blob: e984edcb75421b60c1114eccb8e1d54a1e8cd8fc [file] [log] [blame]
Christian Heimes3feef612008-02-11 06:19:17 +00001:mod:`decimal` --- Decimal fixed point and floating point arithmetic
2====================================================================
Georg Brandl116aa622007-08-15 14:28:22 +00003
4.. module:: decimal
5 :synopsis: Implementation of the General Decimal Arithmetic Specification.
6
Georg Brandl116aa622007-08-15 14:28:22 +00007.. moduleauthor:: Eric Price <eprice at tjhsst.edu>
8.. moduleauthor:: Facundo Batista <facundo at taniquetil.com.ar>
9.. moduleauthor:: Raymond Hettinger <python at rcn.com>
10.. moduleauthor:: Aahz <aahz at pobox.com>
11.. moduleauthor:: Tim Peters <tim.one at comcast.net>
Stefan Krah1919b7e2012-03-21 18:25:23 +010012.. moduleauthor:: Stefan Krah <skrah at bytereef.org>
Georg Brandl116aa622007-08-15 14:28:22 +000013.. sectionauthor:: Raymond D. Hettinger <python at rcn.com>
14
Andrew Kuchling2e3743c2014-03-19 16:23:01 -040015**Source code:** :source:`Lib/decimal.py`
16
Christian Heimesfe337bf2008-03-23 21:54:12 +000017.. import modules for testing inline doctests with the Sphinx doctest builder
18.. testsetup:: *
19
20 import decimal
21 import math
22 from decimal import *
23 # make sure each group gets a fresh context
24 setcontext(Context())
Georg Brandl116aa622007-08-15 14:28:22 +000025
Terry Jan Reedyfa089b92016-06-11 15:02:54 -040026--------------
27
Stefan Krah1919b7e2012-03-21 18:25:23 +010028The :mod:`decimal` module provides support for fast correctly-rounded
29decimal floating point arithmetic. It offers several advantages over the
30:class:`float` datatype:
Georg Brandl116aa622007-08-15 14:28:22 +000031
Christian Heimes3feef612008-02-11 06:19:17 +000032* Decimal "is based on a floating-point model which was designed with people
33 in mind, and necessarily has a paramount guiding principle -- computers must
34 provide an arithmetic that works in the same way as the arithmetic that
35 people learn at school." -- excerpt from the decimal arithmetic specification.
36
Georg Brandl116aa622007-08-15 14:28:22 +000037* Decimal numbers can be represented exactly. In contrast, numbers like
Terry Jan Reedya9314632012-01-13 23:43:13 -050038 :const:`1.1` and :const:`2.2` do not have exact representations in binary
Raymond Hettingerd258d1e2009-04-23 22:06:12 +000039 floating point. End users typically would not expect ``1.1 + 2.2`` to display
40 as :const:`3.3000000000000003` as it does with binary floating point.
Georg Brandl116aa622007-08-15 14:28:22 +000041
42* The exactness carries over into arithmetic. In decimal floating point, ``0.1
Thomas Wouters1b7f8912007-09-19 03:06:30 +000043 + 0.1 + 0.1 - 0.3`` is exactly equal to zero. In binary floating point, the result
Georg Brandl116aa622007-08-15 14:28:22 +000044 is :const:`5.5511151231257827e-017`. While near to zero, the differences
45 prevent reliable equality testing and differences can accumulate. For this
Christian Heimes3feef612008-02-11 06:19:17 +000046 reason, decimal is preferred in accounting applications which have strict
Georg Brandl116aa622007-08-15 14:28:22 +000047 equality invariants.
48
49* The decimal module incorporates a notion of significant places so that ``1.30
50 + 1.20`` is :const:`2.50`. The trailing zero is kept to indicate significance.
51 This is the customary presentation for monetary applications. For
52 multiplication, the "schoolbook" approach uses all the figures in the
53 multiplicands. For instance, ``1.3 * 1.2`` gives :const:`1.56` while ``1.30 *
54 1.20`` gives :const:`1.5600`.
55
56* Unlike hardware based binary floating point, the decimal module has a user
Thomas Wouters1b7f8912007-09-19 03:06:30 +000057 alterable precision (defaulting to 28 places) which can be as large as needed for
Christian Heimesfe337bf2008-03-23 21:54:12 +000058 a given problem:
Georg Brandl116aa622007-08-15 14:28:22 +000059
Mark Dickinson43ef32a2010-11-07 11:24:44 +000060 >>> from decimal import *
Georg Brandl116aa622007-08-15 14:28:22 +000061 >>> getcontext().prec = 6
62 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000063 Decimal('0.142857')
Georg Brandl116aa622007-08-15 14:28:22 +000064 >>> getcontext().prec = 28
65 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +000066 Decimal('0.1428571428571428571428571429')
Georg Brandl116aa622007-08-15 14:28:22 +000067
68* Both binary and decimal floating point are implemented in terms of published
69 standards. While the built-in float type exposes only a modest portion of its
70 capabilities, the decimal module exposes all required parts of the standard.
71 When needed, the programmer has full control over rounding and signal handling.
Christian Heimes3feef612008-02-11 06:19:17 +000072 This includes an option to enforce exact arithmetic by using exceptions
73 to block any inexact operations.
74
75* The decimal module was designed to support "without prejudice, both exact
76 unrounded decimal arithmetic (sometimes called fixed-point arithmetic)
77 and rounded floating-point arithmetic." -- excerpt from the decimal
78 arithmetic specification.
Georg Brandl116aa622007-08-15 14:28:22 +000079
80The module design is centered around three concepts: the decimal number, the
81context for arithmetic, and signals.
82
83A decimal number is immutable. It has a sign, coefficient digits, and an
84exponent. To preserve significance, the coefficient digits do not truncate
Thomas Wouters1b7f8912007-09-19 03:06:30 +000085trailing zeros. Decimals also include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +000086:const:`Infinity`, :const:`-Infinity`, and :const:`NaN`. The standard also
87differentiates :const:`-0` from :const:`+0`.
88
89The context for arithmetic is an environment specifying precision, rounding
90rules, limits on exponents, flags indicating the results of operations, and trap
91enablers which determine whether signals are treated as exceptions. Rounding
92options include :const:`ROUND_CEILING`, :const:`ROUND_DOWN`,
93:const:`ROUND_FLOOR`, :const:`ROUND_HALF_DOWN`, :const:`ROUND_HALF_EVEN`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +000094:const:`ROUND_HALF_UP`, :const:`ROUND_UP`, and :const:`ROUND_05UP`.
Georg Brandl116aa622007-08-15 14:28:22 +000095
96Signals are groups of exceptional conditions arising during the course of
97computation. Depending on the needs of the application, signals may be ignored,
98considered as informational, or treated as exceptions. The signals in the
99decimal module are: :const:`Clamped`, :const:`InvalidOperation`,
100:const:`DivisionByZero`, :const:`Inexact`, :const:`Rounded`, :const:`Subnormal`,
Stefan Krah1919b7e2012-03-21 18:25:23 +0100101:const:`Overflow`, :const:`Underflow` and :const:`FloatOperation`.
Georg Brandl116aa622007-08-15 14:28:22 +0000102
103For each signal there is a flag and a trap enabler. When a signal is
Raymond Hettinger86173da2008-02-01 20:38:12 +0000104encountered, its flag is set to one, then, if the trap enabler is
Georg Brandl116aa622007-08-15 14:28:22 +0000105set to one, an exception is raised. Flags are sticky, so the user needs to
106reset them before monitoring a calculation.
107
108
109.. seealso::
110
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000111 * IBM's General Decimal Arithmetic Specification, `The General Decimal Arithmetic
Raymond Hettinger960dc362009-04-21 03:43:15 +0000112 Specification <http://speleotrove.com/decimal/decarith.html>`_.
Georg Brandl116aa622007-08-15 14:28:22 +0000113
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000114.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000115
116
117.. _decimal-tutorial:
118
119Quick-start Tutorial
120--------------------
121
122The usual start to using decimals is importing the module, viewing the current
123context with :func:`getcontext` and, if necessary, setting new values for
124precision, rounding, or enabled traps::
125
126 >>> from decimal import *
127 >>> getcontext()
Stefan Krah1919b7e2012-03-21 18:25:23 +0100128 Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000129 capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
Christian Heimesfe337bf2008-03-23 21:54:12 +0000130 InvalidOperation])
Georg Brandl116aa622007-08-15 14:28:22 +0000131
132 >>> getcontext().prec = 7 # Set a new precision
133
Mark Dickinsone534a072010-04-04 22:13:14 +0000134Decimal instances can be constructed from integers, strings, floats, or tuples.
135Construction from an integer or a float performs an exact conversion of the
136value of that integer or float. Decimal numbers include special values such as
Georg Brandl116aa622007-08-15 14:28:22 +0000137:const:`NaN` which stands for "Not a number", positive and negative
Stefan Krah1919b7e2012-03-21 18:25:23 +0100138:const:`Infinity`, and :const:`-0`::
Georg Brandl116aa622007-08-15 14:28:22 +0000139
Facundo Batista789bdf02008-06-21 17:29:41 +0000140 >>> getcontext().prec = 28
Georg Brandl116aa622007-08-15 14:28:22 +0000141 >>> Decimal(10)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000142 Decimal('10')
143 >>> Decimal('3.14')
144 Decimal('3.14')
Mark Dickinsone534a072010-04-04 22:13:14 +0000145 >>> Decimal(3.14)
146 Decimal('3.140000000000000124344978758017532527446746826171875')
Georg Brandl116aa622007-08-15 14:28:22 +0000147 >>> Decimal((0, (3, 1, 4), -2))
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000148 Decimal('3.14')
Georg Brandl116aa622007-08-15 14:28:22 +0000149 >>> Decimal(str(2.0 ** 0.5))
Alexander Belopolsky287d1fd2011-01-12 16:37:14 +0000150 Decimal('1.4142135623730951')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000151 >>> Decimal(2) ** Decimal('0.5')
152 Decimal('1.414213562373095048801688724')
153 >>> Decimal('NaN')
154 Decimal('NaN')
155 >>> Decimal('-Infinity')
156 Decimal('-Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000157
Stefan Krah1919b7e2012-03-21 18:25:23 +0100158If the :exc:`FloatOperation` signal is trapped, accidental mixing of
159decimals and floats in constructors or ordering comparisons raises
160an exception::
161
162 >>> c = getcontext()
163 >>> c.traps[FloatOperation] = True
164 >>> Decimal(3.14)
165 Traceback (most recent call last):
Martin Panter1050d2d2016-07-26 11:18:21 +0200166 File "<stdin>", line 1, in <module>
Stefan Krah1919b7e2012-03-21 18:25:23 +0100167 decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
168 >>> Decimal('3.5') < 3.7
169 Traceback (most recent call last):
170 File "<stdin>", line 1, in <module>
171 decimal.FloatOperation: [<class 'decimal.FloatOperation'>]
172 >>> Decimal('3.5') == 3.5
173 True
174
175.. versionadded:: 3.3
176
Georg Brandl116aa622007-08-15 14:28:22 +0000177The significance of a new Decimal is determined solely by the number of digits
178input. Context precision and rounding only come into play during arithmetic
Christian Heimesfe337bf2008-03-23 21:54:12 +0000179operations.
180
181.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +0000182
183 >>> getcontext().prec = 6
184 >>> Decimal('3.0')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000185 Decimal('3.0')
Georg Brandl116aa622007-08-15 14:28:22 +0000186 >>> Decimal('3.1415926535')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000187 Decimal('3.1415926535')
Georg Brandl116aa622007-08-15 14:28:22 +0000188 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000189 Decimal('5.85987')
Georg Brandl116aa622007-08-15 14:28:22 +0000190 >>> getcontext().rounding = ROUND_UP
191 >>> Decimal('3.1415926535') + Decimal('2.7182818285')
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000192 Decimal('5.85988')
Georg Brandl116aa622007-08-15 14:28:22 +0000193
Stefan Krah1919b7e2012-03-21 18:25:23 +0100194If the internal limits of the C version are exceeded, constructing
195a decimal raises :class:`InvalidOperation`::
196
197 >>> Decimal("1e9999999999999999999")
198 Traceback (most recent call last):
199 File "<stdin>", line 1, in <module>
200 decimal.InvalidOperation: [<class 'decimal.InvalidOperation'>]
201
202.. versionchanged:: 3.3
203
Georg Brandl116aa622007-08-15 14:28:22 +0000204Decimals interact well with much of the rest of Python. Here is a small decimal
Christian Heimesfe337bf2008-03-23 21:54:12 +0000205floating point flying circus:
206
207.. doctest::
208 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000209
Facundo Batista789bdf02008-06-21 17:29:41 +0000210 >>> data = list(map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()))
Georg Brandl116aa622007-08-15 14:28:22 +0000211 >>> max(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000212 Decimal('9.25')
Georg Brandl116aa622007-08-15 14:28:22 +0000213 >>> min(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000214 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +0000215 >>> sorted(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000216 [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'),
217 Decimal('2.35'), Decimal('3.45'), Decimal('9.25')]
Georg Brandl116aa622007-08-15 14:28:22 +0000218 >>> sum(data)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000219 Decimal('19.29')
Georg Brandl116aa622007-08-15 14:28:22 +0000220 >>> a,b,c = data[:3]
221 >>> str(a)
222 '1.34'
223 >>> float(a)
Mark Dickinson8dad7df2009-06-28 20:36:54 +0000224 1.34
225 >>> round(a, 1)
226 Decimal('1.3')
Georg Brandl116aa622007-08-15 14:28:22 +0000227 >>> int(a)
228 1
229 >>> a * 5
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000230 Decimal('6.70')
Georg Brandl116aa622007-08-15 14:28:22 +0000231 >>> a * b
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000232 Decimal('2.5058')
Georg Brandl116aa622007-08-15 14:28:22 +0000233 >>> c % a
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000234 Decimal('0.77')
Georg Brandl116aa622007-08-15 14:28:22 +0000235
Christian Heimesfe337bf2008-03-23 21:54:12 +0000236And some mathematical functions are also available to Decimal:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000237
Facundo Batista789bdf02008-06-21 17:29:41 +0000238 >>> getcontext().prec = 28
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000239 >>> Decimal(2).sqrt()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000240 Decimal('1.414213562373095048801688724')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000241 >>> Decimal(1).exp()
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000242 Decimal('2.718281828459045235360287471')
243 >>> Decimal('10').ln()
244 Decimal('2.302585092994045684017991455')
245 >>> Decimal('10').log10()
246 Decimal('1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000247
Georg Brandl116aa622007-08-15 14:28:22 +0000248The :meth:`quantize` method rounds a number to a fixed exponent. This method is
249useful for monetary applications that often round results to a fixed number of
Christian Heimesfe337bf2008-03-23 21:54:12 +0000250places:
Georg Brandl116aa622007-08-15 14:28:22 +0000251
252 >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000253 Decimal('7.32')
Georg Brandl116aa622007-08-15 14:28:22 +0000254 >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000255 Decimal('8')
Georg Brandl116aa622007-08-15 14:28:22 +0000256
257As shown above, the :func:`getcontext` function accesses the current context and
258allows the settings to be changed. This approach meets the needs of most
259applications.
