blob: 3fa52d0403a666ef66a3cdc629eda013e5ff68a3 [file] [log] [blame]
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001/* Math module -- standard C math library functions, pi and e */
2
Christian Heimes53876d92008-04-19 00:31:39 +00003/* Here are some comments from Tim Peters, extracted from the
4 discussion attached to http://bugs.python.org/issue1640. They
5 describe the general aims of the math module with respect to
6 special values, IEEE-754 floating-point exceptions, and Python
7 exceptions.
8
9These are the "spirit of 754" rules:
10
111. If the mathematical result is a real number, but of magnitude too
12large to approximate by a machine float, overflow is signaled and the
13result is an infinity (with the appropriate sign).
14
152. If the mathematical result is a real number, but of magnitude too
16small to approximate by a machine float, underflow is signaled and the
17result is a zero (with the appropriate sign).
18
193. At a singularity (a value x such that the limit of f(y) as y
20approaches x exists and is an infinity), "divide by zero" is signaled
21and the result is an infinity (with the appropriate sign). This is
22complicated a little by that the left-side and right-side limits may
23not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0
24from the positive or negative directions. In that specific case, the
25sign of the zero determines the result of 1/0.
26
274. At a point where a function has no defined result in the extended
28reals (i.e., the reals plus an infinity or two), invalid operation is
29signaled and a NaN is returned.
30
31And these are what Python has historically /tried/ to do (but not
32always successfully, as platform libm behavior varies a lot):
33
34For #1, raise OverflowError.
35
36For #2, return a zero (with the appropriate sign if that happens by
37accident ;-)).
38
39For #3 and #4, raise ValueError. It may have made sense to raise
40Python's ZeroDivisionError in #3, but historically that's only been
41raised for division by zero and mod by zero.
42
43*/
44
45/*
46 In general, on an IEEE-754 platform the aim is to follow the C99
47 standard, including Annex 'F', whenever possible. Where the
48 standard recommends raising the 'divide-by-zero' or 'invalid'
49 floating-point exceptions, Python should raise a ValueError. Where
50 the standard recommends raising 'overflow', Python should raise an
51 OverflowError. In all other circumstances a value should be
52 returned.
53 */
54
Barry Warsaw8b43b191996-12-09 22:32:36 +000055#include "Python.h"
Mark Dickinson664b5112009-12-16 20:23:42 +000056#include "_math.h"
Guido van Rossum85a5fbb1990-10-14 12:07:46 +000057
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000058/*
59 sin(pi*x), giving accurate results for all finite x (especially x
60 integral or close to an integer). This is here for use in the
61 reflection formula for the gamma function. It conforms to IEEE
62 754-2008 for finite arguments, but not for infinities or nans.
63*/
Tim Petersa40c7932001-09-05 22:36:56 +000064
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000065static const double pi = 3.141592653589793238462643383279502884197;
Mark Dickinson45f992a2009-12-19 11:20:49 +000066static const double sqrtpi = 1.772453850905516027298167483341145182798;
Mark Dickinson9c91eb82010-07-07 16:17:31 +000067static const double logpi = 1.144729885849400174143427351353058711647;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +000068
69static double
70sinpi(double x)
71{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +000072 double y, r;
73 int n;
74 /* this function should only ever be called for finite arguments */
75 assert(Py_IS_FINITE(x));
76 y = fmod(fabs(x), 2.0);
77 n = (int)round(2.0*y);
78 assert(0 <= n && n <= 4);
79 switch (n) {
80 case 0:
81 r = sin(pi*y);
82 break;
83 case 1:
84 r = cos(pi*(y-0.5));
85 break;
86 case 2:
87 /* N.B. -sin(pi*(y-1.0)) is *not* equivalent: it would give
88 -0.0 instead of 0.0 when y == 1.0. */
89 r = sin(pi*(1.0-y));
90 break;
91 case 3:
92 r = -cos(pi*(y-1.5));
93 break;
94 case 4:
95 r = sin(pi*(y-2.0));
96 break;
97 default:
98 assert(0); /* should never get here */
99 r = -1.23e200; /* silence gcc warning */
100 }
101 return copysign(1.0, x)*r;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000102}
103
104/* Implementation of the real gamma function. In extensive but non-exhaustive
105 random tests, this function proved accurate to within <= 10 ulps across the
106 entire float domain. Note that accuracy may depend on the quality of the
107 system math functions, the pow function in particular. Special cases
108 follow C99 annex F. The parameters and method are tailored to platforms
109 whose double format is the IEEE 754 binary64 format.
110
111 Method: for x > 0.0 we use the Lanczos approximation with parameters N=13
112 and g=6.024680040776729583740234375; these parameters are amongst those
113 used by the Boost library. Following Boost (again), we re-express the
114 Lanczos sum as a rational function, and compute it that way. The
115 coefficients below were computed independently using MPFR, and have been
116 double-checked against the coefficients in the Boost source code.
117
118 For x < 0.0 we use the reflection formula.
119
120 There's one minor tweak that deserves explanation: Lanczos' formula for
121 Gamma(x) involves computing pow(x+g-0.5, x-0.5) / exp(x+g-0.5). For many x
122 values, x+g-0.5 can be represented exactly. However, in cases where it
123 can't be represented exactly the small error in x+g-0.5 can be magnified
124 significantly by the pow and exp calls, especially for large x. A cheap
125 correction is to multiply by (1 + e*g/(x+g-0.5)), where e is the error
126 involved in the computation of x+g-0.5 (that is, e = computed value of
127 x+g-0.5 - exact value of x+g-0.5). Here's the proof:
128
129 Correction factor
130 -----------------
131 Write x+g-0.5 = y-e, where y is exactly representable as an IEEE 754
132 double, and e is tiny. Then:
133
134 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) = pow(y-e, x-0.5)/exp(y-e)
135 = pow(y, x-0.5)/exp(y) * C,
136
137 where the correction_factor C is given by
138
139 C = pow(1-e/y, x-0.5) * exp(e)
140
141 Since e is tiny, pow(1-e/y, x-0.5) ~ 1-(x-0.5)*e/y, and exp(x) ~ 1+e, so:
142
143 C ~ (1-(x-0.5)*e/y) * (1+e) ~ 1 + e*(y-(x-0.5))/y
144
145 But y-(x-0.5) = g+e, and g+e ~ g. So we get C ~ 1 + e*g/y, and
146
147 pow(x+g-0.5,x-0.5)/exp(x+g-0.5) ~ pow(y, x-0.5)/exp(y) * (1 + e*g/y),
148
149 Note that for accuracy, when computing r*C it's better to do
150
151 r + e*g/y*r;
152
153 than
154
155 r * (1 + e*g/y);
156
157 since the addition in the latter throws away most of the bits of
158 information in e*g/y.
159*/
160
161#define LANCZOS_N 13
162static const double lanczos_g = 6.024680040776729583740234375;
163static const double lanczos_g_minus_half = 5.524680040776729583740234375;
164static const double lanczos_num_coeffs[LANCZOS_N] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000165 23531376880.410759688572007674451636754734846804940,
166 42919803642.649098768957899047001988850926355848959,
167 35711959237.355668049440185451547166705960488635843,
168 17921034426.037209699919755754458931112671403265390,
169 6039542586.3520280050642916443072979210699388420708,
170 1439720407.3117216736632230727949123939715485786772,
171 248874557.86205415651146038641322942321632125127801,
172 31426415.585400194380614231628318205362874684987640,
173 2876370.6289353724412254090516208496135991145378768,
174 186056.26539522349504029498971604569928220784236328,
175 8071.6720023658162106380029022722506138218516325024,
176 210.82427775157934587250973392071336271166969580291,
177 2.5066282746310002701649081771338373386264310793408
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000178};
179
180/* denominator is x*(x+1)*...*(x+LANCZOS_N-2) */
181static const double lanczos_den_coeffs[LANCZOS_N] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000182 0.0, 39916800.0, 120543840.0, 150917976.0, 105258076.0, 45995730.0,
183 13339535.0, 2637558.0, 357423.0, 32670.0, 1925.0, 66.0, 1.0};
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000184
185/* gamma values for small positive integers, 1 though NGAMMA_INTEGRAL */
186#define NGAMMA_INTEGRAL 23
187static const double gamma_integral[NGAMMA_INTEGRAL] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000188 1.0, 1.0, 2.0, 6.0, 24.0, 120.0, 720.0, 5040.0, 40320.0, 362880.0,
189 3628800.0, 39916800.0, 479001600.0, 6227020800.0, 87178291200.0,
190 1307674368000.0, 20922789888000.0, 355687428096000.0,
191 6402373705728000.0, 121645100408832000.0, 2432902008176640000.0,
192 51090942171709440000.0, 1124000727777607680000.0,
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000193};
194
195/* Lanczos' sum L_g(x), for positive x */
196
197static double
198lanczos_sum(double x)
199{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000200 double num = 0.0, den = 0.0;
201 int i;
202 assert(x > 0.0);
203 /* evaluate the rational function lanczos_sum(x). For large
204 x, the obvious algorithm risks overflow, so we instead
205 rescale the denominator and numerator of the rational
206 function by x**(1-LANCZOS_N) and treat this as a
207 rational function in 1/x. This also reduces the error for
208 larger x values. The choice of cutoff point (5.0 below) is
209 somewhat arbitrary; in tests, smaller cutoff values than
210 this resulted in lower accuracy. */
211 if (x < 5.0) {
212 for (i = LANCZOS_N; --i >= 0; ) {
213 num = num * x + lanczos_num_coeffs[i];
214 den = den * x + lanczos_den_coeffs[i];
215 }
216 }
217 else {
218 for (i = 0; i < LANCZOS_N; i++) {
219 num = num / x + lanczos_num_coeffs[i];
220 den = den / x + lanczos_den_coeffs[i];
221 }
222 }
223 return num/den;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000224}
225
226static double
227m_tgamma(double x)
228{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000229 double absx, r, y, z, sqrtpow;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000230
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000231 /* special cases */
232 if (!Py_IS_FINITE(x)) {
233 if (Py_IS_NAN(x) || x > 0.0)
234 return x; /* tgamma(nan) = nan, tgamma(inf) = inf */
235 else {
236 errno = EDOM;
237 return Py_NAN; /* tgamma(-inf) = nan, invalid */
238 }
239 }
240 if (x == 0.0) {
241 errno = EDOM;
Mark Dickinson50203a62011-09-25 15:26:43 +0100242 /* tgamma(+-0.0) = +-inf, divide-by-zero */
243 return copysign(Py_HUGE_VAL, x);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000244 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000245
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000246 /* integer arguments */
247 if (x == floor(x)) {
248 if (x < 0.0) {
249 errno = EDOM; /* tgamma(n) = nan, invalid for */
250 return Py_NAN; /* negative integers n */
251 }
252 if (x <= NGAMMA_INTEGRAL)
253 return gamma_integral[(int)x - 1];
254 }
255 absx = fabs(x);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000256
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000257 /* tiny arguments: tgamma(x) ~ 1/x for x near 0 */
258 if (absx < 1e-20) {
259 r = 1.0/x;
260 if (Py_IS_INFINITY(r))
261 errno = ERANGE;
262 return r;
263 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000264
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000265 /* large arguments: assuming IEEE 754 doubles, tgamma(x) overflows for
266 x > 200, and underflows to +-0.0 for x < -200, not a negative
267 integer. */
268 if (absx > 200.0) {
269 if (x < 0.0) {
270 return 0.0/sinpi(x);
271 }
272 else {
273 errno = ERANGE;
274 return Py_HUGE_VAL;
275 }
276 }
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000277
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000278 y = absx + lanczos_g_minus_half;
279 /* compute error in sum */
280 if (absx > lanczos_g_minus_half) {
281 /* note: the correction can be foiled by an optimizing
282 compiler that (incorrectly) thinks that an expression like
283 a + b - a - b can be optimized to 0.0. This shouldn't
284 happen in a standards-conforming compiler. */
285 double q = y - absx;
286 z = q - lanczos_g_minus_half;
287 }
288 else {
289 double q = y - lanczos_g_minus_half;
290 z = q - absx;
291 }
292 z = z * lanczos_g / y;
293 if (x < 0.0) {
294 r = -pi / sinpi(absx) / absx * exp(y) / lanczos_sum(absx);
295 r -= z * r;
296 if (absx < 140.0) {
297 r /= pow(y, absx - 0.5);
298 }
299 else {
300 sqrtpow = pow(y, absx / 2.0 - 0.25);
301 r /= sqrtpow;
302 r /= sqrtpow;
303 }
304 }
305 else {
306 r = lanczos_sum(absx) / exp(y);
307 r += z * r;
308 if (absx < 140.0) {
309 r *= pow(y, absx - 0.5);
310 }
311 else {
312 sqrtpow = pow(y, absx / 2.0 - 0.25);
313 r *= sqrtpow;
314 r *= sqrtpow;
315 }
316 }
317 if (Py_IS_INFINITY(r))
318 errno = ERANGE;
319 return r;
Guido van Rossum8832b621991-12-16 15:44:24 +0000320}
321
Christian Heimes53876d92008-04-19 00:31:39 +0000322/*
Mark Dickinson05d2e082009-12-11 20:17:17 +0000323 lgamma: natural log of the absolute value of the Gamma function.
