blob: cebb4ff91ba58e6dc25b5196e28643809fe3c389 [file] [log] [blame]
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001/* Math module -- standard C math library functions, pi and e */
2
Christian Heimes53876d92008-04-19 00:31:39 +00003/* Here are some comments from Tim Peters, extracted from the
4 discussion attached to http://bugs.python.org/issue1640. They
5 describe the general aims of the math module with respect to
6 special values, IEEE-754 floating-point exceptions, and Python
7 exceptions.
8
9These are the "spirit of 754" rules:
10
111. If the mathematical result is a real number, but of magnitude too
12large to approximate by a machine float, overflow is signaled and the
13result is an infinity (with the appropriate sign).
14
152. If the mathematical result is a real number, but of magnitude too
16small to approximate by a machine float, underflow is signaled and the
17result is a zero (with the appropriate sign).
18
193. At a singularity (a value x such that the limit of f(y) as y
20approaches x exists and is an infinity), "divide by zero" is signaled
21and the result is an infinity (with the appropriate sign). This is
22complicated a little by that the left-side and right-side limits may
23not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
24from the positive or negative directions. In that specific case, the
25sign of the zero determines the result of 1/0.
26
274. At a point where a function has no defined result in the extended
28reals (i.e., the reals plus an infinity or two), invalid operation is
29signaled and a NaN is returned.
30
31And these are what Python has historically /tried/ to do (but not
32always successfully, as platform libm behavior varies a lot):
33
34For #1, raise OverflowError.
35
36For #2, return a zero (with the appropriate sign if that happens by
37accident ;-)).
38
39For #3 and #4, raise ValueError. It may have made sense to raise
40Python's ZeroDivisionError in #3, but historically that's only been
41raised for division by zero and mod by zero.
42
43*/
44
45/*
46 In general, on an IEEE-754 platform the aim is to follow the C99
47 standard, including Annex 'F', whenever possible. Where the
48 standard recommends raising the 'divide-by-zero' or 'invalid'
49 floating-point exceptions, Python should raise a ValueError. Where
50 the standard recommends raising 'overflow', Python should raise an
51 OverflowError. In all other circumstances a value should be
52 returned.
53 */
54
Barry Warsaw8b43b191996-12-09 22:32:36 +000055#include "Python.h"
Mark Dickinson664b5112009-12-16 20:23:42 +000056#include "_math.h"
Guido van Rossum85a5fbb1990-10-14 12:07:46 +000057
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000058/*
59 sin(pi*x), giving accurate results for all finite x (especially x
60 integral or close to an integer). This is here for use in the
61 reflection formula for the gamma function. It conforms to IEEE
62 754-2008 for finite arguments, but not for infinities or nans.
63*/
Tim Petersa40c7932001-09-05 22:36:56 +000064
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000065static const double pi = 3.141592653589793238462643383279502884197;
Mark Dickinson45f992a2009-12-19 11:20:49 +000066static const double sqrtpi = 1.772453850905516027298167483341145182798;
Mark Dickinson9c91eb82010-07-07 16:17:31 +000067static const double logpi = 1.144729885849400174143427351353058711647;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000068
69static double
70sinpi(double x)
71{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +000072 double y, r;
73 int n;
74 /* this function should only ever be called for finite arguments */
75 assert(Py_IS_FINITE(x));
76 y = fmod(fabs(x), 2.0);
77 n = (int)round(2.0*y);
78 assert(0 <= n && n <= 4);
79 switch (n) {
80 case 0:
81 r = sin(pi*y);
82 break;
83 case 1:
84 r = cos(pi*(y-0.5));
85 break;
86 case 2:
87 /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
88 -0.0 instead of 0.0 when y == 1.0. */
89 r = sin(pi*(1.0-y));
90 break;
91 case 3:
92 r = -cos(pi*(y-1.5));
93 break;
94 case 4:
95 r = sin(pi*(y-2.0));
96 break;
97 default:
98 assert(0); /* should never get here */
99 r = -1.23e200; /* silence gcc warning */
100 }
101 return copysign(1.0, x)*r;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000102}
103
104/* Implementation of the real gamma function. In extensive but non-exhaustive
105 random tests, this function proved accurate to within <= 10 ulps across the
106 entire float domain. Note that accuracy may depend on the quality of the
107 system math functions, the pow function in particular. Special cases
108 follow C99 annex F. The parameters and method are tailored to platforms
109 whose double format is the IEEE 754 binary64 format.
110
111 Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
112 and g=6.024680040776729583740234375; these parameters are amongst those
113 used by the Boost library. Following Boost (again), we re-express the
114 Lanczos sum as a rational function, and compute it that way. The
115 coefficients below were computed independently using MPFR, and have been
116 double-checked against the coefficients in the Boost source code.
117
118 For x < 0.0 we use the reflection formula.
119
120 There's one minor tweak that deserves explanation: Lanczos' formula for
121 Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
122 values, x+g-0.5 can be represented exactly. However, in cases where it
123 can't be represented exactly the small error in x+g-0.5 can be magnified
124 significantly by the pow and exp calls, especially for large x. A cheap
125 correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
126 involved in the computation of x+g-0.5 (that is, e = computed value of
127 x+g-0.5 - exact value of x+g-0.5). Here's the proof:
128
129 Correction factor
130 -----------------
131 Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
132 double, and e is tiny. Then:
133
134 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
135 = pow(y, x-0.5)/exp(y) * C,
136
137 where the correction_factor C is given by
138
139 C = pow(1-e/y, x-0.5) * exp(e)
140
141 Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
142
143 C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
144
145 But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
146
147 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
148
149 Note that for accuracy, when computing r*C it's better to do
150
151 r + e*g/y*r;
152
153 than
154
155 r * (1 + e*g/y);
156
157 since the addition in the latter throws away most of the bits of
158 information in e*g/y.
159*/
160
161#define LANCZOS_N 13
162static const double lanczos_g = 6.024680040776729583740234375;
163static const double lanczos_g_minus_half = 5.524680040776729583740234375;
164static const double lanczos_num_coeffs[LANCZOS_N] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000165 23531376880.410759688572007674451636754734846804940,
166 42919803642.649098768957899047001988850926355848959,
167 35711959237.355668049440185451547166705960488635843,
168 17921034426.037209699919755754458931112671403265390,
169 6039542586.3520280050642916443072979210699388420708,
170 1439720407.3117216736632230727949123939715485786772,
171 248874557.86205415651146038641322942321632125127801,
172 31426415.585400194380614231628318205362874684987640,
173 2876370.6289353724412254090516208496135991145378768,
174 186056.26539522349504029498971604569928220784236328,
175 8071.6720023658162106380029022722506138218516325024,
176 210.82427775157934587250973392071336271166969580291,
177 2.5066282746310002701649081771338373386264310793408
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000178};
179
180/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
181static const double lanczos_den_coeffs[LANCZOS_N] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000182 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
183 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000184
185/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
186#define NGAMMA_INTEGRAL 23
187static const double gamma_integral[NGAMMA_INTEGRAL] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000188 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
189 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
190 1307674368000.0, 20922789888000.0, 355687428096000.0,
191 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
192 51090942171709440000.0, 1124000727777607680000.0,
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000193};
194
195/* Lanczos' sum L_g(x), for positive x */
196
197static double
198lanczos_sum(double x)
199{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000200 double num = 0.0, den = 0.0;
201 int i;
202 assert(x > 0.0);
203 /* evaluate the rational function lanczos_sum(x). For large
204 x, the obvious algorithm risks overflow, so we instead
205 rescale the denominator and numerator of the rational
206 function by x**(1-LANCZOS_N) and treat this as a
207 rational function in 1/x. This also reduces the error for
208 larger x values. The choice of cutoff point (5.0 below) is
209 somewhat arbitrary; in tests, smaller cutoff values than
210 this resulted in lower accuracy. */
211 if (x < 5.0) {
212 for (i = LANCZOS_N; --i >= 0; ) {
213 num = num * x + lanczos_num_coeffs[i];
214 den = den * x + lanczos_den_coeffs[i];
215 }
216 }
217 else {
218 for (i = 0; i < LANCZOS_N; i++) {
219 num = num / x + lanczos_num_coeffs[i];
220 den = den / x + lanczos_den_coeffs[i];
221 }
222 }
223 return num/den;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000224}
225
226static double
227m_tgamma(double x)
228{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000229 double absx, r, y, z, sqrtpow;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000230
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000231 /* special cases */
232 if (!Py_IS_FINITE(x)) {
233 if (Py_IS_NAN(x) || x > 0.0)
234 return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
235 else {
236 errno = EDOM;
237 return Py_NAN; /* tgamma(-inf) = nan, invalid */
238 }
239 }
240 if (x == 0.0) {
241 errno = EDOM;
242 return 1.0/x; /* tgamma(+-0.0) = +-inf, divide-by-zero */
243 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000244
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000245 /* integer arguments */
246 if (x == floor(x)) {
247 if (x < 0.0) {
248 errno = EDOM; /* tgamma(n) = nan, invalid for */
249 return Py_NAN; /* negative integers n */
250 }
251 if (x <= NGAMMA_INTEGRAL)
252 return gamma_integral[(int)x - 1];
253 }
254 absx = fabs(x);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000255
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000256 /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
257 if (absx < 1e-20) {
258 r = 1.0/x;
259 if (Py_IS_INFINITY(r))
260 errno = ERANGE;
261 return r;
262 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000263
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000264 /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
265 x > 200, and underflows to +-0.0 for x < -200, not a negative
266 integer. */
267 if (absx > 200.0) {
268 if (x < 0.0) {
269 return 0.0/sinpi(x);
270 }
271 else {
272 errno = ERANGE;
273 return Py_HUGE_VAL;
274 }
275 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000276
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000277 y = absx + lanczos_g_minus_half;
278 /* compute error in sum */
279 if (absx > lanczos_g_minus_half) {
280 /* note: the correction can be foiled by an optimizing
281 compiler that (incorrectly) thinks that an expression like
282 a + b - a - b can be optimized to 0.0. This shouldn't
283 happen in a standards-conforming compiler. */
284 double q = y - absx;
285 z = q - lanczos_g_minus_half;
286 }
287 else {
288 double q = y - lanczos_g_minus_half;
289 z = q - absx;
290 }
291 z = z * lanczos_g / y;
292 if (x < 0.0) {
293 r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
294 r -= z * r;
295 if (absx < 140.0) {
296 r /= pow(y, absx - 0.5);
297 }
298 else {
299 sqrtpow = pow(y, absx / 2.0 - 0.25);
300 r /= sqrtpow;
301 r /= sqrtpow;
302 }
303 }
304 else {
305 r = lanczos_sum(absx) / exp(y);
306 r += z * r;
307 if (absx < 140.0) {
308 r *= pow(y, absx - 0.5);
309 }
310 else {
311 sqrtpow = pow(y, absx / 2.0 - 0.25);
312 r *= sqrtpow;
313 r *= sqrtpow;
314 }
315 }
316 if (Py_IS_INFINITY(r))
317 errno = ERANGE;
318 return r;
Guido van Rossum8832b621991-12-16 15:44:24 +0000319}
320
Christian Heimes53876d92008-04-19 00:31:39 +0000321/*
Mark Dickinson05d2e082009-12-11 20:17:17 +0000322 lgamma: natural log of the absolute value of the Gamma function.
