blob: 9d5b32ffacb796dae9623c29c37e7695b5c41214 [file] [log] [blame]
Christian Heimes3feef612008-02-11 06:19:17 +00001:mod:`decimal` --- Decimal fixed point and floating point arithmetic
2====================================================================
Georg Brandl116aa622007-08-15 14:28:22 +00003
4.. module:: decimal
5 :synopsis: Implementation of the General Decimal Arithmetic Specification.
6
Georg Brandl116aa622007-08-15 14:28:22 +00007.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
8.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
9.. moduleauthor:: Raymond Hettinger <python at rcn.com>
10.. moduleauthor:: Aahz <aahz at pobox.com>
11.. moduleauthor:: Tim Peters <tim.one at comcast.net>
Georg Brandl116aa622007-08-15 14:28:22 +000012.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
13
Christian Heimesfe337bf2008-03-23 21:54:12 +000014.. import modules for testing inline doctests with the Sphinx doctest builder
15.. testsetup:: *
16
17 import decimal
18 import math
19 from decimal import *
20 # make sure each group gets a fresh context
21 setcontext(Context())
Georg Brandl116aa622007-08-15 14:28:22 +000022
Georg Brandl116aa622007-08-15 14:28:22 +000023The :mod:`decimal` module provides support for decimal floating point
Thomas Wouters1b7f8912007-09-19 03:06:30 +000024arithmetic. It offers several advantages over the :class:`float` datatype:
Georg Brandl116aa622007-08-15 14:28:22 +000025
Christian Heimes3feef612008-02-11 06:19:17 +000026* Decimal "is based on a floating-point model which was designed with people
27 in mind, and necessarily has a paramount guiding principle -- computers must
28 provide an arithmetic that works in the same way as the arithmetic that
29 people learn at school." -- excerpt from the decimal arithmetic specification.
30
Georg Brandl116aa622007-08-15 14:28:22 +000031* Decimal numbers can be represented exactly. In contrast, numbers like
Raymond Hettingerd258d1e2009-04-23 22:06:12 +000032 :const:`1.1` and :const:`2.2` do not have an exact representations in binary
33 floating point. End users typically would not expect ``1.1 + 2.2`` to display
34 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl116aa622007-08-15 14:28:22 +000035
36* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Thomas Wouters1b7f8912007-09-19 03:06:30 +000037 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl116aa622007-08-15 14:28:22 +000038 is :const:`5.5511151231257827e-017`. While near to zero, the differences
39 prevent reliable equality testing and differences can accumulate. For this
Christian Heimes3feef612008-02-11 06:19:17 +000040 reason, decimal is preferred in accounting applications which have strict
Georg Brandl116aa622007-08-15 14:28:22 +000041 equality invariants.
42
43* The decimal module incorporates a notion of significant places so that ``1.30
44 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
45 This is the customary presentation for monetary applications. For
46 multiplication, the "schoolbook" approach uses all the figures in the
47 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
48 1.20`` gives :const:`1.5600`.
49
50* Unlike hardware based binary floating point, the decimal module has a user
Thomas Wouters1b7f8912007-09-19 03:06:30 +000051 alterable precision (defaulting to 28 places) which can be as large as needed for
Christian Heimesfe337bf2008-03-23 21:54:12 +000052 a given problem:
Georg Brandl116aa622007-08-15 14:28:22 +000053
Mark Dickinson43ef32a2010-11-07 11:24:44 +000054 >>> from decimal import *
Georg Brandl116aa622007-08-15 14:28:22 +000055 >>> getcontext().prec = 6
56 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000057 Decimal('0.142857')
Georg Brandl116aa622007-08-15 14:28:22 +000058 >>> getcontext().prec = 28
59 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000060 Decimal('0.1428571428571428571428571429')
Georg Brandl116aa622007-08-15 14:28:22 +000061
62* Both binary and decimal floating point are implemented in terms of published
63 standards. While the built-in float type exposes only a modest portion of its
64 capabilities, the decimal module exposes all required parts of the standard.
65 When needed, the programmer has full control over rounding and signal handling.
Christian Heimes3feef612008-02-11 06:19:17 +000066 This includes an option to enforce exact arithmetic by using exceptions
67 to block any inexact operations.
68
69* The decimal module was designed to support "without prejudice, both exact
70 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
71 and rounded floating-point arithmetic." -- excerpt from the decimal
72 arithmetic specification.
Georg Brandl116aa622007-08-15 14:28:22 +000073
74The module design is centered around three concepts: the decimal number, the
75context for arithmetic, and signals.
76
77A decimal number is immutable. It has a sign, coefficient digits, and an
78exponent. To preserve significance, the coefficient digits do not truncate
Thomas Wouters1b7f8912007-09-19 03:06:30 +000079trailing zeros. Decimals also include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +000080:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
81differentiates :const:`-0` from :const:`+0`.
82
83The context for arithmetic is an environment specifying precision, rounding
84rules, limits on exponents, flags indicating the results of operations, and trap
85enablers which determine whether signals are treated as exceptions. Rounding
86options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
87:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +000088:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl116aa622007-08-15 14:28:22 +000089
90Signals are groups of exceptional conditions arising during the course of
91computation. Depending on the needs of the application, signals may be ignored,
92considered as informational, or treated as exceptions. The signals in the
93decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
94:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
95:const:`Overflow`, and :const:`Underflow`.
96
97For each signal there is a flag and a trap enabler. When a signal is
Raymond Hettinger86173da2008-02-01 20:38:12 +000098encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl116aa622007-08-15 14:28:22 +000099set to one, an exception is raised. Flags are sticky, so the user needs to
100reset them before monitoring a calculation.
101
102
103.. seealso::
104
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000105 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettinger960dc362009-04-21 03:43:15 +0000106 Specification <http://speleotrove.com/decimal/decarith.html>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000107
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000108 * IEEE standard 854-1987, `Unofficial IEEE 854 Text
Christian Heimes77c02eb2008-02-09 02:18:51 +0000109 <http://754r.ucbtest.org/standards/854.pdf>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000110
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000111.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000112
113
114.. _decimal-tutorial:
115
116Quick-start Tutorial
117--------------------
118
119The usual start to using decimals is importing the module, viewing the current
120context with :func:`getcontext` and, if necessary, setting new values for
121precision, rounding, or enabled traps::
122
123 >>> from decimal import *
124 >>> getcontext()
125 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000126 capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
Christian Heimesfe337bf2008-03-23 21:54:12 +0000127 InvalidOperation])
Georg Brandl116aa622007-08-15 14:28:22 +0000128
129 >>> getcontext().prec = 7 # Set a new precision
130
Mark Dickinsone534a072010-04-04 22:13:14 +0000131Decimal instances can be constructed from integers, strings, floats, or tuples.
132Construction from an integer or a float performs an exact conversion of the
133value of that integer or float. Decimal numbers include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +0000134:const:`NaN` which stands for "Not a number", positive and negative
Christian Heimesfe337bf2008-03-23 21:54:12 +0000135:const:`Infinity`, and :const:`-0`.
Georg Brandl116aa622007-08-15 14:28:22 +0000136
Facundo Batista789bdf02008-06-21 17:29:41 +0000137 >>> getcontext().prec = 28
Georg Brandl116aa622007-08-15 14:28:22 +0000138 >>> Decimal(10)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000139 Decimal('10')
140 >>> Decimal('3.14')
141 Decimal('3.14')
Mark Dickinsone534a072010-04-04 22:13:14 +0000142 >>> Decimal(3.14)
143 Decimal('3.140000000000000124344978758017532527446746826171875')
Georg Brandl116aa622007-08-15 14:28:22 +0000144 >>> Decimal((0, (3, 1, 4), -2))
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000145 Decimal('3.14')
Georg Brandl116aa622007-08-15 14:28:22 +0000146 >>> Decimal(str(2.0 ** 0.5))
Alexander Belopolsky287d1fd2011-01-12 16:37:14 +0000147 Decimal('1.4142135623730951')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000148 >>> Decimal(2) ** Decimal('0.5')
149 Decimal('1.414213562373095048801688724')
150 >>> Decimal('NaN')
151 Decimal('NaN')
152 >>> Decimal('-Infinity')
153 Decimal('-Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000154
155The significance of a new Decimal is determined solely by the number of digits
156input. Context precision and rounding only come into play during arithmetic
Christian Heimesfe337bf2008-03-23 21:54:12 +0000157operations.
158
159.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +0000160
161 >>> getcontext().prec = 6
162 >>> Decimal('3.0')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000163 Decimal('3.0')
Georg Brandl116aa622007-08-15 14:28:22 +0000164 >>> Decimal('3.1415926535')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000165 Decimal('3.1415926535')
Georg Brandl116aa622007-08-15 14:28:22 +0000166 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000167 Decimal('5.85987')
Georg Brandl116aa622007-08-15 14:28:22 +0000168 >>> getcontext().rounding = ROUND_UP
169 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000170 Decimal('5.85988')
Georg Brandl116aa622007-08-15 14:28:22 +0000171
172Decimals interact well with much of the rest of Python. Here is a small decimal
Christian Heimesfe337bf2008-03-23 21:54:12 +0000173floating point flying circus:
174
175.. doctest::
176 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000177
Facundo Batista789bdf02008-06-21 17:29:41 +0000178 >>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
Georg Brandl116aa622007-08-15 14:28:22 +0000179 >>> max(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000180 Decimal('9.25')
Georg Brandl116aa622007-08-15 14:28:22 +0000181 >>> min(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000182 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +0000183 >>> sorted(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000184 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
185 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl116aa622007-08-15 14:28:22 +0000186 >>> sum(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000187 Decimal('19.29')
Georg Brandl116aa622007-08-15 14:28:22 +0000188 >>> a,b,c = data[:3]
189 >>> str(a)
190 '1.34'
191 >>> float(a)
Mark Dickinson8dad7df2009-06-28 20:36:54 +0000192 1.34
193 >>> round(a, 1)
194 Decimal('1.3')
Georg Brandl116aa622007-08-15 14:28:22 +0000195 >>> int(a)
196 1
197 >>> a * 5
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000198 Decimal('6.70')
Georg Brandl116aa622007-08-15 14:28:22 +0000199 >>> a * b
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000200 Decimal('2.5058')
Georg Brandl116aa622007-08-15 14:28:22 +0000201 >>> c % a
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000202 Decimal('0.77')
Georg Brandl116aa622007-08-15 14:28:22 +0000203
Christian Heimesfe337bf2008-03-23 21:54:12 +0000204And some mathematical functions are also available to Decimal:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000205
Facundo Batista789bdf02008-06-21 17:29:41 +0000206 >>> getcontext().prec = 28
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000207 >>> Decimal(2).sqrt()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000208 Decimal('1.414213562373095048801688724')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000209 >>> Decimal(1).exp()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000210 Decimal('2.718281828459045235360287471')
211 >>> Decimal('10').ln()
212 Decimal('2.302585092994045684017991455')
213 >>> Decimal('10').log10()
214 Decimal('1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000215
Georg Brandl116aa622007-08-15 14:28:22 +0000216The :meth:`quantize` method rounds a number to a fixed exponent. This method is
217useful for monetary applications that often round results to a fixed number of
Christian Heimesfe337bf2008-03-23 21:54:12 +0000218places:
Georg Brandl116aa622007-08-15 14:28:22 +0000219
220 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000221 Decimal('7.32')
Georg Brandl116aa622007-08-15 14:28:22 +0000222 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000223 Decimal('8')
Georg Brandl116aa622007-08-15 14:28:22 +0000224
225As shown above, the :func:`getcontext` function accesses the current context and
226allows the settings to be changed. This approach meets the needs of most
227applications.