260
261For more advanced work, it may be useful to create alternate contexts using the
262Context() constructor. To make an alternate active, use the :func:`setcontext`
263function.
264
Serhiy Storchakab19542d2015-03-14 21:32:57 +0200265In accordance with the standard, the :mod:`decimal` module provides two ready to
Georg Brandl116aa622007-08-15 14:28:22 +0000266use standard contexts, :const:`BasicContext` and :const:`ExtendedContext`. The
267former is especially useful for debugging because many of the traps are
Christian Heimesfe337bf2008-03-23 21:54:12 +0000268enabled:
269
270.. doctest:: newcontext
271 :options: +NORMALIZE_WHITESPACE
Georg Brandl116aa622007-08-15 14:28:22 +0000272
273 >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN)
274 >>> setcontext(myothercontext)
275 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000276 Decimal('0.142857142857142857142857142857142857142857142857142857142857')
Georg Brandl116aa622007-08-15 14:28:22 +0000277
278 >>> ExtendedContext
Stefan Krah1919b7e2012-03-21 18:25:23 +0100279 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000280 capitals=1, clamp=0, flags=[], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000281 >>> setcontext(ExtendedContext)
282 >>> Decimal(1) / Decimal(7)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000283 Decimal('0.142857143')
Georg Brandl116aa622007-08-15 14:28:22 +0000284 >>> Decimal(42) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000285 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000286
287 >>> setcontext(BasicContext)
288 >>> Decimal(42) / Decimal(0)
289 Traceback (most recent call last):
290 File "<pyshell#143>", line 1, in -toplevel-
291 Decimal(42) / Decimal(0)
292 DivisionByZero: x / 0
293
294Contexts also have signal flags for monitoring exceptional conditions
295encountered during computations. The flags remain set until explicitly cleared,
296so it is best to clear the flags before each set of monitored computations by
297using the :meth:`clear_flags` method. ::
298
299 >>> setcontext(ExtendedContext)
300 >>> getcontext().clear_flags()
301 >>> Decimal(355) / Decimal(113)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000302 Decimal('3.14159292')
Georg Brandl116aa622007-08-15 14:28:22 +0000303 >>> getcontext()
Stefan Krah1919b7e2012-03-21 18:25:23 +0100304 Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999, Emax=999999,
Mark Dickinsonb1d8e322010-05-22 18:35:36 +0000305 capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])
Georg Brandl116aa622007-08-15 14:28:22 +0000306
307The *flags* entry shows that the rational approximation to :const:`Pi` was
308rounded (digits beyond the context precision were thrown away) and that the
309result is inexact (some of the discarded digits were non-zero).
310
311Individual traps are set using the dictionary in the :attr:`traps` field of a
Christian Heimesfe337bf2008-03-23 21:54:12 +0000312context:
Georg Brandl116aa622007-08-15 14:28:22 +0000313
Christian Heimesfe337bf2008-03-23 21:54:12 +0000314.. doctest:: newcontext
315
316 >>> setcontext(ExtendedContext)
Georg Brandl116aa622007-08-15 14:28:22 +0000317 >>> Decimal(1) / Decimal(0)
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000318 Decimal('Infinity')
Georg Brandl116aa622007-08-15 14:28:22 +0000319 >>> getcontext().traps[DivisionByZero] = 1
320 >>> Decimal(1) / Decimal(0)
321 Traceback (most recent call last):
322 File "<pyshell#112>", line 1, in -toplevel-
323 Decimal(1) / Decimal(0)
324 DivisionByZero: x / 0
325
326Most programs adjust the current context only once, at the beginning of the
327program. And, in many applications, data is converted to :class:`Decimal` with
328a single cast inside a loop. With context set and decimals created, the bulk of
329the program manipulates the data no differently than with other Python numeric
330types.
331
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000332.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000333
334
335.. _decimal-decimal:
336
337Decimal objects
338---------------
339
340
Georg Brandlc2a4f4f2009-04-10 09:03:43 +0000341.. class:: Decimal(value="0", context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000342
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000343 Construct a new :class:`Decimal` object based from *value*.
Georg Brandl116aa622007-08-15 14:28:22 +0000344
Raymond Hettinger96798592010-04-02 16:58:27 +0000345 *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000346 object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
Christian Heimesa62da1d2008-01-12 19:39:10 +0000347 string, it should conform to the decimal numeric string syntax after leading
Brett Cannona721aba2016-09-09 14:57:09 -0700348 and trailing whitespace characters, as well as underscores throughout, are removed::
Georg Brandl116aa622007-08-15 14:28:22 +0000349
350 sign ::= '+' | '-'
351 digit ::= '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9'
352 indicator ::= 'e' | 'E'
353 digits ::= digit [digit]...
354 decimal-part ::= digits '.' [digits] | ['.'] digits
355 exponent-part ::= indicator [sign] digits
356 infinity ::= 'Infinity' | 'Inf'
357 nan ::= 'NaN' [digits] | 'sNaN' [digits]
358 numeric-value ::= decimal-part [exponent-part] | infinity
Georg Brandl48310cd2009-01-03 21:18:54 +0000359 numeric-string ::= [sign] numeric-value | [sign] nan
Georg Brandl116aa622007-08-15 14:28:22 +0000360
Mark Dickinson345adc42009-08-02 10:14:23 +0000361 Other Unicode decimal digits are also permitted where ``digit``
362 appears above. These include decimal digits from various other
363 alphabets (for example, Arabic-Indic and Devanāgarī digits) along
364 with the fullwidth digits ``'\uff10'`` through ``'\uff19'``.
365
Georg Brandl116aa622007-08-15 14:28:22 +0000366 If *value* is a :class:`tuple`, it should have three components, a sign
367 (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of
368 digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000369 returns ``Decimal('1.414')``.
Georg Brandl116aa622007-08-15 14:28:22 +0000370
Raymond Hettinger96798592010-04-02 16:58:27 +0000371 If *value* is a :class:`float`, the binary floating point value is losslessly
372 converted to its exact decimal equivalent. This conversion can often require
Mark Dickinsone534a072010-04-04 22:13:14 +0000373 53 or more digits of precision. For example, ``Decimal(float('1.1'))``
374 converts to
375 ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
Raymond Hettinger96798592010-04-02 16:58:27 +0000376
Georg Brandl116aa622007-08-15 14:28:22 +0000377 The *context* precision does not affect how many digits are stored. That is
378 determined exclusively by the number of digits in *value*. For example,
Christian Heimes68f5fbe2008-02-14 08:27:37 +0000379 ``Decimal('3.00000')`` records all five zeros even if the context precision is
Georg Brandl116aa622007-08-15 14:28:22 +0000380 only three.
381
382 The purpose of the *context* argument is determining what to do if *value* is a
383 malformed string. If the context traps :const:`InvalidOperation`, an exception
384 is raised; otherwise, the constructor returns a new Decimal with the value of
385 :const:`NaN`.
386
387 Once constructed, :class:`Decimal` objects are immutable.
388
Mark Dickinsone534a072010-04-04 22:13:14 +0000389 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000390 The argument to the constructor is now permitted to be a :class:`float`
391 instance.
Mark Dickinsone534a072010-04-04 22:13:14 +0000392
Stefan Krah1919b7e2012-03-21 18:25:23 +0100393 .. versionchanged:: 3.3
394 :class:`float` arguments raise an exception if the :exc:`FloatOperation`
395 trap is set. By default the trap is off.
396
Brett Cannona721aba2016-09-09 14:57:09 -0700397 .. versionchanged:: 3.6
398 Underscores are allowed for grouping, as with integral and floating-point
399 literals in code.
400
Benjamin Petersone41251e2008-04-25 01:59:09 +0000401 Decimal floating point objects share many properties with the other built-in
402 numeric types such as :class:`float` and :class:`int`. All of the usual math
403 operations and special methods apply. Likewise, decimal objects can be
404 copied, pickled, printed, used as dictionary keys, used as set elements,
405 compared, sorted, and coerced to another type (such as :class:`float` or
Mark Dickinson5d233fd2010-02-18 14:54:37 +0000406 :class:`int`).
Christian Heimesa62da1d2008-01-12 19:39:10 +0000407
Mark Dickinsona3f37402012-11-18 10:22:05 +0000408 There are some small differences between arithmetic on Decimal objects and
409 arithmetic on integers and floats. When the remainder operator ``%`` is
410 applied to Decimal objects, the sign of the result is the sign of the
411 *dividend* rather than the sign of the divisor::
412
413 >>> (-7) % 4
414 1
415 >>> Decimal(-7) % Decimal(4)
416 Decimal('-3')
417
418 The integer division operator ``//`` behaves analogously, returning the
419 integer part of the true quotient (truncating towards zero) rather than its
Mark Dickinsonec967242012-11-18 10:42:07 +0000420 floor, so as to preserve the usual identity ``x == (x // y) * y + x % y``::
Mark Dickinsona3f37402012-11-18 10:22:05 +0000421
422 >>> -7 // 4
423 -2
424 >>> Decimal(-7) // Decimal(4)
425 Decimal('-1')
426
427 The ``%`` and ``//`` operators implement the ``remainder`` and
428 ``divide-integer`` operations (respectively) as described in the
429 specification.
430
Mark Dickinson08ade6f2010-06-11 10:44:52 +0000431 Decimal objects cannot generally be combined with floats or
432 instances of :class:`fractions.Fraction` in arithmetic operations:
433 an attempt to add a :class:`Decimal` to a :class:`float`, for
434 example, will raise a :exc:`TypeError`. However, it is possible to
435 use Python's comparison operators to compare a :class:`Decimal`
436 instance ``x`` with another number ``y``. This avoids confusing results
437 when doing equality comparisons between numbers of different types.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000438
Ezio Melotti993a5ee2010-04-04 06:30:08 +0000439 .. versionchanged:: 3.2
Georg Brandl67b21b72010-08-17 15:07:14 +0000440 Mixed-type comparisons between :class:`Decimal` instances and other
441 numeric types are now fully supported.
Mark Dickinsonac256ab2010-04-03 11:08:14 +0000442
Benjamin Petersone41251e2008-04-25 01:59:09 +0000443 In addition to the standard numeric properties, decimal floating point
444 objects also have a number of specialized methods:
Georg Brandl116aa622007-08-15 14:28:22 +0000445
Georg Brandl116aa622007-08-15 14:28:22 +0000446
Benjamin Petersone41251e2008-04-25 01:59:09 +0000447 .. method:: adjusted()
Georg Brandl116aa622007-08-15 14:28:22 +0000448
Benjamin Petersone41251e2008-04-25 01:59:09 +0000449 Return the adjusted exponent after shifting out the coefficient's
450 rightmost digits until only the lead digit remains:
451 ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the
452 position of the most significant digit with respect to the decimal point.
Georg Brandl116aa622007-08-15 14:28:22 +0000453
Stefan Krah53f2e0a2015-12-28 23:02:02 +0100454 .. method:: as_integer_ratio()
455
456 Return a pair ``(n, d)`` of integers that represent the given
457 :class:`Decimal` instance as a fraction, in lowest terms and
458 with a positive denominator::
459
460 >>> Decimal('-3.14').as_integer_ratio()
461 (-157, 50)
462
463 The conversion is exact. Raise OverflowError on infinities and ValueError
464 on NaNs.
465
466 .. versionadded:: 3.6
Georg Brandl116aa622007-08-15 14:28:22 +0000467
Benjamin Petersone41251e2008-04-25 01:59:09 +0000468 .. method:: as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +0000469
Benjamin Petersone41251e2008-04-25 01:59:09 +0000470 Return a :term:`named tuple` representation of the number:
471 ``DecimalTuple(sign, digits, exponent)``.