323 For large arguments, Lanczos' formula works extremely well here.
324*/
325
326static double
327m_lgamma(double x)
328{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000329 double r, absx;
Mark Dickinson05d2e082009-12-11 20:17:17 +0000330
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000331 /* special cases */
332 if (!Py_IS_FINITE(x)) {
333 if (Py_IS_NAN(x))
334 return x; /* lgamma(nan) = nan */
335 else
336 return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
337 }
Mark Dickinson05d2e082009-12-11 20:17:17 +0000338
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000339 /* integer arguments */
340 if (x == floor(x) && x <= 2.0) {
341 if (x <= 0.0) {
342 errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */
343 return Py_HUGE_VAL; /* integers n <= 0 */
344 }
345 else {
346 return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
347 }
348 }
Mark Dickinson05d2e082009-12-11 20:17:17 +0000349
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000350 absx = fabs(x);
351 /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
352 if (absx < 1e-20)
353 return -log(absx);
Mark Dickinson05d2e082009-12-11 20:17:17 +0000354
Mark Dickinson9c91eb82010-07-07 16:17:31 +0000355 /* Lanczos' formula. We could save a fraction of a ulp in accuracy by
356 having a second set of numerator coefficients for lanczos_sum that
357 absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
358 subtraction below; it's probably not worth it. */
359 r = log(lanczos_sum(absx)) - lanczos_g;
360 r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1);
361 if (x < 0.0)
362 /* Use reflection formula to get value for negative x. */
363 r = logpi - log(fabs(sinpi(absx))) - log(absx) - r;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000364 if (Py_IS_INFINITY(r))
365 errno = ERANGE;
366 return r;
Mark Dickinson05d2e082009-12-11 20:17:17 +0000367}
368
Mark Dickinson45f992a2009-12-19 11:20:49 +0000369/*
370 Implementations of the error function erf(x) and the complementary error
371 function erfc(x).
372
373 Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed.,
374 Cambridge University Press), we use a series approximation for erf for
375 small x, and a continued fraction approximation for erfc(x) for larger x;
376 combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
377 this gives us erf(x) and erfc(x) for all x.
378
379 The series expansion used is:
380
381 erf(x) = x*exp(-x*x)/sqrt(pi) * [
382 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
383
384 The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
385 This series converges well for smallish x, but slowly for larger x.
386
387 The continued fraction expansion used is:
388
389 erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
390 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
391
392 after the first term, the general term has the form:
393
394 k*(k-0.5)/(2*k+0.5 + x**2 - ...).
395
396 This expansion converges fast for larger x, but convergence becomes
397 infinitely slow as x approaches 0.0. The (somewhat naive) continued
398 fraction evaluation algorithm used below also risks overflow for large x;
399 but for large x, erfc(x) == 0.0 to within machine precision. (For
400 example, erfc(30.0) is approximately 2.56e-393).
401
402 Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
403 continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
404 ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
405 numbers of terms to use for the relevant expansions. */
406
407#define ERF_SERIES_CUTOFF 1.5
408#define ERF_SERIES_TERMS 25
409#define ERFC_CONTFRAC_CUTOFF 30.0
410#define ERFC_CONTFRAC_TERMS 50
411
412/*
413 Error function, via power series.
414
415 Given a finite float x, return an approximation to erf(x).
416 Converges reasonably fast for small x.
417*/
418
419static double
420m_erf_series(double x)
421{
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000422 double x2, acc, fk, result;
423 int i, saved_errno;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000424
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000425 x2 = x * x;
426 acc = 0.0;
427 fk = (double)ERF_SERIES_TERMS + 0.5;
428 for (i = 0; i < ERF_SERIES_TERMS; i++) {
429 acc = 2.0 + x2 * acc / fk;
430 fk -= 1.0;
431 }
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000432 /* Make sure the exp call doesn't affect errno;
433 see m_erfc_contfrac for more. */
434 saved_errno = errno;
435 result = acc * x * exp(-x2) / sqrtpi;
436 errno = saved_errno;
437 return result;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000438}
439
440/*
441 Complementary error function, via continued fraction expansion.
442
443 Given a positive float x, return an approximation to erfc(x). Converges
444 reasonably fast for x large (say, x > 2.0), and should be safe from
445 overflow if x and nterms are not too large. On an IEEE 754 machine, with x
446 <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller
447 than the smallest representable nonzero float. */
448
449static double
450m_erfc_contfrac(double x)
451{
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000452 double x2, a, da, p, p_last, q, q_last, b, result;
453 int i, saved_errno;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000454
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000455 if (x >= ERFC_CONTFRAC_CUTOFF)
456 return 0.0;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000457
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000458 x2 = x*x;
459 a = 0.0;
460 da = 0.5;
461 p = 1.0; p_last = 0.0;
462 q = da + x2; q_last = 1.0;
463 for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
464 double temp;
465 a += da;
466 da += 2.0;
467 b = da + x2;
468 temp = p; p = b*p - a*p_last; p_last = temp;
469 temp = q; q = b*q - a*q_last; q_last = temp;
470 }
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000471 /* Issue #8986: On some platforms, exp sets errno on underflow to zero;
472 save the current errno value so that we can restore it later. */
473 saved_errno = errno;
474 result = p / q * x * exp(-x2) / sqrtpi;
475 errno = saved_errno;
476 return result;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000477}
478
479/* Error function erf(x), for general x */
480
481static double
482m_erf(double x)
483{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000484 double absx, cf;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000485
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000486 if (Py_IS_NAN(x))
487 return x;
488 absx = fabs(x);
489 if (absx < ERF_SERIES_CUTOFF)
490 return m_erf_series(x);
491 else {
492 cf = m_erfc_contfrac(absx);
493 return x > 0.0 ? 1.0 - cf : cf - 1.0;
494 }
Mark Dickinson45f992a2009-12-19 11:20:49 +0000495}
496
497/* Complementary error function erfc(x), for general x. */
498
499static double
500m_erfc(double x)
501{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000502 double absx, cf;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000503
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000504 if (Py_IS_NAN(x))
505 return x;
506 absx = fabs(x);
507 if (absx < ERF_SERIES_CUTOFF)
508 return 1.0 - m_erf_series(x);
509 else {
510 cf = m_erfc_contfrac(absx);
511 return x > 0.0 ? cf : 2.0 - cf;
512 }
Mark Dickinson45f992a2009-12-19 11:20:49 +0000513}
Mark Dickinson05d2e082009-12-11 20:17:17 +0000514
515/*
Christian Heimese57950f2008-04-21 13:08:03 +0000516 wrapper for atan2 that deals directly with special cases before
517 delegating to the platform libm for the remaining cases. This
518 is necessary to get consistent behaviour across platforms.
519 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
520 always follow C99.
521*/
522
523static double
524m_atan2(double y, double x)
525{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000526 if (Py_IS_NAN(x) || Py_IS_NAN(y))
527 return Py_NAN;
528 if (Py_IS_INFINITY(y)) {
529 if (Py_IS_INFINITY(x)) {
530 if (copysign(1., x) == 1.)
531 /* atan2(+-inf, +inf) == +-pi/4 */
532 return copysign(0.25*Py_MATH_PI, y);
533 else
534 /* atan2(+-inf, -inf) == +-pi*3/4 */
535 return copysign(0.75*Py_MATH_PI, y);
536 }
537 /* atan2(+-inf, x) == +-pi/2 for finite x */
538 return copysign(0.5*Py_MATH_PI, y);
539 }
540 if (Py_IS_INFINITY(x) || y == 0.) {
541 if (copysign(1., x) == 1.)
542 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
543 return copysign(0., y);
544 else
545 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
546 return copysign(Py_MATH_PI, y);
547 }
548 return atan2(y, x);
Christian Heimese57950f2008-04-21 13:08:03 +0000549}
550
551/*
Mark Dickinsone675f082008-12-11 21:56:00 +0000552 Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
553 log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
554 special values directly, passing positive non-special values through to
555 the system log/log10.
