01-03 21:15:20 +00001086 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1087 >>> context.create_decimal_from_float(math.pi)
1088 Decimal('3.1415')
1089 >>> context = Context(prec=5, traps=[Inexact])
1090 >>> context.create_decimal_from_float(math.pi)
1091 Traceback (most recent call last):
1092 ...
1093 decimal.Inexact: None
Raymond Hettinger771ed762009-01-03 19:20:32 +00001094
Georg Brandl45f53372009-01-03 21:15:20 +00001095 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +00001096
Benjamin Petersone41251e2008-04-25 01:59:09 +00001097 .. method:: Etiny()
1098
1099 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1100 value for subnormal results. When underflow occurs, the exponent is set
1101 to :const:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +00001102
Benjamin Petersone41251e2008-04-25 01:59:09 +00001103 .. method:: Etop()
Georg Brandl116aa622007-08-15 14:28:22 +00001104
Benjamin Petersone41251e2008-04-25 01:59:09 +00001105 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl116aa622007-08-15 14:28:22 +00001106
Benjamin Petersone41251e2008-04-25 01:59:09 +00001107 The usual approach to working with decimals is to create :class:`Decimal`
1108 instances and then apply arithmetic operations which take place within the
1109 current context for the active thread. An alternative approach is to use
1110 context methods for calculating within a specific context. The methods are
1111 similar to those for the :class:`Decimal` class and are only briefly
1112 recounted here.
Georg Brandl116aa622007-08-15 14:28:22 +00001113
1114
Benjamin Petersone41251e2008-04-25 01:59:09 +00001115 .. method:: abs(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001116
Benjamin Petersone41251e2008-04-25 01:59:09 +00001117 Returns the absolute value of *x*.
Georg Brandl116aa622007-08-15 14:28:22 +00001118
1119
Benjamin Petersone41251e2008-04-25 01:59:09 +00001120 .. method:: add(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001121
Benjamin Petersone41251e2008-04-25 01:59:09 +00001122 Return the sum of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001123
1124
Facundo Batista789bdf02008-06-21 17:29:41 +00001125 .. method:: canonical(x)
1126
1127 Returns the same Decimal object *x*.
1128
1129
1130 .. method:: compare(x, y)
1131
1132 Compares *x* and *y* numerically.
1133
1134
1135 .. method:: compare_signal(x, y)
1136
1137 Compares the values of the two operands numerically.
1138
1139
1140 .. method:: compare_total(x, y)
1141
1142 Compares two operands using their abstract representation.
1143
1144
1145 .. method:: compare_total_mag(x, y)
1146
1147 Compares two operands using their abstract representation, ignoring sign.
1148
1149
1150 .. method:: copy_abs(x)
1151
1152 Returns a copy of *x* with the sign set to 0.
1153
1154
1155 .. method:: copy_negate(x)
1156
1157 Returns a copy of *x* with the sign inverted.
1158
1159
1160 .. method:: copy_sign(x, y)
1161
1162 Copies the sign from *y* to *x*.
1163
1164
Benjamin Petersone41251e2008-04-25 01:59:09 +00001165 .. method:: divide(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001166
Benjamin Petersone41251e2008-04-25 01:59:09 +00001167 Return *x* divided by *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001168
1169
Benjamin Petersone41251e2008-04-25 01:59:09 +00001170 .. method:: divide_int(x, y)
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001171
Benjamin Petersone41251e2008-04-25 01:59:09 +00001172 Return *x* divided by *y*, truncated to an integer.
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001173
1174
Benjamin Petersone41251e2008-04-25 01:59:09 +00001175 .. method:: divmod(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001176
Benjamin Petersone41251e2008-04-25 01:59:09 +00001177 Divides two numbers and returns the integer part of the result.
Georg Brandl116aa622007-08-15 14:28:22 +00001178
1179
Facundo Batista789bdf02008-06-21 17:29:41 +00001180 .. method:: exp(x)
1181
1182 Returns `e ** x`.
1183
1184
1185 .. method:: fma(x, y, z)
1186
1187 Returns *x* multiplied by *y*, plus *z*.
1188
1189
1190 .. method:: is_canonical(x)
1191
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001192 Returns ``True`` if *x* is canonical; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001193
1194
1195 .. method:: is_finite(x)
1196
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001197 Returns ``True`` if *x* is finite; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001198
1199
1200 .. method:: is_infinite(x)
1201
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001202 Returns ``True`` if *x* is infinite; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001203
1204
1205 .. method:: is_nan(x)
1206
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001207 Returns ``True`` if *x* is a qNaN or sNaN; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001208
1209
1210 .. method:: is_normal(x)
1211
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001212 Returns ``True`` if *x* is a normal number; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001213
1214
1215 .. method:: is_qnan(x)
1216
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001217 Returns ``True`` if *x* is a quiet NaN; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001218
1219
1220 .. method:: is_signed(x)
1221
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001222 Returns ``True`` if *x* is negative; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001223
1224
1225 .. method:: is_snan(x)
1226
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001227 Returns ``True`` if *x* is a signaling NaN; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001228
1229
1230 .. method:: is_subnormal(x)
1231
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001232 Returns ``True`` if *x* is subnormal; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001233
1234
1235 .. method:: is_zero(x)
1236
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001237 Returns ``True`` if *x* is a zero; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001238
1239
1240 .. method:: ln(x)