Georg Brandl116aa622007-08-15 14:28:22 +0000472
Christian Heimes25bb7832008-01-11 16:17:00 +0000473
Benjamin Petersone41251e2008-04-25 01:59:09 +0000474 .. method:: canonical()
Georg Brandl116aa622007-08-15 14:28:22 +0000475
Benjamin Petersone41251e2008-04-25 01:59:09 +0000476 Return the canonical encoding of the argument. Currently, the encoding of
477 a :class:`Decimal` instance is always canonical, so this operation returns
478 its argument unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000479
Stefan Krah040e3112012-12-15 22:33:33 +0100480 .. method:: compare(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000481
Georg Brandl05f5ab72008-09-24 09:11:47 +0000482 Compare the values of two Decimal instances. :meth:`compare` returns a
483 Decimal instance, and if either operand is a NaN then the result is a
484 NaN::
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000485
Georg Brandl05f5ab72008-09-24 09:11:47 +0000486 a or b is a NaN ==> Decimal('NaN')
487 a < b ==> Decimal('-1')
488 a == b ==> Decimal('0')
489 a > b ==> Decimal('1')
Georg Brandl116aa622007-08-15 14:28:22 +0000490
Stefan Krah040e3112012-12-15 22:33:33 +0100491 .. method:: compare_signal(other, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000492
Benjamin Petersone41251e2008-04-25 01:59:09 +0000493 This operation is identical to the :meth:`compare` method, except that all
494 NaNs signal. That is, if neither operand is a signaling NaN then any
495 quiet NaN operand is treated as though it were a signaling NaN.
Georg Brandl116aa622007-08-15 14:28:22 +0000496
Stefan Krah040e3112012-12-15 22:33:33 +0100497 .. method:: compare_total(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000498
Benjamin Petersone41251e2008-04-25 01:59:09 +0000499 Compare two operands using their abstract representation rather than their
500 numerical value. Similar to the :meth:`compare` method, but the result
501 gives a total ordering on :class:`Decimal` instances. Two
502 :class:`Decimal` instances with the same numeric value but different
503 representations compare unequal in this ordering:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000504
Benjamin Petersone41251e2008-04-25 01:59:09 +0000505 >>> Decimal('12.0').compare_total(Decimal('12'))
506 Decimal('-1')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000507
Benjamin Petersone41251e2008-04-25 01:59:09 +0000508 Quiet and signaling NaNs are also included in the total ordering. The
509 result of this function is ``Decimal('0')`` if both operands have the same
510 representation, ``Decimal('-1')`` if the first operand is lower in the
511 total order than the second, and ``Decimal('1')`` if the first operand is
512 higher in the total order than the second operand. See the specification
513 for details of the total order.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000514
Stefan Krah040e3112012-12-15 22:33:33 +0100515 This operation is unaffected by context and is quiet: no flags are changed
516 and no rounding is performed. As an exception, the C version may raise
517 InvalidOperation if the second operand cannot be converted exactly.
518
519 .. method:: compare_total_mag(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000520
Benjamin Petersone41251e2008-04-25 01:59:09 +0000521 Compare two operands using their abstract representation rather than their
522 value as in :meth:`compare_total`, but ignoring the sign of each operand.
523 ``x.compare_total_mag(y)`` is equivalent to
524 ``x.copy_abs().compare_total(y.copy_abs())``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000525
Stefan Krah040e3112012-12-15 22:33:33 +0100526 This operation is unaffected by context and is quiet: no flags are changed
527 and no rounding is performed. As an exception, the C version may raise
528 InvalidOperation if the second operand cannot be converted exactly.
529
Facundo Batista789bdf02008-06-21 17:29:41 +0000530 .. method:: conjugate()
531
Benjamin Petersondcf97b92008-07-02 17:30:14 +0000532 Just returns self, this method is only to comply with the Decimal
Facundo Batista789bdf02008-06-21 17:29:41 +0000533 Specification.
534
Benjamin Petersone41251e2008-04-25 01:59:09 +0000535 .. method:: copy_abs()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000536
Benjamin Petersone41251e2008-04-25 01:59:09 +0000537 Return the absolute value of the argument. This operation is unaffected
538 by the context and is quiet: no flags are changed and no rounding is
539 performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000540
Benjamin Petersone41251e2008-04-25 01:59:09 +0000541 .. method:: copy_negate()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000542
Benjamin Petersone41251e2008-04-25 01:59:09 +0000543 Return the negation of the argument. This operation is unaffected by the
544 context and is quiet: no flags are changed and no rounding is performed.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000545
Stefan Krah040e3112012-12-15 22:33:33 +0100546 .. method:: copy_sign(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000547
Benjamin Petersone41251e2008-04-25 01:59:09 +0000548 Return a copy of the first operand with the sign set to be the same as the
549 sign of the second operand. For example:
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000550
Benjamin Petersone41251e2008-04-25 01:59:09 +0000551 >>> Decimal('2.3').copy_sign(Decimal('-1.5'))
552 Decimal('-2.3')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000553
Stefan Krah040e3112012-12-15 22:33:33 +0100554 This operation is unaffected by context and is quiet: no flags are changed
555 and no rounding is performed. As an exception, the C version may raise
556 InvalidOperation if the second operand cannot be converted exactly.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000557
Stefan Krah040e3112012-12-15 22:33:33 +0100558 .. method:: exp(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000559
Benjamin Petersone41251e2008-04-25 01:59:09 +0000560 Return the value of the (natural) exponential function ``e**x`` at the
561 given number. The result is correctly rounded using the
562 :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000563
Benjamin Petersone41251e2008-04-25 01:59:09 +0000564 >>> Decimal(1).exp()
565 Decimal('2.718281828459045235360287471')
566 >>> Decimal(321).exp()
567 Decimal('2.561702493119680037517373933E+139')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000568
Raymond Hettinger771ed762009-01-03 19:20:32 +0000569 .. method:: from_float(f)
570
571 Classmethod that converts a float to a decimal number, exactly.
572
573 Note `Decimal.from_float(0.1)` is not the same as `Decimal('0.1')`.
574 Since 0.1 is not exactly representable in binary floating point, the
575 value is stored as the nearest representable value which is
576 `0x1.999999999999ap-4`. That equivalent value in decimal is
577 `0.1000000000000000055511151231257827021181583404541015625`.
578
Mark Dickinsone534a072010-04-04 22:13:14 +0000579 .. note:: From Python 3.2 onwards, a :class:`Decimal` instance
580 can also be constructed directly from a :class:`float`.
581
Raymond Hettinger771ed762009-01-03 19:20:32 +0000582 .. doctest::
583
584 >>> Decimal.from_float(0.1)
585 Decimal('0.1000000000000000055511151231257827021181583404541015625')
586 >>> Decimal.from_float(float('nan'))
587 Decimal('NaN')
588 >>> Decimal.from_float(float('inf'))
589 Decimal('Infinity')
590 >>> Decimal.from_float(float('-inf'))
591 Decimal('-Infinity')
592
Georg Brandl45f53372009-01-03 21:15:20 +0000593 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +0000594
Stefan Krah040e3112012-12-15 22:33:33 +0100595 .. method:: fma(other, third, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000596
Benjamin Petersone41251e2008-04-25 01:59:09 +0000597 Fused multiply-add. Return self*other+third with no rounding of the
598 intermediate product self*other.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000599
Benjamin Petersone41251e2008-04-25 01:59:09 +0000600 >>> Decimal(2).fma(3, 5)
601 Decimal('11')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000602
Benjamin Petersone41251e2008-04-25 01:59:09 +0000603 .. method:: is_canonical()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000604
Benjamin Petersone41251e2008-04-25 01:59:09 +0000605 Return :const:`True` if the argument is canonical and :const:`False`
606 otherwise. Currently, a :class:`Decimal` instance is always canonical, so
607 this operation always returns :const:`True`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000608
Benjamin Petersone41251e2008-04-25 01:59:09 +0000609 .. method:: is_finite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000610
Benjamin Petersone41251e2008-04-25 01:59:09 +0000611 Return :const:`True` if the argument is a finite number, and
612 :const:`False` if the argument is an infinity or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000613
Benjamin Petersone41251e2008-04-25 01:59:09 +0000614 .. method:: is_infinite()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000615
Benjamin Petersone41251e2008-04-25 01:59:09 +0000616 Return :const:`True` if the argument is either positive or negative
617 infinity and :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000618
Benjamin Petersone41251e2008-04-25 01:59:09 +0000619 .. method:: is_nan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000620
Benjamin Petersone41251e2008-04-25 01:59:09 +0000621 Return :const:`True` if the argument is a (quiet or signaling) NaN and
622 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000623
Stefan Krah040e3112012-12-15 22:33:33 +0100624 .. method:: is_normal(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000625
Benjamin Petersone41251e2008-04-25 01:59:09 +0000626 Return :const:`True` if the argument is a *normal* finite number. Return
627 :const:`False` if the argument is zero, subnormal, infinite or a NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000628
Benjamin Petersone41251e2008-04-25 01:59:09 +0000629 .. method:: is_qnan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000630
Benjamin Petersone41251e2008-04-25 01:59:09 +0000631 Return :const:`True` if the argument is a quiet NaN, and
632 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000633
Benjamin Petersone41251e2008-04-25 01:59:09 +0000634 .. method:: is_signed()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000635
Benjamin Petersone41251e2008-04-25 01:59:09 +0000636 Return :const:`True` if the argument has a negative sign and
637 :const:`False` otherwise. Note that zeros and NaNs can both carry signs.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000638
Benjamin Petersone41251e2008-04-25 01:59:09 +0000639 .. method:: is_snan()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000640
Benjamin Petersone41251e2008-04-25 01:59:09 +0000641 Return :const:`True` if the argument is a signaling NaN and :const:`False`
642 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000643
Stefan Krah040e3112012-12-15 22:33:33 +0100644 .. method:: is_subnormal(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000645
Benjamin Petersone41251e2008-04-25 01:59:09 +0000646 Return :const:`True` if the argument is subnormal, and :const:`False`
647 otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000648
Benjamin Petersone41251e2008-04-25 01:59:09 +0000649 .. method:: is_zero()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000650
Benjamin Petersone41251e2008-04-25 01:59:09 +0000651 Return :const:`True` if the argument is a (positive or negative) zero and
652 :const:`False` otherwise.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000653
Stefan Krah040e3112012-12-15 22:33:33 +0100654 .. method:: ln(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000655
Benjamin Petersone41251e2008-04-25 01:59:09 +0000656 Return the natural (base e) logarithm of the operand. The result is
657 correctly rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000658
Stefan Krah040e3112012-12-15 22:33:33 +0100659 .. method:: log10(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000660
Benjamin Petersone41251e2008-04-25 01:59:09 +0000661 Return the base ten logarithm of the operand. The result is correctly
662 rounded using the :const:`ROUND_HALF_EVEN` rounding mode.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000663
Stefan Krah040e3112012-12-15 22:33:33 +0100664 .. method:: logb(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000665
Benjamin Petersone41251e2008-04-25 01:59:09 +0000666 For a nonzero number, return the adjusted exponent of its operand as a
667 :class:`Decimal` instance. If the operand is a zero then
668 ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag
669 is raised. If the operand is an infinity then ``Decimal('Infinity')`` is
670 returned.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000671
Stefan Krah040e3112012-12-15 22:33:33 +0100672 .. method:: logical_and(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000673
Benjamin Petersone41251e2008-04-25 01:59:09 +0000674 :meth:`logical_and` is a logical operation which takes two *logical
675 operands* (see :ref:`logical_operands_label`). The result is the
676 digit-wise ``and`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000677
Stefan Krah040e3112012-12-15 22:33:33 +0100678 .. method:: logical_invert(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000679
Alexandre Vassalotti260484d2009-07-17 11:43:26 +0000680 :meth:`logical_invert` is a logical operation. The
Benjamin Petersone41251e2008-04-25 01:59:09 +0000681 result is the digit-wise inversion of the operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000682
Stefan Krah040e3112012-12-15 22:33:33 +0100683 .. method:: logical_or(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000684
Benjamin Petersone41251e2008-04-25 01:59:09 +0000685 :meth:`logical_or` is a logical operation which takes two *logical
686 operands* (see :ref:`logical_operands_label`). The result is the
687 digit-wise ``or`` of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000688
Stefan Krah040e3112012-12-15 22:33:33 +0100689 .. method:: logical_xor(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000690
Benjamin Petersone41251e2008-04-25 01:59:09 +0000691 :meth:`logical_xor` is a logical operation which takes two *logical
692 operands* (see :ref:`logical_operands_label`). The result is the
693 digit-wise exclusive or of the two operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000694
Stefan Krah040e3112012-12-15 22:33:33 +0100695 .. method:: max(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000696
Benjamin Petersone41251e2008-04-25 01:59:09 +0000697 Like ``max(self, other)`` except that the context rounding rule is applied
698 before returning and that :const:`NaN` values are either signaled or
699 ignored (depending on the context and whether they are signaling or
700 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000701
Stefan Krah040e3112012-12-15 22:33:33 +0100702 .. method:: max_mag(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000703
Georg Brandl502d9a52009-07-26 15:02:41 +0000704 Similar to the :meth:`.max` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000705 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000706
Stefan Krah040e3112012-12-15 22:33:33 +0100707 .. method:: min(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000708
Benjamin Petersone41251e2008-04-25 01:59:09 +0000709 Like ``min(self, other)`` except that the context rounding rule is applied
710 before returning and that :const:`NaN` values are either signaled or
711 ignored (depending on the context and whether they are signaling or
712 quiet).