324 For large arguments, Lanczos' formula works extremely well here.
325*/
326
327static double
328m_lgamma(double x)
329{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000330 double r, absx;
Mark Dickinson05d2e082009-12-11 20:17:17 +0000331
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000332 /* special cases */
333 if (!Py_IS_FINITE(x)) {
334 if (Py_IS_NAN(x))
335 return x; /* lgamma(nan) = nan */
336 else
337 return Py_HUGE_VAL; /* lgamma(+-inf) = +inf */
338 }
Mark Dickinson05d2e082009-12-11 20:17:17 +0000339
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000340 /* integer arguments */
341 if (x == floor(x) && x <= 2.0) {
342 if (x <= 0.0) {
343 errno = EDOM; /* lgamma(n) = inf, divide-by-zero for */
344 return Py_HUGE_VAL; /* integers n <= 0 */
345 }
346 else {
347 return 0.0; /* lgamma(1) = lgamma(2) = 0.0 */
348 }
349 }
Mark Dickinson05d2e082009-12-11 20:17:17 +0000350
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000351 absx = fabs(x);
352 /* tiny arguments: lgamma(x) ~ -log(fabs(x)) for small x */
353 if (absx < 1e-20)
354 return -log(absx);
Mark Dickinson05d2e082009-12-11 20:17:17 +0000355
Mark Dickinson9c91eb82010-07-07 16:17:31 +0000356 /* Lanczos' formula. We could save a fraction of a ulp in accuracy by
357 having a second set of numerator coefficients for lanczos_sum that
358 absorbed the exp(-lanczos_g) term, and throwing out the lanczos_g
359 subtraction below; it's probably not worth it. */
360 r = log(lanczos_sum(absx)) - lanczos_g;
361 r += (absx - 0.5) * (log(absx + lanczos_g - 0.5) - 1);
362 if (x < 0.0)
363 /* Use reflection formula to get value for negative x. */
364 r = logpi - log(fabs(sinpi(absx))) - log(absx) - r;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000365 if (Py_IS_INFINITY(r))
366 errno = ERANGE;
367 return r;
Mark Dickinson05d2e082009-12-11 20:17:17 +0000368}
369
Mark Dickinson45f992a2009-12-19 11:20:49 +0000370/*
371 Implementations of the error function erf(x) and the complementary error
372 function erfc(x).
373
374 Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed.,
375 Cambridge University Press), we use a series approximation for erf for
376 small x, and a continued fraction approximation for erfc(x) for larger x;
377 combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
378 this gives us erf(x) and erfc(x) for all x.
379
380 The series expansion used is:
381
382 erf(x) = x*exp(-x*x)/sqrt(pi) * [
383 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
384
385 The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
386 This series converges well for smallish x, but slowly for larger x.
387
388 The continued fraction expansion used is:
389
390 erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
391 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
392
393 after the first term, the general term has the form:
394
395 k*(k-0.5)/(2*k+0.5 + x**2 - ...).
396
397 This expansion converges fast for larger x, but convergence becomes
398 infinitely slow as x approaches 0.0. The (somewhat naive) continued
399 fraction evaluation algorithm used below also risks overflow for large x;
400 but for large x, erfc(x) == 0.0 to within machine precision. (For
401 example, erfc(30.0) is approximately 2.56e-393).
402
403 Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
404 continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
405 ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
406 numbers of terms to use for the relevant expansions. */
407
408#define ERF_SERIES_CUTOFF 1.5
409#define ERF_SERIES_TERMS 25
410#define ERFC_CONTFRAC_CUTOFF 30.0
411#define ERFC_CONTFRAC_TERMS 50
412
413/*
414 Error function, via power series.
415
416 Given a finite float x, return an approximation to erf(x).
417 Converges reasonably fast for small x.
418*/
419
420static double
421m_erf_series(double x)
422{
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000423 double x2, acc, fk, result;
424 int i, saved_errno;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000425
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000426 x2 = x * x;
427 acc = 0.0;
428 fk = (double)ERF_SERIES_TERMS + 0.5;
429 for (i = 0; i < ERF_SERIES_TERMS; i++) {
430 acc = 2.0 + x2 * acc / fk;
431 fk -= 1.0;
432 }
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000433 /* Make sure the exp call doesn't affect errno;
434 see m_erfc_contfrac for more. */
435 saved_errno = errno;
436 result = acc * x * exp(-x2) / sqrtpi;
437 errno = saved_errno;
438 return result;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000439}
440
441/*
442 Complementary error function, via continued fraction expansion.
443
444 Given a positive float x, return an approximation to erfc(x). Converges
445 reasonably fast for x large (say, x > 2.0), and should be safe from
446 overflow if x and nterms are not too large. On an IEEE 754 machine, with x
447 <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller
448 than the smallest representable nonzero float. */
449
450static double
451m_erfc_contfrac(double x)
452{
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000453 double x2, a, da, p, p_last, q, q_last, b, result;
454 int i, saved_errno;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000455
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000456 if (x >= ERFC_CONTFRAC_CUTOFF)
457 return 0.0;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000458
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000459 x2 = x*x;
460 a = 0.0;
461 da = 0.5;
462 p = 1.0; p_last = 0.0;
463 q = da + x2; q_last = 1.0;
464 for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
465 double temp;
466 a += da;
467 da += 2.0;
468 b = da + x2;
469 temp = p; p = b*p - a*p_last; p_last = temp;
470 temp = q; q = b*q - a*q_last; q_last = temp;
471 }
Mark Dickinsonbcdf9da2010-06-13 10:52:38 +0000472 /* Issue #8986: On some platforms, exp sets errno on underflow to zero;
473 save the current errno value so that we can restore it later. */
474 saved_errno = errno;
475 result = p / q * x * exp(-x2) / sqrtpi;
476 errno = saved_errno;
477 return result;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000478}
479
480/* Error function erf(x), for general x */
481
482static double
483m_erf(double x)
484{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000485 double absx, cf;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000486
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000487 if (Py_IS_NAN(x))
488 return x;
489 absx = fabs(x);
490 if (absx < ERF_SERIES_CUTOFF)
491 return m_erf_series(x);
492 else {
493 cf = m_erfc_contfrac(absx);
494 return x > 0.0 ? 1.0 - cf : cf - 1.0;
495 }
Mark Dickinson45f992a2009-12-19 11:20:49 +0000496}
497
498/* Complementary error function erfc(x), for general x. */
499
500static double
501m_erfc(double x)
502{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000503 double absx, cf;
Mark Dickinson45f992a2009-12-19 11:20:49 +0000504
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000505 if (Py_IS_NAN(x))
506 return x;
507 absx = fabs(x);
508 if (absx < ERF_SERIES_CUTOFF)
509 return 1.0 - m_erf_series(x);
510 else {
511 cf = m_erfc_contfrac(absx);
512 return x > 0.0 ? cf : 2.0 - cf;
513 }
Mark Dickinson45f992a2009-12-19 11:20:49 +0000514}
Mark Dickinson05d2e082009-12-11 20:17:17 +0000515
516/*
Christian Heimese57950f2008-04-21 13:08:03 +0000517 wrapper for atan2 that deals directly with special cases before
518 delegating to the platform libm for the remaining cases. This
519 is necessary to get consistent behaviour across platforms.
520 Windows, FreeBSD and alpha Tru64 are amongst platforms that don't
521 always follow C99.
522*/
523
524static double
525m_atan2(double y, double x)
526{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000527 if (Py_IS_NAN(x) || Py_IS_NAN(y))
528 return Py_NAN;
529 if (Py_IS_INFINITY(y)) {
530 if (Py_IS_INFINITY(x)) {
531 if (copysign(1., x) == 1.)
532 /* atan2(+-inf, +inf) == +-pi/4 */
533 return copysign(0.25*Py_MATH_PI, y);
534 else
535 /* atan2(+-inf, -inf) == +-pi*3/4 */
536 return copysign(0.75*Py_MATH_PI, y);
537 }
538 /* atan2(+-inf, x) == +-pi/2 for finite x */
539 return copysign(0.5*Py_MATH_PI, y);
540 }
541 if (Py_IS_INFINITY(x) || y == 0.) {
542 if (copysign(1., x) == 1.)
543 /* atan2(+-y, +inf) = atan2(+-0, +x) = +-0. */
544 return copysign(0., y);
545 else
546 /* atan2(+-y, -inf) = atan2(+-0., -x) = +-pi. */
547 return copysign(Py_MATH_PI, y);
548 }
549 return atan2(y, x);
Christian Heimese57950f2008-04-21 13:08:03 +0000550}
551
552/*
Mark Dickinsone675f082008-12-11 21:56:00 +0000553 Various platforms (Solaris, OpenBSD) do nonstandard things for log(0),
554 log(-ve), log(NaN). Here are wrappers for log and log10 that deal with
555 special values directly, passing positive non-special values through to
556 the system log/log10.