556 */
557
558static double
559m_log(double x)
560{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000561 if (Py_IS_FINITE(x)) {
562 if (x > 0.0)
563 return log(x);
564 errno = EDOM;
565 if (x == 0.0)
566 return -Py_HUGE_VAL; /* log(0) = -inf */
567 else
568 return Py_NAN; /* log(-ve) = nan */
569 }
570 else if (Py_IS_NAN(x))
571 return x; /* log(nan) = nan */
572 else if (x > 0.0)
573 return x; /* log(inf) = inf */
574 else {
575 errno = EDOM;
576 return Py_NAN; /* log(-inf) = nan */
577 }
Mark Dickinsone675f082008-12-11 21:56:00 +0000578}
579
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200580/*
581 log2: log to base 2.
582
583 Uses an algorithm that should:
Mark Dickinson83b8c0b2011-05-09 08:40:20 +0100584
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200585 (a) produce exact results for powers of 2, and
Mark Dickinson83b8c0b2011-05-09 08:40:20 +0100586 (b) give a monotonic log2 (for positive finite floats),
587 assuming that the system log is monotonic.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200588*/
589
590static double
591m_log2(double x)
592{
593 if (!Py_IS_FINITE(x)) {
594 if (Py_IS_NAN(x))
595 return x; /* log2(nan) = nan */
596 else if (x > 0.0)
597 return x; /* log2(+inf) = +inf */
598 else {
599 errno = EDOM;
600 return Py_NAN; /* log2(-inf) = nan, invalid-operation */
601 }
602 }
603
604 if (x > 0.0) {
Victor Stinner8f9f8d62011-05-09 12:45:41 +0200605#ifdef HAVE_LOG2
606 return log2(x);
607#else
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200608 double m;
609 int e;
610 m = frexp(x, &e);
611 /* We want log2(m * 2**e) == log(m) / log(2) + e. Care is needed when
612 * x is just greater than 1.0: in that case e is 1, log(m) is negative,
613 * and we get significant cancellation error from the addition of
614 * log(m) / log(2) to e. The slight rewrite of the expression below
615 * avoids this problem.
616 */
617 if (x >= 1.0) {
618 return log(2.0 * m) / log(2.0) + (e - 1);
619 }
620 else {
621 return log(m) / log(2.0) + e;
622 }
Victor Stinner8f9f8d62011-05-09 12:45:41 +0200623#endif
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200624 }
625 else if (x == 0.0) {
626 errno = EDOM;
627 return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */
628 }
629 else {
630 errno = EDOM;
Mark Dickinson23442582011-05-09 08:05:00 +0100631 return Py_NAN; /* log2(-inf) = nan, invalid-operation */
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200632 }
633}
634
Mark Dickinsone675f082008-12-11 21:56:00 +0000635static double
636m_log10(double x)
637{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000638 if (Py_IS_FINITE(x)) {
639 if (x > 0.0)
640 return log10(x);
641 errno = EDOM;
642 if (x == 0.0)
643 return -Py_HUGE_VAL; /* log10(0) = -inf */
644 else
645 return Py_NAN; /* log10(-ve) = nan */
646 }
647 else if (Py_IS_NAN(x))
648 return x; /* log10(nan) = nan */
649 else if (x > 0.0)
650 return x; /* log10(inf) = inf */
651 else {
652 errno = EDOM;
653 return Py_NAN; /* log10(-inf) = nan */
654 }
Mark Dickinsone675f082008-12-11 21:56:00 +0000655}
656
657
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000658/* Call is_error when errno != 0, and where x is the result libm
659 * returned. is_error will usually set up an exception and return
660 * true (1), but may return false (0) without setting up an exception.
661 */
662static int
663is_error(double x)
664{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000665 int result = 1; /* presumption of guilt */
666 assert(errno); /* non-zero errno is a precondition for calling */
667 if (errno == EDOM)
668 PyErr_SetString(PyExc_ValueError, "math domain error");
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000669
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000670 else if (errno == ERANGE) {
671 /* ANSI C generally requires libm functions to set ERANGE
672 * on overflow, but also generally *allows* them to set
673 * ERANGE on underflow too. There's no consistency about
674 * the latter across platforms.
675 * Alas, C99 never requires that errno be set.
676 * Here we suppress the underflow errors (libm functions
677 * should return a zero on underflow, and +- HUGE_VAL on
678 * overflow, so testing the result for zero suffices to
679 * distinguish the cases).
680 *
681 * On some platforms (Ubuntu/ia64) it seems that errno can be
682 * set to ERANGE for subnormal results that do *not* underflow
683 * to zero. So to be safe, we'll ignore ERANGE whenever the
684 * function result is less than one in absolute value.
685 */
686 if (fabs(x) < 1.0)
687 result = 0;
688 else
689 PyErr_SetString(PyExc_OverflowError,
690 "math range error");
691 }
692 else
693 /* Unexpected math error */
694 PyErr_SetFromErrno(PyExc_ValueError);
695 return result;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000696}
697
Mark Dickinsone675f082008-12-11 21:56:00 +0000698/*
Christian Heimes53876d92008-04-19 00:31:39 +0000699 math_1 is used to wrap a libm function f that takes a double
700 arguments and returns a double.
701
702 The error reporting follows these rules, which are designed to do
703 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
704 platforms.
705
706 - a NaN result from non-NaN inputs causes ValueError to be raised
707 - an infinite result from finite inputs causes OverflowError to be
708 raised if can_overflow is 1, or raises ValueError if can_overflow
709 is 0.
710 - if the result is finite and errno == EDOM then ValueError is
711 raised
712 - if the result is finite and nonzero and errno == ERANGE then
713 OverflowError is raised
714
715 The last rule is used to catch overflow on platforms which follow
716 C89 but for which HUGE_VAL is not an infinity.
717
718 For the majority of one-argument functions these rules are enough
719 to ensure that Python's functions behave as specified in 'Annex F'
720 of the C99 standard, with the 'invalid' and 'divide-by-zero'
721 floating-point exceptions mapping to Python's ValueError and the
722 'overflow' floating-point exception mapping to OverflowError.
723 math_1 only works for functions that don't have singularities *and*
724 the possibility of overflow; fortunately, that covers everything we
725 care about right now.
726*/
727
Barry Warsaw8b43b191996-12-09 22:32:36 +0000728static PyObject *
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000729math_1_to_whatever(PyObject *arg, double (*func) (double),
Christian Heimes53876d92008-04-19 00:31:39 +0000730 PyObject *(*from_double_func) (double),
731 int can_overflow)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000732{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000733 double x, r;
734 x = PyFloat_AsDouble(arg);
735 if (x == -1.0 && PyErr_Occurred())
736 return NULL;
737 errno = 0;
738 PyFPE_START_PROTECT("in math_1", return 0);
739 r = (*func)(x);
740 PyFPE_END_PROTECT(r);
741 if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
742 PyErr_SetString(PyExc_ValueError,
743 "math domain error"); /* invalid arg */
744 return NULL;
745 }
746 if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
747 if (can_overflow)
748 PyErr_SetString(PyExc_OverflowError,
749 "math range error"); /* overflow */
750 else
751 PyErr_SetString(PyExc_ValueError,
752 "math domain error"); /* singularity */
753 return NULL;
754 }
755 if (Py_IS_FINITE(r) && errno && is_error(r))
756 /* this branch unnecessary on most platforms */
757 return NULL;
Mark Dickinsonde429622008-05-01 00:19:23 +0000758
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000759 return (*from_double_func)(r);
Christian Heimes53876d92008-04-19 00:31:39 +0000760}
761
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000762/* variant of math_1, to be used when the function being wrapped is known to
763 set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
764 errno = ERANGE for overflow). */
765
766static PyObject *
767math_1a(PyObject *arg, double (*func) (double))
768{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000769 double x, r;
770 x = PyFloat_AsDouble(arg);
771 if (x == -1.0 && PyErr_Occurred())
772 return NULL;
773 errno = 0;
774 PyFPE_START_PROTECT("in math_1a", return 0);
775 r = (*func)(x);
776 PyFPE_END_PROTECT(r);
777 if (errno && is_error(r))
778 return NULL;
779 return PyFloat_FromDouble(r);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000780}
781
Christian Heimes53876d92008-04-19 00:31:39 +0000782/*
783 math_2 is used to wrap a libm function f that takes two double
784 arguments and returns a double.
785
786 The error reporting follows these rules, which are designed to do
787 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
788 platforms.
789
790 - a NaN result from non-NaN inputs causes ValueError to be raised
791 - an infinite result from finite inputs causes OverflowError to be
792 raised.
