blob: c39a8238b702f3e19bcb9979f2c6398141b42c68 [file] [log] [blame]
Tim Peters1221c0a2002-03-23 00:20:15 +00001#include "Python.h"
2
3#ifdef WITH_PYMALLOC
4
Neil Schemenauera35c6882001-02-27 04:45:05 +00005/* An object allocator for Python.
6
7 Here is an introduction to the layers of the Python memory architecture,
8 showing where the object allocator is actually used (layer +2), It is
9 called for every object allocation and deallocation (PyObject_New/Del),
10 unless the object-specific allocators implement a proprietary allocation
11 scheme (ex.: ints use a simple free list). This is also the place where
12 the cyclic garbage collector operates selectively on container objects.
13
14
15 Object-specific allocators
16 _____ ______ ______ ________
17 [ int ] [ dict ] [ list ] ... [ string ] Python core |
18+3 | <----- Object-specific memory -----> | <-- Non-object memory --> |
19 _______________________________ | |
20 [ Python's object allocator ] | |
21+2 | ####### Object memory ####### | <------ Internal buffers ------> |
22 ______________________________________________________________ |
23 [ Python's raw memory allocator (PyMem_ API) ] |
24+1 | <----- Python memory (under PyMem manager's control) ------> | |
25 __________________________________________________________________
26 [ Underlying general-purpose allocator (ex: C library malloc) ]
27 0 | <------ Virtual memory allocated for the python process -------> |
28
29 =========================================================================
30 _______________________________________________________________________
31 [ OS-specific Virtual Memory Manager (VMM) ]
32-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> |
33 __________________________________ __________________________________
34 [ ] [ ]
35-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> |
36
37*/
38/*==========================================================================*/
39
40/* A fast, special-purpose memory allocator for small blocks, to be used
41 on top of a general-purpose malloc -- heavily based on previous art. */
42
43/* Vladimir Marangozov -- August 2000 */
44
45/*
46 * "Memory management is where the rubber meets the road -- if we do the wrong
47 * thing at any level, the results will not be good. And if we don't make the
48 * levels work well together, we are in serious trouble." (1)
49 *
50 * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles,
51 * "Dynamic Storage Allocation: A Survey and Critical Review",
52 * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995.
53 */
54
55/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */
Neil Schemenauera35c6882001-02-27 04:45:05 +000056
57/*==========================================================================*/
58
59/*
Neil Schemenauera35c6882001-02-27 04:45:05 +000060 * Allocation strategy abstract:
61 *
62 * For small requests, the allocator sub-allocates <Big> blocks of memory.
63 * Requests greater than 256 bytes are routed to the system's allocator.
Tim Petersce7fb9b2002-03-23 00:28:57 +000064 *
Neil Schemenauera35c6882001-02-27 04:45:05 +000065 * Small requests are grouped in size classes spaced 8 bytes apart, due
66 * to the required valid alignment of the returned address. Requests of
67 * a particular size are serviced from memory pools of 4K (one VMM page).
68 * Pools are fragmented on demand and contain free lists of blocks of one
69 * particular size class. In other words, there is a fixed-size allocator
70 * for each size class. Free pools are shared by the different allocators
71 * thus minimizing the space reserved for a particular size class.
72 *
73 * This allocation strategy is a variant of what is known as "simple
74 * segregated storage based on array of free lists". The main drawback of
75 * simple segregated storage is that we might end up with lot of reserved
76 * memory for the different free lists, which degenerate in time. To avoid
77 * this, we partition each free list in pools and we share dynamically the
78 * reserved space between all free lists. This technique is quite efficient
79 * for memory intensive programs which allocate mainly small-sized blocks.
80 *
81 * For small requests we have the following table:
82 *
83 * Request in bytes Size of allocated block Size class idx
84 * ----------------------------------------------------------------
85 * 1-8 8 0
86 * 9-16 16 1
87 * 17-24 24 2
88 * 25-32 32 3
89 * 33-40 40 4
90 * 41-48 48 5
91 * 49-56 56 6
92 * 57-64 64 7
93 * 65-72 72 8
94 * ... ... ...
95 * 241-248 248 30
96 * 249-256 256 31
Tim Petersce7fb9b2002-03-23 00:28:57 +000097 *
Neil Schemenauera35c6882001-02-27 04:45:05 +000098 * 0, 257 and up: routed to the underlying allocator.
99 */
100
101/*==========================================================================*/
102
103/*
104 * -- Main tunable settings section --
105 */
106
107/*
108 * Alignment of addresses returned to the user. 8-bytes alignment works
109 * on most current architectures (with 32-bit or 64-bit address busses).
110 * The alignment value is also used for grouping small requests in size
111 * classes spaced ALIGNMENT bytes apart.
112 *
113 * You shouldn't change this unless you know what you are doing.
114 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000115#define ALIGNMENT 8 /* must be 2^N */
116#define ALIGNMENT_SHIFT 3
117#define ALIGNMENT_MASK (ALIGNMENT - 1)
118
Tim Peterse70ddf32002-04-05 04:32:29 +0000119/* Return the number of bytes in size class I, as a uint. */
120#define INDEX2SIZE(I) (((uint)(I) + 1) << ALIGNMENT_SHIFT)
121
Neil Schemenauera35c6882001-02-27 04:45:05 +0000122/*
123 * Max size threshold below which malloc requests are considered to be
124 * small enough in order to use preallocated memory pools. You can tune
125 * this value according to your application behaviour and memory needs.
126 *
127 * The following invariants must hold:
128 * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 256
Tim Petersd97a1c02002-03-30 06:09:22 +0000129 * 2) SMALL_REQUEST_THRESHOLD is evenly divisible by ALIGNMENT
Neil Schemenauera35c6882001-02-27 04:45:05 +0000130 *
131 * Although not required, for better performance and space efficiency,
132 * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2.
133 */
Tim Petersd97a1c02002-03-30 06:09:22 +0000134#define SMALL_REQUEST_THRESHOLD 256
Neil Schemenauera35c6882001-02-27 04:45:05 +0000135#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT)
136
137/*
138 * The system's VMM page size can be obtained on most unices with a
139 * getpagesize() call or deduced from various header files. To make
140 * things simpler, we assume that it is 4K, which is OK for most systems.
141 * It is probably better if this is the native page size, but it doesn't
142 * have to be.
143 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000144#define SYSTEM_PAGE_SIZE (4 * 1024)
145#define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1)
146
147/*
148 * Maximum amount of memory managed by the allocator for small requests.
149 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000150#ifdef WITH_MEMORY_LIMITS
151#ifndef SMALL_MEMORY_LIMIT
152#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */
153#endif
154#endif
155
156/*
157 * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned
158 * on a page boundary. This is a reserved virtual address space for the
159 * current process (obtained through a malloc call). In no way this means
160 * that the memory arenas will be used entirely. A malloc(<Big>) is usually
161 * an address range reservation for <Big> bytes, unless all pages within this
162 * space are referenced subsequently. So malloc'ing big blocks and not using
163 * them does not mean "wasting memory". It's an addressable range wastage...
164 *
165 * Therefore, allocating arenas with malloc is not optimal, because there is
166 * some address space wastage, but this is the most portable way to request
Tim Petersd97a1c02002-03-30 06:09:22 +0000167 * memory from the system across various platforms.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000168 */
Tim Peters3c83df22002-03-30 07:04:41 +0000169#define ARENA_SIZE (256 << 10) /* 256KB */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000170
171#ifdef WITH_MEMORY_LIMITS
172#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE)
173#endif
174
175/*
176 * Size of the pools used for small blocks. Should be a power of 2,
Tim Petersc2ce91a2002-03-30 21:36:04 +0000177 * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000178 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000179#define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */
180#define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK
Neil Schemenauera35c6882001-02-27 04:45:05 +0000181
182/*
183 * -- End of tunable settings section --
184 */
185
186/*==========================================================================*/
187
188/*
189 * Locking
190 *
191 * To reduce lock contention, it would probably be better to refine the
192 * crude function locking with per size class locking. I'm not positive
193 * however, whether it's worth switching to such locking policy because
194 * of the performance penalty it might introduce.
195 *
196 * The following macros describe the simplest (should also be the fastest)
197 * lock object on a particular platform and the init/fini/lock/unlock
198 * operations on it. The locks defined here are not expected to be recursive
199 * because it is assumed that they will always be called in the order:
200 * INIT, [LOCK, UNLOCK]*, FINI.
201 */
202
203/*
204 * Python's threads are serialized, so object malloc locking is disabled.
205 */
206#define SIMPLELOCK_DECL(lock) /* simple lock declaration */
207#define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */
208#define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */
209#define SIMPLELOCK_LOCK(lock) /* acquire released lock */
210#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */
211
212/*
213 * Basic types
214 * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom.