1241
1242 Returns the natural (base e) logarithm of *x*.
1243
1244
1245 .. method:: log10(x)
1246
1247 Returns the base 10 logarithm of *x*.
1248
1249
1250 .. method:: logb(x)
1251
1252 Returns the exponent of the magnitude of the operand's MSD.
1253
1254
1255 .. method:: logical_and(x, y)
1256
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001257 Applies the logical operation *and* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001258
1259
1260 .. method:: logical_invert(x)
1261
1262 Invert all the digits in *x*.
1263
1264
1265 .. method:: logical_or(x, y)
1266
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001267 Applies the logical operation *or* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001268
1269
1270 .. method:: logical_xor(x, y)
1271
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001272 Applies the logical operation *xor* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001273
1274
1275 .. method:: max(x, y)
1276
1277 Compares two values numerically and returns the maximum.
1278
1279
1280 .. method:: max_mag(x, y)
1281
1282 Compares the values numerically with their sign ignored.
1283
1284
1285 .. method:: min(x, y)
1286
1287 Compares two values numerically and returns the minimum.
1288
1289
1290 .. method:: min_mag(x, y)
1291
1292 Compares the values numerically with their sign ignored.
1293
1294
Benjamin Petersone41251e2008-04-25 01:59:09 +00001295 .. method:: minus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001296
Benjamin Petersone41251e2008-04-25 01:59:09 +00001297 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl116aa622007-08-15 14:28:22 +00001298
1299
Benjamin Petersone41251e2008-04-25 01:59:09 +00001300 .. method:: multiply(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001301
Benjamin Petersone41251e2008-04-25 01:59:09 +00001302 Return the product of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001303
1304
Facundo Batista789bdf02008-06-21 17:29:41 +00001305 .. method:: next_minus(x)
1306
1307 Returns the largest representable number smaller than *x*.
1308
1309
1310 .. method:: next_plus(x)
1311
1312 Returns the smallest representable number larger than *x*.
1313
1314
1315 .. method:: next_toward(x, y)
1316
1317 Returns the number closest to *x*, in direction towards *y*.
1318
1319
1320 .. method:: normalize(x)
1321
1322 Reduces *x* to its simplest form.
1323
1324
1325 .. method:: number_class(x)
1326
1327 Returns an indication of the class of *x*.
1328
1329
Benjamin Petersone41251e2008-04-25 01:59:09 +00001330 .. method:: plus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001331
Benjamin Petersone41251e2008-04-25 01:59:09 +00001332 Plus corresponds to the unary prefix plus operator in Python. This
1333 operation applies the context precision and rounding, so it is *not* an
1334 identity operation.
Georg Brandl116aa622007-08-15 14:28:22 +00001335
1336
Stefan Krah040e3112012-12-15 22:33:33 +01001337 .. method:: power(x, y, modulo=None)
Georg Brandl116aa622007-08-15 14:28:22 +00001338
Benjamin Petersone41251e2008-04-25 01:59:09 +00001339 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl116aa622007-08-15 14:28:22 +00001340
Benjamin Petersone41251e2008-04-25 01:59:09 +00001341 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1342 must be integral. The result will be inexact unless ``y`` is integral and
1343 the result is finite and can be expressed exactly in 'precision' digits.
Stefan Krah1919b7e2012-03-21 18:25:23 +01001344 The rounding mode of the context is used. Results are always correctly-rounded
1345 in the Python version.
1346
1347 .. versionchanged:: 3.3
1348 The C module computes :meth:`power` in terms of the correctly-rounded
1349 :meth:`exp` and :meth:`ln` functions. The result is well-defined but
1350 only "almost always correctly-rounded".
Georg Brandl116aa622007-08-15 14:28:22 +00001351
Benjamin Petersone41251e2008-04-25 01:59:09 +00001352 With three arguments, compute ``(x**y) % modulo``. For the three argument
1353 form, the following restrictions on the arguments hold:
Georg Brandl116aa622007-08-15 14:28:22 +00001354
Benjamin Petersone41251e2008-04-25 01:59:09 +00001355 - all three arguments must be integral
1356 - ``y`` must be nonnegative
1357 - at least one of ``x`` or ``y`` must be nonzero
1358 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl116aa622007-08-15 14:28:22 +00001359
Mark Dickinson5961b0e2010-02-22 15:41:48 +00001360 The value resulting from ``Context.power(x, y, modulo)`` is
1361 equal to the value that would be obtained by computing ``(x**y)
1362 % modulo`` with unbounded precision, but is computed more
1363 efficiently. The exponent of the result is zero, regardless of
1364 the exponents of ``x``, ``y`` and ``modulo``. The result is
1365 always exact.
