Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 1 | """ |
| 2 | Basic statistics module. |
| 3 | |
| 4 | This module provides functions for calculating statistics of data, including |
| 5 | averages, variance, and standard deviation. |
| 6 | |
| 7 | Calculating averages |
| 8 | -------------------- |
| 9 | |
Raymond Hettinger | 9013ccf | 2019-04-23 00:06:35 -0700 | [diff] [blame] | 10 | ================== ================================================== |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 11 | Function Description |
Raymond Hettinger | 9013ccf | 2019-04-23 00:06:35 -0700 | [diff] [blame] | 12 | ================== ================================================== |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 13 | mean Arithmetic mean (average) of data. |
Raymond Hettinger | 7280048 | 2019-04-23 01:35:16 -0700 | [diff] [blame] | 14 | fmean Fast, floating point arithmetic mean. |
Raymond Hettinger | 6463ba3 | 2019-04-07 09:20:03 -0700 | [diff] [blame] | 15 | geometric_mean Geometric mean of data. |
Steven D'Aprano | a474afd | 2016-08-09 12:49:01 +1000 | [diff] [blame] | 16 | harmonic_mean Harmonic mean of data. |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 17 | median Median (middle value) of data. |
| 18 | median_low Low median of data. |
| 19 | median_high High median of data. |
| 20 | median_grouped Median, or 50th percentile, of grouped data. |
| 21 | mode Mode (most common value) of data. |
Raymond Hettinger | 6463ba3 | 2019-04-07 09:20:03 -0700 | [diff] [blame] | 22 | multimode List of modes (most common values of data). |
Raymond Hettinger | 9013ccf | 2019-04-23 00:06:35 -0700 | [diff] [blame] | 23 | quantiles Divide data into intervals with equal probability. |
| 24 | ================== ================================================== |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 25 | |
| 26 | Calculate the arithmetic mean ("the average") of data: |
| 27 | |
| 28 | >>> mean([-1.0, 2.5, 3.25, 5.75]) |
| 29 | 2.625 |
| 30 | |
| 31 | |
| 32 | Calculate the standard median of discrete data: |
| 33 | |
| 34 | >>> median([2, 3, 4, 5]) |
| 35 | 3.5 |
| 36 | |
| 37 | |
| 38 | Calculate the median, or 50th percentile, of data grouped into class intervals |
| 39 | centred on the data values provided. E.g. if your data points are rounded to |
| 40 | the nearest whole number: |
| 41 | |
| 42 | >>> median_grouped([2, 2, 3, 3, 3, 4]) #doctest: +ELLIPSIS |
| 43 | 2.8333333333... |
| 44 | |
| 45 | This should be interpreted in this way: you have two data points in the class |
| 46 | interval 1.5-2.5, three data points in the class interval 2.5-3.5, and one in |
| 47 | the class interval 3.5-4.5. The median of these data points is 2.8333... |
| 48 | |
| 49 | |
| 50 | Calculating variability or spread |
| 51 | --------------------------------- |
| 52 | |
| 53 | ================== ============================================= |
| 54 | Function Description |
| 55 | ================== ============================================= |
| 56 | pvariance Population variance of data. |
| 57 | variance Sample variance of data. |
| 58 | pstdev Population standard deviation of data. |
| 59 | stdev Sample standard deviation of data. |
| 60 | ================== ============================================= |
| 61 | |
| 62 | Calculate the standard deviation of sample data: |
| 63 | |
| 64 | >>> stdev([2.5, 3.25, 5.5, 11.25, 11.75]) #doctest: +ELLIPSIS |
| 65 | 4.38961843444... |
| 66 | |
| 67 | If you have previously calculated the mean, you can pass it as the optional |
| 68 | second argument to the four "spread" functions to avoid recalculating it: |
| 69 | |
| 70 | >>> data = [1, 2, 2, 4, 4, 4, 5, 6] |
| 71 | >>> mu = mean(data) |
| 72 | >>> pvariance(data, mu) |
| 73 | 2.5 |
| 74 | |
| 75 | |
Tymoteusz Wołodźko | 09aa6f9 | 2021-04-25 13:45:09 +0200 | [diff] [blame] | 76 | Statistics for relations between two inputs |
| 77 | ------------------------------------------- |
| 78 | |
| 79 | ================== ==================================================== |
| 80 | Function Description |
| 81 | ================== ==================================================== |
| 82 | covariance Sample covariance for two variables. |
| 83 | correlation Pearson's correlation coefficient for two variables. |
| 84 | linear_regression Intercept and slope for simple linear regression. |
| 85 | ================== ==================================================== |
| 86 | |
| 87 | Calculate covariance, Pearson's correlation, and simple linear regression |
| 88 | for two inputs: |
| 89 | |
| 90 | >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9] |
| 91 | >>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3] |
| 92 | >>> covariance(x, y) |
| 93 | 0.75 |
| 94 | >>> correlation(x, y) #doctest: +ELLIPSIS |
| 95 | 0.31622776601... |
| 96 | >>> linear_regression(x, y) #doctest: |
| 97 | LinearRegression(intercept=1.5, slope=0.1) |
| 98 | |
| 99 | |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 100 | Exceptions |
| 101 | ---------- |
| 102 | |
| 103 | A single exception is defined: StatisticsError is a subclass of ValueError. |
| 104 | |
| 105 | """ |
| 106 | |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 107 | __all__ = [ |
| 108 | 'NormalDist', |
| 109 | 'StatisticsError', |
| 110 | 'fmean', |
| 111 | 'geometric_mean', |
| 112 | 'harmonic_mean', |
| 113 | 'mean', |
| 114 | 'median', |
| 115 | 'median_grouped', |
| 116 | 'median_high', |
| 117 | 'median_low', |
| 118 | 'mode', |
| 119 | 'multimode', |
| 120 | 'pstdev', |
| 121 | 'pvariance', |
| 122 | 'quantiles', |
| 123 | 'stdev', |
| 124 | 'variance', |
Tymoteusz Wołodźko | 09aa6f9 | 2021-04-25 13:45:09 +0200 | [diff] [blame] | 125 | 'correlation', |
| 126 | 'covariance', |
| 127 | 'linear_regression', |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 128 | ] |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 129 | |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 130 | import math |
Steven D'Aprano | a474afd | 2016-08-09 12:49:01 +1000 | [diff] [blame] | 131 | import numbers |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 132 | import random |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 133 | |
| 134 | from fractions import Fraction |
| 135 | from decimal import Decimal |
Raymond Hettinger | cc3467a | 2020-12-23 19:52:09 -0800 | [diff] [blame] | 136 | from itertools import groupby, repeat |
Steven D'Aprano | 3b06e24 | 2016-05-05 03:54:29 +1000 | [diff] [blame] | 137 | from bisect import bisect_left, bisect_right |
Raymond Hettinger | 318d537 | 2019-03-06 22:59:40 -0800 | [diff] [blame] | 138 | from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum |
Raymond Hettinger | fc06a19 | 2019-03-12 00:43:27 -0700 | [diff] [blame] | 139 | from operator import itemgetter |
Tymoteusz Wołodźko | 09aa6f9 | 2021-04-25 13:45:09 +0200 | [diff] [blame] | 140 | from collections import Counter, namedtuple |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 141 | |
| 142 | # === Exceptions === |
| 143 | |
| 144 | class StatisticsError(ValueError): |
| 145 | pass |
| 146 | |
| 147 | |
| 148 | # === Private utilities === |
| 149 | |
| 150 | def _sum(data, start=0): |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 151 | """_sum(data [, start]) -> (type, sum, count) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 152 | |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 153 | Return a high-precision sum of the given numeric data as a fraction, |
| 154 | together with the type to be converted to and the count of items. |
| 155 | |
| 156 | If optional argument ``start`` is given, it is added to the total. |
| 157 | If ``data`` is empty, ``start`` (defaulting to 0) is returned. |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 158 | |
| 159 | |
| 160 | Examples |
| 161 | -------- |
| 162 | |
| 163 | >>> _sum([3, 2.25, 4.5, -0.5, 1.0], 0.75) |
Benjamin Peterson | ab078e9 | 2016-07-13 21:13:29 -0700 | [diff] [blame] | 164 | (<class 'float'>, Fraction(11, 1), 5) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 165 | |
| 166 | Some sources of round-off error will be avoided: |
| 167 | |
Steven D'Aprano | a474afd | 2016-08-09 12:49:01 +1000 | [diff] [blame] | 168 | # Built-in sum returns zero. |
| 169 | >>> _sum([1e50, 1, -1e50] * 1000) |
Benjamin Peterson | ab078e9 | 2016-07-13 21:13:29 -0700 | [diff] [blame] | 170 | (<class 'float'>, Fraction(1000, 1), 3000) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 171 | |
| 172 | Fractions and Decimals are also supported: |
| 173 | |