215 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000216#undef uchar
217#define uchar unsigned char /* assuming == 8 bits */
218
Neil Schemenauera35c6882001-02-27 04:45:05 +0000219#undef uint
220#define uint unsigned int /* assuming >= 16 bits */
221
222#undef ulong
223#define ulong unsigned long /* assuming >= 32 bits */
224
Tim Petersd97a1c02002-03-30 06:09:22 +0000225#undef uptr
226#define uptr Py_uintptr_t
227
Neil Schemenauera35c6882001-02-27 04:45:05 +0000228/* When you say memory, my mind reasons in terms of (pointers to) blocks */
229typedef uchar block;
230
Tim Peterse70ddf32002-04-05 04:32:29 +0000231/* Pool for small blocks. */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000232struct pool_header {
Tim Petersb2336522001-03-11 18:36:13 +0000233 union { block *_padding;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000234 uint count; } ref; /* number of allocated blocks */
235 block *freeblock; /* pool's free list head */
236 struct pool_header *nextpool; /* next pool of this size class */
237 struct pool_header *prevpool; /* previous pool "" */
Tim Peters1d99af82002-03-30 10:35:09 +0000238 uint arenaindex; /* index into arenas of base adr */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000239 uint szidx; /* block size class index */
Tim Peterse70ddf32002-04-05 04:32:29 +0000240 uint nextoffset; /* bytes to virgin block */
241 uint maxnextoffset; /* largest valid nextoffset */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000242};
243
244typedef struct pool_header *poolp;
245
246#undef ROUNDUP
247#define ROUNDUP(x) (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK)
248#define POOL_OVERHEAD ROUNDUP(sizeof(struct pool_header))
249
250#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */
251
Tim Petersd97a1c02002-03-30 06:09:22 +0000252/* Round pointer P down to the closest pool-aligned address <= P, as a poolp */
Tim Peterse70ddf32002-04-05 04:32:29 +0000253#define POOL_ADDR(P) ((poolp)((uptr)(P) & ~(uptr)POOL_SIZE_MASK))
254
Tim Peters16bcb6b2002-04-05 05:45:31 +0000255/* Return total number of blocks in pool of size index I, as a uint. */
256#define NUMBLOCKS(I) ((uint)(POOL_SIZE - POOL_OVERHEAD) / INDEX2SIZE(I))
Tim Petersd97a1c02002-03-30 06:09:22 +0000257
Neil Schemenauera35c6882001-02-27 04:45:05 +0000258/*==========================================================================*/
259
260/*
261 * This malloc lock
262 */
Tim Petersb2336522001-03-11 18:36:13 +0000263SIMPLELOCK_DECL(_malloc_lock);
264#define LOCK() SIMPLELOCK_LOCK(_malloc_lock)
265#define UNLOCK() SIMPLELOCK_UNLOCK(_malloc_lock)
266#define LOCK_INIT() SIMPLELOCK_INIT(_malloc_lock)
267#define LOCK_FINI() SIMPLELOCK_FINI(_malloc_lock)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000268
269/*
Tim Peters1e16db62002-03-31 01:05:22 +0000270 * Pool table -- headed, circular, doubly-linked lists of partially used pools.
271
272This is involved. For an index i, usedpools[i+i] is the header for a list of
273all partially used pools holding small blocks with "size class idx" i. So
274usedpools[0] corresponds to blocks of size 8, usedpools[2] to blocks of size
27516, and so on: index 2*i <-> blocks of size (i+1)<<ALIGNMENT_SHIFT.
276
Tim Peters338e0102002-04-01 19:23:44 +0000277Pools are carved off the current arena highwater mark (file static arenabase)
278as needed. Once carved off, a pool is in one of three states forever after:
Tim Peters1e16db62002-03-31 01:05:22 +0000279
Tim Peters338e0102002-04-01 19:23:44 +0000280used == partially used, neither empty nor full
281 At least one block in the pool is currently allocated, and at least one
282 block in the pool is not currently allocated (note this implies a pool
283 has room for at least two blocks).
284 This is a pool's initial state, as a pool is created only when malloc
285 needs space.
286 The pool holds blocks of a fixed size, and is in the circular list headed
287 at usedpools[i] (see above). It's linked to the other used pools of the
288 same size class via the pool_header's nextpool and prevpool members.
289 If all but one block is currently allocated, a malloc can cause a
290 transition to the full state. If all but one block is not currently
291 allocated, a free can cause a transition to the empty state.
Tim Peters1e16db62002-03-31 01:05:22 +0000292
Tim Peters338e0102002-04-01 19:23:44 +0000293full == all the pool's blocks are currently allocated
294 On transition to full, a pool is unlinked from its usedpools[] list.
295 It's not linked to from anything then anymore, and its nextpool and
296 prevpool members are meaningless until it transitions back to used.
297 A free of a block in a full pool puts the pool back in the used state.
298 Then it's linked in at the front of the appropriate usedpools[] list, so
299 that the next allocation for its size class will reuse the freed block.
300
301empty == all the pool's blocks are currently available for allocation
302 On transition to empty, a pool is unlinked from its usedpools[] list,
303 and linked to the front of the (file static) singly-linked freepools list,
304 via its nextpool member. The prevpool member has no meaning in this case.
305 Empty pools have no inherent size class: the next time a malloc finds
306 an empty list in usedpools[], it takes the first pool off of freepools.
307 If the size class needed happens to be the same as the size class the pool
Tim Peterse70ddf32002-04-05 04:32:29 +0000308 last had, some pool initialization can be skipped.
Tim Peters338e0102002-04-01 19:23:44 +0000309
310
311Block Management
312
313Blocks within pools are again carved out as needed. pool->freeblock points to
314the start of a singly-linked list of free blocks within the pool. When a
315block is freed, it's inserted at the front of its pool's freeblock list. Note
316that the available blocks in a pool are *not* linked all together when a pool
Tim Peterse70ddf32002-04-05 04:32:29 +0000317is initialized. Instead only "the first two" (lowest addresses) blocks are
318set up, returning the first such block, and setting pool->freeblock to a
319one-block list holding the second such block. This is consistent with that
320pymalloc strives at all levels (arena, pool, and block) never to touch a piece
321of memory until it's actually needed.
322
323So long as a pool is in the used state, we're certain there *is* a block
Tim Peters52aefc82002-04-11 06:36:45 +0000324available for allocating, and pool->freeblock is not NULL. If pool->freeblock
325points to the end of the free list before we've carved the entire pool into
326blocks, that means we simply haven't yet gotten to one of the higher-address
327blocks. The offset from the pool_header to the start of "the next" virgin
328block is stored in the pool_header nextoffset member, and the largest value
329of nextoffset that makes sense is stored in the maxnextoffset member when a
330pool is initialized. All the blocks in a pool have been passed out at least
331once when and only when nextoffset > maxnextoffset.
Tim Peters338e0102002-04-01 19:23:44 +0000332
Tim Peters1e16db62002-03-31 01:05:22 +0000333
334Major obscurity: While the usedpools vector is declared to have poolp
335entries, it doesn't really. It really contains two pointers per (conceptual)
336poolp entry, the nextpool and prevpool members of a pool_header. The
337excruciating initialization code below fools C so that
338
339 usedpool[i+i]
340
341"acts like" a genuine poolp, but only so long as you only reference its
342nextpool and prevpool members. The "- 2*sizeof(block *)" gibberish is
343compensating for that a pool_header's nextpool and prevpool members
344immediately follow a pool_header's first two members:
345
346 union { block *_padding;
347 uint count; } ref;
348 block *freeblock;
349
350each of which consume sizeof(block *) bytes. So what usedpools[i+i] really
351contains is a fudged-up pointer p such that *if* C believes it's a poolp
352pointer, then p->nextpool and p->prevpool are both p (meaning that the headed
353circular list is empty).
354
355It's unclear why the usedpools setup is so convoluted. It could be to
356minimize the amount of cache required to hold this heavily-referenced table
357(which only *needs* the two interpool pointer members of a pool_header). OTOH,
358referencing code has to remember to "double the index" and doing so isn't
359free, usedpools[0] isn't a strictly legal pointer, and we're crucially relying
360on that C doesn't insert any padding anywhere in a pool_header at or before
361the prevpool member.