228
229For more advanced work, it may be useful to create alternate contexts using the
230Context() constructor. To make an alternate active, use the :func:`setcontext`
231function.
232
233In accordance with the standard, the :mod:`Decimal` module provides two ready to
234use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
235former is especially useful for debugging because many of the traps are
Christian Heimesfe337bf2008-03-23 21:54:12 +0000236enabled:
237
238.. doctest:: newcontext
239 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000240
241 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
242 >>> setcontext(myothercontext)
243 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000244 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl116aa622007-08-15 14:28:22 +0000245
246 >>> ExtendedContext
247 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000248 capitals=1, clamp=0, flags=[], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000249 >>> setcontext(ExtendedContext)
250 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000251 Decimal('0.142857143')
Georg Brandl116aa622007-08-15 14:28:22 +0000252 >>> Decimal(42) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000253 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000254
255 >>> setcontext(BasicContext)
256 >>> Decimal(42) / Decimal(0)
257 Traceback (most recent call last):
258 File "<pyshell#143>", line 1, in -toplevel-
259 Decimal(42) / Decimal(0)
260 DivisionByZero: x / 0
261
262Contexts also have signal flags for monitoring exceptional conditions
263encountered during computations. The flags remain set until explicitly cleared,
264so it is best to clear the flags before each set of monitored computations by
265using the :meth:`clear_flags` method. ::
266
267 >>> setcontext(ExtendedContext)
268 >>> getcontext().clear_flags()
269 >>> Decimal(355) / Decimal(113)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000270 Decimal('3.14159292')
Georg Brandl116aa622007-08-15 14:28:22 +0000271 >>> getcontext()
272 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000273 capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000274
275The *flags* entry shows that the rational approximation to :const:`Pi` was
276rounded (digits beyond the context precision were thrown away) and that the
277result is inexact (some of the discarded digits were non-zero).
278
279Individual traps are set using the dictionary in the :attr:`traps` field of a
Christian Heimesfe337bf2008-03-23 21:54:12 +0000280context:
Georg Brandl116aa622007-08-15 14:28:22 +0000281
Christian Heimesfe337bf2008-03-23 21:54:12 +0000282.. doctest:: newcontext
283
284 >>> setcontext(ExtendedContext)
Georg Brandl116aa622007-08-15 14:28:22 +0000285 >>> Decimal(1) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000286 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000287 >>> getcontext().traps[DivisionByZero] = 1
288 >>> Decimal(1) / Decimal(0)
289 Traceback (most recent call last):
290 File "<pyshell#112>", line 1, in -toplevel-
291 Decimal(1) / Decimal(0)
292 DivisionByZero: x / 0
293
294Most programs adjust the current context only once, at the beginning of the
295program. And, in many applications, data is converted to :class:`Decimal` with
296a single cast inside a loop. With context set and decimals created, the bulk of
297the program manipulates the data no differently than with other Python numeric
298types.
299
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000300.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000301
302
303.. _decimal-decimal:
304
305Decimal objects
306---------------
307
308
Georg Brandlc2a4f4f2009-04-10 09:03:43 +0000309.. class:: Decimal(value="0", context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000310
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000311 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl116aa622007-08-15 14:28:22 +0000312
Raymond Hettinger96798592010-04-02 16:58:27 +0000313 *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000314 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Christian Heimesa62da1d2008-01-12 19:39:10 +0000315 string, it should conform to the decimal numeric string syntax after leading
316 and trailing whitespace characters are removed::
Georg Brandl116aa622007-08-15 14:28:22 +0000317
318 sign ::= '+' | '-'
319 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
320 indicator ::= 'e' | 'E'
321 digits ::= digit [digit]...
322 decimal-part ::= digits '.' [digits] | ['.'] digits
323 exponent-part ::= indicator [sign] digits
324 infinity ::= 'Infinity' | 'Inf'
325 nan ::= 'NaN' [digits] | 'sNaN' [digits]
326 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandl48310cd2009-01-03 21:18:54 +0000327 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl116aa622007-08-15 14:28:22 +0000328
Mark Dickinson345adc42009-08-02 10:14:23 +0000329 Other Unicode decimal digits are also permitted where ``digit``
330 appears above. These include decimal digits from various other
331 alphabets (for example, Arabic-Indic and Devanāgarī digits) along
332 with the fullwidth digits ``'\uff10'`` through ``'\uff19'``.
333
Georg Brandl116aa622007-08-15 14:28:22 +0000334 If *value* is a :class:`tuple`, it should have three components, a sign
335 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
336 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000337 returns ``Decimal('1.414')``.
Georg Brandl116aa622007-08-15 14:28:22 +0000338
Raymond Hettinger96798592010-04-02 16:58:27 +0000339 If *value* is a :class:`float`, the binary floating point value is losslessly
340 converted to its exact decimal equivalent. This conversion can often require
Mark Dickinsone534a072010-04-04 22:13:14 +0000341 53 or more digits of precision. For example, ``Decimal(float('1.1'))``
342 converts to
343 ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
Raymond Hettinger96798592010-04-02 16:58:27 +0000344
Georg Brandl116aa622007-08-15 14:28:22 +0000345 The *context* precision does not affect how many digits are stored. That is
346 determined exclusively by the number of digits in *value*. For example,
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000347 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl116aa622007-08-15 14:28:22 +0000348 only three.
349
350 The purpose of the *context* argument is determining what to do if *value* is a
351 malformed string. If the context traps :const:`InvalidOperation`, an exception
352 is raised; otherwise, the constructor returns a new Decimal with the value of
353 :const:`NaN`.
354
355 Once constructed, :class:`Decimal` objects are immutable.
356
Mark Dickinsone534a072010-04-04 22:13:14 +0000357 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000358 The argument to the constructor is now permitted to be a :class:`float`
359 instance.
Mark Dickinsone534a072010-04-04 22:13:14 +0000360
Benjamin Petersone41251e2008-04-25 01:59:09 +0000361 Decimal floating point objects share many properties with the other built-in
362 numeric types such as :class:`float` and :class:`int`. All of the usual math
363 operations and special methods apply. Likewise, decimal objects can be
364 copied, pickled, printed, used as dictionary keys, used as set elements,
365 compared, sorted, and coerced to another type (such as :class:`float` or
Mark Dickinson5d233fd2010-02-18 14:54:37 +0000366 :class:`int`).
Christian Heimesa62da1d2008-01-12 19:39:10 +0000367
Mark Dickinson08ade6f2010-06-11 10:44:52 +0000368 Decimal objects cannot generally be combined with floats or
369 instances of :class:`fractions.Fraction` in arithmetic operations:
370 an attempt to add a :class:`Decimal` to a :class:`float`, for
371 example, will raise a :exc:`TypeError`. However, it is possible to
372 use Python's comparison operators to compare a :class:`Decimal`
373 instance ``x`` with another number ``y``. This avoids confusing results
374 when doing equality comparisons between numbers of different types.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000375
Ezio Melotti993a5ee2010-04-04 06:30:08 +0000376 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000377 Mixed-type comparisons between :class:`Decimal` instances and other
378 numeric types are now fully supported.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000379
Benjamin Petersone41251e2008-04-25 01:59:09 +0000380 In addition to the standard numeric properties, decimal floating point
381 objects also have a number of specialized methods:
Georg Brandl116aa622007-08-15 14:28:22 +0000382
Georg Brandl116aa622007-08-15 14:28:22 +0000383
Benjamin Petersone41251e2008-04-25 01:59:09 +0000384 .. method:: adjusted()
Georg Brandl116aa622007-08-15 14:28:22 +0000385
Benjamin Petersone41251e2008-04-25 01:59:09 +0000386 Return the adjusted exponent after shifting out the coefficient's
387 rightmost digits until only the lead digit remains:
388 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
389 position of the most significant digit with respect to the decimal point.
Georg Brandl116aa622007-08-15 14:28:22 +0000390
Georg Brandl116aa622007-08-15 14:28:22 +0000391
Benjamin Petersone41251e2008-04-25 01:59:09 +0000392 .. method:: as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +0000393
Benjamin Petersone41251e2008-04-25 01:59:09 +0000394 Return a :term:`named tuple` representation of the number:
395 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000396
Christian Heimes25bb7832008-01-11 16:17:00 +0000397
Benjamin Petersone41251e2008-04-25 01:59:09 +0000398 .. method:: canonical()
Georg Brandl116aa622007-08-15 14:28:22 +0000399
Benjamin Petersone41251e2008-04-25 01:59:09 +0000400 Return the canonical encoding of the argument. Currently, the encoding of
401 a :class:`Decimal` instance is always canonical, so this operation returns
402 its argument unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000403
Benjamin Petersone41251e2008-04-25 01:59:09 +0000404 .. method:: compare(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000405
Georg Brandl05f5ab72008-09-24 09:11:47 +0000406 Compare the values of two Decimal instances. :meth:`compare` returns a
407 Decimal instance, and if either operand is a NaN then the result is a
408 NaN::
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000409
Georg Brandl05f5ab72008-09-24 09:11:47 +0000410 a or b is a NaN ==> Decimal('NaN')
411 a < b ==> Decimal('-1')
412 a == b ==> Decimal('0')
413 a > b ==> Decimal('1')
Georg Brandl116aa622007-08-15 14:28:22 +0000414
Benjamin Petersone41251e2008-04-25 01:59:09 +0000415 .. method:: compare_signal(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000416
Benjamin Petersone41251e2008-04-25 01:59:09 +0000417 This operation is identical to the :meth:`compare` method, except that all
418 NaNs signal. That is, if neither operand is a signaling NaN then any
419 quiet NaN operand is treated as though it were a signaling NaN.