| 174 | >>> from fractions import Fraction as F |
| 175 | >>> _sum([F(2, 3), F(7, 5), F(1, 4), F(5, 6)]) |
Benjamin Peterson | ab078e9 | 2016-07-13 21:13:29 -0700 | [diff] [blame] | 176 | (<class 'fractions.Fraction'>, Fraction(63, 20), 4) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 177 | |
| 178 | >>> from decimal import Decimal as D |
| 179 | >>> data = [D("0.1375"), D("0.2108"), D("0.3061"), D("0.0419")] |
| 180 | >>> _sum(data) |
Benjamin Peterson | ab078e9 | 2016-07-13 21:13:29 -0700 | [diff] [blame] | 181 | (<class 'decimal.Decimal'>, Fraction(6963, 10000), 4) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 182 | |
Nick Coghlan | 73afe2a | 2014-02-08 19:58:04 +1000 | [diff] [blame] | 183 | Mixed types are currently treated as an error, except that int is |
| 184 | allowed. |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 185 | """ |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 186 | count = 0 |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 187 | n, d = _exact_ratio(start) |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 188 | partials = {d: n} |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 189 | partials_get = partials.get |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 190 | T = _coerce(int, type(start)) |
| 191 | for typ, values in groupby(data, type): |
| 192 | T = _coerce(T, typ) # or raise TypeError |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 193 | for n, d in map(_exact_ratio, values): |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 194 | count += 1 |
| 195 | partials[d] = partials_get(d, 0) + n |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 196 | if None in partials: |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 197 | # The sum will be a NAN or INF. We can ignore all the finite |
| 198 | # partials, and just look at this special one. |
| 199 | total = partials[None] |
| 200 | assert not _isfinite(total) |
| 201 | else: |
| 202 | # Sum all the partial sums using builtin sum. |
| 203 | # FIXME is this faster if we sum them in order of the denominator? |
| 204 | total = sum(Fraction(n, d) for d, n in sorted(partials.items())) |
| 205 | return (T, total, count) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 206 | |
| 207 | |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 208 | def _isfinite(x): |
| 209 | try: |
| 210 | return x.is_finite() # Likely a Decimal. |
| 211 | except AttributeError: |
| 212 | return math.isfinite(x) # Coerces to float first. |
| 213 | |
| 214 | |
| 215 | def _coerce(T, S): |
| 216 | """Coerce types T and S to a common type, or raise TypeError. |
| 217 | |
| 218 | Coercion rules are currently an implementation detail. See the CoerceTest |
| 219 | test class in test_statistics for details. |
| 220 | """ |
| 221 | # See http://bugs.python.org/issue24068. |
| 222 | assert T is not bool, "initial type T is bool" |
| 223 | # If the types are the same, no need to coerce anything. Put this |
| 224 | # first, so that the usual case (no coercion needed) happens as soon |
| 225 | # as possible. |
| 226 | if T is S: return T |
| 227 | # Mixed int & other coerce to the other type. |
| 228 | if S is int or S is bool: return T |
| 229 | if T is int: return S |
| 230 | # If one is a (strict) subclass of the other, coerce to the subclass. |
| 231 | if issubclass(S, T): return S |
| 232 | if issubclass(T, S): return T |
| 233 | # Ints coerce to the other type. |
| 234 | if issubclass(T, int): return S |
| 235 | if issubclass(S, int): return T |
| 236 | # Mixed fraction & float coerces to float (or float subclass). |
| 237 | if issubclass(T, Fraction) and issubclass(S, float): |
| 238 | return S |
| 239 | if issubclass(T, float) and issubclass(S, Fraction): |
| 240 | return T |
| 241 | # Any other combination is disallowed. |
| 242 | msg = "don't know how to coerce %s and %s" |
| 243 | raise TypeError(msg % (T.__name__, S.__name__)) |
Nick Coghlan | 73afe2a | 2014-02-08 19:58:04 +1000 | [diff] [blame] | 244 | |
| 245 | |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 246 | def _exact_ratio(x): |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 247 | """Return Real number x to exact (numerator, denominator) pair. |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 248 | |
| 249 | >>> _exact_ratio(0.25) |
| 250 | (1, 4) |
| 251 | |
| 252 | x is expected to be an int, Fraction, Decimal or float. |
| 253 | """ |
| 254 | try: |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 255 | # Optimise the common case of floats. We expect that the most often |
| 256 | # used numeric type will be builtin floats, so try to make this as |
| 257 | # fast as possible. |
Steven D'Aprano | 3b06e24 | 2016-05-05 03:54:29 +1000 | [diff] [blame] | 258 | if type(x) is float or type(x) is Decimal: |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 259 | return x.as_integer_ratio() |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 260 | try: |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 261 | # x may be an int, Fraction, or Integral ABC. |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 262 | return (x.numerator, x.denominator) |
| 263 | except AttributeError: |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 264 | try: |
Steven D'Aprano | 3b06e24 | 2016-05-05 03:54:29 +1000 | [diff] [blame] | 265 | # x may be a float or Decimal subclass. |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 266 | return x.as_integer_ratio() |
| 267 | except AttributeError: |
Steven D'Aprano | 3b06e24 | 2016-05-05 03:54:29 +1000 | [diff] [blame] | 268 | # Just give up? |
| 269 | pass |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 270 | except (OverflowError, ValueError): |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 271 | # float NAN or INF. |
Steven D'Aprano | 3b06e24 | 2016-05-05 03:54:29 +1000 | [diff] [blame] | 272 | assert not _isfinite(x) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 273 | return (x, None) |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 274 | msg = "can't convert type '{}' to numerator/denominator" |
| 275 | raise TypeError(msg.format(type(x).__name__)) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 276 | |
| 277 | |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 278 | def _convert(value, T): |
| 279 | """Convert value to given numeric type T.""" |
| 280 | if type(value) is T: |
| 281 | # This covers the cases where T is Fraction, or where value is |
| 282 | # a NAN or INF (Decimal or float). |
| 283 | return value |
| 284 | if issubclass(T, int) and value.denominator != 1: |
| 285 | T = float |
| 286 | try: |
| 287 | # FIXME: what do we do if this overflows? |
| 288 | return T(value) |
| 289 | except TypeError: |
| 290 | if issubclass(T, Decimal): |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 291 | return T(value.numerator) / T(value.denominator) |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 292 | else: |
| 293 | raise |
| 294 | |
| 295 | |
Steven D'Aprano | 3b06e24 | 2016-05-05 03:54:29 +1000 | [diff] [blame] | 296 | def _find_lteq(a, x): |
| 297 | 'Locate the leftmost value exactly equal to x' |
| 298 | i = bisect_left(a, x) |
| 299 | if i != len(a) and a[i] == x: |
| 300 | return i |
| 301 | raise ValueError |
| 302 | |
| 303 | |
| 304 | def _find_rteq(a, l, x): |
| 305 | 'Locate the rightmost value exactly equal to x' |
| 306 | i = bisect_right(a, x, lo=l) |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 307 | if i != (len(a) + 1) and a[i - 1] == x: |
| 308 | return i - 1 |
Steven D'Aprano | 3b06e24 | 2016-05-05 03:54:29 +1000 | [diff] [blame] | 309 | raise ValueError |
| 310 | |
Steven D'Aprano | a474afd | 2016-08-09 12:49:01 +1000 | [diff] [blame] | 311 | |
| 312 | def _fail_neg(values, errmsg='negative value'): |
| 313 | """Iterate over values, failing if any are less than zero.""" |
| 314 | for x in values: |
| 315 | if x < 0: |
| 316 | raise StatisticsError(errmsg) |
| 317 | yield x |
| 318 | |
| 319 | |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 320 | # === Measures of central tendency (averages) === |
| 321 | |
| 322 | def mean(data): |
| 323 | """Return the sample arithmetic mean of data. |
| 324 | |
| 325 | >>> mean([1, 2, 3, 4, 4]) |
| 326 | 2.8 |
| 327 | |
| 328 | >>> from fractions import Fraction as F |
| 329 | >>> mean([F(3, 7), F(1, 21), F(5, 3), F(1, 3)]) |
| 330 | Fraction(13, 21) |
| 331 | |
| 332 | >>> from decimal import Decimal as D |
| 333 | >>> mean([D("0.5"), D("0.75"), D("0.625"), D("0.375")]) |
| 334 | Decimal('0.5625') |
| 335 | |
| 336 | If ``data`` is empty, StatisticsError will be raised. |