362**************************************************************************** */
363
Neil Schemenauera35c6882001-02-27 04:45:05 +0000364#define PTA(x) ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *)))
365#define PT(x) PTA(x), PTA(x)
366
367static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = {
368 PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7)
369#if NB_SMALL_SIZE_CLASSES > 8
370 , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15)
371#if NB_SMALL_SIZE_CLASSES > 16
372 , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23)
373#if NB_SMALL_SIZE_CLASSES > 24
374 , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31)
375#if NB_SMALL_SIZE_CLASSES > 32
376 , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39)
377#if NB_SMALL_SIZE_CLASSES > 40
378 , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47)
379#if NB_SMALL_SIZE_CLASSES > 48
380 , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55)
381#if NB_SMALL_SIZE_CLASSES > 56
382 , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63)
383#endif /* NB_SMALL_SIZE_CLASSES > 56 */
384#endif /* NB_SMALL_SIZE_CLASSES > 48 */
385#endif /* NB_SMALL_SIZE_CLASSES > 40 */
386#endif /* NB_SMALL_SIZE_CLASSES > 32 */
387#endif /* NB_SMALL_SIZE_CLASSES > 24 */
388#endif /* NB_SMALL_SIZE_CLASSES > 16 */
389#endif /* NB_SMALL_SIZE_CLASSES > 8 */
390};
391
392/*
393 * Free (cached) pools
394 */
395static poolp freepools = NULL; /* free list for cached pools */
396
Tim Petersd97a1c02002-03-30 06:09:22 +0000397/*==========================================================================*/
398/* Arena management. */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000399
Tim Petersd97a1c02002-03-30 06:09:22 +0000400/* arenas is a vector of arena base addresses, in order of allocation time.
401 * arenas currently contains narenas entries, and has space allocated
402 * for at most maxarenas entries.
403 *
404 * CAUTION: See the long comment block about thread safety in new_arena():
405 * the code currently relies in deep ways on that this vector only grows,
406 * and only grows by appending at the end. For now we never return an arena
407 * to the OS.
408 */
Tim Petersc2ce91a2002-03-30 21:36:04 +0000409static uptr *volatile arenas = NULL; /* the pointer itself is volatile */
410static volatile uint narenas = 0;
Tim Peters1d99af82002-03-30 10:35:09 +0000411static uint maxarenas = 0;
Tim Petersd97a1c02002-03-30 06:09:22 +0000412
Tim Peters3c83df22002-03-30 07:04:41 +0000413/* Number of pools still available to be allocated in the current arena. */
414static uint nfreepools = 0;
Tim Petersd97a1c02002-03-30 06:09:22 +0000415
Tim Peters3c83df22002-03-30 07:04:41 +0000416/* Free space start address in current arena. This is pool-aligned. */
Tim Petersd97a1c02002-03-30 06:09:22 +0000417static block *arenabase = NULL;
418
Tim Petersd97a1c02002-03-30 06:09:22 +0000419/* Allocate a new arena and return its base address. If we run out of
420 * memory, return NULL.
421 */
422static block *
423new_arena(void)
424{
Tim Peters3c83df22002-03-30 07:04:41 +0000425 uint excess; /* number of bytes above pool alignment */
Tim Peters84c1b972002-04-04 04:44:32 +0000426 block *bp = (block *)malloc(ARENA_SIZE);
Tim Petersd97a1c02002-03-30 06:09:22 +0000427 if (bp == NULL)
428 return NULL;
429
Tim Peters0e871182002-04-13 08:29:14 +0000430#ifdef PYMALLOC_DEBUG
431 if (Py_GETENV("PYTHONMALLOCSTATS"))
432 _PyObject_DebugMallocStats();
433#endif
434
Tim Peters3c83df22002-03-30 07:04:41 +0000435 /* arenabase <- first pool-aligned address in the arena
436 nfreepools <- number of whole pools that fit after alignment */
437 arenabase = bp;
438 nfreepools = ARENA_SIZE / POOL_SIZE;
Tim Petersc2ce91a2002-03-30 21:36:04 +0000439 assert(POOL_SIZE * nfreepools == ARENA_SIZE);
Tim Peters3c83df22002-03-30 07:04:41 +0000440 excess = (uint)bp & POOL_SIZE_MASK;
441 if (excess != 0) {
442 --nfreepools;
443 arenabase += POOL_SIZE - excess;
444 }
Tim Petersd97a1c02002-03-30 06:09:22 +0000445
446 /* Make room for a new entry in the arenas vector. */
447 if (arenas == NULL) {
Tim Petersc2ce91a2002-03-30 21:36:04 +0000448 assert(narenas == 0 && maxarenas == 0);
Tim Peters84c1b972002-04-04 04:44:32 +0000449 arenas = (uptr *)malloc(16 * sizeof(*arenas));
Tim Petersd97a1c02002-03-30 06:09:22 +0000450 if (arenas == NULL)
451 goto error;
452 maxarenas = 16;
Tim Petersd97a1c02002-03-30 06:09:22 +0000453 }
454 else if (narenas == maxarenas) {
Tim Peters52aefc82002-04-11 06:36:45 +0000455 /* Grow arenas.
Tim Petersc2ce91a2002-03-30 21:36:04 +0000456 *
Tim Petersd97a1c02002-03-30 06:09:22 +0000457 * Exceedingly subtle: Someone may be calling the pymalloc
458 * free via PyMem_{DEL, Del, FREE, Free} without holding the
459 *.GIL. Someone else may simultaneously be calling the
460 * pymalloc malloc while holding the GIL via, e.g.,
461 * PyObject_New. Now the pymalloc free may index into arenas
462 * for an address check, while the pymalloc malloc calls
463 * new_arena and we end up here to grow a new arena *and*
464 * grow the arenas vector. If the value for arenas pymalloc
465 * free picks up "vanishes" during this resize, anything may
466 * happen, and it would be an incredibly rare bug. Therefore
467 * the code here takes great pains to make sure that, at every
468 * moment, arenas always points to an intact vector of
469 * addresses. It doesn't matter whether arenas points to a
470 * wholly up-to-date vector when pymalloc free checks it in
471 * this case, because the only legal (and that even this is
472 * legal is debatable) way to call PyMem_{Del, etc} while not
473 * holding the GIL is if the memory being released is not
474 * object memory, i.e. if the address check in pymalloc free
475 * is supposed to fail. Having an incomplete vector can't
476 * make a supposed-to-fail case succeed by mistake (it could
477 * only make a supposed-to-succeed case fail by mistake).
Tim Petersc2ce91a2002-03-30 21:36:04 +0000478 *
479 * In addition, without a lock we can't know for sure when
480 * an old vector is no longer referenced, so we simply let
481 * old vectors leak.
482 *
483 * And on top of that, since narenas and arenas can't be
484 * changed as-a-pair atomically without a lock, we're also
485 * careful to declare them volatile and ensure that we change
486 * arenas first. This prevents another thread from picking
487 * up an narenas value too large for the arenas value it
488 * reads up (arenas never shrinks).
489 *
Tim Petersd97a1c02002-03-30 06:09:22 +0000490 * Read the above 50 times before changing anything in this
491 * block.
492 */
Tim Peters1d99af82002-03-30 10:35:09 +0000493 uptr *p;
Tim Petersc2ce91a2002-03-30 21:36:04 +0000494 uint newmax = maxarenas << 1;
Tim Peters1d99af82002-03-30 10:35:09 +0000495 if (newmax <= maxarenas) /* overflow */
496 goto error;
Tim Peters84c1b972002-04-04 04:44:32 +0000497 p = (uptr *)malloc(newmax * sizeof(*arenas));
Tim Petersd97a1c02002-03-30 06:09:22 +0000498 if (p == NULL)
499 goto error;
500 memcpy(p, arenas, narenas * sizeof(*arenas));
Tim Petersc2ce91a2002-03-30 21:36:04 +0000501 arenas = p; /* old arenas deliberately leaked */
Tim Petersd97a1c02002-03-30 06:09:22 +0000502 maxarenas = newmax;
503 }
504
505 /* Append the new arena address to arenas. */
506 assert(narenas < maxarenas);
507 arenas[narenas] = (uptr)bp;
Tim Peters1d99af82002-03-30 10:35:09 +0000508 ++narenas; /* can't overflow, since narenas < maxarenas before */
Tim Petersd97a1c02002-03-30 06:09:22 +0000509 return bp;
510
511error:
Tim Peters84c1b972002-04-04 04:44:32 +0000512 free(bp);
Tim Peters7b85b4a2002-03-30 10:42:09 +0000513 nfreepools = 0;
Tim Petersd97a1c02002-03-30 06:09:22 +0000514 return NULL;
515}
516
517/* Return true if and only if P is an address that was allocated by
518 * pymalloc. I must be the index into arenas that the address claims
519 * to come from.
Tim Petersc2ce91a2002-03-30 21:36:04 +0000520 *
Tim Petersd97a1c02002-03-30 06:09:22 +0000521 * Tricky: Letting B be the arena base address in arenas[I], P belongs to the
522 * arena if and only if
Tim Peters3c83df22002-03-30 07:04:41 +0000523 * B <= P < B + ARENA_SIZE
Tim Petersd97a1c02002-03-30 06:09:22 +0000524 * Subtracting B throughout, this is true iff
Tim Peters3c83df22002-03-30 07:04:41 +0000525 * 0 <= P-B < ARENA_SIZE
Tim Petersd97a1c02002-03-30 06:09:22 +0000526 * By using unsigned arithmetic, the "0 <=" half of the test can be skipped.