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000713
Stefan Krah040e3112012-12-15 22:33:33 +0100714 .. method:: min_mag(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000715
Georg Brandl502d9a52009-07-26 15:02:41 +0000716 Similar to the :meth:`.min` method, but the comparison is done using the
Benjamin Petersone41251e2008-04-25 01:59:09 +0000717 absolute values of the operands.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000718
Stefan Krah040e3112012-12-15 22:33:33 +0100719 .. method:: next_minus(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000720
Benjamin Petersone41251e2008-04-25 01:59:09 +0000721 Return the largest number representable in the given context (or in the
722 current thread's context if no context is given) that is smaller than the
723 given operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000724
Stefan Krah040e3112012-12-15 22:33:33 +0100725 .. method:: next_plus(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000726
Benjamin Petersone41251e2008-04-25 01:59:09 +0000727 Return the smallest number representable in the given context (or in the
728 current thread's context if no context is given) that is larger than the
729 given operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000730
Stefan Krah040e3112012-12-15 22:33:33 +0100731 .. method:: next_toward(other, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000732
Benjamin Petersone41251e2008-04-25 01:59:09 +0000733 If the two operands are unequal, return the number closest to the first
734 operand in the direction of the second operand. If both operands are
735 numerically equal, return a copy of the first operand with the sign set to
736 be the same as the sign of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000737
Stefan Krah040e3112012-12-15 22:33:33 +0100738 .. method:: normalize(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000739
Benjamin Petersone41251e2008-04-25 01:59:09 +0000740 Normalize the number by stripping the rightmost trailing zeros and
741 converting any result equal to :const:`Decimal('0')` to
Senthil Kumarana6bac952011-07-04 11:28:30 -0700742 :const:`Decimal('0e0')`. Used for producing canonical values for attributes
Benjamin Petersone41251e2008-04-25 01:59:09 +0000743 of an equivalence class. For example, ``Decimal('32.100')`` and
744 ``Decimal('0.321000e+2')`` both normalize to the equivalent value
745 ``Decimal('32.1')``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000746
Stefan Krah040e3112012-12-15 22:33:33 +0100747 .. method:: number_class(context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000748
Benjamin Petersone41251e2008-04-25 01:59:09 +0000749 Return a string describing the *class* of the operand. The returned value
750 is one of the following ten strings.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000751
Benjamin Petersone41251e2008-04-25 01:59:09 +0000752 * ``"-Infinity"``, indicating that the operand is negative infinity.
753 * ``"-Normal"``, indicating that the operand is a negative normal number.
754 * ``"-Subnormal"``, indicating that the operand is negative and subnormal.
755 * ``"-Zero"``, indicating that the operand is a negative zero.
756 * ``"+Zero"``, indicating that the operand is a positive zero.
757 * ``"+Subnormal"``, indicating that the operand is positive and subnormal.
758 * ``"+Normal"``, indicating that the operand is a positive normal number.
759 * ``"+Infinity"``, indicating that the operand is positive infinity.
760 * ``"NaN"``, indicating that the operand is a quiet NaN (Not a Number).
761 * ``"sNaN"``, indicating that the operand is a signaling NaN.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000762
Stefan Krahb151f8f2014-04-30 19:15:38 +0200763 .. method:: quantize(exp, rounding=None, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000764
Benjamin Petersone41251e2008-04-25 01:59:09 +0000765 Return a value equal to the first operand after rounding and having the
766 exponent of the second operand.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000767
Benjamin Petersone41251e2008-04-25 01:59:09 +0000768 >>> Decimal('1.41421356').quantize(Decimal('1.000'))
769 Decimal('1.414')
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000770
Benjamin Petersone41251e2008-04-25 01:59:09 +0000771 Unlike other operations, if the length of the coefficient after the
772 quantize operation would be greater than precision, then an
773 :const:`InvalidOperation` is signaled. This guarantees that, unless there
774 is an error condition, the quantized exponent is always equal to that of
775 the right-hand operand.
Georg Brandl116aa622007-08-15 14:28:22 +0000776
Benjamin Petersone41251e2008-04-25 01:59:09 +0000777 Also unlike other operations, quantize never signals Underflow, even if
778 the result is subnormal and inexact.
Georg Brandl116aa622007-08-15 14:28:22 +0000779
Benjamin Petersone41251e2008-04-25 01:59:09 +0000780 If the exponent of the second operand is larger than that of the first
781 then rounding may be necessary. In this case, the rounding mode is
782 determined by the ``rounding`` argument if given, else by the given
783 ``context`` argument; if neither argument is given the rounding mode of
784 the current thread's context is used.
Georg Brandl116aa622007-08-15 14:28:22 +0000785
Stefan Krahb151f8f2014-04-30 19:15:38 +0200786 An error is returned whenever the resulting exponent is greater than
787 :attr:`Emax` or less than :attr:`Etiny`.
Stefan Krahaf3f3a72012-08-30 12:33:55 +0200788
Benjamin Petersone41251e2008-04-25 01:59:09 +0000789 .. method:: radix()
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000790
Benjamin Petersone41251e2008-04-25 01:59:09 +0000791 Return ``Decimal(10)``, the radix (base) in which the :class:`Decimal`
792 class does all its arithmetic. Included for compatibility with the
793 specification.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000794
Stefan Krah040e3112012-12-15 22:33:33 +0100795 .. method:: remainder_near(other, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000796
Mark Dickinson6ae568b2012-10-31 19:44:36 +0000797 Return the remainder from dividing *self* by *other*. This differs from
798 ``self % other`` in that the sign of the remainder is chosen so as to
799 minimize its absolute value. More precisely, the return value is
800 ``self - n * other`` where ``n`` is the integer nearest to the exact
801 value of ``self / other``, and if two integers are equally near then the
802 even one is chosen.
Georg Brandl116aa622007-08-15 14:28:22 +0000803
Mark Dickinson6ae568b2012-10-31 19:44:36 +0000804 If the result is zero then its sign will be the sign of *self*.
805
806 >>> Decimal(18).remainder_near(Decimal(10))
807 Decimal('-2')
808 >>> Decimal(25).remainder_near(Decimal(10))
809 Decimal('5')
810 >>> Decimal(35).remainder_near(Decimal(10))
811 Decimal('-5')
Georg Brandl116aa622007-08-15 14:28:22 +0000812
Stefan Krah040e3112012-12-15 22:33:33 +0100813 .. method:: rotate(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000814
Benjamin Petersone41251e2008-04-25 01:59:09 +0000815 Return the result of rotating the digits of the first operand by an amount
816 specified by the second operand. The second operand must be an integer in
817 the range -precision through precision. The absolute value of the second
818 operand gives the number of places to rotate. If the second operand is
819 positive then rotation is to the left; otherwise rotation is to the right.
820 The coefficient of the first operand is padded on the left with zeros to
821 length precision if necessary. The sign and exponent of the first operand
822 are unchanged.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000823
Stefan Krah040e3112012-12-15 22:33:33 +0100824 .. method:: same_quantum(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000825
Benjamin Petersone41251e2008-04-25 01:59:09 +0000826 Test whether self and other have the same exponent or whether both are
827 :const:`NaN`.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000828
Stefan Krah040e3112012-12-15 22:33:33 +0100829 This operation is unaffected by context and is quiet: no flags are changed
830 and no rounding is performed. As an exception, the C version may raise
831 InvalidOperation if the second operand cannot be converted exactly.
832
833 .. method:: scaleb(other, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000834
Benjamin Petersone41251e2008-04-25 01:59:09 +0000835 Return the first operand with exponent adjusted by the second.
836 Equivalently, return the first operand multiplied by ``10**other``. The
837 second operand must be an integer.
Georg Brandl116aa622007-08-15 14:28:22 +0000838
Stefan Krah040e3112012-12-15 22:33:33 +0100839 .. method:: shift(other, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000840
Benjamin Petersone41251e2008-04-25 01:59:09 +0000841 Return the result of shifting the digits of the first operand by an amount
842 specified by the second operand. The second operand must be an integer in
843 the range -precision through precision. The absolute value of the second
844 operand gives the number of places to shift. If the second operand is
845 positive then the shift is to the left; otherwise the shift is to the
846 right. Digits shifted into the coefficient are zeros. The sign and
847 exponent of the first operand are unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +0000848
Stefan Krah040e3112012-12-15 22:33:33 +0100849 .. method:: sqrt(context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000850
Benjamin Petersone41251e2008-04-25 01:59:09 +0000851 Return the square root of the argument to full precision.
Georg Brandl116aa622007-08-15 14:28:22 +0000852
Georg Brandl116aa622007-08-15 14:28:22 +0000853
Stefan Krah040e3112012-12-15 22:33:33 +0100854 .. method:: to_eng_string(context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000855
Raymond Hettingerf6ffa982016-08-13 11:15:34 -0700856 Convert to a string, using engineering notation if an exponent is needed.
Georg Brandl116aa622007-08-15 14:28:22 +0000857
Raymond Hettingerf6ffa982016-08-13 11:15:34 -0700858 Engineering notation has an exponent which is a multiple of 3. This
859 can leave up to 3 digits to the left of the decimal place and may
860 require the addition of either one or two trailing zeros.
861
862 For example, this converts ``Decimal('123E+1')`` to ``Decimal('1.23E+3')``.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000863
Stefan Krah040e3112012-12-15 22:33:33 +0100864 .. method:: to_integral(rounding=None, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000865
Benjamin Petersone41251e2008-04-25 01:59:09 +0000866 Identical to the :meth:`to_integral_value` method. The ``to_integral``
867 name has been kept for compatibility with older versions.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000868
Stefan Krah040e3112012-12-15 22:33:33 +0100869 .. method:: to_integral_exact(rounding=None, context=None)
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000870
Benjamin Petersone41251e2008-04-25 01:59:09 +0000871 Round to the nearest integer, signaling :const:`Inexact` or
872 :const:`Rounded` as appropriate if rounding occurs. The rounding mode is
873 determined by the ``rounding`` parameter if given, else by the given
874 ``context``. If neither parameter is given then the rounding mode of the
875 current context is used.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000876
Stefan Krah040e3112012-12-15 22:33:33 +0100877 .. method:: to_integral_value(rounding=None, context=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000878
Benjamin Petersone41251e2008-04-25 01:59:09 +0000879 Round to the nearest integer without signaling :const:`Inexact` or
880 :const:`Rounded`. If given, applies *rounding*; otherwise, uses the
881 rounding method in either the supplied *context* or the current context.
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000882
Thomas Wouters1b7f8912007-09-19 03:06:30 +0000883
884.. _logical_operands_label:
885
886Logical operands
887^^^^^^^^^^^^^^^^
888
889The :meth:`logical_and`, :meth:`logical_invert`, :meth:`logical_or`,
890and :meth:`logical_xor` methods expect their arguments to be *logical
891operands*. A *logical operand* is a :class:`Decimal` instance whose
892exponent and sign are both zero, and whose digits are all either
893:const:`0` or :const:`1`.
894
Christian Heimes5b5e81c2007-12-31 16:14:33 +0000895.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +0000896
897
898.. _decimal-context:
899
900Context objects
901---------------
902
903Contexts are environments for arithmetic operations. They govern precision, set
904rules for rounding, determine which signals are treated as exceptions, and limit
905the range for exponents.
906
907Each thread has its own current context which is accessed or changed using the
908:func:`getcontext` and :func:`setcontext` functions:
909
910
911.. function:: getcontext()
912
913 Return the current context for the active thread.
914
915
916.. function:: setcontext(c)
917
918 Set the current context for the active thread to *c*.
919
Georg Brandle6bcc912008-05-12 18:05:20 +0000920You can also use the :keyword:`with` statement and the :func:`localcontext`
921function to temporarily change the active context.
Georg Brandl116aa622007-08-15 14:28:22 +0000922
Stefan Krah040e3112012-12-15 22:33:33 +0100923.. function:: localcontext(ctx=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000924
925 Return a context manager that will set the current context for the active thread
Stefan Krah040e3112012-12-15 22:33:33 +0100926 to a copy of *ctx* on entry to the with-statement and restore the previous context
Georg Brandl116aa622007-08-15 14:28:22 +0000927 when exiting the with-statement. If no context is specified, a copy of the
928 current context is used.
929
Georg Brandl116aa622007-08-15 14:28:22 +0000930 For example, the following code sets the current decimal precision to 42 places,
931 performs a calculation, and then automatically restores the previous context::
932
Georg Brandl116aa622007-08-15 14:28:22 +0000933 from decimal import localcontext
934
935 with localcontext() as ctx:
936 ctx.prec = 42 # Perform a high precision calculation
937 s = calculate_something()
938 s = +s # Round the final result back to the default precision
939
940New contexts can also be created using the :class:`Context` constructor
941described below. In addition, the module provides three pre-made contexts:
942
943
944.. class:: BasicContext
945
946 This is a standard context defined by the General Decimal Arithmetic
947 Specification. Precision is set to nine. Rounding is set to
948 :const:`ROUND_HALF_UP`. All flags are cleared. All traps are enabled (treated
949 as exceptions) except :const:`Inexact`, :const:`Rounded`, and
950 :const:`Subnormal`.
951
952 Because many of the traps are enabled, this context is useful for debugging.
953
954
955.. class:: ExtendedContext
956
957 This is a standard context defined by the General Decimal Arithmetic
958 Specification. Precision is set to nine. Rounding is set to
959 :const:`ROUND_HALF_EVEN`. All flags are cleared. No traps are enabled (so that
960 exceptions are not raised during computations).