| 337 | """ |
| 338 | if iter(data) is data: |
| 339 | data = list(data) |
| 340 | n = len(data) |
| 341 | if n < 1: |
| 342 | raise StatisticsError('mean requires at least one data point') |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 343 | T, total, count = _sum(data) |
| 344 | assert count == n |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 345 | return _convert(total / n, T) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 346 | |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 347 | |
Raymond Hettinger | 47d9987 | 2019-02-21 15:06:29 -0800 | [diff] [blame] | 348 | def fmean(data): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 349 | """Convert data to floats and compute the arithmetic mean. |
Raymond Hettinger | 47d9987 | 2019-02-21 15:06:29 -0800 | [diff] [blame] | 350 | |
| 351 | This runs faster than the mean() function and it always returns a float. |
Raymond Hettinger | 47d9987 | 2019-02-21 15:06:29 -0800 | [diff] [blame] | 352 | If the input dataset is empty, it raises a StatisticsError. |
| 353 | |
| 354 | >>> fmean([3.5, 4.0, 5.25]) |
| 355 | 4.25 |
Raymond Hettinger | 47d9987 | 2019-02-21 15:06:29 -0800 | [diff] [blame] | 356 | """ |
| 357 | try: |
| 358 | n = len(data) |
| 359 | except TypeError: |
| 360 | # Handle iterators that do not define __len__(). |
| 361 | n = 0 |
Raymond Hettinger | 6c01ebc | 2019-06-05 07:39:38 -0700 | [diff] [blame] | 362 | def count(iterable): |
Raymond Hettinger | 47d9987 | 2019-02-21 15:06:29 -0800 | [diff] [blame] | 363 | nonlocal n |
Raymond Hettinger | 6c01ebc | 2019-06-05 07:39:38 -0700 | [diff] [blame] | 364 | for n, x in enumerate(iterable, start=1): |
| 365 | yield x |
| 366 | total = fsum(count(data)) |
Raymond Hettinger | 47d9987 | 2019-02-21 15:06:29 -0800 | [diff] [blame] | 367 | else: |
Raymond Hettinger | fc06a19 | 2019-03-12 00:43:27 -0700 | [diff] [blame] | 368 | total = fsum(data) |
Raymond Hettinger | 47d9987 | 2019-02-21 15:06:29 -0800 | [diff] [blame] | 369 | try: |
| 370 | return total / n |
| 371 | except ZeroDivisionError: |
| 372 | raise StatisticsError('fmean requires at least one data point') from None |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 373 | |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 374 | |
Raymond Hettinger | 6463ba3 | 2019-04-07 09:20:03 -0700 | [diff] [blame] | 375 | def geometric_mean(data): |
| 376 | """Convert data to floats and compute the geometric mean. |
| 377 | |
| 378 | Raises a StatisticsError if the input dataset is empty, |
| 379 | if it contains a zero, or if it contains a negative value. |
| 380 | |
| 381 | No special efforts are made to achieve exact results. |
| 382 | (However, this may change in the future.) |
| 383 | |
| 384 | >>> round(geometric_mean([54, 24, 36]), 9) |
| 385 | 36.0 |
| 386 | """ |
| 387 | try: |
| 388 | return exp(fmean(map(log, data))) |
| 389 | except ValueError: |
| 390 | raise StatisticsError('geometric mean requires a non-empty dataset ' |
| 391 | ' containing positive numbers') from None |
| 392 | |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 393 | |
Raymond Hettinger | cc3467a | 2020-12-23 19:52:09 -0800 | [diff] [blame] | 394 | def harmonic_mean(data, weights=None): |
Steven D'Aprano | a474afd | 2016-08-09 12:49:01 +1000 | [diff] [blame] | 395 | """Return the harmonic mean of data. |
| 396 | |
Raymond Hettinger | 30a8b28 | 2021-02-07 16:44:42 -0800 | [diff] [blame] | 397 | The harmonic mean is the reciprocal of the arithmetic mean of the |
| 398 | reciprocals of the data. It can be used for averaging ratios or |
| 399 | rates, for example speeds. |
Steven D'Aprano | a474afd | 2016-08-09 12:49:01 +1000 | [diff] [blame] | 400 | |
Raymond Hettinger | cc3467a | 2020-12-23 19:52:09 -0800 | [diff] [blame] | 401 | Suppose a car travels 40 km/hr for 5 km and then speeds-up to |
| 402 | 60 km/hr for another 5 km. What is the average speed? |
Steven D'Aprano | a474afd | 2016-08-09 12:49:01 +1000 | [diff] [blame] | 403 | |
Raymond Hettinger | cc3467a | 2020-12-23 19:52:09 -0800 | [diff] [blame] | 404 | >>> harmonic_mean([40, 60]) |
| 405 | 48.0 |
Steven D'Aprano | a474afd | 2016-08-09 12:49:01 +1000 | [diff] [blame] | 406 | |
Raymond Hettinger | cc3467a | 2020-12-23 19:52:09 -0800 | [diff] [blame] | 407 | Suppose a car travels 40 km/hr for 5 km, and when traffic clears, |
| 408 | speeds-up to 60 km/hr for the remaining 30 km of the journey. What |
| 409 | is the average speed? |
| 410 | |
| 411 | >>> harmonic_mean([40, 60], weights=[5, 30]) |
| 412 | 56.0 |
Steven D'Aprano | a474afd | 2016-08-09 12:49:01 +1000 | [diff] [blame] | 413 | |
| 414 | If ``data`` is empty, or any element is less than zero, |
| 415 | ``harmonic_mean`` will raise ``StatisticsError``. |
| 416 | """ |
Steven D'Aprano | a474afd | 2016-08-09 12:49:01 +1000 | [diff] [blame] | 417 | if iter(data) is data: |
| 418 | data = list(data) |
| 419 | errmsg = 'harmonic mean does not support negative values' |
| 420 | n = len(data) |
| 421 | if n < 1: |
| 422 | raise StatisticsError('harmonic_mean requires at least one data point') |
Raymond Hettinger | cc3467a | 2020-12-23 19:52:09 -0800 | [diff] [blame] | 423 | elif n == 1 and weights is None: |
Steven D'Aprano | a474afd | 2016-08-09 12:49:01 +1000 | [diff] [blame] | 424 | x = data[0] |
| 425 | if isinstance(x, (numbers.Real, Decimal)): |
| 426 | if x < 0: |
| 427 | raise StatisticsError(errmsg) |
| 428 | return x |
| 429 | else: |
| 430 | raise TypeError('unsupported type') |
Raymond Hettinger | cc3467a | 2020-12-23 19:52:09 -0800 | [diff] [blame] | 431 | if weights is None: |
| 432 | weights = repeat(1, n) |
| 433 | sum_weights = n |
| 434 | else: |
| 435 | if iter(weights) is weights: |
| 436 | weights = list(weights) |
| 437 | if len(weights) != n: |
| 438 | raise StatisticsError('Number of weights does not match data size') |
| 439 | _, sum_weights, _ = _sum(w for w in _fail_neg(weights, errmsg)) |
Steven D'Aprano | a474afd | 2016-08-09 12:49:01 +1000 | [diff] [blame] | 440 | try: |
Raymond Hettinger | cc3467a | 2020-12-23 19:52:09 -0800 | [diff] [blame] | 441 | data = _fail_neg(data, errmsg) |
| 442 | T, total, count = _sum(w / x if w else 0 for w, x in zip(weights, data)) |
Steven D'Aprano | a474afd | 2016-08-09 12:49:01 +1000 | [diff] [blame] | 443 | except ZeroDivisionError: |
| 444 | return 0 |
Raymond Hettinger | cc3467a | 2020-12-23 19:52:09 -0800 | [diff] [blame] | 445 | if total <= 0: |
| 446 | raise StatisticsError('Weighted sum must be positive') |
| 447 | return _convert(sum_weights / total, T) |
Steven D'Aprano | a474afd | 2016-08-09 12:49:01 +1000 | [diff] [blame] | 448 | |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 449 | # FIXME: investigate ways to calculate medians without sorting? Quickselect? |
| 450 | def median(data): |
| 451 | """Return the median (middle value) of numeric data. |
| 452 | |
| 453 | When the number of data points is odd, return the middle data point. |
| 454 | When the number of data points is even, the median is interpolated by |
| 455 | taking the average of the two middle values: |
| 456 | |
| 457 | >>> median([1, 3, 5]) |
| 458 | 3 |
| 459 | >>> median([1, 3, 5, 7]) |
| 460 | 4.0 |
| 461 | |
| 462 | """ |
| 463 | data = sorted(data) |
| 464 | n = len(data) |
| 465 | if n == 0: |
| 466 | raise StatisticsError("no median for empty data") |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 467 | if n % 2 == 1: |
| 468 | return data[n // 2] |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 469 | else: |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 470 | i = n // 2 |
| 471 | return (data[i - 1] + data[i]) / 2 |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 472 | |
| 473 | |
| 474 | def median_low(data): |
| 475 | """Return the low median of numeric data. |
| 476 | |
| 477 | When the number of data points is odd, the middle value is returned. |
| 478 | When it is even, the smaller of the two middle values is returned. |
| 479 | |
| 480 | >>> median_low([1, 3, 5]) |
| 481 | 3 |
| 482 | >>> median_low([1, 3, 5, 7]) |
| 483 | 3 |
| 484 | |
| 485 | """ |
| 486 | data = sorted(data) |
| 487 | n = len(data) |
| 488 | if n == 0: |
| 489 | raise StatisticsError("no median for empty data") |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 490 | if n % 2 == 1: |
| 491 | return data[n // 2] |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 492 | else: |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 493 | return data[n // 2 - 1] |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 494 | |
| 495 | |
| 496 | def median_high(data): |