793 - if the result is finite and errno == EDOM then ValueError is
794 raised
795 - if the result is finite and nonzero and errno == ERANGE then
796 OverflowError is raised
797
798 The last rule is used to catch overflow on platforms which follow
799 C89 but for which HUGE_VAL is not an infinity.
800
801 For most two-argument functions (copysign, fmod, hypot, atan2)
802 these rules are enough to ensure that Python's functions behave as
803 specified in 'Annex F' of the C99 standard, with the 'invalid' and
804 'divide-by-zero' floating-point exceptions mapping to Python's
805 ValueError and the 'overflow' floating-point exception mapping to
806 OverflowError.
807*/
808
809static PyObject *
810math_1(PyObject *arg, double (*func) (double), int can_overflow)
811{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000812 return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000813}
814
815static PyObject *
Christian Heimes53876d92008-04-19 00:31:39 +0000816math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow)
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000817{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000818 return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000819}
820
Barry Warsaw8b43b191996-12-09 22:32:36 +0000821static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +0000822math_2(PyObject *args, double (*func) (double, double), char *funcname)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000823{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000824 PyObject *ox, *oy;
825 double x, y, r;
826 if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
827 return NULL;
828 x = PyFloat_AsDouble(ox);
829 y = PyFloat_AsDouble(oy);
830 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
831 return NULL;
832 errno = 0;
833 PyFPE_START_PROTECT("in math_2", return 0);
834 r = (*func)(x, y);
835 PyFPE_END_PROTECT(r);
836 if (Py_IS_NAN(r)) {
837 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
838 errno = EDOM;
839 else
840 errno = 0;
841 }
842 else if (Py_IS_INFINITY(r)) {
843 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
844 errno = ERANGE;
845 else
846 errno = 0;
847 }
848 if (errno && is_error(r))
849 return NULL;
850 else
851 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000852}
853
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000854#define FUNC1(funcname, func, can_overflow, docstring) \
855 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
856 return math_1(args, func, can_overflow); \
857 }\
858 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000859
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000860#define FUNC1A(funcname, func, docstring) \
861 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
862 return math_1a(args, func); \
863 }\
864 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000865
Fred Drake40c48682000-07-03 18:11:56 +0000866#define FUNC2(funcname, func, docstring) \
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000867 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
868 return math_2(args, func, #funcname); \
869 }\
870 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000871
Christian Heimes53876d92008-04-19 00:31:39 +0000872FUNC1(acos, acos, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000873 "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
Mark Dickinsonf3718592009-12-21 15:27:41 +0000874FUNC1(acosh, m_acosh, 0,
Christian Heimes53876d92008-04-19 00:31:39 +0000875 "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
876FUNC1(asin, asin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000877 "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
Mark Dickinsonf3718592009-12-21 15:27:41 +0000878FUNC1(asinh, m_asinh, 0,
Christian Heimes53876d92008-04-19 00:31:39 +0000879 "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
880FUNC1(atan, atan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000881 "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
Christian Heimese57950f2008-04-21 13:08:03 +0000882FUNC2(atan2, m_atan2,
Tim Petersfe71f812001-08-07 22:10:00 +0000883 "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
884 "Unlike atan(y/x), the signs of both x and y are considered.")
Mark Dickinsonf3718592009-12-21 15:27:41 +0000885FUNC1(atanh, m_atanh, 0,
Christian Heimes53876d92008-04-19 00:31:39 +0000886 "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +0000887
888static PyObject * math_ceil(PyObject *self, PyObject *number) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000889 static PyObject *ceil_str = NULL;
Mark Dickinson6d02d9c2010-07-02 16:05:15 +0000890 PyObject *method, *result;
Guido van Rossum13e05de2007-08-23 22:56:55 +0000891
Benjamin Petersonf751bc92010-07-02 13:46:42 +0000892 method = _PyObject_LookupSpecial(number, "__ceil__", &ceil_str);
893 if (method == NULL) {
894 if (PyErr_Occurred())
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000895 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000896 return math_1_to_int(number, ceil, 0);
Benjamin Petersonf751bc92010-07-02 13:46:42 +0000897 }
Mark Dickinson6d02d9c2010-07-02 16:05:15 +0000898 result = PyObject_CallFunctionObjArgs(method, NULL);
899 Py_DECREF(method);
900 return result;
Guido van Rossum13e05de2007-08-23 22:56:55 +0000901}
902
903PyDoc_STRVAR(math_ceil_doc,
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000904 "ceil(x)\n\nReturn the ceiling of x as an int.\n"
905 "This is the smallest integral value >= x.");
Guido van Rossum13e05de2007-08-23 22:56:55 +0000906
Christian Heimes072c0f12008-01-03 23:01:04 +0000907FUNC2(copysign, copysign,
Benjamin Petersona0dfa822009-11-13 02:25:08 +0000908 "copysign(x, y)\n\nReturn x with the sign of y.")
Christian Heimes53876d92008-04-19 00:31:39 +0000909FUNC1(cos, cos, 0,
910 "cos(x)\n\nReturn the cosine of x (measured in radians).")
911FUNC1(cosh, cosh, 1,
912 "cosh(x)\n\nReturn the hyperbolic cosine of x.")
Mark Dickinson45f992a2009-12-19 11:20:49 +0000913FUNC1A(erf, m_erf,
914 "erf(x)\n\nError function at x.")
915FUNC1A(erfc, m_erfc,
916 "erfc(x)\n\nComplementary error function at x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000917FUNC1(exp, exp, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000918 "exp(x)\n\nReturn e raised to the power of x.")
Mark Dickinson664b5112009-12-16 20:23:42 +0000919FUNC1(expm1, m_expm1, 1,
920 "expm1(x)\n\nReturn exp(x)-1.\n"
921 "This function avoids the loss of precision involved in the direct "
922 "evaluation of exp(x)-1 for small x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000923FUNC1(fabs, fabs, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000924 "fabs(x)\n\nReturn the absolute value of the float x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +0000925
926static PyObject * math_floor(PyObject *self, PyObject *number) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000927 static PyObject *floor_str = NULL;
Benjamin Petersonb0125892010-07-02 13:35:17 +0000928 PyObject *method, *result;
Guido van Rossum13e05de2007-08-23 22:56:55 +0000929
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +0000930 method = _PyObject_LookupSpecial(number, "__floor__", &floor_str);
931 if (method == NULL) {
932 if (PyErr_Occurred())
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000933 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000934 return math_1_to_int(number, floor, 0);
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +0000935 }
Benjamin Petersonb0125892010-07-02 13:35:17 +0000936 result = PyObject_CallFunctionObjArgs(method, NULL);
937 Py_DECREF(method);
938 return result;
Guido van Rossum13e05de2007-08-23 22:56:55 +0000939}
940
941PyDoc_STRVAR(math_floor_doc,
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000942 "floor(x)\n\nReturn the floor of x as an int.\n"
943 "This is the largest integral value <= x.");
Guido van Rossum13e05de2007-08-23 22:56:55 +0000944
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000945FUNC1A(gamma, m_tgamma,
946 "gamma(x)\n\nGamma function at x.")
Mark Dickinson05d2e082009-12-11 20:17:17 +0000947FUNC1A(lgamma, m_lgamma,
948 "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.")
Mark Dickinsonbe64d952010-07-07 16:21:29 +0000949FUNC1(log1p, m_log1p, 0,
Benjamin Petersona0dfa822009-11-13 02:25:08 +0000950 "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n"
951 "The result is computed in a way which is accurate for x near zero.")
Christian Heimes53876d92008-04-19 00:31:39 +0000952FUNC1(sin, sin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000953 "sin(x)\n\nReturn the sine of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +0000954FUNC1(sinh, sinh, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000955 "sinh(x)\n\nReturn the hyperbolic sine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000956FUNC1(sqrt, sqrt, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000957 "sqrt(x)\n\nReturn the square root of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000958FUNC1(tan, tan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000959 "tan(x)\n\nReturn the tangent of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +0000960FUNC1(tanh, tanh, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000961 "tanh(x)\n\nReturn the hyperbolic tangent of x.")
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000962
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000963/* Precision summation function as msum() by Raymond Hettinger in
964 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
965 enhanced with the exact partials sum and roundoff from Mark
966 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
967 See those links for more details, proofs and other references.
968
969 Note 1: IEEE 754R floating point semantics are assumed,
970 but the current implementation does not re-establish special
971 value semantics across iterations (i.e. handling -Inf + Inf).
972
973 Note 2: No provision is made for intermediate overflow handling;
Georg Brandlf78e02b2008-06-10 17:40:04 +0000974 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000975 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
976 overflow of the first partial sum.
977
Benjamin Petersonfea6a942008-07-02 16:11:42 +0000978 Note 3: The intermediate values lo, yr, and hi are declared volatile so
979 aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
Georg Brandlf78e02b2008-06-10 17:40:04 +0000980 Also, the volatile declaration forces the values to be stored in memory as
981 regular doubles instead of extended long precision (80-bit) values. This
Benjamin Petersonfea6a942008-07-02 16:11:42 +0000982 prevents double rounding because any addition or subtraction of two doubles
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000983 can be resolved exactly into double-sized hi and lo values. As long as the
Georg Brandlf78e02b2008-06-10 17:40:04 +0000984 hi value gets forced into a double before yr and lo are computed, the extra
985 bits in downstream extended precision operations (x87 for example) will be
986 exactly zero and therefore can be losslessly stored back into a double,
987 thereby preventing double rounding.
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000988
989 Note 4: A similar implementation is in Modules/cmathmodule.c.
990 Be sure to update both when making changes.
991
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000992 Note 5: The signature of math.fsum() differs from __builtin__.sum()
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000993 because the start argument doesn't make sense in the context of
994 accurate summation. Since the partials table is collapsed before
995 returning a result, sum(seq2, start=sum(seq1)) may not equal the
996 accurate result returned by sum(itertools.chain(seq1, seq2)).
997*/
998
999#define NUM_PARTIALS 32 /* initial partials array size, on stack */
1000
1001/* Extend the partials array p[] by doubling its size. */
1002static int /* non-zero on error */
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001003_fsum_realloc(double **p_ptr, Py_ssize_t n,
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001004 double *ps, Py_ssize_t *m_ptr)
1005{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001006 void *v = NULL;
1007 Py_ssize_t m = *m_ptr;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001008
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001009 m += m; /* double */
1010 if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
1011 double *p = *p_ptr;
1012 if (p == ps) {
1013 v = PyMem_Malloc(sizeof(double) * m);
1014 if (v != NULL)
1015 memcpy(v, ps, sizeof(double) * n);
1016 }
1017 else
1018 v = PyMem_Realloc(p, sizeof(double) * m);
1019 }
1020 if (v == NULL) { /* size overflow or no memory */
1021 PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
1022 return 1;
1023 }
1024 *p_ptr = (double*) v;
1025 *m_ptr = m;
1026 return 0;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001027}
1028
1029/* Full precision summation of a sequence of floats.