557 */
558
559static double
560m_log(double x)
561{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000562 if (Py_IS_FINITE(x)) {
563 if (x > 0.0)
564 return log(x);
565 errno = EDOM;
566 if (x == 0.0)
567 return -Py_HUGE_VAL; /* log(0) = -inf */
568 else
569 return Py_NAN; /* log(-ve) = nan */
570 }
571 else if (Py_IS_NAN(x))
572 return x; /* log(nan) = nan */
573 else if (x > 0.0)
574 return x; /* log(inf) = inf */
575 else {
576 errno = EDOM;
577 return Py_NAN; /* log(-inf) = nan */
578 }
Mark Dickinsone675f082008-12-11 21:56:00 +0000579}
580
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200581/*
582 log2: log to base 2.
583
584 Uses an algorithm that should:
Mark Dickinson83b8c0b2011-05-09 08:40:20 +0100585
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200586 (a) produce exact results for powers of 2, and
Mark Dickinson83b8c0b2011-05-09 08:40:20 +0100587 (b) give a monotonic log2 (for positive finite floats),
588 assuming that the system log is monotonic.
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200589*/
590
591static double
592m_log2(double x)
593{
594 if (!Py_IS_FINITE(x)) {
595 if (Py_IS_NAN(x))
596 return x; /* log2(nan) = nan */
597 else if (x > 0.0)
598 return x; /* log2(+inf) = +inf */
599 else {
600 errno = EDOM;
601 return Py_NAN; /* log2(-inf) = nan, invalid-operation */
602 }
603 }
604
605 if (x > 0.0) {
Victor Stinner8f9f8d62011-05-09 12:45:41 +0200606#ifdef HAVE_LOG2
607 return log2(x);
608#else
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200609 double m;
610 int e;
611 m = frexp(x, &e);
612 /* We want log2(m * 2**e) == log(m) / log(2) + e. Care is needed when
613 * x is just greater than 1.0: in that case e is 1, log(m) is negative,
614 * and we get significant cancellation error from the addition of
615 * log(m) / log(2) to e. The slight rewrite of the expression below
616 * avoids this problem.
617 */
618 if (x >= 1.0) {
619 return log(2.0 * m) / log(2.0) + (e - 1);
620 }
621 else {
622 return log(m) / log(2.0) + e;
623 }
Victor Stinner8f9f8d62011-05-09 12:45:41 +0200624#endif
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200625 }
626 else if (x == 0.0) {
627 errno = EDOM;
628 return -Py_HUGE_VAL; /* log2(0) = -inf, divide-by-zero */
629 }
630 else {
631 errno = EDOM;
Mark Dickinson23442582011-05-09 08:05:00 +0100632 return Py_NAN; /* log2(-inf) = nan, invalid-operation */
Victor Stinnerfa0e3d52011-05-09 01:01:09 +0200633 }
634}
635
Mark Dickinsone675f082008-12-11 21:56:00 +0000636static double
637m_log10(double x)
638{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000639 if (Py_IS_FINITE(x)) {
640 if (x > 0.0)
641 return log10(x);
642 errno = EDOM;
643 if (x == 0.0)
644 return -Py_HUGE_VAL; /* log10(0) = -inf */
645 else
646 return Py_NAN; /* log10(-ve) = nan */
647 }
648 else if (Py_IS_NAN(x))
649 return x; /* log10(nan) = nan */
650 else if (x > 0.0)
651 return x; /* log10(inf) = inf */
652 else {
653 errno = EDOM;
654 return Py_NAN; /* log10(-inf) = nan */
655 }
Mark Dickinsone675f082008-12-11 21:56:00 +0000656}
657
658
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000659/* Call is_error when errno != 0, and where x is the result libm
660 * returned. is_error will usually set up an exception and return
661 * true (1), but may return false (0) without setting up an exception.
662 */
663static int
664is_error(double x)
665{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000666 int result = 1; /* presumption of guilt */
667 assert(errno); /* non-zero errno is a precondition for calling */
668 if (errno == EDOM)
669 PyErr_SetString(PyExc_ValueError, "math domain error");
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000670
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000671 else if (errno == ERANGE) {
672 /* ANSI C generally requires libm functions to set ERANGE
673 * on overflow, but also generally *allows* them to set
674 * ERANGE on underflow too. There's no consistency about
675 * the latter across platforms.
676 * Alas, C99 never requires that errno be set.
677 * Here we suppress the underflow errors (libm functions
678 * should return a zero on underflow, and +- HUGE_VAL on
679 * overflow, so testing the result for zero suffices to
680 * distinguish the cases).
681 *
682 * On some platforms (Ubuntu/ia64) it seems that errno can be
683 * set to ERANGE for subnormal results that do *not* underflow
684 * to zero. So to be safe, we'll ignore ERANGE whenever the
685 * function result is less than one in absolute value.
686 */
687 if (fabs(x) < 1.0)
688 result = 0;
689 else
690 PyErr_SetString(PyExc_OverflowError,
691 "math range error");
692 }
693 else
694 /* Unexpected math error */
695 PyErr_SetFromErrno(PyExc_ValueError);
696 return result;
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000697}
698
Mark Dickinsone675f082008-12-11 21:56:00 +0000699/*
Christian Heimes53876d92008-04-19 00:31:39 +0000700 math_1 is used to wrap a libm function f that takes a double
701 arguments and returns a double.
702
703 The error reporting follows these rules, which are designed to do
704 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
705 platforms.
706
707 - a NaN result from non-NaN inputs causes ValueError to be raised
708 - an infinite result from finite inputs causes OverflowError to be
709 raised if can_overflow is 1, or raises ValueError if can_overflow
710 is 0.
711 - if the result is finite and errno == EDOM then ValueError is
712 raised
713 - if the result is finite and nonzero and errno == ERANGE then
714 OverflowError is raised
715
716 The last rule is used to catch overflow on platforms which follow
717 C89 but for which HUGE_VAL is not an infinity.
718
719 For the majority of one-argument functions these rules are enough
720 to ensure that Python's functions behave as specified in 'Annex F'
721 of the C99 standard, with the 'invalid' and 'divide-by-zero'
722 floating-point exceptions mapping to Python's ValueError and the
723 'overflow' floating-point exception mapping to OverflowError.
724 math_1 only works for functions that don't have singularities *and*
725 the possibility of overflow; fortunately, that covers everything we
726 care about right now.
727*/
728
Barry Warsaw8b43b191996-12-09 22:32:36 +0000729static PyObject *
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000730math_1_to_whatever(PyObject *arg, double (*func) (double),
Christian Heimes53876d92008-04-19 00:31:39 +0000731 PyObject *(*from_double_func) (double),
732 int can_overflow)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000733{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000734 double x, r;
735 x = PyFloat_AsDouble(arg);
736 if (x == -1.0 && PyErr_Occurred())
737 return NULL;
738 errno = 0;
739 PyFPE_START_PROTECT("in math_1", return 0);
740 r = (*func)(x);
741 PyFPE_END_PROTECT(r);
742 if (Py_IS_NAN(r) && !Py_IS_NAN(x)) {
743 PyErr_SetString(PyExc_ValueError,
744 "math domain error"); /* invalid arg */
745 return NULL;
746 }
747 if (Py_IS_INFINITY(r) && Py_IS_FINITE(x)) {
Benjamin Peterson2354a752012-03-13 16:13:09 -0500748 if (can_overflow)
749 PyErr_SetString(PyExc_OverflowError,
750 "math range error"); /* overflow */
751 else
752 PyErr_SetString(PyExc_ValueError,
753 "math domain error"); /* singularity */
754 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000755 }
756 if (Py_IS_FINITE(r) && errno && is_error(r))
757 /* this branch unnecessary on most platforms */
758 return NULL;
Mark Dickinsonde429622008-05-01 00:19:23 +0000759
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000760 return (*from_double_func)(r);
Christian Heimes53876d92008-04-19 00:31:39 +0000761}
762
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000763/* variant of math_1, to be used when the function being wrapped is known to
764 set errno properly (that is, errno = EDOM for invalid or divide-by-zero,
765 errno = ERANGE for overflow). */
766
767static PyObject *
768math_1a(PyObject *arg, double (*func) (double))
769{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000770 double x, r;
771 x = PyFloat_AsDouble(arg);
772 if (x == -1.0 && PyErr_Occurred())
773 return NULL;
774 errno = 0;
775 PyFPE_START_PROTECT("in math_1a", return 0);
776 r = (*func)(x);
777 PyFPE_END_PROTECT(r);
778 if (errno && is_error(r))
779 return NULL;
780 return PyFloat_FromDouble(r);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000781}
782
Christian Heimes53876d92008-04-19 00:31:39 +0000783/*
784 math_2 is used to wrap a libm function f that takes two double
785 arguments and returns a double.
786
787 The error reporting follows these rules, which are designed to do
788 the right thing on C89/C99 platforms and IEEE 754/non IEEE 754
789 platforms.
790
791 - a NaN result from non-NaN inputs causes ValueError to be raised
792 - an infinite result from finite inputs causes OverflowError to be
793 raised.
794 - if the result is finite and errno == EDOM then ValueError is
795 raised
796 - if the result is finite and nonzero and errno == ERANGE then
797 OverflowError is raised
798
799 The last rule is used to catch overflow on platforms which follow
800 C89 but for which HUGE_VAL is not an infinity.
801
802 For most two-argument functions (copysign, fmod, hypot, atan2)
803 these rules are enough to ensure that Python's functions behave as
804 specified in 'Annex F' of the C99 standard, with the 'invalid' and
805 'divide-by-zero' floating-point exceptions mapping to Python's
806 ValueError and the 'overflow' floating-point exception mapping to
807 OverflowError.
808*/
809
810static PyObject *
811math_1(PyObject *arg, double (*func) (double), int can_overflow)
812{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000813 return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow);
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000814}
815
816static PyObject *
Christian Heimes53876d92008-04-19 00:31:39 +0000817math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow)
Jeffrey Yasskinc2155832008-01-05 20:03:11 +0000818{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000819 return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000820}
821
Barry Warsaw8b43b191996-12-09 22:32:36 +0000822static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +0000823math_2(PyObject *args, double (*func) (double, double), char *funcname)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000824{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000825 PyObject *ox, *oy;
826 double x, y, r;
827 if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy))
828 return NULL;
829 x = PyFloat_AsDouble(ox);
830 y = PyFloat_AsDouble(oy);
831 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
832 return NULL;
833 errno = 0;
834 PyFPE_START_PROTECT("in math_2", return 0);
835 r = (*func)(x, y);
836 PyFPE_END_PROTECT(r);
837 if (Py_IS_NAN(r)) {
838 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
839 errno = EDOM;
840 else
841 errno = 0;
842 }
843 else if (Py_IS_INFINITY(r)) {
844 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
845 errno = ERANGE;
846 else
847 errno = 0;
848 }
849 if (errno && is_error(r))
850 return NULL;
851 else
852 return PyFloat_FromDouble(r);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000853}
854
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000855#define FUNC1(funcname, func, can_overflow, docstring) \
856 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
857 return math_1(args, func, can_overflow); \
858 }\
859 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000860
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000861#define FUNC1A(funcname, func, docstring) \
862 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
863 return math_1a(args, func); \
864 }\
865 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000866
Fred Drake40c48682000-07-03 18:11:56 +0000867#define FUNC2(funcname, func, docstring) \
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000868 static PyObject * math_##funcname(PyObject *self, PyObject *args) { \
869 return math_2(args, func, #funcname); \
870 }\
871 PyDoc_STRVAR(math_##funcname##_doc, docstring);
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000872
Christian Heimes53876d92008-04-19 00:31:39 +0000873FUNC1(acos, acos, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000874 "acos(x)\n\nReturn the arc cosine (measured in radians) of x.")