| 497 | """Return the high median of data. |
| 498 | |
| 499 | When the number of data points is odd, the middle value is returned. |
| 500 | When it is even, the larger of the two middle values is returned. |
| 501 | |
| 502 | >>> median_high([1, 3, 5]) |
| 503 | 3 |
| 504 | >>> median_high([1, 3, 5, 7]) |
| 505 | 5 |
| 506 | |
| 507 | """ |
| 508 | data = sorted(data) |
| 509 | n = len(data) |
| 510 | if n == 0: |
| 511 | raise StatisticsError("no median for empty data") |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 512 | return data[n // 2] |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 513 | |
| 514 | |
| 515 | def median_grouped(data, interval=1): |
Zachary Ware | df2660e | 2015-10-27 22:00:41 -0500 | [diff] [blame] | 516 | """Return the 50th percentile (median) of grouped continuous data. |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 517 | |
| 518 | >>> median_grouped([1, 2, 2, 3, 4, 4, 4, 4, 4, 5]) |
| 519 | 3.7 |
| 520 | >>> median_grouped([52, 52, 53, 54]) |
| 521 | 52.5 |
| 522 | |
| 523 | This calculates the median as the 50th percentile, and should be |
| 524 | used when your data is continuous and grouped. In the above example, |
| 525 | the values 1, 2, 3, etc. actually represent the midpoint of classes |
| 526 | 0.5-1.5, 1.5-2.5, 2.5-3.5, etc. The middle value falls somewhere in |
| 527 | class 3.5-4.5, and interpolation is used to estimate it. |
| 528 | |
| 529 | Optional argument ``interval`` represents the class interval, and |
| 530 | defaults to 1. Changing the class interval naturally will change the |
| 531 | interpolated 50th percentile value: |
| 532 | |
| 533 | >>> median_grouped([1, 3, 3, 5, 7], interval=1) |
| 534 | 3.25 |
| 535 | >>> median_grouped([1, 3, 3, 5, 7], interval=2) |
| 536 | 3.5 |
| 537 | |
| 538 | This function does not check whether the data points are at least |
| 539 | ``interval`` apart. |
| 540 | """ |
| 541 | data = sorted(data) |
| 542 | n = len(data) |
| 543 | if n == 0: |
| 544 | raise StatisticsError("no median for empty data") |
| 545 | elif n == 1: |
| 546 | return data[0] |
| 547 | # Find the value at the midpoint. Remember this corresponds to the |
| 548 | # centre of the class interval. |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 549 | x = data[n // 2] |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 550 | for obj in (x, interval): |
| 551 | if isinstance(obj, (str, bytes)): |
| 552 | raise TypeError('expected number but got %r' % obj) |
| 553 | try: |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 554 | L = x - interval / 2 # The lower limit of the median interval. |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 555 | except TypeError: |
| 556 | # Mixed type. For now we just coerce to float. |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 557 | L = float(x) - float(interval) / 2 |
Steven D'Aprano | 3b06e24 | 2016-05-05 03:54:29 +1000 | [diff] [blame] | 558 | |
| 559 | # Uses bisection search to search for x in data with log(n) time complexity |
Martin Panter | f157982 | 2016-05-26 06:03:33 +0000 | [diff] [blame] | 560 | # Find the position of leftmost occurrence of x in data |
Steven D'Aprano | 3b06e24 | 2016-05-05 03:54:29 +1000 | [diff] [blame] | 561 | l1 = _find_lteq(data, x) |
Martin Panter | f157982 | 2016-05-26 06:03:33 +0000 | [diff] [blame] | 562 | # Find the position of rightmost occurrence of x in data[l1...len(data)] |
Steven D'Aprano | 3b06e24 | 2016-05-05 03:54:29 +1000 | [diff] [blame] | 563 | # Assuming always l1 <= l2 |
| 564 | l2 = _find_rteq(data, l1, x) |
| 565 | cf = l1 |
| 566 | f = l2 - l1 + 1 |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 567 | return L + interval * (n / 2 - cf) / f |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 568 | |
| 569 | |
| 570 | def mode(data): |
| 571 | """Return the most common data point from discrete or nominal data. |
| 572 | |
| 573 | ``mode`` assumes discrete data, and returns a single value. This is the |
| 574 | standard treatment of the mode as commonly taught in schools: |
| 575 | |
Raymond Hettinger | e4810b2 | 2019-09-05 00:18:47 -0700 | [diff] [blame] | 576 | >>> mode([1, 1, 2, 3, 3, 3, 3, 4]) |
| 577 | 3 |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 578 | |
| 579 | This also works with nominal (non-numeric) data: |
| 580 | |
Raymond Hettinger | e4810b2 | 2019-09-05 00:18:47 -0700 | [diff] [blame] | 581 | >>> mode(["red", "blue", "blue", "red", "green", "red", "red"]) |
| 582 | 'red' |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 583 | |
Raymond Hettinger | e4810b2 | 2019-09-05 00:18:47 -0700 | [diff] [blame] | 584 | If there are multiple modes with same frequency, return the first one |
| 585 | encountered: |
Raymond Hettinger | fc06a19 | 2019-03-12 00:43:27 -0700 | [diff] [blame] | 586 | |
| 587 | >>> mode(['red', 'red', 'green', 'blue', 'blue']) |
| 588 | 'red' |
| 589 | |
| 590 | If *data* is empty, ``mode``, raises StatisticsError. |
| 591 | |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 592 | """ |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 593 | pairs = Counter(iter(data)).most_common(1) |
Raymond Hettinger | fc06a19 | 2019-03-12 00:43:27 -0700 | [diff] [blame] | 594 | try: |
Raymond Hettinger | 7ce4bfa | 2019-09-20 21:46:52 -0700 | [diff] [blame] | 595 | return pairs[0][0] |
Raymond Hettinger | fc06a19 | 2019-03-12 00:43:27 -0700 | [diff] [blame] | 596 | except IndexError: |
| 597 | raise StatisticsError('no mode for empty data') from None |
| 598 | |
| 599 | |
| 600 | def multimode(data): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 601 | """Return a list of the most frequently occurring values. |
Raymond Hettinger | fc06a19 | 2019-03-12 00:43:27 -0700 | [diff] [blame] | 602 | |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 603 | Will return more than one result if there are multiple modes |
| 604 | or an empty list if *data* is empty. |
Raymond Hettinger | fc06a19 | 2019-03-12 00:43:27 -0700 | [diff] [blame] | 605 | |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 606 | >>> multimode('aabbbbbbbbcc') |
| 607 | ['b'] |
| 608 | >>> multimode('aabbbbccddddeeffffgg') |
| 609 | ['b', 'd', 'f'] |
| 610 | >>> multimode('') |
| 611 | [] |
Raymond Hettinger | fc06a19 | 2019-03-12 00:43:27 -0700 | [diff] [blame] | 612 | """ |
| 613 | counts = Counter(iter(data)).most_common() |
| 614 | maxcount, mode_items = next(groupby(counts, key=itemgetter(1)), (0, [])) |
| 615 | return list(map(itemgetter(0), mode_items)) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 616 | |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 617 | |
Raymond Hettinger | cba9f84 | 2019-06-02 21:07:43 -0700 | [diff] [blame] | 618 | # Notes on methods for computing quantiles |
| 619 | # ---------------------------------------- |
| 620 | # |
| 621 | # There is no one perfect way to compute quantiles. Here we offer |
| 622 | # two methods that serve common needs. Most other packages |
| 623 | # surveyed offered at least one or both of these two, making them |
| 624 | # "standard" in the sense of "widely-adopted and reproducible". |
| 625 | # They are also easy to explain, easy to compute manually, and have |
| 626 | # straight-forward interpretations that aren't surprising. |
| 627 | |
| 628 | # The default method is known as "R6", "PERCENTILE.EXC", or "expected |
| 629 | # value of rank order statistics". The alternative method is known as |
| 630 | # "R7", "PERCENTILE.INC", or "mode of rank order statistics". |
| 631 | |
| 632 | # For sample data where there is a positive probability for values |
| 633 | # beyond the range of the data, the R6 exclusive method is a |
| 634 | # reasonable choice. Consider a random sample of nine values from a |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 635 | # population with a uniform distribution from 0.0 to 1.0. The |
Raymond Hettinger | cba9f84 | 2019-06-02 21:07:43 -0700 | [diff] [blame] | 636 | # distribution of the third ranked sample point is described by |
| 637 | # betavariate(alpha=3, beta=7) which has mode=0.250, median=0.286, and |
| 638 | # mean=0.300. Only the latter (which corresponds with R6) gives the |
| 639 | # desired cut point with 30% of the population falling below that |
| 640 | # value, making it comparable to a result from an inv_cdf() function. |
Raymond Hettinger | 7ce4bfa | 2019-09-20 21:46:52 -0700 | [diff] [blame] | 641 | # The R6 exclusive method is also idempotent. |
Raymond Hettinger | cba9f84 | 2019-06-02 21:07:43 -0700 | [diff] [blame] | 642 | |
| 643 | # For describing population data where the end points are known to |