Georg Brandl116aa622007-08-15 14:28:22 +00001366
Facundo Batista789bdf02008-06-21 17:29:41 +00001367
1368 .. method:: quantize(x, y)
1369
1370 Returns a value equal to *x* (rounded), having the exponent of *y*.
1371
1372
1373 .. method:: radix()
1374
1375 Just returns 10, as this is Decimal, :)
1376
1377
Benjamin Petersone41251e2008-04-25 01:59:09 +00001378 .. method:: remainder(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001379
Benjamin Petersone41251e2008-04-25 01:59:09 +00001380 Returns the remainder from integer division.
Georg Brandl116aa622007-08-15 14:28:22 +00001381
Benjamin Petersone41251e2008-04-25 01:59:09 +00001382 The sign of the result, if non-zero, is the same as that of the original
1383 dividend.
Georg Brandl116aa622007-08-15 14:28:22 +00001384
Benjamin Petersondcf97b92008-07-02 17:30:14 +00001385
Facundo Batista789bdf02008-06-21 17:29:41 +00001386 .. method:: remainder_near(x, y)
1387
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001388 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1389 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista789bdf02008-06-21 17:29:41 +00001390
1391
1392 .. method:: rotate(x, y)
1393
1394 Returns a rotated copy of *x*, *y* times.
1395
1396
1397 .. method:: same_quantum(x, y)
1398
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001399 Returns ``True`` if the two operands have the same exponent.
Facundo Batista789bdf02008-06-21 17:29:41 +00001400
1401
1402 .. method:: scaleb (x, y)
1403
1404 Returns the first operand after adding the second value its exp.
1405
1406
1407 .. method:: shift(x, y)
1408
1409 Returns a shifted copy of *x*, *y* times.
1410
1411
1412 .. method:: sqrt(x)
1413
1414 Square root of a non-negative number to context precision.
1415
1416
Benjamin Petersone41251e2008-04-25 01:59:09 +00001417 .. method:: subtract(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001418
Benjamin Petersone41251e2008-04-25 01:59:09 +00001419 Return the difference between *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001420
Facundo Batista789bdf02008-06-21 17:29:41 +00001421
1422 .. method:: to_eng_string(x)
1423
1424 Converts a number to a string, using scientific notation.
1425
1426
1427 .. method:: to_integral_exact(x)
1428
1429 Rounds to an integer.
1430
1431
Benjamin Petersone41251e2008-04-25 01:59:09 +00001432 .. method:: to_sci_string(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001433
Benjamin Petersone41251e2008-04-25 01:59:09 +00001434 Converts a number to a string using scientific notation.
Georg Brandl116aa622007-08-15 14:28:22 +00001435
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001436.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001437
Stefan Krah1919b7e2012-03-21 18:25:23 +01001438.. _decimal-rounding-modes:
1439
1440Constants
1441---------
1442
1443The constants in this section are only relevant for the C module. They
1444are also included in the pure Python version for compatibility.
1445
Stefan Krah851a07e2012-03-21 18:47:20 +01001446+---------------------+---------------------+-------------------------------+
1447| | 32-bit | 64-bit |
1448+=====================+=====================+===============================+
1449| .. data:: MAX_PREC | :const:`425000000` | :const:`999999999999999999` |
1450+---------------------+---------------------+-------------------------------+
1451| .. data:: MAX_EMAX | :const:`425000000` | :const:`999999999999999999` |
1452+---------------------+---------------------+-------------------------------+
1453| .. data:: MIN_EMIN | :const:`-425000000` | :const:`-999999999999999999` |
1454+---------------------+---------------------+-------------------------------+
1455| .. data:: MIN_ETINY | :const:`-849999999` | :const:`-1999999999999999997` |
1456+---------------------+---------------------+-------------------------------+
1457
Stefan Krah1919b7e2012-03-21 18:25:23 +01001458
1459.. data:: HAVE_THREADS
1460
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001461 The default value is ``True``. If Python is compiled without threads, the
Stefan Krah1919b7e2012-03-21 18:25:23 +01001462 C version automatically disables the expensive thread local context
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001463 machinery. In this case, the value is ``False``.
Stefan Krah1919b7e2012-03-21 18:25:23 +01001464
1465Rounding modes
1466--------------
1467
1468.. data:: ROUND_CEILING
1469
1470 Round towards :const:`Infinity`.
1471
1472.. data:: ROUND_DOWN
1473
1474 Round towards zero.
1475
1476.. data:: ROUND_FLOOR
1477
1478 Round towards :const:`-Infinity`.
1479
1480.. data:: ROUND_HALF_DOWN
1481
1482 Round to nearest with ties going towards zero.
1483
1484.. data:: ROUND_HALF_EVEN
1485
1486 Round to nearest with ties going to nearest even integer.
1487
1488.. data:: ROUND_HALF_UP
1489
1490 Round to nearest with ties going away from zero.
1491
1492.. data:: ROUND_UP
1493
1494 Round away from zero.
1495
1496.. data:: ROUND_05UP
1497
1498 Round away from zero if last digit after rounding towards zero would have
1499 been 0 or 5; otherwise round towards zero.