Mark Dickinsonf3718592009-12-21 15:27:41 +0000875FUNC1(acosh, m_acosh, 0,
Christian Heimes53876d92008-04-19 00:31:39 +0000876 "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.")
877FUNC1(asin, asin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000878 "asin(x)\n\nReturn the arc sine (measured in radians) of x.")
Mark Dickinsonf3718592009-12-21 15:27:41 +0000879FUNC1(asinh, m_asinh, 0,
Christian Heimes53876d92008-04-19 00:31:39 +0000880 "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.")
881FUNC1(atan, atan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000882 "atan(x)\n\nReturn the arc tangent (measured in radians) of x.")
Christian Heimese57950f2008-04-21 13:08:03 +0000883FUNC2(atan2, m_atan2,
Tim Petersfe71f812001-08-07 22:10:00 +0000884 "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n"
885 "Unlike atan(y/x), the signs of both x and y are considered.")
Mark Dickinsonf3718592009-12-21 15:27:41 +0000886FUNC1(atanh, m_atanh, 0,
Christian Heimes53876d92008-04-19 00:31:39 +0000887 "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +0000888
889static PyObject * math_ceil(PyObject *self, PyObject *number) {
Benjamin Petersonce798522012-01-22 11:24:29 -0500890 _Py_IDENTIFIER(__ceil__);
Mark Dickinson6d02d9c2010-07-02 16:05:15 +0000891 PyObject *method, *result;
Guido van Rossum13e05de2007-08-23 22:56:55 +0000892
Benjamin Petersonce798522012-01-22 11:24:29 -0500893 method = _PyObject_LookupSpecial(number, &PyId___ceil__);
Benjamin Petersonf751bc92010-07-02 13:46:42 +0000894 if (method == NULL) {
895 if (PyErr_Occurred())
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000896 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000897 return math_1_to_int(number, ceil, 0);
Benjamin Petersonf751bc92010-07-02 13:46:42 +0000898 }
Mark Dickinson6d02d9c2010-07-02 16:05:15 +0000899 result = PyObject_CallFunctionObjArgs(method, NULL);
900 Py_DECREF(method);
901 return result;
Guido van Rossum13e05de2007-08-23 22:56:55 +0000902}
903
904PyDoc_STRVAR(math_ceil_doc,
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000905 "ceil(x)\n\nReturn the ceiling of x as an int.\n"
906 "This is the smallest integral value >= x.");
Guido van Rossum13e05de2007-08-23 22:56:55 +0000907
Christian Heimes072c0f12008-01-03 23:01:04 +0000908FUNC2(copysign, copysign,
Benjamin Petersona0dfa822009-11-13 02:25:08 +0000909 "copysign(x, y)\n\nReturn x with the sign of y.")
Christian Heimes53876d92008-04-19 00:31:39 +0000910FUNC1(cos, cos, 0,
911 "cos(x)\n\nReturn the cosine of x (measured in radians).")
912FUNC1(cosh, cosh, 1,
913 "cosh(x)\n\nReturn the hyperbolic cosine of x.")
Mark Dickinson45f992a2009-12-19 11:20:49 +0000914FUNC1A(erf, m_erf,
915 "erf(x)\n\nError function at x.")
916FUNC1A(erfc, m_erfc,
917 "erfc(x)\n\nComplementary error function at x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000918FUNC1(exp, exp, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000919 "exp(x)\n\nReturn e raised to the power of x.")
Mark Dickinson664b5112009-12-16 20:23:42 +0000920FUNC1(expm1, m_expm1, 1,
921 "expm1(x)\n\nReturn exp(x)-1.\n"
922 "This function avoids the loss of precision involved in the direct "
923 "evaluation of exp(x)-1 for small x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000924FUNC1(fabs, fabs, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000925 "fabs(x)\n\nReturn the absolute value of the float x.")
Guido van Rossum13e05de2007-08-23 22:56:55 +0000926
927static PyObject * math_floor(PyObject *self, PyObject *number) {
Benjamin Petersonce798522012-01-22 11:24:29 -0500928 _Py_IDENTIFIER(__floor__);
Benjamin Petersonb0125892010-07-02 13:35:17 +0000929 PyObject *method, *result;
Guido van Rossum13e05de2007-08-23 22:56:55 +0000930
Benjamin Petersonce798522012-01-22 11:24:29 -0500931 method = _PyObject_LookupSpecial(number, &PyId___floor__);
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +0000932 if (method == NULL) {
933 if (PyErr_Occurred())
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000934 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000935 return math_1_to_int(number, floor, 0);
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +0000936 }
Benjamin Petersonb0125892010-07-02 13:35:17 +0000937 result = PyObject_CallFunctionObjArgs(method, NULL);
938 Py_DECREF(method);
939 return result;
Guido van Rossum13e05de2007-08-23 22:56:55 +0000940}
941
942PyDoc_STRVAR(math_floor_doc,
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000943 "floor(x)\n\nReturn the floor of x as an int.\n"
944 "This is the largest integral value <= x.");
Guido van Rossum13e05de2007-08-23 22:56:55 +0000945
Mark Dickinson12c4bdb2009-09-28 19:21:11 +0000946FUNC1A(gamma, m_tgamma,
947 "gamma(x)\n\nGamma function at x.")
Mark Dickinson05d2e082009-12-11 20:17:17 +0000948FUNC1A(lgamma, m_lgamma,
949 "lgamma(x)\n\nNatural logarithm of absolute value of Gamma function at x.")
Mark Dickinsonbe64d952010-07-07 16:21:29 +0000950FUNC1(log1p, m_log1p, 0,
Benjamin Petersona0dfa822009-11-13 02:25:08 +0000951 "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n"
952 "The result is computed in a way which is accurate for x near zero.")
Christian Heimes53876d92008-04-19 00:31:39 +0000953FUNC1(sin, sin, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000954 "sin(x)\n\nReturn the sine of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +0000955FUNC1(sinh, sinh, 1,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000956 "sinh(x)\n\nReturn the hyperbolic sine of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000957FUNC1(sqrt, sqrt, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000958 "sqrt(x)\n\nReturn the square root of x.")
Christian Heimes53876d92008-04-19 00:31:39 +0000959FUNC1(tan, tan, 0,
Tim Petersfe71f812001-08-07 22:10:00 +0000960 "tan(x)\n\nReturn the tangent of x (measured in radians).")
Christian Heimes53876d92008-04-19 00:31:39 +0000961FUNC1(tanh, tanh, 0,
Guido van Rossumc6e22901998-12-04 19:26:43 +0000962 "tanh(x)\n\nReturn the hyperbolic tangent of x.")
Guido van Rossum85a5fbb1990-10-14 12:07:46 +0000963
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000964/* Precision summation function as msum() by Raymond Hettinger in
965 <http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/393090>,
966 enhanced with the exact partials sum and roundoff from Mark
967 Dickinson's post at <http://bugs.python.org/file10357/msum4.py>.
968 See those links for more details, proofs and other references.
969
970 Note 1: IEEE 754R floating point semantics are assumed,
971 but the current implementation does not re-establish special
972 value semantics across iterations (i.e. handling -Inf + Inf).
973
974 Note 2: No provision is made for intermediate overflow handling;
Georg Brandlf78e02b2008-06-10 17:40:04 +0000975 therefore, sum([1e+308, 1e-308, 1e+308]) returns 1e+308 while
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000976 sum([1e+308, 1e+308, 1e-308]) raises an OverflowError due to the
977 overflow of the first partial sum.
978
Benjamin Petersonfea6a942008-07-02 16:11:42 +0000979 Note 3: The intermediate values lo, yr, and hi are declared volatile so
980 aggressive compilers won't algebraically reduce lo to always be exactly 0.0.
Georg Brandlf78e02b2008-06-10 17:40:04 +0000981 Also, the volatile declaration forces the values to be stored in memory as
982 regular doubles instead of extended long precision (80-bit) values. This
Benjamin Petersonfea6a942008-07-02 16:11:42 +0000983 prevents double rounding because any addition or subtraction of two doubles
Antoine Pitrouf95a1b32010-05-09 15:52:27 +0000984 can be resolved exactly into double-sized hi and lo values. As long as the
Georg Brandlf78e02b2008-06-10 17:40:04 +0000985 hi value gets forced into a double before yr and lo are computed, the extra
986 bits in downstream extended precision operations (x87 for example) will be
987 exactly zero and therefore can be losslessly stored back into a double,
988 thereby preventing double rounding.
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000989
990 Note 4: A similar implementation is in Modules/cmathmodule.c.
991 Be sure to update both when making changes.
992
Mark Dickinsonaa7633a2008-08-01 08:16:13 +0000993 Note 5: The signature of math.fsum() differs from __builtin__.sum()
Benjamin Peterson2b7411d2008-05-26 17:36:47 +0000994 because the start argument doesn't make sense in the context of
995 accurate summation. Since the partials table is collapsed before
996 returning a result, sum(seq2, start=sum(seq1)) may not equal the
997 accurate result returned by sum(itertools.chain(seq1, seq2)).
998*/
999
1000#define NUM_PARTIALS 32 /* initial partials array size, on stack */
1001
1002/* Extend the partials array p[] by doubling its size. */
1003static int /* non-zero on error */
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001004_fsum_realloc(double **p_ptr, Py_ssize_t n,
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001005 double *ps, Py_ssize_t *m_ptr)
1006{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001007 void *v = NULL;
1008 Py_ssize_t m = *m_ptr;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001009
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001010 m += m; /* double */
1011 if (n < m && m < (PY_SSIZE_T_MAX / sizeof(double))) {
1012 double *p = *p_ptr;
1013 if (p == ps) {
1014 v = PyMem_Malloc(sizeof(double) * m);
1015 if (v != NULL)
1016 memcpy(v, ps, sizeof(double) * n);
1017 }
1018 else
1019 v = PyMem_Realloc(p, sizeof(double) * m);
1020 }
1021 if (v == NULL) { /* size overflow or no memory */
1022 PyErr_SetString(PyExc_MemoryError, "math.fsum partials");
1023 return 1;
1024 }
1025 *p_ptr = (double*) v;
1026 *m_ptr = m;
1027 return 0;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001028}
1029
1030/* Full precision summation of a sequence of floats.