1030
1031 def msum(iterable):
1032 partials = [] # sorted, non-overlapping partial sums
1033 for x in iterable:
Mark Dickinsonfdb0acc2010-06-25 20:22:24 +00001034 i = 0
1035 for y in partials:
1036 if abs(x) < abs(y):
1037 x, y = y, x
1038 hi = x + y
1039 lo = y - (hi - x)
1040 if lo:
1041 partials[i] = lo
1042 i += 1
1043 x = hi
1044 partials[i:] = [x]
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001045 return sum_exact(partials)
1046
1047 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
1048 are exactly equal to x+y. The inner loop applies hi/lo summation to each
1049 partial so that the list of partial sums remains exact.
1050
1051 Sum_exact() adds the partial sums exactly and correctly rounds the final
1052 result (using the round-half-to-even rule). The items in partials remain
1053 non-zero, non-special, non-overlapping and strictly increasing in
1054 magnitude, but possibly not all having the same sign.
1055
1056 Depends on IEEE 754 arithmetic guarantees and half-even rounding.
1057*/
1058
1059static PyObject*
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001060math_fsum(PyObject *self, PyObject *seq)
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001061{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001062 PyObject *item, *iter, *sum = NULL;
1063 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
1064 double x, y, t, ps[NUM_PARTIALS], *p = ps;
1065 double xsave, special_sum = 0.0, inf_sum = 0.0;
1066 volatile double hi, yr, lo;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001067
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001068 iter = PyObject_GetIter(seq);
1069 if (iter == NULL)
1070 return NULL;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001071
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001072 PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001073
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001074 for(;;) { /* for x in iterable */
1075 assert(0 <= n && n <= m);
1076 assert((m == NUM_PARTIALS && p == ps) ||
1077 (m > NUM_PARTIALS && p != NULL));
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001078
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001079 item = PyIter_Next(iter);
1080 if (item == NULL) {
1081 if (PyErr_Occurred())
1082 goto _fsum_error;
1083 break;
1084 }
1085 x = PyFloat_AsDouble(item);
1086 Py_DECREF(item);
1087 if (PyErr_Occurred())
1088 goto _fsum_error;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001089
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001090 xsave = x;
1091 for (i = j = 0; j < n; j++) { /* for y in partials */
1092 y = p[j];
1093 if (fabs(x) < fabs(y)) {
1094 t = x; x = y; y = t;
1095 }
1096 hi = x + y;
1097 yr = hi - x;
1098 lo = y - yr;
1099 if (lo != 0.0)
1100 p[i++] = lo;
1101 x = hi;
1102 }
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001103
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001104 n = i; /* ps[i:] = [x] */
1105 if (x != 0.0) {
1106 if (! Py_IS_FINITE(x)) {
1107 /* a nonfinite x could arise either as
1108 a result of intermediate overflow, or
1109 as a result of a nan or inf in the
1110 summands */
1111 if (Py_IS_FINITE(xsave)) {
1112 PyErr_SetString(PyExc_OverflowError,
1113 "intermediate overflow in fsum");
1114 goto _fsum_error;
1115 }
1116 if (Py_IS_INFINITY(xsave))
1117 inf_sum += xsave;
1118 special_sum += xsave;
1119 /* reset partials */
1120 n = 0;
1121 }
1122 else if (n >= m && _fsum_realloc(&p, n, ps, &m))
1123 goto _fsum_error;
1124 else
1125 p[n++] = x;
1126 }
1127 }
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001128
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001129 if (special_sum != 0.0) {
1130 if (Py_IS_NAN(inf_sum))
1131 PyErr_SetString(PyExc_ValueError,
1132 "-inf + inf in fsum");
1133 else
1134 sum = PyFloat_FromDouble(special_sum);
1135 goto _fsum_error;
1136 }
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001137
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001138 hi = 0.0;
1139 if (n > 0) {
1140 hi = p[--n];
1141 /* sum_exact(ps, hi) from the top, stop when the sum becomes
1142 inexact. */
1143 while (n > 0) {
1144 x = hi;
1145 y = p[--n];
1146 assert(fabs(y) < fabs(x));
1147 hi = x + y;
1148 yr = hi - x;
1149 lo = y - yr;
1150 if (lo != 0.0)
1151 break;
1152 }
1153 /* Make half-even rounding work across multiple partials.
1154 Needed so that sum([1e-16, 1, 1e16]) will round-up the last
1155 digit to two instead of down to zero (the 1e-16 makes the 1
1156 slightly closer to two). With a potential 1 ULP rounding
1157 error fixed-up, math.fsum() can guarantee commutativity. */
1158 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
1159 (lo > 0.0 && p[n-1] > 0.0))) {
1160 y = lo * 2.0;
1161 x = hi + y;
1162 yr = x - hi;
1163 if (y == yr)
1164 hi = x;
1165 }
1166 }
1167 sum = PyFloat_FromDouble(hi);
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001168
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001169_fsum_error:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001170 PyFPE_END_PROTECT(hi)
1171 Py_DECREF(iter);
1172 if (p != ps)
1173 PyMem_Free(p);
1174 return sum;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001175}
1176
1177#undef NUM_PARTIALS
1178
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001179PyDoc_STRVAR(math_fsum_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001180"fsum(iterable)\n\n\
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001181Return an accurate floating point sum of values in the iterable.\n\
1182Assumes IEEE-754 floating point arithmetic.");
1183
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001184/* Return the smallest integer k such that n < 2**k, or 0 if n == 0.
1185 * Equivalent to floor(lg(x))+1. Also equivalent to: bitwidth_of_type -
1186 * count_leading_zero_bits(x)
1187 */
1188
1189/* XXX: This routine does more or less the same thing as
1190 * bits_in_digit() in Objects/longobject.c. Someday it would be nice to
1191 * consolidate them. On BSD, there's a library function called fls()
1192 * that we could use, and GCC provides __builtin_clz().
1193 */
1194
1195static unsigned long
1196bit_length(unsigned long n)
1197{
1198 unsigned long len = 0;
1199 while (n != 0) {
1200 ++len;
1201 n >>= 1;
1202 }
1203 return len;
1204}
1205
1206static unsigned long
1207count_set_bits(unsigned long n)
1208{
1209 unsigned long count = 0;
1210 while (n != 0) {
1211 ++count;
1212 n &= n - 1; /* clear least significant bit */
1213 }
1214 return count;
1215}
1216
1217/* Divide-and-conquer factorial algorithm
1218 *
1219 * Based on the formula and psuedo-code provided at:
1220 * http://www.luschny.de/math/factorial/binarysplitfact.html
1221 *
1222 * Faster algorithms exist, but they're more complicated and depend on
Ezio Melotti9527afd2010-07-08 15:03:02 +00001223 * a fast prime factorization algorithm.
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001224 *
1225 * Notes on the algorithm
1226 * ----------------------
1227 *
1228 * factorial(n) is written in the form 2**k * m, with m odd. k and m are
1229 * computed separately, and then combined using a left shift.
1230 *
1231 * The function factorial_odd_part computes the odd part m (i.e., the greatest
1232 * odd divisor) of factorial(n), using the formula:
1233 *
1234 * factorial_odd_part(n) =
1235 *
1236 * product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
1237 *
1238 * Example: factorial_odd_part(20) =
1239 *
1240 * (1) *
1241 * (1) *
1242 * (1 * 3 * 5) *
1243 * (1 * 3 * 5 * 7 * 9)
1244 * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
1245 *
1246 * Here i goes from large to small: the first term corresponds to i=4 (any
1247 * larger i gives an empty product), and the last term corresponds to i=0.
1248 * Each term can be computed from the last by multiplying by the extra odd
1249 * numbers required: e.g., to get from the penultimate term to the last one,
1250 * we multiply by (11 * 13 * 15 * 17 * 19).
1251 *
1252 * To see a hint of why this formula works, here are the same numbers as above
1253 * but with the even parts (i.e., the appropriate powers of 2) included. For
1254 * each subterm in the product for i, we multiply that subterm by 2**i:
1255 *
1256 * factorial(20) =
1257 *
1258 * (16) *
1259 * (8) *
1260 * (4 * 12 * 20) *
1261 * (2 * 6 * 10 * 14 * 18) *
1262 * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
1263 *
1264 * The factorial_partial_product function computes the product of all odd j in
1265 * range(start, stop) for given start and stop. It's used to compute the
1266 * partial products like (11 * 13 * 15 * 17 * 19) in the example above. It
1267 * operates recursively, repeatedly splitting the range into two roughly equal
1268 * pieces until the subranges are small enough to be computed using only C
1269 * integer arithmetic.
1270 *
1271 * The two-valuation k (i.e., the exponent of the largest power of 2 dividing
1272 * the factorial) is computed independently in the main math_factorial
1273 * function. By standard results, its value is:
1274 *
1275 * two_valuation = n//2 + n//4 + n//8 + ....
1276 *
1277 * It can be shown (e.g., by complete induction on n) that two_valuation is
1278 * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
1279 * '1'-bits in the binary expansion of n.
1280 */
1281
1282/* factorial_partial_product: Compute product(range(start, stop, 2)) using
1283 * divide and conquer. Assumes start and stop are odd and stop > start.
1284 * max_bits must be >= bit_length(stop - 2). */
1285
1286static PyObject *
1287factorial_partial_product(unsigned long start, unsigned long stop,
1288 unsigned long max_bits)
1289{
1290 unsigned long midpoint, num_operands;
1291 PyObject *left = NULL, *right = NULL, *result = NULL;
1292
1293 /* If the return value will fit an unsigned long, then we can
1294 * multiply in a tight, fast loop where each multiply is O(1).
1295 * Compute an upper bound on the number of bits required to store
1296 * the answer.
1297 *
1298 * Storing some integer z requires floor(lg(z))+1 bits, which is
1299 * conveniently the value returned by bit_length(z). The
1300 * product x*y will require at most
1301 * bit_length(x) + bit_length(y) bits to store, based
1302 * on the idea that lg product = lg x + lg y.