1500
Georg Brandl116aa622007-08-15 14:28:22 +00001501
1502.. _decimal-signals:
1503
1504Signals
1505-------
1506
1507Signals represent conditions that arise during computation. Each corresponds to
1508one context flag and one context trap enabler.
1509
Raymond Hettinger86173da2008-02-01 20:38:12 +00001510The context flag is set whenever the condition is encountered. After the
Georg Brandl116aa622007-08-15 14:28:22 +00001511computation, flags may be checked for informational purposes (for instance, to
1512determine whether a computation was exact). After checking the flags, be sure to
1513clear all flags before starting the next computation.
1514
1515If the context's trap enabler is set for the signal, then the condition causes a
1516Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1517is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1518condition.
1519
1520
1521.. class:: Clamped
1522
1523 Altered an exponent to fit representation constraints.
1524
1525 Typically, clamping occurs when an exponent falls outside the context's
1526 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001527 fit by adding zeros to the coefficient.
Georg Brandl116aa622007-08-15 14:28:22 +00001528
1529
1530.. class:: DecimalException
1531
1532 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1533
1534
1535.. class:: DivisionByZero
1536
1537 Signals the division of a non-infinite number by zero.
1538
1539 Can occur with division, modulo division, or when raising a number to a negative
1540 power. If this signal is not trapped, returns :const:`Infinity` or
1541 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1542
1543
1544.. class:: Inexact
1545
1546 Indicates that rounding occurred and the result is not exact.
1547
1548 Signals when non-zero digits were discarded during rounding. The rounded result
1549 is returned. The signal flag or trap is used to detect when results are
1550 inexact.
1551
1552
1553.. class:: InvalidOperation
1554
1555 An invalid operation was performed.
1556
1557 Indicates that an operation was requested that does not make sense. If not
1558 trapped, returns :const:`NaN`. Possible causes include::
1559
1560 Infinity - Infinity
1561 0 * Infinity
1562 Infinity / Infinity
1563 x % 0
1564 Infinity % x
Georg Brandl116aa622007-08-15 14:28:22 +00001565 sqrt(-x) and x > 0
1566 0 ** 0
1567 x ** (non-integer)
Georg Brandl48310cd2009-01-03 21:18:54 +00001568 x ** Infinity
Georg Brandl116aa622007-08-15 14:28:22 +00001569
1570
1571.. class:: Overflow
1572
1573 Numerical overflow.
1574
Benjamin Petersone41251e2008-04-25 01:59:09 +00001575 Indicates the exponent is larger than :attr:`Emax` after rounding has
1576 occurred. If not trapped, the result depends on the rounding mode, either
1577 pulling inward to the largest representable finite number or rounding outward
1578 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1579 are also signaled.
Georg Brandl116aa622007-08-15 14:28:22 +00001580
1581
1582.. class:: Rounded
1583
1584 Rounding occurred though possibly no information was lost.
1585
Benjamin Petersone41251e2008-04-25 01:59:09 +00001586 Signaled whenever rounding discards digits; even if those digits are zero
1587 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1588 the result unchanged. This signal is used to detect loss of significant
1589 digits.
Georg Brandl116aa622007-08-15 14:28:22 +00001590
1591
1592.. class:: Subnormal
1593
1594 Exponent was lower than :attr:`Emin` prior to rounding.
1595
Benjamin Petersone41251e2008-04-25 01:59:09 +00001596 Occurs when an operation result is subnormal (the exponent is too small). If
1597 not trapped, returns the result unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +00001598
1599
1600.. class:: Underflow
1601
1602 Numerical underflow with result rounded to zero.
1603
1604 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1605 and :class:`Subnormal` are also signaled.
1606
Stefan Krah1919b7e2012-03-21 18:25:23 +01001607
1608.. class:: FloatOperation
1609
1610 Enable stricter semantics for mixing floats and Decimals.
1611
1612 If the signal is not trapped (default), mixing floats and Decimals is
1613 permitted in the :class:`~decimal.Decimal` constructor,
1614 :meth:`~decimal.Context.create_decimal` and all comparison operators.
1615 Both conversion and comparisons are exact. Any occurrence of a mixed
1616 operation is silently recorded by setting :exc:`FloatOperation` in the
1617 context flags. Explicit conversions with :meth:`~decimal.Decimal.from_float`
1618 or :meth:`~decimal.Context.create_decimal_from_float` do not set the flag.
1619
1620 Otherwise (the signal is trapped), only equality comparisons and explicit
1621 conversions are silent. All other mixed operations raise :exc:`FloatOperation`.