Tim Petersc2ce91a2002-03-30 21:36:04 +0000527 *
528 * Obscure: A PyMem "free memory" function can call the pymalloc free or
529 * realloc before the first arena has been allocated. arenas is still
530 * NULL in that case. We're relying on that narenas is also 0 in that case,
531 * so the (I) < narenas must be false, saving us from trying to index into
532 * a NULL arenas.
Tim Petersd97a1c02002-03-30 06:09:22 +0000533 */
534#define ADDRESS_IN_RANGE(P, I) \
Tim Peters3c83df22002-03-30 07:04:41 +0000535 ((I) < narenas && (uptr)(P) - arenas[I] < (uptr)ARENA_SIZE)
Tim Peters338e0102002-04-01 19:23:44 +0000536
Neil Schemenauera35c6882001-02-27 04:45:05 +0000537/*==========================================================================*/
538
Tim Peters84c1b972002-04-04 04:44:32 +0000539/* malloc. Note that nbytes==0 tries to return a non-NULL pointer, distinct
540 * from all other currently live pointers. This may not be possible.
541 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000542
543/*
544 * The basic blocks are ordered by decreasing execution frequency,
545 * which minimizes the number of jumps in the most common cases,
546 * improves branching prediction and instruction scheduling (small
547 * block allocations typically result in a couple of instructions).
548 * Unless the optimizer reorders everything, being too smart...
549 */
550
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000551#undef PyObject_Malloc
Neil Schemenauera35c6882001-02-27 04:45:05 +0000552void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000553PyObject_Malloc(size_t nbytes)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000554{
555 block *bp;
556 poolp pool;
557 poolp next;
558 uint size;
559
Neil Schemenauera35c6882001-02-27 04:45:05 +0000560 /*
Tim Peters84c1b972002-04-04 04:44:32 +0000561 * This implicitly redirects malloc(0).
Neil Schemenauera35c6882001-02-27 04:45:05 +0000562 */
563 if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) {
564 LOCK();
565 /*
566 * Most frequent paths first
567 */
568 size = (uint )(nbytes - 1) >> ALIGNMENT_SHIFT;
569 pool = usedpools[size + size];
570 if (pool != pool->nextpool) {
571 /*
572 * There is a used pool for this size class.
573 * Pick up the head block of its free list.
574 */
575 ++pool->ref.count;
576 bp = pool->freeblock;
Tim Peters52aefc82002-04-11 06:36:45 +0000577 assert(bp != NULL);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000578 if ((pool->freeblock = *(block **)bp) != NULL) {
579 UNLOCK();
580 return (void *)bp;
581 }
582 /*
583 * Reached the end of the free list, try to extend it
584 */
Tim Peterse70ddf32002-04-05 04:32:29 +0000585 if (pool->nextoffset <= pool->maxnextoffset) {
Neil Schemenauera35c6882001-02-27 04:45:05 +0000586 /*
587 * There is room for another block
588 */
Tim Peterse70ddf32002-04-05 04:32:29 +0000589 pool->freeblock = (block *)pool +
590 pool->nextoffset;
591 pool->nextoffset += INDEX2SIZE(size);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000592 *(block **)(pool->freeblock) = NULL;
593 UNLOCK();
594 return (void *)bp;
595 }
596 /*
597 * Pool is full, unlink from used pools
598 */
599 next = pool->nextpool;
600 pool = pool->prevpool;
601 next->prevpool = pool;
602 pool->nextpool = next;
603 UNLOCK();
604 return (void *)bp;
605 }
606 /*
607 * Try to get a cached free pool
608 */
609 pool = freepools;
610 if (pool != NULL) {
611 /*
612 * Unlink from cached pools
613 */
614 freepools = pool->nextpool;
615 init_pool:
616 /*
617 * Frontlink to used pools
618 */
619 next = usedpools[size + size]; /* == prev */
620 pool->nextpool = next;
621 pool->prevpool = next;
622 next->nextpool = pool;
623 next->prevpool = pool;
624 pool->ref.count = 1;
625 if (pool->szidx == size) {
626 /*
627 * Luckily, this pool last contained blocks
628 * of the same size class, so its header
629 * and free list are already initialized.
630 */
631 bp = pool->freeblock;
632 pool->freeblock = *(block **)bp;
633 UNLOCK();
634 return (void *)bp;
635 }
636 /*
Tim Peterse70ddf32002-04-05 04:32:29 +0000637 * Initialize the pool header, set up the free list to
638 * contain just the second block, and return the first
639 * block.
Neil Schemenauera35c6882001-02-27 04:45:05 +0000640 */
641 pool->szidx = size;
Tim Peterse70ddf32002-04-05 04:32:29 +0000642 size = INDEX2SIZE(size);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000643 bp = (block *)pool + POOL_OVERHEAD;
Tim Peterse70ddf32002-04-05 04:32:29 +0000644 pool->nextoffset = POOL_OVERHEAD + (size << 1);
645 pool->maxnextoffset = POOL_SIZE - size;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000646 pool->freeblock = bp + size;
647 *(block **)(pool->freeblock) = NULL;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000648 UNLOCK();
649 return (void *)bp;
650 }
651 /*
652 * Allocate new pool
653 */
Tim Peters3c83df22002-03-30 07:04:41 +0000654 if (nfreepools) {
Neil Schemenauera35c6882001-02-27 04:45:05 +0000655 commit_pool:
Tim Peters3c83df22002-03-30 07:04:41 +0000656 --nfreepools;
657 pool = (poolp)arenabase;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000658 arenabase += POOL_SIZE;
Tim Petersd97a1c02002-03-30 06:09:22 +0000659 pool->arenaindex = narenas - 1;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000660 pool->szidx = DUMMY_SIZE_IDX;
661 goto init_pool;
662 }
663 /*
664 * Allocate new arena
665 */
666#ifdef WITH_MEMORY_LIMITS
Tim Petersd97a1c02002-03-30 06:09:22 +0000667 if (!(narenas < MAX_ARENAS)) {
Neil Schemenauera35c6882001-02-27 04:45:05 +0000668 UNLOCK();
669 goto redirect;
670 }
671#endif
Tim Petersd97a1c02002-03-30 06:09:22 +0000672 bp = new_arena();
673 if (bp != NULL)
674 goto commit_pool;
675 UNLOCK();
676 goto redirect;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000677 }
678
679 /* The small block allocator ends here. */
680
Tim Petersd97a1c02002-03-30 06:09:22 +0000681redirect:
Neil Schemenauera35c6882001-02-27 04:45:05 +0000682 /*
683 * Redirect the original request to the underlying (libc) allocator.
684 * We jump here on bigger requests, on error in the code above (as a
685 * last chance to serve the request) or when the max memory limit
686 * has been reached.
687 */
Tim Peters64d80c92002-04-18 21:58:56 +0000688#ifdef MALLOC_ZERO_RETURNS_NULL
689 if (nbytes == 0)
690 nbytes = 1;
691#endif
692 return (void *)malloc(nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000693}
694
695/* free */
696
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000697#undef PyObject_Free
Neil Schemenauera35c6882001-02-27 04:45:05 +0000698void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000699PyObject_Free(void *p)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000700{
701 poolp pool;
Tim Peters2c95c992002-03-31 02:18:01 +0000702 block *lastfree;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000703 poolp next, prev;
704 uint size;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000705
Neil Schemenauera35c6882001-02-27 04:45:05 +0000706 if (p == NULL) /* free(NULL) has no effect */
707 return;
708
Tim Petersd97a1c02002-03-30 06:09:22 +0000709 pool = POOL_ADDR(p);
710 if (ADDRESS_IN_RANGE(p, pool->arenaindex)) {
711 /* We allocated this address. */
Tim Petersd97a1c02002-03-30 06:09:22 +0000712 LOCK();
713 /*
Tim Peters2c95c992002-03-31 02:18:01 +0000714 * Link p to the start of the pool's freeblock list. Since
715 * the pool had at least the p block outstanding, the pool
716 * wasn't empty (so it's already in a usedpools[] list, or
717 * was full and is in no list -- it's not in the freeblocks
718 * list in any case).
Tim Petersd97a1c02002-03-30 06:09:22 +0000719 */
Tim Peters57b17ad2002-03-31 02:59:48 +0000720 assert(pool->ref.count > 0); /* else it was empty */
Tim Peters2c95c992002-03-31 02:18:01 +0000721 *(block **)p = lastfree = pool->freeblock;
Tim Petersd97a1c02002-03-30 06:09:22 +0000722 pool->freeblock = (block *)p;
Tim Peters2c95c992002-03-31 02:18:01 +0000723 if (lastfree) {
724 /*
725 * freeblock wasn't NULL, so the pool wasn't full,
726 * and the pool is in a usedpools[] list.