Georg Brandl116aa622007-08-15 14:28:22 +0000420
Benjamin Petersone41251e2008-04-25 01:59:09 +0000421 .. method:: compare_total(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000422
Benjamin Petersone41251e2008-04-25 01:59:09 +0000423 Compare two operands using their abstract representation rather than their
424 numerical value. Similar to the :meth:`compare` method, but the result
425 gives a total ordering on :class:`Decimal` instances. Two
426 :class:`Decimal` instances with the same numeric value but different
427 representations compare unequal in this ordering:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000428
Benjamin Petersone41251e2008-04-25 01:59:09 +0000429 >>> Decimal('12.0').compare_total(Decimal('12'))
430 Decimal('-1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000431
Benjamin Petersone41251e2008-04-25 01:59:09 +0000432 Quiet and signaling NaNs are also included in the total ordering. The
433 result of this function is ``Decimal('0')`` if both operands have the same
434 representation, ``Decimal('-1')`` if the first operand is lower in the
435 total order than the second, and ``Decimal('1')`` if the first operand is
436 higher in the total order than the second operand. See the specification
437 for details of the total order.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000438
Benjamin Petersone41251e2008-04-25 01:59:09 +0000439 .. method:: compare_total_mag(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000440
Benjamin Petersone41251e2008-04-25 01:59:09 +0000441 Compare two operands using their abstract representation rather than their
442 value as in :meth:`compare_total`, but ignoring the sign of each operand.
443 ``x.compare_total_mag(y)`` is equivalent to
444 ``x.copy_abs().compare_total(y.copy_abs())``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000445
Facundo Batista789bdf02008-06-21 17:29:41 +0000446 .. method:: conjugate()
447
Benjamin Petersondcf97b92008-07-02 17:30:14 +0000448 Just returns self, this method is only to comply with the Decimal
Facundo Batista789bdf02008-06-21 17:29:41 +0000449 Specification.
450
Benjamin Petersone41251e2008-04-25 01:59:09 +0000451 .. method:: copy_abs()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000452
Benjamin Petersone41251e2008-04-25 01:59:09 +0000453 Return the absolute value of the argument. This operation is unaffected
454 by the context and is quiet: no flags are changed and no rounding is
455 performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000456
Benjamin Petersone41251e2008-04-25 01:59:09 +0000457 .. method:: copy_negate()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000458
Benjamin Petersone41251e2008-04-25 01:59:09 +0000459 Return the negation of the argument. This operation is unaffected by the
460 context and is quiet: no flags are changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000461
Benjamin Petersone41251e2008-04-25 01:59:09 +0000462 .. method:: copy_sign(other)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000463
Benjamin Petersone41251e2008-04-25 01:59:09 +0000464 Return a copy of the first operand with the sign set to be the same as the
465 sign of the second operand. For example:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000466
Benjamin Petersone41251e2008-04-25 01:59:09 +0000467 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
468 Decimal('-2.3')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000469
Benjamin Petersone41251e2008-04-25 01:59:09 +0000470 This operation is unaffected by the context and is quiet: no flags are
471 changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000472
Benjamin Petersone41251e2008-04-25 01:59:09 +0000473 .. method:: exp([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000474
Benjamin Petersone41251e2008-04-25 01:59:09 +0000475 Return the value of the (natural) exponential function ``e**x`` at the
476 given number. The result is correctly rounded using the
477 :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000478
Benjamin Petersone41251e2008-04-25 01:59:09 +0000479 >>> Decimal(1).exp()
480 Decimal('2.718281828459045235360287471')
481 >>> Decimal(321).exp()
482 Decimal('2.561702493119680037517373933E+139')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000483
Raymond Hettinger771ed762009-01-03 19:20:32 +0000484 .. method:: from_float(f)
485
486 Classmethod that converts a float to a decimal number, exactly.
487
488 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
489 Since 0.1 is not exactly representable in binary floating point, the
490 value is stored as the nearest representable value which is
491 `0x1.999999999999ap-4`. That equivalent value in decimal is
492 `0.1000000000000000055511151231257827021181583404541015625`.
493
Mark Dickinsone534a072010-04-04 22:13:14 +0000494 .. note:: From Python 3.2 onwards, a :class:`Decimal` instance
495 can also be constructed directly from a :class:`float`.
496
Raymond Hettinger771ed762009-01-03 19:20:32 +0000497 .. doctest::
498
499 >>> Decimal.from_float(0.1)
500 Decimal('0.1000000000000000055511151231257827021181583404541015625')
501 >>> Decimal.from_float(float('nan'))
502 Decimal('NaN')
503 >>> Decimal.from_float(float('inf'))
504 Decimal('Infinity')
505 >>> Decimal.from_float(float('-inf'))
506 Decimal('-Infinity')
507
Georg Brandl45f53372009-01-03 21:15:20 +0000508 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +0000509
Benjamin Petersone41251e2008-04-25 01:59:09 +0000510 .. method:: fma(other, third[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000511
Benjamin Petersone41251e2008-04-25 01:59:09 +0000512 Fused multiply-add. Return self*other+third with no rounding of the
513 intermediate product self*other.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000514
Benjamin Petersone41251e2008-04-25 01:59:09 +0000515 >>> Decimal(2).fma(3, 5)
516 Decimal('11')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000517
Benjamin Petersone41251e2008-04-25 01:59:09 +0000518 .. method:: is_canonical()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000519
Benjamin Petersone41251e2008-04-25 01:59:09 +0000520 Return :const:`True` if the argument is canonical and :const:`False`
521 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
522 this operation always returns :const:`True`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000523
Benjamin Petersone41251e2008-04-25 01:59:09 +0000524 .. method:: is_finite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000525
Benjamin Petersone41251e2008-04-25 01:59:09 +0000526 Return :const:`True` if the argument is a finite number, and
527 :const:`False` if the argument is an infinity or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000528
Benjamin Petersone41251e2008-04-25 01:59:09 +0000529 .. method:: is_infinite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000530
Benjamin Petersone41251e2008-04-25 01:59:09 +0000531 Return :const:`True` if the argument is either positive or negative
532 infinity and :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000533
Benjamin Petersone41251e2008-04-25 01:59:09 +0000534 .. method:: is_nan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000535
Benjamin Petersone41251e2008-04-25 01:59:09 +0000536 Return :const:`True` if the argument is a (quiet or signaling) NaN and
537 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000538
Benjamin Petersone41251e2008-04-25 01:59:09 +0000539 .. method:: is_normal()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000540
Benjamin Petersone41251e2008-04-25 01:59:09 +0000541 Return :const:`True` if the argument is a *normal* finite number. Return
542 :const:`False` if the argument is zero, subnormal, infinite or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000543
Benjamin Petersone41251e2008-04-25 01:59:09 +0000544 .. method:: is_qnan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000545
Benjamin Petersone41251e2008-04-25 01:59:09 +0000546 Return :const:`True` if the argument is a quiet NaN, and
547 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000548
Benjamin Petersone41251e2008-04-25 01:59:09 +0000549 .. method:: is_signed()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000550
Benjamin Petersone41251e2008-04-25 01:59:09 +0000551 Return :const:`True` if the argument has a negative sign and
552 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000553
Benjamin Petersone41251e2008-04-25 01:59:09 +0000554 .. method:: is_snan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000555
Benjamin Petersone41251e2008-04-25 01:59:09 +0000556 Return :const:`True` if the argument is a signaling NaN and :const:`False`
557 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000558
Benjamin Petersone41251e2008-04-25 01:59:09 +0000559 .. method:: is_subnormal()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000560
Benjamin Petersone41251e2008-04-25 01:59:09 +0000561 Return :const:`True` if the argument is subnormal, and :const:`False`
562 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000563
Benjamin Petersone41251e2008-04-25 01:59:09 +0000564 .. method:: is_zero()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000565
Benjamin Petersone41251e2008-04-25 01:59:09 +0000566 Return :const:`True` if the argument is a (positive or negative) zero and
567 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000568
Benjamin Petersone41251e2008-04-25 01:59:09 +0000569 .. method:: ln([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000570
Benjamin Petersone41251e2008-04-25 01:59:09 +0000571 Return the natural (base e) logarithm of the operand. The result is
572 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000573
Benjamin Petersone41251e2008-04-25 01:59:09 +0000574 .. method:: log10([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000575
Benjamin Petersone41251e2008-04-25 01:59:09 +0000576 Return the base ten logarithm of the operand. The result is correctly
577 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000578
Benjamin Petersone41251e2008-04-25 01:59:09 +0000579 .. method:: logb([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000580
Benjamin Petersone41251e2008-04-25 01:59:09 +0000581 For a nonzero number, return the adjusted exponent of its operand as a
582 :class:`Decimal` instance. If the operand is a zero then
583 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
584 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
585 returned.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000586
Benjamin Petersone41251e2008-04-25 01:59:09 +0000587 .. method:: logical_and(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000588
Benjamin Petersone41251e2008-04-25 01:59:09 +0000589 :meth:`logical_and` is a logical operation which takes two *logical
590 operands* (see :ref:`logical_operands_label`). The result is the
591 digit-wise ``and`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000592
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000593 .. method:: logical_invert([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000594
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000595 :meth:`logical_invert` is a logical operation. The
Benjamin Petersone41251e2008-04-25 01:59:09 +0000596 result is the digit-wise inversion of the operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000597
Benjamin Petersone41251e2008-04-25 01:59:09 +0000598 .. method:: logical_or(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000599
Benjamin Petersone41251e2008-04-25 01:59:09 +0000600 :meth:`logical_or` is a logical operation which takes two *logical
601 operands* (see :ref:`logical_operands_label`). The result is the
602 digit-wise ``or`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000603
Benjamin Petersone41251e2008-04-25 01:59:09 +0000604 .. method:: logical_xor(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000605
Benjamin Petersone41251e2008-04-25 01:59:09 +0000606 :meth:`logical_xor` is a logical operation which takes two *logical
607 operands* (see :ref:`logical_operands_label`). The result is the
608 digit-wise exclusive or of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000609
Benjamin Petersone41251e2008-04-25 01:59:09 +0000610 .. method:: max(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000611
Benjamin Petersone41251e2008-04-25 01:59:09 +0000612 Like ``max(self, other)`` except that the context rounding rule is applied
613 before returning and that :const:`NaN` values are either signaled or
614 ignored (depending on the context and whether they are signaling or
615 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000616
Benjamin Petersone41251e2008-04-25 01:59:09 +0000617 .. method:: max_mag(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000618
Georg Brandl502d9a52009-07-26 15:02:41 +0000619 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000620 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000621
Benjamin Petersone41251e2008-04-25 01:59:09 +0000622 .. method:: min(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000623
Benjamin Petersone41251e2008-04-25 01:59:09 +0000624 Like ``min(self, other)`` except that the context rounding rule is applied
625 before returning and that :const:`NaN` values are either signaled or
626 ignored (depending on the context and whether they are signaling or
627 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000628
Benjamin Petersone41251e2008-04-25 01:59:09 +0000629 .. method:: min_mag(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000630
Georg Brandl502d9a52009-07-26 15:02:41 +0000631 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000632 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000633
Benjamin Petersone41251e2008-04-25 01:59:09 +0000634 .. method:: next_minus([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000635
Benjamin Petersone41251e2008-04-25 01:59:09 +0000636 Return the largest number representable in the given context (or in the
637 current thread's context if no context is given) that is smaller than the
638 given operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000639
Benjamin Petersone41251e2008-04-25 01:59:09 +0000640 .. method:: next_plus([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000641
Benjamin Petersone41251e2008-04-25 01:59:09 +0000642 Return the smallest number representable in the given context (or in the
643 current thread's context if no context is given) that is larger than the
644 given operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000645
Benjamin Petersone41251e2008-04-25 01:59:09 +0000646 .. method:: next_toward(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000647
Benjamin Petersone41251e2008-04-25 01:59:09 +0000648 If the two operands are unequal, return the number closest to the first
649 operand in the direction of the second operand. If both operands are
650 numerically equal, return a copy of the first operand with the sign set to
651 be the same as the sign of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000652
Benjamin Petersone41251e2008-04-25 01:59:09 +0000653 .. method:: normalize([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000654
Benjamin Petersone41251e2008-04-25 01:59:09 +0000655 Normalize the number by stripping the rightmost trailing zeros and
656 converting any result equal to :const:`Decimal('0')` to
657 :const:`Decimal('0e0')`. Used for producing canonical values for members
658 of an equivalence class. For example, ``Decimal('32.100')`` and
659 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
660 ``Decimal('32.1')``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000661
Benjamin Petersone41251e2008-04-25 01:59:09 +0000662 .. method:: number_class([context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000663
Benjamin Petersone41251e2008-04-25 01:59:09 +0000664 Return a string describing the *class* of the operand. The returned value
665 is one of the following ten strings.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000666
Benjamin Petersone41251e2008-04-25 01:59:09 +0000667 * ``"-Infinity"``, indicating that the operand is negative infinity.