1622
1623
Georg Brandl116aa622007-08-15 14:28:22 +00001624The following table summarizes the hierarchy of signals::
1625
1626 exceptions.ArithmeticError(exceptions.Exception)
1627 DecimalException
1628 Clamped
1629 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1630 Inexact
1631 Overflow(Inexact, Rounded)
1632 Underflow(Inexact, Rounded, Subnormal)
1633 InvalidOperation
1634 Rounded
1635 Subnormal
Stefan Krahb6405ef2012-03-23 14:46:48 +01001636 FloatOperation(DecimalException, exceptions.TypeError)
Georg Brandl116aa622007-08-15 14:28:22 +00001637
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001638.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001639
1640
Stefan Krah1919b7e2012-03-21 18:25:23 +01001641
Georg Brandl116aa622007-08-15 14:28:22 +00001642.. _decimal-notes:
1643
1644Floating Point Notes
1645--------------------
1646
1647
1648Mitigating round-off error with increased precision
1649^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1650
1651The use of decimal floating point eliminates decimal representation error
1652(making it possible to represent :const:`0.1` exactly); however, some operations
1653can still incur round-off error when non-zero digits exceed the fixed precision.
1654
1655The effects of round-off error can be amplified by the addition or subtraction
1656of nearly offsetting quantities resulting in loss of significance. Knuth
1657provides two instructive examples where rounded floating point arithmetic with
1658insufficient precision causes the breakdown of the associative and distributive
Christian Heimesfe337bf2008-03-23 21:54:12 +00001659properties of addition:
1660
1661.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001662
1663 # Examples from Seminumerical Algorithms, Section 4.2.2.
1664 >>> from decimal import Decimal, getcontext
1665 >>> getcontext().prec = 8
1666
1667 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1668 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001669 Decimal('9.5111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001670 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001671 Decimal('10')
Georg Brandl116aa622007-08-15 14:28:22 +00001672
1673 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1674 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001675 Decimal('0.01')
Georg Brandl116aa622007-08-15 14:28:22 +00001676 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001677 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001678
1679The :mod:`decimal` module makes it possible to restore the identities by
Christian Heimesfe337bf2008-03-23 21:54:12 +00001680expanding the precision sufficiently to avoid loss of significance:
1681
1682.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001683
1684 >>> getcontext().prec = 20
1685 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1686 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001687 Decimal('9.51111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001688 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001689 Decimal('9.51111111')
Georg Brandl48310cd2009-01-03 21:18:54 +00001690 >>>
Georg Brandl116aa622007-08-15 14:28:22 +00001691 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1692 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001693 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001694 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001695 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001696
1697
1698Special values
1699^^^^^^^^^^^^^^
1700
1701The number system for the :mod:`decimal` module provides special values
1702including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001703and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl116aa622007-08-15 14:28:22 +00001704
1705Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1706they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1707not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1708can result from rounding beyond the limits of the largest representable number.
1709
1710The infinities are signed (affine) and can be used in arithmetic operations
1711where they get treated as very large, indeterminate numbers. For instance,
1712adding a constant to infinity gives another infinite result.
1713
1714Some operations are indeterminate and return :const:`NaN`, or if the
1715:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1716``0/0`` returns :const:`NaN` which means "not a number". This variety of
1717:const:`NaN` is quiet and, once created, will flow through other computations
1718always resulting in another :const:`NaN`. This behavior can be useful for a
1719series of computations that occasionally have missing inputs --- it allows the
1720calculation to proceed while flagging specific results as invalid.
1721
1722A variant is :const:`sNaN` which signals rather than remaining quiet after every
1723operation. This is a useful return value when an invalid result needs to
1724interrupt a calculation for special handling.
1725
Christian Heimes77c02eb2008-02-09 02:18:51 +00001726The behavior of Python's comparison operators can be a little surprising where a
1727:const:`NaN` is involved. A test for equality where one of the operands is a
1728quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1729``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
1730:const:`True`. An attempt to compare two Decimals using any of the ``<``,
1731``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1732if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Christian Heimes3feef612008-02-11 06:19:17 +00001733not trapped. Note that the General Decimal Arithmetic specification does not
Christian Heimes77c02eb2008-02-09 02:18:51 +00001734specify the behavior of direct comparisons; these rules for comparisons
1735involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1736section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
1737and :meth:`compare-signal` methods instead.
1738
Georg Brandl116aa622007-08-15 14:28:22 +00001739The signed zeros can result from calculations that underflow. They keep the sign
1740that would have resulted if the calculation had been carried out to greater
1741precision. Since their magnitude is zero, both positive and negative zeros are
1742treated as equal and their sign is informational.