| 644 | # be included in the data, the R7 inclusive method is a reasonable |
| 645 | # choice. Instead of the mean, it uses the mode of the beta |
| 646 | # distribution for the interior points. Per Hyndman & Fan, "One nice |
| 647 | # property is that the vertices of Q7(p) divide the range into n - 1 |
| 648 | # intervals, and exactly 100p% of the intervals lie to the left of |
| 649 | # Q7(p) and 100(1 - p)% of the intervals lie to the right of Q7(p)." |
| 650 | |
Raymond Hettinger | eed5e9a | 2019-07-19 01:57:22 -0700 | [diff] [blame] | 651 | # If needed, other methods could be added. However, for now, the |
| 652 | # position is that fewer options make for easier choices and that |
| 653 | # external packages can be used for anything more advanced. |
Raymond Hettinger | cba9f84 | 2019-06-02 21:07:43 -0700 | [diff] [blame] | 654 | |
Raymond Hettinger | 272d0d0 | 2019-09-17 20:45:05 -0700 | [diff] [blame] | 655 | def quantiles(data, *, n=4, method='exclusive'): |
Raymond Hettinger | e4810b2 | 2019-09-05 00:18:47 -0700 | [diff] [blame] | 656 | """Divide *data* into *n* continuous intervals with equal probability. |
Raymond Hettinger | 9013ccf | 2019-04-23 00:06:35 -0700 | [diff] [blame] | 657 | |
| 658 | Returns a list of (n - 1) cut points separating the intervals. |
| 659 | |
| 660 | Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles. |
| 661 | Set *n* to 100 for percentiles which gives the 99 cuts points that |
Raymond Hettinger | e4810b2 | 2019-09-05 00:18:47 -0700 | [diff] [blame] | 662 | separate *data* in to 100 equal sized groups. |
Raymond Hettinger | 9013ccf | 2019-04-23 00:06:35 -0700 | [diff] [blame] | 663 | |
Raymond Hettinger | 4db25d5 | 2019-09-08 16:57:58 -0700 | [diff] [blame] | 664 | The *data* can be any iterable containing sample. |
| 665 | The cut points are linearly interpolated between data points. |
Raymond Hettinger | 9013ccf | 2019-04-23 00:06:35 -0700 | [diff] [blame] | 666 | |
Raymond Hettinger | e4810b2 | 2019-09-05 00:18:47 -0700 | [diff] [blame] | 667 | If *method* is set to *inclusive*, *data* is treated as population |
Raymond Hettinger | 9013ccf | 2019-04-23 00:06:35 -0700 | [diff] [blame] | 668 | data. The minimum value is treated as the 0th percentile and the |
| 669 | maximum value is treated as the 100th percentile. |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 670 | """ |
Raymond Hettinger | 9013ccf | 2019-04-23 00:06:35 -0700 | [diff] [blame] | 671 | if n < 1: |
| 672 | raise StatisticsError('n must be at least 1') |
Raymond Hettinger | e4810b2 | 2019-09-05 00:18:47 -0700 | [diff] [blame] | 673 | data = sorted(data) |
Raymond Hettinger | 9013ccf | 2019-04-23 00:06:35 -0700 | [diff] [blame] | 674 | ld = len(data) |
| 675 | if ld < 2: |
| 676 | raise StatisticsError('must have at least two data points') |
| 677 | if method == 'inclusive': |
| 678 | m = ld - 1 |
| 679 | result = [] |
| 680 | for i in range(1, n): |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 681 | j, delta = divmod(i * m, n) |
| 682 | interpolated = (data[j] * (n - delta) + data[j + 1] * delta) / n |
Raymond Hettinger | 9013ccf | 2019-04-23 00:06:35 -0700 | [diff] [blame] | 683 | result.append(interpolated) |
| 684 | return result |
| 685 | if method == 'exclusive': |
| 686 | m = ld + 1 |
| 687 | result = [] |
| 688 | for i in range(1, n): |
| 689 | j = i * m // n # rescale i to m/n |
| 690 | j = 1 if j < 1 else ld-1 if j > ld-1 else j # clamp to 1 .. ld-1 |
| 691 | delta = i*m - j*n # exact integer math |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 692 | interpolated = (data[j - 1] * (n - delta) + data[j] * delta) / n |
Raymond Hettinger | 9013ccf | 2019-04-23 00:06:35 -0700 | [diff] [blame] | 693 | result.append(interpolated) |
| 694 | return result |
| 695 | raise ValueError(f'Unknown method: {method!r}') |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 696 | |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 697 | |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 698 | # === Measures of spread === |
| 699 | |
| 700 | # See http://mathworld.wolfram.com/Variance.html |
| 701 | # http://mathworld.wolfram.com/SampleVariance.html |
| 702 | # http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance |
| 703 | # |
| 704 | # Under no circumstances use the so-called "computational formula for |
| 705 | # variance", as that is only suitable for hand calculations with a small |
| 706 | # amount of low-precision data. It has terrible numeric properties. |
| 707 | # |
| 708 | # See a comparison of three computational methods here: |
| 709 | # http://www.johndcook.com/blog/2008/09/26/comparing-three-methods-of-computing-standard-deviation/ |
| 710 | |
| 711 | def _ss(data, c=None): |
| 712 | """Return sum of square deviations of sequence data. |
| 713 | |
| 714 | If ``c`` is None, the mean is calculated in one pass, and the deviations |
| 715 | from the mean are calculated in a second pass. Otherwise, deviations are |
| 716 | calculated from ``c`` as given. Use the second case with care, as it can |
| 717 | lead to garbage results. |
| 718 | """ |
Raymond Hettinger | d71ab4f | 2020-06-13 15:55:52 -0700 | [diff] [blame] | 719 | if c is not None: |
| 720 | T, total, count = _sum((x-c)**2 for x in data) |
| 721 | return (T, total) |
| 722 | c = mean(data) |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 723 | T, total, count = _sum((x-c)**2 for x in data) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 724 | # The following sum should mathematically equal zero, but due to rounding |
| 725 | # error may not. |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 726 | U, total2, count2 = _sum((x - c) for x in data) |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 727 | assert T == U and count == count2 |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 728 | total -= total2 ** 2 / len(data) |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 729 | assert not total < 0, 'negative sum of square deviations: %f' % total |
| 730 | return (T, total) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 731 | |
| 732 | |
| 733 | def variance(data, xbar=None): |
| 734 | """Return the sample variance of data. |
| 735 | |
| 736 | data should be an iterable of Real-valued numbers, with at least two |
| 737 | values. The optional argument xbar, if given, should be the mean of |
| 738 | the data. If it is missing or None, the mean is automatically calculated. |
| 739 | |
| 740 | Use this function when your data is a sample from a population. To |
| 741 | calculate the variance from the entire population, see ``pvariance``. |
| 742 | |
| 743 | Examples: |
| 744 | |
| 745 | >>> data = [2.75, 1.75, 1.25, 0.25, 0.5, 1.25, 3.5] |
| 746 | >>> variance(data) |
| 747 | 1.3720238095238095 |
| 748 | |
| 749 | If you have already calculated the mean of your data, you can pass it as |
| 750 | the optional second argument ``xbar`` to avoid recalculating it: |
| 751 | |
| 752 | >>> m = mean(data) |
| 753 | >>> variance(data, m) |
| 754 | 1.3720238095238095 |
| 755 | |
| 756 | This function does not check that ``xbar`` is actually the mean of |
| 757 | ``data``. Giving arbitrary values for ``xbar`` may lead to invalid or |
| 758 | impossible results. |
| 759 | |
| 760 | Decimals and Fractions are supported: |
| 761 | |
| 762 | >>> from decimal import Decimal as D |
| 763 | >>> variance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) |
| 764 | Decimal('31.01875') |
| 765 | |
| 766 | >>> from fractions import Fraction as F |
| 767 | >>> variance([F(1, 6), F(1, 2), F(5, 3)]) |
| 768 | Fraction(67, 108) |
| 769 | |
| 770 | """ |
| 771 | if iter(data) is data: |
| 772 | data = list(data) |
| 773 | n = len(data) |
| 774 | if n < 2: |
| 775 | raise StatisticsError('variance requires at least two data points') |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 776 | T, ss = _ss(data, xbar) |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 777 | return _convert(ss / (n - 1), T) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 778 | |
| 779 | |
| 780 | def pvariance(data, mu=None): |
| 781 | """Return the population variance of ``data``. |
| 782 | |
Raymond Hettinger | 733b9a3 | 2019-11-11 23:35:06 -0800 | [diff] [blame] | 783 | data should be a sequence or iterable of Real-valued numbers, with at least one |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 784 | value. The optional argument mu, if given, should be the mean of |
| 785 | the data. If it is missing or None, the mean is automatically calculated. |
| 786 | |