668 * ``"-Normal"``, indicating that the operand is a negative normal number.
669 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
670 * ``"-Zero"``, indicating that the operand is a negative zero.
671 * ``"+Zero"``, indicating that the operand is a positive zero.
672 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
673 * ``"+Normal"``, indicating that the operand is a positive normal number.
674 * ``"+Infinity"``, indicating that the operand is positive infinity.
675 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
676 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000677
Benjamin Petersone41251e2008-04-25 01:59:09 +0000678 .. method:: quantize(exp[, rounding[, context[, watchexp]]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000679
Benjamin Petersone41251e2008-04-25 01:59:09 +0000680 Return a value equal to the first operand after rounding and having the
681 exponent of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000682
Benjamin Petersone41251e2008-04-25 01:59:09 +0000683 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
684 Decimal('1.414')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000685
Benjamin Petersone41251e2008-04-25 01:59:09 +0000686 Unlike other operations, if the length of the coefficient after the
687 quantize operation would be greater than precision, then an
688 :const:`InvalidOperation` is signaled. This guarantees that, unless there
689 is an error condition, the quantized exponent is always equal to that of
690 the right-hand operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000691
Benjamin Petersone41251e2008-04-25 01:59:09 +0000692 Also unlike other operations, quantize never signals Underflow, even if
693 the result is subnormal and inexact.
Georg Brandl116aa622007-08-15 14:28:22 +0000694
Benjamin Petersone41251e2008-04-25 01:59:09 +0000695 If the exponent of the second operand is larger than that of the first
696 then rounding may be necessary. In this case, the rounding mode is
697 determined by the ``rounding`` argument if given, else by the given
698 ``context`` argument; if neither argument is given the rounding mode of
699 the current thread's context is used.
Georg Brandl116aa622007-08-15 14:28:22 +0000700
Benjamin Petersone41251e2008-04-25 01:59:09 +0000701 If *watchexp* is set (default), then an error is returned whenever the
702 resulting exponent is greater than :attr:`Emax` or less than
703 :attr:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +0000704
Benjamin Petersone41251e2008-04-25 01:59:09 +0000705 .. method:: radix()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000706
Benjamin Petersone41251e2008-04-25 01:59:09 +0000707 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
708 class does all its arithmetic. Included for compatibility with the
709 specification.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000710
Benjamin Petersone41251e2008-04-25 01:59:09 +0000711 .. method:: remainder_near(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000712
Benjamin Petersone41251e2008-04-25 01:59:09 +0000713 Compute the modulo as either a positive or negative value depending on
714 which is closest to zero. For instance, ``Decimal(10).remainder_near(6)``
715 returns ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``.
Georg Brandl116aa622007-08-15 14:28:22 +0000716
Benjamin Petersone41251e2008-04-25 01:59:09 +0000717 If both are equally close, the one chosen will have the same sign as
718 *self*.
Georg Brandl116aa622007-08-15 14:28:22 +0000719
Benjamin Petersone41251e2008-04-25 01:59:09 +0000720 .. method:: rotate(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000721
Benjamin Petersone41251e2008-04-25 01:59:09 +0000722 Return the result of rotating the digits of the first operand by an amount
723 specified by the second operand. The second operand must be an integer in
724 the range -precision through precision. The absolute value of the second
725 operand gives the number of places to rotate. If the second operand is
726 positive then rotation is to the left; otherwise rotation is to the right.
727 The coefficient of the first operand is padded on the left with zeros to
728 length precision if necessary. The sign and exponent of the first operand
729 are unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000730
Benjamin Petersone41251e2008-04-25 01:59:09 +0000731 .. method:: same_quantum(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000732
Benjamin Petersone41251e2008-04-25 01:59:09 +0000733 Test whether self and other have the same exponent or whether both are
734 :const:`NaN`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000735
Benjamin Petersone41251e2008-04-25 01:59:09 +0000736 .. method:: scaleb(other[, context])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000737
Benjamin Petersone41251e2008-04-25 01:59:09 +0000738 Return the first operand with exponent adjusted by the second.
739 Equivalently, return the first operand multiplied by ``10**other``. The
740 second operand must be an integer.
Georg Brandl116aa622007-08-15 14:28:22 +0000741
Benjamin Petersone41251e2008-04-25 01:59:09 +0000742 .. method:: shift(other[, context])
Georg Brandl116aa622007-08-15 14:28:22 +0000743
Benjamin Petersone41251e2008-04-25 01:59:09 +0000744 Return the result of shifting the digits of the first operand by an amount
745 specified by the second operand. The second operand must be an integer in
746 the range -precision through precision. The absolute value of the second
747 operand gives the number of places to shift. If the second operand is
748 positive then the shift is to the left; otherwise the shift is to the
749 right. Digits shifted into the coefficient are zeros. The sign and
750 exponent of the first operand are unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +0000751
Benjamin Petersone41251e2008-04-25 01:59:09 +0000752 .. method:: sqrt([context])
Georg Brandl116aa622007-08-15 14:28:22 +0000753
Benjamin Petersone41251e2008-04-25 01:59:09 +0000754 Return the square root of the argument to full precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000755
Georg Brandl116aa622007-08-15 14:28:22 +0000756
Benjamin Petersone41251e2008-04-25 01:59:09 +0000757 .. method:: to_eng_string([context])
Georg Brandl116aa622007-08-15 14:28:22 +0000758
Benjamin Petersone41251e2008-04-25 01:59:09 +0000759 Convert to an engineering-type string.
Georg Brandl116aa622007-08-15 14:28:22 +0000760
Benjamin Petersone41251e2008-04-25 01:59:09 +0000761 Engineering notation has an exponent which is a multiple of 3, so there
762 are up to 3 digits left of the decimal place. For example, converts
763 ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000764
Benjamin Petersone41251e2008-04-25 01:59:09 +0000765 .. method:: to_integral([rounding[, context]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000766
Benjamin Petersone41251e2008-04-25 01:59:09 +0000767 Identical to the :meth:`to_integral_value` method. The ``to_integral``
768 name has been kept for compatibility with older versions.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000769
Benjamin Petersone41251e2008-04-25 01:59:09 +0000770 .. method:: to_integral_exact([rounding[, context]])
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000771
Benjamin Petersone41251e2008-04-25 01:59:09 +0000772 Round to the nearest integer, signaling :const:`Inexact` or
773 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
774 determined by the ``rounding`` parameter if given, else by the given
775 ``context``. If neither parameter is given then the rounding mode of the
776 current context is used.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000777
Benjamin Petersone41251e2008-04-25 01:59:09 +0000778 .. method:: to_integral_value([rounding[, context]])
Georg Brandl116aa622007-08-15 14:28:22 +0000779
Benjamin Petersone41251e2008-04-25 01:59:09 +0000780 Round to the nearest integer without signaling :const:`Inexact` or
781 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
782 rounding method in either the supplied *context* or the current context.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000783
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000784
785.. _logical_operands_label:
786
787Logical operands
788^^^^^^^^^^^^^^^^
789
790The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
791and :meth:`logical_xor` methods expect their arguments to be *logical
792operands*. A *logical operand* is a :class:`Decimal` instance whose
793exponent and sign are both zero, and whose digits are all either
794:const:`0` or :const:`1`.
795
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000796.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000797
798
799.. _decimal-context:
800
801Context objects
802---------------
803
804Contexts are environments for arithmetic operations. They govern precision, set
805rules for rounding, determine which signals are treated as exceptions, and limit
806the range for exponents.
807
808Each thread has its own current context which is accessed or changed using the
809:func:`getcontext` and :func:`setcontext` functions:
810
811
812.. function:: getcontext()
813
814 Return the current context for the active thread.
815
816
817.. function:: setcontext(c)
818
819 Set the current context for the active thread to *c*.
820
Georg Brandle6bcc912008-05-12 18:05:20 +0000821You can also use the :keyword:`with` statement and the :func:`localcontext`
822function to temporarily change the active context.
Georg Brandl116aa622007-08-15 14:28:22 +0000823
824.. function:: localcontext([c])
825
826 Return a context manager that will set the current context for the active thread
827 to a copy of *c* on entry to the with-statement and restore the previous context
828 when exiting the with-statement. If no context is specified, a copy of the
829 current context is used.