961
Christian Heimes3feef612008-02-11 06:19:17 +0000962 Because the traps are disabled, this context is useful for applications that
Georg Brandl116aa622007-08-15 14:28:22 +0000963 prefer to have result value of :const:`NaN` or :const:`Infinity` instead of
964 raising exceptions. This allows an application to complete a run in the
965 presence of conditions that would otherwise halt the program.
966
967
968.. class:: DefaultContext
969
970 This context is used by the :class:`Context` constructor as a prototype for new
971 contexts. Changing a field (such a precision) has the effect of changing the
Stefan Kraha1193932010-05-29 12:59:18 +0000972 default for new contexts created by the :class:`Context` constructor.
Georg Brandl116aa622007-08-15 14:28:22 +0000973
974 This context is most useful in multi-threaded environments. Changing one of the
975 fields before threads are started has the effect of setting system-wide
976 defaults. Changing the fields after threads have started is not recommended as
977 it would require thread synchronization to prevent race conditions.
978
979 In single threaded environments, it is preferable to not use this context at
980 all. Instead, simply create contexts explicitly as described below.
981
Stefan Krah1919b7e2012-03-21 18:25:23 +0100982 The default values are :attr:`prec`\ =\ :const:`28`,
983 :attr:`rounding`\ =\ :const:`ROUND_HALF_EVEN`,
984 and enabled traps for :class:`Overflow`, :class:`InvalidOperation`, and
985 :class:`DivisionByZero`.
Georg Brandl116aa622007-08-15 14:28:22 +0000986
987In addition to the three supplied contexts, new contexts can be created with the
988:class:`Context` constructor.
989
990
Stefan Krah1919b7e2012-03-21 18:25:23 +0100991.. class:: Context(prec=None, rounding=None, Emin=None, Emax=None, capitals=None, clamp=None, flags=None, traps=None)
Georg Brandl116aa622007-08-15 14:28:22 +0000992
993 Creates a new context. If a field is not specified or is :const:`None`, the
994 default values are copied from the :const:`DefaultContext`. If the *flags*
995 field is not specified or is :const:`None`, all flags are cleared.
996
Stefan Krah1919b7e2012-03-21 18:25:23 +0100997 *prec* is an integer in the range [:const:`1`, :const:`MAX_PREC`] that sets
998 the precision for arithmetic operations in the context.
Georg Brandl116aa622007-08-15 14:28:22 +0000999
Stefan Krah1919b7e2012-03-21 18:25:23 +01001000 The *rounding* option is one of the constants listed in the section
1001 `Rounding Modes`_.
Georg Brandl116aa622007-08-15 14:28:22 +00001002
1003 The *traps* and *flags* fields list any signals to be set. Generally, new
1004 contexts should only set traps and leave the flags clear.
1005
1006 The *Emin* and *Emax* fields are integers specifying the outer limits allowable
Stefan Krah1919b7e2012-03-21 18:25:23 +01001007 for exponents. *Emin* must be in the range [:const:`MIN_EMIN`, :const:`0`],
1008 *Emax* in the range [:const:`0`, :const:`MAX_EMAX`].
Georg Brandl116aa622007-08-15 14:28:22 +00001009
1010 The *capitals* field is either :const:`0` or :const:`1` (the default). If set to
1011 :const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
1012 lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
1013
Mark Dickinsonb1d8e322010-05-22 18:35:36 +00001014 The *clamp* field is either :const:`0` (the default) or :const:`1`.
1015 If set to :const:`1`, the exponent ``e`` of a :class:`Decimal`
1016 instance representable in this context is strictly limited to the
1017 range ``Emin - prec + 1 <= e <= Emax - prec + 1``. If *clamp* is
1018 :const:`0` then a weaker condition holds: the adjusted exponent of
1019 the :class:`Decimal` instance is at most ``Emax``. When *clamp* is
1020 :const:`1`, a large normal number will, where possible, have its
1021 exponent reduced and a corresponding number of zeros added to its
1022 coefficient, in order to fit the exponent constraints; this
1023 preserves the value of the number but loses information about
1024 significant trailing zeros. For example::
1025
1026 >>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999')
1027 Decimal('1.23000E+999')
1028
1029 A *clamp* value of :const:`1` allows compatibility with the
1030 fixed-width decimal interchange formats specified in IEEE 754.
Georg Brandl116aa622007-08-15 14:28:22 +00001031
Benjamin Petersone41251e2008-04-25 01:59:09 +00001032 The :class:`Context` class defines several general purpose methods as well as
1033 a large number of methods for doing arithmetic directly in a given context.
1034 In addition, for each of the :class:`Decimal` methods described above (with
1035 the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
Mark Dickinson84230a12010-02-18 14:49:50 +00001036 a corresponding :class:`Context` method. For example, for a :class:`Context`
1037 instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
1038 equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
Mark Dickinson5d233fd2010-02-18 14:54:37 +00001039 Python integer (an instance of :class:`int`) anywhere that a
Mark Dickinson84230a12010-02-18 14:49:50 +00001040 Decimal instance is accepted.
Georg Brandl116aa622007-08-15 14:28:22 +00001041
1042
Benjamin Petersone41251e2008-04-25 01:59:09 +00001043 .. method:: clear_flags()
Georg Brandl116aa622007-08-15 14:28:22 +00001044
Benjamin Petersone41251e2008-04-25 01:59:09 +00001045 Resets all of the flags to :const:`0`.
Georg Brandl116aa622007-08-15 14:28:22 +00001046
Stefan Krah1919b7e2012-03-21 18:25:23 +01001047 .. method:: clear_traps()
1048
1049 Resets all of the traps to :const:`0`.
1050
1051 .. versionadded:: 3.3
1052
Benjamin Petersone41251e2008-04-25 01:59:09 +00001053 .. method:: copy()
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001054
Benjamin Petersone41251e2008-04-25 01:59:09 +00001055 Return a duplicate of the context.
Georg Brandl116aa622007-08-15 14:28:22 +00001056
Benjamin Petersone41251e2008-04-25 01:59:09 +00001057 .. method:: copy_decimal(num)
Georg Brandl116aa622007-08-15 14:28:22 +00001058
Benjamin Petersone41251e2008-04-25 01:59:09 +00001059 Return a copy of the Decimal instance num.
Georg Brandl116aa622007-08-15 14:28:22 +00001060
Benjamin Petersone41251e2008-04-25 01:59:09 +00001061 .. method:: create_decimal(num)
Christian Heimesfe337bf2008-03-23 21:54:12 +00001062
Benjamin Petersone41251e2008-04-25 01:59:09 +00001063 Creates a new Decimal instance from *num* but using *self* as
1064 context. Unlike the :class:`Decimal` constructor, the context precision,
1065 rounding method, flags, and traps are applied to the conversion.
Georg Brandl116aa622007-08-15 14:28:22 +00001066
Benjamin Petersone41251e2008-04-25 01:59:09 +00001067 This is useful because constants are often given to a greater precision
1068 than is needed by the application. Another benefit is that rounding
1069 immediately eliminates unintended effects from digits beyond the current
1070 precision. In the following example, using unrounded inputs means that
1071 adding zero to a sum can change the result:
Georg Brandl116aa622007-08-15 14:28:22 +00001072
Benjamin Petersone41251e2008-04-25 01:59:09 +00001073 .. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001074
Benjamin Petersone41251e2008-04-25 01:59:09 +00001075 >>> getcontext().prec = 3
1076 >>> Decimal('3.4445') + Decimal('1.0023')
1077 Decimal('4.45')
1078 >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023')
1079 Decimal('4.44')
Georg Brandl116aa622007-08-15 14:28:22 +00001080
Benjamin Petersone41251e2008-04-25 01:59:09 +00001081 This method implements the to-number operation of the IBM specification.
Brett Cannona721aba2016-09-09 14:57:09 -07001082 If the argument is a string, no leading or trailing whitespace or
1083 underscores are permitted.
Benjamin Petersone41251e2008-04-25 01:59:09 +00001084
Georg Brandl45f53372009-01-03 21:15:20 +00001085 .. method:: create_decimal_from_float(f)
Raymond Hettinger771ed762009-01-03 19:20:32 +00001086
1087 Creates a new Decimal instance from a float *f* but rounding using *self*
Georg Brandl45f53372009-01-03 21:15:20 +00001088 as the context. Unlike the :meth:`Decimal.from_float` class method,
Raymond Hettinger771ed762009-01-03 19:20:32 +00001089 the context precision, rounding method, flags, and traps are applied to
1090 the conversion.
1091
1092 .. doctest::
1093
Georg Brandl45f53372009-01-03 21:15:20 +00001094 >>> context = Context(prec=5, rounding=ROUND_DOWN)
1095 >>> context.create_decimal_from_float(math.pi)
1096 Decimal('3.1415')
1097 >>> context = Context(prec=5, traps=[Inexact])
1098 >>> context.create_decimal_from_float(math.pi)
1099 Traceback (most recent call last):
1100 ...
1101 decimal.Inexact: None
Raymond Hettinger771ed762009-01-03 19:20:32 +00001102
Georg Brandl45f53372009-01-03 21:15:20 +00001103 .. versionadded:: 3.1
Raymond Hettinger771ed762009-01-03 19:20:32 +00001104
Benjamin Petersone41251e2008-04-25 01:59:09 +00001105 .. method:: Etiny()
1106
1107 Returns a value equal to ``Emin - prec + 1`` which is the minimum exponent
1108 value for subnormal results. When underflow occurs, the exponent is set
1109 to :const:`Etiny`.
Georg Brandl116aa622007-08-15 14:28:22 +00001110
Benjamin Petersone41251e2008-04-25 01:59:09 +00001111 .. method:: Etop()
Georg Brandl116aa622007-08-15 14:28:22 +00001112
Benjamin Petersone41251e2008-04-25 01:59:09 +00001113 Returns a value equal to ``Emax - prec + 1``.
Georg Brandl116aa622007-08-15 14:28:22 +00001114
Benjamin Petersone41251e2008-04-25 01:59:09 +00001115 The usual approach to working with decimals is to create :class:`Decimal`
1116 instances and then apply arithmetic operations which take place within the
1117 current context for the active thread. An alternative approach is to use
1118 context methods for calculating within a specific context. The methods are
1119 similar to those for the :class:`Decimal` class and are only briefly
1120 recounted here.
Georg Brandl116aa622007-08-15 14:28:22 +00001121
1122
Benjamin Petersone41251e2008-04-25 01:59:09 +00001123 .. method:: abs(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001124
Benjamin Petersone41251e2008-04-25 01:59:09 +00001125 Returns the absolute value of *x*.
Georg Brandl116aa622007-08-15 14:28:22 +00001126
1127
Benjamin Petersone41251e2008-04-25 01:59:09 +00001128 .. method:: add(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001129
Benjamin Petersone41251e2008-04-25 01:59:09 +00001130 Return the sum of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001131
1132
Facundo Batista789bdf02008-06-21 17:29:41 +00001133 .. method:: canonical(x)
1134
1135 Returns the same Decimal object *x*.
1136
1137
1138 .. method:: compare(x, y)
1139
1140 Compares *x* and *y* numerically.
1141
1142
1143 .. method:: compare_signal(x, y)
1144
1145 Compares the values of the two operands numerically.
1146
1147
1148 .. method:: compare_total(x, y)
1149
1150 Compares two operands using their abstract representation.
1151
1152
1153 .. method:: compare_total_mag(x, y)
1154
1155 Compares two operands using their abstract representation, ignoring sign.
1156
1157
1158 .. method:: copy_abs(x)
1159
1160 Returns a copy of *x* with the sign set to 0.
1161
1162
1163 .. method:: copy_negate(x)
1164
1165 Returns a copy of *x* with the sign inverted.
1166
1167
1168 .. method:: copy_sign(x, y)
1169
1170 Copies the sign from *y* to *x*.
1171
1172
Benjamin Petersone41251e2008-04-25 01:59:09 +00001173 .. method:: divide(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001174
Benjamin Petersone41251e2008-04-25 01:59:09 +00001175 Return *x* divided by *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001176
1177
Benjamin Petersone41251e2008-04-25 01:59:09 +00001178 .. method:: divide_int(x, y)
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001179
Benjamin Petersone41251e2008-04-25 01:59:09 +00001180 Return *x* divided by *y*, truncated to an integer.
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001181
1182
Benjamin Petersone41251e2008-04-25 01:59:09 +00001183 .. method:: divmod(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001184
Benjamin Petersone41251e2008-04-25 01:59:09 +00001185 Divides two numbers and returns the integer part of the result.
Georg Brandl116aa622007-08-15 14:28:22 +00001186
1187
Facundo Batista789bdf02008-06-21 17:29:41 +00001188 .. method:: exp(x)
1189
1190 Returns `e ** x`.
1191
1192
1193 .. method:: fma(x, y, z)
1194
1195 Returns *x* multiplied by *y*, plus *z*.
1196
1197
1198 .. method:: is_canonical(x)
1199
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001200 Returns ``True`` if *x* is canonical; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001201
1202
1203 .. method:: is_finite(x)
1204
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001205 Returns ``True`` if *x* is finite; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001206
1207
1208 .. method:: is_infinite(x)
1209
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001210 Returns ``True`` if *x* is infinite; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001211
1212
1213 .. method:: is_nan(x)
1214
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001215 Returns ``True`` if *x* is a qNaN or sNaN; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001216
1217
1218 .. method:: is_normal(x)
1219
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001220 Returns ``True`` if *x* is a normal number; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001221
1222
1223 .. method:: is_qnan(x)
1224
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001225 Returns ``True`` if *x* is a quiet NaN; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001226
1227
1228 .. method:: is_signed(x)
1229
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001230 Returns ``True`` if *x* is negative; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001231
1232
1233 .. method:: is_snan(x)
1234
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001235 Returns ``True`` if *x* is a signaling NaN; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001236
1237
1238 .. method:: is_subnormal(x)
1239
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001240 Returns ``True`` if *x* is subnormal; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001241
1242
1243 .. method:: is_zero(x)
1244
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001245 Returns ``True`` if *x* is a zero; otherwise returns ``False``.