1743
1744In addition to the two signed zeros which are distinct yet equal, there are
1745various representations of zero with differing precisions yet equivalent in
1746value. This takes a bit of getting used to. For an eye accustomed to
1747normalized floating point representations, it is not immediately obvious that
Christian Heimesfe337bf2008-03-23 21:54:12 +00001748the following calculation returns a value equal to zero:
Georg Brandl116aa622007-08-15 14:28:22 +00001749
1750 >>> 1 / Decimal('Infinity')
Stefan Krah1919b7e2012-03-21 18:25:23 +01001751 Decimal('0E-1000026')
Georg Brandl116aa622007-08-15 14:28:22 +00001752
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001753.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001754
1755
1756.. _decimal-threads:
1757
1758Working with threads
1759--------------------
1760
1761The :func:`getcontext` function accesses a different :class:`Context` object for
1762each thread. Having separate thread contexts means that threads may make
Stefan Krah1919b7e2012-03-21 18:25:23 +01001763changes (such as ``getcontext().prec=10``) without interfering with other threads.
Georg Brandl116aa622007-08-15 14:28:22 +00001764
1765Likewise, the :func:`setcontext` function automatically assigns its target to
1766the current thread.
1767
1768If :func:`setcontext` has not been called before :func:`getcontext`, then
1769:func:`getcontext` will automatically create a new context for use in the
1770current thread.
1771
1772The new context is copied from a prototype context called *DefaultContext*. To
1773control the defaults so that each thread will use the same values throughout the
1774application, directly modify the *DefaultContext* object. This should be done
1775*before* any threads are started so that there won't be a race condition between
1776threads calling :func:`getcontext`. For example::
1777
1778 # Set applicationwide defaults for all threads about to be launched
1779 DefaultContext.prec = 12
1780 DefaultContext.rounding = ROUND_DOWN
1781 DefaultContext.traps = ExtendedContext.traps.copy()
1782 DefaultContext.traps[InvalidOperation] = 1
1783 setcontext(DefaultContext)
1784
1785 # Afterwards, the threads can be started
1786 t1.start()
1787 t2.start()
1788 t3.start()
1789 . . .
1790
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001791.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001792
1793
1794.. _decimal-recipes:
1795
1796Recipes
1797-------
1798
1799Here are a few recipes that serve as utility functions and that demonstrate ways
1800to work with the :class:`Decimal` class::
1801
1802 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1803 pos='', neg='-', trailneg=''):
1804 """Convert Decimal to a money formatted string.
1805
1806 places: required number of places after the decimal point
1807 curr: optional currency symbol before the sign (may be blank)
1808 sep: optional grouping separator (comma, period, space, or blank)
1809 dp: decimal point indicator (comma or period)
1810 only specify as blank when places is zero
1811 pos: optional sign for positive numbers: '+', space or blank
1812 neg: optional sign for negative numbers: '-', '(', space or blank
1813 trailneg:optional trailing minus indicator: '-', ')', space or blank
1814
1815 >>> d = Decimal('-1234567.8901')
1816 >>> moneyfmt(d, curr='$')
1817 '-$1,234,567.89'
1818 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1819 '1.234.568-'
1820 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1821 '($1,234,567.89)'
1822 >>> moneyfmt(Decimal(123456789), sep=' ')
1823 '123 456 789.00'
1824 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Christian Heimesdae2a892008-04-19 00:55:37 +00001825 '<0.02>'
Georg Brandl116aa622007-08-15 14:28:22 +00001826
1827 """
Christian Heimesa156e092008-02-16 07:38:31 +00001828 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandl48310cd2009-01-03 21:18:54 +00001829 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +00001830 result = []
Facundo Batista789bdf02008-06-21 17:29:41 +00001831 digits = list(map(str, digits))
Georg Brandl116aa622007-08-15 14:28:22 +00001832 build, next = result.append, digits.pop
1833 if sign:
1834 build(trailneg)
1835 for i in range(places):
Christian Heimesa156e092008-02-16 07:38:31 +00001836 build(next() if digits else '0')
Raymond Hettinger0ab10e42011-01-08 09:03:11 +00001837 if places:
1838 build(dp)
Christian Heimesdae2a892008-04-19 00:55:37 +00001839 if not digits:
1840 build('0')
Georg Brandl116aa622007-08-15 14:28:22 +00001841 i = 0
1842 while digits:
1843 build(next())
1844 i += 1
1845 if i == 3 and digits:
1846 i = 0
1847 build(sep)
1848 build(curr)
Christian Heimesa156e092008-02-16 07:38:31 +00001849 build(neg if sign else pos)
1850 return ''.join(reversed(result))
Georg Brandl116aa622007-08-15 14:28:22 +00001851
1852 def pi():
1853 """Compute Pi to the current precision.
1854
Georg Brandl6911e3c2007-09-04 07:15:32 +00001855 >>> print(pi())
Georg Brandl116aa622007-08-15 14:28:22 +00001856 3.141592653589793238462643383
1857
1858 """
1859 getcontext().prec += 2 # extra digits for intermediate steps
1860 three = Decimal(3) # substitute "three=3.0" for regular floats
1861 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1862 while s != lasts:
1863 lasts = s
1864 n, na = n+na, na+8
1865 d, da = d+da, da+32
1866 t = (t * n) / d
1867 s += t
1868 getcontext().prec -= 2
1869 return +s # unary plus applies the new precision
1870
1871 def exp(x):
1872 """Return e raised to the power of x. Result type matches input type.