830
Georg Brandl116aa622007-08-15 14:28:22 +0000831 For example, the following code sets the current decimal precision to 42 places,
832 performs a calculation, and then automatically restores the previous context::
833
Georg Brandl116aa622007-08-15 14:28:22 +0000834 from decimal import localcontext
835
836 with localcontext() as ctx:
837 ctx.prec = 42 # Perform a high precision calculation
838 s = calculate_something()
839 s = +s # Round the final result back to the default precision
840
841New contexts can also be created using the :class:`Context` constructor
842described below. In addition, the module provides three pre-made contexts:
843
844
845.. class:: BasicContext
846
847 This is a standard context defined by the General Decimal Arithmetic
848 Specification. Precision is set to nine. Rounding is set to
849 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
850 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
851 :const:`Subnormal`.
852
853 Because many of the traps are enabled, this context is useful for debugging.
854
855
856.. class:: ExtendedContext
857
858 This is a standard context defined by the General Decimal Arithmetic
859 Specification. Precision is set to nine. Rounding is set to
860 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
861 exceptions are not raised during computations).
862
Christian Heimes3feef612008-02-11 06:19:17 +0000863 Because the traps are disabled, this context is useful for applications that
Georg Brandl116aa622007-08-15 14:28:22 +0000864 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
865 raising exceptions. This allows an application to complete a run in the
866 presence of conditions that would otherwise halt the program.
867
868
869.. class:: DefaultContext
870
871 This context is used by the :class:`Context` constructor as a prototype for new
872 contexts. Changing a field (such a precision) has the effect of changing the
Stefan Kraha1193932010-05-29 12:59:18 +0000873 default for new contexts created by the :class:`Context` constructor.
Georg Brandl116aa622007-08-15 14:28:22 +0000874
875 This context is most useful in multi-threaded environments. Changing one of the
876 fields before threads are started has the effect of setting system-wide
877 defaults. Changing the fields after threads have started is not recommended as
878 it would require thread synchronization to prevent race conditions.
879
880 In single threaded environments, it is preferable to not use this context at
881 all. Instead, simply create contexts explicitly as described below.
882
883 The default values are precision=28, rounding=ROUND_HALF_EVEN, and enabled traps
884 for Overflow, InvalidOperation, and DivisionByZero.
885
886In addition to the three supplied contexts, new contexts can be created with the
887:class:`Context` constructor.
888
889
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000890.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=None, clamp=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000891
892 Creates a new context. If a field is not specified or is :const:`None`, the
893 default values are copied from the :const:`DefaultContext`. If the *flags*
894 field is not specified or is :const:`None`, all flags are cleared.
895
896 The *prec* field is a positive integer that sets the precision for arithmetic
897 operations in the context.
898
899 The *rounding* option is one of:
900
901 * :const:`ROUND_CEILING` (towards :const:`Infinity`),
902 * :const:`ROUND_DOWN` (towards zero),
903 * :const:`ROUND_FLOOR` (towards :const:`-Infinity`),
904 * :const:`ROUND_HALF_DOWN` (to nearest with ties going towards zero),
905 * :const:`ROUND_HALF_EVEN` (to nearest with ties going to nearest even integer),
906 * :const:`ROUND_HALF_UP` (to nearest with ties going away from zero), or
907 * :const:`ROUND_UP` (away from zero).
Georg Brandl48310cd2009-01-03 21:18:54 +0000908 * :const:`ROUND_05UP` (away from zero if last digit after rounding towards zero
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000909 would have been 0 or 5; otherwise towards zero)
Georg Brandl116aa622007-08-15 14:28:22 +0000910
911 The *traps* and *flags* fields list any signals to be set. Generally, new
912 contexts should only set traps and leave the flags clear.
913
914 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
915 for exponents.
916
917 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
918 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
919 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
920
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000921 The *clamp* field is either :const:`0` (the default) or :const:`1`.
922 If set to :const:`1`, the exponent ``e`` of a :class:`Decimal`
923 instance representable in this context is strictly limited to the
924 range ``Emin - prec + 1 <= e <= Emax - prec + 1``. If *clamp* is
925 :const:`0` then a weaker condition holds: the adjusted exponent of
926 the :class:`Decimal` instance is at most ``Emax``. When *clamp* is
927 :const:`1`, a large normal number will, where possible, have its
928 exponent reduced and a corresponding number of zeros added to its
929 coefficient, in order to fit the exponent constraints; this
930 preserves the value of the number but loses information about
931 significant trailing zeros. For example::
932
933 >>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999')
934 Decimal('1.23000E+999')
935
936 A *clamp* value of :const:`1` allows compatibility with the
937 fixed-width decimal interchange formats specified in IEEE 754.
Georg Brandl116aa622007-08-15 14:28:22 +0000938
Benjamin Petersone41251e2008-04-25 01:59:09 +0000939 The :class:`Context` class defines several general purpose methods as well as
940 a large number of methods for doing arithmetic directly in a given context.
941 In addition, for each of the :class:`Decimal` methods described above (with
942 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
Mark Dickinson84230a12010-02-18 14:49:50 +0000943 a corresponding :class:`Context` method. For example, for a :class:`Context`
944 instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
945 equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
Mark Dickinson5d233fd2010-02-18 14:54:37 +0000946 Python integer (an instance of :class:`int`) anywhere that a
Mark Dickinson84230a12010-02-18 14:49:50 +0000947 Decimal instance is accepted.
Georg Brandl116aa622007-08-15 14:28:22 +0000948
949
Benjamin Petersone41251e2008-04-25 01:59:09 +0000950 .. method:: clear_flags()
Georg Brandl116aa622007-08-15 14:28:22 +0000951
Benjamin Petersone41251e2008-04-25 01:59:09 +0000952 Resets all of the flags to :const:`0`.
Georg Brandl116aa622007-08-15 14:28:22 +0000953
Benjamin Petersone41251e2008-04-25 01:59:09 +0000954 .. method:: copy()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000955
Benjamin Petersone41251e2008-04-25 01:59:09 +0000956 Return a duplicate of the context.
Georg Brandl116aa622007-08-15 14:28:22 +0000957
Benjamin Petersone41251e2008-04-25 01:59:09 +0000958 .. method:: copy_decimal(num)
Georg Brandl116aa622007-08-15 14:28:22 +0000959
Benjamin Petersone41251e2008-04-25 01:59:09 +0000960 Return a copy of the Decimal instance num.
Georg Brandl116aa622007-08-15 14:28:22 +0000961
Benjamin Petersone41251e2008-04-25 01:59:09 +0000962 .. method:: create_decimal(num)
Christian Heimesfe337bf2008-03-23 21:54:12 +0000963
Benjamin Petersone41251e2008-04-25 01:59:09 +0000964 Creates a new Decimal instance from *num* but using *self* as
965 context. Unlike the :class:`Decimal` constructor, the context precision,
966 rounding method, flags, and traps are applied to the conversion.
Georg Brandl116aa622007-08-15 14:28:22 +0000967
Benjamin Petersone41251e2008-04-25 01:59:09 +0000968 This is useful because constants are often given to a greater precision
969 than is needed by the application. Another benefit is that rounding
970 immediately eliminates unintended effects from digits beyond the current
971 precision. In the following example, using unrounded inputs means that
972 adding zero to a sum can change the result:
Georg Brandl116aa622007-08-15 14:28:22 +0000973
Benjamin Petersone41251e2008-04-25 01:59:09 +0000974 .. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +0000975
Benjamin Petersone41251e2008-04-25 01:59:09 +0000976 >>> getcontext().prec = 3
977 >>> Decimal('3.4445') + Decimal('1.0023')
978 Decimal('4.45')
979 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
980 Decimal('4.44')
Georg Brandl116aa622007-08-15 14:28:22 +0000981
Benjamin Petersone41251e2008-04-25 01:59:09 +0000982 This method implements the to-number operation of the IBM specification.
983 If the argument is a string, no leading or trailing whitespace is
984 permitted.
985
Georg Brandl45f53372009-01-03 21:15:20 +0000986 .. method:: create_decimal_from_float(f)
Raymond Hettinger771ed762009-01-03 19:20:32 +0000987
988 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandl45f53372009-01-03 21:15:20 +0000989 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettinger771ed762009-01-03 19:20:32 +0000990 the context precision, rounding method, flags, and traps are applied to
991 the conversion.
992
993 .. doctest::
994
Georg Brandl45f53372009-01-03 21:15:20 +0000995 >>> context = Context(prec=5, rounding=ROUND_DOWN)
996 >>> context.create_decimal_from_float(math.pi)
997 Decimal('3.1415')
998 >>> context = Context(prec=5, traps=[Inexact])
999 >>> context.create_decimal_from_float(math.pi)
1000 Traceback (most recent call last):
1001 ...
1002 decimal.Inexact: None
Raymond Hettinger771ed762009-01-03 19:20:32 +00001003
Georg Brandl45f53372009-01-03 21:15:20 +00001004 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +00001005
Benjamin Petersone41251e2008-04-25 01:59:09 +00001006 .. method:: Etiny()
1007
1008 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1009 value for subnormal results. When underflow occurs, the exponent is set
1010 to :const:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +00001011
Benjamin Petersone41251e2008-04-25 01:59:09 +00001012 .. method:: Etop()
Georg Brandl116aa622007-08-15 14:28:22 +00001013
Benjamin Petersone41251e2008-04-25 01:59:09 +00001014 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl116aa622007-08-15 14:28:22 +00001015
Benjamin Petersone41251e2008-04-25 01:59:09 +00001016 The usual approach to working with decimals is to create :class:`Decimal`
1017 instances and then apply arithmetic operations which take place within the
1018 current context for the active thread. An alternative approach is to use
1019 context methods for calculating within a specific context. The methods are
1020 similar to those for the :class:`Decimal` class and are only briefly
1021 recounted here.
Georg Brandl116aa622007-08-15 14:28:22 +00001022
1023
Benjamin Petersone41251e2008-04-25 01:59:09 +00001024 .. method:: abs(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001025
Benjamin Petersone41251e2008-04-25 01:59:09 +00001026 Returns the absolute value of *x*.
Georg Brandl116aa622007-08-15 14:28:22 +00001027
1028
Benjamin Petersone41251e2008-04-25 01:59:09 +00001029 .. method:: add(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001030
Benjamin Petersone41251e2008-04-25 01:59:09 +00001031 Return the sum of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001032
1033
Facundo Batista789bdf02008-06-21 17:29:41 +00001034 .. method:: canonical(x)
1035
1036 Returns the same Decimal object *x*.
1037
1038
1039 .. method:: compare(x, y)
1040
1041 Compares *x* and *y* numerically.
1042
1043
1044 .. method:: compare_signal(x, y)
1045
1046 Compares the values of the two operands numerically.
1047
1048
1049 .. method:: compare_total(x, y)
1050
1051 Compares two operands using their abstract representation.
1052
1053
1054 .. method:: compare_total_mag(x, y)
1055
1056 Compares two operands using their abstract representation, ignoring sign.
1057
1058
1059 .. method:: copy_abs(x)
1060
1061 Returns a copy of *x* with the sign set to 0.
1062
1063
1064 .. method:: copy_negate(x)
1065
1066 Returns a copy of *x* with the sign inverted.
1067
1068
1069 .. method:: copy_sign(x, y)
1070
1071 Copies the sign from *y* to *x*.
1072
1073
Benjamin Petersone41251e2008-04-25 01:59:09 +00001074 .. method:: divide(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001075
Benjamin Petersone41251e2008-04-25 01:59:09 +00001076 Return *x* divided by *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001077
1078
Benjamin Petersone41251e2008-04-25 01:59:09 +00001079 .. method:: divide_int(x, y)
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001080
Benjamin Petersone41251e2008-04-25 01:59:09 +00001081 Return *x* divided by *y*, truncated to an integer.