727 */
Tim Peters2c95c992002-03-31 02:18:01 +0000728 if (--pool->ref.count != 0) {
729 /* pool isn't empty: leave it in usedpools */
730 UNLOCK();
731 return;
732 }
733 /*
734 * Pool is now empty: unlink from usedpools, and
Tim Petersb1da0502002-03-31 02:51:40 +0000735 * link to the front of freepools. This ensures that
Tim Peters2c95c992002-03-31 02:18:01 +0000736 * previously freed pools will be allocated later
737 * (being not referenced, they are perhaps paged out).
738 */
739 next = pool->nextpool;
740 prev = pool->prevpool;
741 next->prevpool = prev;
742 prev->nextpool = next;
743 /* Link to freepools. This is a singly-linked list,
744 * and pool->prevpool isn't used there.
745 */
746 pool->nextpool = freepools;
747 freepools = pool;
Tim Petersd97a1c02002-03-30 06:09:22 +0000748 UNLOCK();
749 return;
750 }
751 /*
Tim Peters2c95c992002-03-31 02:18:01 +0000752 * Pool was full, so doesn't currently live in any list:
753 * link it to the front of the appropriate usedpools[] list.
754 * This mimics LRU pool usage for new allocations and
755 * targets optimal filling when several pools contain
756 * blocks of the same size class.
Tim Petersd97a1c02002-03-30 06:09:22 +0000757 */
Tim Peters2c95c992002-03-31 02:18:01 +0000758 --pool->ref.count;
759 assert(pool->ref.count > 0); /* else the pool is empty */
760 size = pool->szidx;
761 next = usedpools[size + size];
762 prev = next->prevpool;
763 /* insert pool before next: prev <-> pool <-> next */
764 pool->nextpool = next;
765 pool->prevpool = prev;
766 next->prevpool = pool;
767 prev->nextpool = pool;
Tim Petersd97a1c02002-03-30 06:09:22 +0000768 UNLOCK();
Neil Schemenauera35c6882001-02-27 04:45:05 +0000769 return;
770 }
771
Tim Peters2c95c992002-03-31 02:18:01 +0000772 /* We didn't allocate this address. */
Tim Peters84c1b972002-04-04 04:44:32 +0000773 free(p);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000774}
775
Tim Peters84c1b972002-04-04 04:44:32 +0000776/* realloc. If p is NULL, this acts like malloc(nbytes). Else if nbytes==0,
777 * then as the Python docs promise, we do not treat this like free(p), and
778 * return a non-NULL result.
779 */
Neil Schemenauera35c6882001-02-27 04:45:05 +0000780
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000781#undef PyObject_Realloc
Neil Schemenauera35c6882001-02-27 04:45:05 +0000782void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000783PyObject_Realloc(void *p, size_t nbytes)
Neil Schemenauera35c6882001-02-27 04:45:05 +0000784{
Tim Peters84c1b972002-04-04 04:44:32 +0000785 void *bp;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000786 poolp pool;
787 uint size;
788
Neil Schemenauera35c6882001-02-27 04:45:05 +0000789 if (p == NULL)
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000790 return PyObject_Malloc(nbytes);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000791
Tim Petersd97a1c02002-03-30 06:09:22 +0000792 pool = POOL_ADDR(p);
793 if (ADDRESS_IN_RANGE(p, pool->arenaindex)) {
Neil Schemenauera35c6882001-02-27 04:45:05 +0000794 /* We're in charge of this block */
Tim Peterse70ddf32002-04-05 04:32:29 +0000795 size = INDEX2SIZE(pool->szidx);
Tim Peters84c1b972002-04-04 04:44:32 +0000796 if (size >= nbytes)
797 /* Don't bother if a smaller size was requested. */
798 return p;
799 /* We need more memory. */
800 assert(nbytes != 0);
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000801 bp = PyObject_Malloc(nbytes);
Tim Peters84c1b972002-04-04 04:44:32 +0000802 if (bp != NULL) {
803 memcpy(bp, p, size);
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000804 PyObject_Free(p);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000805 }
Tim Peters84c1b972002-04-04 04:44:32 +0000806 return bp;
807 }
808 /* We're not managing this block. */
Tim Peters84c1b972002-04-04 04:44:32 +0000809 if (nbytes <= SMALL_REQUEST_THRESHOLD) {
Tim Peters64d80c92002-04-18 21:58:56 +0000810 /* Take over this block -- ask for at least one byte so
811 * we really do take it over (PyObject_Malloc(0) goes to
812 * the system malloc).
813 */
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000814 bp = PyObject_Malloc(nbytes ? nbytes : 1);
Tim Peters84c1b972002-04-04 04:44:32 +0000815 if (bp != NULL) {
816 memcpy(bp, p, nbytes);
817 free(p);
Neil Schemenauera35c6882001-02-27 04:45:05 +0000818 }
Tim Peters84c1b972002-04-04 04:44:32 +0000819 else if (nbytes == 0) {
820 /* Meet the doc's promise that nbytes==0 will
821 * never return a NULL pointer when p isn't NULL.
822 */
823 bp = p;
824 }
825
Neil Schemenauera35c6882001-02-27 04:45:05 +0000826 }
Tim Petersd97a1c02002-03-30 06:09:22 +0000827 else {
Tim Peters84c1b972002-04-04 04:44:32 +0000828 assert(nbytes != 0);
829 bp = realloc(p, nbytes);
Tim Petersd97a1c02002-03-30 06:09:22 +0000830 }
Tim Peters84c1b972002-04-04 04:44:32 +0000831 return bp;
Neil Schemenauera35c6882001-02-27 04:45:05 +0000832}
833
Tim Peters1221c0a2002-03-23 00:20:15 +0000834#else /* ! WITH_PYMALLOC */
Tim Petersddea2082002-03-23 10:03:50 +0000835
836/*==========================================================================*/
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000837/* pymalloc not enabled: Redirect the entry points to malloc. These will
838 * only be used by extensions that are compiled with pymalloc enabled. */
Tim Peters62c06ba2002-03-23 22:28:18 +0000839
Tim Petersce7fb9b2002-03-23 00:28:57 +0000840void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000841PyObject_Malloc(size_t n)
Tim Peters1221c0a2002-03-23 00:20:15 +0000842{
843 return PyMem_MALLOC(n);
844}
845
Tim Petersce7fb9b2002-03-23 00:28:57 +0000846void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000847PyObject_Realloc(void *p, size_t n)
Tim Peters1221c0a2002-03-23 00:20:15 +0000848{
849 return PyMem_REALLOC(p, n);
850}
851
852void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000853PyObject_Free(void *p)
Tim Peters1221c0a2002-03-23 00:20:15 +0000854{
855 PyMem_FREE(p);
856}
857#endif /* WITH_PYMALLOC */
858
Tim Petersddea2082002-03-23 10:03:50 +0000859#ifdef PYMALLOC_DEBUG
860/*==========================================================================*/
Tim Peters62c06ba2002-03-23 22:28:18 +0000861/* A x-platform debugging allocator. This doesn't manage memory directly,
862 * it wraps a real allocator, adding extra debugging info to the memory blocks.
863 */
Tim Petersddea2082002-03-23 10:03:50 +0000864
Tim Petersf6fb5012002-04-12 07:38:53 +0000865/* Special bytes broadcast into debug memory blocks at appropriate times.
866 * Strings of these are unlikely to be valid addresses, floats, ints or
867 * 7-bit ASCII.
868 */
869#undef CLEANBYTE
870#undef DEADBYTE
871#undef FORBIDDENBYTE
872#define CLEANBYTE 0xCB /* clean (newly allocated) memory */
873#define DEADBYTE 0xDB /* deed (newly freed) memory */
874#define FORBIDDENBYTE 0xFB /* untouchable bytes at each end of a block */
Tim Petersddea2082002-03-23 10:03:50 +0000875
876static ulong serialno = 0; /* incremented on each debug {m,re}alloc */
877
Tim Peterse0850172002-03-24 00:34:21 +0000878/* serialno is always incremented via calling this routine. The point is
879 to supply a single place to set a breakpoint.