1303 *
1304 * We know that stop - 2 is the largest number to be multiplied. From
1305 * there, we have: bit_length(answer) <= num_operands *
1306 * bit_length(stop - 2)
1307 */
1308
1309 num_operands = (stop - start) / 2;
1310 /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
1311 * unlikely case of an overflow in num_operands * max_bits. */
1312 if (num_operands <= 8 * SIZEOF_LONG &&
1313 num_operands * max_bits <= 8 * SIZEOF_LONG) {
1314 unsigned long j, total;
1315 for (total = start, j = start + 2; j < stop; j += 2)
1316 total *= j;
1317 return PyLong_FromUnsignedLong(total);
1318 }
1319
1320 /* find midpoint of range(start, stop), rounded up to next odd number. */
1321 midpoint = (start + num_operands) | 1;
1322 left = factorial_partial_product(start, midpoint,
1323 bit_length(midpoint - 2));
1324 if (left == NULL)
1325 goto error;
1326 right = factorial_partial_product(midpoint, stop, max_bits);
1327 if (right == NULL)
1328 goto error;
1329 result = PyNumber_Multiply(left, right);
1330
1331 error:
1332 Py_XDECREF(left);
1333 Py_XDECREF(right);
1334 return result;
1335}
1336
1337/* factorial_odd_part: compute the odd part of factorial(n). */
1338
1339static PyObject *
1340factorial_odd_part(unsigned long n)
1341{
1342 long i;
1343 unsigned long v, lower, upper;
1344 PyObject *partial, *tmp, *inner, *outer;
1345
1346 inner = PyLong_FromLong(1);
1347 if (inner == NULL)
1348 return NULL;
1349 outer = inner;
1350 Py_INCREF(outer);
1351
1352 upper = 3;
1353 for (i = bit_length(n) - 2; i >= 0; i--) {
1354 v = n >> i;
1355 if (v <= 2)
1356 continue;
1357 lower = upper;
1358 /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
1359 upper = (v + 1) | 1;
1360 /* Here inner is the product of all odd integers j in the range (0,
1361 n/2**(i+1)]. The factorial_partial_product call below gives the
1362 product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
1363 partial = factorial_partial_product(lower, upper, bit_length(upper-2));
1364 /* inner *= partial */
1365 if (partial == NULL)
1366 goto error;
1367 tmp = PyNumber_Multiply(inner, partial);
1368 Py_DECREF(partial);
1369 if (tmp == NULL)
1370 goto error;
1371 Py_DECREF(inner);
1372 inner = tmp;
1373 /* Now inner is the product of all odd integers j in the range (0,
1374 n/2**i], giving the inner product in the formula above. */
1375
1376 /* outer *= inner; */
1377 tmp = PyNumber_Multiply(outer, inner);
1378 if (tmp == NULL)
1379 goto error;
1380 Py_DECREF(outer);
1381 outer = tmp;
1382 }
1383
1384 goto done;
1385
1386 error:
1387 Py_DECREF(outer);
1388 done:
1389 Py_DECREF(inner);
1390 return outer;
1391}
1392
1393/* Lookup table for small factorial values */
1394
1395static const unsigned long SmallFactorials[] = {
1396 1, 1, 2, 6, 24, 120, 720, 5040, 40320,
1397 362880, 3628800, 39916800, 479001600,
1398#if SIZEOF_LONG >= 8
1399 6227020800, 87178291200, 1307674368000,
1400 20922789888000, 355687428096000, 6402373705728000,
1401 121645100408832000, 2432902008176640000
1402#endif
1403};
1404
Barry Warsaw8b43b191996-12-09 22:32:36 +00001405static PyObject *
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001406math_factorial(PyObject *self, PyObject *arg)
1407{
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001408 long x;
1409 PyObject *result, *odd_part, *two_valuation;
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001410
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001411 if (PyFloat_Check(arg)) {
1412 PyObject *lx;
1413 double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
1414 if (!(Py_IS_FINITE(dx) && dx == floor(dx))) {
1415 PyErr_SetString(PyExc_ValueError,
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001416 "factorial() only accepts integral values");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001417 return NULL;
1418 }
1419 lx = PyLong_FromDouble(dx);
1420 if (lx == NULL)
1421 return NULL;
1422 x = PyLong_AsLong(lx);
1423 Py_DECREF(lx);
1424 }
1425 else
1426 x = PyLong_AsLong(arg);
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001427
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001428 if (x == -1 && PyErr_Occurred())
1429 return NULL;
1430 if (x < 0) {
1431 PyErr_SetString(PyExc_ValueError,
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001432 "factorial() not defined for negative values");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001433 return NULL;
1434 }
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001435
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001436 /* use lookup table if x is small */
1437 if (x < (long)(sizeof(SmallFactorials)/sizeof(SmallFactorials[0])))
1438 return PyLong_FromUnsignedLong(SmallFactorials[x]);
1439
1440 /* else express in the form odd_part * 2**two_valuation, and compute as
1441 odd_part << two_valuation. */
1442 odd_part = factorial_odd_part(x);
1443 if (odd_part == NULL)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001444 return NULL;
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001445 two_valuation = PyLong_FromLong(x - count_set_bits(x));
1446 if (two_valuation == NULL) {
1447 Py_DECREF(odd_part);
1448 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001449 }
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001450 result = PyNumber_Lshift(odd_part, two_valuation);
1451 Py_DECREF(two_valuation);
1452 Py_DECREF(odd_part);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001453 return result;
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001454}
1455
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +00001456PyDoc_STRVAR(math_factorial_doc,
1457"factorial(x) -> Integral\n"
1458"\n"
1459"Find x!. Raise a ValueError if x is negative or non-integral.");
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001460
1461static PyObject *
Christian Heimes400adb02008-02-01 08:12:03 +00001462math_trunc(PyObject *self, PyObject *number)
1463{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001464 static PyObject *trunc_str = NULL;
Benjamin Petersonb0125892010-07-02 13:35:17 +00001465 PyObject *trunc, *result;
Christian Heimes400adb02008-02-01 08:12:03 +00001466
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001467 if (Py_TYPE(number)->tp_dict == NULL) {
1468 if (PyType_Ready(Py_TYPE(number)) < 0)
1469 return NULL;
1470 }
Christian Heimes400adb02008-02-01 08:12:03 +00001471
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +00001472 trunc = _PyObject_LookupSpecial(number, "__trunc__", &trunc_str);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001473 if (trunc == NULL) {
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +00001474 if (!PyErr_Occurred())
1475 PyErr_Format(PyExc_TypeError,
1476 "type %.100s doesn't define __trunc__ method",
1477 Py_TYPE(number)->tp_name);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001478 return NULL;
1479 }
Benjamin Petersonb0125892010-07-02 13:35:17 +00001480 result = PyObject_CallFunctionObjArgs(trunc, NULL);
1481 Py_DECREF(trunc);
1482 return result;
Christian Heimes400adb02008-02-01 08:12:03 +00001483}
1484
1485PyDoc_STRVAR(math_trunc_doc,
1486"trunc(x:Real) -> Integral\n"
1487"\n"
Christian Heimes292d3512008-02-03 16:51:08 +00001488"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
Christian Heimes400adb02008-02-01 08:12:03 +00001489
1490static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001491math_frexp(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001492{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001493 int i;
1494 double x = PyFloat_AsDouble(arg);
1495 if (x == -1.0 && PyErr_Occurred())
1496 return NULL;
1497 /* deal with special cases directly, to sidestep platform
1498 differences */
1499 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
1500 i = 0;
1501 }
1502 else {
1503 PyFPE_START_PROTECT("in math_frexp", return 0);
1504 x = frexp(x, &i);
1505 PyFPE_END_PROTECT(x);
1506 }
1507 return Py_BuildValue("(di)", x, i);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001508}
1509
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001510PyDoc_STRVAR(math_frexp_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001511"frexp(x)\n"
1512"\n"
1513"Return the mantissa and exponent of x, as pair (m, e).\n"
1514"m is a float and e is an int, such that x = m * 2.**e.\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001515"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001516
Barry Warsaw8b43b191996-12-09 22:32:36 +00001517static PyObject *
Fred Drake40c48682000-07-03 18:11:56 +00001518math_ldexp(PyObject *self, PyObject *args)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001519{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001520 double x, r;
1521 PyObject *oexp;
1522 long exp;
1523 int overflow;
1524 if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
1525 return NULL;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00001526
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001527 if (PyLong_Check(oexp)) {
1528 /* on overflow, replace exponent with either LONG_MAX
1529 or LONG_MIN, depending on the sign. */
1530 exp = PyLong_AsLongAndOverflow(oexp, &overflow);
1531 if (exp == -1 && PyErr_Occurred())
1532 return NULL;
1533 if (overflow)
1534 exp = overflow < 0 ? LONG_MIN : LONG_MAX;
1535 }
1536 else {
1537 PyErr_SetString(PyExc_TypeError,
1538 "Expected an int or long as second argument "
1539 "to ldexp.");
1540 return NULL;
1541 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00001542
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001543 if (x == 0. || !Py_IS_FINITE(x)) {
1544 /* NaNs, zeros and infinities are returned unchanged */
1545 r = x;
1546 errno = 0;
1547 } else if (exp > INT_MAX) {
1548 /* overflow */
1549 r = copysign(Py_HUGE_VAL, x);
1550 errno = ERANGE;
1551 } else if (exp < INT_MIN) {
1552 /* underflow to +-0 */
1553 r = copysign(0., x);
1554 errno = 0;
1555 } else {
1556 errno = 0;
1557 PyFPE_START_PROTECT("in math_ldexp", return 0);
1558 r = ldexp(x, (int)exp);
1559 PyFPE_END_PROTECT(r);
1560 if (Py_IS_INFINITY(r))
1561 errno = ERANGE;
1562 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00001563
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001564 if (errno && is_error(r))
1565 return NULL;
1566 return PyFloat_FromDouble(r);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001567}
1568
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001569PyDoc_STRVAR(math_ldexp_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001570"ldexp(x, i)\n\n\
1571Return x * (2**i).");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001572
Barry Warsaw8b43b191996-12-09 22:32:36 +00001573static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001574math_modf(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001575{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001576 double y, x = PyFloat_AsDouble(arg);
1577 if (x == -1.0 && PyErr_Occurred())
1578 return NULL;
1579 /* some platforms don't do the right thing for NaNs and
1580 infinities, so we take care of special cases directly. */
1581 if (!Py_IS_FINITE(x)) {
1582 if (Py_IS_INFINITY(x))
1583 return Py_BuildValue("(dd)", copysign(0., x), x);
1584 else if (Py_IS_NAN(x))
1585 return Py_BuildValue("(dd)", x, x);
1586 }
Christian Heimesa342c012008-04-20 21:01:16 +00001587
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001588 errno = 0;
1589 PyFPE_START_PROTECT("in math_modf", return 0);
1590 x = modf(x, &y);
1591 PyFPE_END_PROTECT(x);
1592 return Py_BuildValue("(dd)", x, y);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001593}
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001594
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001595PyDoc_STRVAR(math_modf_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001596"modf(x)\n"
1597"\n"
1598"Return the fractional and integer parts of x. Both results carry the sign\n"
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +00001599"of x and are floats.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001600
Tim Peters78526162001-09-05 00:53:45 +00001601/* A decent logarithm is easy to compute even for huge longs, but libm can't
1602 do that by itself -- loghelper can. func is log or log10, and name is
Mark Dickinson6ecd9e52010-01-02 15:33:56 +00001603 "log" or "log10". Note that overflow of the result isn't possible: a long
1604 can contain no more than INT_MAX * SHIFT bits, so has value certainly less
1605 than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
Tim Peters78526162001-09-05 00:53:45 +00001606 small enough to fit in an IEEE single. log and log10 are even smaller.