| 787 | Use this function to calculate the variance from the entire population. |
| 788 | To estimate the variance from a sample, the ``variance`` function is |
| 789 | usually a better choice. |
| 790 | |
| 791 | Examples: |
| 792 | |
| 793 | >>> data = [0.0, 0.25, 0.25, 1.25, 1.5, 1.75, 2.75, 3.25] |
| 794 | >>> pvariance(data) |
| 795 | 1.25 |
| 796 | |
| 797 | If you have already calculated the mean of the data, you can pass it as |
| 798 | the optional second argument to avoid recalculating it: |
| 799 | |
| 800 | >>> mu = mean(data) |
| 801 | >>> pvariance(data, mu) |
| 802 | 1.25 |
| 803 | |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 804 | Decimals and Fractions are supported: |
| 805 | |
| 806 | >>> from decimal import Decimal as D |
| 807 | >>> pvariance([D("27.5"), D("30.25"), D("30.25"), D("34.5"), D("41.75")]) |
| 808 | Decimal('24.815') |
| 809 | |
| 810 | >>> from fractions import Fraction as F |
| 811 | >>> pvariance([F(1, 4), F(5, 4), F(1, 2)]) |
| 812 | Fraction(13, 72) |
| 813 | |
| 814 | """ |
| 815 | if iter(data) is data: |
| 816 | data = list(data) |
| 817 | n = len(data) |
| 818 | if n < 1: |
| 819 | raise StatisticsError('pvariance requires at least one data point') |
Steven D'Aprano | b28c327 | 2015-12-01 19:59:53 +1100 | [diff] [blame] | 820 | T, ss = _ss(data, mu) |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 821 | return _convert(ss / n, T) |
Larry Hastings | f5e987b | 2013-10-19 11:50:09 -0700 | [diff] [blame] | 822 | |
| 823 | |
| 824 | def stdev(data, xbar=None): |
| 825 | """Return the square root of the sample variance. |
| 826 | |
| 827 | See ``variance`` for arguments and other details. |
| 828 | |
| 829 | >>> stdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) |
| 830 | 1.0810874155219827 |
| 831 | |
| 832 | """ |
| 833 | var = variance(data, xbar) |
| 834 | try: |
| 835 | return var.sqrt() |
| 836 | except AttributeError: |
| 837 | return math.sqrt(var) |
| 838 | |
| 839 | |
| 840 | def pstdev(data, mu=None): |
| 841 | """Return the square root of the population variance. |
| 842 | |
| 843 | See ``pvariance`` for arguments and other details. |
| 844 | |
| 845 | >>> pstdev([1.5, 2.5, 2.5, 2.75, 3.25, 4.75]) |
| 846 | 0.986893273527251 |
| 847 | |
| 848 | """ |
| 849 | var = pvariance(data, mu) |
| 850 | try: |
| 851 | return var.sqrt() |
| 852 | except AttributeError: |
| 853 | return math.sqrt(var) |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 854 | |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 855 | |
Tymoteusz Wołodźko | 09aa6f9 | 2021-04-25 13:45:09 +0200 | [diff] [blame] | 856 | # === Statistics for relations between two inputs === |
| 857 | |
| 858 | # See https://en.wikipedia.org/wiki/Covariance |
| 859 | # https://en.wikipedia.org/wiki/Pearson_correlation_coefficient |
| 860 | # https://en.wikipedia.org/wiki/Simple_linear_regression |
| 861 | |
| 862 | |
| 863 | def covariance(x, y, /): |
| 864 | """Covariance |
| 865 | |
| 866 | Return the sample covariance of two inputs *x* and *y*. Covariance |
| 867 | is a measure of the joint variability of two inputs. |
| 868 | |
| 869 | >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9] |
| 870 | >>> y = [1, 2, 3, 1, 2, 3, 1, 2, 3] |
| 871 | >>> covariance(x, y) |
| 872 | 0.75 |
| 873 | >>> z = [9, 8, 7, 6, 5, 4, 3, 2, 1] |
| 874 | >>> covariance(x, z) |
| 875 | -7.5 |
| 876 | >>> covariance(z, x) |
| 877 | -7.5 |
| 878 | |
| 879 | """ |
| 880 | n = len(x) |
| 881 | if len(y) != n: |
| 882 | raise StatisticsError('covariance requires that both inputs have same number of data points') |
| 883 | if n < 2: |
| 884 | raise StatisticsError('covariance requires at least two data points') |
| 885 | xbar = mean(x) |
| 886 | ybar = mean(y) |
| 887 | total = fsum((xi - xbar) * (yi - ybar) for xi, yi in zip(x, y)) |
| 888 | return total / (n - 1) |
| 889 | |
| 890 | |
| 891 | def correlation(x, y, /): |
| 892 | """Pearson's correlation coefficient |
| 893 | |
| 894 | Return the Pearson's correlation coefficient for two inputs. Pearson's |
| 895 | correlation coefficient *r* takes values between -1 and +1. It measures the |
| 896 | strength and direction of the linear relationship, where +1 means very |
| 897 | strong, positive linear relationship, -1 very strong, negative linear |
| 898 | relationship, and 0 no linear relationship. |
| 899 | |
| 900 | >>> x = [1, 2, 3, 4, 5, 6, 7, 8, 9] |
| 901 | >>> y = [9, 8, 7, 6, 5, 4, 3, 2, 1] |
| 902 | >>> correlation(x, x) |
| 903 | 1.0 |
| 904 | >>> correlation(x, y) |
| 905 | -1.0 |
| 906 | |
| 907 | """ |
| 908 | n = len(x) |
| 909 | if len(y) != n: |
| 910 | raise StatisticsError('correlation requires that both inputs have same number of data points') |
| 911 | if n < 2: |
| 912 | raise StatisticsError('correlation requires at least two data points') |
| 913 | cov = covariance(x, y) |
| 914 | stdx = stdev(x) |
| 915 | stdy = stdev(y) |
| 916 | try: |
| 917 | return cov / (stdx * stdy) |
| 918 | except ZeroDivisionError: |
| 919 | raise StatisticsError('at least one of the inputs is constant') |
| 920 | |
| 921 | |
| 922 | LinearRegression = namedtuple('LinearRegression', ['intercept', 'slope']) |
| 923 | |
| 924 | |
| 925 | def linear_regression(regressor, dependent_variable, /): |
| 926 | """Intercept and slope for simple linear regression |
| 927 | |
| 928 | Return the intercept and slope of simple linear regression |
| 929 | parameters estimated using ordinary least squares. Simple linear |
| 930 | regression describes relationship between *regressor* and |
| 931 | *dependent variable* in terms of linear function:: |
| 932 | |
| 933 | dependent_variable = intercept + slope * regressor + noise |
| 934 | |
| 935 | where ``intercept`` and ``slope`` are the regression parameters that are |
| 936 | estimated, and noise term is an unobserved random variable, for the |
| 937 | variability of the data that was not explained by the linear regression |
| 938 | (it is equal to the difference between prediction and the actual values |
| 939 | of dependent variable). |
| 940 | |
| 941 | The parameters are returned as a named tuple. |
| 942 | |
| 943 | >>> regressor = [1, 2, 3, 4, 5] |
| 944 | >>> noise = NormalDist().samples(5, seed=42) |
| 945 | >>> dependent_variable = [2 + 3 * regressor[i] + noise[i] for i in range(5)] |
| 946 | >>> linear_regression(regressor, dependent_variable) #doctest: +ELLIPSIS |
| 947 | LinearRegression(intercept=1.75684970486..., slope=3.09078914170...) |
| 948 | |
| 949 | """ |
| 950 | n = len(regressor) |
| 951 | if len(dependent_variable) != n: |
| 952 | raise StatisticsError('linear regression requires that both inputs have same number of data points') |
| 953 | if n < 2: |
| 954 | raise StatisticsError('linear regression requires at least two data points') |
| 955 | try: |
| 956 | slope = covariance(regressor, dependent_variable) / variance(regressor) |
| 957 | except ZeroDivisionError: |
| 958 | raise StatisticsError('regressor is constant') |
| 959 | intercept = mean(dependent_variable) - slope * mean(regressor) |
| 960 | return LinearRegression(intercept=intercept, slope=slope) |
| 961 | |
| 962 | |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 963 | ## Normal Distribution ##################################################### |
| 964 | |
Dong-hee Na | 0a18ee4 | 2019-08-24 07:20:30 +0900 | [diff] [blame] | 965 | |
| 966 | def _normal_dist_inv_cdf(p, mu, sigma): |
| 967 | # There is no closed-form solution to the inverse CDF for the normal |
| 968 | # distribution, so we use a rational approximation instead: |
| 969 | # Wichura, M.J. (1988). "Algorithm AS241: The Percentage Points of the |
| 970 | # Normal Distribution". Applied Statistics. Blackwell Publishing. 37 |
| 971 | # (3): 477–484. doi:10.2307/2347330. JSTOR 2347330. |
| 972 | q = p - 0.5 |
| 973 | if fabs(q) <= 0.425: |
| 974 | r = 0.180625 - q * q |
| 975 | # Hash sum: 55.88319_28806_14901_4439 |
| 976 | num = (((((((2.50908_09287_30122_6727e+3 * r + |
| 977 | 3.34305_75583_58812_8105e+4) * r + |
| 978 | 6.72657_70927_00870_0853e+4) * r + |
| 979 | 4.59219_53931_54987_1457e+4) * r + |
| 980 | 1.37316_93765_50946_1125e+4) * r + |
| 981 | 1.97159_09503_06551_4427e+3) * r + |
| 982 | 1.33141_66789_17843_7745e+2) * r + |
| 983 | 3.38713_28727_96366_6080e+0) * q |
| 984 | den = (((((((5.22649_52788_52854_5610e+3 * r + |
| 985 | 2.87290_85735_72194_2674e+4) * r + |
| 986 | 3.93078_95800_09271_0610e+4) * r + |
| 987 | 2.12137_94301_58659_5867e+4) * r + |
| 988 | 5.39419_60214_24751_1077e+3) * r + |
| 989 | 6.87187_00749_20579_0830e+2) * r + |
| 990 | 4.23133_30701_60091_1252e+1) * r + |