1031
1032 def msum(iterable):
1033 partials = [] # sorted, non-overlapping partial sums
1034 for x in iterable:
Mark Dickinsonfdb0acc2010-06-25 20:22:24 +00001035 i = 0
1036 for y in partials:
1037 if abs(x) < abs(y):
1038 x, y = y, x
1039 hi = x + y
1040 lo = y - (hi - x)
1041 if lo:
1042 partials[i] = lo
1043 i += 1
1044 x = hi
1045 partials[i:] = [x]
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001046 return sum_exact(partials)
1047
1048 Rounded x+y stored in hi with the roundoff stored in lo. Together hi+lo
1049 are exactly equal to x+y. The inner loop applies hi/lo summation to each
1050 partial so that the list of partial sums remains exact.
1051
1052 Sum_exact() adds the partial sums exactly and correctly rounds the final
1053 result (using the round-half-to-even rule). The items in partials remain
1054 non-zero, non-special, non-overlapping and strictly increasing in
1055 magnitude, but possibly not all having the same sign.
1056
1057 Depends on IEEE 754 arithmetic guarantees and half-even rounding.
1058*/
1059
1060static PyObject*
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001061math_fsum(PyObject *self, PyObject *seq)
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001062{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001063 PyObject *item, *iter, *sum = NULL;
1064 Py_ssize_t i, j, n = 0, m = NUM_PARTIALS;
1065 double x, y, t, ps[NUM_PARTIALS], *p = ps;
1066 double xsave, special_sum = 0.0, inf_sum = 0.0;
1067 volatile double hi, yr, lo;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001068
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001069 iter = PyObject_GetIter(seq);
1070 if (iter == NULL)
1071 return NULL;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001072
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001073 PyFPE_START_PROTECT("fsum", Py_DECREF(iter); return NULL)
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001074
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001075 for(;;) { /* for x in iterable */
1076 assert(0 <= n && n <= m);
1077 assert((m == NUM_PARTIALS && p == ps) ||
1078 (m > NUM_PARTIALS && p != NULL));
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001079
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001080 item = PyIter_Next(iter);
1081 if (item == NULL) {
1082 if (PyErr_Occurred())
1083 goto _fsum_error;
1084 break;
1085 }
1086 x = PyFloat_AsDouble(item);
1087 Py_DECREF(item);
1088 if (PyErr_Occurred())
1089 goto _fsum_error;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001090
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001091 xsave = x;
1092 for (i = j = 0; j < n; j++) { /* for y in partials */
1093 y = p[j];
1094 if (fabs(x) < fabs(y)) {
1095 t = x; x = y; y = t;
1096 }
1097 hi = x + y;
1098 yr = hi - x;
1099 lo = y - yr;
1100 if (lo != 0.0)
1101 p[i++] = lo;
1102 x = hi;
1103 }
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001104
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001105 n = i; /* ps[i:] = [x] */
1106 if (x != 0.0) {
1107 if (! Py_IS_FINITE(x)) {
1108 /* a nonfinite x could arise either as
1109 a result of intermediate overflow, or
1110 as a result of a nan or inf in the
1111 summands */
1112 if (Py_IS_FINITE(xsave)) {
1113 PyErr_SetString(PyExc_OverflowError,
1114 "intermediate overflow in fsum");
1115 goto _fsum_error;
1116 }
1117 if (Py_IS_INFINITY(xsave))
1118 inf_sum += xsave;
1119 special_sum += xsave;
1120 /* reset partials */
1121 n = 0;
1122 }
1123 else if (n >= m && _fsum_realloc(&p, n, ps, &m))
1124 goto _fsum_error;
1125 else
1126 p[n++] = x;
1127 }
1128 }
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001129
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001130 if (special_sum != 0.0) {
1131 if (Py_IS_NAN(inf_sum))
1132 PyErr_SetString(PyExc_ValueError,
1133 "-inf + inf in fsum");
1134 else
1135 sum = PyFloat_FromDouble(special_sum);
1136 goto _fsum_error;
1137 }
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001138
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001139 hi = 0.0;
1140 if (n > 0) {
1141 hi = p[--n];
1142 /* sum_exact(ps, hi) from the top, stop when the sum becomes
1143 inexact. */
1144 while (n > 0) {
1145 x = hi;
1146 y = p[--n];
1147 assert(fabs(y) < fabs(x));
1148 hi = x + y;
1149 yr = hi - x;
1150 lo = y - yr;
1151 if (lo != 0.0)
1152 break;
1153 }
1154 /* Make half-even rounding work across multiple partials.
1155 Needed so that sum([1e-16, 1, 1e16]) will round-up the last
1156 digit to two instead of down to zero (the 1e-16 makes the 1
1157 slightly closer to two). With a potential 1 ULP rounding
1158 error fixed-up, math.fsum() can guarantee commutativity. */
1159 if (n > 0 && ((lo < 0.0 && p[n-1] < 0.0) ||
1160 (lo > 0.0 && p[n-1] > 0.0))) {
1161 y = lo * 2.0;
1162 x = hi + y;
1163 yr = x - hi;
1164 if (y == yr)
1165 hi = x;
1166 }
1167 }
1168 sum = PyFloat_FromDouble(hi);
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001169
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001170_fsum_error:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001171 PyFPE_END_PROTECT(hi)
1172 Py_DECREF(iter);
1173 if (p != ps)
1174 PyMem_Free(p);
1175 return sum;
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001176}
1177
1178#undef NUM_PARTIALS
1179
Mark Dickinsonaa7633a2008-08-01 08:16:13 +00001180PyDoc_STRVAR(math_fsum_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001181"fsum(iterable)\n\n\
Benjamin Peterson2b7411d2008-05-26 17:36:47 +00001182Return an accurate floating point sum of values in the iterable.\n\
1183Assumes IEEE-754 floating point arithmetic.");
1184
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001185/* Return the smallest integer k such that n < 2**k, or 0 if n == 0.
1186 * Equivalent to floor(lg(x))+1. Also equivalent to: bitwidth_of_type -
1187 * count_leading_zero_bits(x)
1188 */
1189
1190/* XXX: This routine does more or less the same thing as
1191 * bits_in_digit() in Objects/longobject.c. Someday it would be nice to
1192 * consolidate them. On BSD, there's a library function called fls()
1193 * that we could use, and GCC provides __builtin_clz().
1194 */
1195
1196static unsigned long
1197bit_length(unsigned long n)
1198{
1199 unsigned long len = 0;
1200 while (n != 0) {
1201 ++len;
1202 n >>= 1;
1203 }
1204 return len;
1205}
1206
1207static unsigned long
1208count_set_bits(unsigned long n)
1209{
1210 unsigned long count = 0;
1211 while (n != 0) {
1212 ++count;
1213 n &= n - 1; /* clear least significant bit */
1214 }
1215 return count;
1216}
1217
1218/* Divide-and-conquer factorial algorithm
1219 *
1220 * Based on the formula and psuedo-code provided at:
1221 * http://www.luschny.de/math/factorial/binarysplitfact.html
1222 *
1223 * Faster algorithms exist, but they're more complicated and depend on
Ezio Melotti9527afd2010-07-08 15:03:02 +00001224 * a fast prime factorization algorithm.
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001225 *
1226 * Notes on the algorithm
1227 * ----------------------
1228 *
1229 * factorial(n) is written in the form 2**k * m, with m odd. k and m are
1230 * computed separately, and then combined using a left shift.
1231 *
1232 * The function factorial_odd_part computes the odd part m (i.e., the greatest
1233 * odd divisor) of factorial(n), using the formula:
1234 *
1235 * factorial_odd_part(n) =
1236 *
1237 * product_{i >= 0} product_{0 < j <= n / 2**i, j odd} j
1238 *
1239 * Example: factorial_odd_part(20) =
1240 *
1241 * (1) *
1242 * (1) *
1243 * (1 * 3 * 5) *
1244 * (1 * 3 * 5 * 7 * 9)
1245 * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
1246 *
1247 * Here i goes from large to small: the first term corresponds to i=4 (any
1248 * larger i gives an empty product), and the last term corresponds to i=0.
1249 * Each term can be computed from the last by multiplying by the extra odd
1250 * numbers required: e.g., to get from the penultimate term to the last one,
1251 * we multiply by (11 * 13 * 15 * 17 * 19).
1252 *
1253 * To see a hint of why this formula works, here are the same numbers as above
1254 * but with the even parts (i.e., the appropriate powers of 2) included. For
1255 * each subterm in the product for i, we multiply that subterm by 2**i:
1256 *
1257 * factorial(20) =
1258 *
1259 * (16) *
1260 * (8) *
1261 * (4 * 12 * 20) *
1262 * (2 * 6 * 10 * 14 * 18) *
1263 * (1 * 3 * 5 * 7 * 9 * 11 * 13 * 15 * 17 * 19)
1264 *
1265 * The factorial_partial_product function computes the product of all odd j in
1266 * range(start, stop) for given start and stop. It's used to compute the
1267 * partial products like (11 * 13 * 15 * 17 * 19) in the example above. It
1268 * operates recursively, repeatedly splitting the range into two roughly equal
1269 * pieces until the subranges are small enough to be computed using only C
1270 * integer arithmetic.
1271 *
1272 * The two-valuation k (i.e., the exponent of the largest power of 2 dividing
1273 * the factorial) is computed independently in the main math_factorial
1274 * function. By standard results, its value is:
1275 *
1276 * two_valuation = n//2 + n//4 + n//8 + ....
1277 *
1278 * It can be shown (e.g., by complete induction on n) that two_valuation is
1279 * equal to n - count_set_bits(n), where count_set_bits(n) gives the number of
1280 * '1'-bits in the binary expansion of n.
1281 */
1282
1283/* factorial_partial_product: Compute product(range(start, stop, 2)) using
1284 * divide and conquer. Assumes start and stop are odd and stop > start.
1285 * max_bits must be >= bit_length(stop - 2). */
1286
1287static PyObject *
1288factorial_partial_product(unsigned long start, unsigned long stop,
1289 unsigned long max_bits)
1290{
1291 unsigned long midpoint, num_operands;
1292 PyObject *left = NULL, *right = NULL, *result = NULL;
1293
1294 /* If the return value will fit an unsigned long, then we can
1295 * multiply in a tight, fast loop where each multiply is O(1).
1296 * Compute an upper bound on the number of bits required to store
1297 * the answer.