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001082
1083
Benjamin Petersone41251e2008-04-25 01:59:09 +00001084 .. method:: divmod(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001085
Benjamin Petersone41251e2008-04-25 01:59:09 +00001086 Divides two numbers and returns the integer part of the result.
Georg Brandl116aa622007-08-15 14:28:22 +00001087
1088
Facundo Batista789bdf02008-06-21 17:29:41 +00001089 .. method:: exp(x)
1090
1091 Returns `e ** x`.
1092
1093
1094 .. method:: fma(x, y, z)
1095
1096 Returns *x* multiplied by *y*, plus *z*.
1097
1098
1099 .. method:: is_canonical(x)
1100
1101 Returns True if *x* is canonical; otherwise returns False.
1102
1103
1104 .. method:: is_finite(x)
1105
1106 Returns True if *x* is finite; otherwise returns False.
1107
1108
1109 .. method:: is_infinite(x)
1110
1111 Returns True if *x* is infinite; otherwise returns False.
1112
1113
1114 .. method:: is_nan(x)
1115
1116 Returns True if *x* is a qNaN or sNaN; otherwise returns False.
1117
1118
1119 .. method:: is_normal(x)
1120
1121 Returns True if *x* is a normal number; otherwise returns False.
1122
1123
1124 .. method:: is_qnan(x)
1125
1126 Returns True if *x* is a quiet NaN; otherwise returns False.
1127
1128
1129 .. method:: is_signed(x)
1130
1131 Returns True if *x* is negative; otherwise returns False.
1132
1133
1134 .. method:: is_snan(x)
1135
1136 Returns True if *x* is a signaling NaN; otherwise returns False.
1137
1138
1139 .. method:: is_subnormal(x)
1140
1141 Returns True if *x* is subnormal; otherwise returns False.
1142
1143
1144 .. method:: is_zero(x)
1145
1146 Returns True if *x* is a zero; otherwise returns False.
1147
1148
1149 .. method:: ln(x)
1150
1151 Returns the natural (base e) logarithm of *x*.
1152
1153
1154 .. method:: log10(x)
1155
1156 Returns the base 10 logarithm of *x*.
1157
1158
1159 .. method:: logb(x)
1160
1161 Returns the exponent of the magnitude of the operand's MSD.
1162
1163
1164 .. method:: logical_and(x, y)
1165
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001166 Applies the logical operation *and* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001167
1168
1169 .. method:: logical_invert(x)
1170
1171 Invert all the digits in *x*.
1172
1173
1174 .. method:: logical_or(x, y)
1175
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001176 Applies the logical operation *or* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001177
1178
1179 .. method:: logical_xor(x, y)
1180
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001181 Applies the logical operation *xor* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001182
1183
1184 .. method:: max(x, y)
1185
1186 Compares two values numerically and returns the maximum.
1187
1188
1189 .. method:: max_mag(x, y)
1190
1191 Compares the values numerically with their sign ignored.
1192
1193
1194 .. method:: min(x, y)
1195
1196 Compares two values numerically and returns the minimum.
1197
1198
1199 .. method:: min_mag(x, y)
1200
1201 Compares the values numerically with their sign ignored.
1202
1203
Benjamin Petersone41251e2008-04-25 01:59:09 +00001204 .. method:: minus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001205
Benjamin Petersone41251e2008-04-25 01:59:09 +00001206 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl116aa622007-08-15 14:28:22 +00001207
1208
Benjamin Petersone41251e2008-04-25 01:59:09 +00001209 .. method:: multiply(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001210
Benjamin Petersone41251e2008-04-25 01:59:09 +00001211 Return the product of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001212
1213
Facundo Batista789bdf02008-06-21 17:29:41 +00001214 .. method:: next_minus(x)
1215
1216 Returns the largest representable number smaller than *x*.
1217
1218
1219 .. method:: next_plus(x)
1220
1221 Returns the smallest representable number larger than *x*.
1222
1223
1224 .. method:: next_toward(x, y)
1225
1226 Returns the number closest to *x*, in direction towards *y*.
1227
1228
1229 .. method:: normalize(x)
1230
1231 Reduces *x* to its simplest form.
1232
1233
1234 .. method:: number_class(x)
1235
1236 Returns an indication of the class of *x*.
1237
1238
Benjamin Petersone41251e2008-04-25 01:59:09 +00001239 .. method:: plus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001240
Benjamin Petersone41251e2008-04-25 01:59:09 +00001241 Plus corresponds to the unary prefix plus operator in Python. This
1242 operation applies the context precision and rounding, so it is *not* an
1243 identity operation.
Georg Brandl116aa622007-08-15 14:28:22 +00001244
1245
Benjamin Petersone41251e2008-04-25 01:59:09 +00001246 .. method:: power(x, y[, modulo])
Georg Brandl116aa622007-08-15 14:28:22 +00001247
Benjamin Petersone41251e2008-04-25 01:59:09 +00001248 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl116aa622007-08-15 14:28:22 +00001249
Benjamin Petersone41251e2008-04-25 01:59:09 +00001250 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1251 must be integral. The result will be inexact unless ``y`` is integral and
1252 the result is finite and can be expressed exactly in 'precision' digits.
1253 The result should always be correctly rounded, using the rounding mode of
1254 the current thread's context.
Georg Brandl116aa622007-08-15 14:28:22 +00001255
Benjamin Petersone41251e2008-04-25 01:59:09 +00001256 With three arguments, compute ``(x**y) % modulo``. For the three argument
1257 form, the following restrictions on the arguments hold:
Georg Brandl116aa622007-08-15 14:28:22 +00001258
Benjamin Petersone41251e2008-04-25 01:59:09 +00001259 - all three arguments must be integral
1260 - ``y`` must be nonnegative
1261 - at least one of ``x`` or ``y`` must be nonzero
1262 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl116aa622007-08-15 14:28:22 +00001263
Mark Dickinson5961b0e2010-02-22 15:41:48 +00001264 The value resulting from ``Context.power(x, y, modulo)`` is
1265 equal to the value that would be obtained by computing ``(x**y)
1266 % modulo`` with unbounded precision, but is computed more
1267 efficiently. The exponent of the result is zero, regardless of
1268 the exponents of ``x``, ``y`` and ``modulo``. The result is
1269 always exact.
Georg Brandl116aa622007-08-15 14:28:22 +00001270
Facundo Batista789bdf02008-06-21 17:29:41 +00001271
1272 .. method:: quantize(x, y)
1273
1274 Returns a value equal to *x* (rounded), having the exponent of *y*.
1275
1276
1277 .. method:: radix()
1278
1279 Just returns 10, as this is Decimal, :)
1280
1281
Benjamin Petersone41251e2008-04-25 01:59:09 +00001282 .. method:: remainder(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001283
Benjamin Petersone41251e2008-04-25 01:59:09 +00001284 Returns the remainder from integer division.
Georg Brandl116aa622007-08-15 14:28:22 +00001285
Benjamin Petersone41251e2008-04-25 01:59:09 +00001286 The sign of the result, if non-zero, is the same as that of the original
1287 dividend.
Georg Brandl116aa622007-08-15 14:28:22 +00001288
Benjamin Petersondcf97b92008-07-02 17:30:14 +00001289
Facundo Batista789bdf02008-06-21 17:29:41 +00001290 .. method:: remainder_near(x, y)
1291
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001292 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1293 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista789bdf02008-06-21 17:29:41 +00001294
1295
1296 .. method:: rotate(x, y)
1297
1298 Returns a rotated copy of *x*, *y* times.
1299
1300
1301 .. method:: same_quantum(x, y)
1302
1303 Returns True if the two operands have the same exponent.
1304
1305
1306 .. method:: scaleb (x, y)
1307
1308 Returns the first operand after adding the second value its exp.
1309
1310
1311 .. method:: shift(x, y)
1312
1313 Returns a shifted copy of *x*, *y* times.
1314
1315
1316 .. method:: sqrt(x)
1317
1318 Square root of a non-negative number to context precision.
1319
1320
Benjamin Petersone41251e2008-04-25 01:59:09 +00001321 .. method:: subtract(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001322
Benjamin Petersone41251e2008-04-25 01:59:09 +00001323 Return the difference between *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001324
Facundo Batista789bdf02008-06-21 17:29:41 +00001325
1326 .. method:: to_eng_string(x)
1327
1328 Converts a number to a string, using scientific notation.
1329
1330
1331 .. method:: to_integral_exact(x)
1332
1333 Rounds to an integer.
1334
1335
Benjamin Petersone41251e2008-04-25 01:59:09 +00001336 .. method:: to_sci_string(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001337
Benjamin Petersone41251e2008-04-25 01:59:09 +00001338 Converts a number to a string using scientific notation.
Georg Brandl116aa622007-08-15 14:28:22 +00001339
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001340.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001341
1342
1343.. _decimal-signals:
1344
1345Signals
1346-------
1347
1348Signals represent conditions that arise during computation. Each corresponds to
1349one context flag and one context trap enabler.
1350
Raymond Hettinger86173da2008-02-01 20:38:12 +00001351The context flag is set whenever the condition is encountered. After the
Georg Brandl116aa622007-08-15 14:28:22 +00001352computation, flags may be checked for informational purposes (for instance, to
1353determine whether a computation was exact). After checking the flags, be sure to
1354clear all flags before starting the next computation.
1355
1356If the context's trap enabler is set for the signal, then the condition causes a
1357Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1358is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1359condition.
1360
1361
1362.. class:: Clamped
1363
1364 Altered an exponent to fit representation constraints.
1365
1366 Typically, clamping occurs when an exponent falls outside the context's
1367 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001368 fit by adding zeros to the coefficient.