| 991 | 1.0) |
| 992 | x = num / den |
| 993 | return mu + (x * sigma) |
| 994 | r = p if q <= 0.0 else 1.0 - p |
| 995 | r = sqrt(-log(r)) |
| 996 | if r <= 5.0: |
| 997 | r = r - 1.6 |
| 998 | # Hash sum: 49.33206_50330_16102_89036 |
| 999 | num = (((((((7.74545_01427_83414_07640e-4 * r + |
| 1000 | 2.27238_44989_26918_45833e-2) * r + |
| 1001 | 2.41780_72517_74506_11770e-1) * r + |
| 1002 | 1.27045_82524_52368_38258e+0) * r + |
| 1003 | 3.64784_83247_63204_60504e+0) * r + |
| 1004 | 5.76949_72214_60691_40550e+0) * r + |
| 1005 | 4.63033_78461_56545_29590e+0) * r + |
| 1006 | 1.42343_71107_49683_57734e+0) |
| 1007 | den = (((((((1.05075_00716_44416_84324e-9 * r + |
| 1008 | 5.47593_80849_95344_94600e-4) * r + |
| 1009 | 1.51986_66563_61645_71966e-2) * r + |
| 1010 | 1.48103_97642_74800_74590e-1) * r + |
| 1011 | 6.89767_33498_51000_04550e-1) * r + |
| 1012 | 1.67638_48301_83803_84940e+0) * r + |
| 1013 | 2.05319_16266_37758_82187e+0) * r + |
| 1014 | 1.0) |
| 1015 | else: |
| 1016 | r = r - 5.0 |
| 1017 | # Hash sum: 47.52583_31754_92896_71629 |
| 1018 | num = (((((((2.01033_43992_92288_13265e-7 * r + |
| 1019 | 2.71155_55687_43487_57815e-5) * r + |
| 1020 | 1.24266_09473_88078_43860e-3) * r + |
| 1021 | 2.65321_89526_57612_30930e-2) * r + |
| 1022 | 2.96560_57182_85048_91230e-1) * r + |
| 1023 | 1.78482_65399_17291_33580e+0) * r + |
| 1024 | 5.46378_49111_64114_36990e+0) * r + |
| 1025 | 6.65790_46435_01103_77720e+0) |
| 1026 | den = (((((((2.04426_31033_89939_78564e-15 * r + |
| 1027 | 1.42151_17583_16445_88870e-7) * r + |
| 1028 | 1.84631_83175_10054_68180e-5) * r + |
| 1029 | 7.86869_13114_56132_59100e-4) * r + |
| 1030 | 1.48753_61290_85061_48525e-2) * r + |
| 1031 | 1.36929_88092_27358_05310e-1) * r + |
| 1032 | 5.99832_20655_58879_37690e-1) * r + |
| 1033 | 1.0) |
| 1034 | x = num / den |
| 1035 | if q < 0.0: |
| 1036 | x = -x |
| 1037 | return mu + (x * sigma) |
| 1038 | |
| 1039 | |
Raymond Hettinger | 0400a7f | 2020-05-02 19:30:24 -0700 | [diff] [blame] | 1040 | # If available, use C implementation |
| 1041 | try: |
| 1042 | from _statistics import _normal_dist_inv_cdf |
| 1043 | except ImportError: |
| 1044 | pass |
| 1045 | |
| 1046 | |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1047 | class NormalDist: |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1048 | "Normal distribution of a random variable" |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1049 | # https://en.wikipedia.org/wiki/Normal_distribution |
| 1050 | # https://en.wikipedia.org/wiki/Variance#Properties |
| 1051 | |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1052 | __slots__ = { |
| 1053 | '_mu': 'Arithmetic mean of a normal distribution', |
| 1054 | '_sigma': 'Standard deviation of a normal distribution', |
| 1055 | } |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1056 | |
| 1057 | def __init__(self, mu=0.0, sigma=1.0): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1058 | "NormalDist where mu is the mean and sigma is the standard deviation." |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1059 | if sigma < 0.0: |
| 1060 | raise StatisticsError('sigma must be non-negative') |
Raymond Hettinger | e4810b2 | 2019-09-05 00:18:47 -0700 | [diff] [blame] | 1061 | self._mu = float(mu) |
| 1062 | self._sigma = float(sigma) |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1063 | |
| 1064 | @classmethod |
| 1065 | def from_samples(cls, data): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1066 | "Make a normal distribution instance from sample data." |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1067 | if not isinstance(data, (list, tuple)): |
| 1068 | data = list(data) |
| 1069 | xbar = fmean(data) |
| 1070 | return cls(xbar, stdev(data, xbar)) |
| 1071 | |
Raymond Hettinger | fb8c7d5 | 2019-04-23 01:46:18 -0700 | [diff] [blame] | 1072 | def samples(self, n, *, seed=None): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1073 | "Generate *n* samples for a given mean and standard deviation." |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1074 | gauss = random.gauss if seed is None else random.Random(seed).gauss |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1075 | mu, sigma = self._mu, self._sigma |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1076 | return [gauss(mu, sigma) for i in range(n)] |
| 1077 | |
| 1078 | def pdf(self, x): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1079 | "Probability density function. P(x <= X < x+dx) / dx" |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1080 | variance = self._sigma ** 2.0 |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1081 | if not variance: |
| 1082 | raise StatisticsError('pdf() not defined when sigma is zero') |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1083 | return exp((x - self._mu)**2.0 / (-2.0*variance)) / sqrt(tau*variance) |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1084 | |
| 1085 | def cdf(self, x): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1086 | "Cumulative distribution function. P(X <= x)" |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1087 | if not self._sigma: |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1088 | raise StatisticsError('cdf() not defined when sigma is zero') |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1089 | return 0.5 * (1.0 + erf((x - self._mu) / (self._sigma * sqrt(2.0)))) |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1090 | |
Raymond Hettinger | 714c60d | 2019-03-18 20:17:14 -0700 | [diff] [blame] | 1091 | def inv_cdf(self, p): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1092 | """Inverse cumulative distribution function. x : P(X <= x) = p |
Raymond Hettinger | 714c60d | 2019-03-18 20:17:14 -0700 | [diff] [blame] | 1093 | |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1094 | Finds the value of the random variable such that the probability of |
| 1095 | the variable being less than or equal to that value equals the given |
| 1096 | probability. |
Raymond Hettinger | 714c60d | 2019-03-18 20:17:14 -0700 | [diff] [blame] | 1097 | |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1098 | This function is also called the percent point function or quantile |
| 1099 | function. |
| 1100 | """ |
| 1101 | if p <= 0.0 or p >= 1.0: |
Raymond Hettinger | 714c60d | 2019-03-18 20:17:14 -0700 | [diff] [blame] | 1102 | raise StatisticsError('p must be in the range 0.0 < p < 1.0') |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1103 | if self._sigma <= 0.0: |
Raymond Hettinger | 714c60d | 2019-03-18 20:17:14 -0700 | [diff] [blame] | 1104 | raise StatisticsError('cdf() not defined when sigma at or below zero') |
Dong-hee Na | 0a18ee4 | 2019-08-24 07:20:30 +0900 | [diff] [blame] | 1105 | return _normal_dist_inv_cdf(p, self._mu, self._sigma) |
Raymond Hettinger | 714c60d | 2019-03-18 20:17:14 -0700 | [diff] [blame] | 1106 | |
Raymond Hettinger | 4db25d5 | 2019-09-08 16:57:58 -0700 | [diff] [blame] | 1107 | def quantiles(self, n=4): |
| 1108 | """Divide into *n* continuous intervals with equal probability. |
| 1109 | |
| 1110 | Returns a list of (n - 1) cut points separating the intervals. |
| 1111 | |
| 1112 | Set *n* to 4 for quartiles (the default). Set *n* to 10 for deciles. |
| 1113 | Set *n* to 100 for percentiles which gives the 99 cuts points that |
| 1114 | separate the normal distribution in to 100 equal sized groups. |
| 1115 | """ |
| 1116 | return [self.inv_cdf(i / n) for i in range(1, n)] |
| 1117 | |
Raymond Hettinger | 318d537 | 2019-03-06 22:59:40 -0800 | [diff] [blame] | 1118 | def overlap(self, other): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1119 | """Compute the overlapping coefficient (OVL) between two normal distributions. |
Raymond Hettinger | 318d537 | 2019-03-06 22:59:40 -0800 | [diff] [blame] | 1120 | |
| 1121 | Measures the agreement between two normal probability distributions. |
| 1122 | Returns a value between 0.0 and 1.0 giving the overlapping area in |
| 1123 | the two underlying probability density functions. |
| 1124 | |
| 1125 | >>> N1 = NormalDist(2.4, 1.6) |
| 1126 | >>> N2 = NormalDist(3.2, 2.0) |
| 1127 | >>> N1.overlap(N2) |
| 1128 | 0.8035050657330205 |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1129 | """ |
Raymond Hettinger | 318d537 | 2019-03-06 22:59:40 -0800 | [diff] [blame] | 1130 | # See: "The overlapping coefficient as a measure of agreement between |
| 1131 | # probability distributions and point estimation of the overlap of two |
| 1132 | # normal densities" -- Henry F. Inman and Edwin L. Bradley Jr |