1298 *
1299 * Storing some integer z requires floor(lg(z))+1 bits, which is
1300 * conveniently the value returned by bit_length(z). The
1301 * product x*y will require at most
1302 * bit_length(x) + bit_length(y) bits to store, based
1303 * on the idea that lg product = lg x + lg y.
1304 *
1305 * We know that stop - 2 is the largest number to be multiplied. From
1306 * there, we have: bit_length(answer) <= num_operands *
1307 * bit_length(stop - 2)
1308 */
1309
1310 num_operands = (stop - start) / 2;
1311 /* The "num_operands <= 8 * SIZEOF_LONG" check guards against the
1312 * unlikely case of an overflow in num_operands * max_bits. */
1313 if (num_operands <= 8 * SIZEOF_LONG &&
1314 num_operands * max_bits <= 8 * SIZEOF_LONG) {
1315 unsigned long j, total;
1316 for (total = start, j = start + 2; j < stop; j += 2)
1317 total *= j;
1318 return PyLong_FromUnsignedLong(total);
1319 }
1320
1321 /* find midpoint of range(start, stop), rounded up to next odd number. */
1322 midpoint = (start + num_operands) | 1;
1323 left = factorial_partial_product(start, midpoint,
1324 bit_length(midpoint - 2));
1325 if (left == NULL)
1326 goto error;
1327 right = factorial_partial_product(midpoint, stop, max_bits);
1328 if (right == NULL)
1329 goto error;
1330 result = PyNumber_Multiply(left, right);
1331
1332 error:
1333 Py_XDECREF(left);
1334 Py_XDECREF(right);
1335 return result;
1336}
1337
1338/* factorial_odd_part: compute the odd part of factorial(n). */
1339
1340static PyObject *
1341factorial_odd_part(unsigned long n)
1342{
1343 long i;
1344 unsigned long v, lower, upper;
1345 PyObject *partial, *tmp, *inner, *outer;
1346
1347 inner = PyLong_FromLong(1);
1348 if (inner == NULL)
1349 return NULL;
1350 outer = inner;
1351 Py_INCREF(outer);
1352
1353 upper = 3;
1354 for (i = bit_length(n) - 2; i >= 0; i--) {
1355 v = n >> i;
1356 if (v <= 2)
1357 continue;
1358 lower = upper;
1359 /* (v + 1) | 1 = least odd integer strictly larger than n / 2**i */
1360 upper = (v + 1) | 1;
1361 /* Here inner is the product of all odd integers j in the range (0,
1362 n/2**(i+1)]. The factorial_partial_product call below gives the
1363 product of all odd integers j in the range (n/2**(i+1), n/2**i]. */
1364 partial = factorial_partial_product(lower, upper, bit_length(upper-2));
1365 /* inner *= partial */
1366 if (partial == NULL)
1367 goto error;
1368 tmp = PyNumber_Multiply(inner, partial);
1369 Py_DECREF(partial);
1370 if (tmp == NULL)
1371 goto error;
1372 Py_DECREF(inner);
1373 inner = tmp;
1374 /* Now inner is the product of all odd integers j in the range (0,
1375 n/2**i], giving the inner product in the formula above. */
1376
1377 /* outer *= inner; */
1378 tmp = PyNumber_Multiply(outer, inner);
1379 if (tmp == NULL)
1380 goto error;
1381 Py_DECREF(outer);
1382 outer = tmp;
1383 }
Mark Dickinson76464492012-10-25 10:46:28 +01001384 Py_DECREF(inner);
1385 return outer;
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001386
1387 error:
1388 Py_DECREF(outer);
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001389 Py_DECREF(inner);
Mark Dickinson76464492012-10-25 10:46:28 +01001390 return NULL;
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001391}
1392
1393/* Lookup table for small factorial values */
1394
1395static const unsigned long SmallFactorials[] = {
1396 1, 1, 2, 6, 24, 120, 720, 5040, 40320,
1397 362880, 3628800, 39916800, 479001600,
1398#if SIZEOF_LONG >= 8
1399 6227020800, 87178291200, 1307674368000,
1400 20922789888000, 355687428096000, 6402373705728000,
1401 121645100408832000, 2432902008176640000
1402#endif
1403};
1404
Barry Warsaw8b43b191996-12-09 22:32:36 +00001405static PyObject *
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001406math_factorial(PyObject *self, PyObject *arg)
1407{
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001408 long x;
1409 PyObject *result, *odd_part, *two_valuation;
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001410
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001411 if (PyFloat_Check(arg)) {
1412 PyObject *lx;
1413 double dx = PyFloat_AS_DOUBLE((PyFloatObject *)arg);
1414 if (!(Py_IS_FINITE(dx) && dx == floor(dx))) {
1415 PyErr_SetString(PyExc_ValueError,
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001416 "factorial() only accepts integral values");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001417 return NULL;
1418 }
1419 lx = PyLong_FromDouble(dx);
1420 if (lx == NULL)
1421 return NULL;
1422 x = PyLong_AsLong(lx);
1423 Py_DECREF(lx);
1424 }
1425 else
1426 x = PyLong_AsLong(arg);
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001427
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001428 if (x == -1 && PyErr_Occurred())
1429 return NULL;
1430 if (x < 0) {
1431 PyErr_SetString(PyExc_ValueError,
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001432 "factorial() not defined for negative values");
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001433 return NULL;
1434 }
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001435
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001436 /* use lookup table if x is small */
Victor Stinner63941882011-09-29 00:42:28 +02001437 if (x < (long)Py_ARRAY_LENGTH(SmallFactorials))
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001438 return PyLong_FromUnsignedLong(SmallFactorials[x]);
1439
1440 /* else express in the form odd_part * 2**two_valuation, and compute as
1441 odd_part << two_valuation. */
1442 odd_part = factorial_odd_part(x);
1443 if (odd_part == NULL)
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001444 return NULL;
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001445 two_valuation = PyLong_FromLong(x - count_set_bits(x));
1446 if (two_valuation == NULL) {
1447 Py_DECREF(odd_part);
1448 return NULL;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001449 }
Mark Dickinson4c8a9a22010-05-15 17:02:38 +00001450 result = PyNumber_Lshift(odd_part, two_valuation);
1451 Py_DECREF(two_valuation);
1452 Py_DECREF(odd_part);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001453 return result;
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001454}
1455
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +00001456PyDoc_STRVAR(math_factorial_doc,
1457"factorial(x) -> Integral\n"
1458"\n"
1459"Find x!. Raise a ValueError if x is negative or non-integral.");
Georg Brandlc28e1fa2008-06-10 19:20:26 +00001460
1461static PyObject *
Christian Heimes400adb02008-02-01 08:12:03 +00001462math_trunc(PyObject *self, PyObject *number)
1463{
Benjamin Petersonce798522012-01-22 11:24:29 -05001464 _Py_IDENTIFIER(__trunc__);
Benjamin Petersonb0125892010-07-02 13:35:17 +00001465 PyObject *trunc, *result;
Christian Heimes400adb02008-02-01 08:12:03 +00001466
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001467 if (Py_TYPE(number)->tp_dict == NULL) {
1468 if (PyType_Ready(Py_TYPE(number)) < 0)
1469 return NULL;
1470 }
Christian Heimes400adb02008-02-01 08:12:03 +00001471
Benjamin Petersonce798522012-01-22 11:24:29 -05001472 trunc = _PyObject_LookupSpecial(number, &PyId___trunc__);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001473 if (trunc == NULL) {
Benjamin Peterson8bb9cde2010-07-01 15:16:55 +00001474 if (!PyErr_Occurred())
1475 PyErr_Format(PyExc_TypeError,
1476 "type %.100s doesn't define __trunc__ method",
1477 Py_TYPE(number)->tp_name);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001478 return NULL;
1479 }
Benjamin Petersonb0125892010-07-02 13:35:17 +00001480 result = PyObject_CallFunctionObjArgs(trunc, NULL);
1481 Py_DECREF(trunc);
1482 return result;
Christian Heimes400adb02008-02-01 08:12:03 +00001483}
1484
1485PyDoc_STRVAR(math_trunc_doc,
1486"trunc(x:Real) -> Integral\n"
1487"\n"
Christian Heimes292d3512008-02-03 16:51:08 +00001488"Truncates x to the nearest Integral toward 0. Uses the __trunc__ magic method.");
Christian Heimes400adb02008-02-01 08:12:03 +00001489
1490static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001491math_frexp(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001492{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001493 int i;
1494 double x = PyFloat_AsDouble(arg);
1495 if (x == -1.0 && PyErr_Occurred())
1496 return NULL;
1497 /* deal with special cases directly, to sidestep platform
1498 differences */
1499 if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) {
1500 i = 0;
1501 }
1502 else {
1503 PyFPE_START_PROTECT("in math_frexp", return 0);
1504 x = frexp(x, &i);
1505 PyFPE_END_PROTECT(x);
1506 }
1507 return Py_BuildValue("(di)", x, i);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001508}
1509
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001510PyDoc_STRVAR(math_frexp_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001511"frexp(x)\n"
1512"\n"
1513"Return the mantissa and exponent of x, as pair (m, e).\n"
1514"m is a float and e is an int, such that x = m * 2.**e.\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001515"If x is 0, m and e are both 0. Else 0.5 <= abs(m) < 1.0.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001516
Barry Warsaw8b43b191996-12-09 22:32:36 +00001517static PyObject *
Fred Drake40c48682000-07-03 18:11:56 +00001518math_ldexp(PyObject *self, PyObject *args)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001519{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001520 double x, r;
1521 PyObject *oexp;
1522 long exp;
1523 int overflow;
1524 if (! PyArg_ParseTuple(args, "dO:ldexp", &x, &oexp))
1525 return NULL;
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00001526
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001527 if (PyLong_Check(oexp)) {
1528 /* on overflow, replace exponent with either LONG_MAX
1529 or LONG_MIN, depending on the sign. */
1530 exp = PyLong_AsLongAndOverflow(oexp, &overflow);
1531 if (exp == -1 && PyErr_Occurred())
1532 return NULL;
1533 if (overflow)
1534 exp = overflow < 0 ? LONG_MIN : LONG_MAX;
1535 }
1536 else {
1537 PyErr_SetString(PyExc_TypeError,
1538 "Expected an int or long as second argument "
1539 "to ldexp.");
1540 return NULL;
1541 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00001542
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001543 if (x == 0. || !Py_IS_FINITE(x)) {
1544 /* NaNs, zeros and infinities are returned unchanged */
1545 r = x;
1546 errno = 0;
1547 } else if (exp > INT_MAX) {
1548 /* overflow */
1549 r = copysign(Py_HUGE_VAL, x);
1550 errno = ERANGE;
1551 } else if (exp < INT_MIN) {
1552 /* underflow to +-0 */
1553 r = copysign(0., x);
1554 errno = 0;
1555 } else {
1556 errno = 0;
1557 PyFPE_START_PROTECT("in math_ldexp", return 0);
1558 r = ldexp(x, (int)exp);
1559 PyFPE_END_PROTECT(r);
1560 if (Py_IS_INFINITY(r))
1561 errno = ERANGE;
1562 }
Alexandre Vassalotti6461e102008-05-15 22:09:29 +00001563
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001564 if (errno && is_error(r))
1565 return NULL;
1566 return PyFloat_FromDouble(r);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001567}
1568
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001569PyDoc_STRVAR(math_ldexp_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001570"ldexp(x, i)\n\n\
1571Return x * (2**i).");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001572
Barry Warsaw8b43b191996-12-09 22:32:36 +00001573static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001574math_modf(PyObject *self, PyObject *arg)
Guido van Rossumd18ad581991-10-24 14:57:21 +00001575{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001576 double y, x = PyFloat_AsDouble(arg);
1577 if (x == -1.0 && PyErr_Occurred())
1578 return NULL;
1579 /* some platforms don't do the right thing for NaNs and
1580 infinities, so we take care of special cases directly. */
1581 if (!Py_IS_FINITE(x)) {
1582 if (Py_IS_INFINITY(x))
1583 return Py_BuildValue("(dd)", copysign(0., x), x);
1584 else if (Py_IS_NAN(x))
1585 return Py_BuildValue("(dd)", x, x);
1586 }
Christian Heimesa342c012008-04-20 21:01:16 +00001587
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001588 errno = 0;
1589 PyFPE_START_PROTECT("in math_modf", return 0);
1590 x = modf(x, &y);
1591 PyFPE_END_PROTECT(x);
1592 return Py_BuildValue("(dd)", x, y);
Guido van Rossumd18ad581991-10-24 14:57:21 +00001593}
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001594
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001595PyDoc_STRVAR(math_modf_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001596"modf(x)\n"
1597"\n"
1598"Return the fractional and integer parts of x. Both results carry the sign\n"
Benjamin Peterson6ebe78f2008-12-21 00:06:59 +00001599"of x and are floats.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001600
Tim Peters78526162001-09-05 00:53:45 +00001601/* A decent logarithm is easy to compute even for huge longs, but libm can't
1602 do that by itself -- loghelper can. func is log or log10, and name is
Mark Dickinson6ecd9e52010-01-02 15:33:56 +00001603 "log" or "log10". Note that overflow of the result isn't possible: a long
1604 can contain no more than INT_MAX * SHIFT bits, so has value certainly less
1605 than 2**(2**64 * 2**16) == 2**2**80, and log2 of that is 2**80, which is
Tim Peters78526162001-09-05 00:53:45 +00001606 small enough to fit in an IEEE single. log and log10 are even smaller.