Facundo Batista789bdf02008-06-21 17:29:41 +00001246
1247
1248 .. method:: ln(x)
1249
1250 Returns the natural (base e) logarithm of *x*.
1251
1252
1253 .. method:: log10(x)
1254
1255 Returns the base 10 logarithm of *x*.
1256
1257
1258 .. method:: logb(x)
1259
1260 Returns the exponent of the magnitude of the operand's MSD.
1261
1262
1263 .. method:: logical_and(x, y)
1264
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001265 Applies the logical operation *and* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001266
1267
1268 .. method:: logical_invert(x)
1269
1270 Invert all the digits in *x*.
1271
1272
1273 .. method:: logical_or(x, y)
1274
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001275 Applies the logical operation *or* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001276
1277
1278 .. method:: logical_xor(x, y)
1279
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001280 Applies the logical operation *xor* between each operand's digits.
Facundo Batista789bdf02008-06-21 17:29:41 +00001281
1282
1283 .. method:: max(x, y)
1284
1285 Compares two values numerically and returns the maximum.
1286
1287
1288 .. method:: max_mag(x, y)
1289
1290 Compares the values numerically with their sign ignored.
1291
1292
1293 .. method:: min(x, y)
1294
1295 Compares two values numerically and returns the minimum.
1296
1297
1298 .. method:: min_mag(x, y)
1299
1300 Compares the values numerically with their sign ignored.
1301
1302
Benjamin Petersone41251e2008-04-25 01:59:09 +00001303 .. method:: minus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001304
Benjamin Petersone41251e2008-04-25 01:59:09 +00001305 Minus corresponds to the unary prefix minus operator in Python.
Georg Brandl116aa622007-08-15 14:28:22 +00001306
1307
Benjamin Petersone41251e2008-04-25 01:59:09 +00001308 .. method:: multiply(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001309
Benjamin Petersone41251e2008-04-25 01:59:09 +00001310 Return the product of *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001311
1312
Facundo Batista789bdf02008-06-21 17:29:41 +00001313 .. method:: next_minus(x)
1314
1315 Returns the largest representable number smaller than *x*.
1316
1317
1318 .. method:: next_plus(x)
1319
1320 Returns the smallest representable number larger than *x*.
1321
1322
1323 .. method:: next_toward(x, y)
1324
1325 Returns the number closest to *x*, in direction towards *y*.
1326
1327
1328 .. method:: normalize(x)
1329
1330 Reduces *x* to its simplest form.
1331
1332
1333 .. method:: number_class(x)
1334
1335 Returns an indication of the class of *x*.
1336
1337
Benjamin Petersone41251e2008-04-25 01:59:09 +00001338 .. method:: plus(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001339
Benjamin Petersone41251e2008-04-25 01:59:09 +00001340 Plus corresponds to the unary prefix plus operator in Python. This
1341 operation applies the context precision and rounding, so it is *not* an
1342 identity operation.
Georg Brandl116aa622007-08-15 14:28:22 +00001343
1344
Stefan Krah040e3112012-12-15 22:33:33 +01001345 .. method:: power(x, y, modulo=None)
Georg Brandl116aa622007-08-15 14:28:22 +00001346
Benjamin Petersone41251e2008-04-25 01:59:09 +00001347 Return ``x`` to the power of ``y``, reduced modulo ``modulo`` if given.
Georg Brandl116aa622007-08-15 14:28:22 +00001348
Benjamin Petersone41251e2008-04-25 01:59:09 +00001349 With two arguments, compute ``x**y``. If ``x`` is negative then ``y``
1350 must be integral. The result will be inexact unless ``y`` is integral and
1351 the result is finite and can be expressed exactly in 'precision' digits.
Stefan Krah1919b7e2012-03-21 18:25:23 +01001352 The rounding mode of the context is used. Results are always correctly-rounded
1353 in the Python version.
1354
1355 .. versionchanged:: 3.3
1356 The C module computes :meth:`power` in terms of the correctly-rounded
1357 :meth:`exp` and :meth:`ln` functions. The result is well-defined but
1358 only "almost always correctly-rounded".
Georg Brandl116aa622007-08-15 14:28:22 +00001359
Benjamin Petersone41251e2008-04-25 01:59:09 +00001360 With three arguments, compute ``(x**y) % modulo``. For the three argument
1361 form, the following restrictions on the arguments hold:
Georg Brandl116aa622007-08-15 14:28:22 +00001362
Benjamin Petersone41251e2008-04-25 01:59:09 +00001363 - all three arguments must be integral
1364 - ``y`` must be nonnegative
1365 - at least one of ``x`` or ``y`` must be nonzero
1366 - ``modulo`` must be nonzero and have at most 'precision' digits
Georg Brandl116aa622007-08-15 14:28:22 +00001367
Mark Dickinson5961b0e2010-02-22 15:41:48 +00001368 The value resulting from ``Context.power(x, y, modulo)`` is
1369 equal to the value that would be obtained by computing ``(x**y)
1370 % modulo`` with unbounded precision, but is computed more
1371 efficiently. The exponent of the result is zero, regardless of
1372 the exponents of ``x``, ``y`` and ``modulo``. The result is
1373 always exact.
Georg Brandl116aa622007-08-15 14:28:22 +00001374
Facundo Batista789bdf02008-06-21 17:29:41 +00001375
1376 .. method:: quantize(x, y)
1377
1378 Returns a value equal to *x* (rounded), having the exponent of *y*.
1379
1380
1381 .. method:: radix()
1382
1383 Just returns 10, as this is Decimal, :)
1384
1385
Benjamin Petersone41251e2008-04-25 01:59:09 +00001386 .. method:: remainder(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001387
Benjamin Petersone41251e2008-04-25 01:59:09 +00001388 Returns the remainder from integer division.
Georg Brandl116aa622007-08-15 14:28:22 +00001389
Benjamin Petersone41251e2008-04-25 01:59:09 +00001390 The sign of the result, if non-zero, is the same as that of the original
1391 dividend.
Georg Brandl116aa622007-08-15 14:28:22 +00001392
Benjamin Petersondcf97b92008-07-02 17:30:14 +00001393
Facundo Batista789bdf02008-06-21 17:29:41 +00001394 .. method:: remainder_near(x, y)
1395
Georg Brandl36ab1ef2009-01-03 21:17:04 +00001396 Returns ``x - y * n``, where *n* is the integer nearest the exact value
1397 of ``x / y`` (if the result is 0 then its sign will be the sign of *x*).
Facundo Batista789bdf02008-06-21 17:29:41 +00001398
1399
1400 .. method:: rotate(x, y)
1401
1402 Returns a rotated copy of *x*, *y* times.
1403
1404
1405 .. method:: same_quantum(x, y)
1406
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001407 Returns ``True`` if the two operands have the same exponent.
Facundo Batista789bdf02008-06-21 17:29:41 +00001408
1409
1410 .. method:: scaleb (x, y)
1411
1412 Returns the first operand after adding the second value its exp.
1413
1414
1415 .. method:: shift(x, y)
1416
1417 Returns a shifted copy of *x*, *y* times.
1418
1419
1420 .. method:: sqrt(x)
1421
1422 Square root of a non-negative number to context precision.
1423
1424
Benjamin Petersone41251e2008-04-25 01:59:09 +00001425 .. method:: subtract(x, y)
Georg Brandl116aa622007-08-15 14:28:22 +00001426
Benjamin Petersone41251e2008-04-25 01:59:09 +00001427 Return the difference between *x* and *y*.
Georg Brandl116aa622007-08-15 14:28:22 +00001428
Facundo Batista789bdf02008-06-21 17:29:41 +00001429
1430 .. method:: to_eng_string(x)
1431
Raymond Hettingerf6ffa982016-08-13 11:15:34 -07001432 Convert to a string, using engineering notation if an exponent is needed.
1433
1434 Engineering notation has an exponent which is a multiple of 3. This
1435 can leave up to 3 digits to the left of the decimal place and may
1436 require the addition of either one or two trailing zeros.
Facundo Batista789bdf02008-06-21 17:29:41 +00001437
1438
1439 .. method:: to_integral_exact(x)
1440
1441 Rounds to an integer.
1442
1443
Benjamin Petersone41251e2008-04-25 01:59:09 +00001444 .. method:: to_sci_string(x)
Georg Brandl116aa622007-08-15 14:28:22 +00001445
Benjamin Petersone41251e2008-04-25 01:59:09 +00001446 Converts a number to a string using scientific notation.
Georg Brandl116aa622007-08-15 14:28:22 +00001447
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001448.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001449
Stefan Krah1919b7e2012-03-21 18:25:23 +01001450.. _decimal-rounding-modes:
1451
1452Constants
1453---------
1454
1455The constants in this section are only relevant for the C module. They
1456are also included in the pure Python version for compatibility.
1457
Stefan Krah851a07e2012-03-21 18:47:20 +01001458+---------------------+---------------------+-------------------------------+
1459| | 32-bit | 64-bit |
1460+=====================+=====================+===============================+
1461| .. data:: MAX_PREC | :const:`425000000` | :const:`999999999999999999` |
1462+---------------------+---------------------+-------------------------------+
1463| .. data:: MAX_EMAX | :const:`425000000` | :const:`999999999999999999` |
1464+---------------------+---------------------+-------------------------------+
1465| .. data:: MIN_EMIN | :const:`-425000000` | :const:`-999999999999999999` |
1466+---------------------+---------------------+-------------------------------+
1467| .. data:: MIN_ETINY | :const:`-849999999` | :const:`-1999999999999999997` |
1468+---------------------+---------------------+-------------------------------+
1469
Stefan Krah1919b7e2012-03-21 18:25:23 +01001470
1471.. data:: HAVE_THREADS
1472
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001473 The default value is ``True``. If Python is compiled without threads, the
Stefan Krah1919b7e2012-03-21 18:25:23 +01001474 C version automatically disables the expensive thread local context
Serhiy Storchaka22dc4d52013-11-26 17:32:16 +02001475 machinery. In this case, the value is ``False``.
Stefan Krah1919b7e2012-03-21 18:25:23 +01001476
1477Rounding modes
1478--------------
1479
1480.. data:: ROUND_CEILING
1481
1482 Round towards :const:`Infinity`.
1483
1484.. data:: ROUND_DOWN
1485
1486 Round towards zero.
1487
1488.. data:: ROUND_FLOOR
1489
1490 Round towards :const:`-Infinity`.
1491
1492.. data:: ROUND_HALF_DOWN
1493
1494 Round to nearest with ties going towards zero.
1495
1496.. data:: ROUND_HALF_EVEN
1497
1498 Round to nearest with ties going to nearest even integer.
1499
1500.. data:: ROUND_HALF_UP
1501
1502 Round to nearest with ties going away from zero.
1503
1504.. data:: ROUND_UP
1505
1506 Round away from zero.
1507
1508.. data:: ROUND_05UP
1509
1510 Round away from zero if last digit after rounding towards zero would have
1511 been 0 or 5; otherwise round towards zero.
1512
Georg Brandl116aa622007-08-15 14:28:22 +00001513
1514.. _decimal-signals:
1515
1516Signals
1517-------
1518
1519Signals represent conditions that arise during computation. Each corresponds to
1520one context flag and one context trap enabler.
1521
Raymond Hettinger86173da2008-02-01 20:38:12 +00001522The context flag is set whenever the condition is encountered. After the
Georg Brandl116aa622007-08-15 14:28:22 +00001523computation, flags may be checked for informational purposes (for instance, to
1524determine whether a computation was exact). After checking the flags, be sure to
1525clear all flags before starting the next computation.
1526
1527If the context's trap enabler is set for the signal, then the condition causes a
1528Python exception to be raised. For example, if the :class:`DivisionByZero` trap
1529is set, then a :exc:`DivisionByZero` exception is raised upon encountering the
1530condition.
1531
1532
1533.. class:: Clamped
1534
1535 Altered an exponent to fit representation constraints.
1536
1537 Typically, clamping occurs when an exponent falls outside the context's
1538 :attr:`Emin` and :attr:`Emax` limits. If possible, the exponent is reduced to
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001539 fit by adding zeros to the coefficient.
Georg Brandl116aa622007-08-15 14:28:22 +00001540
1541
1542.. class:: DecimalException
1543
1544 Base class for other signals and a subclass of :exc:`ArithmeticError`.
1545
1546
1547.. class:: DivisionByZero
1548
1549 Signals the division of a non-infinite number by zero.
1550
1551 Can occur with division, modulo division, or when raising a number to a negative
1552 power. If this signal is not trapped, returns :const:`Infinity` or
1553 :const:`-Infinity` with the sign determined by the inputs to the calculation.