Mark Dickinson6ecd9e52010-01-02 15:33:56 +00001607 However, intermediate overflow is possible for a long if the number of bits
1608 in that long is larger than PY_SSIZE_T_MAX. */
Tim Peters78526162001-09-05 00:53:45 +00001609
1610static PyObject*
Thomas Wouters89f507f2006-12-13 04:49:30 +00001611loghelper(PyObject* arg, double (*func)(double), char *funcname)
Tim Peters78526162001-09-05 00:53:45 +00001612{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001613 /* If it is long, do it ourselves. */
1614 if (PyLong_Check(arg)) {
Mark Dickinsonc6037172010-09-29 19:06:36 +00001615 double x, result;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001616 Py_ssize_t e;
Mark Dickinsonc6037172010-09-29 19:06:36 +00001617
1618 /* Negative or zero inputs give a ValueError. */
1619 if (Py_SIZE(arg) <= 0) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001620 PyErr_SetString(PyExc_ValueError,
1621 "math domain error");
1622 return NULL;
1623 }
Mark Dickinsonfa41e602010-09-28 07:22:27 +00001624
Mark Dickinsonc6037172010-09-29 19:06:36 +00001625 x = PyLong_AsDouble(arg);
1626 if (x == -1.0 && PyErr_Occurred()) {
1627 if (!PyErr_ExceptionMatches(PyExc_OverflowError))
1628 return NULL;
1629 /* Here the conversion to double overflowed, but it's possible
1630 to compute the log anyway. Clear the exception and continue. */
1631 PyErr_Clear();
1632 x = _PyLong_Frexp((PyLongObject *)arg, &e);
1633 if (x == -1.0 && PyErr_Occurred())
1634 return NULL;
1635 /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
1636 result = func(x) + func(2.0) * e;
1637 }
1638 else
1639 /* Successfully converted x to a double. */
1640 result = func(x);
1641 return PyFloat_FromDouble(result);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001642 }
Tim Peters78526162001-09-05 00:53:45 +00001643
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001644 /* Else let libm handle it by itself. */
1645 return math_1(arg, func, 0);
Tim Peters78526162001-09-05 00:53:45 +00001646}
1647
1648static PyObject *
1649math_log(PyObject *self, PyObject *args)
1650{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001651 PyObject *arg;
1652 PyObject *base = NULL;
1653 PyObject *num, *den;
1654 PyObject *ans;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001655
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001656 if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
1657 return NULL;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001658
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001659 num = loghelper(arg, m_log, "log");
1660 if (num == NULL || base == NULL)
1661 return num;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001662
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001663 den = loghelper(base, m_log, "log");
1664 if (den == NULL) {
1665 Py_DECREF(num);
1666 return NULL;
1667 }
Raymond Hettinger866964c2002-12-14 19:51:34 +00001668
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001669 ans = PyNumber_TrueDivide(num, den);
1670 Py_DECREF(num);
1671 Py_DECREF(den);
1672 return ans;
Tim Peters78526162001-09-05 00:53:45 +00001673}
1674
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001675PyDoc_STRVAR(math_log_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001676"log(x[, base])\n\n\
1677Return the logarithm of x to the given base.\n\
Raymond Hettinger866964c2002-12-14 19:51:34 +00001678If the base not specified, returns the natural logarithm (base e) of x.");
Tim Peters78526162001-09-05 00:53:45 +00001679
1680static PyObject *
Victor Stinnerfa0e3d52011-05-09 01:01:09 +02001681math_log2(PyObject *self, PyObject *arg)
1682{
1683 return loghelper(arg, m_log2, "log2");
1684}
1685
1686PyDoc_STRVAR(math_log2_doc,
1687"log2(x)\n\nReturn the base 2 logarithm of x.");
1688
1689static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001690math_log10(PyObject *self, PyObject *arg)
Tim Peters78526162001-09-05 00:53:45 +00001691{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001692 return loghelper(arg, m_log10, "log10");
Tim Peters78526162001-09-05 00:53:45 +00001693}
1694
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001695PyDoc_STRVAR(math_log10_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001696"log10(x)\n\nReturn the base 10 logarithm of x.");
Tim Peters78526162001-09-05 00:53:45 +00001697
Christian Heimes53876d92008-04-19 00:31:39 +00001698static PyObject *
1699math_fmod(PyObject *self, PyObject *args)
1700{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001701 PyObject *ox, *oy;
1702 double r, x, y;
1703 if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
1704 return NULL;
1705 x = PyFloat_AsDouble(ox);
1706 y = PyFloat_AsDouble(oy);
1707 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1708 return NULL;
1709 /* fmod(x, +/-Inf) returns x for finite x. */
1710 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
1711 return PyFloat_FromDouble(x);
1712 errno = 0;
1713 PyFPE_START_PROTECT("in math_fmod", return 0);
1714 r = fmod(x, y);
1715 PyFPE_END_PROTECT(r);
1716 if (Py_IS_NAN(r)) {
1717 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1718 errno = EDOM;
1719 else
1720 errno = 0;
1721 }
1722 if (errno && is_error(r))
1723 return NULL;
1724 else
1725 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00001726}
1727
1728PyDoc_STRVAR(math_fmod_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001729"fmod(x, y)\n\nReturn fmod(x, y), according to platform C."
Christian Heimes53876d92008-04-19 00:31:39 +00001730" x % y may differ.");
1731
1732static PyObject *
1733math_hypot(PyObject *self, PyObject *args)
1734{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001735 PyObject *ox, *oy;
1736 double r, x, y;
1737 if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
1738 return NULL;
1739 x = PyFloat_AsDouble(ox);
1740 y = PyFloat_AsDouble(oy);
1741 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1742 return NULL;
1743 /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
1744 if (Py_IS_INFINITY(x))
1745 return PyFloat_FromDouble(fabs(x));
1746 if (Py_IS_INFINITY(y))
1747 return PyFloat_FromDouble(fabs(y));
1748 errno = 0;
1749 PyFPE_START_PROTECT("in math_hypot", return 0);
1750 r = hypot(x, y);
1751 PyFPE_END_PROTECT(r);
1752 if (Py_IS_NAN(r)) {
1753 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1754 errno = EDOM;
1755 else
1756 errno = 0;
1757 }
1758 else if (Py_IS_INFINITY(r)) {
1759 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
1760 errno = ERANGE;
1761 else
1762 errno = 0;
1763 }
1764 if (errno && is_error(r))
1765 return NULL;
1766 else
1767 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00001768}
1769
1770PyDoc_STRVAR(math_hypot_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001771"hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
Christian Heimes53876d92008-04-19 00:31:39 +00001772
1773/* pow can't use math_2, but needs its own wrapper: the problem is
1774 that an infinite result can arise either as a result of overflow
1775 (in which case OverflowError should be raised) or as a result of
1776 e.g. 0.**-5. (for which ValueError needs to be raised.)
1777*/
1778
1779static PyObject *
1780math_pow(PyObject *self, PyObject *args)
1781{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001782 PyObject *ox, *oy;
1783 double r, x, y;
1784 int odd_y;
Christian Heimes53876d92008-04-19 00:31:39 +00001785
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001786 if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
1787 return NULL;
1788 x = PyFloat_AsDouble(ox);
1789 y = PyFloat_AsDouble(oy);
1790 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1791 return NULL;
Christian Heimesa342c012008-04-20 21:01:16 +00001792
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001793 /* deal directly with IEEE specials, to cope with problems on various
1794 platforms whose semantics don't exactly match C99 */
1795 r = 0.; /* silence compiler warning */
1796 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
1797 errno = 0;
1798 if (Py_IS_NAN(x))
1799 r = y == 0. ? 1. : x; /* NaN**0 = 1 */
1800 else if (Py_IS_NAN(y))
1801 r = x == 1. ? 1. : y; /* 1**NaN = 1 */
1802 else if (Py_IS_INFINITY(x)) {
1803 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
1804 if (y > 0.)