Mark Dickinson6ecd9e52010-01-02 15:33:56 +00001607 However, intermediate overflow is possible for a long if the number of bits
1608 in that long is larger than PY_SSIZE_T_MAX. */
Tim Peters78526162001-09-05 00:53:45 +00001609
1610static PyObject*
Thomas Wouters89f507f2006-12-13 04:49:30 +00001611loghelper(PyObject* arg, double (*func)(double), char *funcname)
Tim Peters78526162001-09-05 00:53:45 +00001612{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001613 /* If it is long, do it ourselves. */
1614 if (PyLong_Check(arg)) {
Mark Dickinsonc6037172010-09-29 19:06:36 +00001615 double x, result;
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001616 Py_ssize_t e;
Mark Dickinsonc6037172010-09-29 19:06:36 +00001617
1618 /* Negative or zero inputs give a ValueError. */
1619 if (Py_SIZE(arg) <= 0) {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001620 PyErr_SetString(PyExc_ValueError,
1621 "math domain error");
1622 return NULL;
1623 }
Mark Dickinsonfa41e602010-09-28 07:22:27 +00001624
Mark Dickinsonc6037172010-09-29 19:06:36 +00001625 x = PyLong_AsDouble(arg);
1626 if (x == -1.0 && PyErr_Occurred()) {
1627 if (!PyErr_ExceptionMatches(PyExc_OverflowError))
1628 return NULL;
1629 /* Here the conversion to double overflowed, but it's possible
1630 to compute the log anyway. Clear the exception and continue. */
1631 PyErr_Clear();
1632 x = _PyLong_Frexp((PyLongObject *)arg, &e);
1633 if (x == -1.0 && PyErr_Occurred())
1634 return NULL;
1635 /* Value is ~= x * 2**e, so the log ~= log(x) + log(2) * e. */
1636 result = func(x) + func(2.0) * e;
1637 }
1638 else
1639 /* Successfully converted x to a double. */
1640 result = func(x);
1641 return PyFloat_FromDouble(result);
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001642 }
Tim Peters78526162001-09-05 00:53:45 +00001643
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001644 /* Else let libm handle it by itself. */
1645 return math_1(arg, func, 0);
Tim Peters78526162001-09-05 00:53:45 +00001646}
1647
1648static PyObject *
1649math_log(PyObject *self, PyObject *args)
1650{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001651 PyObject *arg;
1652 PyObject *base = NULL;
1653 PyObject *num, *den;
1654 PyObject *ans;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001655
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001656 if (!PyArg_UnpackTuple(args, "log", 1, 2, &arg, &base))
1657 return NULL;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001658
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001659 num = loghelper(arg, m_log, "log");
1660 if (num == NULL || base == NULL)
1661 return num;
Raymond Hettinger866964c2002-12-14 19:51:34 +00001662
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001663 den = loghelper(base, m_log, "log");
1664 if (den == NULL) {
1665 Py_DECREF(num);
1666 return NULL;
1667 }
Raymond Hettinger866964c2002-12-14 19:51:34 +00001668
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001669 ans = PyNumber_TrueDivide(num, den);
1670 Py_DECREF(num);
1671 Py_DECREF(den);
1672 return ans;
Tim Peters78526162001-09-05 00:53:45 +00001673}
1674
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001675PyDoc_STRVAR(math_log_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001676"log(x[, base])\n\n\
1677Return the logarithm of x to the given base.\n\
Raymond Hettinger866964c2002-12-14 19:51:34 +00001678If the base not specified, returns the natural logarithm (base e) of x.");
Tim Peters78526162001-09-05 00:53:45 +00001679
1680static PyObject *
Victor Stinnerfa0e3d52011-05-09 01:01:09 +02001681math_log2(PyObject *self, PyObject *arg)
1682{
1683 return loghelper(arg, m_log2, "log2");
1684}
1685
1686PyDoc_STRVAR(math_log2_doc,
1687"log2(x)\n\nReturn the base 2 logarithm of x.");
1688
1689static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001690math_log10(PyObject *self, PyObject *arg)
Tim Peters78526162001-09-05 00:53:45 +00001691{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001692 return loghelper(arg, m_log10, "log10");
Tim Peters78526162001-09-05 00:53:45 +00001693}
1694
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001695PyDoc_STRVAR(math_log10_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001696"log10(x)\n\nReturn the base 10 logarithm of x.");
Tim Peters78526162001-09-05 00:53:45 +00001697
Christian Heimes53876d92008-04-19 00:31:39 +00001698static PyObject *
1699math_fmod(PyObject *self, PyObject *args)
1700{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001701 PyObject *ox, *oy;
1702 double r, x, y;
1703 if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy))
1704 return NULL;
1705 x = PyFloat_AsDouble(ox);
1706 y = PyFloat_AsDouble(oy);
1707 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1708 return NULL;
1709 /* fmod(x, +/-Inf) returns x for finite x. */
1710 if (Py_IS_INFINITY(y) && Py_IS_FINITE(x))
1711 return PyFloat_FromDouble(x);
1712 errno = 0;
1713 PyFPE_START_PROTECT("in math_fmod", return 0);
1714 r = fmod(x, y);
1715 PyFPE_END_PROTECT(r);
1716 if (Py_IS_NAN(r)) {
1717 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1718 errno = EDOM;
1719 else
1720 errno = 0;
1721 }
1722 if (errno && is_error(r))
1723 return NULL;
1724 else
1725 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00001726}
1727
1728PyDoc_STRVAR(math_fmod_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001729"fmod(x, y)\n\nReturn fmod(x, y), according to platform C."
Christian Heimes53876d92008-04-19 00:31:39 +00001730" x % y may differ.");
1731
1732static PyObject *
1733math_hypot(PyObject *self, PyObject *args)
1734{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001735 PyObject *ox, *oy;
1736 double r, x, y;
1737 if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy))
1738 return NULL;
1739 x = PyFloat_AsDouble(ox);
1740 y = PyFloat_AsDouble(oy);
1741 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1742 return NULL;
1743 /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */
1744 if (Py_IS_INFINITY(x))
1745 return PyFloat_FromDouble(fabs(x));
1746 if (Py_IS_INFINITY(y))
1747 return PyFloat_FromDouble(fabs(y));
1748 errno = 0;
1749 PyFPE_START_PROTECT("in math_hypot", return 0);
1750 r = hypot(x, y);
1751 PyFPE_END_PROTECT(r);
1752 if (Py_IS_NAN(r)) {
1753 if (!Py_IS_NAN(x) && !Py_IS_NAN(y))
1754 errno = EDOM;
1755 else
1756 errno = 0;
1757 }
1758 else if (Py_IS_INFINITY(r)) {
1759 if (Py_IS_FINITE(x) && Py_IS_FINITE(y))
1760 errno = ERANGE;
1761 else
1762 errno = 0;
1763 }
1764 if (errno && is_error(r))
1765 return NULL;
1766 else
1767 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00001768}
1769
1770PyDoc_STRVAR(math_hypot_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001771"hypot(x, y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).");
Christian Heimes53876d92008-04-19 00:31:39 +00001772
1773/* pow can't use math_2, but needs its own wrapper: the problem is
1774 that an infinite result can arise either as a result of overflow
1775 (in which case OverflowError should be raised) or as a result of
1776 e.g. 0.**-5. (for which ValueError needs to be raised.)
1777*/
1778
1779static PyObject *
1780math_pow(PyObject *self, PyObject *args)
1781{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001782 PyObject *ox, *oy;
1783 double r, x, y;
1784 int odd_y;
Christian Heimes53876d92008-04-19 00:31:39 +00001785
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001786 if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy))
1787 return NULL;
1788 x = PyFloat_AsDouble(ox);
1789 y = PyFloat_AsDouble(oy);
1790 if ((x == -1.0 || y == -1.0) && PyErr_Occurred())
1791 return NULL;
Christian Heimesa342c012008-04-20 21:01:16 +00001792
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001793 /* deal directly with IEEE specials, to cope with problems on various
1794 platforms whose semantics don't exactly match C99 */
1795 r = 0.; /* silence compiler warning */
1796 if (!Py_IS_FINITE(x) || !Py_IS_FINITE(y)) {
1797 errno = 0;
1798 if (Py_IS_NAN(x))
1799 r = y == 0. ? 1. : x; /* NaN**0 = 1 */
1800 else if (Py_IS_NAN(y))
1801 r = x == 1. ? 1. : y; /* 1**NaN = 1 */
1802 else if (Py_IS_INFINITY(x)) {
1803 odd_y = Py_IS_FINITE(y) && fmod(fabs(y), 2.0) == 1.0;
1804 if (y > 0.)