1554
1555
1556.. class:: Inexact
1557
1558 Indicates that rounding occurred and the result is not exact.
1559
1560 Signals when non-zero digits were discarded during rounding. The rounded result
1561 is returned. The signal flag or trap is used to detect when results are
1562 inexact.
1563
1564
1565.. class:: InvalidOperation
1566
1567 An invalid operation was performed.
1568
1569 Indicates that an operation was requested that does not make sense. If not
1570 trapped, returns :const:`NaN`. Possible causes include::
1571
1572 Infinity - Infinity
1573 0 * Infinity
1574 Infinity / Infinity
1575 x % 0
1576 Infinity % x
Georg Brandl116aa622007-08-15 14:28:22 +00001577 sqrt(-x) and x > 0
1578 0 ** 0
1579 x ** (non-integer)
Georg Brandl48310cd2009-01-03 21:18:54 +00001580 x ** Infinity
Georg Brandl116aa622007-08-15 14:28:22 +00001581
1582
1583.. class:: Overflow
1584
1585 Numerical overflow.
1586
Benjamin Petersone41251e2008-04-25 01:59:09 +00001587 Indicates the exponent is larger than :attr:`Emax` after rounding has
1588 occurred. If not trapped, the result depends on the rounding mode, either
1589 pulling inward to the largest representable finite number or rounding outward
1590 to :const:`Infinity`. In either case, :class:`Inexact` and :class:`Rounded`
1591 are also signaled.
Georg Brandl116aa622007-08-15 14:28:22 +00001592
1593
1594.. class:: Rounded
1595
1596 Rounding occurred though possibly no information was lost.
1597
Benjamin Petersone41251e2008-04-25 01:59:09 +00001598 Signaled whenever rounding discards digits; even if those digits are zero
1599 (such as rounding :const:`5.00` to :const:`5.0`). If not trapped, returns
1600 the result unchanged. This signal is used to detect loss of significant
1601 digits.
Georg Brandl116aa622007-08-15 14:28:22 +00001602
1603
1604.. class:: Subnormal
1605
1606 Exponent was lower than :attr:`Emin` prior to rounding.
1607
Benjamin Petersone41251e2008-04-25 01:59:09 +00001608 Occurs when an operation result is subnormal (the exponent is too small). If
1609 not trapped, returns the result unchanged.
Georg Brandl116aa622007-08-15 14:28:22 +00001610
1611
1612.. class:: Underflow
1613
1614 Numerical underflow with result rounded to zero.
1615
1616 Occurs when a subnormal result is pushed to zero by rounding. :class:`Inexact`
1617 and :class:`Subnormal` are also signaled.
1618
Stefan Krah1919b7e2012-03-21 18:25:23 +01001619
1620.. class:: FloatOperation
1621
1622 Enable stricter semantics for mixing floats and Decimals.
1623
1624 If the signal is not trapped (default), mixing floats and Decimals is
1625 permitted in the :class:`~decimal.Decimal` constructor,
1626 :meth:`~decimal.Context.create_decimal` and all comparison operators.
1627 Both conversion and comparisons are exact. Any occurrence of a mixed
1628 operation is silently recorded by setting :exc:`FloatOperation` in the
1629 context flags. Explicit conversions with :meth:`~decimal.Decimal.from_float`
1630 or :meth:`~decimal.Context.create_decimal_from_float` do not set the flag.
1631
1632 Otherwise (the signal is trapped), only equality comparisons and explicit
1633 conversions are silent. All other mixed operations raise :exc:`FloatOperation`.
1634
1635
Georg Brandl116aa622007-08-15 14:28:22 +00001636The following table summarizes the hierarchy of signals::
1637
1638 exceptions.ArithmeticError(exceptions.Exception)
1639 DecimalException
1640 Clamped
1641 DivisionByZero(DecimalException, exceptions.ZeroDivisionError)
1642 Inexact
1643 Overflow(Inexact, Rounded)
1644 Underflow(Inexact, Rounded, Subnormal)
1645 InvalidOperation
1646 Rounded
1647 Subnormal
Stefan Krahb6405ef2012-03-23 14:46:48 +01001648 FloatOperation(DecimalException, exceptions.TypeError)
Georg Brandl116aa622007-08-15 14:28:22 +00001649
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001650.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001651
1652
Stefan Krah1919b7e2012-03-21 18:25:23 +01001653
Georg Brandl116aa622007-08-15 14:28:22 +00001654.. _decimal-notes:
1655
1656Floating Point Notes
1657--------------------
1658
1659
1660Mitigating round-off error with increased precision
1661^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1662
1663The use of decimal floating point eliminates decimal representation error
1664(making it possible to represent :const:`0.1` exactly); however, some operations
1665can still incur round-off error when non-zero digits exceed the fixed precision.
1666
1667The effects of round-off error can be amplified by the addition or subtraction
1668of nearly offsetting quantities resulting in loss of significance. Knuth
1669provides two instructive examples where rounded floating point arithmetic with
1670insufficient precision causes the breakdown of the associative and distributive
Christian Heimesfe337bf2008-03-23 21:54:12 +00001671properties of addition:
1672
1673.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001674
1675 # Examples from Seminumerical Algorithms, Section 4.2.2.
1676 >>> from decimal import Decimal, getcontext
1677 >>> getcontext().prec = 8
1678
1679 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1680 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001681 Decimal('9.5111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001682 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001683 Decimal('10')
Georg Brandl116aa622007-08-15 14:28:22 +00001684
1685 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1686 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001687 Decimal('0.01')
Georg Brandl116aa622007-08-15 14:28:22 +00001688 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001689 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001690
1691The :mod:`decimal` module makes it possible to restore the identities by
Christian Heimesfe337bf2008-03-23 21:54:12 +00001692expanding the precision sufficiently to avoid loss of significance:
1693
1694.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00001695
1696 >>> getcontext().prec = 20
1697 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111')
1698 >>> (u + v) + w
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001699 Decimal('9.51111111')
Georg Brandl116aa622007-08-15 14:28:22 +00001700 >>> u + (v + w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001701 Decimal('9.51111111')
Georg Brandl48310cd2009-01-03 21:18:54 +00001702 >>>
Georg Brandl116aa622007-08-15 14:28:22 +00001703 >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003')
1704 >>> (u*v) + (u*w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001705 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001706 >>> u * (v+w)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001707 Decimal('0.0060000')
Georg Brandl116aa622007-08-15 14:28:22 +00001708
1709
1710Special values
1711^^^^^^^^^^^^^^
1712
1713The number system for the :mod:`decimal` module provides special values
1714including :const:`NaN`, :const:`sNaN`, :const:`-Infinity`, :const:`Infinity`,
Thomas Wouters1b7f8912007-09-19 03:06:30 +00001715and two zeros, :const:`+0` and :const:`-0`.
Georg Brandl116aa622007-08-15 14:28:22 +00001716
1717Infinities can be constructed directly with: ``Decimal('Infinity')``. Also,
1718they can arise from dividing by zero when the :exc:`DivisionByZero` signal is
1719not trapped. Likewise, when the :exc:`Overflow` signal is not trapped, infinity
1720can result from rounding beyond the limits of the largest representable number.
1721
1722The infinities are signed (affine) and can be used in arithmetic operations
1723where they get treated as very large, indeterminate numbers. For instance,
1724adding a constant to infinity gives another infinite result.
1725
1726Some operations are indeterminate and return :const:`NaN`, or if the
1727:exc:`InvalidOperation` signal is trapped, raise an exception. For example,
1728``0/0`` returns :const:`NaN` which means "not a number". This variety of
1729:const:`NaN` is quiet and, once created, will flow through other computations
1730always resulting in another :const:`NaN`. This behavior can be useful for a
1731series of computations that occasionally have missing inputs --- it allows the
1732calculation to proceed while flagging specific results as invalid.
1733
1734A variant is :const:`sNaN` which signals rather than remaining quiet after every
1735operation. This is a useful return value when an invalid result needs to
1736interrupt a calculation for special handling.
1737
Christian Heimes77c02eb2008-02-09 02:18:51 +00001738The behavior of Python's comparison operators can be a little surprising where a
1739:const:`NaN` is involved. A test for equality where one of the operands is a
1740quiet or signaling :const:`NaN` always returns :const:`False` (even when doing
1741``Decimal('NaN')==Decimal('NaN')``), while a test for inequality always returns
1742:const:`True`. An attempt to compare two Decimals using any of the ``<``,
1743``<=``, ``>`` or ``>=`` operators will raise the :exc:`InvalidOperation` signal
1744if either operand is a :const:`NaN`, and return :const:`False` if this signal is
Christian Heimes3feef612008-02-11 06:19:17 +00001745not trapped. Note that the General Decimal Arithmetic specification does not
Christian Heimes77c02eb2008-02-09 02:18:51 +00001746specify the behavior of direct comparisons; these rules for comparisons
1747involving a :const:`NaN` were taken from the IEEE 854 standard (see Table 3 in
1748section 5.7). To ensure strict standards-compliance, use the :meth:`compare`
1749and :meth:`compare-signal` methods instead.
1750
Georg Brandl116aa622007-08-15 14:28:22 +00001751The signed zeros can result from calculations that underflow. They keep the sign
1752that would have resulted if the calculation had been carried out to greater
1753precision. Since their magnitude is zero, both positive and negative zeros are
1754treated as equal and their sign is informational.
1755
1756In addition to the two signed zeros which are distinct yet equal, there are
1757various representations of zero with differing precisions yet equivalent in
1758value. This takes a bit of getting used to. For an eye accustomed to
1759normalized floating point representations, it is not immediately obvious that
Christian Heimesfe337bf2008-03-23 21:54:12 +00001760the following calculation returns a value equal to zero:
Georg Brandl116aa622007-08-15 14:28:22 +00001761
1762 >>> 1 / Decimal('Infinity')
Stefan Krah1919b7e2012-03-21 18:25:23 +01001763 Decimal('0E-1000026')
Georg Brandl116aa622007-08-15 14:28:22 +00001764
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001765.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001766
1767
1768.. _decimal-threads:
1769
1770Working with threads
1771--------------------
1772
1773The :func:`getcontext` function accesses a different :class:`Context` object for
1774each thread. Having separate thread contexts means that threads may make
Stefan Krah1919b7e2012-03-21 18:25:23 +01001775changes (such as ``getcontext().prec=10``) without interfering with other threads.
Georg Brandl116aa622007-08-15 14:28:22 +00001776
1777Likewise, the :func:`setcontext` function automatically assigns its target to
1778the current thread.
1779
1780If :func:`setcontext` has not been called before :func:`getcontext`, then
1781:func:`getcontext` will automatically create a new context for use in the
1782current thread.
1783
1784The new context is copied from a prototype context called *DefaultContext*. To
1785control the defaults so that each thread will use the same values throughout the
1786application, directly modify the *DefaultContext* object. This should be done
1787*before* any threads are started so that there won't be a race condition between
1788threads calling :func:`getcontext`. For example::
1789
1790 # Set applicationwide defaults for all threads about to be launched
1791 DefaultContext.prec = 12
1792 DefaultContext.rounding = ROUND_DOWN
1793 DefaultContext.traps = ExtendedContext.traps.copy()
1794 DefaultContext.traps[InvalidOperation] = 1
1795 setcontext(DefaultContext)
1796
1797 # Afterwards, the threads can be started
1798 t1.start()
1799 t2.start()
1800 t3.start()
1801 . . .
1802
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001803.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001804
1805
1806.. _decimal-recipes:
1807
1808Recipes
1809-------
1810
1811Here are a few recipes that serve as utility functions and that demonstrate ways
1812to work with the :class:`Decimal` class::
1813
1814 def moneyfmt(value, places=2, curr='', sep=',', dp='.',
1815 pos='', neg='-', trailneg=''):
1816 """Convert Decimal to a money formatted string.
1817
1818 places: required number of places after the decimal point
1819 curr: optional currency symbol before the sign (may be blank)
1820 sep: optional grouping separator (comma, period, space, or blank)
1821 dp: decimal point indicator (comma or period)
1822 only specify as blank when places is zero
1823 pos: optional sign for positive numbers: '+', space or blank
1824 neg: optional sign for negative numbers: '-', '(', space or blank
1825 trailneg:optional trailing minus indicator: '-', ')', space or blank
1826
1827 >>> d = Decimal('-1234567.8901')
1828 >>> moneyfmt(d, curr='$')
1829 '-$1,234,567.89'
1830 >>> moneyfmt(d, places=0, sep='.', dp='', neg='', trailneg='-')
1831 '1.234.568-'
1832 >>> moneyfmt(d, curr='$', neg='(', trailneg=')')
1833 '($1,234,567.89)'
1834 >>> moneyfmt(Decimal(123456789), sep=' ')
1835 '123 456 789.00'
1836 >>> moneyfmt(Decimal('-0.02'), neg='<', trailneg='>')
Christian Heimesdae2a892008-04-19 00:55:37 +00001837 '<0.02>'
Georg Brandl116aa622007-08-15 14:28:22 +00001838
1839 """
Christian Heimesa156e092008-02-16 07:38:31 +00001840 q = Decimal(10) ** -places # 2 places --> '0.01'
Georg Brandl48310cd2009-01-03 21:18:54 +00001841 sign, digits, exp = value.quantize(q).as_tuple()
Georg Brandl116aa622007-08-15 14:28:22 +00001842 result = []
Facundo Batista789bdf02008-06-21 17:29:41 +00001843 digits = list(map(str, digits))
Georg Brandl116aa622007-08-15 14:28:22 +00001844 build, next = result.append, digits.pop
1845 if sign:
1846 build(trailneg)
1847 for i in range(places):
Christian Heimesa156e092008-02-16 07:38:31 +00001848 build(next() if digits else '0')
Raymond Hettinger0ab10e42011-01-08 09:03:11 +00001849 if places:
1850 build(dp)
Christian Heimesdae2a892008-04-19 00:55:37 +00001851 if not digits:
1852 build('0')
Georg Brandl116aa622007-08-15 14:28:22 +00001853 i = 0
1854 while digits:
1855 build(next())
1856 i += 1
1857 if i == 3 and digits:
1858 i = 0
1859 build(sep)
1860 build(curr)
Christian Heimesa156e092008-02-16 07:38:31 +00001861 build(neg if sign else pos)
1862 return ''.join(reversed(result))
Georg Brandl116aa622007-08-15 14:28:22 +00001863
1864 def pi():
1865 """Compute Pi to the current precision.