1805 r = odd_y ? x : fabs(x);
1806 else if (y == 0.)
1807 r = 1.;
1808 else /* y < 0. */
1809 r = odd_y ? copysign(0., x) : 0.;
1810 }
1811 else if (Py_IS_INFINITY(y)) {
1812 if (fabs(x) == 1.0)
1813 r = 1.;
1814 else if (y > 0. && fabs(x) > 1.0)
1815 r = y;
1816 else if (y < 0. && fabs(x) < 1.0) {
1817 r = -y; /* result is +inf */
1818 if (x == 0.) /* 0**-inf: divide-by-zero */
1819 errno = EDOM;
1820 }
1821 else
1822 r = 0.;
1823 }
1824 }
1825 else {
1826 /* let libm handle finite**finite */
1827 errno = 0;
1828 PyFPE_START_PROTECT("in math_pow", return 0);
1829 r = pow(x, y);
1830 PyFPE_END_PROTECT(r);
1831 /* a NaN result should arise only from (-ve)**(finite
1832 non-integer); in this case we want to raise ValueError. */
1833 if (!Py_IS_FINITE(r)) {
1834 if (Py_IS_NAN(r)) {
1835 errno = EDOM;
1836 }
1837 /*
1838 an infinite result here arises either from:
1839 (A) (+/-0.)**negative (-> divide-by-zero)
1840 (B) overflow of x**y with x and y finite
1841 */
1842 else if (Py_IS_INFINITY(r)) {
1843 if (x == 0.)
1844 errno = EDOM;
1845 else
1846 errno = ERANGE;
1847 }
1848 }
1849 }
Christian Heimes53876d92008-04-19 00:31:39 +00001850
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001851 if (errno && is_error(r))
1852 return NULL;
1853 else
1854 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00001855}
1856
1857PyDoc_STRVAR(math_pow_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001858"pow(x, y)\n\nReturn x**y (x to the power of y).");
Christian Heimes53876d92008-04-19 00:31:39 +00001859
Christian Heimes072c0f12008-01-03 23:01:04 +00001860static const double degToRad = Py_MATH_PI / 180.0;
1861static const double radToDeg = 180.0 / Py_MATH_PI;
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001862
1863static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001864math_degrees(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001865{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001866 double x = PyFloat_AsDouble(arg);
1867 if (x == -1.0 && PyErr_Occurred())
1868 return NULL;
1869 return PyFloat_FromDouble(x * radToDeg);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001870}
1871
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001872PyDoc_STRVAR(math_degrees_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001873"degrees(x)\n\n\
1874Convert angle x from radians to degrees.");
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001875
1876static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001877math_radians(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001878{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001879 double x = PyFloat_AsDouble(arg);
1880 if (x == -1.0 && PyErr_Occurred())
1881 return NULL;
1882 return PyFloat_FromDouble(x * degToRad);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001883}
1884
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001885PyDoc_STRVAR(math_radians_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001886"radians(x)\n\n\
1887Convert angle x from degrees to radians.");
Tim Peters78526162001-09-05 00:53:45 +00001888
Christian Heimes072c0f12008-01-03 23:01:04 +00001889static PyObject *
Mark Dickinson8e0c9962010-07-11 17:38:24 +00001890math_isfinite(PyObject *self, PyObject *arg)
1891{
1892 double x = PyFloat_AsDouble(arg);
1893 if (x == -1.0 && PyErr_Occurred())
1894 return NULL;
1895 return PyBool_FromLong((long)Py_IS_FINITE(x));
1896}
1897
1898PyDoc_STRVAR(math_isfinite_doc,
1899"isfinite(x) -> bool\n\n\
Mark Dickinson226f5442010-07-11 18:13:41 +00001900Return True if x is neither an infinity nor a NaN, and False otherwise.");
Mark Dickinson8e0c9962010-07-11 17:38:24 +00001901
1902static PyObject *
Christian Heimes072c0f12008-01-03 23:01:04 +00001903math_isnan(PyObject *self, PyObject *arg)
1904{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001905 double x = PyFloat_AsDouble(arg);
1906 if (x == -1.0 && PyErr_Occurred())
1907 return NULL;
1908 return PyBool_FromLong((long)Py_IS_NAN(x));
Christian Heimes072c0f12008-01-03 23:01:04 +00001909}
1910
1911PyDoc_STRVAR(math_isnan_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001912"isnan(x) -> bool\n\n\
Mark Dickinson226f5442010-07-11 18:13:41 +00001913Return True if x is a NaN (not a number), and False otherwise.");
Christian Heimes072c0f12008-01-03 23:01:04 +00001914
1915static PyObject *
1916math_isinf(PyObject *self, PyObject *arg)
1917{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001918 double x = PyFloat_AsDouble(arg);
1919 if (x == -1.0 && PyErr_Occurred())
1920 return NULL;
1921 return PyBool_FromLong((long)Py_IS_INFINITY(x));
Christian Heimes072c0f12008-01-03 23:01:04 +00001922}
1923
1924PyDoc_STRVAR(math_isinf_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001925"isinf(x) -> bool\n\n\
Mark Dickinson226f5442010-07-11 18:13:41 +00001926Return True if x is a positive or negative infinity, and False otherwise.");
Christian Heimes072c0f12008-01-03 23:01:04 +00001927
Barry Warsaw8b43b191996-12-09 22:32:36 +00001928static PyMethodDef math_methods[] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001929 {"acos", math_acos, METH_O, math_acos_doc},
1930 {"acosh", math_acosh, METH_O, math_acosh_doc},
1931 {"asin", math_asin, METH_O, math_asin_doc},
1932 {"asinh", math_asinh, METH_O, math_asinh_doc},
1933 {"atan", math_atan, METH_O, math_atan_doc},
1934 {"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
1935 {"atanh", math_atanh, METH_O, math_atanh_doc},
1936 {"ceil", math_ceil, METH_O, math_ceil_doc},
1937 {"copysign", math_copysign, METH_VARARGS, math_copysign_doc},
1938 {"cos", math_cos, METH_O, math_cos_doc},
1939 {"cosh", math_cosh, METH_O, math_cosh_doc},
1940 {"degrees", math_degrees, METH_O, math_degrees_doc},
1941 {"erf", math_erf, METH_O, math_erf_doc},
1942 {"erfc", math_erfc, METH_O, math_erfc_doc},
1943 {"exp", math_exp, METH_O, math_exp_doc},
1944 {"expm1", math_expm1, METH_O, math_expm1_doc},
1945 {"fabs", math_fabs, METH_O, math_fabs_doc},
1946 {"factorial", math_factorial, METH_O, math_factorial_doc},
1947 {"floor", math_floor, METH_O, math_floor_doc},
1948 {"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
1949 {"frexp", math_frexp, METH_O, math_frexp_doc},
1950 {"fsum", math_fsum, METH_O, math_fsum_doc},
1951 {"gamma", math_gamma, METH_O, math_gamma_doc},
1952 {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
Mark Dickinson8e0c9962010-07-11 17:38:24 +00001953 {"isfinite", math_isfinite, METH_O, math_isfinite_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001954 {"isinf", math_isinf, METH_O, math_isinf_doc},
1955 {"isnan", math_isnan, METH_O, math_isnan_doc},
1956 {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
1957 {"lgamma", math_lgamma, METH_O, math_lgamma_doc},
1958 {"log", math_log, METH_VARARGS, math_log_doc},
1959 {"log1p", math_log1p, METH_O, math_log1p_doc},
1960 {"log10", math_log10, METH_O, math_log10_doc},
Victor Stinnerfa0e3d52011-05-09 01:01:09 +02001961 {"log2", math_log2, METH_O, math_log2_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001962 {"modf", math_modf, METH_O, math_modf_doc},
1963 {"pow", math_pow, METH_VARARGS, math_pow_doc},
1964 {"radians", math_radians, METH_O, math_radians_doc},
1965 {"sin", math_sin, METH_O, math_sin_doc},
1966 {"sinh", math_sinh, METH_O, math_sinh_doc},
1967 {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
1968 {"tan", math_tan, METH_O, math_tan_doc},
1969 {"tanh", math_tanh, METH_O, math_tanh_doc},
1970 {"trunc", math_trunc, METH_O, math_trunc_doc},
1971 {NULL, NULL} /* sentinel */
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001972};
1973
Guido van Rossumc6e22901998-12-04 19:26:43 +00001974
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001975PyDoc_STRVAR(module_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001976"This module is always available. It provides access to the\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001977"mathematical functions defined by the C standard.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001978
Martin v. Löwis1a214512008-06-11 05:26:20 +00001979
1980static struct PyModuleDef mathmodule = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001981 PyModuleDef_HEAD_INIT,
1982 "math",
1983 module_doc,
1984 -1,
1985 math_methods,
1986 NULL,
1987 NULL,
1988 NULL,
1989 NULL
Martin v. Löwis1a214512008-06-11 05:26:20 +00001990};
1991
Mark Hammondfe51c6d2002-08-02 02:27:13 +00001992PyMODINIT_FUNC
Martin v. Löwis1a214512008-06-11 05:26:20 +00001993PyInit_math(void)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001994{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001995 PyObject *m;
Tim Petersfe71f812001-08-07 22:10:00 +00001996
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001997 m = PyModule_Create(&mathmodule);
1998 if (m == NULL)
1999 goto finally;
Barry Warsawfc93f751996-12-17 00:47:03 +00002000
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002001 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
2002 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
Barry Warsawfc93f751996-12-17 00:47:03 +00002003
Christian Heimes53876d92008-04-19 00:31:39 +00002004 finally:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002005 return m;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00002006}