Georg Brandl116aa622007-08-15 14:28:22 +00001369
1370
1371.. class:: DecimalException
1372
1373 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1374
1375
1376.. class:: DivisionByZero
1377
1378 Signals the division of a non-infinite number by zero.
1379
1380 Can occur with division, modulo division, or when raising a number to a negative
1381 power. If this signal is not trapped, returns :const:`Infinity` or
1382 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1383
1384
1385.. class:: Inexact
1386
1387 Indicates that rounding occurred and the result is not exact.
1388
1389 Signals when non-zero digits were discarded during rounding. The rounded result
1390 is returned. The signal flag or trap is used to detect when results are
1391 inexact.
1392
1393
1394.. class:: InvalidOperation
1395
1396 An invalid operation was performed.
1397
1398 Indicates that an operation was requested that does not make sense. If not
1399 trapped, returns :const:`NaN`. Possible causes include::
1400
1401 Infinity - Infinity
1402 0 * Infinity
1403 Infinity / Infinity
1404 x % 0
1405 Infinity % x
1406 x._rescale( non-integer )
1407 sqrt(-x) and x > 0
1408 0 ** 0
1409 x ** (non-integer)
Georg Brandl48310cd2009-01-03 21:18:54 +00001410 x ** Infinity
Georg Brandl116aa622007-08-15 14:28:22 +00001411
1412
1413.. class:: Overflow
1414
1415 Numerical overflow.
1416
Benjamin Petersone41251e2008-04-25 01:59:09 +00001417 Indicates the exponent is larger than :attr:`Emax` after rounding has
1418 occurred. If not trapped, the result depends on the rounding mode, either
1419 pulling inward to the largest representable finite number or rounding outward
1420 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1421 are also signaled.
Georg Brandl116aa622007-08-15 14:28:22 +00001422
1423
1424.. class:: Rounded
1425
1426 Rounding occurred though possibly no information was lost.
1427
Benjamin Petersone41251e2008-04-25 01:59:09 +00001428 Signaled whenever rounding discards digits; even if those digits are zero
1429 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1430 the result unchanged. This signal is used to detect loss of significant
1431 digits.
Georg Brandl116aa622007-08-15 14:28:22 +00001432
1433
1434.. class:: Subnormal
1435
1436 Exponent was lower than :attr:`Emin` prior to rounding.
1437
Benjamin Petersone41251e2008-04-25 01:59:09 +00001438 Occurs when an operation result is subnormal (the exponent is too small). If
1439 not trapped, returns the result unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +00001440
1441
1442.. class:: Underflow
1443
1444 Numerical underflow with result rounded to zero.
1445
1446 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1447 and :class:`Subnormal` are also signaled.
1448
1449The following table summarizes the hierarchy of signals::
1450
1451 exceptions.ArithmeticError(exceptions.Exception)
1452 DecimalException
1453 Clamped
1454 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1455 Inexact
1456 Overflow(Inexact, Rounded)
1457 Underflow(Inexact, Rounded, Subnormal)
1458 InvalidOperation
1459 Rounded
1460 Subnormal
1461
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001462.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001463
1464
1465.. _decimal-notes:
1466
1467Floating Point Notes
1468--------------------
1469
1470
1471Mitigating round-off error with increased precision
1472^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1473
1474The use of decimal floating point eliminates decimal representation error
1475(making it possible to represent :const:`0.1` exactly); however, some operations
1476can still incur round-off error when non-zero digits exceed the fixed precision.
1477
1478The effects of round-off error can be amplified by the addition or subtraction
1479of nearly offsetting quantities resulting in loss of significance. Knuth
1480provides two instructive examples where rounded floating point arithmetic with
1481insufficient precision causes the breakdown of the associative and distributive
Christian Heimesfe337bf2008-03-23 21:54:12 +00001482properties of addition:
1483
1484.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001485
1486 # Examples from Seminumerical Algorithms, Section 4.2.2.
1487 >>> from decimal import Decimal, getcontext
1488 >>> getcontext().prec = 8
1489
1490 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1491 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001492 Decimal('9.5111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001493 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001494 Decimal('10')
Georg Brandl116aa622007-08-15 14:28:22 +00001495
1496 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1497 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001498 Decimal('0.01')
Georg Brandl116aa622007-08-15 14:28:22 +00001499 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001500 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001501
1502The :mod:`decimal` module makes it possible to restore the identities by
Christian Heimesfe337bf2008-03-23 21:54:12 +00001503expanding the precision sufficiently to avoid loss of significance:
1504
1505.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001506
1507 >>> getcontext().prec = 20
1508 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1509 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001510 Decimal('9.51111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001511 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001512 Decimal('9.51111111')
Georg Brandl48310cd2009-01-03 21:18:54 +00001513 >>>
Georg Brandl116aa622007-08-15 14:28:22 +00001514 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1515 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001516 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001517 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001518 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001519
1520
1521Special values
1522^^^^^^^^^^^^^^
1523
1524The number system for the :mod:`decimal` module provides special values
1525including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001526and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl116aa622007-08-15 14:28:22 +00001527
1528Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1529they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1530not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1531can result from rounding beyond the limits of the largest representable number.
1532
1533The infinities are signed (affine) and can be used in arithmetic operations
1534where they get treated as very large, indeterminate numbers. For instance,
1535adding a constant to infinity gives another infinite result.
1536
1537Some operations are indeterminate and return :const:`NaN`, or if the
1538:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1539``0/0`` returns :const:`NaN` which means "not a number". This variety of
1540:const:`NaN` is quiet and, once created, will flow through other computations
1541always resulting in another :const:`NaN`. This behavior can be useful for a
1542series of computations that occasionally have missing inputs --- it allows the
1543calculation to proceed while flagging specific results as invalid.
1544
1545A variant is :const:`sNaN` which signals rather than remaining quiet after every
1546operation. This is a useful return value when an invalid result needs to
1547interrupt a calculation for special handling.
1548
Christian Heimes77c02eb2008-02-09 02:18:51 +00001549The behavior of Python's comparison operators can be a little surprising where a
1550:const:`NaN` is involved. A test for equality where one of the operands is a
1551quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1552``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
1553:const:`True`. An attempt to compare two Decimals using any of the ``<``,
1554``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1555if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Christian Heimes3feef612008-02-11 06:19:17 +00001556not trapped. Note that the General Decimal Arithmetic specification does not
Christian Heimes77c02eb2008-02-09 02:18:51 +00001557specify the behavior of direct comparisons; these rules for comparisons
1558involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1559section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
1560and :meth:`compare-signal` methods instead.
1561
Georg Brandl116aa622007-08-15 14:28:22 +00001562The signed zeros can result from calculations that underflow. They keep the sign
1563that would have resulted if the calculation had been carried out to greater
1564precision. Since their magnitude is zero, both positive and negative zeros are
1565treated as equal and their sign is informational.
1566
1567In addition to the two signed zeros which are distinct yet equal, there are
1568various representations of zero with differing precisions yet equivalent in
1569value. This takes a bit of getting used to. For an eye accustomed to
1570normalized floating point representations, it is not immediately obvious that
Christian Heimesfe337bf2008-03-23 21:54:12 +00001571the following calculation returns a value equal to zero:
Georg Brandl116aa622007-08-15 14:28:22 +00001572
1573 >>> 1 / Decimal('Infinity')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001574 Decimal('0E-1000000026')
Georg Brandl116aa622007-08-15 14:28:22 +00001575
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001576.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001577
1578
1579.. _decimal-threads:
1580
1581Working with threads
1582--------------------
1583
1584The :func:`getcontext` function accesses a different :class:`Context` object for
1585each thread. Having separate thread contexts means that threads may make
1586changes (such as ``getcontext.prec=10``) without interfering with other threads.
1587
1588Likewise, the :func:`setcontext` function automatically assigns its target to
1589the current thread.
1590
1591If :func:`setcontext` has not been called before :func:`getcontext`, then
1592:func:`getcontext` will automatically create a new context for use in the
1593current thread.
1594
1595The new context is copied from a prototype context called *DefaultContext*. To
1596control the defaults so that each thread will use the same values throughout the
1597application, directly modify the *DefaultContext* object. This should be done
1598*before* any threads are started so that there won't be a race condition between
1599threads calling :func:`getcontext`. For example::
1600
1601 # Set applicationwide defaults for all threads about to be launched
1602 DefaultContext.prec = 12
1603 DefaultContext.rounding = ROUND_DOWN
1604 DefaultContext.traps = ExtendedContext.traps.copy()
1605 DefaultContext.traps[InvalidOperation] = 1
1606 setcontext(DefaultContext)
1607
1608 # Afterwards, the threads can be started
1609 t1.start()
1610 t2.start()
1611 t3.start()
1612 . . .
1613
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001614.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001615
1616
1617.. _decimal-recipes:
1618
1619Recipes
1620-------
1621
1622Here are a few recipes that serve as utility functions and that demonstrate ways
1623to work with the :class:`Decimal` class::
1624
1625 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1626 pos='', neg='-', trailneg=''):
1627 """Convert Decimal to a money formatted string.
1628
1629 places: required number of places after the decimal point
1630 curr: optional currency symbol before the sign (may be blank)
1631 sep: optional grouping separator (comma, period, space, or blank)
1632 dp: decimal point indicator (comma or period)
1633 only specify as blank when places is zero
1634 pos: optional sign for positive numbers: '+', space or blank
1635 neg: optional sign for negative numbers: '-', '(', space or blank
1636 trailneg:optional trailing minus indicator: '-', ')', space or blank
1637
1638 >>> d = Decimal('-1234567.8901')
1639 >>> moneyfmt(d, curr='$')
1640 '-$1,234,567.89'
1641 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1642 '1.234.568-'
1643 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1644 '($1,234,567.89)'
1645 >>> moneyfmt(Decimal(123456789), sep=' ')
1646 '123 456 789.00'
1647 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Christian Heimesdae2a892008-04-19 00:55:37 +00001648 '<0.02>'
Georg Brandl116aa622007-08-15 14:28:22 +00001649
1650 """
Christian Heimesa156e092008-02-16 07:38:31 +00001651 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandl48310cd2009-01-03 21:18:54 +00001652 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +00001653 result = []
Facundo Batista789bdf02008-06-21 17:29:41 +00001654 digits = list(map(str, digits))
Georg Brandl116aa622007-08-15 14:28:22 +00001655 build, next = result.append, digits.pop
1656 if sign:
1657 build(trailneg)
1658 for i in range(places):
Christian Heimesa156e092008-02-16 07:38:31 +00001659 build(next() if digits else '0')
Raymond Hettinger0ab10e42011-01-08 09:03:11 +00001660 if places:
1661 build(dp)
Christian Heimesdae2a892008-04-19 00:55:37 +00001662 if not digits:
1663 build('0')
Georg Brandl116aa622007-08-15 14:28:22 +00001664 i = 0
1665 while digits:
1666 build(next())
1667 i += 1
1668 if i == 3 and digits:
1669 i = 0
1670 build(sep)
1671 build(curr)
Christian Heimesa156e092008-02-16 07:38:31 +00001672 build(neg if sign else pos)
1673 return ''.join(reversed(result))
Georg Brandl116aa622007-08-15 14:28:22 +00001674
1675 def pi():
1676 """Compute Pi to the current precision.