1873
Georg Brandl6911e3c2007-09-04 07:15:32 +00001874 >>> print(exp(Decimal(1)))
Georg Brandl116aa622007-08-15 14:28:22 +00001875 2.718281828459045235360287471
Georg Brandl6911e3c2007-09-04 07:15:32 +00001876 >>> print(exp(Decimal(2)))
Georg Brandl116aa622007-08-15 14:28:22 +00001877 7.389056098930650227230427461
Georg Brandl6911e3c2007-09-04 07:15:32 +00001878 >>> print(exp(2.0))
Georg Brandl116aa622007-08-15 14:28:22 +00001879 7.38905609893
Georg Brandl6911e3c2007-09-04 07:15:32 +00001880 >>> print(exp(2+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001881 (7.38905609893+0j)
1882
1883 """
1884 getcontext().prec += 2
1885 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1886 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001887 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001888 i += 1
1889 fact *= i
Georg Brandl48310cd2009-01-03 21:18:54 +00001890 num *= x
1891 s += num / fact
1892 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001893 return +s
1894
1895 def cos(x):
1896 """Return the cosine of x as measured in radians.
1897
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001898 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001899 For larger values, first compute x = x % (2 * pi).
1900
Georg Brandl6911e3c2007-09-04 07:15:32 +00001901 >>> print(cos(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001902 0.8775825618903727161162815826
Georg Brandl6911e3c2007-09-04 07:15:32 +00001903 >>> print(cos(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001904 0.87758256189
Georg Brandl6911e3c2007-09-04 07:15:32 +00001905 >>> print(cos(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001906 (0.87758256189+0j)
1907
1908 """
1909 getcontext().prec += 2
1910 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1911 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001912 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001913 i += 2
1914 fact *= i * (i-1)
1915 num *= x * x
1916 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001917 s += num / fact * sign
1918 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001919 return +s
1920
1921 def sin(x):
1922 """Return the sine of x as measured in radians.
1923
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001924 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001925 For larger values, first compute x = x % (2 * pi).
1926
Georg Brandl6911e3c2007-09-04 07:15:32 +00001927 >>> print(sin(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001928 0.4794255386042030002732879352
Georg Brandl6911e3c2007-09-04 07:15:32 +00001929 >>> print(sin(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001930 0.479425538604
Georg Brandl6911e3c2007-09-04 07:15:32 +00001931 >>> print(sin(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001932 (0.479425538604+0j)
1933
1934 """
1935 getcontext().prec += 2
1936 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1937 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001938 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001939 i += 2
1940 fact *= i * (i-1)
1941 num *= x * x
1942 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001943 s += num / fact * sign
1944 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001945 return +s
1946
1947
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001948.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001949
1950
1951.. _decimal-faq:
1952
1953Decimal FAQ
1954-----------
1955
1956Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1957minimize typing when using the interactive interpreter?
1958
Christian Heimesfe337bf2008-03-23 21:54:12 +00001959A. Some users abbreviate the constructor to just a single letter:
Georg Brandl116aa622007-08-15 14:28:22 +00001960
1961 >>> D = decimal.Decimal
1962 >>> D('1.23') + D('3.45')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001963 Decimal('4.68')
Georg Brandl116aa622007-08-15 14:28:22 +00001964
1965Q. In a fixed-point application with two decimal places, some inputs have many
1966places and need to be rounded. Others are not supposed to have excess digits
1967and need to be validated. What methods should be used?
1968
1969A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Christian Heimesfe337bf2008-03-23 21:54:12 +00001970the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl116aa622007-08-15 14:28:22 +00001971
1972 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1973
1974 >>> # Round to two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001975 >>> Decimal('3.214').quantize(TWOPLACES)
1976 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001977
Georg Brandl48310cd2009-01-03 21:18:54 +00001978 >>> # Validate that a number does not exceed two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001979 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1980 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001981
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001982 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl116aa622007-08-15 14:28:22 +00001983 Traceback (most recent call last):
1984 ...
Benjamin Peterson25c95f12009-05-08 20:42:26 +00001985 Inexact: None
Georg Brandl116aa622007-08-15 14:28:22 +00001986
1987Q. Once I have valid two place inputs, how do I maintain that invariant
1988throughout an application?