1805 r = odd_y ? x : fabs(x);
1806 else if (y == 0.)
1807 r = 1.;
1808 else /* y < 0. */
1809 r = odd_y ? copysign(0., x) : 0.;
1810 }
1811 else if (Py_IS_INFINITY(y)) {
1812 if (fabs(x) == 1.0)
1813 r = 1.;
1814 else if (y > 0. && fabs(x) > 1.0)
1815 r = y;
1816 else if (y < 0. && fabs(x) < 1.0) {
1817 r = -y; /* result is +inf */
1818 if (x == 0.) /* 0**-inf: divide-by-zero */
1819 errno = EDOM;
1820 }
1821 else
1822 r = 0.;
1823 }
1824 }
1825 else {
1826 /* let libm handle finite**finite */
1827 errno = 0;
1828 PyFPE_START_PROTECT("in math_pow", return 0);
1829 r = pow(x, y);
1830 PyFPE_END_PROTECT(r);
1831 /* a NaN result should arise only from (-ve)**(finite
1832 non-integer); in this case we want to raise ValueError. */
1833 if (!Py_IS_FINITE(r)) {
1834 if (Py_IS_NAN(r)) {
1835 errno = EDOM;
1836 }
1837 /*
1838 an infinite result here arises either from:
1839 (A) (+/-0.)**negative (-> divide-by-zero)
1840 (B) overflow of x**y with x and y finite
1841 */
1842 else if (Py_IS_INFINITY(r)) {
1843 if (x == 0.)
1844 errno = EDOM;
1845 else
1846 errno = ERANGE;
1847 }
1848 }
1849 }
Christian Heimes53876d92008-04-19 00:31:39 +00001850
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001851 if (errno && is_error(r))
1852 return NULL;
1853 else
1854 return PyFloat_FromDouble(r);
Christian Heimes53876d92008-04-19 00:31:39 +00001855}
1856
1857PyDoc_STRVAR(math_pow_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001858"pow(x, y)\n\nReturn x**y (x to the power of y).");
Christian Heimes53876d92008-04-19 00:31:39 +00001859
Christian Heimes072c0f12008-01-03 23:01:04 +00001860static const double degToRad = Py_MATH_PI / 180.0;
1861static const double radToDeg = 180.0 / Py_MATH_PI;
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001862
1863static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001864math_degrees(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001865{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001866 double x = PyFloat_AsDouble(arg);
1867 if (x == -1.0 && PyErr_Occurred())
1868 return NULL;
1869 return PyFloat_FromDouble(x * radToDeg);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001870}
1871
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001872PyDoc_STRVAR(math_degrees_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001873"degrees(x)\n\n\
1874Convert angle x from radians to degrees.");
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001875
1876static PyObject *
Thomas Wouters89f507f2006-12-13 04:49:30 +00001877math_radians(PyObject *self, PyObject *arg)
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001878{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001879 double x = PyFloat_AsDouble(arg);
1880 if (x == -1.0 && PyErr_Occurred())
1881 return NULL;
1882 return PyFloat_FromDouble(x * degToRad);
Raymond Hettingerd6f22672002-05-13 03:56:10 +00001883}
1884
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001885PyDoc_STRVAR(math_radians_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001886"radians(x)\n\n\
1887Convert angle x from degrees to radians.");
Tim Peters78526162001-09-05 00:53:45 +00001888
Christian Heimes072c0f12008-01-03 23:01:04 +00001889static PyObject *
Mark Dickinson8e0c9962010-07-11 17:38:24 +00001890math_isfinite(PyObject *self, PyObject *arg)
1891{
1892 double x = PyFloat_AsDouble(arg);
1893 if (x == -1.0 && PyErr_Occurred())
1894 return NULL;
1895 return PyBool_FromLong((long)Py_IS_FINITE(x));
1896}
1897
1898PyDoc_STRVAR(math_isfinite_doc,
1899"isfinite(x) -> bool\n\n\
Mark Dickinson226f5442010-07-11 18:13:41 +00001900Return True if x is neither an infinity nor a NaN, and False otherwise.");
Mark Dickinson8e0c9962010-07-11 17:38:24 +00001901
1902static PyObject *
Christian Heimes072c0f12008-01-03 23:01:04 +00001903math_isnan(PyObject *self, PyObject *arg)
1904{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001905 double x = PyFloat_AsDouble(arg);
1906 if (x == -1.0 && PyErr_Occurred())
1907 return NULL;
1908 return PyBool_FromLong((long)Py_IS_NAN(x));
Christian Heimes072c0f12008-01-03 23:01:04 +00001909}
1910
1911PyDoc_STRVAR(math_isnan_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001912"isnan(x) -> bool\n\n\
Mark Dickinson226f5442010-07-11 18:13:41 +00001913Return True if x is a NaN (not a number), and False otherwise.");
Christian Heimes072c0f12008-01-03 23:01:04 +00001914
1915static PyObject *
1916math_isinf(PyObject *self, PyObject *arg)
1917{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001918 double x = PyFloat_AsDouble(arg);
1919 if (x == -1.0 && PyErr_Occurred())
1920 return NULL;
1921 return PyBool_FromLong((long)Py_IS_INFINITY(x));
Christian Heimes072c0f12008-01-03 23:01:04 +00001922}
1923
1924PyDoc_STRVAR(math_isinf_doc,
Benjamin Petersona0dfa822009-11-13 02:25:08 +00001925"isinf(x) -> bool\n\n\
Mark Dickinson226f5442010-07-11 18:13:41 +00001926Return True if x is a positive or negative infinity, and False otherwise.");
Christian Heimes072c0f12008-01-03 23:01:04 +00001927
Barry Warsaw8b43b191996-12-09 22:32:36 +00001928static PyMethodDef math_methods[] = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001929 {"acos", math_acos, METH_O, math_acos_doc},
1930 {"acosh", math_acosh, METH_O, math_acosh_doc},
1931 {"asin", math_asin, METH_O, math_asin_doc},
1932 {"asinh", math_asinh, METH_O, math_asinh_doc},
1933 {"atan", math_atan, METH_O, math_atan_doc},
1934 {"atan2", math_atan2, METH_VARARGS, math_atan2_doc},
1935 {"atanh", math_atanh, METH_O, math_atanh_doc},
1936 {"ceil", math_ceil, METH_O, math_ceil_doc},
1937 {"copysign", math_copysign, METH_VARARGS, math_copysign_doc},
1938 {"cos", math_cos, METH_O, math_cos_doc},
1939 {"cosh", math_cosh, METH_O, math_cosh_doc},
1940 {"degrees", math_degrees, METH_O, math_degrees_doc},
1941 {"erf", math_erf, METH_O, math_erf_doc},
1942 {"erfc", math_erfc, METH_O, math_erfc_doc},
1943 {"exp", math_exp, METH_O, math_exp_doc},
1944 {"expm1", math_expm1, METH_O, math_expm1_doc},
1945 {"fabs", math_fabs, METH_O, math_fabs_doc},
1946 {"factorial", math_factorial, METH_O, math_factorial_doc},
1947 {"floor", math_floor, METH_O, math_floor_doc},
1948 {"fmod", math_fmod, METH_VARARGS, math_fmod_doc},
1949 {"frexp", math_frexp, METH_O, math_frexp_doc},
1950 {"fsum", math_fsum, METH_O, math_fsum_doc},
1951 {"gamma", math_gamma, METH_O, math_gamma_doc},
1952 {"hypot", math_hypot, METH_VARARGS, math_hypot_doc},
Mark Dickinson8e0c9962010-07-11 17:38:24 +00001953 {"isfinite", math_isfinite, METH_O, math_isfinite_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001954 {"isinf", math_isinf, METH_O, math_isinf_doc},
1955 {"isnan", math_isnan, METH_O, math_isnan_doc},
1956 {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc},
1957 {"lgamma", math_lgamma, METH_O, math_lgamma_doc},
1958 {"log", math_log, METH_VARARGS, math_log_doc},
1959 {"log1p", math_log1p, METH_O, math_log1p_doc},
1960 {"log10", math_log10, METH_O, math_log10_doc},
Victor Stinnerfa0e3d52011-05-09 01:01:09 +02001961 {"log2", math_log2, METH_O, math_log2_doc},
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001962 {"modf", math_modf, METH_O, math_modf_doc},
1963 {"pow", math_pow, METH_VARARGS, math_pow_doc},
1964 {"radians", math_radians, METH_O, math_radians_doc},
1965 {"sin", math_sin, METH_O, math_sin_doc},
1966 {"sinh", math_sinh, METH_O, math_sinh_doc},
1967 {"sqrt", math_sqrt, METH_O, math_sqrt_doc},
1968 {"tan", math_tan, METH_O, math_tan_doc},
1969 {"tanh", math_tanh, METH_O, math_tanh_doc},
1970 {"trunc", math_trunc, METH_O, math_trunc_doc},
1971 {NULL, NULL} /* sentinel */
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001972};
1973
Guido van Rossumc6e22901998-12-04 19:26:43 +00001974
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001975PyDoc_STRVAR(module_doc,
Tim Peters63c94532001-09-04 23:17:42 +00001976"This module is always available. It provides access to the\n"
Martin v. Löwis14f8b4c2002-06-13 20:33:02 +00001977"mathematical functions defined by the C standard.");
Guido van Rossumc6e22901998-12-04 19:26:43 +00001978
Martin v. Löwis1a214512008-06-11 05:26:20 +00001979
1980static struct PyModuleDef mathmodule = {
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001981 PyModuleDef_HEAD_INIT,
1982 "math",
1983 module_doc,
1984 -1,
1985 math_methods,
1986 NULL,
1987 NULL,
1988 NULL,
1989 NULL
Martin v. Löwis1a214512008-06-11 05:26:20 +00001990};
1991
Mark Hammondfe51c6d2002-08-02 02:27:13 +00001992PyMODINIT_FUNC
Martin v. Löwis1a214512008-06-11 05:26:20 +00001993PyInit_math(void)
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00001994{
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001995 PyObject *m;
Tim Petersfe71f812001-08-07 22:10:00 +00001996
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00001997 m = PyModule_Create(&mathmodule);
1998 if (m == NULL)
1999 goto finally;
Barry Warsawfc93f751996-12-17 00:47:03 +00002000
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002001 PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI));
2002 PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E));
Barry Warsawfc93f751996-12-17 00:47:03 +00002003
Christian Heimes53876d92008-04-19 00:31:39 +00002004 finally:
Antoine Pitrouf95a1b32010-05-09 15:52:27 +00002005 return m;
Guido van Rossum85a5fbb1990-10-14 12:07:46 +00002006}