| 1133 | # http://dx.doi.org/10.1080/03610928908830127 |
| 1134 | if not isinstance(other, NormalDist): |
| 1135 | raise TypeError('Expected another NormalDist instance') |
| 1136 | X, Y = self, other |
Raymond Hettinger | 5aad027 | 2020-06-13 19:17:28 -0700 | [diff] [blame] | 1137 | if (Y._sigma, Y._mu) < (X._sigma, X._mu): # sort to assure commutativity |
Raymond Hettinger | 318d537 | 2019-03-06 22:59:40 -0800 | [diff] [blame] | 1138 | X, Y = Y, X |
| 1139 | X_var, Y_var = X.variance, Y.variance |
| 1140 | if not X_var or not Y_var: |
| 1141 | raise StatisticsError('overlap() not defined when sigma is zero') |
| 1142 | dv = Y_var - X_var |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1143 | dm = fabs(Y._mu - X._mu) |
Raymond Hettinger | 318d537 | 2019-03-06 22:59:40 -0800 | [diff] [blame] | 1144 | if not dv: |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1145 | return 1.0 - erf(dm / (2.0 * X._sigma * sqrt(2.0))) |
| 1146 | a = X._mu * Y_var - Y._mu * X_var |
| 1147 | b = X._sigma * Y._sigma * sqrt(dm**2.0 + dv * log(Y_var / X_var)) |
Raymond Hettinger | 318d537 | 2019-03-06 22:59:40 -0800 | [diff] [blame] | 1148 | x1 = (a + b) / dv |
| 1149 | x2 = (a - b) / dv |
| 1150 | return 1.0 - (fabs(Y.cdf(x1) - X.cdf(x1)) + fabs(Y.cdf(x2) - X.cdf(x2))) |
| 1151 | |
Raymond Hettinger | 70f027d | 2020-04-16 10:25:14 -0700 | [diff] [blame] | 1152 | def zscore(self, x): |
| 1153 | """Compute the Standard Score. (x - mean) / stdev |
| 1154 | |
| 1155 | Describes *x* in terms of the number of standard deviations |
| 1156 | above or below the mean of the normal distribution. |
| 1157 | """ |
| 1158 | # https://www.statisticshowto.com/probability-and-statistics/z-score/ |
| 1159 | if not self._sigma: |
| 1160 | raise StatisticsError('zscore() not defined when sigma is zero') |
| 1161 | return (x - self._mu) / self._sigma |
| 1162 | |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1163 | @property |
Raymond Hettinger | 9e456bc | 2019-02-24 11:44:55 -0800 | [diff] [blame] | 1164 | def mean(self): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1165 | "Arithmetic mean of the normal distribution." |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1166 | return self._mu |
Raymond Hettinger | 9e456bc | 2019-02-24 11:44:55 -0800 | [diff] [blame] | 1167 | |
| 1168 | @property |
Raymond Hettinger | 4db25d5 | 2019-09-08 16:57:58 -0700 | [diff] [blame] | 1169 | def median(self): |
| 1170 | "Return the median of the normal distribution" |
| 1171 | return self._mu |
| 1172 | |
| 1173 | @property |
| 1174 | def mode(self): |
| 1175 | """Return the mode of the normal distribution |
| 1176 | |
| 1177 | The mode is the value x where which the probability density |
| 1178 | function (pdf) takes its maximum value. |
| 1179 | """ |
| 1180 | return self._mu |
| 1181 | |
| 1182 | @property |
Raymond Hettinger | 9e456bc | 2019-02-24 11:44:55 -0800 | [diff] [blame] | 1183 | def stdev(self): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1184 | "Standard deviation of the normal distribution." |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1185 | return self._sigma |
Raymond Hettinger | 9e456bc | 2019-02-24 11:44:55 -0800 | [diff] [blame] | 1186 | |
| 1187 | @property |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1188 | def variance(self): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1189 | "Square of the standard deviation." |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1190 | return self._sigma ** 2.0 |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1191 | |
| 1192 | def __add__(x1, x2): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1193 | """Add a constant or another NormalDist instance. |
Raymond Hettinger | 5f1e8b4 | 2019-03-18 22:24:15 -0700 | [diff] [blame] | 1194 | |
| 1195 | If *other* is a constant, translate mu by the constant, |
| 1196 | leaving sigma unchanged. |
| 1197 | |
| 1198 | If *other* is a NormalDist, add both the means and the variances. |
| 1199 | Mathematically, this works only if the two distributions are |
| 1200 | independent or if they are jointly normally distributed. |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1201 | """ |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1202 | if isinstance(x2, NormalDist): |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1203 | return NormalDist(x1._mu + x2._mu, hypot(x1._sigma, x2._sigma)) |
| 1204 | return NormalDist(x1._mu + x2, x1._sigma) |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1205 | |
| 1206 | def __sub__(x1, x2): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1207 | """Subtract a constant or another NormalDist instance. |
Raymond Hettinger | 5f1e8b4 | 2019-03-18 22:24:15 -0700 | [diff] [blame] | 1208 | |
| 1209 | If *other* is a constant, translate by the constant mu, |
| 1210 | leaving sigma unchanged. |
| 1211 | |
| 1212 | If *other* is a NormalDist, subtract the means and add the variances. |
| 1213 | Mathematically, this works only if the two distributions are |
| 1214 | independent or if they are jointly normally distributed. |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1215 | """ |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1216 | if isinstance(x2, NormalDist): |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1217 | return NormalDist(x1._mu - x2._mu, hypot(x1._sigma, x2._sigma)) |
| 1218 | return NormalDist(x1._mu - x2, x1._sigma) |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1219 | |
| 1220 | def __mul__(x1, x2): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1221 | """Multiply both mu and sigma by a constant. |
Raymond Hettinger | 5f1e8b4 | 2019-03-18 22:24:15 -0700 | [diff] [blame] | 1222 | |
| 1223 | Used for rescaling, perhaps to change measurement units. |
| 1224 | Sigma is scaled with the absolute value of the constant. |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1225 | """ |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1226 | return NormalDist(x1._mu * x2, x1._sigma * fabs(x2)) |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1227 | |
| 1228 | def __truediv__(x1, x2): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1229 | """Divide both mu and sigma by a constant. |
Raymond Hettinger | 5f1e8b4 | 2019-03-18 22:24:15 -0700 | [diff] [blame] | 1230 | |
| 1231 | Used for rescaling, perhaps to change measurement units. |
| 1232 | Sigma is scaled with the absolute value of the constant. |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1233 | """ |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1234 | return NormalDist(x1._mu / x2, x1._sigma / fabs(x2)) |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1235 | |
| 1236 | def __pos__(x1): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1237 | "Return a copy of the instance." |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1238 | return NormalDist(x1._mu, x1._sigma) |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1239 | |
| 1240 | def __neg__(x1): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1241 | "Negates mu while keeping sigma the same." |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1242 | return NormalDist(-x1._mu, x1._sigma) |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1243 | |
| 1244 | __radd__ = __add__ |
| 1245 | |
| 1246 | def __rsub__(x1, x2): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1247 | "Subtract a NormalDist from a constant or another NormalDist." |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1248 | return -(x1 - x2) |
| 1249 | |
| 1250 | __rmul__ = __mul__ |
| 1251 | |
| 1252 | def __eq__(x1, x2): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1253 | "Two NormalDist objects are equal if their mu and sigma are both equal." |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1254 | if not isinstance(x2, NormalDist): |
| 1255 | return NotImplemented |
Raymond Hettinger | 5eabec0 | 2019-10-18 14:20:35 -0700 | [diff] [blame] | 1256 | return x1._mu == x2._mu and x1._sigma == x2._sigma |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1257 | |
| 1258 | def __hash__(self): |
Raymond Hettinger | 1c0e9bb | 2019-07-21 12:13:07 -0700 | [diff] [blame] | 1259 | "NormalDist objects hash equal if their mu and sigma are both equal." |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1260 | return hash((self._mu, self._sigma)) |
Raymond Hettinger | 11c7953 | 2019-02-23 14:44:07 -0800 | [diff] [blame] | 1261 | |
| 1262 | def __repr__(self): |
Raymond Hettinger | 02c91f5 | 2019-07-21 00:34:47 -0700 | [diff] [blame] | 1263 | return f'{type(self).__name__}(mu={self._mu!r}, sigma={self._sigma!r})' |