880*/
881static void
Neil Schemenauerbd02b142002-03-28 21:05:38 +0000882bumpserialno(void)
Tim Peterse0850172002-03-24 00:34:21 +0000883{
884 ++serialno;
885}
886
887
Tim Petersddea2082002-03-23 10:03:50 +0000888/* Read 4 bytes at p as a big-endian ulong. */
889static ulong
890read4(const void *p)
891{
Tim Peters62c06ba2002-03-23 22:28:18 +0000892 const uchar *q = (const uchar *)p;
Tim Petersddea2082002-03-23 10:03:50 +0000893 return ((ulong)q[0] << 24) |
894 ((ulong)q[1] << 16) |
895 ((ulong)q[2] << 8) |
896 (ulong)q[3];
897}
898
899/* Write the 4 least-significant bytes of n as a big-endian unsigned int,
900 MSB at address p, LSB at p+3. */
901static void
902write4(void *p, ulong n)
903{
Tim Peters62c06ba2002-03-23 22:28:18 +0000904 uchar *q = (uchar *)p;
905 q[0] = (uchar)((n >> 24) & 0xff);
906 q[1] = (uchar)((n >> 16) & 0xff);
907 q[2] = (uchar)((n >> 8) & 0xff);
908 q[3] = (uchar)( n & 0xff);
Tim Petersddea2082002-03-23 10:03:50 +0000909}
910
Tim Peters08d82152002-04-18 22:25:03 +0000911#ifdef Py_DEBUG
912/* Is target in the list? The list is traversed via the nextpool pointers.
913 * The list may be NULL-terminated, or circular. Return 1 if target is in
914 * list, else 0.
915 */
916static int
917pool_is_in_list(const poolp target, poolp list)
918{
919 poolp origlist = list;
920 assert(target != NULL);
921 if (list == NULL)
922 return 0;
923 do {
924 if (target == list)
925 return 1;
926 list = list->nextpool;
927 } while (list != NULL && list != origlist);
928 return 0;
929}
930
931#else
932#define pool_is_in_list(X, Y) 1
933
934#endif /* Py_DEBUG */
935
Tim Petersddea2082002-03-23 10:03:50 +0000936/* The debug malloc asks for 16 extra bytes and fills them with useful stuff,
937 here calling the underlying malloc's result p:
938
939p[0:4]
940 Number of bytes originally asked for. 4-byte unsigned integer,
941 big-endian (easier to read in a memory dump).
Tim Petersd1139e02002-03-28 07:32:11 +0000942p[4:8]
Tim Petersf6fb5012002-04-12 07:38:53 +0000943 Copies of FORBIDDENBYTE. Used to catch under- writes and reads.
Tim Petersddea2082002-03-23 10:03:50 +0000944p[8:8+n]
Tim Petersf6fb5012002-04-12 07:38:53 +0000945 The requested memory, filled with copies of CLEANBYTE.
Tim Petersddea2082002-03-23 10:03:50 +0000946 Used to catch reference to uninitialized memory.
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000947 &p[8] is returned. Note that this is 8-byte aligned if pymalloc
Tim Petersddea2082002-03-23 10:03:50 +0000948 handled the request itself.
949p[8+n:8+n+4]
Tim Petersf6fb5012002-04-12 07:38:53 +0000950 Copies of FORBIDDENBYTE. Used to catch over- writes and reads.
Tim Petersddea2082002-03-23 10:03:50 +0000951p[8+n+4:8+n+8]
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000952 A serial number, incremented by 1 on each call to _PyObject_DebugMalloc
953 and _PyObject_DebugRealloc.
Tim Petersddea2082002-03-23 10:03:50 +0000954 4-byte unsigned integer, big-endian.
955 If "bad memory" is detected later, the serial number gives an
956 excellent way to set a breakpoint on the next run, to capture the
957 instant at which this block was passed out.
958*/
959
960void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +0000961_PyObject_DebugMalloc(size_t nbytes)
Tim Petersddea2082002-03-23 10:03:50 +0000962{
963 uchar *p; /* base address of malloc'ed block */
Tim Peters62c06ba2002-03-23 22:28:18 +0000964 uchar *tail; /* p + 8 + nbytes == pointer to tail pad bytes */
Tim Petersddea2082002-03-23 10:03:50 +0000965 size_t total; /* nbytes + 16 */
966
Tim Peterse0850172002-03-24 00:34:21 +0000967 bumpserialno();
Tim Petersddea2082002-03-23 10:03:50 +0000968 total = nbytes + 16;
969 if (total < nbytes || (total >> 31) > 1) {
970 /* overflow, or we can't represent it in 4 bytes */
971 /* Obscure: can't do (total >> 32) != 0 instead, because
972 C doesn't define what happens for a right-shift of 32
973 when size_t is a 32-bit type. At least C guarantees
974 size_t is an unsigned type. */
975 return NULL;
976 }
977
Tim Peters8a8cdfd2002-04-12 20:49:36 +0000978 p = (uchar *)PyObject_Malloc(total);
Tim Petersddea2082002-03-23 10:03:50 +0000979 if (p == NULL)
980 return NULL;
981
982 write4(p, nbytes);
Tim Petersf6fb5012002-04-12 07:38:53 +0000983 p[4] = p[5] = p[6] = p[7] = FORBIDDENBYTE;
Tim Petersddea2082002-03-23 10:03:50 +0000984
985 if (nbytes > 0)
Tim Petersf6fb5012002-04-12 07:38:53 +0000986 memset(p+8, CLEANBYTE, nbytes);
Tim Petersddea2082002-03-23 10:03:50 +0000987
Tim Peters62c06ba2002-03-23 22:28:18 +0000988 tail = p + 8 + nbytes;
Tim Petersf6fb5012002-04-12 07:38:53 +0000989 tail[0] = tail[1] = tail[2] = tail[3] = FORBIDDENBYTE;
Tim Peters62c06ba2002-03-23 22:28:18 +0000990 write4(tail + 4, serialno);
Tim Petersddea2082002-03-23 10:03:50 +0000991
992 return p+8;
993}
994
Tim Peters62c06ba2002-03-23 22:28:18 +0000995/* The debug free first checks the 8 bytes on each end for sanity (in
Tim Petersf6fb5012002-04-12 07:38:53 +0000996 particular, that the FORBIDDENBYTEs are still intact).
997 Then fills the original bytes with DEADBYTE.
Tim Petersddea2082002-03-23 10:03:50 +0000998 Then calls the underlying free.
999*/
1000void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001001_PyObject_DebugFree(void *p)
Tim Petersddea2082002-03-23 10:03:50 +00001002{
Tim Peters62c06ba2002-03-23 22:28:18 +00001003 uchar *q = (uchar *)p;
Tim Petersddea2082002-03-23 10:03:50 +00001004 size_t nbytes;
1005
Tim Petersddea2082002-03-23 10:03:50 +00001006 if (p == NULL)
1007 return;
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001008 _PyObject_DebugCheckAddress(p);
Tim Petersddea2082002-03-23 10:03:50 +00001009 nbytes = read4(q-8);
1010 if (nbytes > 0)
Tim Petersf6fb5012002-04-12 07:38:53 +00001011 memset(q, DEADBYTE, nbytes);
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001012 PyObject_Free(q-8);
Tim Petersddea2082002-03-23 10:03:50 +00001013}
1014
1015void *
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001016_PyObject_DebugRealloc(void *p, size_t nbytes)
Tim Petersddea2082002-03-23 10:03:50 +00001017{
1018 uchar *q = (uchar *)p;
Tim Peters85cc1c42002-04-12 08:52:50 +00001019 uchar *tail;
1020 size_t total; /* nbytes + 16 */
Tim Petersddea2082002-03-23 10:03:50 +00001021 size_t original_nbytes;
Tim Petersddea2082002-03-23 10:03:50 +00001022
Tim Petersddea2082002-03-23 10:03:50 +00001023 if (p == NULL)
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001024 return _PyObject_DebugMalloc(nbytes);
Tim Petersddea2082002-03-23 10:03:50 +00001025
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001026 _PyObject_DebugCheckAddress(p);
Tim Peters85cc1c42002-04-12 08:52:50 +00001027 bumpserialno();
Tim Petersddea2082002-03-23 10:03:50 +00001028 original_nbytes = read4(q-8);
Tim Peters85cc1c42002-04-12 08:52:50 +00001029 total = nbytes + 16;
1030 if (total < nbytes || (total >> 31) > 1) {
1031 /* overflow, or we can't represent it in 4 bytes */
1032 return NULL;
Tim Petersddea2082002-03-23 10:03:50 +00001033 }
1034
1035 if (nbytes < original_nbytes) {
Tim Peters85cc1c42002-04-12 08:52:50 +00001036 /* shrinking: mark old extra memory dead */
1037 memset(q + nbytes, DEADBYTE, original_nbytes - nbytes);
Tim Petersddea2082002-03-23 10:03:50 +00001038 }
1039
Tim Peters85cc1c42002-04-12 08:52:50 +00001040 /* Resize and add decorations. */
1041 q = (uchar *)PyObject_Realloc(q-8, total);
1042 if (q == NULL)
1043 return NULL;
1044
1045 write4(q, nbytes);
1046 assert(q[4] == FORBIDDENBYTE &&
1047 q[5] == FORBIDDENBYTE &&
1048 q[6] == FORBIDDENBYTE &&
1049 q[7] == FORBIDDENBYTE);
1050 q += 8;
1051 tail = q + nbytes;
1052 tail[0] = tail[1] = tail[2] = tail[3] = FORBIDDENBYTE;
1053 write4(tail + 4, serialno);
1054
1055 if (nbytes > original_nbytes) {
1056 /* growing: mark new extra memory clean */
1057 memset(q + original_nbytes, CLEANBYTE,
1058 nbytes - original_nbytes);
Tim Peters52aefc82002-04-11 06:36:45 +00001059 }
Tim Peters85cc1c42002-04-12 08:52:50 +00001060
1061 return q;
Tim Petersddea2082002-03-23 10:03:50 +00001062}
1063
Tim Peters7ccfadf2002-04-01 06:04:21 +00001064/* Check the forbidden bytes on both ends of the memory allocated for p.