1866
Georg Brandl6911e3c2007-09-04 07:15:32 +00001867 >>> print(pi())
Georg Brandl116aa622007-08-15 14:28:22 +00001868 3.141592653589793238462643383
1869
1870 """
1871 getcontext().prec += 2 # extra digits for intermediate steps
1872 three = Decimal(3) # substitute "three=3.0" for regular floats
1873 lasts, t, s, n, na, d, da = 0, three, 3, 1, 0, 0, 24
1874 while s != lasts:
1875 lasts = s
1876 n, na = n+na, na+8
1877 d, da = d+da, da+32
1878 t = (t * n) / d
1879 s += t
1880 getcontext().prec -= 2
1881 return +s # unary plus applies the new precision
1882
1883 def exp(x):
1884 """Return e raised to the power of x. Result type matches input type.
1885
Georg Brandl6911e3c2007-09-04 07:15:32 +00001886 >>> print(exp(Decimal(1)))
Georg Brandl116aa622007-08-15 14:28:22 +00001887 2.718281828459045235360287471
Georg Brandl6911e3c2007-09-04 07:15:32 +00001888 >>> print(exp(Decimal(2)))
Georg Brandl116aa622007-08-15 14:28:22 +00001889 7.389056098930650227230427461
Georg Brandl6911e3c2007-09-04 07:15:32 +00001890 >>> print(exp(2.0))
Georg Brandl116aa622007-08-15 14:28:22 +00001891 7.38905609893
Georg Brandl6911e3c2007-09-04 07:15:32 +00001892 >>> print(exp(2+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001893 (7.38905609893+0j)
1894
1895 """
1896 getcontext().prec += 2
1897 i, lasts, s, fact, num = 0, 0, 1, 1, 1
1898 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001899 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001900 i += 1
1901 fact *= i
Georg Brandl48310cd2009-01-03 21:18:54 +00001902 num *= x
1903 s += num / fact
1904 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001905 return +s
1906
1907 def cos(x):
1908 """Return the cosine of x as measured in radians.
1909
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001910 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001911 For larger values, first compute x = x % (2 * pi).
1912
Georg Brandl6911e3c2007-09-04 07:15:32 +00001913 >>> print(cos(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001914 0.8775825618903727161162815826
Georg Brandl6911e3c2007-09-04 07:15:32 +00001915 >>> print(cos(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001916 0.87758256189
Georg Brandl6911e3c2007-09-04 07:15:32 +00001917 >>> print(cos(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001918 (0.87758256189+0j)
1919
1920 """
1921 getcontext().prec += 2
1922 i, lasts, s, fact, num, sign = 0, 0, 1, 1, 1, 1
1923 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001924 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001925 i += 2
1926 fact *= i * (i-1)
1927 num *= x * x
1928 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001929 s += num / fact * sign
1930 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001931 return +s
1932
1933 def sin(x):
1934 """Return the sine of x as measured in radians.
1935
Mark Dickinsonb2b23822010-11-21 07:37:49 +00001936 The Taylor series approximation works best for a small value of x.
Raymond Hettinger2a1e3e22010-11-21 02:47:22 +00001937 For larger values, first compute x = x % (2 * pi).
1938
Georg Brandl6911e3c2007-09-04 07:15:32 +00001939 >>> print(sin(Decimal('0.5')))
Georg Brandl116aa622007-08-15 14:28:22 +00001940 0.4794255386042030002732879352
Georg Brandl6911e3c2007-09-04 07:15:32 +00001941 >>> print(sin(0.5))
Georg Brandl116aa622007-08-15 14:28:22 +00001942 0.479425538604
Georg Brandl6911e3c2007-09-04 07:15:32 +00001943 >>> print(sin(0.5+0j))
Georg Brandl116aa622007-08-15 14:28:22 +00001944 (0.479425538604+0j)
1945
1946 """
1947 getcontext().prec += 2
1948 i, lasts, s, fact, num, sign = 1, 0, x, 1, x, 1
1949 while s != lasts:
Georg Brandl48310cd2009-01-03 21:18:54 +00001950 lasts = s
Georg Brandl116aa622007-08-15 14:28:22 +00001951 i += 2
1952 fact *= i * (i-1)
1953 num *= x * x
1954 sign *= -1
Georg Brandl48310cd2009-01-03 21:18:54 +00001955 s += num / fact * sign
1956 getcontext().prec -= 2
Georg Brandl116aa622007-08-15 14:28:22 +00001957 return +s
1958
1959
Christian Heimes5b5e81c2007-12-31 16:14:33 +00001960.. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
Georg Brandl116aa622007-08-15 14:28:22 +00001961
1962
1963.. _decimal-faq:
1964
1965Decimal FAQ
1966-----------
1967
1968Q. It is cumbersome to type ``decimal.Decimal('1234.5')``. Is there a way to
1969minimize typing when using the interactive interpreter?
1970
Christian Heimesfe337bf2008-03-23 21:54:12 +00001971A. Some users abbreviate the constructor to just a single letter:
Georg Brandl116aa622007-08-15 14:28:22 +00001972
1973 >>> D = decimal.Decimal
1974 >>> D('1.23') + D('3.45')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001975 Decimal('4.68')
Georg Brandl116aa622007-08-15 14:28:22 +00001976
1977Q. In a fixed-point application with two decimal places, some inputs have many
1978places and need to be rounded. Others are not supposed to have excess digits
1979and need to be validated. What methods should be used?
1980
1981A. The :meth:`quantize` method rounds to a fixed number of decimal places. If
Christian Heimesfe337bf2008-03-23 21:54:12 +00001982the :const:`Inexact` trap is set, it is also useful for validation:
Georg Brandl116aa622007-08-15 14:28:22 +00001983
1984 >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01')
1985
1986 >>> # Round to two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001987 >>> Decimal('3.214').quantize(TWOPLACES)
1988 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001989
Georg Brandl48310cd2009-01-03 21:18:54 +00001990 >>> # Validate that a number does not exceed two places
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001991 >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact]))
1992 Decimal('3.21')
Georg Brandl116aa622007-08-15 14:28:22 +00001993
Christian Heimes68f5fbe2008-02-14 08:27:37 +00001994 >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact]))
Georg Brandl116aa622007-08-15 14:28:22 +00001995 Traceback (most recent call last):
1996 ...
Benjamin Peterson25c95f12009-05-08 20:42:26 +00001997 Inexact: None
Georg Brandl116aa622007-08-15 14:28:22 +00001998
1999Q. Once I have valid two place inputs, how do I maintain that invariant
2000throughout an application?
2001
Christian Heimesa156e092008-02-16 07:38:31 +00002002A. Some operations like addition, subtraction, and multiplication by an integer
2003will automatically preserve fixed point. Others operations, like division and
2004non-integer multiplication, will change the number of decimal places and need to
Christian Heimesfe337bf2008-03-23 21:54:12 +00002005be followed-up with a :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00002006
2007 >>> a = Decimal('102.72') # Initial fixed-point values
2008 >>> b = Decimal('3.17')
2009 >>> a + b # Addition preserves fixed-point
2010 Decimal('105.89')
2011 >>> a - b
2012 Decimal('99.55')
2013 >>> a * 42 # So does integer multiplication
2014 Decimal('4314.24')
2015 >>> (a * b).quantize(TWOPLACES) # Must quantize non-integer multiplication
2016 Decimal('325.62')
2017 >>> (b / a).quantize(TWOPLACES) # And quantize division
2018 Decimal('0.03')
2019
2020In developing fixed-point applications, it is convenient to define functions
Christian Heimesfe337bf2008-03-23 21:54:12 +00002021to handle the :meth:`quantize` step:
Christian Heimesa156e092008-02-16 07:38:31 +00002022
2023 >>> def mul(x, y, fp=TWOPLACES):
2024 ... return (x * y).quantize(fp)
2025 >>> def div(x, y, fp=TWOPLACES):
2026 ... return (x / y).quantize(fp)
2027
2028 >>> mul(a, b) # Automatically preserve fixed-point
2029 Decimal('325.62')
2030 >>> div(b, a)
2031 Decimal('0.03')
Georg Brandl116aa622007-08-15 14:28:22 +00002032
2033Q. There are many ways to express the same value. The numbers :const:`200`,
2034:const:`200.000`, :const:`2E2`, and :const:`.02E+4` all have the same value at
2035various precisions. Is there a way to transform them to a single recognizable
2036canonical value?
2037
2038A. The :meth:`normalize` method maps all equivalent values to a single
Christian Heimesfe337bf2008-03-23 21:54:12 +00002039representative:
Georg Brandl116aa622007-08-15 14:28:22 +00002040
2041 >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split())
2042 >>> [v.normalize() for v in values]
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002043 [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')]
Georg Brandl116aa622007-08-15 14:28:22 +00002044
2045Q. Some decimal values always print with exponential notation. Is there a way
2046to get a non-exponential representation?
2047
2048A. For some values, exponential notation is the only way to express the number
2049of significant places in the coefficient. For example, expressing
2050:const:`5.0E+3` as :const:`5000` keeps the value constant but cannot show the
2051original's two-place significance.
2052
Christian Heimesa156e092008-02-16 07:38:31 +00002053If an application does not care about tracking significance, it is easy to
Christian Heimesc3f30c42008-02-22 16:37:40 +00002054remove the exponent and trailing zeroes, losing significance, but keeping the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002055value unchanged:
Christian Heimesa156e092008-02-16 07:38:31 +00002056
2057 >>> def remove_exponent(d):
2058 ... return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize()
2059
2060 >>> remove_exponent(Decimal('5E+3'))
2061 Decimal('5000')
2062
Georg Brandl116aa622007-08-15 14:28:22 +00002063Q. Is there a way to convert a regular float to a :class:`Decimal`?
2064
Mark Dickinsone534a072010-04-04 22:13:14 +00002065A. Yes, any binary floating point number can be exactly expressed as a
Raymond Hettinger96798592010-04-02 16:58:27 +00002066Decimal though an exact conversion may take more precision than intuition would
2067suggest:
Georg Brandl116aa622007-08-15 14:28:22 +00002068
Christian Heimesfe337bf2008-03-23 21:54:12 +00002069.. doctest::
2070
Raymond Hettinger96798592010-04-02 16:58:27 +00002071 >>> Decimal(math.pi)
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002072 Decimal('3.141592653589793115997963468544185161590576171875')
Georg Brandl116aa622007-08-15 14:28:22 +00002073
Georg Brandl116aa622007-08-15 14:28:22 +00002074Q. Within a complex calculation, how can I make sure that I haven't gotten a
2075spurious result because of insufficient precision or rounding anomalies.
2076
2077A. The decimal module makes it easy to test results. A best practice is to
2078re-run calculations using greater precision and with various rounding modes.
2079Widely differing results indicate insufficient precision, rounding mode issues,
2080ill-conditioned inputs, or a numerically unstable algorithm.
2081
2082Q. I noticed that context precision is applied to the results of operations but
2083not to the inputs. Is there anything to watch out for when mixing values of
2084different precisions?
2085
2086A. Yes. The principle is that all values are considered to be exact and so is
2087the arithmetic on those values. Only the results are rounded. The advantage
2088for inputs is that "what you type is what you get". A disadvantage is that the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002089results can look odd if you forget that the inputs haven't been rounded:
2090
2091.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00002092
2093 >>> getcontext().prec = 3
Christian Heimesfe337bf2008-03-23 21:54:12 +00002094 >>> Decimal('3.104') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002095 Decimal('5.21')
Christian Heimesfe337bf2008-03-23 21:54:12 +00002096 >>> Decimal('3.104') + Decimal('0.000') + Decimal('2.104')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002097 Decimal('5.20')
Georg Brandl116aa622007-08-15 14:28:22 +00002098
2099The solution is either to increase precision or to force rounding of inputs
Christian Heimesfe337bf2008-03-23 21:54:12 +00002100using the unary plus operation:
2101
2102.. doctest:: newcontext
Georg Brandl116aa622007-08-15 14:28:22 +00002103
2104 >>> getcontext().prec = 3
2105 >>> +Decimal('1.23456789') # unary plus triggers rounding
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002106 Decimal('1.23')
Georg Brandl116aa622007-08-15 14:28:22 +00002107
2108Alternatively, inputs can be rounded upon creation using the
Christian Heimesfe337bf2008-03-23 21:54:12 +00002109:meth:`Context.create_decimal` method:
Georg Brandl116aa622007-08-15 14:28:22 +00002110
2111 >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Christian Heimes68f5fbe2008-02-14 08:27:37 +00002112 Decimal('1.2345')