1677
Georg Brandl6911e3c2007-09-04 07:15:32 +00001678 >>> print(pi())
Georg Brandl116aa622007-08-15 14:28:22 +00001679 3.141592653589793238462643383
1680
1681 """
1682 getcontext().prec += 2 # extra digits for intermediate steps
1683 three = Decimal(3) # substitute "three=3.0" for regular floats
1684 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1685 while s != lasts:
1686 lasts = s
1687 n, na = n+na, na+8
1688 d, da = d+da, da+32
1689 t = (t * n) / d
1690 s += t
1691 getcontext().prec -= 2
1692 return +s # unary plus applies the new precision
1693
1694 def exp(x):
1695 """Return e raised to the power of x. Result type matches input type.
1696
Georg Brandl6911e3c2007-09-04 07:15:32 +00001697 >>> print(exp(Decimal(1)))
Georg Brandl116aa622007-08-15 14:28:22 +00001698 2.718281828459045235360287471
Georg Brandl6911e3c2007-09-04 07:15:32 +00001699 >>> print(exp(Decimal(2)))
Georg Brandl116aa622007-08-15 14:28:22 +00001700 7.389056098930650227230427461
Georg Brandl6911e3c2007-09-04 07:15:32 +00001701 >>> print(exp(2.0))
Georg Brandl116aa622007-08-15 14:28:22 +00001702 7.38905609893
Georg Brandl6911e3c2007-09-04 07:15:32 +00001703 >>> print(exp(2+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001704 (7.38905609893+0j)
1705
1706 """
1707 getcontext().prec += 2
1708 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1709 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001710 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001711 i += 1
1712 fact *= i
Georg Brandl48310cd2009-01-03 21:18:54 +00001713 num *= x
1714 s += num / fact
1715 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001716 return +s
1717
1718 def cos(x):
1719 """Return the cosine of x as measured in radians.
1720
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001721 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001722 For larger values, first compute x = x % (2 * pi).
1723
Georg Brandl6911e3c2007-09-04 07:15:32 +00001724 >>> print(cos(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001725 0.8775825618903727161162815826
Georg Brandl6911e3c2007-09-04 07:15:32 +00001726 >>> print(cos(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001727 0.87758256189
Georg Brandl6911e3c2007-09-04 07:15:32 +00001728 >>> print(cos(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001729 (0.87758256189+0j)
1730
1731 """
1732 getcontext().prec += 2
1733 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1734 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001735 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001736 i += 2
1737 fact *= i * (i-1)
1738 num *= x * x
1739 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001740 s += num / fact * sign
1741 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001742 return +s
1743
1744 def sin(x):
1745 """Return the sine of x as measured in radians.
1746
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001747 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001748 For larger values, first compute x = x % (2 * pi).
1749
Georg Brandl6911e3c2007-09-04 07:15:32 +00001750 >>> print(sin(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001751 0.4794255386042030002732879352
Georg Brandl6911e3c2007-09-04 07:15:32 +00001752 >>> print(sin(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001753 0.479425538604
Georg Brandl6911e3c2007-09-04 07:15:32 +00001754 >>> print(sin(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001755 (0.479425538604+0j)
1756
1757 """
1758 getcontext().prec += 2
1759 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1760 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001761 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001762 i += 2
1763 fact *= i * (i-1)
1764 num *= x * x
1765 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001766 s += num / fact * sign
1767 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001768 return +s
1769
1770
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001771.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001772
1773
1774.. _decimal-faq:
1775
1776Decimal FAQ
1777-----------
1778
1779Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1780minimize typing when using the interactive interpreter?
1781
Christian Heimesfe337bf2008-03-23 21:54:12 +00001782A. Some users abbreviate the constructor to just a single letter:
Georg Brandl116aa622007-08-15 14:28:22 +00001783
1784 >>> D = decimal.Decimal
1785 >>> D('1.23') + D('3.45')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001786 Decimal('4.68')
Georg Brandl116aa622007-08-15 14:28:22 +00001787
1788Q. In a fixed-point application with two decimal places, some inputs have many
1789places and need to be rounded. Others are not supposed to have excess digits
1790and need to be validated. What methods should be used?
1791
1792A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Christian Heimesfe337bf2008-03-23 21:54:12 +00001793the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl116aa622007-08-15 14:28:22 +00001794
1795 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1796
1797 >>> # Round to two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001798 >>> Decimal('3.214').quantize(TWOPLACES)
1799 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001800
Georg Brandl48310cd2009-01-03 21:18:54 +00001801 >>> # Validate that a number does not exceed two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001802 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1803 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001804
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001805 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl116aa622007-08-15 14:28:22 +00001806 Traceback (most recent call last):
1807 ...
Benjamin Peterson25c95f12009-05-08 20:42:26 +00001808 Inexact: None
Georg Brandl116aa622007-08-15 14:28:22 +00001809
1810Q. Once I have valid two place inputs, how do I maintain that invariant
1811throughout an application?
1812
Christian Heimesa156e092008-02-16 07:38:31 +00001813A. Some operations like addition, subtraction, and multiplication by an integer
1814will automatically preserve fixed point. Others operations, like division and
1815non-integer multiplication, will change the number of decimal places and need to
Christian Heimesfe337bf2008-03-23 21:54:12 +00001816be followed-up with a :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001817
1818 >>> a = Decimal('102.72') # Initial fixed-point values
1819 >>> b = Decimal('3.17')
1820 >>> a + b # Addition preserves fixed-point
1821 Decimal('105.89')
1822 >>> a - b
1823 Decimal('99.55')
1824 >>> a * 42 # So does integer multiplication
1825 Decimal('4314.24')
1826 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
1827 Decimal('325.62')
1828 >>> (b / a).quantize(TWOPLACES) # And quantize division
1829 Decimal('0.03')
1830
1831In developing fixed-point applications, it is convenient to define functions
Christian Heimesfe337bf2008-03-23 21:54:12 +00001832to handle the :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00001833
1834 >>> def mul(x, y, fp=TWOPLACES):
1835 ... return (x * y).quantize(fp)
1836 >>> def div(x, y, fp=TWOPLACES):
1837 ... return (x / y).quantize(fp)
1838
1839 >>> mul(a, b) # Automatically preserve fixed-point
1840 Decimal('325.62')
1841 >>> div(b, a)
1842 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +00001843
1844Q. There are many ways to express the same value. The numbers :const:`200`,
1845:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
1846various precisions. Is there a way to transform them to a single recognizable
1847canonical value?
1848
1849A. The :meth:`normalize` method maps all equivalent values to a single
Christian Heimesfe337bf2008-03-23 21:54:12 +00001850representative:
Georg Brandl116aa622007-08-15 14:28:22 +00001851
1852 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
1853 >>> [v.normalize() for v in values]
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001854 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl116aa622007-08-15 14:28:22 +00001855
1856Q. Some decimal values always print with exponential notation. Is there a way
1857to get a non-exponential representation?
1858
1859A. For some values, exponential notation is the only way to express the number
1860of significant places in the coefficient. For example, expressing
1861:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
1862original's two-place significance.
1863
Christian Heimesa156e092008-02-16 07:38:31 +00001864If an application does not care about tracking significance, it is easy to
Christian Heimesc3f30c42008-02-22 16:37:40 +00001865remove the exponent and trailing zeroes, losing significance, but keeping the
Christian Heimesfe337bf2008-03-23 21:54:12 +00001866value unchanged:
Christian Heimesa156e092008-02-16 07:38:31 +00001867
1868 >>> def remove_exponent(d):
1869 ... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
1870
1871 >>> remove_exponent(Decimal('5E+3'))
1872 Decimal('5000')
1873
Georg Brandl116aa622007-08-15 14:28:22 +00001874Q. Is there a way to convert a regular float to a :class:`Decimal`?
1875
Mark Dickinsone534a072010-04-04 22:13:14 +00001876A. Yes, any binary floating point number can be exactly expressed as a
Raymond Hettinger96798592010-04-02 16:58:27 +00001877Decimal though an exact conversion may take more precision than intuition would
1878suggest:
Georg Brandl116aa622007-08-15 14:28:22 +00001879
Christian Heimesfe337bf2008-03-23 21:54:12 +00001880.. doctest::
1881
Raymond Hettinger96798592010-04-02 16:58:27 +00001882 >>> Decimal(math.pi)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001883 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl116aa622007-08-15 14:28:22 +00001884
Georg Brandl116aa622007-08-15 14:28:22 +00001885Q. Within a complex calculation, how can I make sure that I haven't gotten a
1886spurious result because of insufficient precision or rounding anomalies.
1887
1888A. The decimal module makes it easy to test results. A best practice is to
1889re-run calculations using greater precision and with various rounding modes.
1890Widely differing results indicate insufficient precision, rounding mode issues,
1891ill-conditioned inputs, or a numerically unstable algorithm.
1892
1893Q. I noticed that context precision is applied to the results of operations but
1894not to the inputs. Is there anything to watch out for when mixing values of
1895different precisions?
1896
1897A. Yes. The principle is that all values are considered to be exact and so is
1898the arithmetic on those values. Only the results are rounded. The advantage
1899for inputs is that "what you type is what you get". A disadvantage is that the
Christian Heimesfe337bf2008-03-23 21:54:12 +00001900results can look odd if you forget that the inputs haven't been rounded:
1901
1902.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001903
1904 >>> getcontext().prec = 3
Christian Heimesfe337bf2008-03-23 21:54:12 +00001905 >>> Decimal('3.104') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001906 Decimal('5.21')
Christian Heimesfe337bf2008-03-23 21:54:12 +00001907 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001908 Decimal('5.20')
Georg Brandl116aa622007-08-15 14:28:22 +00001909
1910The solution is either to increase precision or to force rounding of inputs
Christian Heimesfe337bf2008-03-23 21:54:12 +00001911using the unary plus operation:
1912
1913.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001914
1915 >>> getcontext().prec = 3
1916 >>> +Decimal('1.23456789') # unary plus triggers rounding
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001917 Decimal('1.23')
Georg Brandl116aa622007-08-15 14:28:22 +00001918
1919Alternatively, inputs can be rounded upon creation using the
Christian Heimesfe337bf2008-03-23 21:54:12 +00001920:meth:`Context.create_decimal` method:
Georg Brandl116aa622007-08-15 14:28:22 +00001921
1922 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001923 Decimal('1.2345')
Georg Brandl116aa622007-08-15 14:28:22 +00001924