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001065 * If anything is wrong, print info to stderr via _PyObject_DebugDumpAddress,
Tim Peters7ccfadf2002-04-01 06:04:21 +00001066 * and call Py_FatalError to kill the program.
1067 */
1068 void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001069_PyObject_DebugCheckAddress(const void *p)
Tim Petersddea2082002-03-23 10:03:50 +00001070{
1071 const uchar *q = (const uchar *)p;
Tim Petersd1139e02002-03-28 07:32:11 +00001072 char *msg;
1073 int i;
Tim Petersddea2082002-03-23 10:03:50 +00001074
Tim Petersd1139e02002-03-28 07:32:11 +00001075 if (p == NULL) {
Tim Petersddea2082002-03-23 10:03:50 +00001076 msg = "didn't expect a NULL pointer";
Tim Petersd1139e02002-03-28 07:32:11 +00001077 goto error;
1078 }
Tim Petersddea2082002-03-23 10:03:50 +00001079
Tim Petersd1139e02002-03-28 07:32:11 +00001080 for (i = 4; i >= 1; --i) {
Tim Petersf6fb5012002-04-12 07:38:53 +00001081 if (*(q-i) != FORBIDDENBYTE) {
Tim Petersd1139e02002-03-28 07:32:11 +00001082 msg = "bad leading pad byte";
1083 goto error;
1084 }
1085 }
Tim Petersddea2082002-03-23 10:03:50 +00001086
Tim Petersd1139e02002-03-28 07:32:11 +00001087 {
Tim Petersddea2082002-03-23 10:03:50 +00001088 const ulong nbytes = read4(q-8);
1089 const uchar *tail = q + nbytes;
Tim Petersddea2082002-03-23 10:03:50 +00001090 for (i = 0; i < 4; ++i) {
Tim Petersf6fb5012002-04-12 07:38:53 +00001091 if (tail[i] != FORBIDDENBYTE) {
Tim Petersddea2082002-03-23 10:03:50 +00001092 msg = "bad trailing pad byte";
Tim Petersd1139e02002-03-28 07:32:11 +00001093 goto error;
Tim Petersddea2082002-03-23 10:03:50 +00001094 }
1095 }
1096 }
1097
Tim Petersd1139e02002-03-28 07:32:11 +00001098 return;
1099
1100error:
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001101 _PyObject_DebugDumpAddress(p);
Tim Petersd1139e02002-03-28 07:32:11 +00001102 Py_FatalError(msg);
Tim Petersddea2082002-03-23 10:03:50 +00001103}
1104
Tim Peters7ccfadf2002-04-01 06:04:21 +00001105/* Display info to stderr about the memory block at p. */
Tim Petersddea2082002-03-23 10:03:50 +00001106void
Neil Schemenauerd2560cd2002-04-12 03:10:20 +00001107_PyObject_DebugDumpAddress(const void *p)
Tim Petersddea2082002-03-23 10:03:50 +00001108{
1109 const uchar *q = (const uchar *)p;
1110 const uchar *tail;
1111 ulong nbytes, serial;
Tim Petersd1139e02002-03-28 07:32:11 +00001112 int i;
Tim Petersddea2082002-03-23 10:03:50 +00001113
1114 fprintf(stderr, "Debug memory block at address p=%p:\n", p);
1115 if (p == NULL)
1116 return;
1117
1118 nbytes = read4(q-8);
Tim Petersf539c682002-04-12 07:43:07 +00001119 fprintf(stderr, " %lu bytes originally requested\n", nbytes);
Tim Petersddea2082002-03-23 10:03:50 +00001120
1121 /* In case this is nuts, check the pad bytes before trying to read up
1122 the serial number (the address deref could blow up). */
1123
Tim Petersd1139e02002-03-28 07:32:11 +00001124 fputs(" the 4 pad bytes at p-4 are ", stderr);
Tim Petersf6fb5012002-04-12 07:38:53 +00001125 if (*(q-4) == FORBIDDENBYTE &&
1126 *(q-3) == FORBIDDENBYTE &&
1127 *(q-2) == FORBIDDENBYTE &&
1128 *(q-1) == FORBIDDENBYTE) {
1129 fputs("FORBIDDENBYTE, as expected\n", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001130 }
1131 else {
Tim Petersf6fb5012002-04-12 07:38:53 +00001132 fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
1133 FORBIDDENBYTE);
Tim Petersd1139e02002-03-28 07:32:11 +00001134 for (i = 4; i >= 1; --i) {
Tim Petersddea2082002-03-23 10:03:50 +00001135 const uchar byte = *(q-i);
1136 fprintf(stderr, " at p-%d: 0x%02x", i, byte);
Tim Petersf6fb5012002-04-12 07:38:53 +00001137 if (byte != FORBIDDENBYTE)
Tim Petersddea2082002-03-23 10:03:50 +00001138 fputs(" *** OUCH", stderr);
1139 fputc('\n', stderr);
1140 }
1141 }
1142
1143 tail = q + nbytes;
1144 fprintf(stderr, " the 4 pad bytes at tail=%p are ", tail);
Tim Petersf6fb5012002-04-12 07:38:53 +00001145 if (tail[0] == FORBIDDENBYTE &&
1146 tail[1] == FORBIDDENBYTE &&
1147 tail[2] == FORBIDDENBYTE &&
1148 tail[3] == FORBIDDENBYTE) {
1149 fputs("FORBIDDENBYTE, as expected\n", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001150 }
1151 else {
Tim Petersf6fb5012002-04-12 07:38:53 +00001152 fprintf(stderr, "not all FORBIDDENBYTE (0x%02x):\n",
1153 FORBIDDENBYTE);
Tim Petersddea2082002-03-23 10:03:50 +00001154 for (i = 0; i < 4; ++i) {
1155 const uchar byte = tail[i];
1156 fprintf(stderr, " at tail+%d: 0x%02x",
1157 i, byte);
Tim Petersf6fb5012002-04-12 07:38:53 +00001158 if (byte != FORBIDDENBYTE)
Tim Petersddea2082002-03-23 10:03:50 +00001159 fputs(" *** OUCH", stderr);
1160 fputc('\n', stderr);
1161 }
1162 }
1163
1164 serial = read4(tail+4);
1165 fprintf(stderr, " the block was made by call #%lu to "
1166 "debug malloc/realloc\n", serial);
1167
1168 if (nbytes > 0) {
1169 int i = 0;
Tim Peters62c06ba2002-03-23 22:28:18 +00001170 fputs(" data at p:", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001171 /* print up to 8 bytes at the start */
1172 while (q < tail && i < 8) {
1173 fprintf(stderr, " %02x", *q);
1174 ++i;
1175 ++q;
1176 }
1177 /* and up to 8 at the end */
1178 if (q < tail) {
1179 if (tail - q > 8) {
Tim Peters62c06ba2002-03-23 22:28:18 +00001180 fputs(" ...", stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001181 q = tail - 8;
1182 }
1183 while (q < tail) {
1184 fprintf(stderr, " %02x", *q);
1185 ++q;
1186 }
1187 }
Tim Peters62c06ba2002-03-23 22:28:18 +00001188 fputc('\n', stderr);
Tim Petersddea2082002-03-23 10:03:50 +00001189 }
1190}
1191
Tim Peters16bcb6b2002-04-05 05:45:31 +00001192static ulong
1193printone(const char* msg, ulong value)
1194{
Tim Peters49f26812002-04-06 01:45:35 +00001195 int i, k;
1196 char buf[100];
1197 ulong origvalue = value;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001198
1199 fputs(msg, stderr);
Tim Peters49f26812002-04-06 01:45:35 +00001200 for (i = (int)strlen(msg); i < 35; ++i)
Tim Peters16bcb6b2002-04-05 05:45:31 +00001201 fputc(' ', stderr);
Tim Peters49f26812002-04-06 01:45:35 +00001202 fputc('=', stderr);
1203
1204 /* Write the value with commas. */
1205 i = 22;
1206 buf[i--] = '\0';
1207 buf[i--] = '\n';
1208 k = 3;
1209 do {
1210 ulong nextvalue = value / 10UL;
1211 uint digit = value - nextvalue * 10UL;
1212 value = nextvalue;
1213 buf[i--] = (char)(digit + '0');
1214 --k;
1215 if (k == 0 && value && i >= 0) {
1216 k = 3;
1217 buf[i--] = ',';
1218 }
1219 } while (value && i >= 0);
1220
1221 while (i >= 0)
1222 buf[i--] = ' ';
1223 fputs(buf, stderr);
1224
1225 return origvalue;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001226}
1227
Tim Peters08d82152002-04-18 22:25:03 +00001228/* Print summary info to stderr about the state of pymalloc's structures.