1989
Christian Heimesa156e092008-02-16 07:38:31 +00001990A. Some operations like addition, subtraction, and multiplication by an integer
1991will automatically preserve fixed point. Others operations, like division and
1992non-integer multiplication, will change the number of decimal places and need to
Christian Heimesfe337bf2008-03-23 21:54:12 +00001993be followed-up with a :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001994
1995 >>> a = Decimal('102.72') # Initial fixed-point values
1996 >>> b = Decimal('3.17')
1997 >>> a + b # Addition preserves fixed-point
1998 Decimal('105.89')
1999 >>> a - b
2000 Decimal('99.55')
2001 >>> a * 42 # So does integer multiplication
2002 Decimal('4314.24')
2003 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
2004 Decimal('325.62')
2005 >>> (b / a).quantize(TWOPLACES) # And quantize division
2006 Decimal('0.03')
2007
2008In developing fixed-point applications, it is convenient to define functions
Christian Heimesfe337bf2008-03-23 21:54:12 +00002009to handle the :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00002010
2011 >>> def mul(x, y, fp=TWOPLACES):
2012 ... return (x * y).quantize(fp)
2013 >>> def div(x, y, fp=TWOPLACES):
2014 ... return (x / y).quantize(fp)
2015
2016 >>> mul(a, b) # Automatically preserve fixed-point
2017 Decimal('325.62')
2018 >>> div(b, a)
2019 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +00002020
2021Q. There are many ways to express the same value. The numbers :const:`200`,
2022:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
2023various precisions. Is there a way to transform them to a single recognizable
2024canonical value?
2025
2026A. The :meth:`normalize` method maps all equivalent values to a single
Christian Heimesfe337bf2008-03-23 21:54:12 +00002027representative:
Georg Brandl116aa622007-08-15 14:28:22 +00002028
2029 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
2030 >>> [v.normalize() for v in values]
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002031 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl116aa622007-08-15 14:28:22 +00002032
2033Q. Some decimal values always print with exponential notation. Is there a way
2034to get a non-exponential representation?
2035
2036A. For some values, exponential notation is the only way to express the number
2037of significant places in the coefficient. For example, expressing
2038:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
2039original's two-place significance.
2040
Christian Heimesa156e092008-02-16 07:38:31 +00002041If an application does not care about tracking significance, it is easy to
Christian Heimesc3f30c42008-02-22 16:37:40 +00002042remove the exponent and trailing zeroes, losing significance, but keeping the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002043value unchanged:
Christian Heimesa156e092008-02-16 07:38:31 +00002044
2045 >>> def remove_exponent(d):
2046 ... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
2047
2048 >>> remove_exponent(Decimal('5E+3'))
2049 Decimal('5000')
2050
Georg Brandl116aa622007-08-15 14:28:22 +00002051Q. Is there a way to convert a regular float to a :class:`Decimal`?
2052
Mark Dickinsone534a072010-04-04 22:13:14 +00002053A. Yes, any binary floating point number can be exactly expressed as a
Raymond Hettinger96798592010-04-02 16:58:27 +00002054Decimal though an exact conversion may take more precision than intuition would
2055suggest:
Georg Brandl116aa622007-08-15 14:28:22 +00002056
Christian Heimesfe337bf2008-03-23 21:54:12 +00002057.. doctest::
2058
Raymond Hettinger96798592010-04-02 16:58:27 +00002059 >>> Decimal(math.pi)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002060 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl116aa622007-08-15 14:28:22 +00002061
Georg Brandl116aa622007-08-15 14:28:22 +00002062Q. Within a complex calculation, how can I make sure that I haven't gotten a
2063spurious result because of insufficient precision or rounding anomalies.
2064
2065A. The decimal module makes it easy to test results. A best practice is to
2066re-run calculations using greater precision and with various rounding modes.
2067Widely differing results indicate insufficient precision, rounding mode issues,
2068ill-conditioned inputs, or a numerically unstable algorithm.
2069
2070Q. I noticed that context precision is applied to the results of operations but
2071not to the inputs. Is there anything to watch out for when mixing values of
2072different precisions?
2073
2074A. Yes. The principle is that all values are considered to be exact and so is
2075the arithmetic on those values. Only the results are rounded. The advantage
2076for inputs is that "what you type is what you get". A disadvantage is that the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002077results can look odd if you forget that the inputs haven't been rounded:
2078
2079.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00002080
2081 >>> getcontext().prec = 3
Christian Heimesfe337bf2008-03-23 21:54:12 +00002082 >>> Decimal('3.104') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002083 Decimal('5.21')
Christian Heimesfe337bf2008-03-23 21:54:12 +00002084 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002085 Decimal('5.20')
Georg Brandl116aa622007-08-15 14:28:22 +00002086
2087The solution is either to increase precision or to force rounding of inputs
Christian Heimesfe337bf2008-03-23 21:54:12 +00002088using the unary plus operation:
2089
2090.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00002091
2092 >>> getcontext().prec = 3
2093 >>> +Decimal('1.23456789') # unary plus triggers rounding
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002094 Decimal('1.23')
Georg Brandl116aa622007-08-15 14:28:22 +00002095
2096Alternatively, inputs can be rounded upon creation using the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002097:meth:`Context.create_decimal` method:
Georg Brandl116aa622007-08-15 14:28:22 +00002098
2099 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002100 Decimal('1.2345')