1229 * In Py_DEBUG mode, also perform some expensive internal consistency
1230 * checks.
1231 */
Tim Peters7ccfadf2002-04-01 06:04:21 +00001232void
Tim Peters0e871182002-04-13 08:29:14 +00001233_PyObject_DebugMallocStats(void)
Tim Peters7ccfadf2002-04-01 06:04:21 +00001234{
1235 uint i;
1236 const uint numclasses = SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001237 /* # of pools, allocated blocks, and free blocks per class index */
Tim Peters7ccfadf2002-04-01 06:04:21 +00001238 ulong numpools[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
Tim Peters7ccfadf2002-04-01 06:04:21 +00001239 ulong numblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
Tim Peters7ccfadf2002-04-01 06:04:21 +00001240 ulong numfreeblocks[SMALL_REQUEST_THRESHOLD >> ALIGNMENT_SHIFT];
Tim Peters16bcb6b2002-04-05 05:45:31 +00001241 /* total # of allocated bytes in used and full pools */
1242 ulong allocated_bytes = 0;
1243 /* total # of available bytes in used pools */
1244 ulong available_bytes = 0;
1245 /* # of free pools + pools not yet carved out of current arena */
1246 uint numfreepools = 0;
1247 /* # of bytes for arena alignment padding */
Tim Peters8a8cdfd2002-04-12 20:49:36 +00001248 ulong arena_alignment = 0;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001249 /* # of bytes in used and full pools used for pool_headers */
1250 ulong pool_header_bytes = 0;
1251 /* # of bytes in used and full pools wasted due to quantization,
1252 * i.e. the necessarily leftover space at the ends of used and
1253 * full pools.
1254 */
1255 ulong quantization = 0;
1256 /* running total -- should equal narenas * ARENA_SIZE */
1257 ulong total;
1258 char buf[128];
Tim Peters7ccfadf2002-04-01 06:04:21 +00001259
Tim Peters7ccfadf2002-04-01 06:04:21 +00001260 fprintf(stderr, "Small block threshold = %d, in %u size classes.\n",
1261 SMALL_REQUEST_THRESHOLD, numclasses);
Tim Peters7ccfadf2002-04-01 06:04:21 +00001262
1263 for (i = 0; i < numclasses; ++i)
1264 numpools[i] = numblocks[i] = numfreeblocks[i] = 0;
1265
Tim Peters6169f092002-04-01 20:12:59 +00001266 /* Because full pools aren't linked to from anything, it's easiest
1267 * to march over all the arenas. If we're lucky, most of the memory
1268 * will be living in full pools -- would be a shame to miss them.
Tim Peters7ccfadf2002-04-01 06:04:21 +00001269 */
1270 for (i = 0; i < narenas; ++i) {
1271 uint poolsinarena;
1272 uint j;
1273 uptr base = arenas[i];
1274
1275 /* round up to pool alignment */
1276 poolsinarena = ARENA_SIZE / POOL_SIZE;
1277 if (base & (uptr)POOL_SIZE_MASK) {
1278 --poolsinarena;
Tim Peters16bcb6b2002-04-05 05:45:31 +00001279 arena_alignment += POOL_SIZE;
Tim Peters7ccfadf2002-04-01 06:04:21 +00001280 base &= ~(uptr)POOL_SIZE_MASK;
1281 base += POOL_SIZE;
1282 }
1283
1284 if (i == narenas - 1) {
1285 /* current arena may have raw memory at the end */
1286 numfreepools += nfreepools;
1287 poolsinarena -= nfreepools;
1288 }
1289
1290 /* visit every pool in the arena */
1291 for (j = 0; j < poolsinarena; ++j, base += POOL_SIZE) {
1292 poolp p = (poolp)base;
Tim Peters08d82152002-04-18 22:25:03 +00001293 const uint sz = p->szidx;
1294 uint freeblocks;
1295
Tim Peters7ccfadf2002-04-01 06:04:21 +00001296 if (p->ref.count == 0) {
1297 /* currently unused */
1298 ++numfreepools;
Tim Peters08d82152002-04-18 22:25:03 +00001299 assert(pool_is_in_list(p, freepools));
Tim Peters7ccfadf2002-04-01 06:04:21 +00001300 continue;
1301 }
Tim Peters08d82152002-04-18 22:25:03 +00001302 ++numpools[sz];
1303 numblocks[sz] += p->ref.count;
1304 freeblocks = NUMBLOCKS(sz) - p->ref.count;
1305 numfreeblocks[sz] += freeblocks;
1306#ifdef Py_DEBUG
1307 if (freeblocks > 0)
1308 assert(pool_is_in_list(p, usedpools[sz + sz]));
1309#endif
Tim Peters7ccfadf2002-04-01 06:04:21 +00001310 }
1311 }
1312
1313 fputc('\n', stderr);
Tim Peters49f26812002-04-06 01:45:35 +00001314 fputs("class size num pools blocks in use avail blocks\n"
1315 "----- ---- --------- ------------- ------------\n",
Tim Peters7ccfadf2002-04-01 06:04:21 +00001316 stderr);
1317
Tim Peters7ccfadf2002-04-01 06:04:21 +00001318 for (i = 0; i < numclasses; ++i) {
1319 ulong p = numpools[i];
1320 ulong b = numblocks[i];
1321 ulong f = numfreeblocks[i];
Tim Peterse70ddf32002-04-05 04:32:29 +00001322 uint size = INDEX2SIZE(i);
Tim Peters7ccfadf2002-04-01 06:04:21 +00001323 if (p == 0) {
1324 assert(b == 0 && f == 0);
1325 continue;
1326 }
Tim Peters49f26812002-04-06 01:45:35 +00001327 fprintf(stderr, "%5u %6u %11lu %15lu %13lu\n",
Tim Peters7ccfadf2002-04-01 06:04:21 +00001328 i, size, p, b, f);
Tim Peters16bcb6b2002-04-05 05:45:31 +00001329 allocated_bytes += b * size;
1330 available_bytes += f * size;
1331 pool_header_bytes += p * POOL_OVERHEAD;
1332 quantization += p * ((POOL_SIZE - POOL_OVERHEAD) % size);
Tim Peters7ccfadf2002-04-01 06:04:21 +00001333 }
1334 fputc('\n', stderr);
Tim Peters0e871182002-04-13 08:29:14 +00001335 (void)printone("# times object malloc called", serialno);
Tim Peters16bcb6b2002-04-05 05:45:31 +00001336
1337 PyOS_snprintf(buf, sizeof(buf),
1338 "%u arenas * %d bytes/arena", narenas, ARENA_SIZE);
1339 (void)printone(buf, (ulong)narenas * ARENA_SIZE);
1340
1341 fputc('\n', stderr);
1342
Tim Peters49f26812002-04-06 01:45:35 +00001343 total = printone("# bytes in allocated blocks", allocated_bytes);
Tim Peters0e871182002-04-13 08:29:14 +00001344 total += printone("# bytes in available blocks", available_bytes);
Tim Peters49f26812002-04-06 01:45:35 +00001345
Tim Peters16bcb6b2002-04-05 05:45:31 +00001346 PyOS_snprintf(buf, sizeof(buf),
1347 "%u unused pools * %d bytes", numfreepools, POOL_SIZE);
Tim Peters49f26812002-04-06 01:45:35 +00001348 total += printone(buf, (ulong)numfreepools * POOL_SIZE);
Tim Peters16bcb6b2002-04-05 05:45:31 +00001349
Tim Peters16bcb6b2002-04-05 05:45:31 +00001350 total += printone("# bytes lost to pool headers", pool_header_bytes);
1351 total += printone("# bytes lost to quantization", quantization);
1352 total += printone("# bytes lost to arena alignment", arena_alignment);
1353 (void)printone("Total", total);
Tim Peters7ccfadf2002-04-01 06:04:21 +00001354}
1355
Tim Petersddea2082002-03-23 10:03:50 +00001356#endif /* PYMALLOC_DEBUG */